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INTRODUCTION

Let (X, z) be a normal n-dimensional isolated singularity over the complex num-
ber field C and f: (M,A) — (X, z) a resolution of the singularity (X,z) with the
exceptional locus A = f~1(z). We say a resolution f is good if A is a divisor of nor-
mal crossings. The geometric genus of the singularity (X, z) is defined by p,(X,z) =
dime(R™1£,0p).. Watanabe [Wt1] introduced pluri-genera {ém(X,z)}men which
carry more precise information of the singularity, where N is the set of positive in-
tegers. The pluri-genera {6,,(X,z)}men can be computed on a good resolution, and
61(X, z) = pg(X, z). Our motive problems of this paper are the following: (1) What is
the information of a singularity which determine the plurigenera? (2) Can the pluri-
genera {6, }menN be determined by {6 }men for some finite subset N (determined
by the singularity) of N?

In this paper, we work only on surface singularities, so “a singularity” always means
a Stein germ of a normal surface singularity over C. A singularity (X,z) is said to
be rational (resp. elliptic) if p,(X,z) = 0 (resp. 1). A singularity (X, z) is said to be
Gorenstein if there exists a non-vanishing 2-form which is holomorphic on X — {z};
equivalently, the canonical divisor on X is a Cartier divisor. A complete intersection
singularity is a Gorenstein singularity.
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Section 1 gives a brief summary of a definition and results about the plurigenera.

In Section 2, we discuss the Riemann-Roch theorem, the Zariski decomposition of
K + A and vanishing theorems. We get that H!(Op (2K + A)) = 0, which induce
most results.

In Section 3, using the result of Section 2, we prove that the plurigenera of a
Q-Gorenstein singularity are expressed by finitely many polynomials, and that the
plurigenera of rational and Gorenstein singularities are determined by p, and the
weighted dual graphs.

Section 4 and 5 give a criterion, in terms of the plurigenera, for a singularity
to be a log-canonical singularity. In fact, we have the following: (1) If 84(X,z) =
66(X,z) = 0, then (X,z) is a quotient singularity; (2) If §14(X,z) = 0, or 0 =
61(X,z) < 82(X,z) and 614(X,z) = 1, then (X,2) is a log-canonical singularity;
(3) If 6;(X,z) = 64(X,z) = 86(X,z) = 1, then (X,z) is a simple elliptic or cusp
singularity. In Section 4, we see that the second plurigenus controls the weighted
dual graphs. The second plurigenus of a hypersurface singularity is studied in Section
7.

We note that the results of Section 3, 4 and 5 give partial answers to the problems
above.

' In Section 6, we summarize the definitions and basic facts of equisingular deforma-
tions which will be used in Section 7. We show that a minimally elliptic singularity
with a star-shaped weighted dual graph is a fibre of an equisingular deformation of a
quasi-homogeneous minimally elliptic singularity.

In Section 7, we consider relations among the invariants 62, pg, ¢ (Milnor number),
7 (Tjurina number) and the modality. For complete intersections with p, > 0, we
have the equality

ba=h*"S)+u—1—p,+1,

where h'(S) is the dimension of the equisingular deformation space of the singularity
in case p, = 1. As a corollary, we have that for an elliptic hypersurface singularity,
the second plurigenus is less than or equal to the modality, and if the weighted dual
graph of the singularity is a star-shaped, then the second plurigenus is equal to the
modality if 6 < 2. However, there exists an elliptic hypersurface singularity with
62 = 2 whose weighted dual graph is not a star-shaped graph. A minimally elliptic
singularity with 8, = 1 is a simple elliptic or cusp singularity, or a singularity with
a star-shaped graph. We list the dual graphs of minimally elliptic singularities with
62 < 2 and elliptic hypersurface singularities with star-shaped graphs.
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NOTATION AND TERMINOLOGY

Let Y be a normal variety over C, M a sheaf of Oy-modules, D a divisor on ¥ and
F a closed subset of Y. The Oy (D) denotes the reflexive sheaf of rank one (invertible
sheaf if D is a Cartier divisor) corresponding to the divisor D. Then we use the
following notation:

M(D)= M Oy(D),
Oy

H(M) =H'(Y,M), Hp(M)=Hp(Y, M),
h(M) = dim¢ H'(M),  kp(M) = dime Hp (M),
where H% denotes the local cohomology groups with supports in Y. If D is written
as D = Y n;D;, where D; are prime divisors and n; # 0, then we define the support
of D denoted by Supp(D) as Supp(D) = (J D;.

The minimal resolution of a singularity is one which has no non-singular rational
curve with the self-intersection number —1. There exists a unique minimal resolution.
A resolution is minimal if and only if the canonical divisor on the resolution space is
nef (see (2.2)).

A singularity is called a simple elliptic (resp. cusp) singularity if the exceptional
set of the minimal resolution is an elliptic curve (resp. a rational curve with a node
or a cycle of non-singular rational curves).

Finally, a deformation of a variety Y is a flat morphism 7: Y — T such that there
exists a point of T, usually denoted o, such that w1 (o) is isomorphic to Y.

1. PRELIMINARIES

(1.1) Let (X,z) be a singularity and f: (M, A) — (X, z) a resolution. We denote
by K the canonical divisor on M, and set U =X — {z} = M — A.
We will describe the definition of the plurigenera and basic results.

Definition 1.2 (Watanabe [Wt1]). We define the pluri-genera {6,,(X,z)}men by
8m (X, z) = dime H® (Oy(mKx))/L*™(U), |

where L?/™(U) denote the set of all L2/™_integrable m-ple holomorphic 2-forms on
U. Note that §,,(X,z) < oo for all m € N
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Proposition 1.3 (Watanabe [Wt1, p. 67]). If f: (M, A) — (X, z) is a good resolu-
tion, then 6,,(X, ) is expressed as
6m (X, x) = dimg H'(Oyp(mK))/HY(Op(mK + (m — 1)A)).

Theorem 1.4 (Watanabe [Wt1, Theorem 2.8]). Let A’ be a connected proper sub-
variety of A, and (X', z') be the singularity obtained by contracting A’ in M. Then
for all m € N, we have

bm(X, ) > 6m (X', 2").

Theorem 1.5 (Ishii [I4]). Let m: X — (C,0) be a small deformation of a singularity
(X,z) =7~1(0). Let Y = n71(c), c € C near 0, and {y;} the set of singular points of
Y. Then for all m € N, we have

b (X,2) 2D 6m (Y, 35)-

(1.8) A singularity (X, z) is said to be quasi-homogeneous, g-h for short, if it has
a good C*-action; equivalently, X = Spec(R), for some (positively) graded ring R.

Let (X, z) be a g-h singularity and f: (M, A) — (X, z) the minimal good resolution
(cf. (2.1)). Tt is well known that the weighted dual graph of (X, z) is a star-shaped
graph (cf. (2.1)). The weighted dual graph of a cyclic quotient singularity is regarded
as a star-shaped graph without central curves (note that it is a chain of rational
curves).

We set A = Ag + Zf=1 S;, where Ay is the central curve, and S; the branches.
The curves of S; are denoted by A;;, 1 <j <r;, where Ag- A;1 = A4; ;- Aijy1 =1
(j =1,...,m —1). Let b;; = —A;; - A; ;. For each branch §;, positive integers e;
and d; are defined by

dije; = b1 —

where e; < d;, and e; and d; are relatively prime.
For any integers m > 1 and k > 0, we define the divisors on Ay by

B
DX = kD - "[(ke; + m(d; — 1)) /di) P,
t=1
where D is any divisor such that O4, (D) is the conormal sheaf of Ay, P; = A, NA
and for any a € R, [a] is the greatest integer not more than a.

The following is the extended version of Pinkham’s formula (cf. [P1, Theorem
5.7)).

1,1,
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Theorem 1.7 (Watanabe [Wt2, Corollary 2.22]). In the situation above,

bm(X,3) =Y hO(Op (mKa, — D).

k>0

Theorem 1.8 (Tomaru [TSH]). In the situation above, let g be the genus of the
central curve Ag. Then g-h singularities are classified as follows by the plurigenera:

bm

structure

When m — o0, 6., diverges
with second order

(1) g>2
(2)g=landf>1

(3) g=0and Y7 (d: —1)/d; > 2

bm =1 for any m € N

g=land B=0
(i.e., simple elliptic singularities)

0 if m # 0 (mod d),

g=0and Y0, (di ~ 1)/d; =2

Om =
6m =1 ifm =0 (mod d)
bm = 0 for any m € N

g=0and 7 (d;—1)/d; <2
or cyclic quotient singularities

where d is the least common multiple of dy, ... ,dg.

Lemma 1.9. Let (X, z) be a Gorenstein singularity. Then

6m(X> x) < 6m+1(X’ .’E)

for allm € N.

Proof. If (X,z) is a rational double point, then 6,,(X,z) = 0 for all m € N (cf.
Theorem 4.3). Assume that (X, z) is not a rational double point and f is minimal
good. Then Supp(K) = A and K + A < 0. There exists an inclusion

Ou(mK + (m —1)A4) D Op((m + 1)K + mA).

Since HO(Oy(mK)) = H°(Oyr), we have

b6m(X, ) = dimg H*(On)/H*(Op(mK + (m — 1)A)).

Hence

6m+1(Xa (L’) - 6m(X7 .’I))
= dim¢ HO(Op(mK + (m — 1)A))/H(Op((m +1)K + mA)) > 0.
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Lemma 1.10. Let (X,z) be a singularity, m and n positive integers. Then

b (X, ) < 6pn(X, z).

Proof. If 6,,(X,z) = 0, then we are done. Assume 6,,(X,z) # 0. Let f: (M, A) —
(X, z) be a good resolution and A = UE=1 A; the decomposition of A into irreducible
components. Let v; be the minimal value of v4,(w) for all w € HO(Oy(mK)), where
v4, is the valuation associated to the divisor A;. Since 6,,(X,z) < co, we see that
v; # —oco. Then there exists an element w; such that v4, (wy) = v; for all 4. Assume
that wi,... ,wx € H°(Oy(mK)) are linearly independent in

H(Oy(mK))/H(Op(mK + (m — 1)A)).

Let a1,...,ar € C and w = Zf=1 a;w;. By assumption, v4;(w) < —m for some j.

Since v; < m, we have that vg; (Wl 'w) < (n —1)v; — m < —mn. This means that
n n—1 ~1

Wy by

Wa, ... ,w ~wy are linearly independent in

H(Oy(mnK))/H°(Oy(mnK + (mn — 1)A)).

2. CYCLES ON THE RESOLUTION SPACE

(2.1) Let (X,z) be a singularity and f: (M,A) — (X,z) a resolution of the
singularity (X,z). K denotes the canonical divisor on M. Let A = |Ji_, A; be the
decomposition of the exceptional set A into irreducible components.

A resolution f: (M,A) — (X, z) is called a minimal good resolution, if f is a
smallest resolution for which A consists of non-singular curves intersecting among
themselves transversally, with no three through one point. It is well known that there
exists a unique minimal good resolution. Let us assume that f: (M, A) — (X, z) is the
minimal good resolution of the singularity (X, z). The weighted dual graph of (X, z)
is the graph such that each vertex of which represents a component of A weighted by
the self-intersection number, while each edge connecting the vertices corresponding to
A; and A;, i # j, corresponds to the point A;()A;. Giving the weighted dual graph
is equivalent to giving the information of the genera of the A;’s and the intersection
matrix (A4; - A;). A string S in A is a chain of smooth rational curves A;,... , A, so
that A; - A;4y1 = 1for i =1,---,n —1, and these account for all intersections in A
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among the A;’s, except that A; intersects exactly one other curve. The weighted dual
graph of the singularity (X, z) is said to be star-shaped, if the divisor A is written as

A=A+ S,

where Ay is a curve and S; are the maximal strings. Then Ay is called a central curve,
and S; are called branches.
(2.2) We set

t t
Az=EP2z4; and Ag=PQ4,
i=1 i=1
where Z (resp. Q) is the set of rational integers (resp. rational numbers). An element
of Az (resp. Ag) is called a cycle (resp. Q-cycle). There is a natural partial ordering
between Q-cycles defined by comparison of the coefficients. Let V = > d;A; be a
Q-cycle. We set
FY = Zrdi—'Ai;
where the "d™ denotes the least integer not less than d. V is said to be effective (resp.
nef) if d; > 0 (resp. V - 4; > 0) for all 2. A Q-cycle V is said to be positive if V' > 0
and V # 0. For any two positive cycles V' and W, there exists an exact sequence

(2.2.1) 0— Ow ® Opu(=V)—= Oyyrw — Oy — 0.
Onm

The Riemann-Roch theorem implies, for any positive cycle V' and any invertible
sheaf £ on M,

x(Ov) = h°(Oy) — R'(Ov) = -V - (V + K)/2,

and
x(Ov Q) £) =h(Ov Q) £) - b (Ov Q) £) = L -V + x(O).

Let Div(M) be the group of divisors on M. Since the intersection matrix (A; - A;)
is negative definite, there exists a homomorphism

m: Div(M) — Ag,

defined by w(F) - A; = F - A; for all . We set Fy - Fy = w(Fy) - n(F) for any
Fl,Fg € DlV(M) ’
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Lemma-Definition 2.3 (cf. [M, 0.3]). For any D € Div(M), there exists a unique
cycle (D) € Az such that

(1) m(D) — (D) is nef,

(2) if D’ € Az and if 7(D) — D' is nef, then (D) < D'

(2.4) (D) can be obtained by means of a computation sequence as follows (cf. [TW,
(6.12)]): Zo = "n(D)", Z; = Z;_; + Aj, when there exists an irreducible component
Aj; of A with (m(D)—Z;_1)- Aj, <0. Let Z, be the last member in the above. Then
Z, = (D). Thus we have

(2.4.1) (D) = "m(D)™ + (D — (D).

Proposition-Definiton 2.5 (cf. [M, 1.3]). We set £ = {D € Div(M)[(D) = 0}.
We define maps o, 3: £ — Q by

a(D) = ' (Om(D)) - py(X,z), B(D)=D-(D~K).
Then a(€) and B(£) are finite subsets of Q.
(2.6) Let F be a divisor on M, and U = M — A. We set
xu(F) = dime H(Oy(F))/H*(Ou(F)) + b (On(F)).

By the Riemann-Roch theorem proved by Morales [M, 1.4] (which is a generalization
of [Kt, Corollary 1}), we have

(2.6.1) xm(F)=F-(F—K)[2+p,(X,z) +¢(F),

where ¢(F) = a(F — (F)) + B(F — (F))/2. We note that (F — (F)) = 0.

Theorem 2.7 (Sakai [Sa, Theorem A.l]). Let F be a divisor on M. Then there
exists a unique Zariski decompositon w(F) = P + N, where

(1) P is a nef Q-cycle.

(2) N is an effective Q-cycle.

(3)P-N=0,ie, P-A;=0 for all A; C Supp(N).

Theorem 2.8 (Sakai [Sa, Theorem A.2]). In the situation above, we have

HYOm(K + F — [N])) = 0.
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(2.9) For the remainder of this section, f: (M, A) — (X,z) denote the minimal
good resolution, and P + N will only denote the Zariski decomposition of K + A.

It is well known that if (X, z) is a quotient singularity, then P = 0; if (X,z) is a
simple elliptic or a cusp singularity, then K + A = 0. By definition (cf. Definition
3.2), P =0, 1ie., N = n(K + A), for a log-canonical singularity. In all other cases,
J. Wahl computed the effective part NV by considering the strings.

Let § =Y 7., A; be a string as in (2.1). Let $' = " | a;A; be the Q-cycle such
that S'- A, =-1,8"-4,=0(i<n). Thena; >0fori=1,...,n.

Theorem 2.10 (Wahl [Wh6, Proposition 2.3]). Suppose (X,z) is not a quotient,
simple elliptic, or cusp singularity. Let ) S} be the sum over each maximal strings
S; in A of the corresponding Q-cycle S. Then ), S} is the effective part of the Zariski
decomposition of K + A, i.e, N =3 5.

Lemma 2.11. If (X,z) is not a rational double point, then [N] = 0.

Proof. Let (X,z) be a quotient, simple elliptic or cusp singularity. Then f is the
minimal resolution. Hence —n(K) is effective. n(K) = 0 if and only if (X,z) is a
rational double point, and otherwise Supp(n(K)) = A. We know that N = (K + A).
Hence if (X, z) is not a rational double point, then [N] = 0.

We assume that (X, z) is not as above. Let $ =) " | A; be a maximal string and
S' =37, a;A; the corresponding Q-cycle. Let $” =} " | ajA; be the Q-cycle such
that " - A; = —1,8"-A; =0 (i>1). Then

(K+5—-8—8"-A;=0

for i = 1,...,n. Recall that S can be blown down to a quotient singularity. We see
that [S’ 4+ S”] = 0 as above. Since a; and a} are positive, We have [S'] = 0. By
Theorem 2.10, we have [N] =0. O

Corollary 2.12. If (X, z) is not a rational double point, then

HY (OM(2K + A)) = 0.
Proof. Tt is an immediate consequence of Theorem 2.8 and Lemma 2.11. O
Corollary 2.13. Let (X,z) be a singularity. Then

5:(X,3) = K (Ou (2K + A)) = W (Op(~K — 4)).
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IfV is a positive cycle, then

62(X,z) >V - (K + A) — x(Oy).

Proof. By the Serre duality, AL (O (2K + A)) = h*(Op(—K — A)). We assume
that (X, z) is not a rational double point. By Corollary 2.12, there exists an exact
sequence

0 — H'(Op (2K + A)) = H*(Op-4(2K)) = HY(Oy (2K + A)) — 0.

Hence
(X, ) = h3 (Om (2K + A))

by Proposition 1.3. Let (X,z) be a rational double point. Then K = 0 and
HY(Op(—A)) = 0. Hence H*(Op(—K — A)) = 0. Since a rational double point
is a quotient singularity, 82(X,z) = 0 (see Theorem 4.3). Hence we have the equa-
tion.

Let V be a positive cycle. Then

5(X,z) > b (Oy(~=K — A)) 2 ~x(Ov(-K - A)) =V - (K + A) = x(Ov). O

3. Q-GORENSTEIN SINGULARITIES

(8.1) In this section, we study the plurigenera of Q-Gorenstein singularities. Let
f:(M,A) — (X,z) be the minimal good resolution and K the canonical divisor on
M. Let A =|J A; be the decomposition into irreducible components.

Definition 3.2. A singularity (X,z) is called a Q-Gorenstein singularity if there
exists a positive integer 7 such that Ox (rKx) is invertible at z. It is well known that
any rational singularity is a Q-Gorenstein singularity. For a Q-Gorenstein singularity
(X,z), the minimal positive integer r which satisfies the condition above is called
the index of (X, ), and denoted by I(X,z). A Q-Gorenstein singularity (X, z) with
I(X,z)=11is called a Gorenstein singularity.

A Q-Gorenstein singularity (X, z) is said to be log-canonical (resp. log-terminal)
if the following condition is satisfied: We have, as Q-divisor,

Ky = f*Kx + Z a;A; with a; > —1 (resp. a; > —1) for all 4.
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(3.3) Let L, = m(K + A). By the Riemann-Roch theorem (2.6.1), we have
(3.3.1) XM(K + L) = —(K + L) - L /2 + po (X, z) + €(K + L),

Let (X, z) be a Q-Gorenstein singularity with the index I(X,z) = 5. Set m = sl + p,
0<p<s Then K+ Ly —"n(K+Lp)"=K+L,—"n(K+ L,)". By (2.4.1), we
have that K + Ly, — (K + L) = K+ Ly — (K + L,). Thus (K + L,,) = €(K + L,,).
Then xp (K + Ly,) is cyclically expressed by finitely many polynomials of m as

(3.3.2) XM(K + Lm) = —(Ll . Ll)m2/2 - (K . L1)7ﬂ/2 + Pp,

where p = m — [m/s]s and p, = py(X,z) + (K + L,). If (X,z) is a Gorenstein
singularity, then (K + L) = 0 for any m > 0. If (X,z) is a rational singularity,
then a(K + Lm — (K + L)) = 0 since (K + L) — (K + L,,) is nef (cf. [M, 1.6]).
Thus (K + L.,) is determined by the weighted dual graph for a rational singularity.

Theorem 3.4. Let F =Y -  a;A; be a cycle with a; > 0 (i = 1,...,n) such that
H(OFp) = 0. Then we have the following.

(1) (Artin [A1, (1.7)]) The map ¢: Pic(F) — Z" defined by (L) = (deg L|4,) is
an isomorphism. Hence invertible sheaves on F' are classified by their degree.

(2) (Lipman [Li, (11.1)]) If deg £|4, > 0 for i = 1,... ,n, then H(L) = 0.

(3.5) Let S = S; be the sum of the maximal strings S; (cf. (2.1)) in A. Note
that if 4 # 7 then

Supp(S;)[ | Supp(S;) = 0

and if F is an effective cycle such that Supp(F) C S, then H(Or) = 0. We set
Op(L) = 0 for any divisor L on M if F = 0. Let S; = 3772, A;,j, where each 4, ; is
an irreducible component of A. The weighted dual graph W (S;) of S; is the data on
A;j-Aijand A; - (A— A ;) (j=1,...,n;), and the weighted dual graph W(S) of
S is the sum of the data W (S;).
Lemma 3.6. Suppose that (X, z) is not a quotient, simple elliptic, or cusp singular-
ity. Then h1(Opy (K + Ly,)) is determined by W (S).

Let r be a positive integer such that rN € Az. Set m =rk+¢,0 < ¢ <r. Then

P (Op(K + L)) = —X(Opmn)(K + Lm)) + 2 (Opgn (K + Ly)).

Proof. Consider the exact sequence

0—Om(K+Lnp— [mN]) — Op(K + L) — O[mN](K+Lm) — 0.
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By Theorem 2.8, we have
(3.6.1) B Oy (K + L)) = B (Opmn)(K + L))

By Theorem 3.4 and (3.5), h*(Omn)(K + Lr)) is determined by W(S), since for a
rational curve A;,
(K4 Lp) - A;=-2—A;- A + m(-2+ (A - A;) - As).
Let m = rk+q = n+¢, where 0 < ¢ < 7. From Theorem 3.4, we have isomorphisms
(36.2) OmN(K + L) & Opnyqn)(K +n(P + N) + L)
= Opntign) (K +nN + L),

since P - A; = 0 for A; C Supp(N). There exists an exact sequence (cf. (2.2.1))
0— O[QN](K +Lq) — OﬂN.}_[qN](K +nN + Lq) — OnN(K +nN + Lq) — 0.

By the duality,
R (Onn(K +nN + Lg)) = hl(OnN(_Lq))~

Since for A; C Supp(V),
—L, A;=—qN-4A; >0

(cf. (2.9), Theorem 2.10), we get
(O, (K +nN+ L)) =0
by Theorem 3.4. Then we have
(3.6.3) K (Onn41en) (K +nN + L)) = (O (K + Ly)).
From (3.6.1), (3.6.2) and (3.6.3), we have
R (O (K + L)) = b (O (K + L))
= ~X(Opn)(K + L)) + B°(Opgm (K + Lg)). O
(8.7) In the situation above, we set ¢ = m — [m/r]r and By = ¢N — [¢N]. Then
we have
(3.7.1) R (OM(K + L)) = ~(N - NYm?/2 — (K - NYm/2 + oy,

where 04 = By Bg/2 4+ K - Bg/2 4+ h%(Opyni(K + Lg)).

(3.8) It is well known that the plurigenera of a log-canonical singularity are simple
(see Theorem 4.3 and 4.4). For remainder of this section, we assume that (X, z) is
not a quotient, simple elliptic, or cusp singularity.
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Theorem 3.9. The plurigenera of (X, z) are represented as
6m+1 (X7w> = _(P ' P)m2/2 - (K : P)m/2 + v(m),

where v: Z — Q is a finite-valued function determined by the singularity (X, z).
If (X, x) is a Q-Gorenstein singularity, then v is represented by p and o defined in
(3.3) and (3.7), respectively: v(m) = p, — 0.

Proof. We note that Ly - Ly =P-P+ N-N and K-Ly = K-P+ K- N. From (3.3)
and (3.7), we have the results. O

Lemma 3.10. For a positive integer n, we define a function ¢p,: Z — Z by yp,(a) =
a— [a/n|n. Let ny and ny be positive integers and ng the least common multiple of ny
and ny. We define a map 0n, n,: Z — Z X Z by @nyny(a) = (pn,(a), ¥n,(a)). Then
the map ©,, n, induces the bijection {0,1,...,n3 — 1} = ©n, n,(Z).

Proof. Consider the bijection Z/(n3) — Z/(ny) X Z/(n2). O

Corollary 3.11. We write ,, = 6,(X,2) for short. Let (X,x) be a Q-Gorenstein
singularity with I(X,z) = s and r a positive integer such that rN € Az. Then the
plurigenera {6m}men are determined by 6m, m =1,2,... ,d + 2, where d is the least
common multiple of r and s.

Proof. We define polynomials g(, .(T') in Q[T] by
I(p,a)(T) = —(P-P)T?/2 — (K - P)T/2 + p, — 0y,

where (p,q) € @s(Z). By Theorem 3.9 and Lemma 3.10, the plurigenera are com-
puted by g(p,q)(T)’s: bm+1 = gy, o(m)(m). If 61,62,... 6410 are given, then we have
the values P- P, K - P and p, — 04, (p,9) € @s,r(Z) by solving the system of equa-
tions. O

Corollary 3.12. We write §,, = 6,,(X,z) for short. Then we have the following.

(1) If (X, z) is a rational singularity, then {6,,}men are determined by the weighted
dual graph of the singularity.

(2) Let (X,x) be a Gorenstein singularity. Then {6m}men are determined by pg,
65, x(O4) and W(S). In particular, {6, }men are determined by p, and the weighted
dual graph of the singularity (X, ).

Proof. (1) is obtained from (3.3) and Lemma 3.6. Assume that (X, z) is a Gorenstein
singularity. By Corollary 2.12 and (3.3), we have

(3.12.1) by = —(K+L1)-L1/2 +pg = —K - L1 + x(Oa) + pg-
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Then

(K4+Lp) Lym=m?+m)K-Li +m?A-L;
= (m® + m)(py — 63 + x(O4)) — 2m*x(O.).

Thus (2) follows from (3.3) and Lemma 3.6. O

(3.13) We note that quotient, simple elliptic or cusp singularities are characterized
by the weighted dual graphs (cf. [Wt1, 3]).

Corollary 3.14. Let (X,z) be a hypersurface (resp. complete intersection) singu-
larity with py(X,z) = 1. Then 65(X,z) < 4 (resp. <5).

Proof. Note that a complete intersection singularity with p, = 1 is a minimally elliptic
singularity (cf. Definition 5.5, Theorem 5.6). From (3.12.1), we have

(3.14.1) 6=1—-K-L1 + X(OA).

Since p, = 1, we have 0 < x(04) < 1.

Assume that x(O4) = 0. Then (X, z) is a simple elliptic or cusp singularity, and
hence Ly = 0. Then 69 = 1.

Assume that x(O4) = 1. If f is not minimal, then by [Lal, Proposition 3.5],
we have the star-shaped graph which consists of four rational curves such that the
self-intersection number of the central curve A; is —1. In this case, K = —24; —
As — A3 — Ay and K- L; = 1. Hence 63(X,z) = 1. If f is minimal, then (X, z) is a
hypersurface (resp. complete intersection) singularity if and only if —K - K < 3 (resp.
< 4) by [Lal, Theorem 3.13]. We have the assertion from the following

bpb=2-K-K-K-A<1-K:-K. a

4. LOG-CANONICAL SINGULARITIES, I
(4.1) In this section, we study a criterion, in terms of pluri-genera, for a singularity

(X, z) to be a log-canonical singularity with py(X,z) = 0.

Definition 4.2. For any singularity (X, z), the minimal positive integer m such that
8m(X,z) # 0 is called the é-index of (X, z), and denoted by Is(X,z). If 6,,(X,z) =0
for all m € N, we set I5(X, z) = co.
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Theorem 4.3 (Watanabe [Wtl, Theorem 3.9]). A singularity (X, z) is a quotient
singularity if and only if Is(X, z) = oo.

Theorem 4.4 (Ishii [I5]). Let (X,z) be a singularity such that {6, (X,z)}men Is
bounded, i.e., there is an integer B such that é,,(X,z) < B for all m € N. We assume
that (X, z) is not a quotient singularity. Then (X,z) is a log-canonical singularity
with I(X, z) = Is(X, z), and 6,(X,z) <1 for all m € N. Let I = I(X,z). Then we
have the following.

(1) 6 (X,z) =1 for m =0 (mod I) and 6,,(X,z) = 0 for m # 0 (mod I).

(2) I =1 if and only if (X, ) is a simple elliptic or a cusp singularity.

(3) If I > 1, then (X, x) is the quotient with respect to a cyclic group of a simple
elliptic or a cusp singularity.

(4.5) We take the following characterization of du Bois singularities as its defini-
tion.

Proposition 4.6 (Steenbrink [St, (3.6)]). A normal surface singularity (X, z) is a du
Bois singularity if and only if the natural map H*(Oys) — H*(O ) is an isomorphism,
where f: (M, A) — (X, z) is a good resolution.

Theorem 4.7 (Ishii [I2, Theorem 2.3]). Every resolution of a du Bois singularity is
a good resolution.

(4.8) We note that a log-canonical singularity with I(X,z) > 1 is a rational
singularity, and it is du Bois since H*(Oyr) = H*(O,4) = 0. It is well known that the
weighted dual graph of a rational singularity is a tree. By Theorem 4.7, the minimal
good resolution of a rational singularity is minimal.

Throughout this section, f: (M, A) — (X, z) denote the minimal resolution, K the
canonical divisor on M and A = | J A; the decomposition into irreducible components.
For any component A; of A, we set t; = (A— A;)- A;, the cardinality of the intersection
points on A;.

Lemma 4.9. If 65(X,z) = 0, then the weighted dual graph of (X, z) is a chain (if
(X, z) is a cyclic quotient singularity), or a star-shaped graph with three branches.

Proof. By Lemma, 1.10, (X, z) is a rational singularity. For any component A; of A,
t; < 3 by Corollary 2.13. If t; < 2 for all 7, then A is a chain of curves.

We assume that t; = 3. Let A, be any component of 4. Let Z?___l A; be the
minimal connected cycle containing A; and A,. Then t; > 2 for ¢ < n — 1. Applying
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Corollary 2.13 to the positive cycle 3277 A;, we have 0 > 7' (¢; —2). Hence ¢; = 2
fori=2,...,n—-1. O

(4.10) For any rational singularity (X,z) with star-shaped graph, there exists a
rational singularity of which the exceptional set of the minimal good resolution and
the weighted dual graph are the same as those of (X,z) (cf. [P1], (6.8)). Let (X, x)
be a rational singularity (X,z) with star-shaped graph. The notation Ay, D, Dgf),
P;, e; and d; are defined as in (1.6). By Corollary 3.12, we can use the formula in
Theorem 1.7 to compute the plurigenera of (X, z). We set

B
F.,(r{c) = -2m — kb + Z[(kei + m(di - 1))/di],

=1
where b = —Ag - Ag. Since A9 = P!, we have b > 1 and

6n(X,7) = 3 KOO0y (FEDY).
k>0

We always assume that dy < -+ < dg.

Theorem 4.11 (Okuma [O1]). Ifé,(X,z) =0 form = 4,6, then (X, z) is a quotient
singularity.

Proof. By Lemma 1.10, §,,(X,z) = 0 for m = 1,2. We assume that (X,z) is not
a cyclic quotient singularity. By Lemma 4.9, the weighted dual graph of (X,z) is a
star-shaped graph with three branches. Then

3 3
F” = -8+ [4-4/d;] and F® =-12+ 3 [6 - 6/dy].
i=1 i=1

Note that [m — m/a1] < [m — m/as] if a1 < as.

Since 86(X,z) = 0, we have Féo) < —-1. If d; > 3, then Féo) > 0. Hence d; = 2.
Since 64(X,z) = 0, we have F.") = —6 + [4 — 4/ds] + [4 — 4/ds] < —1. Thus dp < 3.

If dy = dy = 2, then Ef=1 (d;—1)/d; < 2, and hence (X, z) is a quotient singularity
by Theorem 1.8 and 4.3.

Asgsume dy = 3. Since Féo) = —5+[6 —6/d3] < —1, we have ds < 5. Again, we
get S°o_,(di — 1)/d; < 2, and hence (X, z) is a quotient singularity. O

Corollary 4.12. Let (X, z) be any singularity. If (X, z) is not a quotient singularity,
then Is(X,z) <6.

Proof. The result is an immediate consequence of Theorem 4.3 and Theorem 4.11. O
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Proposition 4.13. Let (X,z) be a singularity with Is(X,z) = 6 and 614(X, z) = 0.
Then (X, z) is a log-canonical singularity with I(X,z) = 6.

Proof. From the assumption, 6,,(X,z) = 0 for m = 1,2,3,4,5. By Lemma 4.9,
(X, z) has a star-shaped graph with three branches. Since §3(X,z) = 0, we have
F3(0) = —6 + Z?=1[3 —3/d;]] < —1. Thus d; = 2. Similarly, we have dy < 3 by
dy = 2 and F4(0) < —1. If dy = 2 or d3 < 5, then I;(X,z) = oo by the proof of
Theorem 4.11. Hence we get dy = 2, dy = 3 and d3 > 6. Since 614(X,z) = 0, we have
F{ = 124 [14 - 14/ds] < —1. Thus ds = 6. By Theorem 1.8 and 4.4, (X,z) is a
log-canonical singularity with I(X,z) =6. O

(4.14) We note that if I;(X,z) = 5, then (X, z) is not a log-canonical singularity
by Theorem 1.8 and 4.4 (cf. Theorem 4.17).

Proposition 4.15. Let (X, z) be a singularity with Is(X,z) = 4 and §14(X,z) = 0.
Then (X, z) is a log-canonical singularity with I(X,z) = 4.

Proof. As in the proof of the proposition above, we have d; = 2 and d; > 3. However
dy = 3 implies the same result of the proposition above. Hence dy > 4. Then
dy = d3 = 4 by F©) < —1. By Theorem 1.8 and 4.4, (X,z) is a log-canonical
singularity with I(X,z) =4. O

Proposition 4.16. Let (X,xz) be a singularity with I;(X,z) = 3 and 614(X,z) = 0.
Then (X, x) is a log-canonical singularity with I(X,z) = 3.

Proof. If dy = 2, we have the same result of the proposition above. Hence d; > 3.
Then d; = dy = d3 = 3 by F{y) < —1. Again by Theorem 1.8 and 4.4, (X,z) is a
log-canonical singularity with I(X,z) =3. O

Theorem 4.17 (Okuma [O3]). Let (X,z) be a singularity with 614(X,z) = 0. Then
(X, z) is a log-canonical singularity.

Proof. Since 614(X,z) = 0, we have 6;(X,z) = 62(X,z) = 0 by Lemma 1.10, and
hence I;(X,z) > 3.

If I5(X,z) = oo, then (X,z) is a quotient singularity, and it is log-canonical
(more precisely, log-terminal). Assume that I5(X,z) < 6 (cf. Corollary 4.12). If
Is(X,z) # 5, then we are done. By the proofs of the propositions above, there exists
no singularity (X, z) with I;(X,z) = 5 and 614(X,2) =0. O

Lemma 4.18. Let (X, x) be a singularity with 61(X,z) =0 and 6,(X,z) = 1. Then
we have one of the following.
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(1) (X, z) has a star-shaped graph with three branches.

(2) (X, z) has a star-shaped graph with four branches.

(3) The exceptional divisor A is written as E;'l:o S;, where S;, i > 1, are the
maximal strings, and Sy is a chain of curves.

Proof. By Corollary 2.13, t; < 4 for all A;. Since (X,z) is not a cyclic quotient
singularity, there exists a component A; such that ¢; > 3. Assume that (X, ) is not
in the case (1). If t; = 4, then as in the proof of lemma 4.9, we have a star-shaped
graph with four branches. If ¢; < 3 for all A;, then we may assume that ¢; = ¢, = 3.
Then, as in the proof of lemma 4.9, we have t; < 2 for ¢ > 3. Thus A — A; — Ay is
a disjoint union of chains of curves. Since the weighted dual graph is a tree, there
exists a unique minimal connected cycle Sy containing A; and Ay. Since t; = t; = 3,

a cycle A — S is a disjoint union of four maximal strings in A. O

Lemma 4.19. Let (X, x) be a singularity with §;4(X,z) = 1. If (X,z) has a star-
shaped graph with three branches, then 63(X,z) = 0.

Proof. Assume that (X, 2) has a star-shaped graph with three branches. Using the
notation of (4.10), we have

3
F¥Y =m—kb+ Y [(ke; —m)/di].

1=1

Ifb > 3, F2(k) < Fg(k'l) < ... < Fz(o) < 0, and hence 65(X,x) = 0. If 5 1/d; > 1,
then §2(X,z) = 0 by Theorem 1.8. Assume that b =2 and 3 1/d; < 1. We define a
subset A* of N® as follows: (e,d) = (ey, e, €3, di1,ds,ds) € N® is an element of A* if
and only if dy < dy < d3, D 1/d; <1, Y e;/d; <2 (cf. [P1, p. 185)), e; < d;, and e;
and d; are relatively prime for ¢ = 1,2,3. We regard F¥) as a function of k, m and
(e,d) € A*, and write F,g,f’)(e, d). Let

G®(e,d) = k(Y _ei/di —2) +2(1 - 1/d;).

Then
F{P(e,d) <22+ (ke; —2)/d; = G¥(e, d).

Since ) e;/d; —2 < 0, we have FQ(k)(e, d) < 0 for k > 2 (resp. k > 3) if G®(e,d) < 0
(resp. = 0).
Let
A = {d € N®|(e,d) € A* for some e € N3, and F{ < 0}.
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Let Ay = {(2,3,d3)|7 < d3 < 13} and Ay = {(2,4,5),(2,4,6)}. As in the proofs of
the propositions above, we have A = A; |J A2 U{(3,3,4)}-
We assume that d € Ay. Since §14(X,z) =1 and Fl(g) = 0, we have

FI(Z) =-3+4 €9 + [(363 - 14)/d3] S —1.

Let A, = {(e,d) € A*|d € A, F < —1}. We can easily get Fy"(e,d) < 0 for
(e,d) € A} and k =0,1,2. We will show

G (e,d) =2() (e —1)/di-1) <0

for (e,d) € A]. For (e,d) € A} with e; = 1, we have G®(e,d) = 2((es~1)/ds—1) < 0.
Let e; = 2. Then 3e3 — 14 < d3, and e3/ds < 5/6. The maximum of {(es —1)/ds} is
(7—1)/9 = 2/3. Hence G?(e,d) = 2((es —1)/d3 —2/3) < 0. Then we have Fék) <0,
for k > 0 and (e, d) € Aj.

We assume that d € Ay, If g = 1, then G®(e,d) = 2((es — 1)/ds — 1) < 0.
Let e3 = 3. As above, we have ez + d3 < 7 from F1(Z) < —1. Hence e3 = 1. Then
G®?)(e,d) = 2(1/2 — 1) < 0. Clearly, Fz(o) and Fz(l) are negative. Hence Fz(k) < 0 for
k> 0.

Ifd = (3,3,4), then e = (e1, €2, €3) (€1 < e2) such that (e,d) € A* is one of (1,1,1),
(1,1,3), (1,2,1), (1,2,3) and (2,2,1). Again, we have that F5\*) < 0 for k > 0.

Thus in any of the cases, we get 6(X,z) =0. O

Theorem 4.20 (Okuma [03]). Let (X,z) be a singularity with Is(X,z) = 2 and
614(X,x) = 1. Then (X, z) is a log-canonical singularity with I(X,z) = 2.

Proof. Since 614(X,z) =1 and §3(X, z) # 0, hence §5(X,z) = 1 by Lemma 1.10. By
the lemmas above, we have the weighted dual graph in (2) or (3) of Lemma 4.18.

Suppose (X, z) has a star-shaped graph. Thend; = -+ =d4 = 2 by Ff;’) <0, and
hence (X, z) is a log-canonical singularity with I(X, z) = 2 by Theorem 1.8.

Assume that 4 = Y5, S; as in (3) of lemma 4.18. By [Kr, Theorem 3.7], there
exists a deformation 7: M — (C,0) of M = 7w~1(0) which induces a trivial deforma-
tion of S; for 4 = 1,2,3,4, and for ¢ # 0 near 0, 7~%(c) has a connected component
of the exceptional set Ag + Z?=1 S;, where Ay is a rational curve. Note that 7 blows
down to a deformation of (X,z). Let (Y, y) be a singularity obtained by contracting
the exceptional divisor Ag + 2;?21 S; above. By Theorem 1.5, we have p,(Y,y) =0,
82(Y,y) <1 and 6;4(Y,y) < 1. Thus (Y,y) is a rational singularity which has a star-
shaped graph with four branches. By Lemma 4.9, we have §5(Y,y) = 614(Y,y) = 1.
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Applying the argument above to (Y,y), we have dy = --+ = d4 = 2. By the definition
of d;, we see that S; is a curve with S;-S; = —2, for ¢ > 1. Recall that 7 induces a triv-
ial deformation of S; for i > 1. Let B be a cycle on M defined by B = A+ Sp. Then
— B is numerically equivalent to 2K. Since any rational singularity is a Q-Gorenstein
singularity, (X, z) is a log-canonical singularity with I(X,z) = 2 (cf. Definition 4.2
and Theorem 4.4). O

5. LOG-CANONICAL SINGULARITIES, II

(5.1) In this section, we study a criterion for a singularity to be a log-canonical
singularity with I(X, z) = 1. Recall that a log-canonical singularity with I(X,z) =1
is a simple elliptic or cusp singularity. Let f: (M, A) — (X, z) be a resolution, K the
canonical divisor on M and A = [ J A; the decomposition into irreducible components.

Definition 5.2. A positive cycle FE is minimally elliptic if x(Og) = 0 and x(Or) > 0
for all cycles F such that 0 < F < F.

(5.3) There exists a unique fundamental cycle Z on M (cf. [A2]) such that Z > 0,
A;-Z <0 for all 7, and that Z is minimal with respect to those two properties. Note
that h%(Oz) =1 (cf. [Lal)). :

Proposition 5.4 (Laufer [Lal, Theorem 3.4]). Let f: (M, A) — (X, z) be the mini-
mal resolution of the singularity (X,z), Z the fundamental cycle and K the canonical
divisor on M. Then the following are equivalent.

(1) Z is a minimally elliptic cycle.

(2) A;-Z =—A; - K for all A;.

Definition 5.5. A singularity (X, z) is minimally elliptic if the minimal resolution
of (X, z) satisfies the conditions of Proposition 5.4.

Theorem 5.6 (Laufer [Lal, Theorem 3.10]). A singularity (X, z) is minimally elliptic
if and only if (X, z) is an elliptic Gorenstein singularity.

(5.7) Let f: (M, A) — (X,z) be the minimal resolution of the singularity (X, z)
and Z the fundamental cycle. By the natural surjective map H'(Op) — HY(03),
we have p,(X,z) > h'(Oz). Artin [A2] proved that p,(X,z) = 0 if and only if
R (Oz) = 0. If p,(X,z) = 1, then h1(Oz) = 1, and there exists a unique minimally
elliptic cycle E by [Lal, Proposition 3.1]. The support of E is the exceptional set of
a minimally elliptic singularity by [Lal, Lemma 3.3].
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Lemma 5.8. Let (X,z) be a minimally elliptic singularity which is not a du Bois
singularity. Then 6¢(X, ) > 2.

Proof. First, we assume that the minimal resolution of the singularity (X, z) is a good
resolution. Let f: (M,A) — (X, z) be the minimal resolution. Recall the equality
(3.12.1)

8a(X,7) = —K - (K + A) + x(O4) + 1.

Since (X, z) is not a du Bois singularity, H'(O4) = 0, and hence x(0O4) = 1. Then
we have 65(X,z) = —(K + A) - K + 2. Since f is minimal and —(K + A) > 0, we get
62(X,z) > 2. By Lemma 1.9, we have §(X,z) > 2.

Now we assume that the minimal resolution of (X, z) is not good. Let f: (M, A)
— (X, z) be the minimal good resolution of the singularity (X,z). By [Lal, Propo-
sition 3.5], (X,z) has a star-shaped graph with three branches, and the divisor A
can be written as 4 = Z?=1 A;, where A; is the central curve with —A4; - A; = —1,
and Ay - Ap > Ag- A3 > Ay Ay Then —K = 245 + 3+, A Let 2 =34 nid;
be the fundamental cycle on M. Then (ng,...,n4) is one of (6,3,2,1), (4,2,1,1) or
(3,1,1,1). Let M be the maximal ideal in Ox which defines the singular point z. By
[Lal, Theorem 3.13], there exists a function g € H°(M) (under the assumption that
X is sufficiently small) such that f*(g) has zero of order ny on A;. Since (X,z) is
minimally elliptic, we have f,Op(K) = M. On the other hand, we have

4
Oum(6K +54) = Op (K — 5A) 2 Op(—TA; — > Ay).
1=2

Hence
F(9) € H(Om(K))\ H'(On (8K +54)).

Since H®(Oy) 2 HY(Om(K)) 2 H°(OyM(6K + 5A)), we have §6(X,z) > 2 by
Proposition 1.3. O

Proposition 5.9. Let (X, z) be an elliptic singularity which is not a du Bois singu-
larity. Then 66(X,z) > 2.

Proof. (5.7), Theorem 1.4 and Lemma 5.8 implies the assertion. [

Example 5.10. There exists a singularity (X, z) with 6,,(X,z) =1form=1,...,5
which is not a du Bois singularity, but a minimally elliptic singularity.
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Let (X, z) be a minimally elliptic singularity such that the minimal resolution of
(X, z) is not good. Using the notation in the proof of Lemma 5.8, we assume that
Ag -.Ag = —2, A3 ~A3 = —3 and A4 . A4 S —7. Then

Z =6A; +3A2 + 243 + Ay =~-K+44; 4+ 245 + As.
Note that there exists such a minimally elliptic singularity. Since Z > A, we have
HY(©O4) = 0 (cf. Definition 5.2). Thus (X, z) is not a du Bois singularity by Propo-
sition 4.6. Asin the proof of Lemma 5.8, we have

85(X, ) = dimg HO(Opr)/H®(Op(K)) + dime H®(Ons (K))/HO (O (5K + 44))

=1+ dimc H*(On (K))/HY (O (K — 44,)).
From the exact sequence
0— Op(K —44;) = Oy (K) = Oga,(K) — 0,
we have
dime HO (O (K))/H (O (K — 441)) = 6 — K (Op (K — 444)).

We will show that h'(Op (K — 44;)) = 6. Since H*(Opy) = HY(Oz), we have

HY(OpM(—2)) = 0. From the exact sequence
0 — Op(—=2Z) = Oy (K ~4A1) = Oz4,44, (K —4A4;) — 0,

we have H(Op (K —44;)) & HY (Og4,+4,(K — 44;)). Let L = K — 4A;. Consider
the exact sequences (cf. (2.2.1))

0 — O24,(L — A3) = Og4,44,(L) = Oa,(L) — 0;

0— OAz(L— Az — Ag) — 02A2(L - A3) — (QAQ(L — A3) — 0.
Then we get
h1(02A2+A3 (K - 4A1)) = p' (OAa (L)) +h! (OAz (L - A3)) + B! (Oi\a (L — Az - A?))
=24+3+1=6.

Hence 65(X,z) = 1. By Lemma 1.9, §,,(X,z) =1 form =1,--- ,5.

(5.11) Let (X,z) be an elliptic du Bois singularity and f: (M, 4) — (X,z) the
minimal resolution. Since H'(O4) = 1, the divisor A is decomposed as A = B + Es,
where Ej is either a non-singular curve or a cycle of r rational curves with r > 1 (a
cycle of one rational curve means a rational curve with an ordinary double point),
and E; is void or a disjoint union of trees of non-singular rational curves. If Ey = 0,
then (X, z) is a simple elliptic or a cusp singularity.

We will use this notation in Lemma 5.12, 5.13 and Proposition 5.14 below.
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Lemma 5.12. If E, is a rational curve with Eq - E5 < —3, then §3(X,z) > 2.

Proof. For any component A; of A, we have (2K +2A— E5)-A; > 0. By Theorem 2.8,
HY(O) (3K + 24)) = H' (O, (3K + 2A)). Since (3K + 24) - By = K - By — 2 > —1,
we have H'(Og, (3K + 24)) = 0. Let L = 3K + 2A. Then we get

0 — H°(Oy (L)) = H(Om(L + Er)) — H*(Op, (L + Ey)) — 0,
and
dime HO((Ou (L + By))/H(Op (L)) = h*(Op, (L + Ey)) > x(Op, (L + Ey)) = 2.

Since
63(X, z) = dimg H(Op— 4(3K))/H® (O (L))

and
H°(Op_4(3K)) D H*((Op(L + E1)) D H (O (L)),

we have §3(X,z) >2. O
Lemma 5.13. If E; is a rational curve with Ey - Eo = —2, then 64(X,z) > 2.

Proof. As above, we have H}(Op (4K +3A)) = HY (05, (4K+3A4)). Let L = 4K+3A.
From the exact sequence

0 — Og,(L — Ey) = Oz5,(L) — Og,(L) — 0,
we have h'(Ozg,(L)) = 2. Consider the exact sequence
0— Om(L) — Op(L+ Ey) = O, (L + Ey) — 0.
As in the proof of Lemma 5.12,
64(X,z) > dimg H*(Op (L + Ey))/HY(Op (L)) = 1+ BN (O (L + Ey)).
Since h'(Op (L + E1)) 2 h*(Og, (L + E1)) = 1, we have 6,(X,z) > 2. O

Proposition 5.14. Let (X,z) be an elliptic du Bois singularity such that E, 3 0.
Then 63(X,z) > 2 or 84(X,z) > 2.

Proof. Let A; be a curve in Ej intersecting E;. Then A*(Og,14,) = 1. Let (X', 2 )
be the singularity obtained by contracting E; + A4; in M. By Theorem 1.4, we
have py(X',2') < 1. Hence py(X',s') = h'(Og,4+4,) = 1. By Proposition 4.6, the
singularity (X’,z') is an elliptic du Bois singularity. The result is an immediate
consequence of Theorem 1.4, Lemma 5.12 and 5.13. O
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Theorem 5.15 (Okuma [03]). Let (X,z) be a singularity with §,,(X,z) = 1 for
m = 1,4,6. Then (X, z) is a simple elliptic or a cusp singularity.

Proof. By Lemma 1.10, §;(X,z) = 66(X,z) = 1 implies §3(X,z) = 1. By Proposi-
tion 5.9, (X, z) is an elliptic du Bois singularity. Then Proposition 5.14 implies the
assertion (cf.(5.11)). O

6. EQUISINGULAR DEFORMATIONS

(6.1) In this section, we discuss deformations. Let (X,z) be a singularity and
fi(M,A) — (X,z) the minimal good resolution of (X,z). Let A = Ule A; be the
decomposition into irreducible components. We denote by Dx the functor (cf. [Scl])
of deformations of a singularity (X, z) (cf. [Wh2, 0]). In [Wh2], Wahl introduced the
equisingular functor ES)s of deformations of (M, A) to which all A; lift, and which
blow down to deformations of (X, z). A deformation of the singularity (X, z) is called
an equisingular deformation if it is obtained from an equisingular deformation of
(M, A). It is well known that a deformations of M blows down if and only if A1(Oxs)
does not jump (cf. [Wh2, (4.3)]). Hence equisingular deformations preserve the
geometric genera and the weighted dual graphs of singularities, and so the plurigenera
of Gorenstein and rational singularities by Theorem 3.12.

In [La2, La3, La4, La5], Laufer studied deformations of M in the analytic category.
For a Gorenstein singularity (X, z), an equisingular deformation of (M, A) induces a
topologically constant deformation of (X,z), and the converse holds, too (see [La5,
V, VI)).

(6.2) Let 23,(A) be the sheaf of 1-forms with logarithmic poles along 4, and S
its dual. Then there are exact sequences (cf. [Wh4]):

k
(6.2.1) 0— 2 — 23(4) > P Oa, — 0
=1
k
(6.2.2) 0—8—0u— @04 (4:) -0
=1
(6.2.3) 0> Oyu(—A) =S —6,4—0.

By (6.2.2), We have the following exact sequence

k
0— HY(S) — H (Op) — H* (@OAi(A,-)) — 0.

i=1
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There exists the versal deformation 7: M — (Q,0) of (M, A) with tangent space
To.o = HY(Ou), and a submanifold (P,0) with tangent space Tp, = H'(S) such
that all of the A; lift to above P and P is the maximal subspace of Q above which
all of the A; lift (cf. [La5, p. 26]).

Theorem 6.3 (Wahl [Wh2]). (1) ESy has a hull (in the sense of [Scl]) and the
natural map ES); — Dx is injective.

(2) If any deformation of (M, A) to which all A; lift blows down to a deformation
of (X, z), then T(ESy) = H(S), where T(ES)) denotes the tangent space of ES)y.
If pgy(X,z) <1, then this condition is satisfied.

(6.4) Let B = C{21,...,25}. Let (X,z) be a g-h singularity defined by an ideal
I C B. Let us recall that the tangent space T% of Dx is given by the exact sequence

Hompg(125 (X) R, R) — Homp(I/I?,R) — Tx — 0,

where R = B/I. Since Hompg (I/I?, R) is graded, so is T}: we write
Tk = P Tk (i)
i€Z

Then we have the following.
Theorem 6.5 (Pinkham [P2, 4.6]). T(ESy)=@,5,Tx(1).
Definition 6.6. A function A € C{z,21,22} = Ogs , is called a quasi-homogeneous
(g-h, for short) polynomial of degree d with weights (g, a1, p) € N3, if

td'h(zo, 21, 29) = h(t*029,t% 27, t%% 25)

for any t € C. We assume that «p, a1 and oy are relatively prime.

A function h € Ogs,, is said to be semi-quasi-homogeneous (s-q-h, for short) of
degree d with weights (ag, o1, a2) if it is of the form h = hg + hy, where hq is a g-h
polynomial of degree d with weights (ao, a1, @) which defines an isolated singularity
and all of the monomials of Ay have degree strictly greater than d or hy = 0 (cf.
[AGV, 12.1}). A singularity is said to be s-q-h if it is defined by a s-g-h function.

(6.7) Let h € C{z0,21,22} = Ocs,, define an isolated singularity (X,0) at the
origin. Let Jp, be an ideal of Ocs , generated by dh/8zy,0h/8z and Oh/0z. Qp, =
Ocs,0/Jn is called Jacobian algebra. Then we have (cf. [Sc2, §1])

Tk = Ocs o/(h, Jn)-
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It is well known that (h, J,) = Jp, if and only if & is g-h (after a change of coodinates).

We assume that h is a g-h polynomial of degree d with weights o = (o, a1, @v2).
Then « induces a grading on O¢s o, and so on Q. Let Qn = @5, Qr(i). Recall that
a morphism of graded modules ¢ € Homo, ((h)/(h2), Ox) has degree n if (k) has
degree d+n. Hence we have Tk (1) = Qp(i+d) (cf. (6.4)), and T(ESys) = P, 4 Qr(%).
We see that a s-g-h singularity is a fibre in an equisingular deformation of a g-h
singularity by Theorem 6.5 (cf. [AGV, Theorem 12.1]).

(6.8) We assume that the weighted dual graph of (X,z) is a star-shaped graph.
Let Ao, D, P;, e; and d; be as in (1.6) (note that they are defined for star-shaped
graphs). Let us introduce some results of [TW].

We define a Q-divisor C on Ay as follows: C = D — Zf,__l ¢; P;, where ¢; = e;/d;.
Let

R = (D H’(0.4,(nC))T™ C C(A0)(T],
n>0
where C(Ap) is the field of rational functions of Ay, and T an indeterminate. Then
Spec(R) is a g-h normal surface singularity, we denote by (Y,y), and the weighted
dual graph of (Y, y) is the same as that of (X, z) (cf. [P1]).

By contracting the branches S; |- - - Sg, we get a normal surface M’ with cyclic
quotient singularities. Let ®: (M', A’") — (X, z) be the morphism induced canoni-
cally, where A’ is the image of Ag. We define a filtration on Ox by

F* = 3,0 (—nA")
for n € Z. Note that F* = Ox for n < 0. Let

R=EF T and G=@EF"/F+)I"

nez n>0

Then the natural map
ClT™'1-R

defines a deformation of Spec(@) with general fibre isomorphic to (X,z), since G &
R/T 'R and Ox 2 R/(T~'—a)R for a € C—{0} (cf. [TW, (5.15)]). By [TW,(6.3)],
R is the normalization of G, and R = G if and only if p,(Y,y) = py(X,z). By [Whs5,
(1.12), (3.4)], (X,z) is a fibre in an equisingular deformation of (Y,y) if p,(Y,y) =
py(X, ).
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Proposition 6.9. Let (X,z) be a minimally elliptic singularity with a star-shaped
graph. Then there exist a g-h minimally elliptic singularity (Y,y) and an equisingular
deformation w: Y — C of (Y,y) such that X = n~1(a) for a € C — {0}.

Proof. We use the notation in (6.8). Since the weighted dual graph of (Y, y) is the same
as that of (X, z), we see that (Y,y) is a minimally elliptic singularity by Proposition
5.4 and Definition 5.5. By Theorem 5.6, a minimally elliptic singularity is a Gorenstein
singularity with p, = 1. From (6.8), we have the assertion. O

(6.10) Under the same notation as above, if (X,z) is a hypersurface minimally
elliptic singularity, then so is (Y,y) by [Lal, Theorem 3.13]. By Proposition 6.9 and
(6.7), a hypersurface minimally elliptic singularity with star-shaped graph is a s-q-h
singularity.

7. COMPLETE INTERSECTIONS

(7.1) We use the same notation as in Section 6. Let (X,z) be a Gorenstein
singularity with contractible X. Let Z be a cycle such that Op(K) = Oy (-2). If
(X, z) is not a rational double point, then Z > A.

Let C be a sheaf on M defined by an exact sequence

0——>C-—>CM—>CE-—*0.

If Z > A, then the exterior differentiation gives an exact sequence (cf. [Wh4, (1.5),

(1.6)])

(7.1.1) 0—C— Opy(—2) - QL (A)(-2) -5 22, (=Z + A) — 0.

As X is contractible, H*(C) = 0 for all i. Hence H:(Opy(—Z2)) & H'(dOys(—2)) for
all 5. In particular, H*(dOpy(—~Z)) = H{(Opn(K)) = 0 for ¢ > 1.

(7.2) In the rest of this section, we always assume that (X, z) is a complete in-
tersection singularity which is not a rational double point. Let u(X,z) and 7(X,z)
denote Milnor number and Tjurina number of (X, z), respectively (cf. [LS]). We need
the following results of Greuel [Grl, Gr2] (cf. [LS]).

Proposition 7.3. (1) u(X,) = hi,,(d2%), and 7(X, ) = hisy(2%) [Gr2, p. 168].

(2) H'{’m}(ﬂf{() =0 for p+ ¢ < 1 [Gr2, Proposition 2.3].

(3) The following sequences are exact [Grl, Satz 4.4):

0-Cx — Ox —-dOx — 0
0— dOx — 2% — d2% — 0.
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4) H? . (d2%) = 0 [Grl, Lemma 4.5].
{=} X

(7.4) From (7.1.1), we have an exact sequence

0 — H(dOw(-2)) — Hi(2y(A)K)) — Hy(On (2K + 4))
— H(dOwm(~2)) — Hi(234(4)(K)).

By Corollary 2.13, we have A% (Op (2K + A)) = §5(X,z). By the Serre duality, we
have hY (23, (A} K)) = h1(S). If we set

p = dime ker (HZ (dOwp(—2)) — H3(2},(A)(K))),
then we have
(7.4.1) 62(X,z) = h*(S) + p — kY (dOu(-2)).

We note that bl (dOpy(-2)) < BL(S).
Let U=M— A= X — {z}.

Lemma 7.5. h}(dOn(~Z)) = hi 3 (dOx) +p,(X,z) ~ 1.

Proof. From the exact sequence

0 — H®(dOxm(~2)) — H(dOy) — H}(dOm(~2)) = 0,
and isomorphisms

H(dOm(-2)) = H(Ou(K)) = H(£.0u(K)),

we see that
(7.5.1) H(d0u(~2)) = H*(dOy)/HO(£.O0p(K)).
Using (2) and (3) of Proposition 7.3, we obtain H? ,(dOx) = 0 and hence
(7.5.2) H},,(dOx) = H°(dOy)/H®(dOx).

Let M be an ideal sheaf of Ox which defines the singular point . We define a sheaf
C’ on X by the exact sequence

0—=C" —Cx = Cgy —0.
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Then we have
0=-C —=M-—dM —0.

It is a subcomplex of
0 —-Cx —»0Ox —dOx — 0.

Note that dOx = dM. Since X is contractible, we have

(7.5.3) H°(M) = H(dM) = H(dOx).

29

As (X, z) is a Gorenstein singularity with py(X,z) > 1, we have f.Op(K) C M. It

is well known that

py(X,x) = dime H(Ox)/H(f,On(K))

for a Gorenstein singularity (X, z). From (7.5.1), (7.5.2) and (7.5.3), we have the

following
Wa(dOy(~2)) = hiy(dOx) = dime H(dOx)/H(f,Om (K)
= dime HOOM)/HO (L0 (K)) = po(X,2) 1. O
Lemma 7.6. p=u(X,z) - 7(X,z) + hiw}(dC’)x).
Proof. Since HY(dOp(~2)) = H*(dOy(~Z)) = 0, we have
H3(dOM(~2)) = H' (dOy) = H{,3(dOx).
By the vanishing theorem of Wahl [Wh1], H(£2},(4)(K)) = 0. Similarly, we get
HZ (23, (A)(K)) = HEy (12%).

Then
p = dime ker (H{zm}(d(’)x) - Hfm}(Q}()) :
From Proposition 7.3, H 1 (d2%) = 0 and we have an exact sequence
0 — Hi,,(dOx) — Hy(92%) — Hi,y (d9%)
— H},1(dOx) — H{ 1 (0%),
and hence p = pu(X,z) — 7(X,z) + h%m}(d(’)x). O
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Theorem 7.7 (Okuma [02]). 62(X,z) = Y (S) + u(X,z) — 7(X,z) — po(X,z) + 1.

Proof. The theorem is immediately obtained from (7.4.1), Lemma 7.5 and Lemma
7.6. O

Corollary 7.8. Let 7: X — T be an equisingular deformation of (X,z). We set
X; =m"1(t) fort € T. Then

(7.8.1) T(Xy) > w(X,z) — 82(X,z) foranyt e T.

In particular, if po(X,z) =1, then 7(X¢) > u(X,z) — 5.

Proof. We note that X; is a complete intersection isolated singularity for any t € T
(cf. [KS]). From (7.4) and Lemma 7.5, h!(S) > p, — 1. By Theorem 7.7, we have
that 62(X:) > p(X:) — 7(X¢). By Theorem 3.12, 8, is determined by p, and the
weighted dual graph of the singularity, and so is g by [St, (2.26)]. The property of
the equisingular deformations implies that

6:(X) = 62(X,2) and p(X) = p(X, ).

Then we get (7.8.1). If p,(X,z) =1, then 6,(X,z) < 5 by Corollary 3.14. O

(7.9) For the remainder of this section, (X, 0) denotes a hypersurface singularity
defined by a function b € C{2g, 21,22} = Ocs ,. It is well known that

p(X,0) = dime Ocs,,/Jr and 7(X,0) = dimg Ocs,o/(Jn, ),

and that u(X,0) = 7(X, o) if and only if A is g-h (after a change of coordinates).

We set = u(X,0). Let ¢1,...,p, be functions in O¢s , which induce C-basis of
Ocs,0/Jn- Then we define a function H(z,t) € C{zg, 21, 22,t1,... ,tu} = Ocaxcn,o a8
following

I
H(zt)=h+Y tipi,
=1
and we set
Y(X,0) ={(to) € (C*,0) | u(H(2, %)) = p },

where p(H(z,1t)) denotes Milnor number of the singularity defined by H(z,%y). Then
Y (X, 0) is an analytic subset of (C*,0).
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Definition 7.10. The modality m(X, o) of the singularity (X,o) is the dimension
of Y(X,0) (cf. [Ga]). If (X,0) is defined by a quasi-homogeneous polynomial h of
degree d, then the inner modality mo(X, 0) of the singularity (X, o) is defined as the
dimension of the vector space @, 4 Qn () (cf. [YW]). Note that mo(X, 0) < m(X,0)
if (X, o) is a g-h singularity (see the proof of the follow).

Proposition 7.11 (Okuma [02]). Ifp,(X,0) = 1, then §2(X,0) < m(X, o).
If (X, 0) is a q-h singularity, then 82(X,0) = mo(X,0) < 4.

Proof. Let (C(X:9) 0) be the versal deformation space of the singularity (X,0) and
p: (€A%, 6) — (€7, o)
be a projection corresponding to the natural map of the tangent spaces
Ocs o/ In = Ogs,0/(Jn, h).

There is a submanifold P of (C"(X:9) o) which represents ESys. By the property of
the equisingular deformations, p~!(P) C Y(X,0). By Theorem 6.3, we see that the
dimension of p~1(P) is h1(S) + u(X,0) — (X, 0). Hence

R(8) + (X, 0) = 7(X, 0) < m(X, o).

From Theorem 7.7, we get 62(X, 0) < m(X, o).
We assume that & is a g-h polynomial of degree d. Then Theorem 7.7 and 6.3, and
(6.7) implies that

85(X,0) = h'(S) = dime €P Qu(8) = mo(X, o).
i>d

By Corollary 3.14, 62(X,0) < 4. O

Remark 7.12. If the invariance of Milnor number implies the invariance of the
topological type for two dimensional hypersurface singularities (cf. [LR]), then, in
the proof above, we have p™'(P) = Y(X,0) (cf. (6.1)). In this case, Y (X,o0) is
nonsingular, and 62(X, 0) = m(X, 0) holds.

It is known that for any q-h hypersurface singularity (X, 0), an inequality 82(X, 0)
> mo(X, o) holds (see [YW]).
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Proposition 7.13 (Okuma [02]). Let (X,0) be a singularity defined by a s-g-h
function h € Ogs,, with weights (1,1,1). Then 65(X, 0) > m(X,0).

Proof. We write h = ho+hy asin Definition 6.6. Let (Xo, 0) be a singularity defined by
ho. Then by [GK], mo(Xo,0) = m(Xq,0). Hence we have that 62(Xp,0) > m(Xo,0)
by [YW]. On the other hand, (X, 0) is a fibre in an equisingular deformation of (Xo, o)
by (6.7). Thus é5(X,0) = 62(Xo,0). Since the modality is upper semi-continuous by
[Gal, we have

52(X10)=62(X0,0) Zm(XO’O) Zm(X,o) u

Proposition 7.14 (Okuma [02]). Let (X,0) be a hypersurface singularity with
pg(X,0) = 1 such that the weighted dual graph of it is a star-shaped graph. Then
(X, 0) is defined by a s-g-h function of which the quasi-homogeneous part defines a
singularity (Xo,0) with mg(Xy,0) = 62(X, 0).

In particular, for such a singularity with §3(X,0) < 2, we have 62(X,0) = m(X, o).

Proof. We know that (X, 0) is a s-q-h singularity by (6.10). Q-h hypersurface singu-
larities with p, = 1 and mg < 4 are listed in [YW]. The lists of all the singularities
for which m < 2 are given in [AGV, 15.1]. Then we see that for a s-q-h function of
which the g-h part has inner modality m¢ < 2, we have m = my. By Proposition
7.11, using the notation of Proposition 7.13, if §2(X, 0) < 2 then we have

m(X, O) = mo(X(),O) = (52(X0,0) = 52(X, O). O

(7.15) From Proposition 6.9 and 7.14, we see that a minimally elliptic singularity
with a star-shaped graph is easy to deal. However there exist minimally elliptic
singularities of which the weighted dual graphs are not star-shaped.

We classify the weighted dual graphs of minimally elliptic singularities with 8, < 2.
In the following, the symbol “ O ” corresponds to a component with self-intersection
number —2 and “ 0J; ” corresponds to a component A;. We set b, = —A; - A; and
ti=(A—A;)- A

Proposition 7.16. Let (X,z) be a minimally elliptic singularity with 65(X,z) < 2.
(1) If 62(X,z) = 1 if and only if (X,z) is a simple elliptic, cusp singularity or a
singularity with the weighted dual graph
)
Dy by s - O;— 0 —Os
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Where by =1 < by < by <bg and 1/by +1/by +1/b3 < 1.
(2) If 65(X,z) = 2 if and only if the weighted dual graph of (X,z) is one of the
following.

)

Eg : 0, —0— 0O —0O—"Us 2<by <bp £b3,2<b3
By 0, —O0—0—0—0—0—0: 2 < by <bgy2< by

Byg:  O—O0—0O—0—0-0-0—D 2<b

|:||2
Dy: D1—§—Da 2<b1 <bp<b3 < by, 2< Yy
4

(W Us
| | 2<b; 3,2 < b3 < byy2 < by

Dips i>21): 0—0O-----0 —04 The number of “ () ” is i+ 1.

(3) The list of the (b;) corresponding to a hypersurface is the following.

type (bs)

Dy b3 b5 (2.3.7), (2.3.8), (2.3.9), (2.4.5), (2.4.6), (2.4.7), (2.5.5),(2.5.6)
(3.3.4), (3.3.5), (3.3.6), (3.4.4), (3.4.5), (4.4.4)

Eq (2.2.3), (2.2.4), (2.2.5), (2.3.3), (2.3.4), (3.3.3),

E; (2.3), (2.4), (2.5), (3.3), (3.4)

Fy (3), (4), (5)

D, (2.2.2.3), (2.2.2.4), (2.2.2.5), (2.2.3.3)
(2.2.3.4), (2.3.3.3)

Diyy (i21) (2.2.2.3), (2.2.2.4), (2.2.2.5), (2.2.3.3)
(2.3.2.3), (2.2.3.4), (2.3.2.4), (2.3.3.3)
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Proof. From the proof of Corollary 3.14 and Lemma 5.8, we have (1). In (1), the
inequality 1/b; +1/by +1/bs < 1 is the condition for the intersection matrix to be
negative definite.

If 65(X,z) # 1, then the minimal good resolution is minimal and weighted dual
graph is a tree of rational curves (cf. [Lal, Proposition 3.5]). Assume that 6, = 2.
From the equality (3.14.1), §; = 2 if and only if K- L; =0. Let Z be a fundamental
cycle. Note that K = —Z. We set Z = ) a;4; and D = Z — A. Then we have
K- (K+A)=2Z2Z-D and

(7.16.1) > (@i —1)(b: —2) =0.

Since K is nef and not trivial, b; > 2 for all 4 and b; > 3 for some j. Note that
a; > 1 for all 4. By (7.16.1), if b; > 3 then a; = 1 and if a; > 2 then b; = 2. Assume
by > 3. Then a; = 1. Let C be the minimal chain of curves containing A; such that
C intersects D and any curve in C is not contained in D. There exists such a chain
since A is connected. For any curve 4; in C, we have a; = 1. Let A; be a curve in C
intersecting a curve A;i; in D. Then we have K- A; = —A;-A; —2 =0b; — 2 and
Z-Aj=(D+A)-Aj=D-A;+1t; —b;. Since K =—Z, we have D - A; +1t; = 2.
Since D - A; and t; are positive, we have t; = 1 and hence A; = A;. Then

—b1+2=Z-A1=(a2A2+A1)-A1=a2—b1.

Hence ag = by = 2. Thus we see that if a curve A; with a; = 1 intersects a curve A;
then t; = 1 and a; = 2. Let A;, As,..., A, be all of curves intersecting As. Then
we have . "

0=2Z-Ay=a, —a2b2+§:ai = -—-3+Z(Li.
If a3 = ag = as = 1, then we have the type Dy (after a change of suffices). Assume
az3 = 1 and a4 = 2. Then t3 = 1 and by = 2. Let As, As,... ,An be all of curves
itersecting As. Then

0=Z-A4=a2—a4b4+iai=—2+§:ai.

=5 =5

If as = ag = 1, then we have Ds. If a5 = 2, then we apply the same methods as
above. After all, we have the type bi+4. Assume a3 = 3 and that Az, A4,... , A, are
all of curves intersecting A3. As above, we have Y ;. , a; = 4. Since a curve 4; with
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a; = 1 must intersect a curve A; with a; = 2, we have ay = a5 =2 oraq = 4. If
as = a5 = 2, then we have the type Eg. If ay = 4, then we go on as above. After all,
we have the types Eq and Fg.

A singularity whose weighted dual graph is described in (2) is a minimally elliptic
singularity (cf. Definition 5.5). We have §2(X,2) = 2 for these singularities by
(3.14.1).

The list of (3) is computed from the condition [Lal, Theorem 3.13]

-3L7-ZL -1 O

Corollary 7.17. Let (X,0) be a hypersurface singularity of type Dy, b, b,, Es, Er,
Eg or Dy. Then m(X,0) = 65(X,0).

Proof. Tt follows from Proposition 7.14 and 7.16. [

(7.18) Hypersurface singularities with modality equal to 1 and 2 are said to be uni-
modal and bimodal, respectively. For hypersurface singularities, Dy, 5,5, correspond
to 14 exceptional families of unimodal singularities, and Es, Ey and Es correspond to
14 exceptional families of bimodal singularities, and D4 correspond to the functions
listed in [AGV, 15.1] of type J3,0, Z1,0, W10, @2,0, S1,0 and Uy o in 8 infinite series
of bimodal singularities. The weighted dual graphs of 8 infinite series of bimodal
singularities are of type Dy or D;y4 (cf. [La2, IV]). We note that minimally elliptic
singularities with d; < 2 are Kodaira singularities (cf. [Kr]).

As in the proof of Proposition 7.16, we can list the weighted dual graphs of mini-
mally elliptic singularities with a given second plurigenus (if we make exertion). The
following are the list of weighted dual graphs of hypersurface minimally elliptic singu-
larities with star-shaped graphs and 65 > 3. Recall that 2 < 4 (see Corollary 3.14).
In the following, the symbol “ [ ” corresponds to a component with self-intersection
number —3 and “ B ” corresponds to a component with self-intersection number —2
or —3 and the number of components with self-intersection number —3 corresponding
to M is at most one in each weighted dual graph.

The case of 69 = 3.
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5—0—0—0—0O—O—=
-—o~o—o—i—o—o—o—-
I—D—o~§~o—o—o—o—l

m—o~g~o—o—o—o—o—o~-
The case of §; = 4.

O—0—0-0-0

0—0—0—0—0—0—0—0—0

O—O~O—£—O—O—O—O*O*O—O
(7.19) As [P1, 6], we can get a g-h polynomial from a weighted dual graph of a
hypersurface singularity listed in Proposition 7.16 or (7.18). Those polynomials are
the same as those of [YW, §5]. The parameters in the polynomial correspond to the
moduli of the intersection points on the central curve. Note that all of the functions

which define hypersurface minimally elliptic singularities with star-shaped graphs are
gainable as (6.10). |
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