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1. INTRODUCTION. Throughout this paper, R denotes a finite
dimensional algebra over an algebraic closed field K. We shall also
assume R to be connected and basic and representation—-finite.

In this paper we are concerened with simply connected algegras.
Particularly the maximal length of Auslander-Reiten quivers of simply
connected algebras having the same number of simple modules as well as
the maximal grading of these algebras is discussed in the first half
and simply connected QF-3 algebras are discussed in the latter half.

QF-3 algebras were introduced by Tachikawa [11l] as a general notion
of QF-algebras. simply connected algebras were introduced by
Bongartz—Gabriel [4].

QF algebras are never simply connected, but Riedtmann pointed out
that QF-algebras have universal coverings of simply connected algebras
of Dynkin type. (cf. [6]) Further any QF-algebra is stable equivalent
to some trivial extension algebra of simply connected algebra. (Also
see [6]) Iwanaga pointed out that QF-3 algebra appears as the the
covering of a trivial extension algebra. (see [2])

It is well known that any Auslander algebra is characterized as
QF-3 algebra with a global dimension smaller than 2 and a dominant

dimension larger than 2. (Auslander [1])



Under the influence of these back grounds, we would like to
classify QF-3 algebras but not Qf—algebras. This should be completed
in section 6.

Here we give a summary of each section.

In secion 2 some notions and fundamental properties are presented.

Section 3 is devoted to the classification of the partially ordered
set {RM |HomR(P,M) # 0}, here P is a projective module with a maximal
grading.

In section 4 using the classification in section 3, we shall
prove the maximal length and grading between all the simply connected
algebras with the same number of simple modules.

In section 5 we study simply connected QF-3 algebras with an
indecomposable projective injective faithful module. The quiver of
these algebras are called elementgry QF-3 quivers and there are 59 kinds
of quivers listed at section 7. These algebras supply the list of
algebras with sincere indecémposable modules due to Bongartz [5].

To determine these quivers, we prove the following facts.

A A

(1) R has a matrix form as R = such that M is A-K
0 K

bimodule and an injective sincere A-module and M = rad R.
0 O

A and e = .|, here e, 's are
0 1

(2) Put A=eAB® ... e

1 n~1

primitive idempotent. Then enMei # 0 and eiMel # 0 for any i.
The property (2) means that quivers of these algebras have unique
minimal vertices and unique maximal vertices and there is no zero-relaion

in these quivers.



In section 6 we study simply connected QF-3 algebras. It is
proved that any quiver of a simply connected QF-3 algebras is.some
interlacing of elementary QF-3 quivers. This result is owing to the
fact that any projective injective indecomposable module is a faithful
injective projective module over its support algebra, 1i.e. The quivers
of these kinds of support algebras are elementary QF-3 quivers.

We must remark any interlacing doesn't give a QF-3 algebra. They are
not QF-3 nor simply connected in general. So we should discuss the
properties under what conditions the algebra has a minimal faithful
module and becomes simply connected. 1.e. We should characterize
simply connected QF-3 algebras. Of course, these conditions should be
described by the way how to interlace elgmentary QF-3 quivers and how to
give zero-relations after interlacing quivers because a given algebra
must be verified concretely if this algebra is a QF-3 algebra or not.

The only result for a faithfulness is due to Happel-Ringel [7].
This is done for the case of indecomposable module using by the tilting
theory. Their result is that any sincere indecomposable module is
faithful. But in general this doesn't hold. Here we should give the
concrete conditions for a projective injective module to be faithful.

Next we would like to show that relations which should be given in
an interlaced quiver is uniquely determined depending on the way how to
interlace the elementary QF-3 quivers.

After the above investigations, we introduce a notion of a QF;S
quiver with relations and we prove that the algebras constructed by
QF-3 quivers with relations become QF-3 algebras. This enables us to

construct any simply connected QF-3 algebra which has a direct sum of



given indecomposable projective injective modules as a minimal faithful

module.

2. DEFINITIONS AND FUNDAMENTAL RESULTS.

2.1. Throughout this paper modules mean right R-modules.
R is called a QF-3 algebra if there are projective injective modules
such that their direct sum is faithful. This is equivalent to the
original definition that R has a minimal faithful module. This owes
to Colby-Rutter. (cf. see [11]).

2.2 Let QR and T, be a Gabriel quiver and an Auslander-Reiten

R

quiver of R with a translation T = DIr respectively. Rﬂ is called a
successor of RN (and RN is a predecessor of RM) if RM and RN are
indecomposable and there is an chain of irreducible maps from RN

to RM.

If QR has no oriented cycle and no roop, then QR is partially
ordered in a usual way. d.e. a < b if tere is a chain of arrows
from a to b. Further we put [a,b] = {c | a < c < b in QR}

We may identify R with KQ/I for some two sided ideal I of a
path algebra KQ. For a vertex a € Q, we denote by P(a), J(a) and
k(a) an indecomposable projective module, injective module and
simple module corresponding to a. i.e. P(a) = [-,a], J(a) = D[a,-]

and k(a) = P(a)/rad P(a), here D = HomK(—,K) is a duality. Also we

denote by [e] a corresponding vertex of QR to a primitive idempotent e.



2.3. By Bongartz-Gabriel [4] and Bautista-Larridn~-Salmerdn [3],
algebras satisfying the following equivalent conditions are called
simply connected algebras.

(1) The fundamental group of FR is trivial. (See [4])

(2) QR with relation ideal I satisfies the separated condition.

(See [3])
i.e. ‘If rad P(a) = MBN and P(b)M # 0 and P(c)N # 0, then there exits

no non-oriented path b-d.- ... —dt—c in QR such that a ¥ di for every 1.

1
Here - means any direction = or < .

(3) Any different direct summands of a radical of an indecomposable
projective module have no common predecessor.

(4) FR is a translation quiver given by some graded tree. (See [4])

2.4.; We would like to mention about important properties that
simply comnected algebras satisfy. Here we denote by k(PR) a mesh
category of k(FR). These are mainly owing to [4].

(D) k(FR) =z ind-R. Here ind-R is a category of all ﬁinitely
generated indecomposable modules. di.e. Any simply connected algebra
is standard.

(2) R is isomorphic to a full subcategory consisting of
projective vertices of Tg:
(3) Any indecoﬁposable module M is determined by its dimension

vector dim M.

(4) M(a) = dimK HomR(P(a),M) = dimK K(FR)(P(a),M).



(5) TR has no oriented cycle and is partially ordered by the
same way as QR’

(6) DimK KQ/I(a,b) < 1 for any a,b ¢ Q.

(7) 1If XQ/I(a,b) # 0, then no path from a to b belongs to I.

2.5. FR is constructed by a graded tree, we can define a length
function LX for x ¢ FR by

(D Lx(x)=l‘

Lx(y)—l if z >y

(2) 1If L_(y) is defined, then L_(z) = {

: X x .

Lx(y)+l if vy » z.

For any subset Y of PR’ we denote by LX(Y) the maximal number
of Lx(y) among ¥ ¢ Y. Further we put L(Y) = LZ(Y) for a projective
z whose grading is 0. Clearly it is independent of the choice of x
and it holds for x ¢ T'r the property

(# L)-L(x) = LX(Y).
We define a starting function S, at x by sx(y) = d:LmK K(PR)(x,y)

for y ¢ ', and we denote by SX the support of Sy

R
2.6. We denote simply by RT and FT an algebra and an Auslander-
Reiten quiver of an addmissible graded tree (T,g).
We recall the definitions in [4]. Let m be a vertex of T and
assume that a projective module (g(m),m) has no projective successor.

i.e. The corresponding vertex in QR'is maximal. We denote by ty,

the neighbouring vertices of m in T, by Tl, caey 7" the corresponding

connected components of T\{m}, by uy the minimum of g on Tl, by g

the grading (gilTl)—ui on T'.

The following theorem is fundamental.



Theorem (Bongartz—Gabriel [41).

With the above situations, the following statements are equivalent.
(1) (T,g) is representation-finite.

(2) (a) Each (Ti,gi) is representation-finite.

(b) Each T i contains X, = (g(m)ﬂji—l,ti) and the value of

Ti. T
each s_ < 1.
X,
: Tt 7"
(c) The partially ordered set SX LL‘... LL_SX is representation-
1 r

finite in the sense of Nazarova-Roiter [8].
Here a partially ordered set is representation-finite if it

contains no subset of the following 5 forms;

o
+
o o}
4 4
o o o o
4t 4 4
o o o o o o o o o o
I 4t 44 Ax 44
©o o oo, 0o oo , 000, o0o0©o0O , O OO
[1,1,1,1] [2,2,2] [1,3,3] [1,2,5] [N,4]

We notice that r < 3 in Theorem 2.6 (c), otherwise [1,1,1,1] appears.

3. THE CLASSFICATION OF PARTIALLY ORDERED SETS.

3.1. Let (T,g) be a representation finite graded tree and (Ti,gi)’s
(i =1, ..., r) graded trees stated in section 2. Put p ¢ QR such that
F(p) = (g(m),m). Since p is maximal in QR’ there is a slice in each rTl
such that the full subquiver consisting of successors of rgd P(p) just
coincides with the t-orbit of this slise g(ao). In this section
we would like to classify these sections in the sense that successors

of rad P(p) are completely determined.

We notice that rad P(p) = a0$b0®c0, maybe b0 or ¢y = 0.



3.2. Assume ag, bO’ )y # 0. Then'g(ao) is one of the following
quivers.

(1) a, s b0 , cg T e -+ ST (k=0)

(2) ag » bO > Cq s Cy T oeer T O . (k=0)

The above fact is proved easily since the other section with three
components contains [2,2,2] or [1,3,3].

3.3. Assume aO’bO # 0 and cqg = 0.

We can get nineteen possible slices in this case.

The first csae is the case that quivers are linear.

(1) ag > eee > 8L, bO > e > bj . (i, =20)

For the other cases, consider a following subquiver in Sa .

0
dy
e
A s
//ﬂdl .
a’/?el\s f
AR 1y
.t N
. f
o. m
A
ag , bO T e > bj'

(i,jym2 0, t>2s 2> 1)
We abbreviate injective to inj. throughout this section.

If a; is injective, then the following five cases are possible.

(2) s=1, 3 =0.
(3) s=1, =1, 1 < t < 4 because of [1,2,5].

(4)S=l,j—

|
Y&}
-
w
-
r+
|
’—l
-
N

because of [1,3,3].

(5) s=1,7]

IA
~
-
ot
fl
}..l

because of [1,2,5].

(6) s=2,3=20, t=2,3,4 because of [1,3,3] and [1,2,5].



In the following we omit the description of partially ordered sets
demanding in the each case to avoid the long explanations. These will

be given by writing down the successor of a_, concretely.

0

If a; is not injective, then s = 1. Otherwise it appears [1,1,1,1].

The followinf six cases are possible.

(7)) £t=1, j,m = 0.

(8 j=0, t=5,m=1, dl is inj.

(9) §j =0, t =4, m=1.

(10) =0, t =3, m= 1.

(11) 3 =0, t = 3, m = 2,3, d; is inj.

(12) 3 =0, t = 2, dl is inj.

For the case j = 0, t = 2 and dl is non-inj, the following four
cases are possiblef

(13) m = 4,5, £ is inj.

(14) m = b, T ey is inj.

(15) m = 4, T_lfl and dl are inj.

(16) 1 <m £ 3.

The following three cases are j 2> 1.

(17) j =1, t =2, m= 1,2,
(18) =1, £t = 2, m = 3, d1 is inj.
(19) § =2, t =2, m= 1,

3.4. Assume rad P(p) = ag- i.e. bO =cq = 0.

The following four cases are possible.
(1)

8. % wee. > oa, . (k=20)

-10-



(ii)

dl+ - ds
4
ao+ ->-ak—> cl+ ->Ci
¥
bl
(iii) (i=1,2, 8 >i, k >0 )
dl > > dt
at.
C+l->- -)-Ci+el—> +es
ao—> -)-ak+bl—> +bj

(t> s> 0, 1,3

For (i) and (ii) the following three cases are possible.
(1) k is arbitraly for (i).

(2) a

" is inj., 1 = 1 for (ii).

(3) ak’is inj., 1 =1, s = 2,3,4 for (ii).

To classify (iii) more detail, consider a subquiver in Sa

s
e
S
a’ .'ﬁ
/ l .
e
-C{?'}?%fl
- ﬂ N
A
;ﬂcn' N g
N m
. £y
C ﬂ. |
1
a/’ \ 7
AT e g1
\bl/ \“hz
pN N,
) Ny Ny
2 7 i W

-11-
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Here n is the least number such that o is injective, m and w are the

-m -w
reatest numbers such that £ = , = ist.
g umbe n o T Sy and hW oA exist

3.5. Consider the case k = 0 and a, is injective. The following

0

fourteen cases are possible.
(1) t=3s=0.
(2) t=3s8=1,
(3) =1, c; is inj., s = 1.
(4) 3 =1, c, is inj., s = 2, t = 2,3,4.

The following five cases are j = 1, cy is non-inj. and s = 1.

(5) d, is non-inj., t = 2, m < 5.

1
(6) dl is non-inj., t = 3,4, m = 1.
(7) d; is inj., t = 2.
(8) dl is inj., t = 3, m = 1,2,3.
(9 dl is inj., t = 4,5, m = 1.

The rest cases are j =2 2 and s = 2.

I
N
-
w
“
o~

(10) 3 = 2, cy is inj., t
(1) 37 = 2, c; is non-inj., dl is inj., t = 2, m = 1,2,3,
(12) 3 = 2, c is non-inj., dl is non-inj., m = 1,2,

(13) =3, t =2, m= 0,1.

(14) 5 =4, t = 2, cy is inj..

3.6. If k = 0 and a, is non-injective, the following sixteen cases

0
are possible.
The following eight cases are s = j = 1.
(1) t=1.
(2) t=2,n" =3, cy is inj..
(3) t=2,n"=2, c¢; is non-inj., m = 1.

=12~



() t=2,n" =2, ¢y is inj..

(5) t=2,n" =1, s is non-inj., m

1
=
N

(6) t=2,n" =1, s is non-inj., m = 3, dl is inj..

(7) t=2, c, is inj..

(8) t= 3,4, n=1, ey is inj..
The rest cases are s = t = 0.
(9 j=23,1i= 3,4, c

1 is inj..

(10) § =3, i = 5, ¢, and bl are inj.
(11) §j =2, n' = 2, 1 =6, b1 is inj..

(12)

[
]
N
=)
v
ro
H

|

= 5, bl is inj..
(13) 3 =2, n' =2, i =75, b, is non-inj..
(14) j =2, n" =2 2, 1= 2,3,4.

(15) 3 =2, n' = 1.

(16) j = 1.

3.7. Assume k > 1., If w= 0 or 1, then Sao is same as 3.5 and 3.6.
So we may assume w > 2.

The following three cases are possible and s = j = n' = 1.

(1) t=1.

(2) m=0, t =2, w= 2,3,

(3) m=1, t =2, w= 2.

- 3.8. The most complicated case is the case s = t = 0. By the same

reason stated in 3.7, we may assume ay is not injective.

In the case j = 1,2 or 3, consider a following subquiver of Sao.

Here the numbers attached in the quiver are values of the starting

function s
%0

-13-
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/ 1
/5:1_;;.2529 .'ZZZlQSQ.ZZZOiQS.EZZlQEQ

l ..... lno-a. lll... 1.--0- l ----- 2

v
N
4
N
W«
N
4
N

The following twenty two cases are j = 1.
(1 1i= 1,
(2) i=2,1<w¢cshéb.

The following seven cases are i = 2 and w = 5.

(3) T—2C2 is inj..
(4) T—3Cl is inj..
(5) T_Bbl is inj..
(6) T-Aak is inj..
(7) T"lhz is inj..

(8) hy is inj..

(9) h, is inj..

The following thirteen cases are i = 3.
(10) w = 1,2.

(11) n' = 2, w = 3.

(12) n' = 2, ¢, is inj., w = 4,5.

(13) n' = 2, gy and h2 are inj., w = 6.

(14) n'

2, w= 3,4, h2 is inj..

(15) n'

1, w > 3.

~14—



(16) ¢, is non-inj., g, is inj., w = 3.

(17) ¢, is non-inj., &, and T_lb are inj., w = 4.

1

(18) ¢, is non-inj., 8y and T~lb are inj., w = 5, h, is inj..

1 2

(19) ¢, and T_lg2 are non-inj., T_lbl is inj., w = 3,4.

(20) c, and g, are non-inj., T—lb is inj., w = 5, h, is inj..

1 3

-1 - -

Cys 8o and T bl are non-inj., T "a
c T_lb and T_Za re -inj h
29 gz, 1 K 2 non-inj.,

(21) is inj., w = 3.

k

(22) is inj., w = 3.

2

3.9. Assume s =t =0, j =1, a, is non-inj. and i = 4.

k

Then the following sixteen cases are possible.
(1) ¢, is 4inj..
1
The following five cases are n' = 2.

(2) w=1,2,3.

(3) 1

4, &1 is inj., w = 4,5.

(4) w=1,2, i 2 5.

(5) w=23,1i=25, 1 b, is inj..

6, 81 is inj..

(6) w=3, 1

The following four cases are n' 2 3, g1 is inj..

(7) w=1.

(8) w=2, 1

n
o~
w

-
o

9) w=2,1=7, " = 3,

(10) w i= 4.

I
w
-
~
»

The following cases are c¢ ¢, and g, are non-inj..

1’ 72

(11) w=1, o' =2 4,

~15-



Then

(12) w= 2, n'

I\
~
.
it
=~

(13) w=2, n'" 2 4, i = 5, 8y is inj..

(14)

g
1l
N
=}
v
P~
[
il
w
[a!
o
He
0]
He
s}
(SN

(15) w= 2, n" =3, 1= 4,5,

(16) w=2,n' =3, 1=26,+1 lbl is inj

3.10. Assume a. is non-inj. and j > 2.

the following eleven cases are possible

(1) i=2, w=1.

2.

possible.

(2) i=2,n'" =1, w= 3,4,5, bl is dinj

(3) i=2,n" > 2, bl is inj., w = 2,3.

(4) i = 2, ¢y and bl are non-inj., w =

(5) n'=1,w=1, i 3.

(6) n' =1, w= 2, i = 3.

(7) n' =1, w= 2, 1 =4, bl is inj..

(8 n’ 2, bl is inj., w =1, 1 = 3,4,

(9) n' =2, b1 is inj., w= 1, 1 = 6.

(10) cy and bl are non-inj., w =1, i =

(11) n' = 2, bl is non-inj., w=1, i =

3.11. Assume a, is non-inj. and j = 3.
Then w = 1 and the following three cases are

(1) cy is inj., 1 = 3,4.

(2) ¢y is inj., 1 = 5, bl is inj..

(3) cq is non-inj., bl is inj., i = 3.

This completes the classification of Sao.

~16-



4, THE MAXIMAL GRADING AND LENGTH OF SIMPLY CONNECTED ALGEBRAS.
4.1, Let n be a natural number and Sn a set consisting of all
the representation-finite graded trees with n vertices. We put

F(n)

max { L(Tp) | (T,8) ¢ S, 3

G(n)

max { g(t) | (T,g) e S and t €T}

In this section we shall prove the following theorem.

Theorem. Let n be a natural number. Then it holds that
G(2) =1, G(3) = 3, G(4) =5, G(5) =7, G(6) = 11, G(7) = 15, G(8) = 25
and G(9) < 55,
60n—-485 (10<ng< 32)

G(n) < { 9
n -6n+604 (n2 33)

Also since F(n) = G(n+l)-1, we have

F(2) =2, F(3) = 4, F(4) = 6, F(5) = 10, F(6) = 14, F(7) = 24 and
F(8) < 54,
60n-426 (9< n< 31)
F(n) < 9
n -4n+598 (nz= 32)

We shall give the proof in 4.4 The graded trees which give

F(4), F(5), F(6) and F(7) are as following.

F(4) = 6 3
|
0-1-2-3 , 1-0-5
F(5) = 10 1
|
1-0-5
I
1
F(6) = 14 6 1 7
| l !
1-0-0-2 , 0-1-2-3 -4 , 1-0-1-2

-17-



F(7) = 24 10
1
|

8-1-0-1-20

4,2, Let (Tn,gn) be a representation-finite graded tree such that
L(TT ) = F(n). Put p and q vertices in FT such that gn(p) = 0 and
Lp(q? = F(n). Then we can construct a repzesentation—finite graded tree
(T,g) such that g(t) = F(n) + 1 for some t ¢ T by the following way.
T = Tn u {t} cee the neighbou of t is a vertex corresponding

to a t~orbit of q.

gn(x) if x € Tn

g(x) = {
F(n)+1 if x = t.

In fact G(nt+l) = F(n) + 1 and the graded trees which gives G(n+l) are

always described as above by the following lemma.

Lemma. The following statements are true.

(1) G(n+l) = F(n) + 1 and F(n+l) = F(n) + 2.

(2) The vertex whose grading is CG(n) has only one neighbour.

(3) Let Pt be projective module corresponding to t whose grading
is G(n+l) for some graded tree (T*, g*) and (T,g) graded tree such that

T = T*\{t} and g = g

T. Then q = rad Pt is simple injective as RT—module.
Proof. First we prove (1). G(n+l) » F(n)+l and F(n+l) > F(n)+2

are already shown just before. We show G(n+l) < F(n)+1l. Let (T,g) be

any representation-finite graded tree with n+l vertices and let z be

a vertex in T whose grading is maximal. Consider a connected component

Tl of T\{z} which contains a vertex whose grading is 0. By Theorem 2.6,

(Tl,gITl) is representation-finite, hence L(rT ) < F(n).

1

~18-



Also g(z) < L(FTl) + 1< F(n) + 1, hence C(n+1) < F(n) + 1.

Next we prove (2). Assume contrary t has at least two neighbours,
here t is a vertex whose grading is G(n) in a graded tree (T*,g*).
Let T be a connected component of T \{t }which contains a vertex whose

grading is 0. Since (T,g*IT) is representation-finite and Tl < n-2,

we can construct two representation-finite graded tree

(Tl,gl) and (T2’g2) in the following way.

T, = Tu {t} gl=g*l"rl,

T, =T, u {p} glel = g, and g(p) = L(TT1)+1
Hence G(n) = gz(p) > L(TTl) > gl(t) =g(t) = G(n),

which is a contradiction.

Last we prove (3). Let L be a length function with respect to (T,g).
By (2), rad Pt is indecomposable, henpe the canonical inclusion map
rad Pt - Pt is a irreducible map and L(rad Pt) + 1= L(Pt)'
On the other hand, g*(t) = G(n+l) = F(n) + 1, thus L(rad Pt) = F(n).
This means there is no irreducible map starting from rad Pt in FT’

so rad Pt is a simple injective RT—module.

4.3. By Lemma 4.2, it is sufficient to estimate the value F(nj.
The following lemma is useful to do this.

Lemma. q is successor of every projective module whose
grading is maximal in (Tn,gn).

Proof. Let v be vertex whose grading is maximal in (Tn,gn).
Assume there is no path from Pv to q. We consider full subtranslation
quiver T (it may be non-connected) of FT consisting of vertices which

n

are not successors of Pv' So we put T a connected component of T' which

contains q, further let u be a neighbouring vertex of v in Tn.

-19-



We can choose such u as Pu belongs to Fl. Let Ll and L be length

functions (2.5) with respect to Tl and [ respectively. L—Ll has
the constant value a for every vertex in Fl. We remark that
F(n) = G(n+l)-1 = L(q) = Ll(q)+a
since q belongs to Pl.
If a = 0, then as constracted in 4.3, there is a simply

connected algebra whose maximal grading is larger than F(n).

So we may assume a > 0. Then must have two connected components.
Let F2 be another connected component of ' which contains a vertex with
zero grading and M a neighbour of PV such that M is contained in r2.
We remark L(FZ) > a since L(Fz) > L(M) = gn(v)—l > L(Pu) = Ll(Pu)+a > a.

Now we consider the following trees and their gradings.

Tn\{p} = Tl u T, (disjoint union of conmected trees).

We may assume that u is a vertex of T Under this assumption,

1
we define

g = gn—a[Tl (a grading of Tl)’
|T

g, = 8 (a grading of T2).

2
We can check the facts that (T

n

) and (T ) are representation-

l’gz 2’g2

finite graded tree and rl and F2 are full subtranslation quiver of

Ty and T respectively. Choose a simple injective module Sy in T

1 2 2
and Sl = Pz a simple projective module in TT , here z is a vertex of Tl
1

such that gn(z) = a. Then we can define a representation-finite

T

translation quiver Q with n-1 vertices as follows.

Qg = (RTl)O u {P} v (RTQ)O (set of vertices),
Q = (RTl)l U (RTZ)l u {8, P, P> Sl} (set of arrows),
1_182 = Sl (new translation).
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We put L. a length function with respect to Q, then we have

Q
LQ(q> = Ll(q)+2+LQ(82) = Ll(q)+2+L2(Sz) > Ll(q)+2+a = F(n)+2,

+his is a contradiction.

4.4. We prove the theorem 4.1. Let t be a vertex ot (Tn’gn)
whose grading is maximal. Let (T,g) be a graded tree given by a connected
component of Tn\{t}, which contains a vertex whose grading is 0. We put

Pt a projective module corresponding to t and put a = rad Pt"

T PT respectively.

n
)-L(a) -£L’(FT)—L'(a)} =1, (T )-La(PT)
n

Further L, L' are denoted by length function on T
=1t =
Then L(T )-L T L(Tq
n n
since L(a) = L'(a) and 2.5 (#).
On the other hand, L(I‘T ) = F(n) and L'(FT) < F(n-1).
n

Hence we get an inequation

F(n)-F(n-1) < La(rTn)-L'a(rT) (*1)

By using the classification of successor of a, the latter part of

the inequation (x1) is caluculated concretely. Then

30 (n-=28)
F(n)-F(n-1) { 60 < (9 <n< 32) (x2)
2n-5 (nz= 32) .

Hence we get the theorem 4.1.

4.5. In the proof of (%2), to avoid unnecessary lengthy, we only

show the case of 3.4 (1).

The successor of a = 2, in Iy forms the following quiver.
Ak
ai/z S R
A . .
aq treseesresssasnasea
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Then the successor ot TT form the following quiver.

(2, ,0) seseeses (0,1
A N A
C (ak’l)
™

- Vs

ﬂ .' C.- .'l
ﬁ(al,O)\ 7.. . R Y
a, = (a.,0) seeeeees (a.,l) et ieeeeneeeann
(a.,1)

ao,

Here (p,q) means a dimension vector (dim P> s_ (z)) descrbed by a
: t
starting function sp (2.5) and vertex z denoted by (p,q) in T
t
T
Hence La(PT )-L (I‘T) < 2.

T

By similar caluculation stated above, we get the estimations of
F(nt+l)-T(n) for each case in section 3. This list is presented in

section 8.

5. ELEMENTARY QF-3 QUIVERS.

5.1. As the anoter application of the classification of quivers,
we would like to determine all the simply connected QF-3 algebras with
unique indecomposable faithful indecomposable projective injective module.
We call these algebras elementary QF-3 algebras, also we call a quiver of
an elementary QF-3 algebra an elementary QF-3 quiver.
We prove the following theorem.

Theorem. (1) There are 59 kinds of elementary QF-3 quivers listed
at the end of this paper.

(2) The quivers have only possible commutative relations.

(3) The elementary QF-3 algebras are just simply connected
QF-2 algebras.

We prove this theorem in 5.4.
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5.2. Firat we prove the following lemma.

Lemma. Let R = Ky/I be an elementary QF-3 aigebra. Then it holds

(1) Q has the smallest vertex and the largest vertex and any vertex
is connected with both of them by non-zero path.

(2) I is generated by all the commutative relations. Particularly
there is no zero-rlation in I.

Proof. First we show (2). Assume there is a non-zero path

f f
x +l cee >0 y . Let a be the smallest vertex in Q. Then

g g h h
there are two paths a >~ ... ST x and a > ... > y not belonging to I.

Consider two paths ht...h and fn...flgm...gl, then subquiver consisting

1

of vertices between two common vertices on two paths has a commutative

relation by 2.3 (2), hence O # ht"'h1= kfn"'flgm"'gl for some
non-zero k in K by 2.4 (7), here the symbol "F" means a residue class
of £ in KQ/I. This is a contradiction.

Next we show (2). We choose i = X,YEQO *, =x§z*=y kzz
in I, here kz ¢ K and z is a path from a vertex *2 to a vertex z .

In case of KQ[x,y] # 0, we choose a representative z, y of a path from
3

X to y. Since Zey # 0 by the first part, themn z = kz’zx yzX
b

with kz » ¢ K for any z such that *2z=x and z'=y. Hence
>

X,y

I

0=1i-= r ( 5 kzkz,z )Zx,y' The sum of the right hand

x,76Q, “z=x,z"=y X,y

term of the equation is a direct sum as K-space, hence « xz * k k
b

=0, Thus i =41 - 0 = 5 T k (z - k z ).
* * z Z,z X,y
X,¥e QO Z=X,2 =y X,y

From these {k } , we can rechoose z such that k =1
Z,2 X,y z

3 H
X,¥ X,y

by [4]. Hence the assertion is valid.
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5.3. Let R be an elementary QF-3 algebra ot finite~representation
type with a tree T and its grading g. The module P(t) corresponding
to a vertex t in T whose grading is unique maximal is projective
injective. Since P(t) is indecomposable injective, rad P(t) is
indecomposable, hence t has only one neighbour. ©So we get a simply
connected algebra B with a tree T\{t} and a grading g|T\{t}. Clearly

B has a sincere indecomposable module rad P(t).

Lemma. Let QR and QB be quivers of algebras R and B stated
above respectively and x a vertex of QR such that the projective module
R(-,x) appears in a t-orbit described with t. Then

(1) QR is a quiver given by adding a vertex X to QB as unique
maximal vertex.

(2) rad P(x) is a sincere injective B-~module and isomorphic to
DB(s,-), here s is a unique minimal vertex on QB.

(3) R and B are tilted algebras.

Proof. It is clear except that that rad P(x) is an injective
B-module. Assume rad P(x) is non-injective over B, then
QEER T-lrad P(x) = (QEEB T_lrad P(x) +_§i§B rad P(x),1l) is positive,
hence rad P(x) is a non-injective R-module. Here dim means a
dimension vectors of modules.

Further QEER P(x) = (QEEB rad P(x),1), hence QEER T—lP(x) =
QEER Tﬁlrad P(x) -~ éiER P(x) = (gigB T_lrad P(x), 0).

Hence P(x) is a non~injective R-module, which is a contradiction.
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5.4. Now we prove the Theorem 5.1. (2) is already proved.
By 5.2, it is sufficient to get the quivers of B.

Let FB an Auslander-Reiten quiver. Since B is isomorphic to

subcategory of K(FB) consisting of injective vertices, we determine

where the injective modules appear in T As we show in proof of 5.2,

B
iHomB(rad Pt,E) # 0 for any injective B-module E. Hence E belongs to

the support (2.5) SaO of a, by 2.6, here ag = rad Pt.

So we look into the possible injective vertices of I', using

B
the classification of section 3.

It is remarkable that only the case of 3.4 happens since rad Pt
is indecomposable and that a slice Ea which is one of the tpyes
(i), (ii) or (iii) in 3.4 are a complgte slice of B by 5.3 (3).

So we can get all the possible quivers consisting of successors of ay-
It is too bores to show all the cases, we only show on the

case 3.5 (2) for m = 1.

The successors of a, described by the vertex of the value of

0
the starting fuction sa (2.5) are as following.
0
1 eae 0
173 A2
NN
7
1ﬂ.. 1 ..F&o
L7
17
7N
' 1
17 A
/1 .
17Ny A
A
1A
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Hence we get a quiver QB as

Q > O - PPN > O > O - eeeees > (o] -> o]
¥ ¥ ¥ +
@) > O (@] - (@]

But this becomes an infinite type. This doen't happen.
(3) is clear since a QF-2 algebra is an algebra that any
indecomposable projective modules have same socle and any

indecomposable injective modules have same top.

6. THE QUIVERS AND RELATIONS OF QF-3 ALGEBRAS.

6.1. We give a definition of a quiver embedding.

A quiver embedding f: Q - R between quivers Q and R means a quiver
morphism described with a pair of functions fO and fl which satisfy
the following properties (i) and (ii);

(i) fO: Qo -> R0 is an injection between sets of Vertices.

(ii) fl: Ql > Rl is a map between sets of arrows such that if
a: a>b dis an arrow in Q, then fl(d) is an arrow fo(a) > fo(b).

We write Q ¢ R if there is a quiver embedding f: Q - R. Also we
call of a support algebra of an indecomposable module M is embedded

into QR since this algebra is a convex set in QR as proved by Bongartz.

i.e. a,b ¢S(M) implie [a,b] = S(M). Here S(M) is a support algebra of M.

The following fact for the interlacing of quivers of support
algebras of injective projective modules (i.e. elementary QF-3 quivers)

over simply connected algebras is remarkable.
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Proposition. Let R = KQ/I be a simply connected algebra and Pl,P2
non-isomorphic indecomposable projecitve injective modules.

We put canonical embedding fl: Ql -+ Q and f2: Q2 -+ Q where Ql = QS(Pl)

and Q2 = QS(PZ)' Then fl(Ql) n f2(Q2) is empty or [a,b] for some
vertices a,b in Q.
Further a is a minimal vertex in fl(Ql) iff b is a maximal vertex

in f2(Q2).

Proof. Assume fl(Ql) n f2(Q2) is non-empty. Then this quiver has
a unique minimal vertex. Otherwise there exist two vertices b and b’
which are maximal vertices satisfying the property that b and b' belong
to a fl(Ql) n f2(Q2) and are incomparable, so we consider a subquiver
a:b > ... > g <« ... <« b' through b, b' to some vertex g such that
o has no common vertices and each arrow of o is in fl(Ql)\f2(Q2)' Since
there is a subquiver B for fZ(QZ) same as above and b and b' are maximal

and incomparable, we can construct a quiver

b »~ ... > q

¥ +

. ; :
Q ¥ +
q' <+ ... <« b’

with no relations and no path connecting o and § by removing maximal or
minimal vertices from a quiver Q. On the other hand, KQ' must be simply
connected, but this is a contradiction. By the similar discussion, we
can prove the existance of the unique minimal vertex.

Let a and b be a minimal and a maximal vertex in fl(Ql) n fZ(QZ)

respectively. To show fl(Ql) A f2(Q2) = [a,b], it suffices to prove
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that if a < x < b, then x is a vertex of fl(Ql) n f2(Q2)'

Assume x is mot in fl(Ql), then there exist two paths

¢ :a>...*b>.,..>d and B : a~>...*x * ...>b~> ... >d,
here d is a maximal vertex of fl(Ql) and a is a path in fl(Ql). Since
X is not a vertex of fl(Ql), B =0 (mod I). On the other hand,

o # 0 (mod I) since o is a path in fl(Ql). This contrdicts to 2.3 (3).

Next we show latter part. It suffices to prove that there are no
two paths satisfying the property a =+ ... + b=+ ¢ in fl(Ql) and
a * ...> b=+ din f2(Q2) but not in I. In this situation,
Pl * D((XQ/I)(a,-)) since P

Hence d is a vertex of fl(Ql), which is a contradiction.

1 is indecomposable projective injective.

6.2. In general, it is difficult to investigate whether a give
module is faithful or not.

In [7] Happel-Ringel proved that for an indecomposable module
faithful modules coincide with sincere modules.

By the following theorem, we can determine all the faithful
projective injective modules in terms of zero-relations and the

properties of arrows in a Cabriel quiver.

Theorem . Let R = KQF/I be a simply connected algebra and

Plé...QPt a direct sum of indecomposable projective injective modules

Pi's such that for any primitive idempotent f, there exists some Pi

such that P f # 0. We put Q and dente by £, a canonical

=~ S
i
embedding Qi > QR for i = 1,...,t.
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Then the following statements are equivalent.

(1) Pl$...$Pt is faithful.

(2) Any arrow in QR is an arrow in some Qi and when fi(Qi) n fj(Qj)
= [a,b] and a < a' < b' < b, for an arrow u~ a in fj(Qj)\fi(Qi) and a

path b+~ ... + c in fi(Qi)\fj(Qj), if apathu ~ a'»>... >b"'"> ... > ¢

belongs to mno fS(QS), then it belongs to I.

Proof. We identify Qi and fi(Qi), Let @5 cor s €L be primitive

idempotents such that P, = e

1 1

By voe P = etR. Here we denote by [g]

a vertex of QR corresponding to gR for a primitive idempotent g.

First assume (2). It suffices to show if (elR + ...+ etR)r =0
for some r in R, then fre = 0 for any primitive idempotents e and f.

Assume fre # 0 for some f and e. Then there is a non-zero path
[e]=[g0] > [gl] T oeea > [gn]=[f] in KQR/I. We put m a minimum number
such that einRgm # 0 for some ei. We remark 0 < m < n since
eijRf # 0 for some j by assumption and einRe = einre = 0 by 2.3 (4)
and eiRr = 0. By assumption, there is a path [gm_l] > [gm] S oae. > [ej]
in Qj for some j. By Lemma 5.2, [gm_l] > [gm] el > [ej] doesn't
belong to I. By Proposition 6.1, there are g and g' such that Qian =
[g,g"] and g 38 € [g,g']. Since [gm_l] - [gm] > e > [gs] > eee > [£]
belongs to no Qp p=1, ... , t) and [gm_l] > [gm] is an arrow in Qj\Qi
and [g ] » ... > [f] dis a path in Qi\Qj, (g, 1! ~ [gp] .- >~lgg ] »oo o> [f]
belongs to I by assumption, hence [e] - ... » [f] belongs to I, which is
a contradiction.

Next we prove (1) implies (2). Assume there is an arrow [f] » [e]
in QR which is not an arrow in any Qi' By 2.3 (4), we can put eRf =

Kerf for some r in R. We show (elR + ...+ etR)erf = 0 and erf # 0.
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By assumption, we may assume elRe # 0. Hence eiReRf = 0, otherwise

0 # eiReeRf = ein by 2.3 (4) and [f] > [e] is an arrow in Ql'
Next in a situation of a latter part of (2), assume a path

o :u~>a'+...>b"> ... > c is not in I, then the element in eRf

corresponding to x (here [e]=c¢ and [f]=u) is not zero and

© e o0

(elR + ...+ etR)x = 0 since any path u + a' »... > b' »...> ¢ +...> e,
i

belongs to I for every i = 1, ..., t, this is a contradiction.

6.3. We call a connected quiver with a relation ideal I a QF-3
quiver if it satisfies the following conditions (1) - (7);
(1) There are elementary QF-3 quivers Ql’ cens Qn and their
embeddings fl""’ fn into Q.
(2) fl(Ql)u...ufn(Qn) = Q and Q has no oriented cycles with
the partial order <.
(3) All the maximal vertices (resp. minimal vertices) are mapped
to different vertices each other.
(4) TFor any pair of quivers Qi and Qj’ fi(Qi)nfj(Qj) is empty
or [a,b] for some vertices a and b, which satisfies the property (x);
(¥x) b is maximal in fj(Qj) iff a is minimal in fi(Qi).
(5) The generators of T are as follows;
(i) The commutative relation of minimal rectangles.
(ii) TFor quivers Qi’Qj such that fi(Qi)nfj(Qj) = [b,c] and
vertices b' and c¢' such that b < b' < ¢' < ¢, the zero-relation of a path
a>b'"s>...+>c"» ... »d~+e such that a » b' is an arrow in

fi(Qi)\fj(Qj) and b' > ... » d > e is a path in fj(Qj)\fi(Qi) whose

composition with a - b' belongs to no fs(QS), but a path
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a~>b'+...>c'"+ ..,. > d belongs to some fS(QS).

(6) Assume fi(Qi) nfj(Qj) = [c,d] and there exist arrows a - c in
Qi and b >~ ¢ in Qj such that there are non-zero path vy > ... ~ a + ¢
and y > ... > b > c. Then there exist no non-oriented path
a=X = ... —xt—b with such that c £ X for i=1, ... ,t.

(7) KQ/T is representation-finite.

6.4. We prove the main theorem.
Theorem. Let Q be a quiver with the relation ideal T.

Then KQ/I is simply connected QF-3 algebra iff Q is a QF-3 quivers.

Proof. First assume KQ/I is a simply connected QF-3 algebra.
In this case, there are projective injective modules Pl’ ceey Pn
such that their direct sum is faithful and they are non-isomorphic
each otﬂerﬂ We put Qi a quiver of a support algebre S(Pi) for eaéh
i=1,..., n. Then'Qi is an elementary QF-3 since Pi is a faithful
projective injective module over S(Pi) and clearly there is a canonical
embedding . Hence (1) holds.

We identify Qi and fi(Qi) in the following if there is no confusion.

Since Ple e @ Pn is faithful, fl(Ql) Usoal fn(Qn) = Q by
Theorem 6.2. Of course, Q has no oriented cycle.

(3) holds since Pl/rad Piy eees Pn/rad Pn(resp. Soc(Pl), ...,Soc(Pn))
are pailrwise non-isomorphic.

(4), (5)-(i) and (5)-(ii) are already proved in Proposition 6.1,
Theorem 6.3 and 2.4 (7).

(6) is a special case of 2.3 (2).
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Next we show that if Q is a QF-3 quiver with relation I induced
from (5), then KQ/I is a simply connected QF-3 algebra.

Let ass bi be a maximal and a minimal vertex of Qi respectively
1, ..., n. First by the remark (iii) stated before, we get QS(P,) = Qi'

Consider the opposite case, the quiver of support algebra o?
HomK(KQ/E(bi,—),K) is also Qi by (5), hence Pi is injective.
Thus Pl@ ees B Pn is projective injective. If KQ/T' is simply connected,
then Pl$ oo @ Pn is faithful by the properties (2), (5)-(ii)
and Theorem 4.3.

Last we prove KQ/I is simply connected using 2.3 (2).

Assume KQ/T is not simply connected. Then there is a vertex c
such that rad P(c) has not separated radicals. That is, there are a path
a > ¢ « b and non-oriented path a=X = ... —xs—b such that a and b belong
to supporté of different direct summands of rad P(c) each other and
Xy, +e. ,X are not larger than c.

By (2), a>c and b > c belong to some Qs and Qt respectively.

Here QS and Qt are different, otherwise there are non-oriented paths

[es] + ... >a > c and [es] > ... >b > c from a minimal vertex [es]

in QS. Since c¢ € anQt, there are vertices c',d such that

anQt = [c¢',d"]. It must be c'=c, otherwise, there is a subquiver;

[e] = ... > a

¥
c' » .. =>cC
+
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such that the upper square is in QS and the lower in Qt’ which contradics
that a and b are in different supports of rad P(c).

If {s,t} # {i,3j} , then Q contains subquiver ;

¥
[g]
1»
o]
H
+
“~ 0 >
¥

wih no relations. But these subquivers mnever exist by assumption (7).
Hence So KQ/T is simply connected by [3] Theorem 2.2.

This completes the proof of the theorem.

6.5 We give some exaamples in this section.

1. The QF-3 quiver with relations;

2 6

l///z S, L A

\3/ \7
[1,5] = [2,7] = [3,6] = O

is an interlacing of the following three elementary QF-3 quivers.
7

3

2. Consider two quivers with relatioms;

(1) 1 4 (i1) 1 4
4’ + \ /
2 =+ 5 2\
¥ ¥
3 6 3’/21 6
[1,5] = [2,6] = O, [1,6] = [4,3] = 0.
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7. THE LIST OF ELEMENTARY QF-3 QUIVERS.

7.1. In a following list, the symbol — means an arrow = or <
and ( ) means that any number of arrows in a parenthesis can be removed
in a quiver. Any squares have commutative relatioms and there are no

other relations.

(1) (2) O + wew + O (3) o
O+ 0 > e +~ 0 O;ﬂ+ o -+ \5 O =+ weeeen o/z \So -+ + 0
\\O/ \‘ \07' /
O - . O > 0
(%) o (5) o > O + weeee > O
o > - O;ﬂ \ﬁo > eeenns -+ 0 ¥ M 4
\BO/Z O > O & seeees > 0 > (o)
(6) O =+ weunen > 0 (7) o»o0 - e}
¥ ¥ ¥ ¥
O &> een.. > 0 O > ceeves —)-O(—)'O)
(8) o -+ 0 (9) 0 - o (10) 0O+0+0=>0
A N A Ny N
Q\\ > (e} - (e} 9\\ > (e} - /ﬁo o - @] -> e}
o (+0) +o0 0+« 0 (—)o~+o0 o N JZ/
(11) o —+o =~ (12) o > o) (13) 0 (+0)+0=+0
N A N A N
o > O =0 o = o} > o q§\ - o) - k—/o
o - OZ( R\o (—o0) ~0 ~» o o =+ O = ©

(14) o > (15)
A

O (e}
Q > e} +\\§$6 o//)7+ o > \\\ﬁio
Sornand N %

O > 00 O~ 0O >0~>0—"0=«20
>

(18) o
A

O\ -

O+« 0« 0=+0=>0 (+0) «o0

> @]

(17) 0O > O (18) O+ O >0 (19) o, = ©
N Y ™
O/‘—>O—>Oﬂ§o o?o}o +\O+O o{]o—>o+o+o
+ ¥
\o o : N .
(20 o+ 0»0~+0(21)0 (+0)>0~>0+0 (22) O>0+0=>0+=>0
¥ + ¥ ¥ + + ¥ + ¥
¥ O ~»>0=>0 ¥ O 0—=>0 e} -> o - e}
0 =) 0 o + (0 =) o) O
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(23)

(26)

(30)

(34)

(38)

(40)

(43)

(46)

(u8)

(50)

(52)

O+0>0=0 (24) 0> 0 >0 (25) o +o0
O>0 =0 - e} O+0—+>{(0~>») O~>0 o+(o->o—+o—>-)o7-»o
x O/ \O ﬁ \ /
o}
0O+0-+0-+0 (27) 0 + 0O0=>0 (28) 0+« O = (29) © + 0O =+0
¥ ¥ + ¥ ¥ + ¥ ¥ § + ¥ ¥
o0 +(0 +)o > 0 O>0~>0=>0 O« O O~+0>0=>0
A Y » v " 0N "
o} e} - 65 (o »)o=~»o0 O, » 0 » 0©
0O+>0=>0=>0 (31)0o-+0-+0 (32) 0«0 ~+0(33)0~+0=0
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ + + + ¥
0O ~+0>0=+0 0~+~0=>0 O+« 0 —+0 O ~+0 >0
4 + ¥ | ¥ ¥ 4 ¥
e} - e} O—+0-=>0 O ~>0 >0 O+ 0+« 0
o =+ 0-+0 (33)0 <+ o0->0 (3)0=+0=>0->0 (37)0+0=+>0
¥ ¥ ¥ ¥ ¥ + ¥ + + ¥ % ¥
o +(0 »)0o >0 0 «(0 «)o »- 0 0 - O+ 0 o - > 0
¥ ¥ ¥ ¥ ¥ ¥ ¥ +
o) - - o) - o e} - o o > ©
(0 +>0>0>0>)0~>0=>0 (39) (0 )0 » O(+ 0 » 0)> O
¥ ¥ ¥ ¥
o = o0o(+0~>0-3>0->0) o - o) - o(~+ 0)
0O>0»0->0->0 (41) O~ +(0 »)0 (42) 0 > O » -+ O
¥ ¥ ¥ ¥ § ¥ ' ¥
O~>0 > O =+ O 0+ 0 =>(0 +)o
(0] > -+ O
©+0Q=+0 >(0 =)o (44) 0+ 0 >0 +0 >0 (45) 0 =+ 0 - o]
¥ g ¥ ¥ § ¥ ¥ ¥ ¥
O - <> [e] (@] > > O O -+0~>0>0=>0=>0=>0
(0 +)0>0+0+>0=+0 (47) © 0 >0+ 0 >0 >+ O
¥ ¥ ¥ ¥ +
O =~ 0o =+ 0o(»o0) o =+ 0 > o~ 0)
(0 »)o » 0+ 0 »(0 »)o (43) (o »)o - o »+(0 +)0
+ ¥ ¥ + ¥ +
O+ 0~>0 > o) O~0>0 - o(+ 0)
(0 >0 =0 =+)0+>0~>0 (51) (o >0 »)o»>0 =+ O
¥ + ¥ ¥ ¥ ¥
O+0=>0(-0=+0 -+ 0) 0O -~+ 0 >0+ 0(+ 0 »0)
(0+0>)0+0>0=0->0 (53) (o »)o > 0o -+ 0
¥ ¥ + ¥ + ¥
o > o + o(=» 0) 0+0 0+ 0 =>0(>0)
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(54) (0O )0 +0>0>0-~+>0 (55) (0 )0 >0 +0>0
¥ + ¥ ¥ ¥ ¥ + +
O~0 = O+ 0 O+ 0+ 0 > 0o+ 0)

(56) (0 )0 =+ O —+0=0 (57) 0« 0—+0=+0
¥ ¥ 4 ¥ + ¥ ¥ ¥
O—>0->0~»0+>0 O« O0~>0—=+>0

(58) o« 0 <« © (59) o - o}
¥ ¥ ¥ + ¥ -

O+« 0+>0=<0 0+0>0~+ (0—+ 0 =+)0
v ¥ ¥

0+ 0 o - )

7.2. The graded trees which corresponding to the quivers in 7.1

i. means

are as following. In a list the sequence of numbers il""’ K

that the grading attached with the vertex named number j in a tree

written just above is ij.

1-2-...-n1n 12 ...n.
ni2
|
nt4 -1 -2 - ... - ntl 012 ...n112nt+2.
n+3
r. n+mtk+4
2 =3 - ... -—n+2 - nt3 - n+d - ... k3 - ... - ntmts - ... - ntmtkts
ntlntln ... 101 ... m 2ntmt3 ... 2otmtk+2 2 (odbm)+ktl
n+2
|
1-2-...-n-ntl - nts - ... - ntmt3
n+3
1 ... no+tl ntl 2n0+3 ... 2n+mi+2
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n n+2 nt+mt2
m n+m+l

. 101...
.101...

m+n - min+l
o = nHm+l

m+n+2

m+n+3
.oond3 - L.,
n+m+2
- m+l - .

« = m - m+l - m+2 - .
. -n-n+tl - n+2 - ...

— O
—

™M N
o~
- O
o~
(@]
—

ntl (nt+4)

21111012

02112...

n+3
|
. = n+2 - n+4 (- n+5)

f’
l1-2~-5-~-6 -7
|
4

mgro
o NN
N T
— O
~N o N
O N o
[IalEN |

~ — O
O N~
— O\ 0O

o N
[SaTREa N
~N O
3R BN

211170123
110129 11
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211702123

416110123

§10110123

O &
—~

™M
O N
—
N O
N N
[3alNant
~5 0

< —

1-2-3~-5-6-7-28

432210910
210412314

2

— I~
— 0
o n
— o~
o~ ™
o~
n o
© —

— o
o~ N
—
oo
™
-
o~ o~
~ o

3
l

1-2-4-5-6-7-28

322105615
104123413
10214567

o~
—
e
< ™
o N
o~
o O
— N
O~
© <
—
~
O <
—~ ™M
N O
o
[Sa |
< N

5021231011, 6130123 12,

21321078

~

2

321701

O N

~N O
— —
o N

Tl
—

o N

21321018
411410125

— ™M

1-2-5-6~-7-28

3232101112,

611010125,

181703 2123%¢4

8
971
(9IS
\O
— N~ o~
QO M
N~ O N
NO ~
N N O
S N A
SN ™M A
N oM O

211014514 16

32210161517, 411012310 22,
81101234 16, 41101291012

32129012

210181215

7-8-9

1-2-4-5

23 2 310
17 2 9 14

—
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9,
3,

056 15 16,

234 11 22,
210181
210121

1
1
013234111213, 3201232829 20,

3221290123
4321104128
8321102126
43211010112
1211 201 2 3 4 5,
2521301238,
23 433210110,
19213012312,
1361101256
421, 43221091011,
4332107827,
013234512 23,
6 33
653

3
3

2 11,

3 4 23,
2
1

1

3
10120
456 17

2
1

54432109 28,
3
0

26 320123409,
, 2341101256,
32210567 26,
7 4 4
411

3

25,

4
|
- 6-7-8-9

3
|
4
|
5

2410212367 ,2563321012,
3

24 52210127

20320123413, 27 43101234,
2072210123

- 2-3-4-6-8-9
1-2-3-5-6-7-8-09
28502123645,
43221051617,
1-2-4-5-6-7-8-9
544321017 18,
21103456

1
1-2-

L

o0 O
N M
— NN
O o~
— O O
N

~ O o™
o N

o~
) < O
N
r~ — o0
5 S N
oM N
NN H
O
NN

~ Oy I
™~N o~ N

o O
—~ N
o
< NN
oy
™~ O O
~ o
O o N

[e2 Tl e
NN

N NN
o) o oM

322103012326
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433210301227
3221012927 26
433210117 16 19

8
|

1-2-4-5-6-8-9-10
|

1-2-4-5-6-7-9-10

<

10 28 1 30,
3 4 22 11 24,

32
12

544
102

129 28 31
8 28 27 30

43321017 18 19
2
1

433210131227 28
443210
332101

43321078 27 28129

544321017 18 19 20,

3232012345 24
433210716 17 18 19,

103121234524

5
5
4

—41~-

9
|

8
1

0 29 30 31,
6 23 36 37,

3
|
3
|
3
|
3
|

1-2-4-5-6-7-9-10-11
321
345

1-2-4-5-6-7-8-10-11
1-2-4-5-6-7-8-9-+-10-11

1-2-3-5-6-7-8-9-10
1-2-4-5-6-7-8-9-10
1-2-5-6-7-8-9-10

54
32

65
01



3 10

1 |

1-2~-4-5-6-7-8=-9-11-12 54 43210128 3029 32

3
N

1-2-4-5-6-7-8-9-10-11- 12

6554321029 313032, 544321017 18 20 19 21

4 7
| I
1-2-3-5-6-8-29 432210161 18
2 5
I |
1-3-4-6-7-8-9-10 283010212345
5
| 2726320123409
1-2-3-4-6-7-8-9-10 2120320123413
3
] 102145
1-2-4-5-56 213016

1-2-4-5-6-7-8-9-10-11-12 - 13

6 5543210 25 30 31 32 33

aN—un— &

-7-8-9-10 302903212345
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8. THE ESTIMATION OF F(N+1)-F(N).

8.1. The following list is a estimation of F(n+l)-F(n) for each
case in section 3, Here in a list the value aysees B ﬂ- means if
n=m-k+1i (i=1,..., k), then F(n+l)-F(n) < a, .

3.3. 3.5. 3.6. 3.8, 3.9.
(L 3 n 31 7,2n-2 "|6 n 4 I n-1 4
(2) n-2 5| 2n-5 5 30 8 12,3,5,11 |8 |4,8,24 19
(3)| 2,6,11( 9| n-1 5 28 8 20 9 | 17,28 11
(4)| 3,12,220 9 |10,15,26| 9 17 7 40 9 n+2 5
(5) n-7 9110,18,36| 9| 13,22 8 30 9 27 10
(6) | 8,13,24 9 |12,23 8l 28 9 60 9 28 11
(7) n-2 5| n+l 6| 10 6 50 9 n-2 7
(8) 25 9 |10,17,21| 9| 15,26 8 37 9 19,14,25 {10
(9) 23 |8 16,27 916,28 |8 | 24 9 29 11
(10) 9 7 19,15,26 | 9| 27 9 4,8 7 15,27 |10
(11)| 15,279 |14,19,30| 9 | 28 9 | 12 8 | n-2 7
(12) n+l |6 [13,22 81 26 8 |14,25 10 18 8
(13) 32 [LO 28 8 | 29 8 29 11 32 9
(14) 28 9 30 9 16,15,26 |7 | 12,19 9 23 9
(15) 36 L0 n+2 4 4 5 14,26 |9
(16)| 2,8,16 |8 n-1 3 19 8 27 10
(17)| 9,23 |8 20 9
(18) 27 9 28 10
(19) 22 8 12,23 |9
(20) 30 10
(21) 24 8
(22) 16 8
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3.2. 3.4, 3.7. 3.10 3.11.
o) n-2 2 2n-6 6 6 | 14,26 6
(2) ] 5,6,20 n 16,28 §,9,10 |10 27 10
(3) 10,13,16 15,28 8,13 8 14 8
(4) 12 7
(5) n+1 7
(6) 14 8
(7) 16 9
(8) §,13,24 | 9
(9) 28 10
(10) 15,26 8
(11) 29 9
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