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PREFACE

The spaces with geodesics would be (complete) Riemannian
manifolds, (complete) Finsler manifolds and G-spaces created by
H. Busemann. The difference between a Riemannian manifold and
a Finsler manifold 1s that the former behaves locally like a
Euclidean, the latter locally like a Minkowski space. One of the
important properties of a Riemannian manifold M is that
Fuclidean spaces as tangent spaces are developed in a single
Euclidean space along a curve in M. G-spaces have no
differentiability, so that it is impossible to approximate the
space locally by a 1linear space. In this reason the theory of
G-spaces 1s sald as a direct method of geometry.

In this thesis I will deal with convexity in Riemannian
manifolds and in G-spaces. Functions and sets with convexity are
naturally defined on these spaces, because geodesics play the
same role as lines in linear spaces. Since the behavior of
geodesics depends on the metric structure of the space, the
existence of definite convexity are possibly influenced by 1ts
topological and metric structure. I would like to show some
aspects of influences on convexity in Riemannian manifolds and
G-spaces.

A fundamental property of a 3-simplex in an affine space
is that it 1s obtained by connecting points of the six segments
which join the four vertices. Also it is trivial that a triangle
A(abc) is decomposed into two triangles A(aba’) and A(aca’)

where a’ is an arbitrary point in the segment T(b,c) joining b



and c¢. In Chapter I these properties together with the axiom of
n-planes (which is also called Beltrami’s theorem) will furnish
a necessary and sufficient condition for a Riemannian metric to
be of constant curvature.

A function F on a G-space R 1s said to be convex (or
concave, affine) if Fex is a one-variable convex (or concave,
affine) function where x(t), - < t < o, is a representation of
an arbitrary geodesic in R. The Busemann function of a ray (see
Chapter III) often becomes a function with convexity. For example,
the Busemann function of every ray in a complete noncompact
Riemannian manifold of nonnegative sectional curvature is convex,
and the Busemann function of every ray on a simply connected
G-space with nonpositive curvature is concave, and the Busemann
function of a ray {x} x [0,») on a complete Riemannian product
N x IR is affine. Greene-Shiohama ([15] and [16]) have determined
the topological and differentiable structures of complete
Riemannian manifolds with locally nonconstant convex functions.
They use essentially the properties which hold on Riemannian
manifolds, for instance, the existence of strongly convex balls
and the first and second variation formulas. In contrust to the
Riemannian case where convex functions are automatically
Lipschitz continuous, 1t is not true in general that convex
functions on a G-space 1s continuous. But if the dimension of
a G-space is two, then the space becomes topologically a surface
and it turns out that every convex function on it is continuous,

This situation makes it possible to investigate the topology of



2-dimensional G-spaces which possess convex functions, Without
using existence of strongly convex balls and variation formulas
I will show in Chapter II that if a G-surface R admits a locally
nonconstant convex function, then R is topologically either a
plane, a cylinder Sl x IR or an open Moebius strip.

I would like to emphasize in Chapter IV that the existence
of an affine function on a complete Riemannian manifold M gives
a strong restriction to the Riemannian structure. Namely, a
complete Riemannian manifold M admits a nontrivial affine
function if and only if M is isometric to a Riemannian product
N x IR. Thus a characterization of a Euclidean space is obtained
via affine functions. This particular property of affine
functions 1is applied to Busemann functions on complete and non-
compact Riemannian manifolds of nonnegative (or nonpositive)
sectional curvature to give new splitting theorems.

Due to convexlity of Busemann functions the study of these
functions is important. In fact, it plays an essential role in
the study of complete Riemannian manifolds of nonnegative {(or
nonpositive) sectional curvature. In Chapter III, I shall discuss
the "differentiability" of a Busemann function on a G-space R.
Here it will be proved that 1f the set of all "non-differentiable™
points of a Busemann function on R is bounded, then a neighborhood
of the point at infinity of R is topologically a cylinder and
R has exactly one end. Concerning the metric structure of R it
follows that if dim R = 2 and the total excess of R (which

corresponds to the total curvature in Riemannian case) exists
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and if the set of all "non-~differentiable" points of a Busemann
function 1s bounded, then the total excess is 2mx(R). It should
be noted that this value 1s the possible maximum value by the
well-known theorem due to Cohn-Vossen in [12] which has been
extended to G-surfaces by H. Busemann in [4].

I am deeply imdebted to Professor Katsuhiro Shiohama for
introducing me to G-spaces and convexity in geometry and for
his continuing and stimulating interest in the present work.
Also I would like to express my thanks to Professor Hisao

Nakagawa for his advice and encourgement to carry out this plan.
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CHAPTER I

The axiom of n-planes and convex hulls

1. Introduction.

A characterization of a space of constant curvature is an
interesting problem in Riemannian geometry. It has been done by
the various methods as seen in [47, [8] and [27]. In particular

we are interested in the axiom of n-planes which is stated as

follows; a Riemannian manifold M of dimension m > 3 is said to
satisfy the axiom of n-planes if for each p in M and any n-
dimensional subspace Tp’ of the tangent space TpM, there is an
n-dimensional totally geodesic submanifold N containing p such
that the tangent space of N at p is Tp’, where n is a fixed
integer 2 < n < m. £E. Cartan proved in [6] that if M satisfies
the axiom of n-planes for some n, then M is a space of constant
curvature.

Historicaly, E. Beltrami proved in [2] that a space of
constant curvature M satisfies the axiom of 2-planes, and the
converse was proved by F. Schur [37]. ﬁ. Cartan also indicated
in [7] that Schur’s theorem had been proved by L. Schlaefli [36]
in combination with F. Klein [26].

The purpose of this chapter is to exhibit this axiom in
terms of convex analysis, i.e., convex combinations and convex
hulls.

In this chapter let M be a Riemannian manifold without



boundary. For a point p in M let B(p,p) denote the strongly

convex open ball with center p and radius p, i.e., every ball

which is contained in B(p,p) is convex where the term "convex"
is used in the following sense: A set D < M is convex iff q, r
in D implies that there is a unique (distance minimizing geodesic)
segment T(q,r) and it is contained in D. From [44] (and also
see [17], [19]) we know that for each p in M there is an p > O
such that B(p,p) is strongly convex. Since the constancy of
curvature is a local property, we may restrict our attention to
the interior of a strongly convex ball.

If U is a subset of B(p,p), then we consider the smallest

convex set which contains U, We call it the convex hull of U

and denete it by HU. Clearly HU < B(p,p).

For a set U in M, CU is by definition the set of all points
each of which belongs to some segment which joints two points
of U, and we put cXu:= C(Ck—lU) inductively, k = 1,2,..., ¢Ou:=
U. Clearly HU = SZCKU holds for any U < B(p,p). We may think
that Ck corresponds to convex combinations in the linear space.
In fact, Valentine stated in [43] that Ck was observed by Brunn
[3], Sierpinski [40], Abe-Kubota-Yoneguchi [1] in Euclidean
space.

It is the nature of a space of constant curvature that the
convex hull of sufficilently close n+l points Aps Gys---> a4, can
be obtained by Ck{qo,ql,...,qn}, where the integer k satisfies
ok-1 k

< n < 27, And if M satisfies the axiom of n-planes with

2 < n < dim M, then the set of n+l points Ag> Ays+-+5 Ay which



k
are sufficiently close to each other, has the property that C
{qo,ql,...,qn} = H{qo,ql,...,qn}, where the integer k satisfies

k-l oy o oK,

2
However it is not easy to verify the converse. This 1is

because Ck{ } does not in general carry the structure of a

smooth submanifold, and because the dimension of H{ 1} is

possibly greater than n.

Thus our main result of this chapter is

Theorem 1. Let dim M be greater than 3. If for each point p
in M there exists a convex nelighborhood V of p in M such that
= (2 .
i{ay,a,,95,a3F = C7{ay,a,,9;,05) for any points gy, dp, dy, dg

in V, then M 1s a space of constant curvature.

The author does not know whether the above theorem for
convex combinations of three points is true. On this problem

the following holds.

Theorem 2. Let dim M be greater than 2. If for each point
p in M there exists a convex neighborhood V ¢f p in M such that
: 2 2
H{qOJql,q2} = C {qO,ql,m(ql;q2)} v C {qo,qz,m(ql,qz)} for any
points Aps A5 95 in V, where m(ql,q2) is the midpoint of the
segment T(ql,qg) which joins a and Ay then M is a space of

constant curvature.

In the proofs of our theorems we shall need to estimate



the dimensions (defined in [20], p.24) of convex hulls. For this
purpose we will often use the a-measure ma(X), 0 £a <=, of a
(separable) metric space X which is defined in [20], p.102 as

3

follows: Given & >0, let maE(X):= inf ég[d(Ai)]a, where X = ﬁﬂAi
is any decomposition of X in a countable number of subsets such
that for every 1 the diameter G(Ai) of Ai is less than €, and
the superscript a denotes the exponentiation. Let ma(X):= Eg%
m, = (X) .

Cdncerning this measure it is well known ([20], p.1l04)
that if X is a metric space such that mn+l(X) =0, 0 £n<wx,
then dim X < n, and this fact is used in the proof of Lemma 4
in Section 2.

In Section 2 we shall give lemmas which are used in the

proofs of our theorems and we will prove theorems in Section 3.

In Section 4 we give remarks of the theorems.



2. Convex hull and Hausdorff measure.

In [11] Cheeger-Gromoll showed that if S is a connected
locally convex set in M, then there is a smooth totally geodesic
imbedded submanifold N of M such that N < 8 < N®, where N° 1is
the closure of N.

This fact and the axiom of 2-planes funish the following.

Lemma 3. Let m:= dim M be greater than 2. If for each point
p in M and for some n, 2 < n < m, there is a convex neighborhood
V of p in M such that dim H{qo,ql,...,qn} < n for any pointsk

Qg> Agov-es a, in V, then M is a space of constant curvature.

Proof. We first claim that dim H{qo,ql,...,qk} < k holds

for every k, 2 < k < n, and for any points dg> Qpoc-vs 9 in V.

Suppose that dim H{qo,ql,...,qn_l} > n-1 for some points dps Ay

} = n. Then there

., Q in V, i.e., dim H{qo,ql,...

n-1 »9p-1

exists a smooth totally geodeslic n-dimensional imbedded sub-

manifold N such that N < H{qo,ql,... } < N®. Take a point

28n1
g in N and a normal vector v of N at g such that exXpyV e V.

Then dim H{qo,ql,...,qn_l,expNV} > n, a contradiction. Thus we

obtain dim H{qo,ql,. } £ n-1 for any points Q> Qys-e+>

-3 qn_l
-1 in V. By iterating the same argument we have our claim.
In particular, dim H{qo,ql,q2} < 2 for any points q,, 4y, G,
in V.

Now we show that M satisfies the axiom of 2-planes. Let

Tp’ be an arbitrary 2-dimensional subspace of TpM and let vy
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. k] * = =
and v2 be vectors in Tp such that ql. exppvl and q2. exppv2

belong to V, and p, dy- 9y are non-colinear. Take g in the
interior of the segment T(ql,qz) joining ql and q2, and take
g in V on the other side of q with respect to p on the
extension of T(p,q). Let NO be the set of all points which
belong to segments from 4 to points on T(ql,qg). Then NO is a
smooth surface except at dq - We need to prove that T NO = T°7?

p p

and N, - {qo} is totally geodesic in M. Let N be a smooth totally

0
geodesic submanifecld in M such that N C H{qo,ql,q2} < N°. Since
P ¢ Ny < H{qy,q;,a,} and dim H{q,,q,,3,} £ 2, it follows that

c S = 3 =
NO < N7 and dim NO dim N 2. Thus TpNO
totally geodesic in M.

= 3 - 3
Tp and Nj {qo} is

We know from this lemma that in order to prove our
theorems we have only to estimate the dimension of H{ }. We

then need the following lemma.

Lemma 4. Let T, and T, be two segments contained in a

1 2
convex set V in M. Let A be the set of all points each of which

belongs to some segment joining a point of T, and a point of T2.

1
Then dim A < 3 and A is closed.

Proof. Let x(t), 0 < T < a, and y(v), 0 < v < B, represent
segments Tl and T2 respectively, and for each g in V let Wq be
a subset of TqM such that equlwq : W -——>YV is a diffeomorphism.

q
Define a map G of [0,1] x [0,a] x [0,8] into TpM by G(u,T,v):=



(eprlwp)_l[epr(Tj{u(eXpX(r)wa(T))—l(Y(V))}] for (pu,t,v) €
[0,1] x [0,a] x [0,8], where p is a fixed point in V. Then G is
differentiable, and hence G is Lipschitz continuous. Therefore
it follows from the definition of LY-measure that the 4Y-measure
of the image of G is zero since the L-measure of [0,1] x [0,a]
x [0,8] is zero. Note that A is the image of expp°G and that
the property of having at most dimension n is topologically
invariant. Thus we conclude dim A < 3 by the fact in Section 1.

Closedness of A is evident.

Lemma 5. Let p be a fixed point in M. For an arbitrary a >
0, there exists a p > 0 such that for any points g, r and s in
B(p,p),
u(l-a)d(r,s) < dlw_ (Bu),w (yu)) < u(l+a)d(r,s)
for any p € [0,1], where WP(T), 0 <t < B, and ws(v), 0<v=<y,

represent segments T(q,r) and T(g,s) respectively.

Proof. By a straightforward generalization of Proposition
9.10 in [19], p.54 we obtain that for given 0 < € < 1 there is
a p > 0 such that for any non-colinear points g, r and s in

B(p,p),

1-e < ||(exp IBO)‘l(r)—(exp IBD)"I(sﬂlq/d(r,S) < l+e,

a a
where [||h is the norm in T M, and Bp is the p-ball in T M
centered at the origin.

We then have

l-g <
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IKequpr>'1(wr(Bu))—(equIBp)—l(wS(Yu)Hq/d(wr(Bu),wS(Yu))
< l+e,
for y # 0. Therefore
(1-e)/(1+e) < (1/u>(d(wr(8u),wS(Yu))/d(r,s)) < (1+e)/(1-€).
If we choose an € > 0 which satisfies
1-0 < (1l-€)/(1+e) < (1+e)/(1l-€) < 1l+a,
then it follows that u(l-a)d(r,s) < d(w (Bu),w_ (Yu)) < u(l+a)x

d(r,s) for any v e [0,1]



3. Convex hull and dimension

In this section we show by estimating dimension that the
convex hulls of points satisfy the axiom of n-planes under the

assumptions in Theorems 1 and 2.

3.1. Proof of Theorem 1.

We denote six segments each of which joins qy and qj, 0 <
1<J<3,byT, k=1, 2,..., 6. Then from the assumption
H{q09q13q29Q3} = k/1§i<j£6{q e V; q belongs to some segment
which connects a poi;f oE Ti and a point of Tj}' Therefore it
follows from Lemma 4 and the sum theorem ([20], p.30), i.e., a
separable metric space which is the countable sum of closed sub-

sets of dimension < n has dimension < n, that dim H{qo,ql,q2,q3}

< 3. Hence we obtain our theorem by Lemma 3.

3.2. Proof of Theorem 2.

Let o > O satisfy that 6((1+a)/2)> < 1. And for this o we
choose a p > 0 such that B(p,p) < V satisfies the conclusion of
Lemma 5 and the Lp-ball with center p is strongly convex.

By Lemma 3 it suffices to show that dim H{qO,ql,qg} < 2.

If dim Cz{ro,rl,rz} < 2 for any points ry, ry and r, in B(p,p),

1
then dim H{qo,ql,qz} < 2 because of the sum theorem.

In fact, dim Cg{ro,rl,r2} < 2 1s established as follows.

From the definition of Cz{ro,r ,rz} the diameter of Cz{ro,rl,r2}

1
is not greater than d(ro,r1)+d(r1,r2)+d(r2,ro), because
Cg{ro,r

1,r2} is contained in B(ro, (d(ro,r1)+d(rl,r2)+d(r2,ro))
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/2). Since H{ro,r ,r2} :>C2{ro,rl,r2}, it holds that

1

2 2 2
c {ro,rl,r2} < C {ro,rl,m(rl,r2)} Vo {ro,rg,m(rl,rz)}.

. .= 3 .= 2 e
Hence if we put rO’. m(rl,rg), vy m(ro,rz), r,’: m(ro,rl)

and r’:= m(ro,ro’), then

2 2 o2 2
C {ro,rl,rg} < C {ro,rl’,r’} C {ro,r’,rz’} Ve {rl’,rz,ro’}

chg{rl’,ro’,r’} h}C2{r’,rO’,r2’} % Cg{rz’,ro’,rl},

and the diameter of each 02{ } on the right side are not

greater than ((l+u)/2)(d(ro,rl)+d(rl,r2)+d(r2,ro)) (by Lemma 5).
If we repeat this (n-1) times for each Cz{ } of the right hand
29

side, then we obtain e }’s and their diameters are not

greater than ((l+a)/2)n(d(r0,rl)+d(r1,r2)+d(r2,ro)). Hence for

given € > 0 there is an ng such that n > n, implies ((1+a)/2)nx

0
(d(ro,r1)+d(rl,r2)+d(r2,ro)) < €. Since mBE(CZ{rO,rl,rz}) <
Zrsc?t Hi’

n > Ny, We get m3(02{r0,r1,r2}) = 0. By the fact introduced in

6" ((1+a)/2)"(a(r v )+d(r 2 ) +d(r,,r )13 for

A

Section 1, dim C2{r0,r1,r2} < 2. This completes the proof of

Theorem 2.
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b, Applications and remarks

If we try to describe Theorem 1 with only convex

combinations we have Corollary 6. This is because Ck+lU = CkU

for every subset U of B(p,p) in M means HU = CkU.

Corollary 6. Let dim M be greater than 3. If for each point

p in M there is a convex neighborhood V of p in M such that
2 _ A2
€"{dq4,9y59p593} = €7{a4,0a,,95,93} for any points qg, a7, 4y, dg

in V, then M is a space of constant curvature.

The following corollary is evident by the fact that

H{ro,r ,rg}‘D Cg{ro,r ,rz} for any rgs Tys Tp in B(p,p) < M.

1 1
Moreover 1t is directly proved by the same way as in the proof

of Theorem 2.

Corollary 7. Let dim M be greater than 2. If for each point

p in M there is a convex neighborhoed V of p in M such that
H{qO’ql’QZ} = H{qO;qlsm(ql:q2>} % H{qo,qz,m(ql,qg)} for any
points > 94 and a5 in V, then M is a space of constant

curvature.
It is natural to ask whether H{qo,ql,qg} in the assumption
of Theorem 2 could be replaced by Cz{qo,ql,qg}. On this question

we show the following.

Theorem 8. Let dim M be greater than 2. If for each p in M
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there exists a convex neighborhood V of p in M such that

2 _ A2 U A2 .
C"{ay,ay,d5,} = C7{qy,ay,a} ¥ C {qy,a,,a} for any points q4, Q5
and q, in V and for any point q in the segment T(ql,q2), then

M is a space of constant curvature.

If it is possible to replace g in the assumption with
m(ql,qz), then this theorem is stronger than Theorem 2. However
the author does not know the possibllity.

We prepare a lemma for the proof of Theorem 8.

Lemma 9. Let M satisfy the assumption in Theorem 8. Let
x(t), 0 <1 < a, and y(v), 0 < v < B, represent segments Tl:=

T(ro,rl) and T,:= T(ro,rz) respectively in B(p,p) <€ V and let

5
t:= Max{d(x(op),y(Bu)); n « [0,1]}. If the 3p-ball with center

p is strongly convex, then Cg{ro,rl,rg} is contained in the

union of the closed t-neighborhood of T1 and the closed t-

neighborhood of T2 in M.

Proof of Lemma 9. Choose a partition 0 = Mg € My < e <oy

= 1 of [0,1] such that a(ui-ui_l) < t and B(ui—ui_l) < t for

1 <1 <n. Then ¢%{(x(au,_;)»>x(ouy),>¥(Buy_1)} < Hix(ou, 1) xCau;),
y(Bu;_1)} < B(x(ouy_1),5)% and ¢ {x(auy),¥(Bu;_1),¥(Buy)} €
B(y(Bui),t)C for every 1 < i < n, because B(x(aui_l),t)C and
B(y(Bui),t)c are contained in B(p,3p) f?? every 1 < i1 < n, and
hence are convex. Since Cz{ro,rl,rz} <Z£{Cz{x(aui_l),X(aui)s

2 . .
y(Bus 1)} Ve {x(aui),y(Bui_l),y(Bui)}, Cg{ro,rl,rg} is contained
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in the union of the closed t-neighborhood of Tl and the closed

t-neighborhood of T2 in M.

Proof of Theorem 8. Let dq» ql and q2 be any points in

B(p,p) € V where p is a positive such that the 3p-ball with
center p is strongly convex. Let S be the set of all points
each of which belongs to the segment T(qo,q) for some g in
2 . ) 2
T(ql,qz). S<¢cC {qo,ql,qz} is clear. We claim S = C {qo,ql,qz}.
In fact, suppose there exists a point s € CZ{qO’ql’qZ} - 3. Let
n be the distance between s and S. Since S is closed, we have n
> 0. Choose a partition Ay = Sq5 Sgs--05 8 T 0y of T(ql,q2) in
this order such that if zi(r), 0 <1< oy represents the
segment T(qo,si) for each 1 <1 < n, and if we put t; = Max {d(
zi(aiu),zi+l(ai+lu)); u e [0,1]} for each 1 < i1 < n-1, then
ti <n for all 1 < i < n-1. By Lemma 9 and the assumption,
Cz{qo,ql,qz} is contained in the open n-neighborhood of S in M,
a contradiction.
. 2

Next we assert H{qo,ql,qz} = C {qo,ql,qg}. Let r and s be
any points of CZ{qO,ql,qz}. Then by the above argument there
are points r’ and s? in T(ql,qz) such that re;T(qO,r’) and s e

. 2 2 2

T(q,,s’). Since C {a7,97,9,} = C {qo,ql,r’}\J C™{qy,r’,s”} J
Cz{qo,q2,s’}, where we assume without loss of generality that
dy > r’, s’ and q, are in this order on T(ql,qz), and since T(r,s)
is contained in Cz{qo,r’,s’}, T(r,s) 1s contained in Cz{qo,ql,
q2}, which implies convexity of Cg{qo,ql,qz}.

Thus H{qo,ql,qz} = Cz{qo,ql,qz} = S. Then we conclude
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dim H{qo,ql,q2} < 2, and hence we obtain our theorem by Lemma

3.
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CHAPTER 1T

Convex functions on G-surfaces

1. Introduction

A function F defined on a complete Riemannian manifold M
without boundary is sald to be convex if F is a one-variable
convex function on each arc-length parametrized geodesic. F is
locally Lipschitz continuous, and hence continucus on M. It is
a natural question to ask to what extent the existence of a
convex function on M implies restrictions to the topology of M.
In the recent work [16], the topology of M with locally non-
constant convex functions has been studied in detail. One of
their results gives a classification theorem of 2-dimensional
complete Riemannian manifolds which admit locally nonconstant
convex functions; they are diffeomorphic to either a plane, a
cylinder, or an open Moebius strip.

A classical result of Cohn-Vossen [12] states that a complete
noncompact 2-dimensional Riemannian manifolds with nonnegative
Gaussian curvature is homeomorphic to a plane, a cylinder, or
an open Moebius strip. Moreover, Cheeger-Gromoll have proved in
[11] that if a complete noncompact Riemannian manifold has non-
negative sectional curvature, then every Busemann function on it
is convex (and locally nonconstant).

H. Busemann generalized Cohn-Vossen®s result in [4],
proving that a noncompact G-surfaces with finite connectivity

and zero excesses whose angular measure 1s uniform at w is
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topologically a plane, a cylinder, or an open Moebius strip.

The purpose of this chapter is to prove the following:

Theorem. Let R be a noncompact 2-dimensional G-space. If R
admits a locally nonconstant convex function, then R is
homeomorphic to elither a plane, a cylinder Sl x I]R, or an open

Moebius strip.

It should be noted that in the proof of the above result,
there is no analogy with the Riemannian case. Thils is because
every point of a G-surface R does not 1n general have convex
balls around it. Hence, for every closed convex set C of a G-
space R and for every point g € R - C which is sufficiently close
to C, we cannot conclude the uniqueness of a segment which
connects g to a point on C, and whose length realizes the
distance between g and C. It should be also noted that a convex
function on a G-space R is in general not necessarily continuous.
But in the case where dim R = 2, R is a topological manifold and
every convex function on it is locally Lipschitz continuous.

In Section 2 we shall give the definition and some basic
notions for G-spaces which are used later. They are found in
the book of H. Busemann [47. In Section 3 we shall discuss G-
surfaces which possess locally nonconstant convex functions,
directing our attention to the levels of the functions. In
Section 4 we have a classification of G-surfaces which admit

locally nonconstant nearly peakless functions without continuity.
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This result will be introduced in [6]. The method is different
from that the convex case. We do not give our attention to the
levels but study only the existence of inftersecting closed

geodesic®according to the idea of G. Thorbergsson [417.



2. G-spaces

Let R be a metric space, and let d(p,q) denote the distance
between points p and g on R. Let (pqr) denote that p, q and r
are mutually distinect and d(p,q)+d(q,r) = d(p,r); let B(p,p)
denote the set {q; d(p,a) < p}, which is called the (open) ball

with center p and radius p. The axioms for a G-space R are:

1. The space is a symmetric metric space with distance
d(p,qa) = d(a,p).

2. The space is finitely compact, i,e., a bounded infinite
set has at least one accumulation point.

3. The space is (Menger) convex, i.e., for given two
distinct points p and r, a point g with (pqr) exists.

L, To every point s of the space there corresponds Py > 0
such that for any two distinct points p and q in B(S,ps) a point
r with (pgr) exists. (Axiom of local prolongation)

5. If (pqu), (pqrz) and d(q,rl) = d(q,rz), then ry =r,.

(Axiom of uniqueness of prolongation)

The axioms ensure the existence of a (continuous) curve
which connects given two points p and g and whose length is
equal to the distance between them, and this curve is called a
segment and denoted by T(p,q). If an r with (pgr) exists, then
the segment T(p,g) is unique. If p, q e B(r,p) for some r in R,
then T(p,q) < B(r,2p). Let p(p) be the least upper bound of those

pp which satisfy Axiom 4. Then either p(p) = « for all p or
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0 < p(p) < = and |p(p)-p(pP)] < d(p,q), which implies continuity
of the function p(.) on R.

A geodesic g is a certain class of mappings of the real
line into R which is locally a segment, i.e., g has a
representation x(t), == < T < o such that for every Tq there
exists an g(TO) > 0 such that d(X(Tl),X(TE)) = lTl - 12] for
|t~ = T4

o~ Til
v(t), =o» < T < ®», there exist o = *1, B ¢ IR which satisfy that

< g(TO), i =1, 2, and for another representation

x(t) = y(lat + B) for all t. If a representation of a geodesic
is a globally isometric map of R into R, or a plane circle into
R, then we call it a straight line or a great circle,

respectively.

Fact 1. If y(1), o < 1T < B, & < B, represents a segment in
a G-space, then there is a unique representation x(t), - < T

< w, of a geodesic such that x(t) = y(t) for a < T < B.

Fact 2. If xn(T), -o» < T < », represents a geodesic n = 1,
2,... and the sequence {xn(TO)} is bounded, then {Xn(T)}
contains a subsequence {Xk(T)} which converges (uniformly in
every bounded set of R ) to a representation x(1), -» < T < ®,

of a geodesic.

Fact 3. A class of homotopic closed curves through p which
is not contractible contains a geodesic loop {(a piece of a

geodesic) with endpoint p.
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We use the notion of dimension in the sense defined by

Menger and Urysohn

Fact 4. A G-space of dimension 2 is a topological manifold.

B(p,p(p)) is a homeomorphic to an open ball in a plane E{2.

Fact 5. Every point of a 2-dimensional G-space is an
interior poilnt of a closed and of an open convex set whose
boundary consists of three segments, where a convex set C means
that p, g in C implies that T(p,q) exists uniquely and is

contained in C. We call such a convex set a triangle.
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3. Locally nonconstant convex functions

Iet R be a 2-dimensional G-space and F be a convex functicn

on R. This means that for each geodesic with a representation
x(1), —» < T < », F satisfies the inequality:

F(x(xty + (1 = AM)1,)) < AF(x(ry)) + (1 - MF(x(1,)),
for any A ¢ [0,1], and for any T1s Ty € R.

The plane, cylinder and open Moebius strip with canonical
metric evidently possess (locally nonconstant) convex functions.
As we are interested in the topological structure of R, we may

assume that a convex function F is locally nonconstant, i.e.,

nonconstant on each open set of R. If a non-trivial convex
function F 1s constant on an open set U < R, then we can
construct from R a topologically distinet R’ on which a non-
trivial convex function is defined. This is done as follows:
There 1s a disk D <« U. R’ is obtained via the connected sum
(R - D)#V, where V is an afbitrary G-space with boundary S1

which is identified with the boundary 3D. The convex function

on R” is equal to P on R’ - V and is constant on V, and agree
with F on 3D. Thus the existence of a non-trivial convex function

does not imply a topological restriction on the G-space except

a trivial one, namely, noncompactness (see [15]). Throughout

this section let F be locally nonconstant on R. And let [F

al
and [a < F < b] denote the sets {q € R; F(q) = a} and {q € R;

A

a F(a) < b}, respectively.

Lemma 6. F is locally Lipschitz continuous on R.
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Proof. We first show that F is locally bounded above. Let
495 95 and a3 be the vertices of the convex triangle C
mentioned in Fact 5, and let p’ € Int C. Choose q on T(q2,q3)
such that p’ ¢ T(ql,q). Then by convexity of F, we have
F(p®) < (d(p*,a)/d(a;,3))F(qy) + (d(ay,p*)/d(a;,a))F(a)
< (a(p’,q)/d(aq,a))F(qy) + (d(qy,p?)/d(ay,9))
x ((d(a,a5)/d(a,,a3))F(ay) + (d(ay,a)/dlay,a5))F(ag)).
Therefore F(p’) < Max{F(ql), F(q2)’ F(q3)}.
Secondly, we show that F is locally bounded. Let B(p,p) <
Int C, p < p(p), and let g € B(p,p). Then by convexity of F we
have
F(p) < (F(aq) + F(a*))/2,
where g’ satisfies that (gqpq’) and d(p,q) = d(p,q’). Hence
F(a) » 2F(p) - Max{F(q;), F(a,), Flay)},
for g € B(p,p). Thus F is locally bounbed.
In order to prove local Lipschitz continuity of F, we work
in the above B(p,p). Let u, v € B(p,p/3). Extend T(u,v) in both
directions until 1ts endpoints arrive at 3B(p,p). Take points

Uys Ugs Vos Vy in this extension of T(u,v) such that u Uss U,

l)
v, Vv, and v, are in this order and d(ul,ug) = d(v,,vy) = p/3
and Uy, Vq € 9B(p,p). Then by convexity of F,
(F(uy) - F(uy))/d(u;,uy) < (F(v) - F(u))/d(u,v)
< (F(vy)) - F(v,))/d(v,,vy).
Hence there is an L > 0 such that |F(v) - F(u)| < Ld(u,v) for

u, v € B(p,p/3). Thus F is locally Lipschitz continuous, which

is our goal.



- 23 -

Lemma 7. [F = al], a > inf F(R), has the structure of an

embedded l-dimensional topological submanifold without boundary.

“ Proof. Let p ¢ [F = a]. There is a point g such that g &
B(p,p(p)) and F(q) < F(p). Take an r on an extension of T(p,q)
such that F(r) > F(p) and r € B(p,p(p)). Let T’ be a segment
through r and contained in B(p,p(p)) and which intersects the
extension of T(p,q) at exactly r and on which F > F(p). Then
T(q,q”) A [F = al] is exactly one point for every q’ € T°,
because F is strictly monotone increasing along T(q,q’)/\

(R - [F < F(q)]), and the totality of those points is
homeomorphic to T?. Hence this set is a neighborhood of p in

[F = a], and it has no selfintersections. This completes the

proof.

We conclude from Lemma 7 that [F = al], a > inf F(R), is

homeomorphic to either a real line IR or a circle Sl.

Lemma 8. R is noncompact.

Proof. A bounded convex function 1s constant.

Concerning the number of components of a level [F = a],

a > inf F(R), of F the following holds.

Proposition 9. Let p and g be distinct points of [F = a],
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a > inf F(R). If there is a geodesic curve from p to g such
that F does not assume inf F(R) on it, then p and q are

contained in the same component of [F = a].

Proof. Let x(1), o < T < B, represent the geodesic curve
in the assumption. If min F(x([a,B])) = a, then F(x(t)) = a for
every t, ¢ < T < B, by convexity of F. So p and q are contailned
in the same component of [F = al]. Thus we may assume without

loss of generality that there exists 1, ¢ [a,B8] such that

F(X(TO)) = min F(x([a,RB])) < a. Since ;(X(TO)) > inf F(R), we
can choose an r such that r e B(X(TO),D(X(TO))/3), and F(r) <
F(x(ro)). Put a’:= Max{a, Ty = p(x(TO))/B}, B’:= min{g, Tyt
p(x(ty))/3), and m:= min{(F(x(t)) - F(r)/d(r,x(t)); o’ < T < 8’1},
The choice of r implies m > 0. For each t, o’ < 1T £ B?, there
i1s exactly one representation yT’(v), -» <y < o, of a geodesic
by Fact 1 which satisfies that yT’(O) = r, and yT’(d(r,x(r)))

= x(1). Then we have

m(v = d(r,x(t))) + F(x(t))

((F(x(1)) = F(r))/d(r,x(1))) (v - d(r,x(1))) + F(x(1))
F(y . >(v)),

for every v > d(r,x(t)). Since yT’(v), d(r,x(Tt)) < v < p(x(ro))

A

A

/3 + d(r,x(t)), is contained in B(X(TO),Zp(X(TO))/B) for each T,
a’> < 1 £ B?, there is a v such that yT’(v) < B(X(TO),p(X(TO))),
and mp(x(14))/3 + F(x(t)) 2 Fly_>(v)).

Let €(1t), a”> < T < B, be a continuous function which
satisfies that e(a®*) = g(R?>) = 0, and 0 < (1) < mp(x(TO))/S

for any T, o? < t < B?. Convexity of F implies that the geodesic
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curve with a representation yT’(v), v > 0, intersects [F =
F(x(t)) + e€(1)] at exactly one point, which is denoted by y(1).
We are going to see that y(1), o’ <t < B’, 1s a continuous
curve such that y(a’) = x(a’) and y(B’) = x(B?) and y{1) &
B(x(ro),p(x(ro))). Let a sequence {Ti} tends to 1, o’ < T < B°.
Since {y(ri)} is bounded, the sequence {y(Ti)} contains a sub-
sequence {Y(Tk)} which converges to a point Yo+ Then, since the
equality F(yo) = F(x(1)) + e(1) follows from continuity of g
and F, y, belongs to [F = F(x(1)) + e{(t)]. On the other hand,
Yo is on the geodesic curve with a representation yT’(v), - <
v < » , since the sequence {yTi’(v)} of representations of
geodesics converges to yT’(v), -o < y < =, by Fact 2 when {Ti}
tends to 1. Therefore we have from the definition of y(t) that
v = y(1).

Next, for each 1, o’ < 1 < B’, let zT’(v), -0 < y < w, be
a representation of a geodesic which satisfies that z?(0) =
x(to) and ZT’(d(x(TO),Y(T))) = y(1t). This is well-defined
because y(1) € B(X(TO),Q(X(TO))). From the construction of
ZT’(v) we see that za,’(v) = X(TO - V), ZB,’(v) = x(TO + V),

and hence each of them has a unique intersection with [F = al].

i

The desired curve from p to g in [F a] is obtained as follows:
From the construction of ZT’(U), a’ < T <B’, v >0, we see that
F(za,’(v)) and F(ZB,’(v)) are monotone nondecreasing for v > 0,
and moreover F(ZT’(v)), a’ < 1 < B*, is strictly monotone

increasing fo§§>d(x6f0),y(r)). Thus, for each 1, a” < 1 £ B’,

ZT’(V), v > 0, has a unique intersection with [F = a], which
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is denoted by z(1), and the intersection is continuous with
t. In fact, to prove it around t = o, fix p’ = Za’>(TO - + 1).
Then convexity of F along Zu”(V)’ v > 0, implies that F(p?)
> a, There is a neighborhood of p?> on which F > a. Therefore

we find a §, > 0 such that ZT,’(TO - o + 1) is in the

1
neighborhood if |t - a’| < §;. Then continuity of z(1), o’ < 1

< g’ + 6§ is obvious. In the same way we find a 62 > 0 such

l.’

that z(t), B* - 6, < T < B?, is continuous. To prove continuity

of z(t), a’” + §

A mo

1 ST B - 8y, pub myi= Anf{lF(y(1)) - F(x(1q))]

/A(x(ty),y(T))s a” + 6 <1 <8 - 8

}. Then we can see that

in ™

m, > 0 and that for each 1, o’ + 84 T < B’ - PP

my (v = dlx(ry),y())) + Fly(1))
H{F () - Fxlrp)/alx(1y),y(0)) v = alxlty),y (1))

+ F(y(1))

1

A

A

F(ZT’(v)),

for every t > d(X(TO),y(T)). Thus the set {z(t); o’ + §) < T
< B’ - 52} is bounded. Continuity of z(t), o’ < 1 < B, holds
by means of the same argument as continuity of y(t). This

completes the proof.

As a direct consequence of the proof of Proposition 9, we

have

Proposition 10. If p and q are taken from different

components of [F = a], then F assumes inf F(R) on every geodesic

curve which joins p and q and inf F(R) is assumed at exactly
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one point on it.

Theorem 11. If there is a value a such that [F = a] is not

connected, then the following hold.

(1) F assumes inf F(R) at some point.

(2) [F = min F(R)] is totally convex and it is either a
straight line or a great circle.

(3) R = [F = min FP(R)] consists of two components. If

b > inf F(R), then [F = b] has exactly two components.

Proof. (1) is a consequence of Proposition 10, In (2),
total convexity of [F = min F(R)] is trivial. If 3[F = min F(R)]
= as a l—dimensionél manifold, then it follows from total
convexity of [F = min F(R)] and (9.6) in [2],p.46 that
[F = min F(R)] is either a straight line or a great circle.
If3[F = min F(R)] # @ or [F = min F(R)] consists of only one
point, then we can see that [F = a] is connected, a contradiction,
In fact, we can prove this as follows. Take points p and g in
[F=a] and r in 3[F = min F(R)] and join from r to p, and from
r to g by segments T(r,p) and T(r,q). Since B(r,p(r)) is not
separated by [F = min F(R)], we get a continuous curve y(t),

@ <1 2 B, Joining 3B(r,p(r)/2) A T(r,p) and 3B(r,p (r)/2) N
T(r,q) which is contained in B(r,p (r)) and does not intersect

[F = min F(R)]. If for eacht,a < T £ B, z(t) is defined by the
intersection of a geodesic curve in the direction from r to

y(t) and [F = a] as in the proof of Proposition 9, then z(t),
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o4

fiA

T < B, is a continuous curve Joining p and g,

To prove (3), fix a point p of [F = min F(R)], Then B(p,
p(p)/2) = [F = min F(R)] has exactly two components by (2). We
, and V2. For each ¢ € R - [F = min
F(R)], let x(t), 0 < 1 < a, x(0) = p, x(a) = q be a

denote its components by V

representation of a geodesic curve from p to g. Then x(t), 0 <
T < p(p)/2, is contained in only one of V1 and V2. Put A:=

{g€ R - [F = min F(R)]; all geodesic curves from p to q on
which sufficiently small parts near p intersect Vl}, B:= {q &

R - [F = min F(R)]; all geodesic curves from p to g on which
'sufficiently small parts near p intersect V2} and C:= {qg ¢ R -
[F = min F(R)]; there are geodesic curves from p to g such that
one of their representations y°’(t), 0 <t < g, y’(0) = p, y’(B)

= q, intersects V., and another z’(t), O

A

T < vy, 2°(0) = p,

A

1
z’(y) = q, intersects VZ}'

Both A and B are open and connected in R - [F = min F(R)]

if they are nonempty. If we show that AY B R - [F = min F(R)],

i.e., C = @, then the first part of (3) will be proved. This is

< A and V. < B will follow from the

because if C = @, then Vl 5

argument stated below.

Suppose g € C exists. Then we have a contradiction from
the following considerations. Fix a point qO = y(ro) such that
F(qo) = a, where y(t), -» < 1< », is a representation of a
geodesic determined by y?(T), 0 £ T £ B, in the definition of

C. And let z?°(T), 0 £ 1T X lt. - B| + Y, be a continuous curve

0
from p to g such that if T, 2 B, then z°?(t) = z°(1) for 0 <

0
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T <yand 2°7(1) = y(r + 8 ~-y) for y <t <1y =~-8+yandif
Tg < B8 then z°°(7) = 2°(r) for 0 < v <y and 2°°(1) = y(B - 1

+ y) for vy ST B -1ty where z’(¢), O ST is in the
definition of C. We consider the class of all curves from p to
q, whose interiors are in R - [F = min F(R)] and such that

5 but not meet Vl. This

class is nonempty. Since [F = min F(R)] is totally convex and

sufficiently small parts near p meet V

is either a great circle or a straight line, we find (5.18) in
[2],p.25, a geodesic curve from p to dg > in the class, whose
interior is contained in R - [F = min F(R)] and which is
different from a geodesic curve with a representation y(t), O <
T < g. Let z(t), O <t <68, z(0) = p, z(§) = > represent this
geodesic curve. Using these representation y(r), O ST LB and
z(t), O < 1 £ 8§, we connect any two points a and Ay in [F = a]
by a continuous curve in [F = a], a contradiction. This is done

as follows: If yl(T), 0 <t <Bysandy,(e), 0 << B

"

represents geodesic curves such that yl(O) = y2(0) p and yl(el)
= qla y2(82) = q2 and if Yl('{:), 0 < T < p(p)/2, i-= 1: 2: are
contained in Vl’ then we can connect yl(p(p)/S) and yz(p(p)/3)

by a continuous curve in V and hence as in Proposition 9 we

1>
find a curve in [F = a] which joins qq and dy - Thus, without
loss of generality, we may consider that yi(T)’ 0 <t < plp)/2,
are contained in Vi for i = 1, 2. By the same idea as in
Proposition 9, we can find two curves in [F = al] such that one

of them joins q to q5 and the other joins a5 to ;- Thus

[F = a] is connected, a contradiction. Hence C = @ is proved.
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The above arguments show that V., <€ A and V, < B, and hence

1 2
they are not empty. Therefore R - [F = min F(R)] is the
disjoint union of A and B.

To prove the second part of (3) it is enough to see that

both [F = b] N A and [F = bl A B are connected for any b > inf

F(R). This is evident by the above argument.

To continue our investigations, we need the notion of an
end € which 1s by definition an assigment to each compact set
K in R a component ¢(XK) of R - K in such a way that s(Kl)ZD

e(Kz) if K1<: K2.

Theorem 12. If there 1s a compact component of a level of

F, then all levels are compact.

Proof. Theorem 11 implies that every level consists of one
or two components. Sco we first consider the case where all
levels are connected.

Let [F = a] be compact. And suppose that [F = b] is non-
compact for some b with a < b. We fix a point p in [F = a] and
choose an unbounded sequence {qi}, q; € [F =Db]. Let xi(r),

T > 0, be a representation of a geodesic curve such that xi(O)
= p and xi(d(p,qi)) = d; i=1, 2,.... Then we have a sub-
sequence {xk(r)} of {Xi(T)} which converges to a representation
x(t), © > 0, of a geodesic curve. If we see that F(x(t)) = a

for any 1 > 0, then [F = a] is noncompact since x(t), T > 0,
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represents a ray, i.e., a half-straight line. This is a
contradiction. Thus, if [F = a] is compact, then [F = b] compact
for all b > a. It remains to prove that F(x(t)) = a for every

T > 0. For each 1t > the diameter of [F = a], there is a number
it follows

k such that d(p,qk) >t for k > k,. For this k

0 0°
implies F(xk(T)) < b. Therefore

0°
from convexity of F that k > kO
we have
F(x(r)) = F(1lim x, (1)) = 1lim F(x, (1)) < b.
On the other hand, since t > the diameter of [F = a],
F(x(t)) = F(lim %, (1)) = lim F(x (1)) 2 a.

F(x(t)), the diameter of [F = a] < 1 < », is bounded and
monotone nondecreasing, so F is constant on it. Therefore it
follows from convexity of F that F(x(t)) = a for t > O.

Suppose that [F = a] is noncompact and [F = b] compact for
some a < b. In this case, there are at least two ends of R
because of the existence of a straight line intersecting [F = b]
along which F is nonconstant and monotone. In particular, R is
not simply connected. Under the assumption above, we claim that
F does not assume inf F(R). In fact, suppose F assumes inf F(R).
Then the minimum set is noncompact, otherwise all levels are
compact because of the above argument. Thus the minimum set
consists of either a ray or a straight line, Since R is not
simply connected, there is a non-null homotopy class of closed
curves with any fixed point p ¢ [F = min F(R)] as a base point.
Then we get a geodesic loop at p by Fact 3. Along this geodesic

loop, F is constant because F(x(t)) < F(p), where x(1), 0 < 7
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< a, is a representation of this geodesic loop. Since this
geodesic loop is contained in neither that ray nor that
straight line, there is an open set U in the neighborhood of p
such that F is constant on U. This contradicts local non-
constancy of F. Thus we can suppose that F does not assume inf
F(R).

Now, we are going to obtain the final contradiction in this
case. Put tO:= inf{t € R; [F = t] is compact}. If we prove that
[F < tO] is homeomorphic to the closed half-plane, which is
proved in Proposition 13, then as R is not simply connected we
have a geodesic loop with endpoint p where F(p) < tO. This
geodesic loop must intersect [F = t.]. Thus this contradicts

0
convexity of F.

Next we consider the case where there is a level which is
not connected. In this case it follows from Theorem 11 that F
assumes inf F(R) and the minimum set is either a straight line
or a great circle.

If the minimum set is a great circle, all levels are compact
by the same reason as we have already shown that [F = b] is
compact if so is [F = a] for a < B.

In the case where the minimum set is a straight line, each
component of any level is noncompact. In fact, suppose that
there is a compact component of some level. Then R has at least
two ends and hence it is not simply connected. Then for every

p ¢ [F = min F(R)] there is a geodesic loop at p which is not

homotopic to a point curve. Thus the geodesic loop at p must lie
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in the minimum set which is a straight line, a contradiction.

This completes the proof for all cases.

The following proposition is directly used in the proof
of Theorem 12. Once we establish Theorem 12, we may find by the

same reasoning as Proposition 13 that [a < F bl, b > a > inf

hS
1

F(R), is topologically a part of a cylinder S~ x [a,b] if

[F = b] is compact.

Proposition 13. If there is a value b > inf F(R) such that
[F = b] is noncompact, then there exists a homeomorphism h of
R x [a,b], a > inf F(R), onto each component of [a < F < bl

such that Feh(u,v) = v for every (u,v) ¢ R x [a,b].

It should be noted that each level [F =c], a < c < b, has
a neighborhood which 1s homeomorphic to the union of triangles
of Hiz, since from the same idea as in Lemma 7, [F = c] is
covered by triangles whose interiors are mutually disjoint.
Hence our aim is to extend this homeomorphism to globally

satisfy the condition.

Proof. We know as in the first part of the proof of
Theorem 12 that every ¢, ¢ < b, [F = ¢] is noncompact and hence
homeomorphic to IR . Fix a value 4, inf F(R) < d < a, and choose
an unbounded sequence {pi}__oQ < i< w in this order of an

orientation of [F = b] in both directions of [F = b]. For each
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1, =0 < i < o, let fi be a point in [F = d] such that d(pi,fi)
= d(pi,[F < dl). Then for each c, a < ¢ < b, T(pi,fi) p\[F = ¢
is exactly one point which we denote by pi(c). Clearly pi(b) =
p, for every i, —» < i < o, And for every c, a < ¢ < b, the
sequence {pi(c)} is unbounded in both directions of [F = c].
Otherwise there exists a ray starting at an accumulation pcint
of {fi} and passing through an accumulation point q of {pi(c)}
oh which F 1s bounded above by b and the right derivative at g
is posiﬁive, a contradiction. Moreover, the sequence {pi(c)} is
in this order. This i1s proved as follows: Let W be a neighborhood
of T(pO,fO). W oA [a £ F < b] is separated by T(po,fo) into two
and W.. Let G be a function of [a < F < b] to

1 1
{-1, 0, 1} which satisfies that if q & T(po(b),po(a)), then G(q)

components W_

=0, if g ef[a <F <b] - T(p-(b),p-(a)), F(q) = c and the sub-
L F= 0 0

arc of [F = c] from po(c) to g meet W then G(q) = -1, and

-1°
otherwise G(q) = 1. By the remark above the proof, G is
continuous except on T(po(b),po(a)), and hence for every c, a <
¢ £ b, and for every integer k > 1, pk(c) is in only one of two
sides of T(po(b),po(a)), and for k < -1, is in the other side.

Since this fact is true for each 1, -« < 1 < o, the sequence

{pi(c)} is in this order on [F = c¢] for every c, a < ¢ < b.

i

Let Mi denote the set whiech is surrounded by [F = b], [F

al, T(pi(b),pi(a)) and T(pi+l(b),pi+l(a)), more precisely, the

totality of the subarcs of [F = c¢]’s from pi(c) to p (e¢), for

i+1

all ¢, a < c < Db.

It sufficegto construct a homeomorphism hi of the domain



{(u,v) e R%; 1 <u

fia

i+ 1, az<v b} onto M, such that
Fohi(u,v) = v. Because if we connect hi’s we get h. This is

done as follows: Put p:= min{p(qg)/2 ; q & My A [F = Dbl}. If we

consider a neighborhood U:= {q ; d(q,[F = b]) < pl of M N

[F = b], then there is an € > 0 and b’ < b such that My A [b’ -
€ < F < b]l]CU. Choose sj € [F = b] ~ U and rj e [F=Db> -¢eln

U, =0, 1,..., n, in this order, such that 59 = pi(b), s, =

= > = -
pi+l(b), r, pi(b e) and r, pi+l(b’ e) and Sj’ Sj+l’ rj,
Ti41 e B(tj,p/E) for some tj e [F=b], j=0, 1,..., n = 1.
For each j, 0 £ j £ n -1, let Mij be the domain which is
surrounded by [F = b], [F = b°], T(sj,rj) and T(sj+1,rj) and let

5 = . -
Mij be the domain which is surrounded by T(sj+l,rj), T(Sj+l’

rj+l) and [F = b’]. Then we can construct, by the same techniques
as in Lemma 7 and Proposition 9, a homeomorphism of Mij onto the
trapezoid in ﬂ%g whose vertices are (i + j/n,b), (i + j/n,b’),

(i + (j + 1)/n,b) and (1 + j/n + e/n(b - b? + €),b?), and a
homeomorphism of Mij’ onto the triangle in E%z whose vertices

are (i + (j + 1)/n,b), (i + j/n + ¢/n(b - b> + €),b’) and

(i + (j + 1)/n,b?). The homeomorphisms agree on the segment

) N[b> < F < b]l. If we connect these homeomorphisms
1

T(rj,sj+l
we get a homeomorphism h.>" 2

of M; n[P” < F < b] to {(u,v) € R

;01 u

A
A

i
i+ 1, b> < v < Dbl which satisfies Fohi’((u,v)) = v
for all u € [i,i + 1]. We do not know whether IVI:.L is compact, so
the desired homeomorphism is obtained as follows: Let bO be the
greatest lower bound of {b’ ; [b’ < F < b] N M; has a

homeomorphism hi’—l which satisfies the condition}. Then b, = a.
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Otherwise we can construct by the same way as above a

1

homeomorphism hi’_ of [b’ < F

which satisfies the condition,

bO'
-1

Clearly hi and hi+

pi+l(a)), so we obtain the desired homeomorphism nt

2

< bl onto {(u,v) € R ; -» < u

. -1 -1 .
connecting hi and hi+1 for all i,

< bl N M,, for some b’ < b

03
contradiction to the choice of

-1
1 agree on the segment T(pi+1(b)’

of [a < F

< o, g b} after

s v

A

—0 < 1 < oo,

We shall observe how the existence of a locally nonconstant

convex function on R will restrict the number of ends of R.

Lemma 14.

most two ends.

If there is a compact level of F, then R has at

Proof. Suppose that R has more than two ends. Then there

is a compact set K such that R - K consists exactly three

unbounded components U U, and

12 72
bounded above on two of the Ul’
bounded above on exactly two of
above. In order to see this, we

sup F(U2) = o, Then we can find

not intersect K but intersects U

level is not

U3. We will prove that F is

U2 and U3'

them,

Therefore F is
since F is not bounded
may suppose that sup F(Ul) =
such a high level that it does

and U,.

1 5 This implies that this

connected. Therefore F is bounded above on U

35

since Theorem 11 says that all levels except the minimum set

consist of exactly two components. Choose a point in the
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minimum set and an unbounded sequence {qi} in U.. Let Xi(T>,

3
T > 0, represents a geodesic curve, i =1, 2,.,., which
satisfies that xi(o) = p and xi(d(p,qi)) =q,- Because of Fact

2 there is a subsequence {Xk(T)} of {xi(T)} which converges to
a representation x(1), T > 0, of a geodesic curve. In the same
way as in the proof of Theorem 12, we see that {x(t) ; T > 0}
belongs to the minimum set. Since x(t), T > 0, represents a ray,

this contradicts compactness of levels.

Thus we may suppose without loss of generality that F is

bounded above on U2 and U3. If we put m:= min F(K), then m
inf F(R). In fact, if we suppose that there exists a point g
with F(q) < m, then we can find a ray on which F is constant
equal to F(g) or nonincreasing in the same way as above
argument after taking an unbounded sequence {qi} contalned in
Uj’ J = 2 or 3, which does not contain q. However, since this
ray intersects K, this is impossible.

Let p ¢ K satisfy that F(p) = m. Then there is a ray
emanating from p, and an unbounded subarc of which lines in

K UU2. But F 1s constant = m on the ray. Thus [F = m] 1s non-

compact, contradicting Theorem 12. This completes the proof.

Lemma 15. Suppose there exists a noncompact level. If R
has more than one end, then F assumes inf F(R) and the minimum
set intersects every e€(K), where € is an arbitrary end and K is

any compact set of R.
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It turns out from Proposition 17 that if F has a non-
compact level, then R has exactly one end. But this lemma gives

a step of the proof of Proposition 17.

Proof. From the assumption there exist two ends El and €5
and a compact set K which satisfies that el(K) and EE(K) are
distinct unbounded components of R - K. Put a:= min F(K), b:=
Max F(K). We will find that a:= inf F(K). Otherwise there is a
point p such that F(p) < a. We may suppose without loss of
generality that p ¢ el(K). If F is bounded on el(K), then
making use of p and an unbounded sequence in el(K), in the same
way as before, we obtain a representation x(t), T > 0, of a ray
intersecting K and on which F is constant. This contradicts the
choice of p and a.

The above argument also shows that every e(X) intersects
the minimum set if R - K has at least two unbounded components.

Let K, be any compact set. Then there is a compact set

1
K :)Kl such that every e£(K) intersects the minimum set, and
hence so does.e(Kl). Thus the proof of the final statement is

complete.

Theorem 16. If R is a noncompact G-surface which admits a

locally nonconstant convex function, then the number of ends

is at most two.

Proof. Suppose that the number of ends of R is not less
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than three. Then Theorem 12 says that all levels are noncompact
and Lemma 15 concludes that F assumes inf F(R) and the minimum
set intersects every €(X). Since the noncompact minimum set is
a ray or a stralight line, i1t cannot intersect more than two

€(K)?’s. This is a contradiction,
Now we classify G-surfaces which admit locally nonconstant
convex functions. First we consider the case where R has two

ends.

Proposition 17. If R has two ends, then each component of

every level is homeomorphic to a circle Sl and R is

homeomorphic to a cylinder Sl x IR .

Proof. In the first step we will see that all levels are
compact. Suppose that there i1s a noncompact level. Lemma 15 and
two ends of R imply that F.assumes inf F(R) and the minimum set
is a straight line. Since R has two ends, there is a geodesic
loop whose endpoint is contained in the minimum set and which
is not homotopic to a point curve, a contradiction. We know the
existence of a homeomorphlism of R to a cylinder from the remark
above Proposition 13.

In the case that F does not assume inf F(R), then all levels
are connected. Therefore each level intersects a straight line
at one point which connects two ends. Thus R is topologically a

cylinder by the remark above Proposition 13.
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Next we claim that if F assumes inf F(R), then the minimum
set 1s a great circle. Otherwise, since it is a point or a
segment, all levels are connected. The existence of two ends
implies that there is a compact set K such that R - X consists
of exactly two unbounded components, so F is bounded above on
one of components of R - K. Thus, in the same way as in the
proof of Theorem 12, we can derive a contradiction, namely the
minimum set contains a ray. It turns out at the same time from
this consideration that there exist levels which are not
connected. Therefore each component of a level Intersects a
straight line at one point which passes through the minimum set

and connects two ends.

Now we can conclude the following;

Theorem 18. If R is a noncompact G-surface which admits a

locally nonconstant convex function, then R is homeomorphic to

elither a plane, a cylinder Sl x IR, or an open Moebius strip.

Proof. The case where R has two ends has already been
treated in Proposition 17. We may suppose by Theorem 16 that R
has one end. First we will prove that if there is a compact
level, then F assumes inf F(R). Suppose that F does not assumes
inf F(R). Then we produce a straight line through a certain
compact level by choosing two segqguences {qi} and {qi’} which

satisfy that lim F(qi) = inf F(R), and lim F(qi’) = 4o, and



- b1 -

connecting a3 and qi’ by a segment. Hence R has at least two
ends, a contradiction. Therefore, the minimum set of F is

either a point, a segment, or a great circle, Since the desired
construction of homecmorphisms is the same as in Proposition 13,
we need only to see how to map a level.

When the minimum set is a point, we map it to the ocorigin
of canonical plane I%g and [F = a], a > min F(R), onto a circle
in H{Z with center (0,0) and radius a - min F(R).

When the minimum set is a segment, we map it to a segment
T in canonical plane E{E and [F = a], a > min F(R), onto the set
fw e R; d(w,T) = a - min F(R)} in R°.

If the minimum set is a great circle, we map it to the
shortest great circle T in canonical open Moebius strip M and
[F =2a]l], a > min F(R), onto the set {we M ; d(w,T) = a - min
F(R)} in M.

Next we consider the case where all levels are noncompact.
If F does not assume inf F(R), Proposition 13 implies that [F =
al, a > inf F(R), is mapped onto the set {(u,v) e H%z; -0 < Y
< o, v = a} in canonical plane H%z and R is topologically a
plane. Hence we examine the case where F assumes inf F(R).

When the minimum set is a ray (or a straight line), we map
it to a half-line T (or a straight line T’) in canonical plane

B%Q and [F = a], a > min F(R) onto the set {w e ﬂ%g

2

; d(w,T) =

. a(w,T’) = a - min F(R)}) in R°.

a - min F(R)} ({w ¢ TR
From these considerations we conclude that if the minimum

set is a great circle, then R is topologically an open Moebius
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strip and that otherwise R is a plane ]R2 topologically,
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4. Locally nonconstant nearly peakless functions

In this section we extend the classification theorem in
Section 3 to the case of the existence of functions more
general than convex ones. A convex function F on a G-space R
has the following properties:

(1) F(x(rg)) < Max{F(x(Tl)), F(X(T3))} for T, £ T, £ Tqs
where x(1), - < T < o, is a representation of a geodesic.

(2) Whenever the equality holds in (1), F(X(Tl)) = F(x(rz))
= F .

(x(r3))

then F(x(1)) —>

(3) If F(X(Tl)) < F(X(T2)) for T, < 1

1 2?
sup F(R), as T——=«, and if F(x(rl)) > F(X(TZ)) for Ty > Too
then F(x(T1))——sup F(R) as T ——> -,

A function which satisfies (1) (or (1) and (2)) is said to

be nearly peakless (or peakless). Those properties have Jjust

played crucial roles in our reseach of Section 3. H., Busemann
actually pointed out that all the results which we have obtalned
in Section 3 are true under the existence of a continuous
peakless function with (3) and we need no changes in materials
for the proofs. He is right. However if we are not interested

in the behavior of the levels, then we will have the same
classification under the existence of a nearly peakless function

which is locally nonconstant.

Theorem 19. If a G-surface R admits a locally nonconstant,

nearly peakless function F on R, then R 1s topologically either

a plane, an open cylinder or an open Moebius strip.
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The author emphasize that continuity of the function F are
not assumed. In fact, nearly peakless functions are in general
not continuous. For the proof we need two lemmas under the

assumption of Theorem 19.
Lemma 20. F does not assume sup F(R).

Proof. Note that if A(q1q2q3) is a convex triangle whose
vertices are dy5 95 and q3 and if q < A(qlq2q3), then F(q) <
Max{F(ql), F(qz), F(q3)}. Suppose that there exists a point p
such that F(p) = sup F(R). From local nonconstancy of F we can
have non-colinear three points dq> q2 and q3 near p such that
F(qi) < F(p), 1 =1, 2, 3. Then it follows from the note above
and near peaklessness of F that F(r) > F(p) for those r which

satisfies (gpr) for some q € A(qlqzq ), and hence F(r) = F(p).

3
Thus 1f g runs on A(qlq2q3), then r runs on the set with non-

empty interior. This contradicts local nonconstancy of F.
Lemma 21. R is noncompact.

Proof. Suppose that R is compact. Let a sequence {pi}
satisfy that F(pi)-——>sup F(R) and {pi} tends to a point in R,
say p. There exist three non-colinear points ql, q2 and q3 near

p such that p ¢ A(qlqzq ). By Lemma 20, F(pi) > Max{F(ql), F(qg),

3
F(q3)} for a sufficiently large i, contradicting near

peaklessness of F.



- 45 —

We return to the proof of Theorem 19.

Proof of Theorem 19. It is sufficient to prove that if R

is orientable, then R is topologically a plane or an open
cylinder, because otherwise the two-fold covering of R is
orientable and the composition of F and the covering projection
is nearly peakless and locally nonconstant. Suppose that R is
orientable. Then R is tcpologically a sphere from which points
are removed and to which hundles are attached. If R is
homeomorphic to neither a plane nor an open cylinder, then there
exists a self-intersecting closed geodesic in R or a pair of
closed geodesics in R which intersect each other (see [41]).
Since F 1s constant on every closed geodesic, in the same
technique as in Lemma 20, R contains an open set U near the
intersection point such that F is constant on U (also see (9)i

in [6]), a contradiction. This completes the proof,
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CHAPTER II

Busemann functicns and total excess

1. Introduction

A G-space is defined by Busemann [4] as a metric space in
which any two points can be joined by a segment and in which
any segment may be prolonged uniquely to a geodesic. All complete
Riemannian manifolds are, of course, G-spaces.

If A is a ray with origin q € R in a noncompact G-space R,
then we can define a function on R by fA(p):= lim{d(q,z) - d(p,
z)} where d(g,z)——>= with z € A, because d(q,z) - d(p,z) X

d(q,z’) - d(p,z’) < d(p,q) for z, z’ ¢ A with d(g,z) £ d(qg,z’).

The function fA is called the Busemann function of A

It is recently known that Busemann functions play important
roles in the study of complete manifolds. For example, Cheeger-
Gromoll [{11], Gromoll-Meyer [18] and Wu [45] have obtained the
topological and differentiable structures of manifolds of non-
negative or positive sectional curvature by using convexity of
Busemann functions on such spaces. Eberlein-0°Neill [13] used
them as a useful implement in determining thelr axial and
parabolic manifolds. Shiohama [38] and [39] discovered that the
existence of exhaustion or nonexhaustion Busemann functions was
controlled by the total curvature in noncompact complete 2-
dimensional manifolds. Neverthless we have not yet known what
points spoil differentiability of a Busemann function in non-

stréight spaces. In straight Riemannian G-spaces, i1.e., complete
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simply connected Riemannian manifclds without conjugate points,
all Busemann functions are differentiable. Eschenburg [14] has
proved this.

The purposes of this chapter are to exhibit points which
spoil differentiability of a Busemann function and to
investigate the set of such all points.

We are, of course, interested in Riemann and Finsler G-
spaces. However in order to clarify the properties which ensure
our conclusions we make the arguments start from general G-spaces
and put the requisite assumptions on the spaces case by case.

In order to discuss differentiability of functions on a G-
space we need the following notions. A G-space R is in general
not a differentiable manifold, so differentiability of a
function on R at a point p € R 1s defined along a geodesic curve
through p. Let F be a function on an open set U of R. F 1s by

definition differentiable at p € U if F restricted to any

geodeslc curve through p is differentiliable at p for a parameter
of a representation of the geodesic curve. Also F is

differentiable on U if F is differentiable at each point p € U.

The distance on R is by definition differentiable around p if

there exlists an open neighborhood Vp of p such that the distance
function from p is differentiable on Vp - {p}. We say that if

for each point p of R the distance on R 1s differentiable

around p and if there exists a positive np such that for each
r ¢ B(p,np):= {r ; d(p,r) < np} we can choose an open

neighborhood Vr of r with the property as stated above and
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Vr 5 P, then the distance of R is 1ocally differentiable on R.

In a G-space R we need to assume another important
property concerning the distance function which holds in
differentiable manifolds. For any point p € R the distance
function from p réstricted to a segment from p is differentiable
except at p for a parameter of a representation of the segment
and its derivative is equal to 1 or -1. We say that the

distance from p ¢ R is regular at g « R 1f the differential

coefficient of the distance function from p restricted to any
geodesic curve through g exists at q and it 1s equal neither to
1 nor to -1 whenever the geodesic curve through g is not
contained in any segment from p. And also we say that the
distance of R is regular if for each point p € R the distance
from p i1g regular at every point g € R at which it is differen-
tiable.

We denote by B(A) the set of all points at each of which
the Busemann function of a ray A is not differentiable. OQOur
first aim is to explain B(A) in very geometrical words. To do
this, we need the notion of co-points to a ray A which are
defined as follows. Let A be a ray with origin q € R in a non-
compact G-space R. A co-ray B fromPto A is by definition the
limit of a converging sequence of segments T(pn,zn) where 19
—sp and Z, € A with d(q,zn)———e>w. The union of all co-rays
which contain a co-ray B to A is either a straight line or a
ray. In the first case, we call the line, with the orientation

for which B is a positive subray, an asymptote to A; in the
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second a maximal co-ray to A and its origin a coc-point to A,

We denote by C(A) the set of all co-points to A and by CZ(A)
the subset of C(A) whose points are origins of two or more co-
rays to A. C(A) and CE(A) are in general not closed in R (see
[31]). Lewis [28] and Nasu [31], [32] and [33] developed the
theory of C(A) and C,(A) (also see Busemann [51).

Under these notations we prove

Theorem 2. Let R be a noncompact G-space with locally
differentiable and regular distance and let A be a ray in R.
Then Cg(A)<: B(A) < C(A). Further, if all sphere S(p,p):= {r ;
d(p,r) = p} with 0 < p < p(p) are not contractible, then B(A)
is dense in C(A). (see Section 2 of Chapter II for the

definition of p(p))

From this fact we understand the study of C(A) to be very

interesting. We have in the case where C(A) is bounded

Corollary 10. Let R be a noncompact G-space with domain

invariance. If there exists a ray A in R such that C(A) is non-
empty and bounded, then R has exactly cne end, no asymptote to

A exists, and therefore fA is an exhaustion function,

These are main contents of Section 2.
In Section 3 we clarify the relation between the bounded-

ness of C(A) and the total excess of a G-surface (for the
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implication of G-surface see Section 2 of Chapter II ).
According Corollary 10, this is a detail of our investigation.
To do this, we need the notion of angular measure which is
defined by Busemann [4] as follows. Let p be a point of a G-
surface R. A direction from, or with origin p, is an oriented
segment T+(p,q) of length o(p):= min{p(p)/4,1}. Then for each

q € S:= S(p,0(p)) there exists a unique direction from p to q.
We concelve of an angle A with vertex p as a set of directions
with origin p passing through the points of a sub-arc of S. A
measure for the angles at p is a nonnegative function |A| which
is defined for all angles A with vertex p and has the following
properties: 1) |A| = 7 if and only if A contains exactly one
segment through p and connecting points of S, which is called

a straight angle, 2) If Alf\ A2 consists of exactly one

direction, then |A; V A2| = ]Al] + |A2]. We speak of an angular
measure on a G-surface R if a definite angular measure has been
defined at each of its points.

Using the angular measure above we can define the excesses
of triangles and the total excesses of certain regions on a G-
surface (see Section 3) which is, of course, in the case of
Riemannian G-surfaces with the Riemannian angular measure,
identified with the total curvatures of triangles and the total
curvatures of regions by the Gauss-Bonnet Theorem.

The main result of Section 3 is

Theorem 14. Let R be a noncompact G-surface with a
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continuous angular measure and let the total excess e(R) of R
exist. If there is a ray A in R such that C(A) is nonempty and
bounded, then e(R) > 2wx(R) where x(R) is the Euler

characteristic of R.

If the angular measure has the property which insures that,
in a uniform way, an angle cannot be nearly straight without
having a measure close to w, then in the inequality above e(R)
= 27x(R) holds. Such an angular measure is said to be "uniform
at m" on R (see Section 3). Of course, the Riemannian angular
measure on Riemannian G-surfaces are uniform at w.

In Section 4 we investigate the union of the angles
composed of the directions of co-rays from each point to a ray.
In a certain G-plane R the totality of the measures of these
angles at each point is at most the total excess (see Theorem
21). As an application, we show, in combination with Maeda [29]
and [30], the existence of infinitely many rays from each point

p € R which are not co-rays from p to a ray (see Corollary 24).
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2. Busemann functions and co-points

Let R be a noncompact G-space and let A be a ray in R. If
B is a co-ray to A, then B is also a co-ray to any ray
contained 1n or containing A as a sub-ray. Furthermore, the
limit of & converging sequence of co-rays to a ray A is likewise
a co-ray to A. The existence of co-rays to A from a point p € R
is in general not unique. However the co-ray to A from any
point of a co-ray B other than the origin p of B 1s unique and
a sub-ray of B (see [4], p.136). For co-rays B1 and B2 to A,
unless one is a sub-ray of the other Bl and B2 do not intersect

each other except at the origins.

Our first observation is

Proposition 1. Let R be a noncompact G-space with locally

differentiable distance and let A be a ray from g. If p ¢ R 1s
not a co-point to A, then the Busemann function fA is

differentiable at p.

From this we have

Theorem 2. Let R be a noncompact G-space with locally
differentiable and regular distance. Let A be a ray. Then CQ(A)
< B(A) <« C(A). Further, if all spheres S(p,p) with 0 < p < p(p)

are contractible, then B(A) is dense in C(A).

It is known that if a G-space R is finite-dimensional, then
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all spheres S(p,p) with 0 < p < p(p) are not contractible (see
[51, p.16).

From Theorem 2 any noncompact G-space in which no sraight
lines exist does not admit any differentiable Busemann function.
We say that a G-space R is straight if all geodesics are

straight lines. In a straight G-space C(A) is empty for every

ray A (see [47], p.138).

Corollary 3. Let R be as in Proposition 3. If R is

straight, then all Busemann functions are differentiable on R.

This is the version of the result of Eschenburg [14].

Corollary 4. Let R and S(p,p) be as in Theorem 2. If B(A)

is empty for a ray A in R, then there is a homeomorphism h of

R onto a product R, x IR such that R, is homeomorphic to [fA =

1 1
0] by h™1 ana {p} x IR is the image of an asymptote to A by h.

Proof. The homeomorphism h is given as follows., If for
each g € R hl(q) is the point at which the asymptote through q
to A intersects [fA = 0], then we have only to put h(q):=
(hl(q),fA(q)), since generally fA(y(s)) = s + fA(y(O)) holds
where y(s) is a representation of a co-ray to A (see [4], p.134)
and since the asymptote through p « R to A continuously depends

on p.
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From the definition of ends (see Section 3 of Chapter II)

a product Rl x IR has one end if R. is noncompact and otherwise

1
two ends. Hence we have

Corollary 5. Let R and S(p,p) be as in Theorem 2. If R has

at least three ends, then there are no differentiable Busemann

functions on R.

Nasu [33] stated that in a noncompact G-space if C(A) is
nonempty and compact for a ray A, then no asymptote to A exists
(also see [5], p.89). Since fA(p) > d(p,C(A)) + inf fA(C(A)) for

every p € R, we have

Corollary 6. Let R and S(p,p) be as above. If B(A) is non-

empty and compact, then £, is exhaustive, i.e., [-= < fA < a]

is compact in R for every a « IR,

In combination with Nasu’s structure theorem [31] of a G-

space having an isolated co-point to a ray, we have

Corollary 7. Let R and S(p,p) be as in Theorem 2, If B(A)

contains an isolated point p, then B(A) = {p} and the space is
the union of all co-rays to A with origin p and R is contractible

to p. The levels of f, are the ordinary spheres S(p,p) with

A
center p.
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We return to the proofs of Proposition 1 and Theorem 2.

Proof of Proposition 1, Let B be a co-ray through p to A.

By the definitions of co-rays to A and of co-points to A there
is a sequence of points w_ and z_ € A such that w ——w (e B),
p follows w on B, d(p,zn)—~—f>W, and segments T(wn,zn)——*—aB.
Further, from local differentiability of the distance, choose
points U and v, on T(w 2, ) such that Wos U, Py and v, are in
this order on T(w_,z_) and u, —>u € B, v — v € B with p «
where Vu and V, n

p\V\VEFE—EHE”Eg&alns as in the definition of local
differentiability of the distance. Let x(s), -¢ < s e, bea
representation of any geodesic curve with x(0) = p in Vu V..
We must prove that fA(x(s)) is differentiable at s = 0.

By the triangle inequalities, d(x(s),zn) < d(x(s),vn) +
d(pn,zn) - d(pn,vn) for every n and for every s, and hence
d(pn,vn) - d(x(s),vn) < d(pn,zn) - d(x(s),zn). Also d(un,pn) +
d(pn,zn) < d(x(s),un) + d(x(s),zn) for every n and for every s,
and therefore d(pn,zn) - d(x(s),zn) < d(x(s),un) - d(pn,un).
Hence, because d(pn,zn) - d(x(s),zn) = {d(q,zn) - d(x(s),zn)} -
{d(q,zn) - d(pn,zn)} for every s, we have, as n——>», -(d(x(s),
v) - dlp,v)) 2 £,(x(s)) - £,(x(0)) < d(x(s),u) - d(p,u) for
every s. Thus we have only to show that 1im (d(x(s),u) - d(p,u))
/s = =lim (d(x(s),v) - d(p,v))/s. This is proved as follows.

Since the function d(x(s),u) + d(x(s),v) for s assumes a
minimum at s = 0 and since d(x(s),u) and d(x(s),v) are

differentiable at s = 0, 0 = 1im (d(x(s),u) + d(x(s),v) - d(u,v))
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/s = 1im (d(x(s),u) - d(p,u))/s + 1im (d(x(s),v) - d(p,v))/s.

This completes the proof.

It should be noted that, under the notations of the proof,
even if p is a co-point to A, the inequality -(d(x(s),v) - d(p,
v)) 2 fA(x(s)) - fA(p) holds for every s and the equality sign
holds at s = 0, so that if f, is differentiable at p, then the

A

differential coefficient of fA at p along x(s) is equal to the

one of the negative distance function from v at p along x(s).

Proof of Theorem 2. From Proposition 1 it follows that B(A)

< C(A). Suppose there exists a point p & C2(A) ~ B(A). Let Al

and A2 be two distinct co-rays from p to A. Let y(s), 0 £ 8 < o,

be a representation of a ray A. with y(0) = p and let v be a

2
point on Al such that it follows p and p € Vv’ From the fact

that fA(y(s)) =35 + fA(p) the differential coefficient of

]

fA(y(s)) at s 0 is equal to 1. However, by regularity of the

distance, the differential coefficient of d(y(s),v) is not equal

to -1, a contradiction to the above remark. Thus CZ(A) C B(A).
The denseness of B(A) in C(A) follows from a result in [5],

p.89. This completes the proof.

We notice that if R is a Riemannian G-space, then the

gradient of f, is continuous on R - B(A).

A
In the following we willl discuss and partially answer the

question; in what spaces there exists a ray A such that C(A) is

bounded.
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We say that a Hausdorff space R has the property of domain

invariance 1f a subset of R which is homeomorphic to an open

set of R is open in R. According to Busemann [5], p.16, domain

invariance holds in finite-dimensional G-spaces.

Theorem 8. Let R be a noncompact G-space with domain
invariance and let A be a ray in R, If C(A) is nonempty, then

fA(C(A)) is dense in the interval [inf fA(R), sup fA(C(A))].

To give corollary of Theorem 8 we need a short remark. If
a noncompact G-space R has at least two ends, then for every

ray A there exists an asymptote to A, and f in particular,

A®
assumes no minimums. In fact, from the assumption, there exists
a compact set K < R such that R - K contains at least two un-
bounded components and a sub-ray of A is contained in one
component W of R - K. Take an unbounded sequence of points pj

in R - K each of which is contained in distinct components from
W. Since for each j a co-ray Aj from pj to A intersects K, there

exists a subsequence {Ak} of the sequence {Aj} converging to an

asymptote to A.

Corollary 9. Let R be a noncompact G-space with domain

invariance and with at least two ends, If C(A) is nonempty for
a ray A, then C(A) is unbounded. In particular, if R has at
least three ends, then C(A) is nonempty and unbounded for every

ray A.
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Corollary 10. Let R be a noncompact G-space with domain

invariance. If there exists a ray A in R such that C(A) is non-
empty and bounded, then R always has exactly one end, no asymptote

to A exists, and hence f, 1s exhaustive,

A
This corollary should be compared with Corollary 6.

To the proof of Theorem 8 we need the following lemma.

Lemma 11. Let R be a noncompact G-space and let A be a ray

in R. Then, [a £ f, < «»] is pathwise connected for every a €

A
fA(R).

Proof. We first prove that we connect a point p with fA(p)
> a and a point g with fA(q) > a by a curve, To show this we

will obtain two curves in [a < f, < «] from p to some point z €

A
A and from g to the same point z € A. If for each z €A a
segment T(p,z) from p to z (or T(g,z)) intersects [fA = alj,
then we denote by p(z) (or g(z)) a point in the intersection.
Thus d(r,z) - d(p,z) = d(r,z) - d(p(z),z) - d(p,p(z)) or d(r,z)
- d(q,z) = d(r,z) - d(q(z),z) - d(g,q(z)) for every z €A,
respectively, where r is the origin of A. In general if 2z’
follows z on A, then d(r,z) - d(s,z) < d(r,z’) - d(s,z’) for
every point s ¢ R. Hence d(r,z) - d(p,z) < a - d(p,p(z)) or
d(r,z) - d(g,z) < a - d(g,qa(z)) for every z € A, From this, for
every z € A such that d(r,z) is sufficiently large, d(p,p(z))

and d(q,q(z)) is negative, a contradiction, Therefore using
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such a point z ¢ A we can obtain a curve T(p,z)\f T(q,z) from
p to q.

For a point p with fA(p) = a and for a point g with fA(q)
> a, for example, we pick out a point pl Z p on a co-ray from p
to A and a curve T from 1o to g in [a < fA < o] as above., Then

we get a curve T(p,pl)U T from p to q in [a £ £, < «].

A

Proof of Theorem 8. Suppose that there exist values a and b

such that for every t, a < t < b < sup fA(C(A)), [fA = ]

contains no co-points to A. Fix t a < t, < b. From Lemma 11,

0° 0

[to < £, < »] is connected. Now let X be the set of all points

A
each of which is contained in the co-ray to A from some point

P < [fA = tO]. Clearly X c:[to < fA < =], We show that X is

closed and open in [to < fA < ],

Assume that {pj} < X converges to a point p, in [to < fA <
o], By the construction of X, for each pj there exists a unique

point qj & [fA = tO] the co-ray to A from which contains pj.

For each j the distance between P and a; is at most sup{fA(pj)}
J

- t, and hence {qj} is bounded. Since [fA = tO] is closed,

there exists a subsegquence {qk} of {qj} converges to a point g

in [fA = g Because [f, = tO] contains no co-points to A and

O]' A
therefore the co-ray from a point g in [fA = tO] to A

continuously depends on q, {pk} converges to Py which is

contained in a unique co-ray from g, to A, namely Py, € X. Hence

0

X is closed in [tO < f, < =],

A

To prove that X is open in [to < £, < «»] we need the

A
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property of domain invariance of R. For any point g’ in X
there is a unique point q in [fA = tO] the co-ray to A from

which contains q’. If fA(q’) =t then we have nothing to

O’

prove because [to < f, < Dbl is a neighborhood of g’ in X. So we

A

may assume that fA(q’) >t Since [tO < f < bl is open in R,

0"
for given point p € T(q,q’) f\[to < f

A

A < b] there exists an

open neighborhood V of p in R which is contained in [to < fA <
b]. Define a map of V into X by sending r €V to a point r’ such
that r’ is contained in the co-ray from r to A and the distance
between r and r® is d(p,q’) (g’ = p? under our new notation).
OCbviously this map h 1s a homeomorphism of V onto its image
containing p. From domain invariance of R the image h(V) <€ X is

open in [to < fA < «], Hence X is open in [to < £, < ],

A
Therefore X = [to < fA < »], However this i1s impossible,
because X contains no co-points to A from the construction of

X and because [to < f, < «] contains co-points to A. This

A
completes the proof.

In the proof above we have just shown that there are no
values a and b < sup f,(C(A)) such that no components of [a <
£, < b] exist such that it does not contain any co-points to A.

Hence we have

Proposition 12. Let R be a noncompact G-space with domain

invariance and with at least two ends. Let A be a ray in R. If

C(A) is nonempty, then for each compact set X there are co-points
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to A in all unbounded components of R ~ K, except in only one

which contains a sub-ray of A,

For the investigations in Section 3 it 1s convenient to

notice here the case of G-surfaces in more details.

Proposition 13. Let R be a noncompact G-surface and let A

be a ray in R. If C(A) is nonempty and bounded, then no asymptote

to A exists, f, is exhaustive, and moreover there is a t, such

A 0
that [fA = t] is a one-dimensional embedded submanifold of R

which 1s homeomorphic to a circle st for every t > t, and [to <

0
fA < o] is homeomorphic to a product [fA = tO] x [0,°).

Proof. The first two assertions are contained in Corollary

10. since C(A) 1is bounded, there is a t; such that [t -1 < f

0
< o] r\C(A) is empty. By the same reasoning as Corollary 4,

A

[ty £ £, < «] is homeomorphic to a product [fA = tO] X [to,w).

0 A
The proof of the remainder 1is as follows.
For given p ¢ [fA =t], t > tO’ there is a point g such

that t, > fA(q) > t. - 1 and the co-ray B from q to A contains

0 0
p{ Let T be a segment through g such that T is contained in [to
-1 < fA < tO] and the intersection T N\ B consists of only one
point q. Note that for every co-ray B’ from r ¢ T to A the
intersection T ~ B’ consists only one point, since if T n B’

contains two points, then g must be a co-point to A. Let D be

the set of all points each of which is contained in the co-ray
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from some point r € T to A. Then, D is homeomorphic to a half-
strip [0,1] x [0,®), since the co-ray from r € T to A
continuously depends on r, In particular, D is a neighborhocd

of p. Obviously the intersection D r\[fA = t] is homeomorphic

to T, so that [fA = t] 1s a one-dimensional embedded submanifold

of R without boundary. Since f, is exhaustive, [fA = t] is

A
compact, and hence [fA = t] is topologically a circle Sl. This

completes the proof.
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3. Co-pecints and total excesses

In this section we see to what extent the total excess of
a G-surface influences the set of all co-points to a ray. We
confirm the notions which are used in this section. They are
found in the book of Busemann [4], pp.273-305.

We have already defined the angles and the angular measure
in the introduction. We say that the angles An with vertex 1
tends to the angle A with vertex p if p,—>P and the point
set carring the directions in An tends to the polnt set carring

the directions 1n A. An angular measure 1s by definition

continuous if A —> A implies |, | —>|A[. The excess of a
triangle A(abc) in B(p,p(p)/8) is the value e(abc) = |abc]| +
|bca| + |cab| - w, where |abc|, for example, implies the measure
of the angle composed of the directions with origin b and
through points of the segment T(a,c). Let D be a compact

polygonal domain, i.e., its boundary, if exists, consists of

finitely many simple closed geodesic polygons. We put €(D):=

n

E%E(A(aibici))’ where A(aibici) is the decomposition of D into
triangles each of which is contained in B(p,p(p)/8) for some p.
e(D) is independent of the choice of the decomposition and is

called the total excess of D. Busemann has stated in [4], p.283,

m
that (D) = 2mx(D) - Z (7 - Bj)’ where Bj is the measure of
=1
the inner angle of D with vertex pj on the boundary of D and
x(D) is the Euler characteristic of D. An angular measure is

said to be "uniform at 7" in the subset G of R if a nondecreas-

ing positive function 8(e) < 1 and a positive function w(p,€)
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< p(p)/Y4 defined for 0 < e < 7 and p ¢ G exist, such that the
relations 0 < d(al,p) = d(a2,p) < w(p,e) and d(al,a2)/(d(a1,p)
+ d(p,a2)) > 1 - &(e) imply Ialpa2| > 7 - €, This property
insures that, in a uniform way, an angle cannot be nearly
straight without having a measure close to 7. Of course, the
Riemannian angular measure on a Riemannian G-surface R is
uniform at m on R (see [4], p.293), Finally we need the notion
of the total excess of a noncompact region G. Let G be a subset
of R.which is the union of an increasing sequence {Dn} of
compact polygonal domains G = UDn such that p, ¢ Dni+l - Dni
implies that {pi} has no accumulation point for any sequence
{ni} going to infinity. If e(G):= lim a(Dn) exists for each

such sequence {D_}, %« admitted, then we call it the total
excess of G. Busemann [4], p.300, has proved that if the G-
surface R of finite connectivity possesses the total excess with
respect to the angular measure which is uniform at m on R, then
e(R) < 2mx(R). This is a generalization of a result of Cohn-
Vossen [12].

Under the notions above we establish

Theorem 14. Let R be a noncompact G-surface with a

continuous angular measure and let the total excess €(R) of R
exist. If there exists a ray A in R such that C(A) is nonempty

and bounded, then e(R) > 2wx(R).

According to the remark preceding Theorem 14 we have
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Corollary 15. Let R and C(A) be as above. Further, if the

angular measure is uniform at m on R, then €(R) = 2nx(R). In
particular, if R is a Riemannian G-surface with the Riemannian
angular measure, then the total curvature of R, £(R), is equal

to 2mx(R).
If for any point p outside a bounded set in a G-surface
there 1s only one ray starting from p, then the assumption

concerning C(A) is automatically satisfies. Hence we obtain

Corollary 16. Let R be as in Theorem 14, If there is a

bounded set K of R such that for every p ¢ K only one ray from

p exists, then e(R) > 2mx(R).

Before proving Theorem 14 we provide the notations and
three lemmas under the assumption of Theorem 14,

FProm Proposition 13 there is a t. > 0 such that C(A) is

0

contained in [-= < f; < to—2] and [to—l < f, < w] is

A
topologically a cylinder S1 x [to,w).

Lemma 17. For every t > tO there is a point z(t) &€ A such
that for every z ¢ A which follows z(t) on A and for every q &
[fA = t] all segments from g to z does not intersect [-« < fA

< t-17.

Proof. Suppose that this is false. Then there exists a
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sequence {qj} Cl[fA = t] and a sequence {Zj} C A such that

d(qj,zj)————:a-00 and a segment from qj to 255 for each j,

intersects [-» < f, < t-1]., The seque-nce of these segments

containes a subsequence converging to a co-ray B from a point

in [fA = t] to A. f, is monotone increasing on B, so B cannot

A
=

intersect [-» < £y t-1], a contradiction.

Lemma 18. Let t > ¢t Then for every z € A which follows

O L
z(t) € A as above there exists a point q(z) e [fA = t] such that
at least two segments from g(z) to z exist and the union of two

of these segments, if chosen, surrounds a compact polygonal

region D(z) which contains [-« < fA < t-17 in its interior.

Proof. Let p be a point on A such that fA(p) = to and let

]

c(s), 0 £ s <0, be a representation of [fA = t] with ¢(0)
c(o) = p. Fix z € A which follows z(t) on A, For each s, 0 < s
< a, we denote by X(s) (or ¥(s)) the set of all curves from

c(s) to z in R*>:= R - [-» < £, < t-1] each of which is

A
homotopic to the curve c¢([0,s]) UV T(p,z) (or c([s,1]) V T(p,z))
in R’>. We note that for every X < X(s) and for every ¥ « Y(s)
the union ¥ V § is homotopic to the union T(z,p)\J [fA =t]V

T(p,z) in R’, so that ¥ V § surrounds [-= < f, < t-1]. For each

A
s, 0 £ s £ a, let X(s) be an element of X(s) such that for every
element X of X(s) the length of X(s) is not greater than the

one of X. Similarly let ¥(s) be an element of Y(s) with minimum

length in Y(s). We denote by A(s) and p(s) the lengths of X(s)
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and §(s) respectively. Obviously X(0) = T(p,z) and J(a) =
T(p,a), so A(0) < u(0) and A(a) > u(a), because of the unique-
ness of a segment T(p,z). By semicontinuity of the lengths of
curves (see [4], p.20) A(s) and u(s), 0 < s < a, are continuous,
so that there is an g with 0 < 59 < @ such that A(so) = u(so).
Then both i(so) and §(so) are segments from c(so) to z in R. In
fact, for every s, 0 < s < o, Lemma 17 implies that X(s), ¥(s)
or both are segments in R, because R’ is topologically a half-
cylinder. Thus we have only to put q(z):= c(so), and then i(so)
v ?(so) surrounds a desired compact domain D(z). This completes

the proof.

Note that x(R) = x([-= < fp 2 t-1]) = x(D(z)) for every

ot
v

tO'

Lemma 19. For any € > 0 and for every t > t, there is a

w(t) € A such that w(t) follows z(t) on A and €{(D(w(t))) > 2x
mx(R) - € where D(w(t)) is as in Lemma 18.

Proof. Since [f, = t] is compact, there exists a sequence

A
{zi} on A such that d(p,zi)—~——-——>oo and q(zi) converges to some
point in [fA = t]. If a(zi) is the measure of inner angle of
D(zi) at q(zi) and so is B(zi) at Z3s then u(zi)~—~f>2ﬂ as
d(p,zi)——a—ew, since the angular measure 1s continuous and since
for every point in [f, = t] the existence of a co-ray from it

A

to A is unique. Hence there exists a w(t):= Zs € A which follows
0
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z(t) on A such that e(D(w(t))) = 2mx(R) = (7 - a(w(t))) - (7w -

B(w(t))) > 2mx(R) - €.

Now we will prove Theorem 14,

Proof of Theorem 14. We want to prove that e(R) > 2mx(R)

- ¢ for any € > 0. Put Dy:= D(w(to)) as above. We assume by

induction hypothesis that there exists a sequence D D

0° 71°°°"* "n
for i = 0, 1,

D

of compact polygonal domains such that Di<c Di+l

.» n-1 and €(D,) > 27x(R) - e for 1 = 0, 1,..., n. If a:= Max

fA(Dn), then we can put D 41:= D(w(a + 2)) from Lemma 19.

+1
Obviously the sequence {Di} satisfies the conditions which are
needed for the definition of the total excess of R. Thus €(R)

> 2wx(R). This completes the proof.
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4., Remarks on the existence of co-rays

In this section we treat the case that a Busemann function
fA on a G-plane, i.e., topoclogically a plane, is convex. It 1is
known that every Busemann function on a Riemannian manifold of
nonnegative sectional curvature is convex (see [11], [45]). In
a G-plane if a convex function assumes a minimum, then the
minimum set 1s eilther a point, a segment, a ray, or a straight
line (see Section 3 of Chapter IIL ). However the last does not

occur in the case of convex Busemann functions as in the

following.

Proposition 20. Let R be a noncompact G-space, The minimum

set of a Busemann function does not separate the space R.

For we have already proved this in the proof of Lemma 11.

It i1s proved in Section 3 of Chapter II that unless a
convex function on a G-surface R has nonempty minimum set which
is a one-dimensional manifold without boundary, then all levels
are connected and levels except the minimum set are one-
dimensional embedded submanifolds without boundary, and hence
ail levels are topologically either circles or real lines.

Let R be a G-plane and let a Busemann function fA be convex
and nonexhaustive. Then from the fact above every level except
the minimum set is homeomorphic to a real line. If Al and A2 are
distinct co-rays from p & Cg(A) to A, then they intersect

[fA = t] at distinct points for all t > fA(p), and therefore
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they cut off the sub-arc ¢(t) of [fA = t] for all t > fA(p).

Theorem 21. Let R be a G-plane which possesses an

continuous angular measure with nonnegative excess and let a

Busemann function fA be convex and nonexhaustive. Then for each

point p & CE(A) the measure of the inner angle at p of the

domain D:=, Y ¢(t) as above is not greater than the total
t>fA(p)

excess e(R) of R.

We say that an angular measure on a G-surface R has non-

negative excess if every non-degenerate triangle in B(p,p(p)/8)

R has nonnegative excess. We notice that since the excess of
every triangle is nonnegative, e€(R) always exists (see [4], p.

299) .

Proof. We have conly to prove the statement for two co-rays
Al and A2 from p to A such that any co-ray from p to A passes

through the sub-arcs cut off from levels by Al and Az. Let Py

and P, be points in Al and A2 respectively with fA(pl) = fA(pg)

> fA(p). First we show that there exists a z. € A such that if

0

7z € A follows z. on A, then the union T(p,pl)\/ T(pl,z)\J

0
T(z,p2)\/ T(pz,p) of four segments 1is a simple quadrilateral,
and such that the compact domain D(z) which is surrounded by
the quadrilateral tends to the domain D in the statement. If g

is the origin of A, then d(g,z) - d(pi,z) < fA(pi) - d(pi,ri(z)),

i=1, 2, as in the proof of Lemma 11, where z € A and ri(z) is,
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if exists, a point of the intersection of a segment T(pi,z) and
[fA = fA(pi)]. Hence d(pi,ri(z)), i =1, 2, tends to zero. Thus

there is a z, € A such that d(pi,ri(z)) < d(pi,T(pj,p)), i# 3,

0

for every z following z, on A. Then our quadrilateral is simple,

0
because, for example, a segment T(pl,z) intersects the union
T(p,pl)lj T(p,pg) b/T(pg,z) of segments at only two points Py
and z. Since each of components of R - [fA = fA(pl)] is
homeomorphic to a plane and since segments T(pl,z) and T(pg,z)

tends to the sub-rays of A, and A2 respectively as d(p,z)——=>=

1
with z € A, the domain D(z) surrounded by the quadrilateral
tends to the domain D in the statement.

Because the excesses are nonnegative, e(D(z)) = 27 - (7 -
a(z)) - (m - B(z)) - (m - v(z)) - (m - &8(z)) £ €(R) where a(z),
B(z), v(z) and 6(z) are the measures of the inner angles of
D(z) at p, Pys> Py and z respectively. Hence a(z) + B(z) + y(z)
- 2m £ e€(R). Since the angular measure is continuous, B8(z) and

y(z) tends to m as d(p,z)—=>= with z e A. Therefore a(z) <

e(R), which is our goal.

Let D be the region which is composed of all co-rays from
p to a ray A. In general D - {p}l is not connected and each
component may contain many co-rays from p to A. For each

component D, of D - {p} if we apply Theorem 21 to the boundary

A
of DA\J {p}, then the measure of the inner angle of DA\J ipl at
p is at most e€(R). Nevertheless the proof of Theorem 21 yields

a stronger result than this.
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Corollary 22. Let R be a G-plane which possesses a

continuous angular measure with nonnegative excess and let a
Busemann function fA be convex and nonexhaustive. Then for each
point p the totality of the measuresgpof the inner angles of

DA U {p}’s at p is at most the total excess €(R) of R.

In a Riemannian G-plane M2 with the Riemannian angular
measure K. Shiohama has proved in [38] that if M2 is of non-
negati?e Gaussian curvature and if the total curvature is not
greater than w, then all Busemann functlons on M2 are non-

exhaustive. Hence we have

Corollary 23. Let M be a Riemannian G-plane with the

Riemannian angular measure and of nonnegarive Gausslian curvature.
If the total curvature (M) is not greater than w, then for
each ray A and for every point p the totality of the measures

of the inner angles of D, / {p}’s at p is at most e(M).

As another application we prove the existence of rays from
each point p which are not co-rays from p to a given ray A. To
do this, we carefully observe Maeda’s result in [29] and [301],
i.e., if M is a Riemannian G-plane with the Riemannian angular
measure and of nonnegative Gaussian curvature, then the
totality of the measures of the inner angles at each point p of
the domains which are composed of all rays from p 1s at least

2r - €(M) where (M) is the total curvature of M. Using this we
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have the following.

Corollary 24. Let M be a Riemannian G-plane with the

Riemannian angular measure and of nonnegative Gaussian
curvature. If the total curvature (M) is smaller than m, then
for each ray A and for every point p € M there are infinitely
many rays from p which are not co-rays from p to A, more
precisely, the totality of the measures of the angles at p of
the domains which are composed of rays from p that are not co-

rays to A is at least 2m - 2e(M).

Our estimate 1s, of course, valid at only points of Cz(A).
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CHAPTER IV

Affine functions and splitting theorems

1. Introduction

A function P defined on a complete Riemannian manifold M
without boundary is said to be convex iff on each geodesic F is
a one-variable convex function. In [15] and [16], such functions
are studied in details. For example, if F assumes no minimum,
then M is diffeomorphic to N x IR, where N is homeomorphic to a
level of F, and i1f F has a compact level, then all levels are
compact and the diameter function of levels of F is monotone
nondecreasing as a function for values of F. Moreover M with a
locally nonconstant convex function F has at most two ends, and
M has one end if F has a noncompact level. These facts will be
used in Section 4.
In the present chapter we study functions on M which are
affine functions on geodesics, and we apply them to prove
splitting theorems of Riemannian manifolds.
Let M be a complete Riemannian manifold without boundary. .
A function F on M is by definition affine if for a JS°F 0 geodesi< T
representation x(t), -« < t < m)@gzgz;;-:_?g,:—;;;;j = sFax(tl)

1

+ (1 - S)F°X(t2) for every s < (0,1) and for every £l t, €
(=0,»), A function F on a Riemannian product manifold M:= N x IR
is clearly affine on M if F(p,t) = t for each (p,t) € N x IR.

The main theorem of our investigation is
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Main Theorem. A complete Riemannian manifold M without

boundary admits a non-trivial affine function if and only if M

is isometric to a Riemannian product N x IR,
Mcre precisely, we prove

Theorem 1. Let M be a complete Riemannian manifold without
boundary. If M admits a non-trivial affine function F, then
[F = a], for every a € IR, is a totally geodesic submanifold
of M without boundary, and furthermore there exist an isometric
map I of [F = al] x IR onto M and a constant b such that FeI(p,

t) = bt + a for every p € [F = a] and for every t ¢ IR.

Examples and applications of this theorem are as follows.

Let V be the totality of all affine functions on M. Then
V is evidently a vector space containing all constant functions
on M and hence dim V is at least one. If M is the n-dimensional
FEuclidean space, then V is an (n + 1)-dimensional vector space.
Conversely, from the fact that grad F of an affine function F

is parallel on M and by iterating Theorem 1, we have

Theorem 2. Let M be an n-dimensional complete noncompact
Riemannian manifold without boundary. Then 1 < dim V < n + 1.
If dim V = k + 1, then M is isometric to the Riemannian product
N x H%k, where N admits no non-trivial affine functions. In

particular M is the Euclidean space if and only if dim V = n + 1.
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Next we discuss when an affine function on M exists,
A geodesic with a representation x(t), - < t < o, (or

0 <t < =) is by definition a straight line (or a ray) if

d(x(tl),x(tg)) = |~tl - t,| for all t,, t, € (=w,0) (or £t

€ [0,»)).

Theorem 3. Let M be a complete noncompact Riemannian
manifold of nonnegative sectlonal curvature and without
boundary. If there exist two rays Al and A2 with representations
xl(t), 0 <t <=, and xz(t), ~@ <t < », and a positive
constant a such that for every t &€ [0,»), 2t - d(xl(t),xz(t))
< a, then the Busemann functions fA.(‘):= lim{t - d(.,xl(t)},
i=1, 2, of Ai are non-trivial affine functions. In particular

M is isometrically a Riemannian product N x IR .

Using the Toponogov comparison theorem (see [42]), we know
that the existence of Al and A2 in the assumption 1is
equivalent to the existence of a straight line. Thus we obtain
a restatement of the Toponogov splitting theorem (see [10], [11]
and [427]).

However if M 1s of nonpositive sectional curvature, the
existence of a straight line does not imply the existence of a

non-trivial affine function on M (see Example 6 in Section 4).

But the following holds in this case.
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Theorem 4. Let M be a complete noncompact Riemannian
manifold of nonpositive sectional curvature and without
boundary. Suppose there exists an isometry § of M such that it
translates a straight line A with a representation x(t), -« <
t < wfi%ﬁere exists a constant a # 0 such that Seox(t) = x(t + a)
for every t € (-»,»), which connects different ends of M and it
leaves all free homotopy classes of closed curves in M invariant.
Then the Busemann functions fA+(.):= 1im{d(.,xi(t)) - t} are
non-trivial affine functions aﬂd hence M is isometrically a
Riemannian product N x IR, where A, (or A_) is a positive (or
negative) sub-ray of A with representatinns x+(t) = x(t) (or

x_(t) = x(-t)) for all t & [0,»).

In Section 2 we give the proof of Theorem 1. In Section 3
we prove Theorem 3. The proof is very short and the idea is
useful to that of Theorem 4. In Section U we deal with Theorem
4 and we shall see there another statement (Proposition 5)

which explains satisfactorily the meaning of splitting.

Note: Busemann and Phadke (see [6]) have independently
proved the analogous result to Theorem 2 in G-spaces.,

Main Theorem is a contrast to a result of T. Yamaguchi
[46] who has studied the isometry groups of a complete

Riemannian manifold admitting strictly convex functions.
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2. Affine functions

In this section we give the proof of Theorem 1, Throughout
this section the space we treat is a complete noncompact
Riemannian manifold without boundary.

Clearly for each geodesic with a representation x(t), -« <
£ < o, there are constants m and n € IR such that Fex(t) = mt
+ n for all £t € (-w,o) and hence F has no minimum on M. It
follows from this formula that all levels of F are connected
totally convex set (for definition see [11]) and hence totally
geodesic embedded hypersurface without boundary (see [9], [11]).
Because if the geodesic passes through two points in a level of
F, then m = 0.

We are going to show that the exponentlial map of the normal
bundle of each level onto M yields the desired isometric map.
For a subset Q of M and for a point g in M, we call a point f
€ Q a foot of g on Q if d(q,f) = d(q,Q). We shall often use this

notion. We take the following steps to complete the proof.

Assertion 1. For given a € lR and for each g & [F = a],

let £ be a foot of q on [F = al. Then a segment T(q,f) from g
to f satisfies the following properties,

(1) For every c € [a,F(q)] (or [F(qg),a] if F(q) < a),
T(q,f) intersects [F = c] at exactly one point, say fc'

(2) fc is a foot of g on [F = ¢] and f is a foot of fC on

[F = a].
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Proof. (1) is evident, since F is a non-trivial
affine function along T(q,f). Concerning the second part of (2),
see (20.6) in 4], p.120.

Suppose that there is a point fc’ in [F = ¢] such that
a(q,f,) > d(q,f,’) = d(q,[F = c]). If F(q) > ¢ (or if F(q) < c),
then (F(q) - ¢)/d(q,f ) < (F(a) - c)/alg,f.”) (or (¢ - F(a))/
d(q,fc) < (¢ = F(q))/d(q,fc’)). Let £’ be a point in [F = a] at
which the extension of T(q,fc’) meets [F = a]. Then the length
of T(q,f) is greater than the length of the extension of
T(q,fc’) up to the point f’. This contradicts the choice of f.

Hence the first part of (2) is proved.

Assertion 2. Each point q ¢ [F = a] has a unique foot on

[F = a] and moreover there is a unique segment T(q,f) from g

to f.

Proof. From the existence of a strongly convex ball around
qa (see [U4]) and the total convexity of [F = a] it follows that
for sufficiently small positive e there is a unique foot of g
on [F = F(g)-e] (or [F = F(q)+e]). If there are distinect feet
f and £? of q on [F = a], then Assertion 1 implies that there
are at least two feet of g on [F = F(qg)-e] (or [F = F(q)+e])
through which T(q,f) and T(q,f’) pass respectively,

a contradiction.
The argument above is useful to prove the second part. If

unigueness of the existence of the segment from q to f is false,
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then there exist at least two feet of g on a level of F

between [F = a] and [F = F(q)], a contradiction.
Let f be a foot of g on [F = a] and let x(t), == < t < o,
be a representation of the geodesic A determined by x(0) = f

and x(d(aq,f)) = q.

Assertion 3. d(x(t),f) = d(x(t),[F = al]) = |t| for all t &

(._oo’oo) .

Proof. Let t, be the least upper bound of those t such

0
that x(t) has the foot f on [F = a]. We must prove that tO = o,
Suppose to < o, Then X(to— €) is evidently a foot of x(t0+e) on
[F = F(x(to-s))] for sufficiently small & > 0, since Assertion
1 implies that A is perpendicular to [F = F(x(to-e))] at

x(tG—s). However since x(t_.+e) has a foot on [F = a] different

0
from T, X(tO’E) cannot be a foot of x(t0+e) on [F = F(x(to—e))],
a contradiction.

We can prove similarly on the nonpositive part of A.

By Assertions 1 to 3 we obtaln the following.

Assertion 4. The exponential map of the normal bundle of

[F = a] onto M is a diffeomorphism.

It turns out that thils diffeomorphism is an isometric map



- 81 -

by the following assertion and thus the proof of Theorem 1 is

complete.

Assertion 5. Let g and g’ be any points in [F = c] and let

f and f° be the feet of g and q? on [F = a] respectively. Then

d(q,q”) = 4(f,f?) and d(q,f) = d(q’,f’).

The first part implies that all levels of F are isometric
to each others and the second part implies that there exists
an isometric map I of the Riemannian product [F = a] x IR onto
M such that FoI(p,t) = bt + a for all p ¢« [F = a] and for all

t € IR.

Proof. First we consider the case where g’ is close to g,
more precilsely, the least upper bound of the set of all the
lengths of T(f,,f;’), a £ d<c (orec<d<aif c<a), is
smaller than the greatest lower bound of the set of all the
convex radii of points in T(q,f), where fd and fd’ are points
at which T(qg,f) and T(q’,f?) intersect [F = 4] respectively.
Since T(q,f) and T(q’,f’) are perpendicular to each level
through which they pass, 1t follows from the first variation
formula (see [17]) that d(qg,q?) = 4a(f,f>).

In general case, take a partition of a segment T(qg,q’),
Q= Qgs Ayoe-vs Gy = q’, in this order such that every palr of

n

qi and q. i=20,1,..., n-1, satisfies the condition above.

i+l
And let fi, i=0,1,..., n, be a foot of q; on [F = a]. Then
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n-1 n-1
3 = =
dq,q?) = Zdlag,a5,9) = & dlf,7,,,) 2 45,0,
From Assertion 1, (2), it follows that f (or f*) is the foot

of q (or g?) on [F

a] if and only if g (or q’) is the foot

1}

of £ (or £?) on [F cl. Thus we obtain a(f,f’) > d(q,q’). This

proves that d(q,q’) = 4a(f,f’).
On the second part, we have only to consider the variation

made of the totality of segments each of which joins a point

of T(q,qg?) and its foot on [F =

al. This completes the proof of
Assertion 5.
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3. Direct applications of affine functions

In this section we give the proof of Theorem 3.

Let M be a complete noncompact Riemannian manifold of non-
negative sectional curvature and without boundary. It is well
known (see [11], [45]) that all Busemann functions are convex

on M. Hence f + f is convex on M where f and T are

Ay Ao Ay As

functions in the assumption of Theorem 3. Moreover fA + fA is
1 2

bounded above by a on M, since fAl(p) + ng(p) = lim{t -
d(p,xl(t))} + lim{t - d(p,xz(t))} = 1im{2t - (d(p,xl(t)) +
d(p,xg(t)))} < lim{2t - d(xl(t),xz(t))} < a for all p € M. Thus
f + fA is constant on M, say ¢, and therefore f

Ay 2 Ay’
is affine. In fact, for every geodesic with a representation

i=1, 2,

x(t), o < t < o,

i ox(stl + (1 - s)tg) < sf

A oX(tl) + (1 - s)fA ox(tg)

A

1 1 1

= g(¢c - fA ox(tl)) + (1 - s8)(c - fA
2 2

= c - (sz ox(tl) + (1 - s)fA ox(t2))
2 2

<c - fAzoX(stl + (1 - s)t,)

= fAl°X(St1 + (1 - s)tg)

for every s < (0,1) and for every tl, t2 e (-»,o) . Hence fA is
1

affine and also fA is. This completes the proof of Theorem 3.

2

QX(tZ))
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4, Splitting theorems in the case of nonpositive curvature

Notions in this section are due to P. Eberlein and B.
0°Neill [13].

A Hadamard manifold H is a complete, simply connected
Riemannian manifold of dimension n > 2 having nonpositive
sectional curvature. In this space all geodesics are straight
lines. Oriented geodesics A and B in H with representations

x(t), =» < £t < o, and y(t), -» < t < =, are asymptotic provided

- there exists a positive ¢ such that d(x(t),y(t)) < c¢ for all
t > 0. This definition is equivalent to that in Chapter II on
H. The asymptote relation is an equivalence relation on the set
of all oriented geodesics in H, Let H(«) be the set of all
asymptote classes of oriented geodesics of H and let H:= H L/H(w).
H with the cone topology (see [13]) is homeomorphic to the closed
unit n-ball. If A is an oriented geodesic in H, then A" is by
definition the asymptote class of A and A ° is the asymptote
class of the reverse geodesic A . If ¢ is an isometry of H and
X is a point in H(x) we set ¢(X):= (¢-A) ", where A is any oriented
geodesic representing X. Thus we obtain a well-defined map ¢
H——>H which is bijective and carries H(«) into itself.

A complete manifold M of dimension n 2 2 and of nonpositive
sectional curvature is precisely the quotient manifold H/D where
D is a properly discontinuous group of isometries of H. A
continuous curve c(t), 0 < t < o, is by definition divergent if

for any compact set K in M there exists t = %, such that for

K
s >t, c(s) €« M - K. Divergent curves ¢ and d in M will be called
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cofinal, if given any compact set K in M some final sub-arcs
c([s,»)) and d([t,»)) lie in the same component of M - K. This
is clearly an equivalence relation on the set of all divergent

curves in M, and the resulting equivalence classes are the ends

of M. This is obviously equivalent to the definition of ends
given in Section 2 of Chapter II . A geodesic A with a
representation x(t), 0 < t < o, in M is by definition almost

minimizing if there is a positive c¢ such that d(x(0),x(t)) > t

- ¢ for all t > 0. Further, X ¢ H(=) is by definition almost

D-minimizing if for any geodesic A representing X, w(A) is

almeost minimizing, where m is the covering projection of H onto

M = H/D. P. Eberlein and B. 0°’Neill have proved in [13] that if
there exists an X € H(«) such that it is almost D-minimizing

and a common fixed point of D, then a Busemann function of any

A € X is invariant under D. Hence the function f on M 1s induced

from £, and it 1s convex, since every Busemann function on H is

A
convex, and hence M is homeomorphic to a product manifold N x IR
where N is a level of f. Furthermore it follows that f = fn(A)
on M (see [25]).

Now we consider the case that there are two points in H(w)

which are common fixed points of D and almost D-minimizing.

Proposition 5. Let M be a complete noncompact Riemannian

manifold without boundary and of nonpositive sectional curvature
and let M = H/D. If there exist distinct points X and Y in H(«)

such that (1) they are common fixed points of D, (2) they are
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almost D-minimizing and (3) w(X) and w(Y¥) are in different ends

of M, then M is isometric to a Riemannian product N x IR.

Proof. (3) in the assumption implies in combination with
(2) the existence of a straight line A with a representation
x(t), =» < t < », such that it connects w(X) and w(Y), more
precisely, A € 1(X) and the reverse geodesic A e m(Y). In fact,
since geodesics B € n(X) and C < 7(Y) in M are almost minimizing,
and hence divergent, a sequence of segments from y(t) to z(t)
for t > 0 contains a subsequence which converges to the desired
straight line, where y(t), —-o < £ < o, and z(t), -= < t < «, are
representations of B and C respectively.

Let xi(t), 0 <t < «, be representations of two rays such
that x+(t) = x(t) and x_(t) = x(-t) for t > 0. The Busemann
functions fA+(.):= 1im{d(.,xi(t)) - t} are locally nonconstant
convex functions without minimum by the preceding remark to
Proposition 5. Moreover, from the facts at the beginning of
Section 1, M is topologically a cylinder N, * R (or N_ x IR),

where N, (or N_) is a level of f, (or £, ), and all levels are

+ -
compact.

There exists a compact set K of M such that [fA = 0] CK

+

and p &€ M - X implies that fA+(p) < 0 or fA (p) < O.—In fact,
otherwise there exists an unbounded Sequenc; {pi} of points in
M such that fA+(pi) 2 0 and hence there exists an 1, such that
Let Xo(t),

o

fo(p. ) >f, (p.) >0and £, (p, ) > £, (p.) >
AL, AL = A_NTig AR =

- < t < o, be a representation of a geodesic AO such that
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XO(O) = pl and Xo(d(plapio)) = pi . The fAiOX()(t)’ t ; d(plapi ).’

0 0

are positive and monotone increasing from convexity of fA
not, +
Clearly AO is divergent. We assert that AO is "contained in the

ends of M containing Al and A_, contradicting the fact that M
has at most two ends.

Suppose A, and AL (or A_) are contalned in the same end of

0
M. If K° is a compact set containing [fA = 0] and [fA = 0],
-|.. -
then by the definition of ends there is an s = tK’ such that

XO([s,w)) and x+([s,w)) (or x_([s,=))) are in the same component
of M - K>. If t> > s and if e(t), 0 < T £ 1, 1s a curve in the
component of M - K’ joining xo(t’) and x+(t’) (or x_(t°)), then

continuity of fA implies that €([0,1]) must meet K’, since
+
fA+ox0|[s,m) > 0 (or fA—oxO|[s,w) > 0) and fA+ox+|[s,w) < 0 (or

f ox+|[s,m) <0 (or f, ox |[s,») < 0), a contradiction.

A, _

Next we assert that there is a positive ¢ such that d(p,

x(R)) < ¢ for any p € M. In fact, if f, (p) < 0 (or £y (p) < 0),
+ -

then by the fact stated at the beginning of Section 1, d(p,x(IR))

< the diameter of [f

A, = fA+(p)] (or EfA_ =, (p)1) £ the

diameter of [f, = 0] (or [f, = 0]) < the diameter of K.
+

If we prove that fA + fA is bounded above on M, then from
+ -

convexity of + £, 1t is constant and hence f and f are
A+ A A+ A

affine. For any point pe M let tl be such that d(p,x(IR)) =
d(p,x(tl)). Then

fA+(p) + fA*(p) = lim{d(p,x, (%)) ~ t + d(p,x_(t)) - t}
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lim{d(p,x(t)) - t + d(p,x(-t)) - t}

i

lim{{d(p,x(t)) - (¢t - tl)} + {d(p,x(-t)) - (t; + £)}]

A

2d(p,x(R)) < 2c.

This completes the proof of Proposition 5.

Now we can proceed to the proof of Theorem 4, It turns out
that the assumption of Theorem 4 would be equivalent to that of

Proposition 5, and the proof of Theorem 4 will be achived by

Proposition 5.

Proof of Theorem 4. Let X(t), -» < t < =, be any 1lift of

x(t), = < t < o, to H. First we will construct an isometry 3
over § such that Sa¢ = ¢°§ for any ¢ € D and gvi(t) = X(t + a)
for all t € (-=,=).

For points q and r in H let T(q,r) be a geodesic from q to
r in H. For every point p in H, define gp by a point in H which
is the endpoint of the 1ift of S§¢7(T(p,X(0))) to H starting at
X(a). We know from (28.7) in [4], p.177, that 5 is well~defined
and an isometry to H over §. From the construction of E, Eoi(t)
= X(t + a) for all t & (-=,»),

Now we prove that So¢ = ¢og for any ¢ € D. Since all free
homotopy classes of closed curves in M are invariant under §,
Som(T(p,¢p)) corresponds to ¢ for every point p in H. And
§em(T(p,¢p)) = m=8(T(p,¢p)) = m(T(Sp,8e4p)). Thus S0 = 5.

Let X and Y be points in H(«) which contain X and the

reverse geodesic i_(t):= X(-t), == < £t < «, respectively. Since
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a(%(na) ,0-X(na)) = A(6e%(0),4a6"%(0)) = d(8%%(0),6"4-%(0))
= d(X(0),4X(0)) for all integer n, X (or Y) contains ¢+X (or
¢oi_) and therefore X and Y are common fixed points of D. Since
A is a straight line, X and Y are almost D-minimizing and hence
the assumption of Proposition 5 is satisfied. This completes

the proof.

It is necessary for 8§ to leave all free homotopy classes
of cloéed curves in M invariant. In fact, there is an example
of a surface S of nonpositive Gaussian curvature in the
Euclidean U4-space Eu which is not isometric to a flat cylinder
and has two ends and on which a non-trivial isometry § exists
and translates a straight line on S along itself but & does not

leave all free homotopy classes of closed curves invariant.

Example 6. The S is constructed as a union of countably
many congruent flat tori in ELl with two plane disks removed and
countably many congruent topoclogical cylinders S1 x [0,1] which
are joined along their boundary circles.

The construction is done by putting congruent flat tori,
to which cylinders are attached, into a deliberate order in such
a way that each tours contains 2 parallel plane squares along
some line from which disks are removed, and the plane squares
on the tori and the boundary circles of cylinders are all
parallel along the line in Eu.

Let (al(t),a2(t)), 0 <t <A, be an arc-length
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parametrized ¢®-curve in E2 with (al(O),az(O)) = (ul(X),uz(k))
= (0,-1) such that (1) it contains two segments, {(xl,l) 3 -1 <
xy £ 1} and {(xy,-1) ; -1 < x; £ 1}, (2) it is contained in the
strip {(xy,%,) ; -1 2 x, £ 1} and (3) it is symmetric with
respect to the origin of E2. And let X denote its image in E2.
Then we can consider canonically Y’:= X x X as the figure in Eu
Y? has clearly 4 disjoint flat squared faces and we denote
two of them, {(xl,l,x3,l) 3 -1 < Xy X3 < 1} and {(xl,—l,xg,l) R
R X3 < 1}, by A, and A, respectively. We remove the disk
Dy (or D2) from Al (or A2) with center (0,1,0,1) (or (0,-1,0,1))
and radius 1/2. And we denote the resulting figure by Y. It
should be noted that Xo(t):= (ul(t),az(t),o,l), 1/2 <t < (x -
1)/2, is a shortest join from 8D2 to BDl in Y. Because inlthe
universal covering space H of Y’ any 1lift of X to H 1is a
distance minimizing segment from the 1lift of BD2 to the 1lift of
BDl.
Y is joined with a certain topological cylinder S1 x [0,pn]
along their boundary circles, and this is done in the affine
(Xl,xz,XB,l)—subspace as follows. Let c(t):= (Bl(t),Bz(t),O,l),
0 £t £ u, be an arc-length parametrized ¢”-convex curve in the
(xl,xz,o,l)—space with c¢(u) = (1/2,2,0,1) such that (1) c does

not intersect the x,-axis, (2) ¢ starts at b:= (1/2,1,0,1) =

2
(al((k - l)/2),a2((x -1)/2),0,1), (3) ¢ contains the segment

such that c([0,1/4]) = {(Xl,l,O,l) 3 1/4 < xo < 1/2} and (4) ¢

1

is symmetric with respect to the line {(Xl,3/2,0,1) ;- < xp <

o} in the (Xl,xz,o,l)—Space. Revolving ¢ about the xg-axis in
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the (xl,x2,x 1)-space produces a surface C with boundary 8D

3° 1
and aDl’ which is congruent to aDl and hence 3D2. Attaching C
to Y along BDl we obtain a surface with boundary aDl’ < C and

3D2 < Y, and they are on the parallel planes normal to the X5
axis in the (xl,xg,XB,l)—space. We denote this surface by W.

For each i = 0, 1, *2,..., let ¢i be a translation along
the x2-axis in Eu such that ¢1(X1’X2’X3’XM) = (Xl’X2+3i’X3’Xﬁ)'
Thus S:= \/¢iw is the desired surface, namely, S is of non-
positive curvature and has an isometry &6 which satisfies the
assumption of Theorem 4 except for invariancy of all free
homotopy classes of closed curves under §.

The desired § is obtained by putting & = ¢1. Clearly ¢ does
not leave all free homotopy classes of closed curves in S
invariant. Now we find a straight line A with a representation
x(t), == < t < =, which is translated by §. Let xo(t), 1/2 2 ¢t
< (A = 1)/2, be the distance minimizing geodesic segment in W
which is already realized, i.e., the endpoints are (ul(l/Z),

a2(1/2),0,l) = (1/2,-1,0,1) « 3D, and (al((k - l)/2),u2((A - 1)

2

/2),0,1) = (1/2,1,0,1) € 3D,. Then 3D, and 9D, are plane circles,

1 1

SO xo([1/2,(k - 1)/2]) is perpendicular to both BDl and BD2,
and therefore the extention of x,(t), 1/2 <t < (A - 1)/2, into
C in W is nothing but a profile curve, and the endpoint (1/2,
2,0,1) is identified with ¢1(1/2,—l,0,1) = (1/2,2,0,1) ¢13D2.
Hence by iterating this step xo(t), 1/2 < £ < (X = 1)/2, is

smoothly extended in S and the resulting geodesic is identified

with L/¢ixo([l/2,(k - 1)/2]) =: A. Because Xo(t), 1/2 <t <
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(A = 1)/2, is distance minimizing from 8D2 to BDl and hence
so is ¢ixo(t), 1/2 <t < (A - 1)/2, from ¢iBD2 to ¢18D1, for
every 1, and because so 1s a profile curve of ¢iC, for each 1,

A is a straight line. And 6 obviously translates A along itself.
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