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1. Introduction.

The notions of compactness and countable compactness are
among the oldest in topology. Every compact space is countably
compact, but the converse is not true. In fact, there is a
wide gap between their notions. A space is said to be compact
if every open cover has a finite subcover, on the other hand,

a space is said to be countably compact if every countable

open cover has a finite subcover. However, in spite of the
gap, as described later, it is known that some weak conditions
compel spaces to be compact under countable compactness. The
purpose of this article is to study the following problem:

What conditions will make a countably compact space compact ?
This problem is important and interesting. Because, firstly,
factorization of compactness is useful in proving compactness
of spaces. Secondarily, the problem relates to many branches of
general topology. In fact, there were many questios concerning
this problem. For example,

(1) Is a countably compact T, -space with a Gg ~diagonal
compact ? [30]

(2) Is a countably compact regular perfect space compact ? ,
where a space is called perfect if each open set of X is a union
of countably many closed subsets of X. [47]

(3) Is a countably compact T, -space with a base of subinfinite

rank ( or, an ortho-base ) compact ? [36]



Following Bacon[6], we call a sapce isocompact if each
countably compact closed subset is compact. Since Bacon's paper,
a lot of classes of isocompact spaces have been widely studied
by many mathematicians. So, it should seem that a direction of
study for the above problem is to find a large class of isocompact
spaces which contains many known classes of isocompact spaces.

For the purpose of finding such class, in the next section, we
shall look over classes of isocompact spaces which has been
extensively studied. Weaklydf-refinable spaces, & -spaces,

spaces satisfying property 8L, weakly [u%,aof’—refinable spaces,

d 6 -penetrable spaces, pure spaces and so on are listed as a class
of isocompact spaces. Other results relating to the above

problem are also introduced.

In the third section, we note a connection with the above
problem and closed-completeness. Some classes of spaces listed
in the second section imply closed-completeness under a condition,
and closed-completeness sometimes make proofs of compactness
more simpler and systematic.

As a desired large class of isocompact spaces, the class of
( k=) neat spaces are defined in the fourth section. This class
contains neighborhood & -spaces, spaces satisfying property 0L,
weakly [ah,oof'—refinable spaces, 40 -penetrable spaces,

ultrapurer

spaces and pure spaces. It is proved that every ( k- )
neat space is isocompact and every w,-compact W, -neat T,-space
is closed-complete. These two theorems strengthen many results

in this field. Other properties of ( k- ) neat spaces are also

investigated, for instance, behavior of ( k- ) neat spaces by



some maps.

A pseudocompact metacompact Tychonoff space is compact[45][51].
And a pseudocompact paraLindeldf Tychonoff space is compact[1ll].
These results and the above problem naturally raise the following
question: When are spaces having a countably compact dense
subset compact ? In the fifth section,this question will be
examined. For this question, we shall give some answers.

Unless explicitly stated, no separation axioms will be
required under consideration. A regular space means a regular
To-space. All maps are assumed to be continuous. For a collection
U of subsets of a space, we denote by 1[* the union of elements
of U.

For later use, we define here, in the lump, some concepts
relating realcompactness and cardinal functions. A space X is
called closed-complete[l9] (resp. realcompact[25], resp. Borel
complete[27]) in case every closed(resp. 2- , resp. Borel) ultra-
filter on X with the countable intersection property (c.i.p.)
is fixed. Realcompact spaces are required to be Tychonoff.
Closed-complete spaces are called a-realcompact in [19]. A space
X is called weakly Borel completeld40.] if every Borel ultrafilter
on X with c.i.p. has a cluster point. Borel completeness is
equivalent to be hereditarily weakly Borel completel4g]. A
collection U of subsets of a space is said to have the countable
closure intersection property ( 'c.c.i.p. ) if for each countable
subcollection ¥ of U, NV %4 , where ¥V ={VIveV } .

A space X is called almost realcompact[23] if every open ultra-

filter on X with c.c.i.p. has a cluster point. The following



chart summarizes the relationship of these notions.

chart 1.

closed-complete

T

realcompact — almost realcompact -y weakly Borel complete

Borel complete

We define several cardinal functions for a space X.

(1) Density, d(X) = min{ ISl | 8 is dense in X.}.

(2) Hereditary density, hd(X) = sup{la(y) lvex}.

(3) Lindeldf degree, L(X) = min{d | X is o -Lindeldf.7} ,
where a space is said to be ol -Lindeldf if every open cover
of X has a subcover of cardinality ¢ &

(4) Hereditary Lindeldf degree, hl(X) = sup{ L(¥Y)| vc X}.

(5) Spread, s(X) = sup {lDIlD"is a discrete subspace of
X. }.

(6) Tightness, t(X) = sup{t(x,X)| xe X}, where t(x,X)
is defined in the following manner: t(x,X) = min {& | If xe ACX,
then there exists BC A with x€ B and IBl&ot } .

(7) Length of free sequences, Q(X) = sup{o |there exists
a free sequence of lengthol} , where a sequence { Xg IB(oL} of
points of X is called free if { x5 [§< ¢} and {xa | k<M o}
have disjoint closures for every & (d .

For details, see [34].



2. Classes of isocompact spaces.

The study of isocompact spaces started from Bacon's paper|[6].
As mentioned in the first section, a space is said to be
isocompact if every countably compact closed subset is compact.
In those days, it was known that a countably compact space is
compact if it is either a Moore space or a paracompact space.
And then, Bacon introduced a class of isocompact spaces( i.e.
the class of spaces satisfying "property L" ) that includes
all Moore spaces and all paracompact spaces. Since property L
is a special case of property 6L of Davis defined later, we
don't define property L.

We denote by w (W, ) the first infinite(uncountable) cardinal

and P (X) denotes the power set of a set X.

DEFINITION 2.1.[14][28] A space X is called an JF-space
if there is a function B:w x X —» P(X) such that the following
are true:

(1) Por each new and x€ X, B+ 1, x)c B(n,x), and for
each x¢ X, Npee, B,x) ={x},

(2) A subset U of X is open if and only if, for each x¢€ U,
there exists nye w such that B(ng,x)c U,

(3) If F is closed in X and x4 F, then there exists new

such that for each ye B(n,x) - {x}, there exists nyew such

that {X,y}q: UfGF B(ny,f).



We say X is a neighborhood % -space if B(n,x) is an open

neighborhood of x for each néw and xé X.

The class of & -spaces includes symmetrizable spaces.

A space is called w, -compact if the cardinality of each
closed discrete subset is countable. Since every countably
compact space is w, —compact and each closed subspace of an
F -space is an & -space, isocompactness of & -spaces follows

from the following theorem.

THEOREM 2.2.[28] Let X be an % -space. The following are
equivalent.
(a) X is w, -compact.

(b) X is Lindeldf.

If U is a collection of sets, we define ord(x,U) by

| {veU | xeu}|.

DEFINITION 2.3.[53] A space X is said to be weakly d6 -
refinable if each open cover of X has an open refinement Uméw'un

satisfying that for each x ¢ X there is new such that 0 { ord(x,

Unldw .

Wicke and Worrell showed in [53] that weakly dJ6-refinable

spaces are isocompact. More precisely, they proved the following.



THEOREM 2.4.[53] Suppose X is countably compact and WU = ‘{\wun
is an open cover of X such that for each x € X there is n such that

0< ord(x, Un){ w , then U has a finite subcover.

Since this theorem is important and interesting, and for

convenience, we give a sketch of the proof of Wicke and Worrell.

Proof. For each new , let Cph ={x€ X| 0<ord(x, Up)Lwl .
Suppose that W has no countable subcover. Then we may assume that
Cs 1s not covered by any countable subfamily of U . Let Eg =
X - o- If Eg is covered by a countable subfamily " of WU, then
we can see Co - 7" is covered by a countable subfamily of Ug.
This is a contradiction. Nextly we take the first n, such that
Eo N Cp, is not covered by any countable subfamily of U. We
assume Cp, = C, . Let E; = Eg - "Uj‘;. By the same reason, E; is
not covered by any countable subfamily of W. By continuing this,
we can obtain a decreasing sequence { Ep V... Of nonempty closed
sets with the empty intersection. Since X is countably compact,

this is a contradiction.

Isocompactness for the paracompact case is due to [17], for
metacompact spaces to [2], for metaLindeldf spaces to [1], for

® -refinable spaces to [57], and for d6 -refinable spaces to [5].



For a collection B of subsets of a space X and x¢ X, set

I(x,8) =N {B|Be® , xeBY.

DEFINITION 2.5.[9] We say that an open cover q““JVn of a
space X is a 6 -penetration( resp.

46 -penetration ) of a cover
U of X if, for every x€ X, N {I(x, Vp)

new

( resp. N {I(x, Y,
Yh){wlc U for some Ue U

and 0 ¢ord(x, Yp)
<wlYCU for some Ue U

new and 0< ord(x,

), and that X is © -penetrable( resp.

88 —-penetrable ) if every open cover of X has a @ -penetration
( resp. dJ68 -penetration ).

Spaces with a point countable separating open cover and weakly
J0@ -refinable spaces are

d©-penetrable[9, Remarks 2.1].

THEOREM 2.6.[12]

Let WU be an open cover of a countably compact
If there exists a

86 -penetration of U , then U has a
finite subcover.

space X.

The above theorem shows that dJ6 -penetrable spaces are iso-
compact.

And Chaber proved in [12] the following result as the

answer for Heath's question mentioned in the first section.

THEOREM 2.7.

Every space with a quasi-Gg-diagonal is isocompact.



Let [w1® denote the set of all infinite subsets of W . For
A, B€ [w]¥ , we write ac¥s provided |A - Bl<w . A family ¥c
[w]1” has the strong finite intersection property ( s.f.i.p. )
provided every intersection of finitely many elements of F  is

L

an infinite set. Such a family F is called maximal provided for
no A€ [w]uJ is ac* F for all Fe & . Then p is defined to be the
smallest cardinality of a maximal family with s.f.i.p.[18]. MA +
— CH implies p » w,

We recall Stephenson's question: Is a countably compact regular

perfect space compact ? For this question, Weiss proved the

following.

THEOREM 2.8.[52] ( p>w, ) Every countably compact regular

perfect space is compact.

We cannot delete the hypothesis p Yw, . In fact, under Jensen's
Combinatorial Principle ¢ which is followed from Gddel's Axiom of
Constructibility, Ostaszewski constructed a non-compact,
hereditarily separable, locally compact, perfectly normal, countably
compact spacel[38]. Another non-compact, perfectly normal, countably
compact space is independently given in [21].

Now we define property 6L of Davis which is a common generali-
zation of property L and weak dB-refinability. Property 6L is
motivated by M. Michael's characterization of paracompactness in
terms of cushioned refinements. We denote by Card the class of
all infinite cardinals. For a collection V¥ of subsets of a set,

wY is the set of unions of countable subcollections of V.

10



For k € Card, and "W and ¥ collections of subsets of a space
X, we say ¥V is k-weakly cushioned in W if and only if there

exists a function £ from ¥ to U such that if Wc ¥ with I'WI| ¢ x

and x: W — uW with x(G) € G for each GelW , then {x(G):GeW}C

U £Ww).

DEFINITION 2.9.[15] For ke Card, we say a space X satisfies
property BkL if and only if for every open cover U of X there
exists a seguence (e@n:new > of collections of subsets of X
and a sequence { 'Vn:néw > of open refinements of U such that
Yoew &, covers X and for each new , UPpc¢ UV, and Hy is

k-weakly cushioned in w Y, in the space U Vj,.

We shall refer to property 6wl as property BL.

Spaces satisfying property L and weakly d@ -refinable spaces

satisfy property 6L[15, Theorem 2.2, 2.3].

THEOREM 2.10.[15] Every space satisfying property 6L is

isocompact.

DEFINITION 2.11.[58] A space X is said to be weakly [w, ,oo)r -
refinable if for any open cover U of uncountable reqular cardinality
there exists an open refinement which can be expressed as gef’% ’
where |/ |¢|U] and if x ¢ X there is some ¥¢/7 such that

0<ord(x, % 1< |U].

Obviously weakly 46 -refinable spaces are weakly [w, 'oo)r -

refinable.

11



THEOREM 2.12.[58] Every weakly [w, ,o )r -refinable space is

isocompact.

A cover £ = Y w E:n of a space X is called an interlacing if
for each new and Ue¢ £, U is open in Eﬁp Let # be a family
of subsets of X. We say that an interlacing £ = U £, is §-
suspended from 4 if for each neéw and x¢ €¥n there exists a

countable subfamily F of & such that St(x, E,)n (NF ) =¢.

DEFINITION 2.13,[3] A space X is said to be pure( ultrapure )
if for each free closed ultrafilter ( free closed family ) # on
X with c.i.p., there exists an interlacing on X that is {§ -suspended

from 4f .

Every weakly dJB-refinable space is ultrapure[3] and every
ultrapure space is pure. Arhangel'skii defined astral spaces
between ultrapure spaces and pure spaces, but in this article,
we don't need to know what an astral space is, Spaces with a quasi-
Gg-diagonal and closed-complete spaces are pure. Spaces with a

quasi- Gg-diagonal are,in fact, astrall3].
THEOREM 2.14.[3] Every pure space is isocompact.,
. g . cq s . .
An idea of weak [W, ,0) ~refinability is to define the property
by restricting the definition of weak JO-refinability to apply

only to open covers of regular cardinality. VYaughan applied the

same idea to ultrapure spaces, astral spaces and pure spaces.

12



. Y r
He considered ultrapure spaces, astral spaces and purer spaces,

for example, ultrapurerSpaces are defined in the following manner:

a space is said to be ultrapurek

if for each free closed family 4¢P
of regular cardinality with c.i.p., there exists an interlacing
that is & -suspended from #, In [49], Vaughan showed that every

r

ultrapure’ space is isocompact, and astral® spaces and purerspaces

are not always. In fact, he proved that the both statement "Every

r

countably compact pure T,-space is compact" and "Every countably

compact astral’ Tq -space is compact" are consistent with ZFC.
The following chart summarizes the implications of notions

appered in this section.

chart 2.

neighborhood F-space — JF-space

point countable

property L — property 6L separating open cover

kL, ———  6kL d B -penetrable

T T / r .
d0-refinable — weakly — 5 weakly [w, ,)-refinable

d6-refinable

l

ultrapure — astral — pure

! T

ultrapurer closed-complete

quasi-G¢-diagonal

13



In the fourth section, we show that every neighborhood = -space
satisfies property ©6kL, every s6-penetrable space is pure and

r space is pure.

every ultrapure
Though notions appered in the above are a kind of covering

properties, there exist properties of a different type which force

compactness under countable compactness. Gruenhage showed in [26],

as answers for Lindgren and Nyikos's question[36] mentioned in

the first section, that a countably compact space having either

a base of subinfinite rank or an ortho-base is compact. A base

B of a space is said to have subinfinite rank if for every ®C®

such that N B'# ¢ and 8 is infinite, at least two elements of

B  are related by set inclusion, and ® is said to be an ortho-base

if for every ®c®B , N B is open or IBI is a neighborhood base of

some point. Such bases were introduced by Nyikos as natural

generalizations of non-archimedean spaces[36] [37]. All metric

spaces have such bases.

THEOREM 2.15.[26] Every countably compact T, -space is compact

if it has either a base of subinfinite rank or an ortho-base.

Above base properties are hereditary, every T,-space having
either a base of subinfinite rank or an ortho-base is isocompact.
After Gruenhage's paper, it was showed that in [22] that a T, —-space
having a base of subinfinite rank is metacompact. Since metacompact-
ness implies weak d0-refinability, isocompactness of T, -space
having a base of subinfinite rank easily follows from the result.

But we don't know whether having an ortho-base implies a weak

covering axiom( for example, weak §@-refinability and so on ).

14



Other spaces which force compactness under countable compact-
ness are left separated spaces, irreducible spaces and isopara-
compact spaces and so on. For instance, see [32, Lemma 2.2][16,
Theorem 2.1].

Let us denote the following statement by S : If % is a family
of less than 2“  subsets of W with s.c.i.p., then there exists an
infinite Dcw  such that for each FeF D - F is finite.

Concerning compactness of separable countably compact spaces,

the following are known.

THEOREM 2.16.[52] Under S, if X is a separable countably

compact regular space with L (X)( 2% , then X is compact.

THEOREM 2.17.[50] Every separable countably compact regular
[p, ]1-compact space is compact, where a space is called [p,c0]-
compact if every open cover has a subcover of cardinality strictly

less than p.
Other informations of isocompact spaces can be obtained from

[54]110] [50]. Blair's papers [7]1[8]][9] are also closely related

to isocompact spaces. They are treated in the next section.

15



3. A relation with closed-completeness.

In this section we consider the problem from a different aspect.
In proving isocompactness of spaces, there are two methods, one
is, of course, to try a direct proof, and the other is to try to
prove closed-completeness of spaces. The method of making use of
closed-completeness has some better poins than direct proofs.
In fact, the method of closed-completeness generalizes some results
in former section and make proofs of isocompactness more simpler
and systematic. ¥For example, Blair showed the following theorem
as a generalization of Theorem 2.7. We sketch the proof for the

sake of seeing the essence of an idea.

THEOREM 3.1.[7] An w,-compact T,-space with a quasi-Gg -

diagonal is closed-complete.

Proof. Let X be an W, -compact T, -space with a quasi-Gg-
diagonal {:&n}mew and suppose that there exists a free closed ultra-
filter ¥ on X with c.i.p.. Since # is free, we may assume that
for each x€ X there exists n such that x € 27:1 and X - St(x, ;&n)e
o . LetAn={xe$;|X—-St(x,:?]n)ec}?} . Since X = U Ap,
there exists n such that HN A, #¢ for any Hed . We take Hed?
such that Hc¢ ,&; . Now, by Zorn's lemma, there exists a closed
discrete subset D in X contained to HN A, such that, (1) |GaD l< |
for G¢ '&n , (2) HnApc Uep St(x, &p). Since ID| is countable,

N X - stlx, d)eX . So, we get HN (0 X - st(x,dn) )nay =¢ .

This is a contradiction.

16



A countably compact space is ), -compact and it is easy to see
that a countably compact closed-complete space is compact. Since
closed-completeness is closed hereditary, Theorem 2.7 easily
follows from the above theorem.

We collect the same results as Theorem 3.1.

THEOREM 3.2. The following spaces are closed-complete if they
are w,-compact T, —-spaces.

(1) Spaces satisfying property 6w L. [15, Theorem 2.5]

(2) weakly [w, ,ﬁ>)r—refinable spaces. [58, Corollary 3.61]

(3) 86 -penetrable spaces. [9, Corollary 2.5]

Since an F-space is Lindeldf under w, -compactness, an o -
space has also the same property. The case of weakly Jd6-refinable
spaces is due to [8, Corollary 3.3]. In the next section, we

generalize the above theorem.

17



4. k-neat spaces and related results.

In this section we define the class of ( k- ) neat spaces,
and we shall generalize the results mentioned in the previous
sections. We show that every neat space is isocompact and the
class of neat spaces contains all of the following classes :
neighborhood F-spaces, spaces satisfying property 6L, weakly
[ew, ,oo)r -refinable spaces, Je—penetrable spaces , ultrapurer
spaces and pure spaces. It is also showed that an o ~-compact
W, -neat T,-space is closed-complete. By these results, we can
neatly review many results in the area of isocompact spaces.

Define for each free closed ultrafilter ¥ on X with c.i.p.,
AH) =nin {|F| : Fecdh , nF =0 1. A@ ) is an uncountable

regular cardinal.

DEFINITION 4.1.]441 Let ## be a free closed ultrafilter on
X with c.i.p. and k€ Card. A system { {Xs} , { W} , { £} >“,—v
is called a k-neat system for & if the following are satisfied:

@ 7).

(2) {xy }a'él’ is a cover of X and V¥ is an open collection
of X such that Xyc V; for each &€ .

(3) Each f; is a function from Xy to V%  such that if
ACXy , |AILk and f,| A is injective, then the closure of A
in 'l@* is contained in U, fy (x).

(4) For each ¥e/° and x¢ Xy there exists Heéd such that

fr (X)NXyN H=1¢ .

18



A space X is called a k-neat space if for each free closed
ultrafilter # on X with c.i.p. there exists a k-neat system for

. We shall refer to an w-neat space as merely a neat space.

A k’ -neat space is k-neat if k> k. It is easily seen that
for all ke Card, a space X with countable tightness is k-neat

if and only if X is neat.

LEMMA 4.2.[9, Lemma 2.2] If & 1is a free closed ultrafilter
on X with c.i.p. and if ¥V = U,.,Vy is a O-penetration( resp.
86 -penetration ) of U ={X - H: H¢H )}, then ¥ has a subcover

that is a weak f-refinement( resp. weak -refinement ) of U.

THEOREM 4.3. The following spaces are ( k- ) neat. Moreover,
the implications (a)— (b), (d)—(f) and (e)— (f) hold.

(a) neighborhood & -spaces.

(b) spaces satisfying property ©L.

(c) weakly [cu ,a:f'—refinable spaces.

(d) 46 -penetrable spaces.

(e) ultrapurer spaces.

(f) pure spaces.

Proof. (a)— (b). Let U be any open cover of X, and set

S = { xeX: xeU

) ex.y B(n,2) for each neéw and x¢ Ue UW}. We note

that S is a discrete subset of X. Take x¢ S, and select Ug e U
such that x ¢ Uy. For x and X - Ux there exists ny corresponding

to (3) of Definition 2.1. We may assume B(ng,x)c¢ Ug. Since

19



for vé€ B(ng,x)-{x} there exists ny such that { x,y%}¢ {i)EX_UxB(ny,z),
it follows from xéléex-uf(ny,z) that y¢ Liex_uli(ny,z) . Soy¢s
for any ye B(ng,x)-{x} . Thus S is discrete in X. Set £y =
{ixy : xesYy, ¥ = { B(nx,x) : xe S} and define a function £
from £y to Y such that £, ({x}) = B(ng,x). &, is k-weakly
cushioned in % in the space ’}5¥ for any k € Card.

For x € X-S we can take UxeU and nxe¢w -{0} such that
ex-Uf‘(nX'Z)' Put Xp = { X6 X-S: ngy = n 7.
X -s =ci_'3, Xn. Set p = { {x} : xexn}, Vo= {Ug: xex,)Y

M=

x € Ux and x¢€ L)z Obviously
and define a function fy from £, to VYV, such that fp({x}) = Ug
for n>»1. It is easily proved that &:Dn is k-weakly cushioned in
¥n in the space ()’n* for k € Card. Thus X satisfies property 6KkL.
(b). Let # be a free closed ultrafilter on X with c.i.p..
Then W = { X - H: HEX Y is an open cover of X. For this U
there exist sequences { p: new > and  Viy: newy of
Definition 2.9. Let fy be a function to be k-weakly cushioned from
n to wP,. We may assume that each a@n is a disjoint collection
and each fp is injective. Put X, = 09*:—1 . For each néw and
x € Xp there exists uniquely Dye¢ d&p such that xe¢ Dx. Put Wx =
fa(Dx), Wn = { Wx: x¢ Xn } and define a function gn from Xn to
Wn such that gn(x) = Wx. £ {Xn} , {Wnl, $9nt e 15 a desired
neat system for & . Thus (b) implies neatness.
(c). Let d# be a free closed ultrafilter on X with c.i.p..
We take a free subfamily ¥ of # such that l1F] = xw).
Since the cardinality of the open cover U = { X-F: F€FY is
uncountable regular, there exists an open refinement é =*LJF &0’

of U such that |/ | ¢ A(¥) and for each x € X there exists &e/”

20



such that 0<¢ ord(x, §y )¢ AP ). Now for each ¢el’ we put Xy =
§xeX: 0cord(x, &y ) < AMH) Y}, Y5 = { st(x,dy ): x€ X4y and
define a function fy from Xy to ’}@ such that £y, (x) = St(x, 295 ).
C{%eY v iKY + €£5)Y Dyer 1is a k-neat system for #f for k¢
Card. Hence X is k-neat for ké€ Card.

(A)— (f). Let ¥ be a free closed ultrafilter on X with c.i.p..
By Lemma 4.2 the open cover {X-H: H¢HY has a weak JIO-refinement
U = Upeewo Upn. Put Xp = { xe X: 0<¢ord(x, Up){w } for neéw .
If we set € = { Xpn U: Ue Uy}, then § = Uiew €, is obviously
an interlacing on X that is 4 -suspended from & .

(e)—(f). Let # be a free closed ultrafilter on X with c.i.p..
Let & be a free subfamily of & such that | F | = A@P). Since
I’J,'l is regular, there exists an interlacing that is & -suspended
from . The interlacing is, of course, & -suspended from dof .
The proof is complete.

(f). Let ¢ be a free closed ultrafilter on X with c.i.p..

Since X is pure, we can obtain an interlacing £ = gnwgn on X
which is § -suspended from & . For each new and E¢ En we

take an open set U(E) of X such that U = U(E)N 8: . Now for
each new put X = g; , Yo = {st(x, Fn): xe Xy}, where Fp =
{UE): E€ fn} , and define a function fn from X, to ¥, such
that f£p(x) = St(x, Fn). { {Xn} , {Vn)Y s {0t Jaew is a desired

k-neat system for & for k € Card. Hence X is k-neat for k€ Card.
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Davis asked in [14, Question 4.2] whether every (neighborhood)
# -space satisfies property 6©EL. The above implication (a)— (b)
affirmatively answers the question in the case of neighborhood

# -spaces. The following lemma is easy.

LEMMA 4.4. Let Y be a closed subspace of a space X, and F
be a free closed ultrafilter on Y with c.i.p.. Then df =
{ H: H is closed in X and Hn Ye F } 1is a free closed ultrafilter

on X with c.i.p. and A(F) = A(#) holds.

LEMMA 4.5. Every closed subspace of a k-neat space is k-neat.

Proof. Let Y be a closed subspace of a k-neat space X, and
& be a free closed ultrafilter on Y with c.i.p.. By Lemma 4.4,
¥ = { H: H is closed 4n X and HnYe€X )} is a free closed ultra-
filter on X with c.i.p. and A(F) = A ). We take a k-neat system
for ¢ . We naturally restrict the system to Y. It is easily

seen that the restricted system is a k-neat system for .
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THEOREM 4.6. A neat space is isocompact.

Proof. By the above lemma we show that a countably compact
neat space is compact. Suppose that there exists a countably
compact non-compact neat space X. Since X is not Lindel®f, X has
an open cover W which has no countable subcover. We take a
closed ultrafilter ¢ on X containing { X-U: UeU Y} . Now # is a
free closed ultrafilter on X with c.i.p.. There exists a neat
system {{Xg}Y, { %Y . {f&}>a—ef' for & . By the fact | /—'| < A
we can get &He such that Xy N H # ¢ for any Hed . We fix
this ¥ . There exists Fe€d4f such that FC f)ﬁ: because X- %:¢ .
By the way of the selecting of ¥ we can obtain a countable

subset A ={xn: newY of FN Xy which satisfies f5 (xp)Nn { x4:

jyn+l} = ¢ for any new . Take an w-limit point x of A( i.e.

any neighborhood of x contains an infinite subset of A. ). Since
*

F is closed, x€ F("%'o . Hence xe¢ %ew fa, (xn) . This contradicts

the fact that x is an wW-1imit point of A.

COROLLARY 4.7. The following spaces are isocompact.

(1) neighborhood F-spaces. [28, Theorem 3.11]

(2) spaces satisfying property 6L. [15, Theorem 2.4]

(3) weakly [w, ’Oo)r -refinable spaces. [58, Corollary 3.3]
(4) §8-penetrable spaces. [12, Theorem 3.B]

(5) ultrapurer spaces. [49]

(6) pure spaces. [3, Theorem 5]

Proof. Apply Theorem 4.3 and Theorem 4.6.
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Though an & -space is isocompact[28, Theorem 3.11], the
author does not know whether an & -space is neat. The method of
the proof of Theorem 4.6 leads to the following theorem, whose

proof is omitted.

THEOREM 4.8. An W, -compact ™, -neat T,-space is closed-

complete.

COROLLARY 4.9. The following spaces are closed-complete if
they are w; -compact T, -spaces.
(1) spaces satisfying.property Bw, L. [15, Theorem 2.5]
(2) weakly [w, ,m:f.—refinable spaces. [58, Corollary 3.6]
(3) 86 -penetrable spaces. [9, Corollary 2.5]
r

(4) nultrapure spaces.

(5) pure spaces.
Proof. Apply Theorem 4.3 and Theorem 4.8.

Corollary 4.2 in [54] is also a special case of Theorem 4.6
and Theorem 4.8. We shall give some mapping theorems and an

example. The following lemma is easy.

LEMMA 4.10., Let f be a closed map from X onto Y with Lindel®df
fibers and & be a free closed ultrafilter on X with c.i.p..
Then f = { H: H is closed in Y and £ 'HeéF ¥} is a free closed

ultrafilter on Y with c.i.p. such that A(F) = \().
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THEOREM 4.11. Let f be a closed map from X onto a k-neat

space Y. If each fiber of f is Lindeldf, then X is k-neat.

Proof. Let & be a free closed ultrafilter on X with c.i.p..
Then by the above lemma ¢f ={ H: H is closed in Y and £ ' He F }
is a free closed ultrafilter on Y with c.i.p. such that A(F) =
AP ). We get a k-neat system { { ¥y} , %Y {gf&>réf for & .
Put Xy = £ ¥, Wy ={Wx: x€ Xy}, where Wy = £7' ( g, (£(x)) ),
and define a function hy from X; to Wy such that hy(x) = Wx for
each e/ . Tt is easily seen that the system { { Xy} , {W}

ihk\[)a‘el" is a desired k-neat system for & .
COROLLARY 4.12. A perfect preimage of a k—-neat space is k-neat.

LEMMA 4.13.[29] Let df be a free closed ultrafilter on X with
c.i.p.. If B is a Borel set of X, and if B contains no member

of ¥, then there exists Heé{ such that HnB = ¢ .

THEOREM 4.14. Let f be a map from X onto a Borel complete T, -

space Y. If each fiber of £ is k-neat, then X is k-neat.

Proof. Let 4 be a free closed ultrafilter on X with c.i.p..
Set B = {B: B is a Borel set of Y and £ ' BDH for some HeH } .
It follows from Lemma 4.13 that 8 is a Borel ultrafilter on Y
with c.i.p.. So N 8={y} for some ye Y( i.e. f"ye&? ) .

put E = £

v and #|E = {En H: Hed } . We can easily see that
M |E is a free closed ultrafilter on E with c.i.p. such that X(H)

= A(H[E). Tet ( {E}, {%} r {9y} dyer be a k-neat system for

25



HIE. wWe extend this system in the following manner. Set Wy
{ VUX-E: VeV } and define a function hy from E;to Ws¢ such that
hy (%) = g, (x)U X-E for each Jé¢[' . We get a system consisting of
{ By, X-E: 06} , {We ,{%X-E} :¥e"Y and{hy, § :&e[}
where j is the trivial function from X-E to { X-E}. This system

is a desired one for 4 .

COROLLARY 4.15. A product of a Borel complete T, -space and

a k-neat space is k-neat.

The same method of the proof of Theorem 4.14 leads to the

following theorem, whose proof is omitted.

THEOREM 4.16. Let f be a closed map from X onto a closed-

complete T, -space. If each fiber of f is k-neat, then X is k-neat.

EXAMPLE 4.17. We give a neat space that is not an F-space,
not a pure space, not a weakly [w), ,OOf'—refinable space and not
satisfying property PL. Let X be an hereditarily separable non-
Lindeldf space constructed in [35] under the continuum hypothesis.
X is a 6-penetrable space, hence a neat space, that is not weakly

59~refinable[9, Remarks 2.1.(b)]. X is not even weakly [w, ,aaf—
refinable because the cardinality of X is w, . Moreover X does
not satisfy property 6L by [15, Theorem 2.8], and X is not an
F-space by 128, Theorem 3.3]. Let Y be the Tychonoff space
mentioned in [25, 9L]. Since Y is a P-space( i.e. Gg -sets are

open. ), it is neat. Since Y is an w,-compact non~-closed-complete
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space [9, Remarks 2.7]1, by Corollary 4.9.(5), Y is not pure. By
Corollary 4.15, Xx Y is neat because X is hereditarily realcompact
( hence Borel complete[27, Theorem 3.6] ). Obviously Xx Y is

not an Z-space, not a pure space, not a weakly [w, ,OO)Y—

refinable space and not satisfying property 6&L.

REMARK 4.18. The above space Y answers some questions in [15]
and [16]. Since a P-space satisfies property L, Y affirmatively
answers Question 3.3, 3.4 and 3.5 in [15], because Y is an W, -
compact non-closed-complete P-space( as mentioned in Example 4.17 )
which is not weakly dJdB@-refinable by [8, Corollary 3.3]. Question
3.3 in [15] was already answered in [16, Example 2.2], but the
space is not regular though it is Tq. The space negatively
answers Question 4.2 in [16]. Because an w, —compact P-space

must be preparacompact.
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5. Compactness of spaces having a countably compact dense

subset.

We recall the main problem of this article: What conditions
will make a countably compact space compact ? An interesting
variation of the problem is to take a property P which is weaker
than countable compactness, and find a property Q. such that P
and @ imply compactness. For example, let P be pseudocompact-
ness[20], then the variation of the above problem is what
conditions will make pseudocompact spaces compact ? Some answers

are known.

THEOREM 5.1.

(1) Every pseudocompact Tychonoff metacompact space is
compact[45] [51].

(2) Every pseudocompact Tychonoff paralLindeldf space is

compact[1l1l].

More generally, Uspenskii showed, applying a method of Watson,
that every pseudocompact Tychonoff o -metacompact space is compact
[48], where a space is called ¢ -metacompact if each open cover
of the space has a ¢« -point finite open refinement. It is natural
to ask whether every pseudocompact Tychonoff metaLindeldf space
is compact. But the answer is negative, in fact, Scott constructed
under CH a pseudocompact Tychonoff metaLindeldf space which is

not compact[45].
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Now, we try to consider a medium condition between pseudo-
compactness and countable compactness. That is to have a
countably compact dense subset. We propose the following question:
When is a space having a countably compact dense subset compact ?
From Theorem 5.1, a Tychonoff space having a countably compact
dense subset is compact if it is either metacompact or para-
Lindelof. But, more generally, from Theorem 2.4, weakly &6-

refinable regular spaces also have the same property.

PROPOSITION 5.2. A weakly d6-refinable regular space X is

compact if it has a countably compact dense subset.

Proof. Let U be any open cover of X and Y be an open cover
of X such that for each Ve there exists U€U such that Ve U.
We take a weak d&8-refinement W of V. Let Y be a countably
compact dense subset of X, then from Theorem 2.4,{ WNY: WeW ¥
has a finite subcover { W,n Y,----- , WaNY} of Y. Each Winy
is contained in some Vi€ . Since Y is dense, X = U:‘Vi, so W

has a finite subcover of X. Thus X is compact.

The next theorem which generalizes Proposition 5.2 is proved

the same way as Proposition 5.2.
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LEMMA 5.3. Let "W be an open cover of a countably compact
space X. If there exists an interlacing € =‘4wa,éfn on X
* *
such that, for each new and xe En , St(x, En)C7/ for some

countable subfamily ¢ U , then U has a finite subcover of X.

Proof. This lemma is proved the same way as [53, Theorem 1l.1].

THEOREM 5.4. The following spaces are compact if they are
regular spaces having a countably compact dense subset.

(1) spaces satisfying property 6L.

(2) 46-penetrable spaces.

(3) ultrapure spaces.

Proof. (1). Let U be any open cover of X and ) be an open
cover of X such that for each Ve¢?)” there exists UelU such that
VcU. For this ¥, since X satisfies property 6L, we can take
sequences <°9n’ new Y and {Vy: new?y in Definition 2.9.
Let Y be a countably compact dense subset of X. If we restrict
the discussion of [15, Theorem 2.4] to Y, we can obtain a
countable subfamily W of ) which covers Y. So Y is covered
by a finite subfamily of W . Since Y is dense in X, we can take
a finite subcover of X from “U. (2) and (3) are similarly proved

by [12, Theorem 3.B] and Lemma 5.3 respectively.
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Being motivated the definition of isocompactness, we call a
space CL-isocompact]42] if the closure of each countably compact
subset is compact. Obviously CL-isocompact spaces are isocompact.
Since each property of Theorem 5.4 is closed hereditary, we get

the following corollary.

COROLLARY 5.5. The following spaces are CL-isocompact if
they are regular.

(1) spaces satisfying property BOL.

(2) dB-penetrable spaces.

(3) ultrapure spaces.

Now we recall weakly Borel complete spaces. Since a weakly
Borel complete space is closed-complete, it is isocompact.
There is a pseudocompact weakly Borel complete space which is
not compact, see the example of 5I in [25]. Nextly we shall

prove that a weakly Borel complete space is CL-isocompact.

THEOREM 5.6. A regular weakly Borel complete space is CL-

isocompact.

Proof. Weak Borel completeness is closed hereditary[0].
So, we show that a weakly Borel complete space which has a
dense countably compact subset is compact. Let X be weakly Borel

complete, and Y be a dense countably compact subset of X.
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We may assume that X is Tychonoff, because, i1f we consider the
absolute EX of X[56], then EX is a Tychonoff weakly Borel complete
space having a countably compact dense subset. Since X is a
continuous image of EX, we may prove compactness of EX. So,

we assume X is Tychonoff.

Suppose that X is not compact. Since X is pseudocompact,

X is not realcompact. We take a free zero ultrafilter ¥ on X
with c.i.p.. Each element of ¥ must intersect with Y. Put

A =§{d | & is a closed family such that (1) Xcd¥ . (2) If
Hed? , then HNY #¢ . (3)d is closed under the finite inter-
sections.} . Let 4§ be a maximal element of 4 . It is easily
showed that & is closed under the countable intersections, and
Xe€H by the maximality.

Put H ={Be¢Bo(X) | BODHNY for some HeH Y . Here Bo(X)
is the set of Borel sets of X. We take a Borel ultrafilter & on
X containing . Put £ ={B€éBo(X)| If BpHNY for any Hedl ,
then BAHNY =¢ for some Hed .} .

Now, E satisfies the following conditions.

(a) TIf F is closed in X, then Fé § .

(b) If Bef , then X-Be€E& .

(¢) If £ > {Bi}‘:, , then NBje € .

Firstly we show (a). Let F be a closed subset of X, and
suppose that FHpHNY for any Hedf . Obviously F¢df . Put
£ = Hul{rFrnu | HEN } . g satisfies (1) and (3) of A, and

H + L, because Fe I . By the maximality of H# , there exists
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Hed such that FAN HNY =¢ . This shows that Fé£ . The proof
of (b) and (c) 4is a routine matter. We omit the proof.

Since Bo(X) is the smallest ¢ -field containing the set of
closed subsets of X, we get €& = Bo(X).

Suppose that Bé¢® , and BNHNY =¢ for some Hed . Then
X-BeHc B . It is a contradiction that B is a filter. Therefore
for each B¢® , BNHNY ¥#¢ for any Hed . It follows from
€ = Bo(X) that for each B€B there exists some H(B)¢df such
that BDH(B)N Y. This fact gives that B has c.i.p.. Since
2c® , we obtain that N { 2| 2¢B N Z(X)} =¢. Here X(X) is
the set of zero-sets of X. This is a contradiction that X is

weakly Borel complete.

For a general case we shall prove the next theorem.

THEOREM 5.7. Let X be a regular isocompact space. If X is
represented as the union of a countably compact dense subset X,

and an almost realcompact dense subset X,, then X is compact.

Proof. Firstly we show that X is almost realcompact. Let U
be an open ultrafilter on X with c.c.i.p.. Put UlX, =§UNX,:
U¢éWU Y} . Then it is easily seen that U[X, is an open ultra-
filter on X,. If YI|X, has c.c.i.p. in Xa, then U|X, has a
cluster point in X, by almost realcompactness of X,. Hence

U has a cluster point in X. If U|X2 has not c.c.i.p. in X,
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then there exists a countable subfamily »¢U such that (f\i;) N
Xq =¢ . Since n?¥ is countably compact closed in X, it is com-
pact. So we get NU + ¢ . Thus X is almost realcompact.

Now we consider the absolute EX of X[56]. Since EX is real-
compact[56, Theorem 4.6] and pseudocompact, it is compact. We

conclude that X is compact.

COROLLARY 5,8. Let X be a regular neat space. If X is
represented as the union of a countably compact dense subset

and an almost realcompact dense subset, then X is compact.

EXAMPLE 5.9, We cannot omit the regularity of Theorem 5.7.
Let X be Tychonoff plank[25] ( i.e. X =w, +1lx w+l - {(w, ,w )})
and Y be the space obtained from X by contracting w,x{fw} to
the one point. Though this T, -space Y satisfies all conditions

of Theorem 5.7 except the regularity, Y is not compact.
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We note that Theorem 2.16 is generalized in the following

manner: If X is a regular [p,o]-compact space, then the closure

of each separable countably compact subset is compact. The
proof is quite similar to the proof of Theorem 2.16.

The rest of this section is devoted to some investigations
of the class itself of CL-isocompact spaces. The class of CL-
isocompact spaces behaves well with respect to topological

operations.

PROPOSITION 5.10. The following facts hold.

(a) Let £ be a perfect map from X onto Y. Then, X is CL-
isocompact if and only if Y is CL-isocompact.

(b) Let X be a regular CL-isocompact space, and Y be an

Fy-subset of X. Then Y is CL-isocompact.

(¢) If X =T X,, with X, CL-isocompact for o €A, then X is
o ol

o
CL-isocompact.

(d) If X =§9 X4, with X4 CL-isocompact for o € A, then X is
CL-isocompact.

(e) TIf each X, is a CL-isocompact subset of X, then Q Xy is
CL-isocompact.

(f) The following (1), (2) and (3) are equivalent.

(1) X is héreditarily CL-isocompact.

(2) X is hereditarily isocompact.

(3) For each xe X, X-{x} is CL-isocompact.
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Proof. (a) . Compactness and countable compactness are
preserved by perfect maps. From this fact, it is easy to show (a).
(b). We set ¥ = é:Yi, each Y; is closed in X. Let E be any
countably compact subset of Y. Since each Y; is CL-isocompact,
Cl(EnYi) is compact. UCL(ENYj) contains E as a dense subset.
Since vucl (ENY3i) is a J-compact space having a countably compact
dense subset, it is compact. We get ClyE =:Lle CL(ENnY;i). (c).

Let E be any countably compact subset of X. Since each PryE is
countably compact, Cl(PryE) is compact. Here Pry is the projection
of X onto Xg. The closure of E in X is contained in the compact
space ErCl(PrdE). The closure of E must be compact. (d) is
trivial. (e). 0} X4 can be naturally embedded as a closed subspace
into‘Eer. By (b) and (c), O X4 is CL-isocompact. (f). The
equivalence of (1) and (2) is obvious. We assume (3). Let Y be
any subspace of X. Since Y =N { X-{x}: x€X-Y} , Y is CL-iso-

compact by (e).
Bacon proved in [6] that the product of an isocompact space
and an hereditarily isocompact space is isocompact. The following

result generalizes it.

PROPOSITION 5.11. Let X be CL-isocompact, and Y be isocompact.

Then XX Y is isocompact.
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Proof. Let E be any countably compact closed subset of Xx VY.
Since Pr,E is countably compact, Cl(PryE) is compact. Therefore
PryE is closed countably compact in ¥, So, PryE must be compact.
E is contained in the compact space Cl(PryE)X PryE. The proof

is complete.

PROPOSITION 5.12. The following (a) and (b) hold.

(a) For each Tychonoff space X, there exists a CL-isocompact
space pX with the following properties.

(1) XcpXc BX. Here BX is the Stone—éech compactification
of X.

(2) If £ is a map from X onto a CL-isocompact space Y, then
f has a continuous extension £ that maps pX onto Y.

(b) If a Tychonoff space X has a dense countably compact
subspace, then pX = pX. Conversely, if pX = BX, then X is

pseudocompact.
Proof. (a) is obtained from (b) and (c¢) of Proposition 5.10

and Theorem 2.1 in [55]. (b) is trivial. ©Note that pX ¢ VX,

where UX is the Hewitt's realcompactification.
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6. Miscellaneous notes.

We shall give several notes in this section,
Some classes of isocompact spaces are closely related to

Lindelof property. For example, the following results are known.

Theorem 6.1.

(1) An w, -compact &-space is Lindelof. [28, Theorem 3.3]

(2) Let k> w, , then an ,-compact T, -space satisfying
property kL is Lindelof. [13, Theorem 3.3]

(3) An hereditarily w,-compact space satisfying property

OL is Lindeldf. [15, Theorem 2.8]

To be hereditarily ), -compact is equivalent to be countable
spread. Gruenhage showed in [26] that for each regular space X
having a base of subinfinite rank , d(X) = hd(X)> hl(X) = s(X)
holds. Comparing the result, we show that hd(X)2> s(X) = hl(X)
holds for each T, -space X having an ortho-base]43].

We need two lemmas. For convenience, for a cardinal 7T,
we say a space X to be T-developable if there exist T open
covers { &y }ucr such that for each x€X {St(x,Hx)lr is a

neighborhood base of x.
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LEMMA 6.2. Let X be a space having an ortho-base B and D
be the set of isolated points of X. If D is dense in X, then

X is |Dl-developable.

Proof. Set D ={dq:s<t} , where T 1is a cardinal. For
each x€ X-D and #<T , we take By (x)é¢ 8 such that xe By(x) and
Ayé Ba(x). Put Hy = { §du} :*<TTU {By(x): xeX-D}. Hy is
obviously an open cover of X. Let x be a point of X and W be a
neighborhood of x. If xe€D, then St(x,Hy) ={x}CW for somed .
So, we assume x & X-D. Suppose that St(x,dy )¢ W for any AT
Then for each & , we can take Hgy € d, such that x¢ Hyg and Hd W.
Since { H4}4<7 cannot be a neighborhood base of x, H ==Q Hy must
be open. But HND = ¢ , because Hy3d,. Since D is dense in X,

this is a contradiction.

The following lemma is well known in the countable case and

can be easily carried over to the general case. So we omit the

proof.

LEMMA 6.3. Let X be a T -developable T,-space. If the
cardinality of each closed discrete subset is at most T , then
X is T -Lindelof( i.e. every open cover has a subcover of the

cardinality T .)

39



THEOREM 6.4, Let X be a T, -space having an ortho-base. Then

hd (X) > s(X]) = hl(X) holds,

Proof. Since hd(X)> s(X) and hl(X)> s(X) are obvious, we show
s(X)2hl(X). Let s(X] = T . Since for each subspace Y of X,
s(X)< T and Y has an ortho-base, the proof is complete if we
show that X is T-Lindeldf. Suppose that there exists an open
cover U of X which has not a subcover of the cardinality T .
Firstly we take xo€ X and Uy e U such that xo¢ Us. Put Vo = Uo.
Let ¥< T¥ . We assume that for each B<{ we could take xge X
and an open set Vg such that the following (%) is satisfied.

Ve {x4:d¢¥} ={xg} for each B<K ¥ .
™ { There exists Ug € U such that Vgc Ug for each BLY¥ .
Then, if we set A ={x4:d¢¢} , since |A|¢ T , C1 A is 7T-Lindeldf
by Lemma 6.2 and 6.3. Thus C1 A.U(grvp) is covered by T-elements

of U. So we can take xjye X-Cl AL)%%;@ ). We take UgeU and

an open set Vy such that xge Vyc Uy and Vy;n A = ¢ . Now by the
induction we get the discrete space {X4:4<T*Y} . This is a
contradiction to s(X) = T .

There exists a space having an ortho-base such that hd(X) #
d(X). 1In fact, the space in [20, 3.6.I] is such a space.
Concerning SH( Souslin's hypothesis ), we note the following

theorem.
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THEOREM 6.5. The following (a), (b) and (c) are equivalent.

(a) SH is false.

(b) There exists a non-metrizable non-archimedean space
such that s(X) is countable.

(c) There exists a non-metrizable regular space having an

ortho-base such that s(X) is countable.

Proof. The equivalence of (a) and (b} is due to [4]. Also,
refer [37, Theorem 1.7]. (b)—(c) is trivial. We show (c)— (b).
Let X be a space of (c¢). Since by Theorem 6.4 X is regular
Lindeldf, it is paracompact. Therefore X is a proto-metrizable
space( i.e. paracompact space with an ortho-base ). It follows
from Fullér's result][24, Theorem 6] that X is the perfect irredu-
cible image of a non-archimedean space Y. Since metrizability
is an invariant of perfect maps, Y is not metrizable. Since
the spread of a non-archimedean space is equal to the cellularity,
by the irreducibility of the map, s(Y) must be countable. Thus

Y is the desired space.

COROLLARY 6.6. The following (a) and (b) are equivalent.
(a) SH.
(b) Each reqular space having an ortho-base is metrizable

if the spread is countable.
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REMARK 6,7. The proof of Theorem 6.4 essentially shows that
AX) = t(X)*L(X) holds for any T, -space X having an ortho-base.
If we see again the proof of Theorem 6.4, we can see that the
proof claims L(X) ¢ Q(X). Since , in general, 9X)<£ t(X)-L(X)
holdsI33], we obtain LX) £ 9X) tX]-LEX), So, tX)-L(X)<L
£(X)- (X)) t(X) LX) is obtained. Here t(X)- 9(X) = O(X) holds,
because it is easily showed that t(X) < 9(X) holds for a space

X having an orhto-base. Thus J(X) = t(X) 'L(X).

O -penetrability implies weak Borel completeness in the
presence of a suitable nomnmeasurability hypothesis. We omit the

proof.

THEOREM 6.8,]42] Every 6-penetrable space of non-measurable

cardinal is weakly Borel complete.

COROLLARY 6.9.[42] A quasi-developable space of non-measurable

cardinal is Borel complete.
The Rudin's Dowker space in [41] is known as a closed-complete
space which is not weakly Borel complete[46]. By the above theorem,

the Dowker space is not &-penetrable.

A space is called feebly compact if every locally finite

family of open sets is finite. If a space is Tychonoff, then
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feeble compactness coincides with pseudocompactness. Porter and
Woods studied in [39], motivated by Stephenson's question in the
first section and Weiss's paper[52], compactness of feebly
compact regular RC-perfect spaces, where a space X is called RC-
perfect if each open subset of X can be written as a union of
countably many regular closed subsets of X. They showed in [39]
that, under MA+—CH, every feebly compact RC-perfect separable
regular space is compact. However, under () , there exists a
feebly compact, locally compact, RC-perfect zero-dimensional,

separable T,-space that is not countably compact.
Ismail and Nyikos defined the class of C~closed spaces[32],

where a space is called C-closed if every countably compact subset

is closed. For the study of C-closed spaces, refer to [31][32].
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