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Some Results on Rings of Automorphic Forms
Shigeaki Tsuyumine

It has been a quite hard problem to know the structures of
rings of automorphic forms. Indeed the cases when the structures
have been explicitly determined are not many, even for the Siegel
or Hilbert modular forms which are considered to be significant
in connection with the moduli spaces of abelian varieties. In
1971, Eichler stated that a ring of automorphic forms was Cohen-
Macaulay in a number of individual case when it had been explicitly
constructed, (whieh is still true up to now days,) and posed

the problem which of them are Cohen-Macaulay; Projéétive varieties

and modular forms, Lecture notes in Math., 210; On the graded

ring of modular forms, Acta arith., 18. He derived even some

consequence of the 'hypothesis' of the rings of éutomorphic forms
being Cohen-Macaulay. Since a ring of automorphic forms is a graded
ring, it is Cohen-Macaulay if and only if it is free over some
(equivalently.any) polynomial subring generated by homogeneous
elements over which it is finite. It looks a good point of view
in order to analyze the structure of a graded ring of automorphic
forms.

Freitag first answered to Eichler's problem and showed that
the ring of Hilbert modular forms of dimension > 3 1is not Cohen-

Macaulay; Lokale und globale Invarianten der Hilbertschen Modul-

gruppen, Invent. math., 17 (1972). We consider Eichler's problem



in more general case. Cohomological methods play an important
role in every case, since there is a cohomological criterion for
a normal graded ring to be Cohen-Macaulay and since the Serre duality
theorem for cohomology groups is closely related with Cohen-
Macaulayness.

We give the summary of our result. Let R = Ego R, ~denote
a graded ring of automorphic forms.

(1) Hilbert modular forms. We get exactly when the graded

ring R(S) = kESB(S) Rk is Cohen-Macaulay for s > 2, including the
case of symmetric Hilbert modular forms. In particular, if the

2) are Cohen-Macaulay, which is

dimension is two, then all R(
the answer also to the problem posed by Thomas and Vasquez; Rings

of Hilbert modular forms, Compositio Méth., 48 (1983). Together

with their result, it follows that the graded rings R(Z) of
Hilbert modular forms of dimension 2 are also Gorenstein.

(2) Siegel modular forms. The graded ring R of Siegel modular

forms is not Cohen-Macaulay when the degree is greater than three.
Samuel stated '"All the examples of U.F.D.'s I know are Cohen-
Macaulay. Is is true in general?' in his paper; On unique

factorization domains, Illinoi J. Math., 5 (1961). Several

mathematicains constructed counter-examples (e.g., Freitag and

Kiehl, Algebraiche Eigenschaften der lokal Ringe in der Hilbertschen

Modulgruppen, Invent. math., 24 (1974)). By Freitag's result;

Stabile Modulformen, Math. Ann., 230 (1977), Die Irreducibilitit

der Schottky relation (Bemerkungen zu einem Satz von Igusa), Archiv

der Math., 40 (1983), R is a U.F.D. if the degree is greater than



two, and thus R's of degree > 3 give new negative examples to
Samuel's question. R 1is not Cohen-Macaulay alsc for the principal
congruence subgroup of degree 2,3, if its level is large enough.
Our argument implies fhat the Satake compactification of the moduli
space of abelian varieties of dimension > 3 1is not a Cohen-
Macaulay scheme. It gives some generalization of the result of

Igusa; On the theory of compactifications, Summer Institute on

Algebraic Geometry, Woods Hole, 1964, where he showed that it does
not admit a finite nonsingular covering.

(3) Automorphic forms on a bounded symmetric domain. Let

& be a bounded symmetric domain, and I a neat arithmetic group
acting on . Let &' (resp. ') be the highest (resp. the
second- highest) dimensional rational boundary coﬁbonent. Suppose
one of the following;

(1) m :=dim® - dim ' = 3 is odd,

(ii) m 2 4 is even, and dim " < dim ' - 2.
Then the ring of automorphic forms on § for T is not Cohen-
Macaulay.

These work were done while the author was staying at the Johns

Hopkins University, and after that at Harvard University. He wishes

to express his hearty thanks to the members of Department of
Mathematics of each University for their hospitalities, and to

the Educational Project for Japanese Mathematical Scientists for

financial support.
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Rings of Modular Forms (On Eichler's Problem)

Shigeaki Tsuyumine

In his paper [ &4 ] or lecture mote [ 3 ], Eichler asked the

problem when the ring of modular forms is Cohen-Macaulay. We sheall

try tc investigate it for Hilbert or Siegel modular case.
When the dimension n 1is one, any ring of modular forms fcr an

arithmetic group is Cohen-Macaulay, indeed a mormal (graded) ring

s always Cohen-Macaulay. So we consider the

(]
h
‘F?
[
o}
(=]
[aW
|4
2]
(0]
3
n
|
(o]
a3
()
S
(o]
1

case n > 1. Unfortunately rings of moduler forms do not zlweys have

this mice property. In the case of (symmetric or not) Hilbert modular

forms it ig essentially Freitag's result (ses 7.1 Satz [ 61 arnd

Proposition A in '§ 1.1). let A(r) = g A(r), be the ring cf

1ilbert modular forms for a group T. Then the same questionm

fod \(\2) = A : k! 3

for A{T) = = h(T)k with n = 2 was reised by Thomes and
k=2 (0)

Vasguez [ 201, in which it is shown by using the criterion due to

Q- 1 T b o - (?—) — - g P

Stanlev [ 18 1,0 191 that A(r) is a2lso Georenstain if it is

Cohen-Macaulay under some condition on T. Also Eichler derivad
some ccnsescuence of the ‘'hypothesis' of A(r) being Cchen~
Macaulay with n =2 in [ 3 ].

In this paper we shall show this affirmatively, and mcrsover get
when A{r)(r)ﬂ is Cohen-Macaulay for general n and r > 2,
as well as the case of symmetric Hilbert modular forms (Theorem 1}.

Furthermore ' if n = 2 and if T acts on freely on Hz, the necessary



and sufficient condition for
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A(r) to be Cohen-Macaulay is given

(1) dim A{r)y =% (-% t (-1)-a + x + h)

K is a corresponding rezl quadretic field 2y is its zet
ion, a = [SLZ(OK): r], OK being the ring of integers of K,
he number of the cusps and x is the arithmetic genus of the
ingular mocdel of the Hilbert modular surface.

Let us refer to the case 0f Siegel meodular forms, and let Al
2 the ring of Siegel modular forms for an arithmetic grcocup T
the degree n of the Siegel space is two, if T possesses,
subgroun, the principal congruence subgroup I,(2) cf level t
A{T) 1is Cohen-Maczulay. 3But the Cochen-Macaulayness does no
ys hold, indsed A(r,(2)) 4is such an example 1If ¢ > 6. When
s Alrgfle}), 2 23, is no longer Cohen-Mzcaulay. We shzll sh
3
by disproving the Ssrre duaslity thsorem for Proj(A(?n(i))}
should hold if A(r_(2)) would be Cchen-Macaulay.
This werk was cdone while the zuthor wes staying at Harvard
Tsity. He whishes to express his hezrty thanks tc ths menber
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tzlity, and to Educati
ists for the financi
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and R Dbe a noetherian k-algebra.
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We

R Cohen-Macaulay if any ideal generated by a regular sequence



has no embedded prime. A k-scheme is called Cohen-Macaulay if all

of its local rings are Cohen-Macaulay.

When R 1is a graded algebra, we have the following (£or the detail

see Serre [ 1671 Theorem 2 TIV-20, Hochster and Robert [ 13] s1 (d)

)

3

- - 4 - m 1 = [ . — 3
g—zded k-zlecabrz of dimensicen N + 1. Then the following conditicns
g g

are eguivalent

s 3 - s R . £ - o 1= -
(i) Tor scme {equivalentiv znv) svstem of homogsnecus elemants
1 oa 3 P 1.7 5 T =S, -
XnsessEy Such that R is integrzl over .LXO,..,XV], X is fres cver
U TN h
it.
f 2z M T o - Tae 37 3 3 e Sy g - P P =g -~
{iii ez X =.Froj(R), and 8 De its structure snezf. Thano
-_—= - X
- 3 ~ ==V aly o £ 4 A -~ I £
the cchemelozv eTocur H (X,@X(m), vaniishes for 1<v<N-1 and for
P2 S { -— ! -3 $ -~
evervy meZ, whars O.{(m) is Serre's twistinec shesaf.
v —————— X
- ‘
As zn ezsy comseguence of this, we g=t the following;
T - - - - < -l - -— - - I T A 1
crollzry. et R be egs in the proposcticn, and 12T T bs
-
o~ — n—ec;_. frw_lc,l (4.) — ::‘., R .; C ™ ‘ﬂ i -‘ - 3 o~ - - 1 'I ;
&1 LTiTEgET. iaers = = s = ls cnen-racsulzyvy 1T gnc cornly 1Z
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Next one is a part of the famous results in [ 12].



Proposition B. Let

G be a finite group acting k-limearly on

R.

Suppose either char(k) = 0, or the order of G

is coprime to

cher(k). If R 1s Cchen-Macaulay, then sc is the invariant
subring RG.

If we use the notation of Propeosition A, then X 1is 2 Cohen-
Maczulzv scheme if and only if H“(X,fom)) vanishes for <N,

m «0 (sszz for example, the procf of Theorem 7.6 Chap III
Hertshcrne ¢ ]}. Sc if R is = Cohen-Maczaulay algebrz, then X =
Proj{R) 1s a2 Cchen-Macaulay scheme. The ccnverss is not necessarily
true, indeed an N-dimensionzl prcjective manifcld over C  carrying
non-trivial hcoleomerphic p-forms (O <p<N) is z such exampls.

2. We shall prepare two lzammas for the later use.

Lemmz 1. Let D be a domain in ,E? gnd S Dbe 2 finite group
ecting on D as holomerphic sutomerohisms. Let r:D—Y = D/S be
ths cuctiznz. Take an sutomoroay Zactor pl(g,z) g££S%, z&D and
comsider en action on &, as

-1

(2) f(z)—— o(g,z) ~ Z(gz).

E§’u5- cznotes the invariant subshezf of w*(uD) uncer this zztidn,

Y is the regular open subset of

0

where

Y with

the inclusion map 1.




Procf. Since all non-zero sections f .of #* over an open subset V

) H

have V as their support i.e., {PeV|f, =0 in ::"Qa(ﬂY ot
]

is a subsheaf of i*c?]Y ). ¥Y' = ¥ - YO is of codimension » 2, since
Y 1is a normel complex space. Hence any holomorphic function g on

-1 -1, . . -1,
T T (VIA (D - 1 7(Y")) is extendable to whole « ~(V), and moreover

. ~ \ _l - = 3\ * -
isfies (2} on 7 “(V)A(D = 7 “(¥')), then the extension

i1f g sat
~ - . Food o} —l \ . 1 ® i . - .
ct g alsc satisfies (2) on « “(V). This shows that the injection
of & to i, ], ) is surjective. gq.e.d.
0
The fcllowing is an easy comsequence of Cerollzary to
Propesition 5.2. Grothendieck [ 8 ].
- w = . . o
tamma 2. Let Y be a ssparzted scheme over L, and lat £  be
v —
z ccherent sheaf over Y. Let G be & fimits gzcup acting on Y, &

§ 2. Hilbert modular forms
3. Let K be a totzlly rezl elgsbrzic number field of degrze n
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E® of n copies of theupper half plane H = (zeC| Imz > 0)

rroduct
by the moduiaf’substitution;
(1) (n)

(1)
_ .o .o z, +8 a zn-+8
Z=(Zl,.,2ﬁ.) 5I"!z= ( (1) (1),:0, (n) (ﬂ))

é §
Y Zl+ Y Zn+

"The author was imformed this by Prof. T. Oda.



where o(1) o es Q(n) denote the ctonjugates of «eX in some fixed order..

Let T be a subgroup of SL2(OK) of finite index. A holomorphic

. f2es : 1 . 5 - .
function £ on HY is called a Hilbert modular form for o of weight
k if it satisfies

n .
. (1) (L), k - ,- aB
(3) £Mz) = (v Z, + 8§ )T £(z) for any M = ( 6)& r.
i=1 - Y
3 i3 . 'n e roas )
The symmetric group G, of n 1letters acts on H as permutatiocons
&
cf the coordinates
zZ = (9 .. = }—_'é cZ = (Z * z ) c .
B o c{1)?" "5 (n) & 6p
The automorphism group Aut(K/Q) can be regarded as a subgreup cf (_
- = - = Il
}— o~ - e 1 (1) (ﬂ) - — . .
beczuse it acts on n-tuples (¢ sy ) as permutations, i.e.,
¥ -1 / Y (l) \(n}\ 2 RV S| . T o~ 1 o '
for ceAut(X/Q) ((oe) srey(oa) ) is miothing elss but ths permu-

) n) - C . = .
.f.,a( ). Let us Zix some subgroup §S a:ﬁAutﬁUb)C.@%,
- o -

N = 3 = - biakd 3 ~7 7 - o e
A holomorphic function £ con E' is callsd a (symmetric) Hilber=

modular form for T if it satisfiss beth (2) and the identity
f(oz) = f(z) for oeS. We shall denote by A(T) = € A(T),, the
graded (C-algebrz of Hilbert meocular forms feor T, A(T 1 being the
vector space of Hilbert modular forms of weight k, and denote by
A(f)(r), the subring S A(f)k.

- e k=0 (1)

4. Let h denote the numBer of the cusps for . X = Hn/F is

compactified by adding h points, and we get a normal projective



variety X*, which is isomorphic to Proj(A(T)). We shall denote by

X., the regular open subset of X, hence of X*.

O)

let &(i} dencte the coherent shez

rh

on X* corresponding to

modular forms of weight 1 € Z, and let L = Z(1). Obviously we

%

:J,
m
i
Re
-
&
B
ool
n
f
'—-h

+3) for i,j > 0. Lat #:X—X%X* be a -

desingularization. The canconical coherent shezf Kyx on X* is

-~
givern by Kyix = 7Ry, Kg being the canonical invertible sheaf on X.
nn N =~
Xy 1is determined up to desingularizatiocns (CGrauert-Riemenschneider
¥
[ 7 1). We shall need also the duslizing sheaZ w_. which gives
N
- . . - 1T x Vv
rise to the functorial isomorphism Hom(&F,uw,.) = H(X",H)7 for
A
. . = - :
ccherent sheaves . Agzin by [ 7 ], @, egquals i Ky =~ whers i
. - AN * L 4‘\0 .
cenciss .the inclusion of XO to- X¥. If X* 1is Cohen-Macaulsy, then
- - PR “ LV - eei— N 4 AV -
there are natural isomorphisms E (X¥,R&) = = Xﬂ,ﬁle;uxﬁ) for
- - ~ e ~ N - -\ e s _ - -
eny lcczlly free sheaf =~ and for its dual X7, e have the caznonical
inclusion K,,.C uw,. f{(loc. cit). Morscver by Freitag [ 3 ] Setz 1
.LL" Aii -
we have an eguality K. = @yl
= 7 XAIX XA!X
If S 1is a subgroup of the altermating grour, then ey, £02)
- An -
¢
arz iscmorpnic. Let us show this. Let X bz tThe open subsei of X

Tor an cpen subset U of XY if £ is & szctiom of 1(U,Z{2)), then
fdz p-- Adz, gilves a sectiom of F(U,KXQ) and vige varse. So KXO

. . s 0 , . - - 0
and £(2) &are isomorphic on X~ . Since the ccdimension of ¥° in

X 1is larger than or equal to two as one can easily see, KXO"i(z)
are isomorphic on X by the extendability of holomorphic functions-.

So by Lemma 1 we get wx*lx==¢12)lx. Let = be any cusp, and let



@,

U be an open meighborhood at Then a sec

j e Z, admits Fourier expansion

(

-
BN

s

+ L 9 4
g * & i exp(2n/-1 (A Zq

tion £ of r(U-{=},2(3)),

(n)

+ e+ A Z
el

))

where A varies over some lattice of totally positive numbers in K.
< 1 1(\ —rmtt A -~ -~ o~ — - — ~ P c4 > 5 3
>0 £ 1ls hOgumO;pul\. at =, and hences ws gexc l"\‘(*(J)iU—{a}) ui(J),
i being the inclusion U-{=} —>U. Thus
('7 T W,
L02) X%
Suppose that S 1is a group not contined im the altermating
group. Let §' bes the normal subgrcus of S of index two which is
2 subgroup of the alternating group. Letz @.(H‘/r‘)f——e * o= (HT/T)%
be the canonical projecticn whers T©' = 3'.7., If JL'(2) ig the
coherent shezf on (HZ/T')* corresponding toc modular forms of weight
two, then we deiine a ccherent sheaf JIZ}_ on X¥ by
"1 . + LY - -7
(5) T(U,22)) = {(fer(y ~(U).2(2)]) | £{oz) = sgnlec) Z{z), o &S}
U being zn copen subset of X*. Anyv s=zction of J{2)_ vanishes zlong
= by - =
the fixed points set under the action of the group §/S'. Then gﬁﬁ)_igc
is isomorphic to Ky bv the simila= z-zumeni as above and by
- ‘r\ - ' -
v
[ 5 ] the proof of Hilfsssatz &, aznd moracver
J(2)_ = Ly
b ~ . . 1
5. Llet X¥ = (H"/T)=, Z(i), L= &L{1) ©be as ebove.
. a~ }gs 1
Lemma 3. Assume that T = r/\SLz(OK) acts freely on H . Then

i) (i) 1is invertible, and g% = £(i)
i1) HY(X*,L(i)) =0 for i 22, v >0,

b]

(i,v) ¥ (2,n).



be the
(= H'™

s
Proof. Let 1:X—X*

cohomology group Hv(i,Ki)

[ ce all the higher

(cf.

desingularization.
A\
)

v(%,eq) vanishes for

R\)

Then the

O<\><n

6 i direct image sheaves TiKg (w2 1)
. - v - . .

vanish by [ 7 ], also H (X*,Kx*) 0 < v <n vanish by using the
Leray spectral sequence.

At first let us suppose [ =rT1. Then 1) 1is cbvious, and this
implies that & 1s ample. We have an exact seguence

2,2
0— ™ L — L /K.(..——?O,
. 2 .
whers i'/KKA is supported conly at cusps bv ths cbservation of s 2.4.
- . i s s
Tensoring J2 - and teking the long exact seguence
v _,i T S v -~ ’gﬁ'i 1\)( = _,i { f2

—_— (1\" Yo @ l\.{*) I (X" G- )_':‘R \X":u'\’ 2 \ o~ /KX-"‘.) ) _9,

- » b - 2 + M e i . -?- f= 3 .
we get the desired result since H({X*.L e (L7/K,.)), v >0, vanishes,

Ve LE o . . . . .

and since elso H (K“,a,caﬂxﬁ), i20, v>23, (i,v) 5= (0,n), vanishes
by the generzlized Kodeaira vanishing thecrsm (cf. [ 7 ] Satz 2.1) and
by the above obsarvation.

1 $ A =1 -2l - Tear - L nd Tas

Let us consider the general cass. Lst vs put Y = H'/r, znd le

[ 3 3

@ be the invertivisz shezf on Y* corrssgonding to modular forms cf
weight one. We have shown abecve that 1),ii) heold for Y+, To
prove 1) for X*,L, it is enough to show that for any point x . of
¥*, thera is an neighborhcod V =zt = such that T (V,L) has &
section not vanishing et x as & function. If x 1is not a ramification
point of the canonicel projection p:Y*—>X¥, then ncthing is =z

problem. If x 1is such a point,

x = pl{y), and its neighborhood W

has a section f not vani

T (W,%)

then we czan teake a point
such that'.

shing at y. Then g =.Z



Tunning over the stabilizer subgroup at y of S = T/r, is a desired

element, indeed if we take a -sufficiently small neighborhood V at x,

n
(]
-h

then g}v is a ction o T(V,:..) whose value g(x) at x 1is not

zero. This shows 1). 1i) is a direct consequence of Lemma 2,

s S
noticing & = (p 80", q.=.d.
For amy T, there is =z normal subgroup T' of finite index such
1 - - - s '3 -~ - A g~
that T' ASL,(0,) acts freely on H'. Then T/T' acts on (5O F)

= /31y % - ] = ¥ed PR B RN
shezf on (H'/T'")* cerresponding to modular forms of weight 1, then
s/
i) eguals ts (p L' (L)) . Sc by Lemma 3 eand Lemmaz 2, we have

g -~ .
6. Our mzin theorsm is as fcllows:
A\ - ~ - -
Theorem 1. let n, r, T, Al(T) bs as in ¢ 2.3, and lsc 1 =
-~ { -
P 1 PSRN W) . (I o -
vnder the condition (4). Then A{l] is Cchen-Maczaulay for any

(equivalently scme) r 2 2 1if end oniy iZ

}

(6) n=3 r /r

n

”ZV/BﬂZM at each cusp =, or

s}

Il

o

1)

=
[H]

2/2Z x 2/2Z at each cusp =,
vV W W W

—10—



(resp.
at

<«

rm)

is denoting the stabilizer subgroup mof

T

—11-

Corollery. Llet n =2, egnd lst © be SLQ(OK) cr its torsicn
; . (2)

frse subgroun. Then A(r) "' is CGorenstein.

To prove Theorem 1 the following is 2 key proposition.

Propositicn C (Freitag [ 6 ]). The conditicn (6) and the
following two conditons (a),(b) are zll escuivalent to =zch other.

(a) X* . is Cochen-Macaulav,

N Y .

(b) m(x*,8,.) =0 for O < v < n.

- . — . < ason T ; . =

By the fact we saw in §81.1, A&A{7) czninct be Cohen-Macaulzy Ic

P . - - . (2

any r umnlsess (&) is the cese. Iz | Z0 ] it is shown that A(r) 7
is never Cohen-Maczulay under scme condition om T with n = 3. But
it is not even Cohen-Meacaulay.

7. Procf of Theorem 1. By Propesition A and C it is enough to
show merely 'if' part. We shall give the proocfs of two kinds,
_however one is available only for n = 2. At first we assume n = 2.



Then X* is a normal surface and hence it is Cohen-Macaulay. We may

A 2 3
assume r (= FI\SLZ(OK)) acts freely on H" by replacing T by a
normal subgroup T' of finite index if necessary. Indeed if acrn (5
is Cohen-Macaulay, then so is A(T)

is the invariant subring of Alr

=)
0
’A—-J
h
'—l
S|
a
m
{
ct
‘—‘c
o2
'-—J
I
wn
oy
o
[\y]
Hh
o
‘g

~ A
! mAxy Ay =t - b4 i -
T/i . So we may assume that S is z2n &

Vigx 2-iy o 4Timv i v
HO(XF,& 7)) = B (X%, L @ uwyy)
by Serre's duzality theorem. As we have seen in § 2.4, Kex 1is e

similar &arg : t
£ the homcloey croums HOU{(X*. St g VO Fae oo 0. i C
()= e COnOLLAO.LC):y EeweS i & s o @ u-\v){._;,j =L I3 Vo> . L > 3
3
. , - 2 Vo -3 .
(i,n-v) & (0.n) (use ... instezd cf Z%). So H {X¥,ZL ~) wvanishss
3 3 b 3

4 e e e — - T o = -
where T is anyv intsger grezctsr than cne. By Corclizzy tc Eropcsi-
()
== = 1 - - = Ha aers = 3
tion A this implies that A(T) is Cchen-Maczulay, and our zssertic
ig oyvand o~ =
15 PpTCVeEC wna2mn 1 L

(Y]

I~

In the case n = the zbove argument does not work sincs

.
2

5 WL . : - o - NS TN 2
(H'/T')* may not be Cohen-Maczulay even if so is (H /T)%*, whers T'
is a subgroup of T. Let us take a normal subgroup ' of [ which

n . .
acts freely on H . Then by the virture of [ 1 ] we have a smooth

toroidal compactification X' of X' = H%/r', on which, we may assume,



the finite quotient group T/T' =cts dm the matural way (cf. [ 1 ],
[22]1). Let us put X = X'/(T/r') that has only quotient singular-
ities X (resp. X') has X = H'Y/T (resp. X') as its Zariski
open subset. Let (resp. «') ©be the morphism of the blowing

and let ¢ (resp. v ) Dbe the quotient

% T = I toare Ariue
mzp of X' to X* (resp. X' fo X). We have a commutative
dizgram

pra] £ 7
———3
X > X
i 1
L
T k3
N v
X'= — X
We shall show theat the morphism = enjovs
A 1
Rr bz =0 0<v<n-1l,
L
— - - - - ~ bipet w
by using our assumpiicn o X* being Cohsn-Macavlzy. Let F:{—X
be the desingularizaticon. Since ¥ has only ratinel singularitiss,
N R} 2 - ~ > Fa . . ~‘t e
the higher direct imege shezvaes R 7. Gy v > 0 vanisn, woF:X—d¥
Fay

v - % ~
R (ncn)_@zix vanish fer v > €. Since (R (70#)*@ ), =0 for
0 < v < n=1 if the local rTing & 2 cusp = iz Cghen-Mzcaniavy as Fraitss showss
. v - R -
61 &.5 R (7c%) . Us wvenish Zor 0 < v < n—-1. Considering ths
A =
D -C - D Qh - —'C ~ —
Leray spectral saguence EI°F = R*w*(R‘w+@z) = RP ‘(rcr)+@g, we g=t
1 - v Fe) -~
the venishing cf R ». 8% Zfcz 0 < v < n-1,
coa
I£f £'(i) 1is the invertible shezf on X'® correspending te
~ - . 3 - — [ ] . L:/F ! - e B2 )
modular forms -of weight i, then (9 %' (1)) is equal to % &l1
by using the facts that (i) =,v' are biratiomnal, (ii) *,X'* are

‘normal, and (iii) v*.ﬂ(i)r/r' = JQ(i). HY(X',n'* f'(i)) vanishes

-13 —



for v <n, i <0 by the generalized Kodaira vanishing theorem [ 7 ].
So applying Lemma 2, we have HY(X,+*L(i)) = 0 for v < n, i< 0.
Since (i) 1is locelly free near at each cusp, the projection formula

Rz, £(i) = (1) @R ny g bholds and hence there exists the Leray

H*
. T,9g D, . . +q . 27
spectral sequence E5’: = H‘(i*,gjl)caRqﬁﬁOx):zz;Hp X, Lld) ).
It folleows from this that H {(X*, J(i)) = 0 for v <n, i < C. Now

the same argument as abovs shows our assertion. g.e.c.

In the above procf, we hava shown uncder the condition (4} that
v , . - - ) . .
H (X%, £{i)) wvzanishes for CO< v < n 1f 1 % 1. As a <conssguencs
of this we get the follcwing;
Proposition 2. A{(T) is Cohen-Macauley if end cnly IZ
\ - -
H{(X* L) =0 for 0 < v <nmn
togsther with the conditicon (6).
€. In what follcws we alwzvs assume =0 = 2, andé that 1 acts
2
frzelv en H™. Ller a2 bs zthe index 2 = [8L.(0.):r], and let Yy Ds
b <z K N
2 V) N
the zrithmetic genus r (-1)° dim B'(X,08%) where X is the non-
V= £

polynomial P(k) .of - A(T):
(7) P(k) = %-CK(-1)~a k(k-2) + x + h,



where tx is the zeta function of K, and h is the number cof cusps.

P(k) gives the dimension of A(r)k for k > 3, and P(2) equals

dim'A(r)z + 1. P(k) must be equal to the Euler-Pcincaé character-

2
istics xhik) = EO (-1)Y dim H (X*,£% ), which is known to be a
\)=

polynomial of k (cZ. ([15]). Hence we have
. . r R . 2.
-5, {(-1)ra+y+h =dim H (X*,&) - dim H(X*,L) + dim H™(X*.,2).
i 22 t 12 ] 1 g ) uz Vi £ -
Since 2 is now Serre's dualizing sheaf {5 2.4}, BT (X*,L) is just

(-1)a + ¥ + h) + 3dim HI(X*,JI.).

£ocdim A(T)y € together with (7) eand with dim A(r), = F(2) - 1 =s
1 ;- s Ly s 1 - . -
Q(r) = - {2 + 27 = e+ o {x(-%z,(-2)a - x - h! - 3
(1 —-t\:' ENN
= ’ 2 3 .
+ (e +t) (5 (3/2z.(-1)a -y = h) = 21 3.
- . 2 1 - - .
It is easy to see Q(t) satisfiss -t~ Q(t™) = Q(t). By Stanlev [12
this implies thzt A(r} is Corsnstein.

9. Let X*, r be as zbove. Let X% denote (Hz/f * where
I = Gé-r,.and let T be the invertible sheaf on & corresponding to

symmetric Hilbert modular forms of weight oné. Let us suppose (4).

._15._



Then if p:X*——ai*

is the canonical projection, we have the direct

a few yet. At

decomposition
Ped=L Sl
where J£_ 1is the coherent sheaf given in the similar way as (5).
Since £@8&L_ =Jd(2)_ , it gives Serre's dualizing sheaf on X* (5 2.4
Thus we have
HL(%% 2 ) = FueiBa I eerlcF 3 lgx 2V
Ho(X*,L_} = Ext \'»':{_.,si_) = Ext (L, 10d_) = B (X*,2)
and hence
1 o 2 .1 Lo 2 1 S -~ -y1~::- \
HE(X*, L) = H7(X¥,p. L) = H(X*, 1) & H (X5, 2_)
10+ 3 vi <& NG
= HH{X*,2) ¢ H (X*,2),
1 - ’ " 1,8, =
— T P e T [ ¥l N\ 2 . ey
and hence dim H7(X¥,. ) = 2 dim E {(X*,2). Thus A(r) and Alr}) ars
Cohen-Maczulay or net elike by Proposition 2. Summing up ths abecve
we shall stats it zs the prodositicn.
Preoposition 3. Let K be e rezl guadratic fisld, anc T be
2 subgroup of SL,(0,) <cf finifes index acting frszelv on E. Then ths
folliowineg ars squivelsnt:
{a) A(r) is Gczsenstaiz.
(b) A(r) is Cohesn-Maczulzv.
(¢) The ecuelicv (1) - éim A(7), = %(-—%zg(—lWae-x'~E} helds.
Assuming (&) Zor 5 = &,
(d) A(r) 4is Cohen-Macaulay.
The known examples of a full ring A(r) for above r are quite

any rate such examples in Hirzebruch [ 11 ], which are



1+v2
1-~v

are satisfying the conditions in Proposition 3. It may not be unrea-

K=Q(V5), I=T({5) = {M&SL,y(0p) | M = 1, mod /51, and
Q

K=QWw2), r= r(2)~<( )> , 1(2) ={MeSL,(0,)]| M=1, mod 2},

ol

sonable to expect it in more general case.

that A(l) mevy possibly be a complete intersection ring cuiv in a
finite number of cases &s follcwing. The index a = [SL,{(0,):°1 1is
&~ e

on the other hamd T not (cf. Hirzebruch [ 10] § 1.7). LetT us put
2 =8Z., Then A(r) mzy possibly be & ccmplete intersection ting

Ccnsicdering the values of the zeza function at -1, this cannot hzppen
if the discriminant of K is largez than 103, "We skip the proof,

which will be zlmest the same es in [ 20].

o
)
mn

J e N I SN — P,
motular IOTmSs

11. et EH bte the Si=zcel space oI degree 1., i.=, eM (C

11 let o S £ P g 1 ) {Z nkw)[

“Z =2Z, ImZ > 0} The svmplectic group Spnﬁw) actes on H_ by the
L

usual modular substitution

z——>Mz = (AZ+B)(CZ+D)™" M = (&) € Sp_(R).

-17~



We shall denote by gn(z), the principal congruence subgroup of level »;

{PieSpn(%) | M 12n mod 23}.

Let £ be a hclomorphic function on H . f 1is called Siegel
modular form of weight k for a congruence subgroup , if it satisfies

kf(Z) for M = (éb

When n = 1, we nsed an additionel condition that £ is holomerphic
also at cusps, which iz automatic if n > 1. We cdenote By Alr) =
AlT) (rzsp. {r} = & S(r} ), the gradsd ring of mcdulzr forms
P

ja
4 ————— o~ Y — = < qr P —— y = = s D 37 - %
is normal projective variety iscomorphic to Proijlalr)).
12. Let r be nsat, and let < be an invercible shezf cn X*
. - . -
correspending to modular forms of weight one. The regulsr cpen subset
= - 1 Aar e > < kd -~+l I s -~ - E5N
cf X* ccincicdes with X, -an <)y is iscmcrphic to the
) K L) M - - 0 P N P ER—
cznonical invertible sheaf K, on X. Then by [ 7 i, the dusiizing
Fay

S SR - Tyt K4 R - 3 JHfl K N h fmmTrried A= e
sSnesz m‘{_% on S 1§ given Y i =..X s b peing Tne LOCcLusionn man

y S g :

= Z v ST 3 = 1o Eeammpm e AT P -~ ——— g —
cz X to X¥, whers wyy gLVES Tise To the Iuncterial iscmorphism
3
4y /0

. - nln+i)/2,,. = - . - i _
Hom(=,uy) H (X*,20) for ccherant shezves —~ on X¥. Hers

. _— s . - , . T Y k
by Koecher's principle. So if X* 1is Cohen-Mzcaulay, then E'(X¥,L7)

n(n+1)/2 - v n+1l-k

¢

is isomorphic to the dual of H (X*,2 ) and hence
~P(k) = (—1)n(n+1)/2P(n+1—k), P(k) . denoting the:Hilbert polynomial

of the graded ring A(r) or equivalently xhik).

_18 -—



On the other hand it is shown in [ 2 ] Vol 2 - 16 that

P(k) = dim A(F)k = dim S(I), + z dim S(I"S)?{

'c Sp_ . (F N
r Ph_1 (w%‘)
e + z dim S(r"), +#{(0 dimensional cusps

r'c Sp1(§)

for k »0 where 7' varies over the set of all the subgrcups attached

]

Hh
]
at
=
V
Q
=
i
(@)

to cusps of X*. (The above is shown in [ 2

. . . s .
mod 2., However both sides mus

~

~ ems s e -1 1 1~
be numericzl polynomia

(R

k » 0, so we gst the above formulza.)

= - - 3 r 3 M Fae Aty memd mlaema =2 -
Cohen-Macaulay in Igusa { 14 |. So fcr any arichmetic group [

- - -~ \ ~ -
contazining r,{2) as a nermel subgroup, A(r) is Cohen-Mzcaulav by

let X* be the Sztzke ccmpactificeticn ci E™/r.(%2) £for some
2 2 3, end let P(k} be the Hilbert polynomial Zor A(r,(2)}. Then
if X% iz Cchen—Meczulay, we would have P{3/2) = 0 zince ?2(k)
= - P(3-k) by the cbssxvation in § 3.12. 3y Veamezaki [ 23] we can

This is not zszc if ¢ 2 6,
Macaulay and hence A(r,(2)) 2 > 6 are not Cohen-Macaulay algebras.
The similar argument works also for T = F3(2) £ 2 3 by using

the formula by Tsushima [ 21 ]. Indeed if (H3/r3(2)j* were Cohen-

-19-—



Macaulay, then the Hilbert polynomial P(k) of the graded Ting Alr5(e))

would satisfy P(k-2) - P(2-k) = O by the observaticn in § 3.12.

However actually we have

P(k-2) —P(2-k) = 27 /3735-1,16 ; (1-p ) 1-p -5k 2 002y,

o n , £ 28 or n 3,
e - PPy U =2 £z F- < ! b 2
2 > 3., Then the Satzksz compactification of H /r (i) is not a
n°'n
3
3 ~—- ~1 = .
Cohen-Macauvlav varisty. Especiazly 1f A{r) denctes the ring cf
. - Fm—— T . 5
Siegel meoduler forms for T, then A(r) is nct Cchen-Macaulay
for anv intsgsr .
.:\":QT‘QT‘(‘G“
AT il TilivTD
- R -2 c W -
[ 1] A. &sh, D. Mumfeord, M. Rzpopert ané Y. Tai: Smooth compzactifi-
= 1 - = - K 1 - = {4473
cation of locelly symmetric varieties. Math. Sci. Press (187Z].
[ 2] E. Cawtzn: TFeoncticns zutcmerpnes. Eccle Normale Surpérisurs
Ly S amm e anz [a -0
Seminezirs R ;/;935.
- - < - - T . - —=
[[ 3 ] M. Eichler: Projective verieties and mocular Zorms. Lacturs nots
. - - ki -5 2 ——~ — -l 4N T
in Math, 210 Sorinesr-Varleg Berlin Heidelberg New York (1571).
g g =3
= - - ——
[ ¢ ] . On the grazded ring of modular forms. AcZz ariin.

18 (1¢71) 87 —°Z

[ 5] E. Freitag: {lber die Struktur der Funktionenkdrper zur
hyperabbelschen Gruppen I. J. fir rein angew Math 247 (1971)
97 —117.
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PART 1II



Rings of automorphic forms which are not Cohen-Macaulay, I
Shigeaki Tsuyumine

By MNoether's normalization theorem, a noetherian graded algébra
R has a polynomial subring S generated by homogeneous elements
such that R 1is finite over S. It is known (see, for instance
Stanley [ 24 ], 5 3) that R is Cohen-Macaulay (C.-M., for short)
if and only if R 1is free over any (equivalently some) such S.
Thus it is meaningful to ask which of the graded rings of automorphic
forms are C.-M. This is a problem posed by Eichler [ 4 ],[ 5 ].
Igusa { 16 ] determined the structure of the_gréded rings of Siegel
modﬁlar forms of degree two for.subgroups of r,(2), and Resnikoff
and Tai [ 20 ],[25 ] determined the structure of the graded rings
of automorphic forms on the complex 2-ball for some arithmetic
group. These rings turn out to be C.-M. However Freitag [ 6 ]
showed that the ring of Hilbert modular forms of degree > 3 is
not C.:M., while in our previous paper [27 ], we proved that the
ring of Hilbert modular forms of even weight and of degree two is
C.-M. 1In this paper we show that the ring of automorphic forms
- fails to be C.-M. for a large class of neat arithmetic groups as
well as for the Siegel modular group Pg = SPZg(Z)’ g 2 4.

Samuel [ 22 ] stated "All the examples of U.F.D.'s I know

are C.-M. Is it true in general?" (see Lipman [ 19 ] <£for the

history of this question). In the case of characteristic zero,



Freitag and Xiehl [ 9 ] gave a negative answer to this question of
Samuel by constructing analytic local rings which are U.F.D.'s
of dimension 60 and depth 3, hence not C.-M. As far as we
know these are the only previously known examples. As Freitag
[ 71,0 8] has shown, the ring of Siegel modular forms for T
(g > 3) is U.F.D. Hence our result shows that they furnish negative
examples to Samuel's question in arbitrary high dimension.

To prove our assertion it is enough to prove that the Baily-
Borel compactification of the corresponding quotient space is not
a C.-M. scheme, where a C.-M. scheme is a scheme whose local
rings are all C.-M. This gives some generalization of the result
of Igusa [ 17 ], where he shows that the Baily-Borel compactification
does not admit a finite nonsingular covering under some condition
on thé‘bounded symmetric domain and the arithmetic group.

This work was done while the author was staying at Harvard
University. le wishes to express his hearty thanks to the
members of Department of Mathematics for their hospitality, and to
the Edu;ational Project for Japanese Mathematical Scientists for
financial support. He wishes to thank Prof. T. Oda <£for his
helpful suggestion during the preparation of this paper, and

the referee for his careful reading.

§ 1. Main result

1.1 Let Hg be the Siegel space of degree g, i.e., {Z € M%(G)l



2 - Z, Im z > 0}. The symplectic group SPZg(R) ={M = (ég) €M, (R)
o

| AtD-BtC = lg’ Ats - BtA, c*p = p*C}  acts on Hg by the symplectic
transformation

Z—> MZ = (AZ+B)(CZ+D)7 7 M= (28) ¢ sp,_(R)

CD Pog'™’-
Let T denote the Siegel modular group szg(Z). A holomorphic
function £ on Hg is called a Siegel modular form of weight k
if it satisfies
_ K c/n _ (AB

£(MZ) = |C2+D| £(2) M= (CD) € rg
and if it is holomorphic also at cusps (the last condition is
automatic if g > 1). Let A(r_ ) = @& A(r )k denote the graded

) k>0 2

ring of Siegel modular forms. The quotient space HU/I‘g is the
(=g
coarse moduli space of the principally polarized abelein varieties

over € of dimemsion g. It has the natural compactification

(Hg/Fg)* called the Satake compactification which is isomorphic to
Proj(A(rg)), and set-theoretically equals

u U . 1 Y i .

_g/r‘g Hg—l/rg—l ) v hl/r1 {a point}

.

Theorem 1. Let g 2 4. Then the Satake compactification

(Hg/rg)* is not a Cohen-Macaulay scheme. For the graded ring A(rg)

(r) ,
) = G5 Alr ) is not
g k=0 (1) g’k —

of Siegel modular forms, the ring A(r

Cohen-Macaulay for any integer r.

Let 9 be a bounded symmetric domain, and T an arithmetic
aroup acting on &. The quotient space 9/r has the natural

compactification (S/F)*; which is called the Baily-Borel compactifi-



cation [ 2 ]. Let j(y,z) be the Jacobian of v e I'y at a point

z € H, which is an automorphy factor. Let us fix some automorphy

factor » such that oK - j—l for a positive integer k A

0
holomorphic function £ on & is called an automorphic form for

r of weight k if it satisfies

k

f(yz) = po(v,z)" £(2) for ~y er

and if f is holomorphic also at cusps (the last condition is

automatic if codim((d/r)* - (®/r)) > 2). Then the compactification
(8/r)* is isomorphic to the projective spectrum of the graded ring
of automorphic forms for . T 1is said to be neat if, taking

some (equivalently any) faithful representation ¢ of I to
GLm(C), the algebra generated over Q, by the all the eigenvalues
of Ww(y) 1is torsion free for every <y € . Any arithmetic group

has a neat arithmetic subgroup of finite index.

Theorem 2. Let § be a bounded symmetric domain, and T a

neat arithmetic group acting on . Let P' (resp. $") be the

highest'(resp. the second highest) dimensional rational boundary

component. Suppose rank ' = rank § - 1, and suppose one of the

following holds;

(1) m := dim § - dim §' > 3 is odd,

L
(i1) m > 4 1is even, and dim §"E dim §' - 2.

Then the Baily-Borel compactification ($/r)* is not a Cohen-

Macaulay scheme, and if A(r) denotes the ring of automorphic

(r)

forms, then A(TD) is not Cohen-Macaulay for any r.




Remark (i) Let R = E Ry be a graded algebra, and let R(r)

= sz@(r)Rk. Then it is standard that Proj(R) = Proj(R(r)) for

any 1, and that Proj(R) 1is a C.-M. scheme if R is C.-M.
(cE. [27 ], § 1). So the first assertion implies the second
both in Theorem 1 and in Theorem 2.

(ii) In the case of characteristic zero, an invariant subring
of a C.-M. ring under an action of a finite group is also C.-M.
by Hochster and Eagon [ 15 ]. It follows from this and from
Theorem 1 that the ring of Siegel modular forms for any normal
subgroup of rg of finite index is not C.-M. if g > 4.

(iii) The proof of Theorem 1 1is given in § 4, which is

easily generalized to the following case. For a diagonal matrix

), s | £ (i = 1,..,g-1),

let
r (1) = (M = (55) € My (2) | O = (oo
Fg(T) ?cts on Hg by
Z— Mz = (TAT 7z +TB) (CT7Z+D)™h, M= (§D) « (1)
Then the Satake compactification ﬁHg/Fg(T))* is not a C.-M. scheme
(r)

for g > 4, and A(rg(T)) is not C.-M. for any r, A(rg(T))
denoting the graded ring of Siegel modular forms for rg(T).

(iv) The rings A(r ), A(T,) of Siegel modular forms of degree
1, 2 are known to be C.-M. (cf. Igusa [16]). On the other

hand, the graded ring A(FB) of Siegel modular forms of degree three



is believed to be not C.-}M., however our method does not work in
b

this case. It will be investigated in a later paper [ 28 ].
§ 2. The Proof of Theorem 2

2.1 Llet 8, $', ', r be as in Theorem 2. Let X = d/r, and
let X* be its Baily-Borel compactification. Set-theoretically,
D*¥ := X* - X 1is the union of lower dimensional pieces

GIVESIRR TVASN VRSN SVE S I

similar to 9/r. We dencte by X' the highest dimensional cusp
S'/riL)---U S'/r;. Let X, together with the morphism r:X — X%,
be a toroidal compactification which_ was constructed by [ 1 ]» anc
which is determined by a projectiQé regular TI-admissible
decompositioﬁ of the associated polyhedral cone. r coincides with
the normalization of the blowing up of X* along some sheaf J* of
ideals with the support of OX*AJ* contained in D*. Hence X
is canonically contained in X on which = induces the identity
map. D := X - X 1is known to be a divisor with only normal
crossings. The following is a direct consequence of the construction
of X, where it is essential that rank §' = rank - 1.

Lemma 1. i) The fibre r “(x), x € X', is an abelian variety

of dimension m-1, where m = dim P - dim §'.

ii) Let r' be any arithmetic group having r as a normal

subgroup, and let QAD* be the sheaf of ideals determining the

reduced subscheme D*. Then by a suitable choice of a r-




—_— r
admissible decomposition, I''/r acts naturally on X, and ‘RD*

equals _§* on XYX' for a positive integer r. In this case,

the quotient space X/(r'/r) gives a toroidal compactification

of d/r', and X UX')  is the blowing up of X VX' with

\ ]

vt

respect to the sheaf of ideals defining the reduced subscheme X'.

2.2 Let j, »o, ko be as in § 1. There is a coherent sheaf

L{p)" on X defined by

HO 1

(U, 2(5)7) = (f e 6,-1(U) | £(v2) = oly,2) X E(2), ver,z e p H(U)}

where p 1is the projection of $ onto X, and U 1is any open

—1y canonically

subset of X. Baily and Borel showed that oL(j
extends to an ample invertible sheaf llj_l) on X*, since

I is neat (cf. Mumford [ 18 ], the proof of Proposition 3.4).

At any rate there is an integer k, such that k; |k, and iipkl)'
extends to an invertible sheaf Jipkl) on X* satisfying

1-
iio“1)®k©/k1 = Jij—l) (for instance, take k5 as ky). Since

X* 1is normal and projective, X* 1is isomorphic to

Proj% QHCHO(X*,iio)k)). Our purpose is to show that this is not
‘1
k
a C.-M. scheme, and so we may replace p Dby o 1, In other words,
we may assume
(i) & := L(p) 1is an ample invertible sheaf,

1

@k -
(11) o£8% - L(p<), especially L 0O =(j 1y,
If codim(X* -X) > 2, then 28k equals the direct image i*ei(ok)',
i being the inclusion of X to X*. HO(X*,Jfgk) is just the

space of automorphic forms of weight k. A global section of



HO(X-,&,aL‘gk@JD*) is called a cusp form of weight k. When ® is

a point, the sapce of automorchic forms, or cusp forms of weight
k>0 is just €. It is well-known that if k » 0, then
. O,y 0k . . .
dime H7(X*,£7 ™) equals the sum of the dimensions of the spaces of cusp forms
of weight k on X*, (eB'/F]'_)"“,

are all the members appering in the cusps of X*.

(9 /I‘Z)",... , whersa /Fl, D /1‘2,..

Let us put Q(k) := X(X"\‘,J,@k) , the Euler-Poincaré cheracter-
istic, which equals dimg HO(X*,-LQ’k) for k »0 since &L 1is
ample. Let W= n*z. Then the canonical invertible sheaf KK on
X 1is isomorphic to L,u,akog(?‘;\(—D) (cf. [ 1 ], Chap. IV, 5 1,
Theorem 1). We put P(k) := X(:‘{,JLS’ke 02(—13-)). It ecuals
dimg Ho(i,cu,@kg @’-)-(-(—D)) for k » 0 by the vanishing theorem of
Kodaira type (Grauert and Riemenschneider [ 11 ]). Hence P(k)

for k>» 0 is equal to the dimension of the space of cusp forms

—_ 1
of weight k, since HO(X,UUJ&(@ ﬁi(—D)) = HO(X*, .i,@kcg "QD*)'

Proposition 1. Let T be a neat arithmetic group acting on

. If .we denote n = dim P, n' = dim H', n" = dim §", then we have
1
P(k+kg) = (-1)"P(-k) + O(K" ).
Under the additional assumption rank ' = rank § - 1, we have
" 1_
Plk+ky) = (-1)WR(—k) + o(emex(@ni-mil)y,

L’ (k+ky)  Uith the

2.3 Proof of Proposition 1. Tensoring

short exact sequence

0——)0-}2(_1)) >6Y }(}D >O.,



we get

(X, w® 0 0 0 (-p)) = w(X, w07y — x(p,w® M 0le 0 )
Since X(X,JLg(k+kO)) = (-1)"P(-k) by the Serre duality theorem,
we have

P(k+kg) = (-1)"B(-k) - x(0,u®**0e O

We have the Leray spectral sequence
; k .
Eg’q - HP(D*,R%*(JL@(“*ko)@ Op) = HP*9(p,u ® (B0 ) g G) -
By the projection formula, we have HP(D*,Rqﬂ*(Jbe(k+k0)®(?D)) =

EP (D*, 2 Bkrk )®Rqﬂ*0 ), which vanishes for p > 0 and k » O,

D
because & 1is ample. Thus

®(k+ko)® &

HO(Dx, £20%*0) o v, 0) = BY(D,w 3, k »0
anad
, n-1 :
x(D,u® o) 0 ) - 2 (1T ding KO(ox, 120 ) g rTr, @),
1=

k > 0.
Since the dimension of D* equals n', we immediately see the
first assertion. Let us suppose rank §' = rank - 1. As we
recalled in Lemma 1, n_l(X') is flat over X', and moreover its
fibres are abelian varieties of dimension m - 1. By the base
change theorem Rimk@

D

we have a canonical homomorphism

is locally free on X'. By cup product

i1 i
/\ R "7’: G’D-_>R "7‘: O-D

on X' (cf£. [12], Chap. 0, 12.2). It is an isomorphism since so

is the induced homomorphism on the fibre at each point. Since

dim ﬂ—l(x) =m-1 for x € X', the sheaf Rlv*.ﬁ

D? i>m-1, 1is

supported on D¥ -X'. So



c m-1 5
olkskploge ) = 1 (-0t dimg 1O (

0 D

i=0 1"

+ 0(x™ ).

x (D,dL

Now our assertion follows from the following lemma;

Lemma. Let Y' be a normal irreducible projective variety of

dimension n' with an ample invertible sheaf &', and Y" its

subvariety of dimension n'". Let YO =Y' - Y".

(1) Let #, 7 be coherent sheaves on Y' such that F|,0 *=

leO' Then

I
dimg BO(Y', 2'®%6 ) = dimg BO(Y, 2250 9) + 0™

(ii) Suppose v9  is nonsingular. let E.,,..,¢_ _; be a

coherent sheaves on Y' such that E/l[vo is locally free of

i
rank m-1, and ‘ailvo x,\illyo. Then
m-1 i
t (-1)7 dim

i=0

EO being the structure sheaf 0Y' .

3

n 1" '

ma
Proof. To prove (i) weAZssume that &, d have no coherent

subsheaves supported on Y'", and that <£,7 are generated by their
global sections. Let ({s;} be global sections of F. Then s; 1y0
can be regarded as sections of HO(YO,‘@) via the isomorphism.

Let {si'} be the rational sections of @ given as their
extensions, and let *%. be the coherent sheaf generated by ¢ and
{s;'t. Then we have two short exact sequences

O——->3——-7§——> ?:IL/a"——e 0

0—Y—> 7y §/9—>0,

-10...



where %/51, %/v} are supported on Y'". Then

T
dimc I-EC(Y',;L'Qk@:?\) = dim(C HO(Y',.L'®k® 8}) + O(K™ ),
1r ", 1A
dimg HO(y', £®%e %) = aimg B0, 2% %0 §) + 0(x™).
This shows (i). Now let us prove (ii). We may assume ¢C.'s are

i
1Y
torsion free. There is a proper modification ¢:Y—Y such that

" . . . ‘—1 O ~ C' ) [
Y is a compact complex manifold with ¢:¢ “(Y ' )-"-Y", and 51 =

0% Cl is locally free of rank m-1 (Riemenschneider [ 21 ]). By
the Riemann-Roch Theorem we easily see that

m—-1 .
T (b x(y,ex g ®K
i=0

n'—m+1)

® Ksl') - ok

Then by the same argument as in the proof of Proposition 1 we

have

:E; (—1)idimc HO(Y',QL"S’ k@ o, k 81‘) _ O(kmax(n”,n'-—m+1)).
We are done, since 83‘. and ¢*k @1' satisfy the condition in (i).
q.e.d.

2.4. Proof of Theorem 2. By Remark (i) of s 1, it is
@kn

enough to show that X* = Proj(k@O HO(X*,J_ cannot be a C.-M.
>

scheme. The dualizing sheaf w is the uniquely determined

X%

coherent sheaf on X* which gives rise to a functorial isomorphism
I—Iom(ty‘,wx*) = I~-Zn()("~‘,:3<)v for any coherent sheaf #F (cf. Hartshorne
(14 ]). By Grauert and Riemenschneicder [ 11 ], Wy coincides with

iRy, where i 1is the canonical inclusion X into X*, and K, is
~ P58

ek
the canonical invertible sheaf on X. Obviously (X = L OIX’ and
. ek ok
hence wy, = i (L le) = & 0 by Koecher's principle (cf.
Serre [ 23 1]).

~-11-



We suppose that X* is a C.-}. scheme. Then by [14 ], for

instance, we have the Serre duality Hi(x*,.1®(k+ko)) = Hn‘i(xﬁ’i}9—kqv,

and hence Q(k-+k0) = (-1)r1Q(—k). If P'(k) denotes the Eilbert

polynomial for the space of cusp forms of weight k on X', then

Q(k) = P(k) + P'(k) + O(k™ ). MNow we can apply to X' and P'

the first assertion of Proposition 1, and we get P'(k-+k0) =

1 "
) P (-k) + O(K" ), where ko' is an integer such that

(-1

0 < kg' < ko (Baily and Borel [ 2 ], Proposition 1.11). Hence

P'(k) is of the form

Pr(k) = cq (k=K /2™ 4oy (k-ky /200 724 wo™, co ¥ O

o0 2
Then, applying to P(k) the second assertion of Proposition 1, we
get Qlk+ky) - (-1)7Q(-k) = (Plk+ky) - (-1)PP(-k)} + (P'(k+ky) -
DT R+ OK™) = Plk+ky) - (~1)T B (k) 4 o(PaX(RTnImeL))
Hence Qlk+ky) - (-1)%Q(-k) = ¢5 (1~ (-1 K™ + n'cy (kg +

1 1
O(kmax(n‘,n -m+1)), which cannot

'—
(-1+ (D™ h g /2K T
vanish by our assumption, hence we have a contradiction. So X* 1is

not a C.-M. scheme. q.e.d.

§ 3. Siegel modular forms

3.1 Let X :=X_ := Hg/rg, and X* be its Satake compactifi-
o
o
cation, which is set-theoretically equal to XgUX‘g_1 = XgU Xg_lU

-L)XO. The dimension n of X* equals g(g+l)/2. For an integer

k such that kg is even, let (k) denote the coherent sheaf on

X* corresponding to Siegel modular forms of weight k, i.e., the

-12-



sheaf definec by

kU, 2(1))
. k AB
= b A7 = f M = g
= {(f e c‘}P_l(U) | (1) £(MZ) = |CZ+D|T£(2) for M = (gp) &7,
Z € pal(U/\X), (ii) £ extends holomorphically
to the intersection of U and of the cuspst,
for open sets U of X*, p being the canonical projection of Hg

to X, where the second concdition is automatic if g > 1. HO(X*,JAR))
is the space of Siegel mocular forms of weight k. It is easy to
verify that £(k) is reflexive, and that if k 1is even, then

LK) [y is the coherent sheaf on Xg_l corresponding to Siegel
g-1

modular forms of weight k.
Hr’ 0 £r £g~1, can be regarded as a ratiomal boundary compo-
nent of Hg' Let Z Dbe a point of H_ where O < r £ g. Then

the group of matrices of the form

A" O B' %
.v-t"l_x, * TRt
M = U _t* er , M’—(é,g,)éf, M'Z = Z,
C' 0 |D'= & H
0 O 0 U
is equal to the stabilizer group at Z in rg up to comjugacy.

Then the following is standarc;

Lemma 2. Let Z € H_, 0 £r < g. Then «£(k) is invertible

e

I

at the image of Z in Xg if lC'Z+D'|k|U[k equals one for any

Me Fg stabilizing Z where C',D',U are as above.

- 13-



Corollary. There is a positive integer No satisfying the

following;
(i) ‘LO t= i(NO) is an ample invertible sheaf,
(ii) c.L(]L<+NO) = (k) ®=LO for all k,

(iii) the algebra ?C HO(X*,J{)GS) is generated by HO(A*,J%Q.
S—-!

Since T has fiexd points of even order, NO must be an even

integer.

Let XO denote the Zariski open subset of X consisting of the

images of points in H_ whose stabilizer in Fg is trivial, 1.e.,

0Q

o

{tlzg}. When g > 3, X;J is just the smooth locus of X_.

F

Lemma 3. The codimension of X_ - X;) in Xg is g - 1.
(5=
Moreover, .the image in X of the fixed point set under the action

2

of M e rg with M™ £ 1 is of codimension > g. Especially,

2g

(k) for even Lk 1is invertible except on a subvariety of

codimension =2 g.

.

£

Proof. Let M be a torsion element of rg. M can be

diagonalized as

where ¢ 1is a root of unity and U 1is a unitary matrix. Then

the dimension of the fixed point set in Hg under M 1is given by

- 14—



£t ,e) 1121 <]se, (F1tES o= 1y

(cf. Gottschling [ 10 ]). The first assertion follows immediately

from this. If M2 ¥ 1,5, then some (tL t1l, hence the second
o

follows. JL(k) 1is invertible at a point Z9 fixed only by ti's

such that M~ = 12g' Indeed, letting M = cp)» We get

‘ _ ' 2 ) k
(CZO-kD)(C(tZO)-+D) = lg' Hence (CZO-+D) = 1g’ thus 1czoﬁ-D[
=1. g.e.d.

3.2 Let w:X—X*¥ be a toroidal compactification. Let D :=
X - X, and L* := * - X = Xg_l\J---‘JXO. ™ induces a map of D

to D*, which we shall also denote by .

Proposition 2. If i > 0, then

i ool
R “*OX = R ﬁ*(}D

on xg—l'

Proof. Let Pg(l) ={M € rg | M = 1o mod 2} be the principal

congruence subgroup of level 2. Let X(2) = Hg/rg(l). LCenote by
£*(2¢) and X(&) its Satake compactification and its toroidal
compactification, respectively. Let D*(2) := X¥(2) - X(2), and
D(&) := X(&) - X(2). We shall denote also by =, the morphism of
X(2) to X*(¢). Moreover, X'(&) denotes the union of the highest
dimensional cusps in D*(%), which is a disjoint union of copies

of Hg_l/r (2).

g-1
We first show R, 0

= R, O on X'(&) for i > 0,

X(2) D(2)

-15-—



proviced that & > 3. Let eﬂs*(l) be the sheaf of ideals of D*(g)

¢

with the reduced structure in 0., ) s and let A:= JD
AT i

(2 (2) 7 Z(2)"
Here we note that we have the canonical injection of O§¢(z) to
i
OY(L)' Since ¢ > 3, we can apply Lemma 1 to our argument. So
"ul(X(L)U X'(2)) is the blowing up with respect to

dpr(a) Ix(a)Ugr(y)> and hence S| =1(x(1)Uxr(y)) Is an invertible

sheaf of ideals on = T(X(2)U X' (1)) defining LX), e

have a short exact sequence

0 —sal+l 'Jj ‘Jj/cﬁ j+l——>0,

where Gljﬁlj+1 is an invertible sheaf on n"l(x'(z)). Ve thus

have a long exact seguence

; - . c C . .
—> RLn,:c}J+1—"J—>RLn*JJ — R"n*c}']/c}'ﬁl — Rl+11r.l,‘_J~J+l —>.

For a point x €& X'(2) and for j > 0, &ﬂj/Jj+1)n_l( is ample

on ﬂ_l(x) by the definition of the blowing up, and hence the

x)

higher cohomology groups Hi(w”l(x),(Cijﬁgj+1)ﬁ_l(x)), i > 0, vanish
since v‘l(x) is an abelian variety. By the base change thoerem
Rinkzlj/glj+l vanishes at x € X'(¢) if i > G, j > 0, and hence
®: .3 is surjective at x for i > 0, j > 0. Since Rin*JJ = 0 for
i>0, j>»0 ([12], Théoréme (2.2.1), (ii)), it follows that
Riw*gi, i > 0, vanishes on X'(2). Considering the long exact
sequence in the case j = 0, we get Riv*Oﬁ(z) = Ri"*ﬁb(z) on
X'(2) for 1 > 0.

To prove the proposition we note that by general theory (cf.

Grothendieck [ 13 ], Théoréme 5.3.1, the proof of its corollary and

i G . i G
Corollaire to Proposition 5.2.3), HY (Y/G, (0, F)7) and H(Y,R)

-16 —



are canonically isomorphic, where Y is a separated scheme over (€
with an action of a finite group G, and = 1s a coherent sheaf
on Y having an action of G compatible with the action on Y,

ané ¥:¥Y—Y/G 1is the quotient morphism. 1llow let U be an affine

’ N . . *
open subset of Xa—l X* and let U be the inverse image of U

o o
: v _ w1 "y . \
in Ag_l(l) = Hg_l/rg_l(l) C X'(%). Then, letting G to be the
Y
subgroup of I _/r (&) stabilizing U, we have
o o

G

-«

HO(U,R™ 1, Og) =0 (r 1), 0p) =0 (=« 71 (1), 0 - w0 (Y, R N, 6

1 rte, o) = (T hn) L 6

) )

X(2) X(2)

3
i -1 G_ 0~ L1
p) =H (7 (U),@D(l)) =H"(U,R n,’.\_@n(“)
By what we saw above, the terms at extreme right hand side are

canonically isomorphic if i > 0. FEence we are done. g.e.d.

Remark (i) As we easily see, Proposition 2 1is true for a
toroidal compactification of a quotient space $/r of a bounded
symmetric domain 9 by an arithmetic group T provided that
rank ' = rank 8 - 1, ' ©being the highest dimensional ratiomal
boundary component of .

(i) Let Z be a point of Hg—l whose stabilizer in
Fg_l/{ilzg_z} is trivial, and let y e Hg—l/rg—l(z) C Xg(z) be the

corresponding point. Then the stabilizer subgroup P at y of T

g
is generated by Fg(z) and matrices 11 of the form
1o 4 0 tO b
M o= tv +1 b el ¢ 1
1 -V &
0 g-1
0 1

-17 -
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Let W (resp. U) Dbe the group generated by rg(z) anc matrices

M of the form

1g_1 C b
£ 1|t 1100
v b e g0 e
M = (resp. -—_T__* )
C 1

Then we have inclusions of normal subgroups

FJE)CUCHJCR

o

U acts trivially on the fibre n_l(y). Let us suppose 1 > 3. Then
_1(

m

y) 1is isomorphic to an abelian variety Cg_l/(z,lg'l)(zz)g—l.

Pegarding =z as an element of Gg_l, an element M of W/U acts
on n_l(y) as z-—z+Zv+b. So the quotient of n_l(y) by W is
isomorphic to itself. Finally P/W acts on the abelian variety

as z_—-stz. It follows that the fibre = ~(x) for x € Xg_l
f a

is
a (g-1)-dimensional Kummer variety, i.e., the quotient o
(g - 1)-dimensional abelian variety by the group ({*id}, where
is the morphism of Xg to Xg.

3.3 Let NO be as in Corollary to lemma 2. Then the Euler-
Poincaré characetristic X(X*,ilk-psNO) is a numerical polynomial
of s, since .,L(k+sNO) = L(k)® ioes and oLO is invertible. Let
Q(k) := x(X*, L(k)). If k 4is large enough, then Q(k) gives the
dimension of the space of Siegel modular forms of weight k, which

equals dime {cusp forms of weight k for r_} if k> 2g+1

r
r

24
z
is even (cf. Cartan [ 3 ]).

We shall define P(k) as follows. Fix an integer k; with

-18-



0 <k Then @® (cusp forms of weight k1<+sNO} is a graded

1 < I\aC. 636 *

module over the ring & H'(X*,dL ®S). P(k, +sN.) is defined to
s >0 C 1 o;

be the Hilbert polynomial in s for the graded mocdule. Then P(k)

is well-defined for any k and equals the dimension of the space

of cusp forms of weight k for k »0 by definition.

Corollary to Proposition 2. 1Let i, be the sheaf of ideals

of D, and let (k) =rx*L(k). Uncder the condition g > 3 and

k even, we have

x (X, k)@ <t ) = P(k) + ole-1)(g=2)/2y

Proof. Tensoring Ji{k) with the short exact sequence

0 —sd -——90';,-———)& —>0,
D X D
we have a short exact seqguence

0 — d(k)® <&y — Mlk) — s dk)® (?D-_—-a,o.

ence
x(i’,dk(k)@JD) = x (X, dl(k)) - x(D,d(k)® &D)'
Now let’us put 2'(k) := ai(k)®(§k* , which equals the coherent
.’g_l

sheaf corresponding to Siegel modular forms of weight k on Xg_l,

since k is even. We have the Leray spectral sequence

S
EP>9 = HP (%, R, db(k)) == HPT (K, dl(k))
LR
2 - -1°

By the same argument as in the proof of Proposition 1, we get

1%
2
1%

E HP(xg R, (ke &) —s rP (T, k)@ Op) .

B0 (x* RYn (1)) = BN(E, al(k)), k » 0,

H (Xé_ljR ﬂ,\.(d&(k)@@b)) = H (D,J,(,(k)@ &D)’ k > O_.

Now by Lemma 3 and Proposition 2, both Rin*JLU() and

~-19_—



Rin*hu(k)a ¢.) are isomorphic to &£'(k)e le*Ob on Xg—l minus

D
a subvariety of codimension > g-1 1if 1 > C. Thus
P 0/ ve pi oA S i
dime H™(X*,R7n dl(k)) = dimg B (X_ R m (e 0p))

for i > 0, hence

X (X,dt(k)) = x(D,ullk) @ Op)

_aim 10
= dlmm H C

We are done, since P(k) equals dimg HO(X*,ei(k)) -

(3%, 2(k)) = dimg HO(XE_;, 2! (k) + okle(8=2)/2) " 0.

. O/ vu

dimg K (Xé_l,af(k)). for k » 0. q.e.d.
Since X has only quotient singularities, the canonical

coherent sheaf Y? (in the sence of Grauert-Riemenschneider [ 11 ])

and the dualizing sheaf coincide. Let io be the open subset of

X whose points are not ramification points of the quotient morphism

of X(2) to X for some ¢ > 3. Then X - 30 is just the

singular locus, when g > 3 (Tai [25]).

Lemma 4. Let g > 3.

)]
»
ct
(6]

(i) For the canonical injection i X, we have

1, (LK) lg0) = LK) |y

(ii) For the canonical injection 1 of 0 to X, we have

Ki = I*((db(g+1)®<ﬂD)|§O) if g 1is odd,

Ry = I*((Jk(g+1)lgo) if g is even.

Proof. Since g > 3, codim(X-—XO) is greater than one. Then

(i) 1is an easy consequence of the extendability of holomorphic

—-20 ~—



functions across a subvariety of codimension two. In the case (ii)
with odd g, we have Ky = (dL(g-z—l)@JD)Ixo by Tai [ 25 ],

Theorem 1.1. If g 1is even, then any section in PEO(U,JL(g+l))

for an open set U with UnD # ¢, vanishes automatically at a
point of D, so Kg0 = db(g+l)lio (loc. cit). Then our assertion

follows from Grauert and Riemenschneider [ 11 ]. q.e.d.
§ 4. Proof of Theorem 1
4.1 We shall prove Theorem 1 for even g 2> 4.

Proposition 3. Let g > 4 be even, and NO be as in

Corollary to Lemma 2. If k 1is divisible by NO, then

Qk+g+1) = (-1)PQ(-k) + (2872 _1) K(XE_y, 200+ o(k™ &1y,
where £'(k) 1is ZL(k)® 6}(*
g-1
Proof. Ny is an even integer, so k+g+1 1is odd. Since

any modular form for Pg of odd weight is a cusp form, we have

Qk+g+1) = P(k+g+1). Mlg+l) and Ry are isomorphic on %0

by Lemma 4, (ii), and HO(X,JL(R-+g-+1)) = HO(XO,JLU£+-g4-1)) =

0

HO(X-,JL(k)®I{K), since codim(X-X") 2 2. Thus

P(k+g+1) = xX,ll(k) ® Ky)
by the vanishing theorem of Kodaira type [ 11 ]. By the Serre duality

we have

X (X, (k) @ Kg) = (=)™ X (X, h(=Kk)) .
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On the other hand, we have

n . .
x (,ab(k)) = 2 (-1)7 dimg BT (X, (k)
i=0
= 1 (-DY qim, 8%, L0 e R r 05), k » 0
120 ¢ «Ugls ® >0
by the same argument as in the proof of Proposition 1. Since the

fibre ﬂ-l(x) for x eX* is of dimension g-1, R
g—-l e ~ A

-t
~

g-2
x (X, lk)) = Q(k) +

supported on X for 1 > g. Hence by Proposition 2,

o
o1 : .
"z (0% dimg 12X, 20 @ R n, Op)
o1 =D

. O(k(g—l)(g—Z)/Z).

hes |

1

)-—?Xg_l is a fibre space of Kummer varieties, so
R™n, 0140 is 0
g-1
bundle of rank (ggl) if 1 < g 1is even. So by the Riemann-Roch

2

if i 1is odd or 1 > g, and it is a vector

theorem ¥ (R,dUlk)) = Q(k) + (28722 1) x(X5_,, L' (K)) +-0(K"787T)

since the sum of (gzl) for 1 = 2,4,,.,g-2 1is equal to Zg—z-l.

Now

Qk+g+1) = (=1 XX, M -k))

(-1)™ (Q(-k) + (zg‘z‘-1)x(x-§_1,¢'(-k)) + o8 1),

(-1 (Q(=k) + (-1)778 (2872 _q) XXy, L100)

and we are done. gq.e.d.

By Grauert and Riemenschneider [ 11 ], i,K,0 gives the dualizing
sheaf, 1 being the inclusion of XO to X*, as we saw in § 2.4.
Since K,0 = i(g+1)|X0> and since codim(X*——XO) 2n-g+12> 2,
14Ke0 = 1,(L(g+1)[40) = L(g+1l) by the extendability of holomorphic

functions across a subvariety of codimension 2.



Now let us show that X¥* is not C.-M. If X* 1is C.-M., then

we have for k divisible by Ny

BE(x*, 2(k+ g+ 1)) = H (X%, (k) @ £(g+1))

I

H L x, 2(-k))Y

by the Serre duality, and so Q(k+g+1) = (-1)7Q(-k). This

U ke

contradicts Proposition 3. Hence X* 1is not C.-M.
4.2 Let us prove Theorem 1 for odd g > 5. The above
argument works also for this case, so it is enough to show the

following;

Proposition 4. Let g > 3 be odd. If k 1is divisible by Ny

then
P(k) = (-1)7P(-k+g+1) - zg‘2x<x§_1,¢'<k>> + ok,
Qk) = (-0 Q-k+g+1) - (2577 -2) x(XE_y, £1()) + 0(NTET),

Proof. Ry the short exact sequence

~

0 ——dl(k) @ Sy —> (k) —dl(lk) ® Gb-—?0,

we get

X (X, (k) ® ) X (X,dMlk)) - XD, Mk) ® 0D)’

Then

P(k) + o(k(&1)(8-2)/2,

x(X,JLU<)®c9D)
by Corollary to Proposition 2, and

¥ (X, k) = (-1 % (T, (=k) @ Ky)

= (-1 P(-k+g+1)
n-1 i
X (D,dk(k) ® Op) = Iy (FU)

R |
g dimg H™(D,dl(k) @ ¢y)



(k) @Rt 5 &)

O v
¢ B (“g—l’ * D

- 1 (-1)* ainm

i=C
= 2872 yxx_ L 20 (k) + 0(kPTETL
g-1
by an arrangement similar to that in Proposition 3. This gives
the first assertiom. Since Q(k) = P(k) + X(Xg_l,lf(k)), we have

Qlk) - (-1)"Q(-k+g+1)
{(P(k) = (-1 P(-k+g+1)}

+ O0KE g, 2 (k) - DT XE L (kg + 1))

g.—
_2 o 1 ke L
= - (28 -—l)x(Xé_l,i.(k)) —(-1)nX(Aé“1,i_(—k-kg+jj)
+ ok™8 Ly
Here we note that —-(—1)r1x(X§_1, L'(-k+g+1)) = —(=1) (1) 8«

2 (k) + 0(k" 81y pecause g

-1°?

is odd. Then the second assertion follows immediately from this.

* ' n-g-1, _ *
x(Xg_l,i.(k)) + O(k ) = X(Xg
g.e.d.
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