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Behavior of geodesics in foliated manifolds

with bundle-like metrics

By

Shinsuke YOROZU

1. Introduction.

Foliated manifolds are studied by C. Ehresmann, A.
Haefliger, G. Reeb and many people. Many of works are topologi-
cal ( non-riemannian ) cases. The early study of riemannian
case was done by B. L. Reinhart[ 24 ], that is, he defined
foliated manifolds with "bundle-like" metrics with respect to
the foliations and tried to prove so-called Reeb stability
theorem for this case. The foliated manifolds with bundle-~like
metrics are studied by R. Hermann[ 4 ], A. M. Naveiral 19 ], J.
S. Pasternack|[ 22, 23 ], B. L. Reinhart[ 24, 25 ], R. Sacksteder
[ 26 1, I. Vaisman|[ 28, 29 ] and others.

The typical examples of foliated manifolds with bundle-
like metrics are followings; (i) each fibexr space under a
suitable choice of metric, (ii) the foliation of a riemannian
manifold by the orbits of a group of isometries having all its
orbits of the same dimension.

In this paper we discuss the behavior of geodesics in
foliated manifolds with bundle-like metrics. As a well-known

and fundamental result in this direction, we may state:

Theorem( B. L. Reinhart[ 24 ] ). A geodesic of a bundle-



like metric is orthogonal to the leaf at one point if and only

if it is orthogonal to the leaf at every point.

We discuss geodesics making constant angle with leaves,
and these are generalizations of [ 14 ]. We also discuss focal
points of leaves along transversal geodesics, and, in the case
of codimension 1 , we have non-existence of focal points of
leaves along transversal geodesics. The relations between the
Levi-Civita connection and the second connection defined by
I. Vaisman[ 28 ] are discussed. And we have the definitions of
geodesic and Jacobi field with respect to the second connection,
and we discuss the properties of them.

The topological obstructions for the existence of the
foliation with a bundle-like metric were studied by H. Kitahara
and S. Yorozul[ 12 ]; J. S. Pasternack{ 22 ] and R. Sacksteder
[ 26 ]. The existence of the complete bundle-like metric was
discussed by H. Kitahara[ 8, 9 ].

In this paper, we shall be in C®-category and manifolds
are paracompact, connected Hausdorff spaces. Latin indices run
from .1 to p , and Greek indices run from p+l to ptg . We

use the Einstein’s summation convention unless otherwise stated.



2. Foliated manifolds.
Let M and N be manifolds of dimension p+q and q .
respectively, and let f be a map M —> N . For each point

m € M , we have the linear map

(f£.)_ : T M —>

m m Tf(m)N !

where TmM ( resp. Tf(m)N ) denotes the tangent space of M at

m ( resp. the tangent space of N at f(m) ). Then we have

Definition 2.1. A map f : M —> N is called an immersion
if (f*)m is injective for any point m & M , and f 1is called

a submersion if (f*)m is surjective for any point m & M

Let TM denote the tangent bundle ( or, its total space )
over M . For a sub-bundle E of T , ["(E) ( resp. ‘F(E]U) )

is a set of all sections of E ( resp. E over UCM).

Definition 2.2. A sub-bundle E of TM is called

integrable if locally E 1is the kernel of the differential of

a submersion. An integrable sub-bundle E of TM is called a
foliation E , and the pair (M,E) or, simply M , is called a

foliated manifold with a foliation E . The maximal connected

integral manifolds of E are called leaves.

Precisely, a foliation on M is defined by the following
data:
(i) An open covering {Uh}jk&A_ of M .
(i1) A pseudogroup | of local diffeomorphisms of RY
(iii) Submersions £, : U, —> Rq .

(iv) For U, n Uu # & , there exists b’/\/‘é [T such that £,



= X)\/"' fﬂ -
Definition 2.3. 1In the above foliation on M , g is

called the codimension of the foliation.

We may choose a local coordinates (xl,ﬁx) on each {UA,

fA} such that
(1) Ilxl<1 , 1x* <1 .

(i1) The integral manifolds of E are given locally by x%

= ¢* for constants c®% satisfyihg el < 1 .

Definition 2.4. The above local coordinates (xl,ix) on

{ Un, £A) 41s called flat coordinates, and a triple {UA, fas

(xl,id)} or, simply, U(xl,xx) a flat coordinate chart. In a
flat coordinate chart U(xl,k“) , each of slices given by
equations x% = ¢%¥ is called a plaque.

Definition 2.5. A foliated manifold M is called regular
at point m € M if there exists a flat coordinate chart of m
which meets each leaf in at most one plagque. A leaf in M 1is

called a regular leaf if M is regular at any point of the leaf.

If u(x®,x™) and T(xt,%%) are flat coordinate charts

such that U A U # ?5, then a/;xl transforms by coordinate

. . . -1 - .
change into a combination of &/ax™, '*-, 5/>%F, since the

tangent space to a leaf goes into the tangent space to the leaf.
Thus the coordinate transformation is of form

o

Fi =‘§l(xk,xz) and %= x%(x%)

A

. . i
In each flat coordinate chart U(x ,x ) , we may choose



p

1
l-forms w™, .-+, w

such that %_wl,-'~, wp, dxp+l,"', dxp+q:}

is a basis for the cotangent space at each point in U , ahd‘

1
vectors Vp+l,»~-, vp+q such that -{3ﬁ>x F T, aﬁpxp, vp+l’
ee vp+q} is the dual base for the tangent space. We have
w:L = dxl + Ai ax®
o i i
v, = 3/ox" - A, 3/xT
. i i,k =z
for any functions A, = A (x",x") on. U . If we transform the
. 1 & . = -1 -« —i
flat coordinate chart U(x™,x™) into U(x™7,x ) and choose w
and 5& in 5(§l,§d) , then w' transforms into a combination

of the w? and Vy into a combination of the Vg
Notice that not every sub-bundle E of TM is integrable.
The following theorems, usually referred to jointly as the

"Frobenius Theorem", give the integrability of a sub-bundle E

of TM .

Theorem 2.1. Let E gg a sub-bundle 9£ TM described

lodally as the simutaneous kernel of everywhere linearly

independent l-forms ?p+l"“’ ?p+q' that is, for m in the

domain of P S

Ep= {uerml g @ ==9p =07} .

Then E is integrable if and only if each d{, locally may be

written of the form

ay, = E; Ps A pr

for certain l-forms 6&P .




Theorem 2.2. A sub-bundle E of TM 1is integrable if

and only if, for any X, YE€ [(E) , [ X, Y ] € [(E) where

[ , 1 denotes the bracket operator.




3. Bundle-like metric and examples.

Let Q be the quotient bundle TM/E . The natural
projection 7: T™ —> Q induces a map x: [ (TM) — T(Q) .
For each Z € [ (Q) , choose 7 € [(TM) such that 2 = 7T(2)
Then we may define a "partial" connection \?’: T(E) x T’(Q)

—> [(Q) by

(3.1) Vez=n(1%x Z1)

for X €T (E) , z € T(Q) . % is well-defined. % is a R-

bilinear map and satisfies the conditions:

L A
VX(fz)=x(f)z+fVXz ,
/v\ A
£x L = £ VX Z .
Definition 3.1. ‘@ is called the Bott partial connection
on Q

Next we have

Definition 3.2. In each flat coordinate chart U(xl,xd)

7

a frame {Xl,'-', X

o’ XP+1’ cee, Xp+q} is an adapted frame to

the foliation E 1if {Xl,"-, Xp} and {n(xpﬂ),u-,n(qu)}

span ]“(EIU) and F(Q\U) respectively.

In each U(xl,xd) , frames {9/;}(1, 3/;x°(} and {;/;xl,

v, } are adapted frames to E ( See [ 141, [ 221, [ 231,
[ 24 1).
Definition 3.3. The adapted frame {9/;)«:1, v“} is called

the basic adapted frame to the foliation E .




It holds that
(3.2) [ X, vy 1) =0 for any X é-r(E}U) .

Choosing a suitable riemannian metric on TM , we may

identify the guatient bundle Q with the orthogonal complement

1

bundle E to E in TM . We have

L

E®QEE S8 E

in

(3.3) ™

where ® denotes the Whitney sum.

For two riemannian manifolds M and N , a riemannian
submersion f : M —> N is a map satisfying the following
axioms:

(1) £ i1s a submersion.
(ii) £, preserves lengths of vectors which are orthogonal to
£ ( £(m) ) for each m ¢ M

Let M be an n dimensional riemannian manifold with a

riemannian metric < , > . A foliation E of codimension g

(=n-p, 0<p<n)on M is a riemannian foliation if

following data are given:

(1) A open covering {Ikk}xeA-of M |

(i1) An auxiliary g dimensional riemannian manifold N and
a pseudogroup [ of local isometries of N
(iii) Submersions £, : U, —> N

(iv) For U, n q» £ & | there exists U&Aé]— such that fx

= T}¢~ ?#-'
Then the metric < , > has a local expression
_ k 7 i 7] < ol B
(3.4) <, Y] =gy xR whhw (7). ax



4

in each flat cocordinate chart U(xl,x ) . We notice that, for

*) , the submersion f : U.—>
-1

each flat coordinate chart U(xl,x

N 1is a riemannian submersion such that £ “( £(m) ) 1is a
plaque for any m € U . (3.4) means that j(D/axi)gNP = 0 where
Ing = < Vs Vg2

Definition 3.4. Let M be a foliated manifold with a
foliation E and a riemannian metric < , > . The metric
< + > 1s called a bundle-like metric with respect to the

foliation E if it has a local expression (3.4).

A curve a(t) is called to be transverse to E 1if & (t)
€ r(ELIGKt)) where o(t) denotes the tangent vector of o (t)
Also, vector fields are called similar as curves. Then we have
Lemma 3.1 ( See [ 24 ] ). The following conditions are
equivalent:
(i) < , > is a bundle-like metric with respect to E

(ii) Any two transverse curves with the same projection on

N have the same length.

(iii) Any two transverse vectors with the same projection on

N have the same length.

Now, we have following theorem which will play an important

role in the next section.

Theorem 3.1 ( See [ 14 ] ). The riemannian metric < , >

on a foliated manifold M with a foliation E of codimension

g is a bundle-like metric with respect to E if and only if,

1

for each flat coordinate chart U(x ,x“) , there exists an




orthonormal adapted frame {X,, X,} to E such that

Vi X0 %> + <V, X, Xu> =0

« .

v/i < p and p+l é_vo(, V(S < ptg , where <y denotes the

for 1 <

Levi-Civita connection with respect to the metric < , > .

First we prove the following lemma.

Lemma 3.2. The metric < , > is a bundle-like metric

with respect to E if and only if, for each flat coordinate

chart U(xl,xd) , there exists an orthonormal adapted frame

4 X X,} to E such that

GX (X)) =0 for any X ET(E]U) ,

where % denotes the Bott partial connection.

Proof. Suppose that the metric < , > is a bundle-like
metric with respect to E . We have an orthonormal frame {Xi,
X,} from the basic adapted frame {3/5x, v,} to E by the
Schmidt’s orthogonalization procéss to {S/QXJ“} and {v« ¥

respectively. Then {Xi, Xx} is an orthonormal adapted frame

to E . By (3.2), <v°<‘, v/5> = gd/s(x.-() implies (. [ Xi" X 1)
= 0 . Therefore, we have '@X n(Xy) = 0 for any X € r(E[U)

Conversely, let {Xi, X,} be an orthonormal adapted frame
to E such that ex ti(Xk) = 0 for any X € F'(EIU) . Since the
basic adapted frame {a/; xi, v“} to E satisfies <9/axi, V. >
= 0 , we may write V. of form v, = hf XF’ where hf are
functions on U . Then we have

VL mn) = AL a/ex, v 1)
/3 X



= &( [ U/in, hf: ng 1)
= hEml [3/ex0, Xp 1) + (330 (0f) mux,)
- +E & i g g
=nf Tk + (axh) @) nixg)
% ;/axl £ X £

It

(3/5x") () 7(x,)

by (3.2), 6 J._7t(vo<) = 7t( [a/axi, v, 1 ) =0 . Then
/> %X
lave

(3/5xh) () =0

:he linearly independence of 7 (Xgz) . Thus we have
. £

(5/5x7) < v, vy >

(5/5x7)< hz Xy, hy Xo >

C 2

_ i - S 4

= (3/x7)(hy hy Syp )

=0
refore, the metric < , > 1is a bundle-like metric.

Q.E.D.
Proof of Theorem 3.1. Suppose that the metric < , > is

indle-like metric. By Lemma 3.2, there exists an orthonormal

A
>ted frame {_Xi, X,} to E such that VX 7(x,) = 0 for

X €T(E|y) . Then we have

<y Kpr Kp? = KV Xp XY o <DXg Xl X 57

1l

<VX Xp(l XP> 7

i



since V. 7n(Xy) = 0 implies [ X, X 1 € rXElU) . Therefore,

we have

Il
A
o
bt
X
P
o
v
+
A
oo
-
>
~
e
R
\4

Conversely, suppose that there exists an orthonomal

adapted frame {X,, X,} to E such that <LV§d Xir Xg > 4

<‘U% Xi, Xy> = 0 . Then we may write the basic adapted frame
é

i i_ ] NS 2
{ 9~Ax", vy to E of form 2/Ax = hy Xj and v, =h, X

where hi and h: are functions on U . Thus we have

ks

(3/5x") < Ver Vg 2

=<V v, v,> +t<<v,V v
a/axl « A 4 Qé}xl 14
=0 ng (X L) Sy + IO X, Xy 1, XD )
+nd nn, <V, X., X,>
it B > S R
i ¥ Z =z
+ 03 h (X508, + ho<Ky, [ Xy, X 1> )

S . .
+hih*hp<X,,VXZ 5>

Since we have

¥ g
Xj(ho()g,h +hy < L Xys Xy 1, Xz >



= X ()8, + <[ Xy, b Xy 1, X >

- < Xj(hZ) Xy, Xg ¥

we have

(9/>xi)<:v&, Vg >

]

J WYL
hy h h{g (<%{ij, X,” +<\7'Xz xj, X, > )

Therefore, the metric < , > 1is a bundle-like metric with

respect to E . Q.E.D

Definition 3.5. A leaf L in a foliated manifold M with
a foliation E and the Levi-Civita connection WV 1is called

totally geodesic if V% Y]m € T L for each point m € L , any

flat coordinate chart U (m &€ U ) and any X, Y € r(E\U) ;

where TmL denotes the tangent space of L at m

We remark that an immersed sub-manifold N of a manifold
M with the Levi-Civita connection YV 1is totally geodesic ( =
the second fundamental form of N identically vanishes ) if
and only if V, Y € [[(TN) for any X, Y € [(TN) ( See [ 15 ] ).

The foliated manifolds all leaves of which are totally
geodesic are studied by many pepole ( See [ 21, [ 31, [ 51,

[ 16 ] ).



We are often able to find out the foliated manifolds with

bundle-like metrics in the study of differential geometry:

(1) Let M be a riemannian manifold acted on by a group of
isometries such that all orbits are of same dimension. M 1is
a foliated manifold with orbits as its leaves, and the‘
riemannian metric on M 1is a bundle-like metric with respect
to the foliation ( See [ 51, [ 71, [ 22 1, [ 23 ], [ 24 1 ).

(1i) Let M be the tangent bundle TN over a g dimensional
riemannian manifold N . Then M is a foliated manifold with
fibers as leaves, and the Sasaki metric ( See [ 27 1 ) on TN

is a bundle-like metric with respect to the foliation.

(1iii) Let ¥ : M — N be a riemannian submersion ( See [ 6 ],
[20] ). M is a foliated manifold with fibers % 1 (b)
( b€ N ) as leaves, and the riemannian metric on M is ' a

bundle-like metric with respect to the foliation.
We may also introduce examples.
Example 3.1. Let M Dbe a flat torus which is identified

=

with {(x,y) € R®* | 0g£x<1,0=y=<1} . M is considered

1IN

a foliated manifold by a family of straight lines with constant
slope ¢ . If & 1is a rational number then all leaves are
regular, but if « 1s an irrational number then no leaves are
regular. The flat metric on M 1is a bundle-like metric with
respect to the foliation.

Example 3.2. Let M be a flat Moebius strip which is
identified with {(x,y) € R°] 0g x££ 1, -l<y <1, (0,y)
is identified with (1,-y) } . M 1is considered a foliated

manifold whose leaves are given by straight lines y = constant .



A leaf through a point (0,0) is not regular, and another all
leaves are regular. The flat metric on M 1is a bundle-like,
metric with respect to the foliation.

We remark that not all foliated manifolds have bundle-like
metrics with respect to the foliations. For example, £he
canonical metric on a 3 dimensional sphere S3 is not bundle-

like metric with respect to the Reeb foliation.



4, Geodesic making constant angle with leaves.
Let ¥(s) (or ¥ ) be a geodesic in M parametrized by

arc-length s , that is, ¥/, ¥(s) = 0 where ¥(s) denotes

¥(s)
the tangent vector of ¥ at ¥(s) .

For any point ¥(s) , we may choose a flat coordinate

chart U(xl,xu) such that ¥(s) € U and an orthonormal adapted
. i & .
frame ’{Xi’ XqJ to E in U . Let -{&l, o } be its dual

adapted frame. Then we define f = { fU} by

= - P i, 4 2
(4.1) fU(S) fU(f(S)) ;Zi=l( g ( ¥(s) ) )
Lemma 4.1. The function f = {fU}- defined by (4.1) is
independent of the choice of U . £ is a differentiable

function on Iy which is a range of parameter s of ¥ .

The geometric meaning of £f(s) 1is a square of the length

of a wvector f%s) in T M

of orthographic vector in £(s)

By(s)
Let of(s) be an angle between the orthographic vector of

¥Y(s) and i(s) . Then we have that

( cos A(s) )2 .

Il

f(s)

Definition 4.1. A geodesic ¥(s) parametrized by arc-

length s is called a geodesic making constant angle with

leaves if the function f is a constant, that is, df(s)/ds

= 0 for any s € Iy .

Theorem 4.1. Let M be a foliated manifold with a

foliation E of codimension g ( = n - p ) and with a
riemannian metric < , > . Suppose that all leaves are totally
geodesic.



(1) If the metric < , > 1is a bundle-like metric with respect

to E , then any geodesic in M 1is a geodesic making constant

angle with leaves.

(ii) If all geodesics in M are of making constant angle with

leaves, then the metric < , > is a bundle-like metric with

respect to E

Proof. (i) Let 7¥(s) Dbe a geodesic parametrized by arc-—
length s . In a flat coordinate chart U(xl,x“) such that
¥(s) € U for any fixed s € IX ;, by Theorem 3.1, we have an
orthonormal adapted frame { X;r ¥4} to E satisfying
< qu Xop Xp> + < VXF X

~ 8 S
(4.2) r‘di+|"pi—0

i Xyg>» = 0, that is,

A

C

where VX XB = rAB XC (A, B, C=1, 2,++, p, ptl, -+-, ptg ) .
A .

And, by the orthonormality of the frame, we have

(2.3) FC + 13 -0 .

Then we have

af(s)/as = = =B (ot is) )7
=2 %R (6N Hs) ) ) S8 Fs) ) )
and
0 = 4 ( Vygy F(s) )
WA (CN
n F;k 83 %(s) ) &5 T(s) ) + f;iip o3¢ i)y 8% F(s) )



&

P[5y 6f03E ) 9 Ee) ) f‘j(p % ¥s) ) 8% %is)

where {&l, Gd} denotes the dual frame of {Xi, Xx} . Thus we
have, by (4.2) and (4.3),
ANy i . 3 . B, = '
af(s)/ds = 2 =[5, 47C ¥(s) ) 7 $(s) ) E7C ¥(s) )
llj/ﬁ
. . o8

Since all leaves are totally geodesic, we have rji =0 .
Therefore we have df(s)/ds = 0 for any s €& I‘o’ .

(ii) For any point m & M , we take a flat coordinate
chart U(Xl,xd) at m and any geodesic Y¥(s) through m
making constant angle with leaves. By the method of Schmidt’s
orthonormalization, we may make the basic adapted frame {_a/axl,

v,} to E into an adapted frame {’).(vi, 5(:(} to E such that

{ 'fi} is mutually orthonormal and gi\; =v, . We set VQ—A SE‘B
_ ©=C ¥
= rAB X, , we have
~i ko =% ~ 7 ~ ~5
Max * Tas =0 rjp+rjigpz“o r 5 =0

Thus we have

o
il

df (s)/ds

~ . . ~ .
-2 > TL w8 K ) 8FC $is) )
i, g °F

for any s € Iy , where (&, 5“]— denotes the dual frame of
{&:’i, ?{;} . As the choice of a geodesic ¥ is arbitrary, we

have, for each i ,

2. 8% ¥(s) ) 9 sy ) =0 .
£
. i,\, X A~ i~
We set ¥(s) = £ Xi+f Xa(=f Xi+fdvo< . Then we have



(4.4) ?iﬁfdf‘a=0 ( 6 ¥s) ) = %) .
Thus
X< 2%, 0%, >
i <! £
SV $,P%> <1 R, 2%, £F RS
£ X, i I i’ « 7 é
P NN [ fand Fz\—
+ < f xd,Vf‘gxpxi>+<f xp(,[xi,f xp]>
_ X g z o £
=2 f° f ro(lg_cp+2f Xl(f)g“p
Here we note that [ X, Xy ] € r(E[U)
On the other hand, we have
~ oL g~ ._‘"’ 2 '5
X, < £7 Xy £7 Xg> X, (£ f g“{g)

2,f X.(f)gd‘B+f £ Xi(ng)

Thus we have

o BT I

2 £% 0 [ 5 gzp——f £0 %, (94

. ~ ~ ~ _ . Ni
Since <V§d Xg, X; > + <xﬁ,V§; X;> =0, that is, ['dfg
/*’-{
f‘di g%ﬁ = 0 , we have
£ b - - ®gf T
£ f Xi(gdp) = 2 £ fF r-“ﬁ =0 ( from (4.4) )

As the choice of the geodesic ¥ 1is arbitrary, we have

e

Xi(gdp) =0

By the construction of %; ;, we have ﬁi = Ezkil ht aﬁ;xk

v, k .
(1s7i<p, hy are functions on U ), and thus we have

(3/5%7) Sug = O



V. v
for 1 ¢ "1 p and pt+tl £ o(,v? < p+tg . Therefore the metric
< , > 1is a bundle-like metric with respect to E .

Q.E.D.

The condition that all leaves are totally geodesic is
necessary:
2
Example 4.1. Let R be a x-y plane with the flat metric.

2 . .
We set M = R~ - { the origin pOLnt} , then M is considered a

2 ] x2 . y2

foliated manifold whose leaves are Lr = {(X,y) € R
= rz} for any r > 0 and a metric < , > on M 1is induced
from the flat metric on R2 . All leaves are not totally
geodesic. A geodesic given by y = constant = ¢ 1is to be
tangent to LC at (0,c) and make an angle of =m/3 with the‘
leaf L,  at (+3 c,c)

For the geodesics orthogonal to the leaves, we may omit

the condition that all leaves are totally geodesic.

Theorem 4.2. Let M be a foliated manifold with a

foliation E of codimension q ( =n - p } and with a

riemannian metric < , > .

(1) ( B. L. Reinhaft[ 24 ] ) If the riemannian metric < , >

is a bundle-like metric with respect to E , then any geodesic

orthogonal to the leaf at some point on the geodesic is to be

orthogonal to the leaves at all points on the geodesic.

(ii) If, for any point m € M , all geodesics that are to be

orthogonal to the leaf at m are to be orthogonal to the leaves

at all points on the geodesics, then the metric < , > is a

bundle-like metric with respect to E .




Theorem 4.2 (i) 1s a generalization of the corresponding
results of Y. Muto[ 17 1, B. O’Neil[ 21 ] and S. Sasaki[ 27 ].

Our proof of (i) differs from Reinhart’s one.

Proof. (i) Let ¥(s) Dbe a geodesic orthogonal to a leaf
at some point ¥(s,) . We take a flat coordinate chart U(xl,x“)
( 1x71, |x%*]<1) of ¥(s,) , where we use two adapted frames

< .;/,;xi, ;/;x“} and {a/;xi, v“}

The bundle-like metric < , > 1is expressed locally by

= 1, g3 1 458 X 3,8
< , >]U hij dx". dx +2hi(3 dx™. dx +h°({3 dx®. dx
_ L 4 i3 Y2 ol £
gij(x JXT) Woew +gdﬁ(x) dx - dx
= - _ i .3
where gij hij and gdlg hdﬁ hij Ay Af?
In the fixed chart U(x%,x") , we define a metric « , >>U
on U by
_ L. gy “ 4x?
<, » g gij dx7.-dx” + g(:((9 dx - dx

and let K/%U denote. the Levi-Civita connection on U with

respect to the metric & , »

u
Now the geodesic ¥(s) in U 1is given by
T(s) = (¥ (s), ¥(s) )
and
i M
X(So) = (Y (SO)I ¥ (So) )
. A
¥(se) =2 Vo ly(s,)
where a% are constants. In U , we may define a §U—geodesic
T, %) = (¥ sa), Tw) ), by



6 ~ ’f'(t) =0 for any 't € (-¢g,¢) (

U ¥'(t)
and
40 = ¥s.)
Fro) =0 , ¥ =a”
where ' denotes the derivative with respect to t .
U , we may define a curve < Dby
ct) = ( £re), T )
where
r0) = ¥ (s) . ¢t = - a2k F%w
for any t € (-§&,¢)
Therefore we have
St — NID( ol
(4.5) Fre) = TR (akx) |5y,
(4.6) o8 =¥ ) V| ey
and
T(0) = ¥(s,)
T (0) =a% v | gy = ¥(so)

£ >0 )

Then, in

Let {_wi, ax*} ( resp. {ﬁi, @d} ) be a dual adapted

frame of {a/axi, vy} ( resp. {D/bxi, >/5x%} ).

i

w ( Vw. (t) T'(t) )

=S (W) ) )

M W Cee) ) W e )

We have



Then we

+ T3, wi( ot (e) ) axf( e (e) )

+ F;j axf( e () ) wl( o' (£) )

+ L o) axflar o)

rip ax* (o' (t) ) axfor(e) ) ( from wh( o' (t) )

the other hand, we have
ax*( v o' (t) )
o' (t)

_d ol '
= gl dx7(a' () ) )

+ T3 Wi () ) wl( ot (E) )

w1, W e ) axf T (E) )
P axf o (e) ) W (T (e) )
£3
+ [ ge axfPlor(m) ) @™ (o))
of

= Splax® o (0) ) + [ axflor() ) ax™( e (8) )

(£) ' (v) ( from (4.6)

)



(4.8)  ax™( Ver gy T ) )
- F T+ T %o ) 85T e )
by (4.5). We note that
r;z=%g°<e( Ve Gge) ¥ Vel gge ) = Vel gy ) )
= % %% ( >ggc/oxl + agﬁg/;xz - ;;gﬂz/ax2 )
since  3gg/ex = 0 .

Now, we set

A\

~ z Ak k < <
Y >/ %P /Xt = r("‘ Prex + rﬁ"' 2/ex"
then we have
2k
r_pz =0
Ao 1 2
rp.c =3 g%* ( ;gez/axp+ zag/ga/;x2 - ;gpz/;xs)
Thus we have
o 2 o
(4.9) r,;r/n
and, from (4.8) and (4.9), we have
>4 '
(4.10) dx"( VG,.(t) ag'(t) )
d A X . = ~ —~ Py —~
= H(ECT @)+ [5. 80w ) 857w )
= % o T
= 0 ’
since ?' is a 6%—geodesic. From (4.7) and (4.10), we have



1 J—
‘7w'(t) T'(t) =0 ,
that is, a curve g(t) 1is a geodesic orthogonal to the leaves
at all points o (t) ( e <t < &€ ). The geodesic T (t)
satisfies
T(0) = ¥(s,) a'(0) = ¥(s,) .

Let Vo(xl,xd) be the smallest flat coodinate chart of ¥(s,)

in U(xl,x“) containing the geodesic a(t) ( t € (-¢g,8) ).
Thus, by the unigueness of solution of differential equation

system, we have
{(S) =T (S'—So)

in V, . Therefore the geodesic ¥ 1is a geodesic orthogonal
to the leaves at all points on ¥ in V. .

Next, we take a point ¥ (s in V., which differs from

l)

the point ¥ (s,) . We may assume that s, < Sy - The geodesic
¥ is orthogonal to the leaf at ¥(s;) . We take a flat
coordinate chart 5(§l,§d) ( [ill , 12“)<il ) of X(sl) , and,

as above way, we may take a flat coordinate chart Vl(il,ix)

in which the geodesic ¥ 1is a geodesic orthogonal to the leaves

at all points on ¥ . And this way goes on. Thus we have
seqguences {K(SN)} and {VN} , Where SN'< SN+l and N =1, 2,
3,*** . Let Iy denote the range of the parameter s of the
geodesic ¥ . Then we have
sup { Sy | N =1, 2, 3,"*" } = sup Iy .
In fact, if there exists s* & IU such that lim K(SN) = Y(s*)
N o0

and s* < sup Iy , then ¥ 1is orthogonal to the leaf at ¥ (s¥*)



Then the above argument may be applied at ¥(s*)
And if tak
n we take a sequence {7KSN)} such that SN~ Sn+1
(N=1, 2, 3, - -- ), then we have

inf {sg ]l N=1, 2, 3,--} =inf I, .
Therefore the geodesic ¥ 1is a geodesic orthogonal to the
leaves at all points on ¥ .
(ii) For any pcocint m &€ M , we take a flat coordinate
chart U(xi,x“) of the point m . Let ¥(s) be aﬁy geodesic
through m orthogonal to the leaves. We take an adapted frame

{ ii’ X,} to E such that {ii'} are mutually orthogonal and

are given by the method of Schmidt’s orthogonalization from

{a/bxi} , and ix = v, . Let -{@i, Ed} denote the dual frame
of { ii’ id} . For each i , we have

_ =i

_d -1, =

=S8 (F(s) ) )

s TR G $e) ) G5 Fis) )
e N T

[, ¢ (¥(s) ) g ( ¥(s) )

s i EF 3 ) 3 Hs) )

f R YY) )y 300 3(s) )

By the same way as the proof of Theorem 4.1 (ii)(Awe have that



the metric < , > 1is a bundle-like metric with respect to E .

Q.E.D.

Theorem 4.1 and 4.2 are generalizations of [ 14 ].

Definition 4.2. A geodesic ¥ on M 1is called a

transversal geodesic if ¥ is to be orthogonal the the leaves

at all points on ¥

Even if M admits only one transversal geodesic, then the
metric < , > on M 1is not necessarilly a bundle-like metric
with respect to the foliation:

Example 4.2. Let R2 be a u-v plane with the flat metric
< ., > . R2 is a foliated manifold whose leaves are given by

2 2

{ (u,v) € R | v=u"-a} for any a € R . A geodesic given

by u =0 1is only one transversal geodesic. We set

fla) = 2( 2u( 4u® + 1 )12 4 1og( 2u + (4u? + 1)Y2

x = £(u) ’ y = v - u2
Setting w = dx + 2u( 4u2 + 1 )_1/2 dy , we have
< , 7 =du-du + dv-dv
—wew + ( 4u® +1)7T ay.ay
= w-w + ( 4(f—l(x))2 + 1 )—l dy-dy
Thus the metric < , > is not a bundle-like metric with respect

to the foliation.



5. Focal point of a leaf.
We recall that the bundle-like metric < , > on M is.

locally expressed by

,x%) whew? 4+ g (x%) dx® axf

“p

< >\U=glj(xk

in each flat coordinate chart U(xl,x“) . Here and hereafter,
vector fields, forms, tensor fields and etc. are locally
expressed by the basic adapted frame {aVQXl, qx} to E and
its dual {wl, dx*Y} , where

i i

wo = dx~ + Ai ax® and v, = a/;x“ - At 5%;xl .

We set, in U ,

It

j k k S
< i 5/ % I_ij >/>xT + [_.. Ve

>/ x 1)
k k T
.V = [T 2hx + . v

5/oxt g ipg rlﬁ z
j _ k k T

Vv 3/3 X = ]"dj 2/>x + o v,

oL

_ k k T

‘7v‘x Ve = r-dp 2/ox" + r—dp Ve

and
[, v, 1= ( 2B% /ax® - 52% /5x% + A) say /ox]

- 2} 5By /3x) ) 3px

B ;/;xl .

*p

Lemma 5.1. Suppose that the metric < , > is a bundle-.

like metric with respect to E , then

— 28 —



k 1 kh i :
rij -3 g (thj /oxT + agih /axj - ;gij /aXh )
T _ 1 x& h i h ;
rij”‘zg (gthAE /3% F g4, AL /aX]-v&(gij ) )
k 1 _kh £
k _ rk k J
l—joz l_,,(j - 2A, /oX
k _ kK _ 1k
ro({s - rﬁx T2 Bozlg
T _ z _ _ 1 Te  h
[ = T3 ™~ 39 Bae 9y
z 1l z<
(=297 (39¢p 65" + 29,¢ /oxf = 29,, /ox*) .
By the decomposition (3.3), TM = E & B , any Y & [(TM)
is decomposed as
= L
Yo=Y, o+ Y ,
where Y, ( resp. Y.t ) denotes a [[(E)- ( resp. T(E )-)
component of Y . In a flat coordinate chart U(xl,x"() ; YE
and YEL are locally expressed by
I | i b v
YE =Y 2/ox ' YE =Y vy

Let ¥(t) be a transversal geodesic in M parametrized

proportionally to arc-length, then, setting ¥(£) = x% v, in
U , we have

L4
(5.1) X% v, (xT) + x*¥xf T:P =0 (p+l £77< ptq)

According to B. 0O’Neill[ 21 ], we have



Definiticen 5.1. If Y(t) =Y = YE + YEL is a vector field

along a transversal geodesic ¥(t) in M , then

e~ (Ve VO g+ 20V, Yot g

is called the derived vector field of Y , and Q(t) Er

E] 4e))

Hereafter, we assume that M has a bundle-like metric

< , > with respect to E

Proposition 5.1. For a vector field Y

along a transversal

geodesic ¥(t) in M , it holds that

(5.2) (V) Ve ¥+ ROY, T8) ) ¥ (1) )y
= (V) Yog + (Vg 88 g
(5.3) (Vo , Vg ¥+ ROY, F(8) ) (1) )ge
= (Ve (Vi ¥5* et x
" (Vi) (Ve 580 g% g
(M C v, g0 10,2 08 g
#2 (Ve gt

where

R denotes the curvature tensor of ¥ , that gg,

R(V,W)Z=VVVWZ—VWVVZ— V[V,W]Z

This is proved by the direct calculation, taking notice of

Lemma 5.1 and (5.1).



Let ¥ : [0,1] — M be a transversal geodesic in M

parametrized proportionally to arc-length. Let Lx(t) denote
the leaf through a point ¥(t) and Tz{(t)L the tangent space
to Ly @t ¥(t)

A linear space 5(Lx(0)'Lx(1)) ( resp. E(LX(O)'X(M) )
consists of piece-wise differentiable vector fields VY(t) along

¥(t) orthogonal to ¥(t) satisfying Y (0) éTK and Y (1)

(0) ™
€ Ta’(l)L ( resp. Y(1) = 0 ). Then the index form I on

E(Lx(O)’La’(l)) is given by

I(Y,7)
1 1 o : ) S
- L(y) [_ SO<V§'(’C) i(t) Y + R(Y, ¥(t) ) ¥(t), 2 dt
1
PV YT S Y B2 lo
P (T DD = (T, YD, 2l D ] ]

where L(Y¥ ) denotes the length of ¥ , S denotes the second

fundamental form:

<S§’(t) Y, Z>="<VY Z, X(t)> ’

0 < t, < t, << tk—l< 1 are points where Y 1is not

1 2
differentiable, and (Va’(t) Y) (t'i") ( resp. (vi’(t) Y) (t'*j:) )
denotes the left ( resp. right ) limit of V‘a’*(t) Y at ti
(See [ 151, [ 181, [ 22 1).

Lemma 5.2. Let Y be a vector field along a transversal
geodesic ¥ (t) in M . If Y¥(0) € T, L , then



Y(0) = ( Vx(t) Yo )E(O) - (‘Z‘{E ¥(t) )E(O)
Ssey ¥ (0) = (VYE ¥(t) )5 (0)
This lemma is easily proved.
Lemma 5.3. Let Y bDbe a piece-wise differentiable vector

field along a transversal geodesic ¥(t) in M and 0 < t

1
< by <K< tk—l < 1 broken points of Y . Then, for each i

(1

AN

i< k-1),

- +

A - A+ N
= Y(£]) = V(e + (Vg Yt )gt(t) - (Vg

Proof. For any t €& (ti’t ) ( or (ti_l,ti) ),

i+l

+ (vj'(t) YEL )E(t) + (V;((t) YE-'- )Ei(t)
)
+ (VYE F(E) )g(e) = ( Vi Yg* )g(8)
We may set YE = Yi 2/a xi , YE—‘- = v¥ v, and Y(t) = x* Vo s
thus we have
A~ . Nk &
( Vi(t) Vg lgm = X ¥ [ gi V=

[ S k k
(Vi(t) vl ) = X ¥ [_o(‘g 3/3x



: _ i Lf Kk k
(VYEX(t) Jp =Y X rip'a/:x

Since YE(t) and YEl(t) are continuous on [0,1], we have
o +
( V}(t) YE )E“(ti) = ( V@Kt) YE )El(ti)
1 - — T +
( Ve Y% Tp(ty) = (Vi Yt )glty)
. — » +
( V@ ¥ (t) )E(ti) = V@ ¥ (t) )E(ti)
E E
Therefore we have the assertion. Q0.E.D.

From above two lemmas, the index form I on

g(LU(O),La%l)) is rewritten:

(5.4) I(Y,2)

l .
EEAED) [“SO<Vg(t)V~g(t) Y + R( Y, ¥(t) ) ¥(t), z > dt

A 1 k-1 A
+<Y, 2> \O + > < AV, 2k >

f

k-1 !
+Zi=l < A Vi,(t) YE’L )E_(ti)l ZE (tl) >_l 7

Pa) A — A
where ‘AY(ti) = Y(t.) - Y(t

i ) and A( Vg(t) y_+

g- g (B
= L L+ ) - i X L+t
Definition 5.2. A vector field Y along a geodesic ¥(t)

is called a Jacobi field along ¥ 1f Y satisfies the Jacobi

equation: Vi) Vi) ¥ + RO Y, Y(t) ) ¥(t) =0

Let ¥ be a transversal geodesic in M parametrized

proportionally to arc-length and (¥ ) the linear space of all



Jacobi fields along ¥ orthogonal to ¥ . Then we consider

the following subspaces of J(¥)

J.(¥) ={vedir) ; ¥=0}

Tx; 1) =4{veT(r) ; v(r) € L for any te[o,lj}

Tyt

T8 Logylyy ) = 1Y €T(y) ;s Y(0) €T

1l
r_}l\
=
m
2
e
<
)
m

TCx i Ly ¥ ) T 0y "

T (v: L) =T (5)AT(¥; L)
ToC¥i g0y Tyy ) =T n T s Ty Ly )

T (¥ Lygyr 5 ) =T (¥) A TOY5 Tygyr 1))

Lemma 5.4. The space (7L( ¥; L ) consists of all

solutions Y of

on ¥ such that Y(0) €& TX(O)L . Moreover dim SEJ ¥: L)
=pPp==n-dg .

Proof. If Y = YE + YEL satisfies (5.5) and
(5.6) YEL(O) =0 .

then we have



(5.7) ( Vg(t) Yt gt =0,

since (V. Y o) ) + (V. Yot gt . By

F(T) E F(t) 'E
(5.6) and (5.7), we have a differential equation system

gt = (Vi'(t) Yg

T
e v Al -

( ptl 2% £ ptqg )

=

vS(0) = 0
. 4
where YEl =v°¢ v, ,» ¥(t) = x“ v, and 0[;= x* r—ﬁd . Thus
we have, for each 7 , ve =0 , that is,
Y = YE
. . A
Since v%%t) Yo )E = ( V}E‘K(t) )E and Yo = ( VG(t) Yo )E
. ~
- (VY ¥ (t) )g r we have that Y. =0, that is,
B E
P
Y =0
By Proposition 5.1, we have
. v. + ¥ y =
And we have < Y, ¥(t)> =< Y ¥(t)> =0 . Therefore we

have Y € 3GJ(3'; L)
Conversely, if Y € 71('5; L ) , then it is trivial that
Y satisfies (5.5).

And we easily have dim SEK ¥; L) =p . Q.E.D.

Lemma 5.5. Let Y be a Jacobi field along a transversal

geodesic ¥ . If, for some tl &€ [0,17, Y(tl) =0 , then Y
& fZL(V') .
Py
Proof. From (5.2), Y satisfies ( V?Xt) Y )E +
(YZ? ¥ (t) )g = 0 . Thus we have



%ﬁﬂy=<<@&)ygﬁ—<$§vw>%
Y(tl) =0 R

that is, we have a differential equation system

a9t i4j
at @j =20
(127i2p)
ey = o0
1

where ¢ = ¥t a/axl . ff(t) = x* v, and &5’;‘ = XdaAi /> %7
Thus we have Ql = 0 , that is, ? = 0 . Therefore we have Y
- 33;(3 ) . Q.E.D.

Proposition 5.2. A vector field Y €& E(LX(O)’LX(l))
belongs 39.‘?1(3‘7 LK(O)’LK(l) ) if and only if I(Y,z) =0
for any Z € éTLK(O)'LU(l))

Proof. If Y Dbelongs to UEﬁ ¥; LU(O)’LK(l) ) , we have

yeT(y) , T =0 |,

Y (0) € Ty o YD) € To
that is,

Veoy Yy Y HROY, ¥(8) ) ¥(&) =0 ,

¥ =0 ,

N

AY = 0 , A(Vs,(t) P )E—=0k.

By (5.4), we have I(Y,2z) = 0 for any 2z € EKL)KO)’LBTl)) .

Conversely, suppose that I(Y,Z) = 0 for any 2 €

éﬂLzKO)’LF(l)) Then Y 1is a Jacobi field along ¥ ( See



[ 15 ], [ 18 ] ). For sufficiently small +t' > 0 , we take an

arbitrary 2z €& ETLZKO)’LK(l)) such that 2 = 0 on K’[t‘,l] .
Then, by the assumption, we have
0 = I(Y,2)
l Vel
= - A
Ty < Y0, 2(0)>

By the arbitrarity of the choice of Z(0) & Tyl » we have
that ?(O) = Q0 . From Lemma 5.5, we have § = 0 . Therefore

By the same ways, the nullspace of the index form I on

é,(Lz;(o)' ¥(1)) is SEJ(X ; LJ(O)’ ¥(1) ) . Thus we have

Definition 5.3. Let ¥ (t) be a transversal geodesic in
M parametrized proportionally to arc-length. A point ¥(1)

is a focal point of the leaf LU( | along ¥ if there exists

0)
a non—-zero vector field Y Dbelonging to ‘7i('x; LU(O)’ ¥(1) )

Proposition 5.3. Let Y = YE + YEL be a vector field
along a transversal geodesic ¥ in M . If Y. € 3}J(X’; Lyi0)
¥(1) ) , then YE =

i i . ol
Proof. We set YE =Y 2/Xx and ¥ (t) = X vy, . From
Yo € 5}A"X; LK(O)’ ¥(l) ) , we have
T = 0 =0
YE - 14 YE (l) - ’
that is,
i .
d Y i ,3 _
= T Z& Y- =0

Yi(l) = 0



where 5; = X* A% />x3 . Then we have Y. =0

Q.E.D.
Definition 5.4. Let %(t) ( t € [0,1] ) be a transversal
geodesic in M and « : [0,11X (-&,&€) —> M ( & >0 ) a
variation of ¥ , that is, x(t,0) = ¥(t) . The variation & of
L

¥ 1is a (L )-geodesic variation of ¥ if it satisfies

¥(0)’
the following:

¥ (1)

(i) For each u € (-£,£) , a curve dh(t) ( = x(t,u) ) is a
geodesic.
(1ii) Two curves do(u) = «(0,u) and Kl(u) = ®K(l,u) are in
LX(O) and LETl) respectively.
Proposition 5.4. Let ¥(t) ( t € [0,1] ) be a transversal

geodesic in M parametrized proportionally to arc-length and

«: [0,1]x(-g,8) — M (&2>0) a (LU(O)’LZKl))"geOdeSiC

variation of ¥ . Then the variational vector field Y(t) =

«,(2/a2u )(t,0) along Y belongs to 5&( Y ; LXTO)’LX(l) )

Proof. We have easily that Y is a Jacobi field along

¥ and < Y (t), %(t))> = 0 for any t €& [0,1] . By Lemma 5.2
and [ Y, Y (t) ]]t=0 = 0 , we have
Y(0) = (Vi) Yp )g(0) - (VYE*ﬂt) ) g (0)
= ([ ¥®), ¥, 1 ),(0)

I
s
o
<



By Lemma 5.5, Y €7L( Y; LT(O),LK(:L) ) . Q.E.D.

Proposition 5.5.

T8 Lyggyr T ) @ T 05 1) CTL (¥ Ly gLy, )

A

and dim 7L(X; LX(O)’ 3/(3-) ) g -~ 1 , where & denotes the

direct sum.

Proof. We take an arbitrary vector field Y € ji( Y; LK(O)'
Y1) ) N 71( ¥; L ) . Then we have
Y = YE
. = . Y 1 v
Vw(t) Y (Vﬂt) g gt t (VYEX(U -
Y(1) =0
If we set a(t) = ¥(1l-t) and Z(t) = Y(1-t) , then we have
Z = ZE
—_ 1 b
Vi) 27 (Vo) % 6" * (VZE ) g
Z(0) = 0 ,
that is, 2 ZE = gzt aﬁ;xl satisfies
i . .
d 2z i .3 _
raii égj z 0
(14£%zp)
z7(0) = 0
where d(t) = v* v, and 08—;‘ = V'*;AJ,;( /,;xj . Then we have Z
= 0 , that is, Y = 0 . Therefore we have

— 37.__.



p . =4
(5.8) T8 Loy T ) AT (¥ L) =10}

We take an arbitrary vector field Y ¢ 7L( Y ; LJ(O)’ (1) )

+7L(~5; L) ,Y=2+W where ze‘ffL(h’; LK(O), ¥(1) ) and

WéjL(b’; L ) . Then, from Wy* =0 , we have

(Z+W)E=ZE+WE

+ 1 = X
(z W)E 7

E
and
e
Y= (2 + W)
A ~
=Z + W
=0
. . e )
It is obvious that Y (0) T‘a’(O)L and Y (1) & Tb’(l)L Thgs
we have that Y € TL( Y ; LD’(O) ’Lb’(l) ) . Therefore we have

(5.9) T (¥ Lygyr ¥ ) + Ty L) CT (¥ Lygy, 1))

By (5.8) and (5.9), we have

T (85 Lypgyr T ) @ T 05 L) CT (¥ Lygy Ty )

Since dim jL(Y; Lyoy Ty ) = n -1 and
dim 7L(X;L)=n~q,wehave
dim 7L(X;L,(O),zr<l))g(n-1)—(n—q)
=q-]_
Q.E.D



Theorem 5.1. Let M be a foliated manifold with a

foliation E of codimension 1 and with a bundle-like metric

with respect to E . For any point m € M , there is not a

focal point of the leaf Lm through m along every transversal

geodesic ¥ starting from m .

Proof. By Proposition 5.5, we have

dim 5EJ(X ;];U(O)' ¥(1) ) =0 . Q.E.D.

Examnple 5.1. Let R3 be the set of triple (x,v,z) of

real numbers. R3 is considered a riemannian manifold with a
riemannian metric < , > = dx-dx - 2z dx-dy + (1 + 2?) dy-dy
+ dz+dz . Then R3 is considered a foliated manifold whose
leaves are orbits of a vector field 5/2x , and the metric is
a bundle-like metric with respect to the foliation, that is,

< , > = w-w + dy-dy + dz-dz where w =dx - 2z dy . For any
3

point (Xo,Ye,Zo) € R™ , let ¥ be an arbitrary transversal

geodesic starting from (Xo,YerZo) and L the leaf
(X0/Yo0r20)

through the point (Xo,YosZ%Zo) - Then there is no focal point

of the leaf L along 1

(XO'YOIZO)
Example 5.2. Let R4 be identified with the guaternion

number field @ , and let 83 C.R4

be a set {a € Q| paf = 1 }
where llall2 = a-a and a denotes the conjugate of a . For
any a €& s3 , L, denotes a set given by { (cos®)-a +

(sin® )-(i-a) | 0 £ @ £ 2n } .  Then s3 is a foliated manifold
by a family of the set La . The metric on 83 induced from

the flat metric on R4 is a bundle-like metric with respect to

3
the foliation ( See [ 3], [ 12 ], [ 14 ] ). For any a € S~ ,

____._4_[..__



let La be the leaf through a and Y(s) a transversal
geodesic parametrized by arc-length such that ¥(0) = a . Then

a point ¥(7/2) is a focal point of La along ¥ .



6. Clairaut’s foliation.

The following Clairaut’s theorem is a basic tool for

studying geodesics on a surface of revolution.

Clairaut’s Theorem. Let v be the distance to the axis

of revolution, and let « be the angle between a gecdesic and

the meridians, viewed as a function on the parameter of the

geodesic. Then I sindol constant.

Then we have the following definition:

Definition 6.1. Let M be a foliated manifold with a
foliation E of codimension g and with a riemannian metric

< , > . The foliation E 1is called a Clairaut’s foliation

if there exists a positive valued function K : M — R such
that, for any geodesic ¥ (t) parametrized proportionally to

arc-length,
r sin«! = constant ,

where oo = «(t) 1is defined by

cos? o (t) = Ixgt (e) I 2/ nx(e) 2
(0 ot(t) € 7/2 ), #(£) = X(£) = X () + X *(£) and UX(t) It °
= < X(t), X(t) > . The function I is called the girth of E
(See [ 1L 1, [ 101 ).

Let Y (t) be a geodesic in M parametrized proportionally

- . 2
— — a1 —
to arc-length and Y (t) = X(t) = Xp * Xp* - Setting p
NX(t)ﬂ2 = constant , we have
2 . 2
< XE' XE> —f’ sin” &«
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<XE-L, X +> = PZ coszo<

E
R. L. Bishop[ 1 ] defined and studied Clairaut submersions,
and H. Kitaharg{ 10 ] discussed the Clairaut’s foliations of
codimension 1 . We discuss the foliated manifold M with a

Clairaut’s foliation E of codimension g and with a bundle-

like metric with respect to E

Definition 6.2. A function £ on M is called a foliated

function if £ is constant on each leaf of M .

Proposition 6.1. ZLet M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . If E 1is a Clairaut’s foliation

with the girth w = ef , where £ is a function on M , then

f is a foliated function on M

Proof. Let ¥(t) Dbe a geodesic parametrized proportionally

to arc-length. By assumption, I sino = constant , thus we
have
_d -
0 = aE( r sin« )
_p 4 g d
—E‘-&-E-Slno( + r cos« It .
Then we have
= (S (r sinx ) ) p° sin
0—(3*5 r sin P
- .. 4af ,
=r 3¢ <Xg, Xp> +m<V;(t) Xp XE>

r < ¥(t), <X

Il

g Xg > grad f >+ 1r<‘75,(t) Xpr Xg 7 s



since df/dt = < ¥(t), grad £ > and ¥(t) = X =

Thus we have

< ¥(t), < Xgr Xg> grad £> = -<VL

We have

a_ L _d
at <Xp T XgT Xg> = g < Xy ¥ >

= 2< XE,X>

V.
¥(t) E
On the other hand, we have

d

d D

i

+ 1
XE XE .

vy Xgr Xg 0

=<V T Xg> + <0, Vi X >
= < XEI Vi(t) XE> + <XE'LI V"b.’(t) XE >
Thus we have
(6.1) <V ¥gr ¥g> = <Xgh Vi X >
Therefore
< f(t), < Xgp, Xp> grad. £ = - < X1, ooy Xx >

By Lemma 5.1, we have

X1t 7E



thus we have

(6.2) < Xpt, Vo Xp ¥ o= < Xt VXE Xg > -
Therefore we have
(6.3) < ¥(t), <Xgr Xp > grad £ > = - X4, VXE Xp >

Now, for any point m &€ M and any non-zero vector Y

& TmL , we take a geodesic ¥(t) such that

$(0) = m 3(0)

I

Y

and then we have, by (6.3) at t o ,

il

< Y, <Y, ¥ > grad f]nl> =0 ,
thus we have
< Y, grad f]m> =0 .

Therefore, grad £ 1is orthogonal to a leaf at each point,
and f£ 1s a constant on each leaf. Thus £ is a foliated

function on M . Q.E.D.

Definition 6.3. Let {~Xi’ X4} be an orthonormal adapted

frame to E . The mean curvature vector Hm at m €M 9£ the

leaf L is defined by

1
Ho © n-q 'Ezi < V%i Xi‘m d Xdlm\> Xdim

Definition 6.4. A leaf is called totally umbilic if, for

each point m of the leaf, it holds
<E|p s V> By = (% Y0

for any X, Y € r(E]U) where U 1is a flat coordinate chart
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at m

Proposition 6.2. Let M be a foliated manifold with a’

foliation E and with a bundle-like metric < , > with respect
to E . If E 1is a Clairaut’s foliation with the girth
= ef where f 1is a function on M . Then the mean curvature
vector H of each leaf is - grad f ..
Proof. For a geodesic Y¥(t) , f(t) = XE + XEL , we have
X = - i
(6.4) < Xty <XE, XE> grad £ > <XE . VXE X >,

since grad f is orthogonal to each leaf and (6.3) holds.

For any fixed point m & M and any non-zero vector

v¥ Xdlm at m , we may take geodesics Xi(t) (i=1, 2, ", p)
such that , L
— v Yy — o
e R A PRk Y P
where {Xi’ Xx} is an orthonormal adapted frame to E . By

(6.4), we have, fof each 1 ,
ol — o
<¥i x| ,ograd £] > = - < YUK |, VXi S
And, for each 1 and « ,

< Xylp v \75(1 X |n? = - <X |, r grad f]m> .

Thus we have

‘j?:;( < Xo(’m ! VXi Xilm> Xo(lm

- ) T K| o grad £> X

1l

- (n-q) grad f[m .



Therefore, by the choice of m , we have §H = - grad f

Q.E.D.

Theorem 6.1. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . Suppose that all leaves are

totally umbilic and the mean curvature vector H of each leaf

is - grad £ , where £ is a function on M . Then E 1is a

Clairaut’s foliation with the girth r = ef

.

Proof. Let ¥(t) be an arbitrary geodesic parametrized

proportionally to arc-length and 5(t) = X = Xo + XEL . We set
g = uig;)ﬂ ( = constant )
cos? o = X+ H2/\IX I
r= el .

We have

< ¥(t), <Xg, X > grad £ >

<X L, < XE, XEj> grad £ >

E
=—<XE-L, <Xpr X > H ( from that H = - grad £ )
= - <’XEL, V% Xg > ( from that all leaves are
E totally umbilic )
= - L ; from (6.2) )
< Xgty % () XE> ( from (

= - ) .1
= <Vb’(t) Xor X > ( from (6.1) )
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Thus

< X XE><‘0’(t),grad f>+<Vg(t) oy XE>=O , ‘
that is,
af ,2 _. 2 a 2 .2 _
2H€F 511’10( +_d-'E(F SlnD{)'—O
Then we have
£ 4f ,2 . 2 £ a 2 .2 B
2 e Tt f7 sin"X + e EE( f= sin £ ) =0 ,
that is,
2 . dr _. a . B
2 f sin & (aE- sin® + EE( sin ) ) =0

1
o
.

By the choice of ¥ , we have d( i sink )/dt Therefore,

E 1is a Clairaut’s foliation with the girth r = e

Example 6.1. Let R2 be a x-y plane with the flat metric
< , > . We consider. Rz - {(0,0)} a foliated manifold whose
leaves are sets Lr = ~{(x,y) & R? ] x2 + y2 = r2 } {(r >0).
The metric < , > hRZ - §(0,0)} is a bundle-like metric with
respect to the foliation. Then the foliation is a Clairaut’s

foliation with the girth r = ( x2 + y2 )l/2 .



7. Second connection.

I. Vaisman proved the following theorem:

Theorem( I. Vaisman[ 28, 29 ] ). Let M be a foliated

manifold with a foliation E of codimension g and with a

riemannian metric < , > . Then there exists a connection D

uniquely defined by the following conditions:

1

(i) If Y € (E) (resp. [(E) ), then D Y €[ (E) ( resp.
F(E) ) for any X & [M(TM)
(i) If X, ¥, 2 €[(E) (or [(E) ), then x<Y, 2> =

<D, Y, 2> +<%Y, D, Z2 >

X X
(iidi) ( T(X,¥) )E = 0 if at least one of the arguments is in
(E) , and {( T(X,Y) )El = 0 iﬁ at least one of the arguments
1
is in [(E ) . Here T denotes the torsion tensor of D , that
is, T(X,¥) = Dy ¥ - D, X - [X,¥]

This is proved by similar way to prove the existence and
uniqueness of the Levi-Civita connection on a manifold with a

riemannian metric.

Definition 7.1. The connection D of above theorem is

called the second connection on a foliated manifold.

The second connection is not metrical with respect to the
riemannian metric and has non-zero torsion in general. The
foliated manifolds with second connections are studied by H.
Kitahara{ 11 ], H. Kitahara and S. Yorozu[ 13 ], I. Vaisman[ 28 ]
and others. |

Now, we have expressions of the second connection D and

its torsion tensor T by using the basic adapted frame



i . i
{2/%x", v, } to E in a flat coordinate chart U(xl,ﬁx)

first recall that the metric <

14

k =

> 1is locally expressed by,

- i k =z
where w™ = dx— +.Ai dxX .
Lemma 7.1. It holds that
D . a/axj = ]]"k a/axk D ;/:x] = H‘k. a/.;xk
>/>x" 1] v, %3
D .V =0 D v =Tc :
/5% £ Ve & xg T
where
k _ 1 kh i j h
H‘ij =3 g ( ;ghj /3% + ggih />X ‘;gij /3% )
k  _ k 3
H'dj = A, /o
T _ 1 =zt N
U—,((g--2—g (Ve (ges ) T Vsl gue ) = Vel g, ) )
Moreover
T ( 9/;?Xl, D/;Xj )y =0 T ( Q/QXJ', V{g ) =0
k k « h k h
T( v,, Vs ) = ( 2A, Srxf - A5 /ox + Ay 2R, /OX
k
- A]; ;Ai /;xh ) 2/>x
Lemma 7.2. It holds that
i j k _ 3 k >
(5/2x")< 2/>x", >/x > =<D ; 2/ex7, 2fx
2/> X
| k
+ < 3/»x”, D g x>
>/2X

5/ —

We



Vi <Vp, vz> =<Dva‘ vp,'vz> + < V,, Dv“ v_c>

Moreover, if the metric <« , > 1is a pundle-like metric with

respect to E , then

(;/;xi) < Ve v(8> <D L Vs Vg > o+ <v‘x,'D L Ve >

>/> x* £ >/ %"

We omit proofs of above two lemmas.
We discuss the ralation between the second connection D

and the Levi-Civita connection V .

Proposition 7.1. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . If all leaves are totally geodesic

L
and E is integrable, then ¥ =D

1
Proof. By the integrability of E , we have

i i
[ v v/g ] —-Bd(, /2 X
=0 ,
that is, Bip = 0 for every i , o, £ . Then we have

k k < _ T
ru‘g = r/g,( = de = rj,( =0
for every k, j, &, g, C

by Lemma 5.1.

Since all leaves are totally geodesic, we have rzj = 0

and, by Lemma 5.1,

_ ko, i k 5
(7.1) VE( gij } = gkj >5As /fox + 95y SAy /Jox



Substituting above equality to the right side of the third

equality in Lemma 5.1, we have

k
ro(j

QA}:( /axT .
Thus we have
ko _
Therefore, by Lemma 5.1 and 7.1, we have
ko _ k k k T _ <
rij - H—J_j ! ro(j - [ro(j ! ra(/s— U—x/g

and others vanish. Q.E.D.



8. Geodesic with respect to the second connection.
Let M be a foliated manifold with a foliation E of
codimension g and with a bundle-like metric < , > with

respect to E . Let ¥(t) be a curve in M . Locally, ¥(t)

o

is expressed by Y(t) = ( Kl(t), Y7 (t) ) in a flat coordinate

i«
chart U(xl,x ) , and

1

.

) =¥ (1) apxt + ¥t o

I

I

(vl +al vt ) st ¢ 70 v

Definition 8.1. A curve ¥(t) in M is called a
D-geodesic if

Such a parameter t 1s called a D-affine parameter.

Remark. To distinguish a geodesic with respect to the
Levi-Civita connection V from a D-geodesic, we will use
"V-geodesic" instead of " geodesic with respect to < ".

A curve ¥(t) in M is a D-geodesic if and only if ¥ (t)
satisfies a differential equation system:

2.k i 3
asy +U—k aYtay

dtz ij dt dt

avyl ar®
dt dt

ki K '
205y A+ 2 Ay /ax7 )

+ (285 /5xf + B, 22K /5xt + []'}i"‘j Ay A%

< k., art ax’
" T 22) g e <O




On the other hand, a curve ¥(s) in M is a Y -geodesic if

and only if ¥(s) satisfies a differential equation system: .
a® ¥k | s artay?
92 ij “ds " ds

+

K kK i .aylay
2 ( {—dj + rﬁij at a4

k k 3 : k J
+ 4 J _a3d ]
(oA, /foxb + 2] de, A QAF/@X

=4
k .i.3.day%axyf
iy RPx s ) T35 as
2
ds
2 T .
asy z z i z i .ay*ayxf
+ + . =Y
2a2 ( T-ap | Fig 225+ 270 45 25) 3 35
e avytay?
ij ds ds
. 3 .
z T i d ¥y° d ¥ _
| 20Tyt T2 ) 35 @ =0

Let ¥(u) be a D-geodesic in M parametrized by a

parameter u = u(t) where t 1is a D-affine parameter. Then
we have

: 2 ,..2 2 ,
(8.2) DU,(u) ¥'(u) = - ( (@%w/at”)/(du/dt)” ) ¥'(u)
where y'(u) = ( dKi/du +.Ai dﬁs/du ) ;A;Xi + ( d?ﬂydu ) v,

Now, let ¥(t) Dbe a D-geodesic parametrized by a D-affine

parameter t and i(t) = X = XE + XEL‘. Let s Dbe the arc-
length along ¥ .  Then we have
ds 1/2

= L X
= (<XE’XE>+<XE'.XE>>



_ 1 , -1/2
(8.3) =5 = S(<Xy, Xg> + <X L, X > {X(<XE, Xp >

By Lemma 7.2, we have

X( < X, Xp> + < Xpty Xpt > )

1
XE B XE> +XE < XE, XE>

+ 1 L L iR
2<DXEXE,XE >+2<DXE_,_XE,XE >

L L
2<DXX, XE>+2<DXX,XE >+ Xg <XE, o>

-2 < DX N XE’ XE >
B
— X -
= Xpt < Xpr X 2<DXE¢ Xpr Xp > .
. i i o
Thus, setting XE = X7 2/ax and XE—L = X" v, , we have
i L

(8.4) X(<XE, XE> + <XE r Xg >)

S G| i _ k i k
= X7 X (X7 v ( 945 ) 2 X g;ij.;;zl.‘,< /%)

Proposition 8.1. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . Suppose that all leaves are

totally geodesic. Then the arc-length parameter is a D-affine

parameter.

Proof. By the assumption, we have that qx( gij )

.aA}; /;xl + g ;A]; /;«xj ( See (7.1) ). By (8.4), we have

ik



X(<Kpr X > + <X b, Xpt>)

o . . . . .
k k

-2 X gijaA%( /X )

i k
BAJ& /X )

It

& 3 i k j _ Uk
X7 X7 (X gikan/;x X gij

k

x* x3 x* gikaA}i Joxd - x% x3 xF 9 5 SAL, /5x

=0
Thus, by (8.3), d2s/dt2 = 0 . Therefore we have Du'(s) ¥' (s)
= 0 where ' denotes the derivative with respect to the arc-—
length parameter s . Q.E.D.

Definition 8.2. A D-geodesic ¥(t) in M 1is called a

- L
transversal D-geodesic if ¥(t) € [T(E | ) for every t

Y(t)

Theorem 8.1. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

with respect to E . A curve ¥(t) in M 1is a transversal

D-geodesic if and only if ¥(t) 1is a transversal V-geodesic.

Proof. In a flat coordinate chart U(xl,x"‘) , setting

¥(t) = (‘o’i(t), Xd(t) ) , we have

i . oc . o
. ., avr idy i avy
V8 = (Sqg * RaTge ) 2R gy Yo -

If ¥(t) 1is a transversal D-geodesic, that is, Dx'(t) ¥(t)

=0 and d ¥ /dt = - AL d ¥*/dt . Then we have



da v 3 Ak da v
dt % 4dt
(8.5)
a? 5" e arytax?_ |
dt2 D((S dt dt
By Lemma 5.1 and Lemma 7.1, (8.5) makes into
av® _ _ ,kdx®
dt A dt
dza’z+r'c a gt axf_ |
dt2 MF dt dt
Thus Xk(t) and Xd(t) satisfy the equation (8.1).
¥(t) 1is a transversal Y -geodesic.
The converse is obvious. Q.E.D.

Therefore



9. Jacobi field with respect to the second connection.

Let M Dbe in above section, and we define a D-Jacobi field

along a D-geodesic in M .

Definition 9.1. Let ¥(t) be a D-geodesic in M . A

vector field Y = Y(t) along ¥(t) is called a D-Jacobi field

along ¥ (t) if Y satisfies the Jacobi equation:

Y + R_ (Y, §(t) ) (&)

Prey Paee D

+ Di(t)( T( Y, 3(t) ) ) =20

where RD denotes the curvature tensor of D and T denotes

the torsion tensor of D ( See [ 15 1 ).
We notice that

(T(Y, ¥(t) ) ) )t =0

(9.1) ( D, E

by Lemma 7.1.
Remark. We will use "V -Jacobi field" and " V-focal point"
instead of "Jacobi field" and "focal -point" in section 5,

respectively.

Definition 9.2. A vector field Y on M is called

transversal if Y €[ (E ) .

By Lemma 7.1 and (9.1), we have

Lemma 9.1. If Y 1is a transversal D-Jacobi field along

a transversal D—geddesic ¥(t) in M , then

D. Y+ Ry( Y, () ) ¥(t) =0 .

$t6) Py



Every transversal D-geodesic ¥ (t) admits two D-Jacobi
fields in a natural way. One is given by ¥(t) and the other

is given by t %(t)

Proposition 9.1. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . Then every D-Jacobi field Y

= Y(t) along a transversal D-geodesic ¥(t) in M is uniquely

decomposed in the following form:

Y(t) = (at + b ) ¥(t) + V(t) ,

where a and b are real constants, and V(t) is a D~Jacobi

field along ¥ (t) orthogonal to ¥ (t) .

Proof. We set

a =< ¥(t,), (D Y ) (o) > /N FlE) P

I(t)
b= < ¥(to), Y(te) > / N¥(ts) 2
for some t, , and
V(t) = Y(t) - ( at + b ) ¥(t) .
Since Y(t) and ( at + b ) 3(t) are D-Jacobi field along
f(t) , so does V(t) . We have, by (9.1),
(9.2) 0 = < Deie) Do vV(t), Y(t)>

+ <R, ( V(E), ) ) 3, Y(E) D

<Dy Dy V(B), Y(t) ” )

By the properties of D ( See Theorem( Vaisman ) in section 7 ),



il

)L V(E), ¥(t)> iwwmqu+vm) Fe) >

A
E r

¥(t) < V(E) Y(e) >

) V(E) L, F(E)D>

F(e)<vit) L, F(e)>

I

0 . Thus we have

I

and < D V(t)p, F(E)>

¥(t)

(9.3) F(E)LK VL), F(B)> =< v(t), Y(t) >

P y(e)
By (9.2) and (9.3), we have

a? -
-—‘E<V(t)r ~°,(t)> =0 r
dt

thus - < V(t), ¥(£)> = ct + & where ¢ and d are constants.

We have

a =< V(ty), ¥Tlty) >

< Y(ty) - b ¥(ts), ¥(ts) >

< Y(Ey), ¥(te) > =~ b < $(ty), Y(to)>

= bl Y(t) ? - bl F(ta) N2
=0
As D?(t) ¥(t) = 0 , we have Di(t) vV(t) = Di(t) Y(t) - a ¥(t)

Thus we have

= d :
c =g <V, Y > |



=< Doy VR, B>

= < (D) Y (te) = a ¥lto), ¥(to) >

*

= < ( D?(t) Y )(to)l X(to)> - a < X(to)/ X(to)>

Il

a ¥t )2 - a | fe)N?

Therefore we have
< V(t), ¥(t)> =0

The uniqueness of decomposition of Y(t) 1is easily proved.

Q.E.D.

Proposition 9.2. Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . Let ¥(t) (t € [0,1] ) be a

transversal D-geodesic in M and Y a transversal D-Jacobi

field along Y(t) . If <'RD( Y, ¥(t) ) i(t), Yy><0 and Y

vanishes at two points ¥ (0) and ¥(1) , then Y wvanishes

identically.

Proof. We have

g? < Dﬂt). Y, Y >
= < Dye) Py Y Y2 <Dy Yo Dy ¥
= - <R (Y, ¥(t) ) ¥(&), ¥ >
+ < Di(t) Y, Doy ¥ >,



thus we have

l .
go {<D%(t) Y, Db-,(t) Y > - <RD( Y, ¥(t) ) ¥(t), Y>} dt

= <Dy Y0, Y(0)> = < (D) Y1), YA >

.

Since < R (Y, ¥(£) ) ¥(t), ¥> £ 0, we have

< Dye) Yo Py Y2 =0
for any t & [0,1] . Since Y wvanishes at 7%(0) , Di(t) Y =0
implies Y(t) =0 for any t € [0,1] . Q.E.D.

Now we have the non-existence of V-~focal points of each
leaf under a certain condition of RD .
For a point m € M , a plane TI in the tangent space T M

is called a transversal plane if T is spaned by linearly

XL
independent vectors Xm, Ym such that Xm’ Ym € E - ( that is,

X and Ym are transversal vectors ). For each point m &€ M

and each transversal plane T in TmM ;, the transversal

D-sectional curvature K(m, ) is defined by

<Ry (X ,Y )Y , X7V
K(m,T) = L

2
<xm, Xm><Ym, Ym> - <Xm, Ym >

where X and Y~ are linearly independent vectors and span

a transversal plane T . If K(m,T) £ 0 for each point m & M

=

and for all transversal plane T in TmM , then M is called

to have non-positive transversal D-sectional curvature.

Then we have



Theorem 9.1: Let M be a foliated manifold with a

foliation E of codimension g and with a bundle-like metric

< , > with respect to E . Suppose that M has non-positive

transversal D—éectional curvature. Then, for any point m € M ,

there is not a w-focal point of the leaf through m along

every transversal Y -geodesic starting from m

Proof. Let ¥(t) ( t € [0,1] ) be a transversal V-geodesic
starting from m . We assume that a point ¥ (1) is a VYV -focal
point of the leaf L. through m along ¥ . That is, we

assume that there exists a non-zero V-Jacobi field Y
€ 31(‘V; LX(O)’ ¥(1) ) . Then we have Y.t # 0 by Proposition

5.3. Thus we have

A

Yy=0 , Y(0)e&eT

XKO)L , Y(L) =0
and, by Proposition S.L,
(9;4) 0 = ( Ve ( Vg Yt gt gt
( Vaioy ! VYEJ- Fe) gt gt
SOy, Fe 1 e B gt

E

The transversal V-geodesic ¥ 1is also a transversal D-~geodesic

by Theorem 8.1l. By Lemma 5.1 and Lemma 7.1, (9.4) implies

= Pyt Pie) YET T Pyee) Pyge ¥

0



=D, D

5(t) vt o+ R Y, F(E) ) Yle) .

7(t) "E

Thus YEL is a transversal D-Jacobi field along ¥ and ¢

satisfies Y 1(0) = ¥ 1(1) =0 . By <Ryl ¥yl ¥(e) ) f(t), ¥ r>
< 0 and Proposition 9.2, we have YE-L = 0 . This is a

contradiction. Q0.E.D.

See Example 5.1.



Appendix

Let G be a ptg dimensional connected Lie group, and
let g4 be the‘associated Lie algebra consisting of all left
invariant vector fields on G . If we take a Lie sub-algebra
M of ¢¢ , then G 1is regarded as a foliated manifold. 1In

fact, a sub-bundle E= U E_, E_ = { X Xe N} of the

aec °
tangent bundle TG of G 1is integrable. And we assume that

4 |

dim Ea = p for every a & G . Then we have

Definition. The above cople (G;% ) is called a foliated

Lie group with a foliation Y] of codimension g

We notice that if ) is an ideal of ¢ then the leaf
space G/ has a Lie group structure.

We assume that G admits a left invariant riemannian
metric < , > . Then we take an orthonormal adapted frame {_Xi,
Xy} to the foliation ‘n with respect to the metric < , > .

The Levi-Civita cinnection § is defined by

K Vy ¥, 2 >

{<[X,Y],Z>—<[Y,Z]:X>

|
No|

+<[z;x],Y>}
for any X, Y, Z € % .. Setting

it follows that



\V4 X = ; _
%; 2 {-CABC Coea * Ccas J Xc

where A, B, C =1, 2,---, p, p+tl, -, p+tq . | See, J. Milnor,
Curvature of left invariant metrics on Lie group, Advances in

Math. 21 (1976), 293-329 ).

Let ¥(s) be a geodesic in G parametrized by arc-length
s and ¥(0) = e ( the unit of G ). We set
* $(s) == . P 3t . pta -y
(*) (s) Zflzl (s) Xllv%s) + 2:d=p+l ¥ (s) XM]X(S)
for an orthonormal adapted frame { X, X,y to Y . From
Theorem 4.1, if the riemannian metric < , > 1is a bundle-like

metric with respect to Y and all leaves are totally geodesic,

then
;Ziil{fgl(s)}z = constant

for any geodesic ¥ (s) with (*). But each il(s) is not
constant in general.
For each X € %, a linear transformation ad(X) : g — &

is defined by
ad(X) Y= [ X, Y]
for any Y € 9, and it is called skew-adjoint if it satisfies-
<ad(X) ¥, 2> + <Y, ad{X) 2> =0

for any Y, Z € 93 .

Theorem. Let (G;Y) be a p+tqg dimensional foliated
Lie group with a foliation n of codimension g . Suppose that
¢ has a left invariant riemannian metric <« , > and that




ad(Xx) 1is skew-adjoint for every X € ¥} . Then, for every

geodesic ¥(s) in G parametrized by arc-length s ,
31(5) = constant 1 é:vi < p
s _ p i ptq ¢~
where D’(S) Zl=l ¥ (S) Xl}b'(S) +Zb(=p+l ¥ (S) XU“X(S) r and

{ X;, X, } denotes an orthonormal adapted frame to Y .

Remark. Under the above assunmptions, we have that the
metric < , > 1is a bundle-like metric with respect to ' and
all leaves are tqtally geodesic. If Y is the non-trivial
center of G , then ad(X) is skew-adjoint for every X &€ )]
If the metric < , > 1is a bi-invariant metric on G , then

each ‘XA(S) = constant ( A= 1, 2,3‘-, p: p+l, ---, p+tq }.
Proof.. Let ¥(s) be a geodesic in G . Then we have

0= WV 3 (s)

¥(s)
= v, FB(s) x4

¥ (s) Xy
_ s (¢ () L, 1 53 . B . .
= & ds 2 (s) ¥ (s) { Cppe BCA

+ CCAB )‘} Xclx(s)

Thus we have, for each 1 ,

a ¥t (s) 1 -A ©B _
Now we have
Casc * Cpac = °

and, from that ad(Xi) is skew-adjoint, we have



Thus we have

£1
d ¥ (s) _ _ 1 ;A ¢ B
ds 5 ¥ (s) 37(s) [ Cppy - Cipa * Ciap )
_ _ 1 A - B
= > ¥ (s) T (s) CABi
=0
Therefore, for each i , ??l(s) = constant . Q.E.D.

We give a example of G satisfying the assumptions in
the above theorem.

Example. We set

.. ﬁ [Al A2] \ A) €50(n) , A, € M(n,mR) A, # 0 }
0 A, Ay € GL(mjR) det A, > 0
o - { 'Xl le Xl € a¢(n) , X2 € m(n,m;R) }
| O X3 X3 & ?((m;IR)

(x
i

r X 0
:, X € us¢(n) S
. 0 0

Then ¢} is the associated Lie algebra of G , and [ is a
Lie sub-algebra of < and is not an ideal of % .

For each a € G , the left translation ,Qa : G —> G is
defined by fa (b) = ab for any b &€ G . The left translation
}a induces a map (’éa*)e : o= TG —> TaG . Thus we may take
that TaG = (fa*)e(g—) for every a € G . For any X, Y € g,
we may define < X, Y » by

t

< X, ¥ > = Trace( XY )



where tX _.denotes the transposed matrix of X . Then G has
a left invariant riemannian metric < , > . In fact, for any

-

X, Y e TG (a €G ), we may define < X, Y >a by

<z, T>, =<Xx, ¥>

where X = (;%*)e(x) and Y = (1%*)e(Y)
Next, we show that ad(X) is skew-adjoint for every X
€ . We take

1l

v [}:1 Z]C_ﬂ

0 Y3 0 23
Then we have
< ad(x) Y, z 2>
t
= Trace( ( XY — ¥YX Y2 )
= Trace ( t( X. Y, - Y. X )z, + t( X. Y. YZ., )
171 171 1 172 2
< Y, ad(xX) Z >
= Trace( tY ( X,zZ. - Z.X. ) + tY ( X. 2. ) )
1 171 171 T2 172
We have
< ad(X) ¥, 2> + LY, ad(X) Z >
= Trace( t( X. ¥, - Y. X, )z, + tY ( X2, - Z2.X. 1))
171 171 1 1 171 171



+ Trace( t( XlYZ )Zé + th( XlZ2 ) )

Since X., Y Z, € ##(n) , we have

l, ll

Trace ( t( XY, - Y. X, )Z, + tY ( X,2, -

171 11 %1 10 %121 T Z3X) )
_ _t, t t
= Trace( Xl YlZl YlZle )
= Trace( - X,Y_. 2. - t( X.Z2,Y, ) )
- 17171 17171
= Trace( - XlYlZl XlZlYl )
= Trace( - Xl( Y2, - ZlYl ) )
= Trace( - X.( ( ¥,%Z2, ) + t( Y.Z. ) ) )
1 171 171
= 0 ,
and
t t

Trace ( ( XlYZ )Z2 + Y2( X122 ) )
3 t, t ot
= Trace( Y2 XlZ2 + Y2XlZ2 )
— _ t t
= Trace( Y2XlZ2 + Y2X122 )

Thus we have
< ad(X) ¥, 2> + <Y, ad(X) 2> =0

for any X € n , Y, Z € G .



We set

J
o > 0
. : V., V.
Eij = i) ---% <o € 2L(m;R) 1 271, Jgm
o 0
0 0
ij
Then we notice that ad(le) is not skew-adjoint on < . 1In
fact, we have
< ad(le) Xmm’ le§7 =1
< Xmm’ ad(le) le'> =0 .
Therefore (G;!]) 1s a foliated Lie group with a foliation

Y satisfying the assumptions in the above theorem.
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