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ABSTRACT

Some aspects of gravitational lens effect are discussed. The multiple quasar
11154080 is analyzed as a multiple-image system due to this effect. In so doing we
apply to the deflector of this system a dark lens model with dipole and quadrupole
moments and thereby find that this model well produces observed data. We
estimate the travel time differences between images, and the result is comparable
with observed data. A new method is proposed to evaluate the deflector mass,
and is applied to this system. By combining our mass estimations with Borgeest’s
method and with our own method, we can put some constraints on the Hubble

constant.

We show further that apparent superluminal motions may be observed in
gravitationally lensed systems such as 11154-080. It is found that images move
with velocities greater than the light velocity when the source of lights crosses

over one of the caustic lines.

Next the rotation of the polarization plane are discussed which is induced
by a rotating deflector. We evaluate the rotation angle of the polarization plane
by a rotating deflector with spheroidal symmetry, with the result that in the
general cases of dark lens there are no differences between rotation angles of the

polarization planes of the images.

Finally we discuss possible influence of the gravitational lens effect on de-
termination of the density parameter {2g. It is found that the gravitational lens
effect should not be neglected in the redshift-volume test which is one of the
geometrical tests for )y, and that when the effect is taken into account, {1y is

decreased, in agreement with the result of Hammer and Nottale.
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1. Introduction

The gravitational lens effect is one in which lights emitted from background

sources are affected by the gravitational fields generated by foreground objects

such as stars, galaxies, or clusters of galaxies. It has been known that this effect

gives rise to the following phenomena.

1)

1)

iii)

Multiplication of images

The trajectory of lights emitted from a source is deflected by the gravita-
tional fields which are generated by foreground objects. It then becomes
possible that lights from the source propagate along some different paths to
be received by the observers, and that the observers recognize these lights
as images distinct from each other. Such a phenomenon is called the “multi-
plication of images”. When multiple images are identified as lights emitted
from one and the same source, the whole system of multiple images and
the gravitational lensing objects ( deflectors ) is called the “multiple-image
system”.

Gravitational distortion effect

Cross sections of light bundles may be distorted by the gravitational lens ef-
fect. This effect is called the “gravitational distortion effect”. For some spe-
cial alignments of the source and the deflector with respect to the observer,
this effect will makes us observe those images with arc-like ( ring-like )

structure, which are called the giant arcs ( Einstein rings ).

Gravitational amplification effect

Due to the gravitational lens effect not only is the shape of the cross section
of a light bundle distorted, but its cross sectional area is changed. Then the
apparent luminosity of each image is amplified or de-amplified. This effect is
called the “gravitational amplification effect”. In the case of amplification,
the effect enables us to observe faint distant sources which may otherwise
be unobservable. It is for this reason that the gravitational lens effect is

sometimes called the “natural telescope”.



iv) Time delay
The travel time of light from a source to the observer in the case of the
gravitational lens effect differs from that in the case when no such effect
is operating. This difference in arrival time is called the “time delay”. In
fact, the time delay results from the change of the length of light path
( geometrical term ) and also from the change of the spatial velocity of

light due to the gravitational potential ( potential term ).

v) Gravitational Faraday effect
When the light passes through the gravitational field induced by a rotating
deflector, the polarization plane of the light may rotate. This effect is called

the “gravitational Faraday effect”.

The gravitational lens effect provides a very powerful tool in the observa-
tional astrophysics. It plays important roles when and where objects such as
multiple images, giant arcs or Einstein rings are observed. Strictly speaking,
most astrophysical data cannot be free from the gravitational lens effects which
are caused by the local inhomogeneities in the Universe. Therefore we must take
into account the gravitational lens effect when investigating the structure of the
Universe on the basis of such data. This can be done by statistically treating the
gravitational lens effect. In fact, for the case when the multiple-image systems
are recognized or when the universe is locally inhomogeneous, the role played by
the gravitational lens effect in the observational astrophysics can be summarized

as follows.

I Multiple images, giant arcs or Einstein rings

Up to the present many candidates for multiple images, giant arcs or Einstein
rings have been found. In such systems we can observe the following quantities:
the relative positions of images, shapes of images, apparent luminosities of images,
travel time differences between images and differences between rotation angles of
polarization planes of images. From the data of such a system we can obtain the

following information on the deflector.



i) The deflector mass
We can estimate the total masses or the mass distributions of the deflectors
in such systems. Masses obtainable in this way differ from those estimated
from the rotation curves of galaxies. Consideration of the gravitational lens
effect thus provides us with more detailed information on such masses of

galaxies than the case when we have only the rotation curves of galaxies.

ii) Travel time differences between multiple images
When the source has some intrinsic time evolution in its luminosity, we can
determine the travel time differences between multiple images by observ-
ing, over long duration, differences between apparent luminosities of those
images. The travel time differences between images put some constraints
either on the Hubble constant or on the cosmological models employed well

as on the structure of the deflector.

1) Apparent superluminal motions
In some cases the images appear to move away from one another with veloc-
ities greater than the light velocity, although their sources move normally.
Such motions are called the “apparent superluminal motions of 1mages”,

and may be observed in the case like multiple-image systems.

iv) Gravitational Faraday effects
If the light source is a radio source, we can observe the differences between
rotation angles of polarization planes corresponding to the respective 1m-
ages, the difference being due to the gravitational lens effect. We can
distinguish such rotations from those of the polarization planes which are
induced by the interstellar or intergalactic matters ( the usual Faraday

effect ).

1. Statistical gravitational lens effects

In order to investigate the global structure of the Universe we often analyze
the observed data on geometrical tests such as m-z relation, N-m relation or the

redshift-volume test. The redshift-volume test is known to be less affected by the



galaxy-evolution effects than the case of other tests. Recently Loh and Spillar
obtained the data on the redshift-volume test, and their results suggest that the
density parameter {2y ~ 1. In their analysis they assumed that the Universe
is homogeneous and isotropic not only globally but also locally, thus adopting

Mattig’s formulae for the redshift-distance relation.

Recent observations on the distribution of high redshift galaxies indicate,
however, that the Universe has a large scale structure extending over ~ 50[Mpc].
We should therefore reanalyze Loh and Spillar’s data by taking into account such

inhomogeneities in the Universe.

The light propagation in the inhomogeneous universe and the effect of local
inhomogeneities on the observed data have been discussed by several authors
( Dyer & Roeder 1972, 1973, 1974, Weinberg 1976, Schneider 1987, Dyer & Qattes
1988, and Futamase & Sasaki 1989 ). In their discussions local inhomogeneities
are regarded as the gravitationally lensing objects, and are assumed to be uni-
formly distributed. Thus the effect of some local inhomogeneities is investigated

by statistically dealing with the gravitational lens effect.

uL Our results

The results of the present thesis on multiple-image system are as follows:
When interpreting the multiple quasar 11154080 as a multiple-image system,
we find the possibility that this system has further images than those that have
so far been observed. In our analysis the travel time differences between the
images are estimated. We have also proposed a new method to calculate the
deflector mass. By combining our estimation with our method and the one with
the method proposed by Borgeest ( 1986 ) we find that some limits are imposed

on the Hubble constant.

We further suggest that apparent superluminal motion may appear in the
gravitationally lensed system. In particular, 11154080 is claimed to be the most

promising candidate for such motion to be observable.



Next the rotation of polarization plane is discussed which is induced by a
rotating object ( gravitational Faraday effect ). We find that, in the general
case of dark lens, no differences between the rotation angles of the polarization
planes of images arise when estimated up to the lowest order in G. For the twin
quasar 0957+561, which is also interpreted as a multiple-image system, there is
a possibility that a part of the rotation is attributed to the gravitational Faraday

effect.

Our result on the statistical gravitational lens effect is as follows: We have
investigated, in the redshift-volume measurement, the influence of the gravita-
tional lens effect on the density parameter (1. It is then found that this effect
caused by local inhomogeneities should not be neglected and decreases the value

of QO.

1v. Outline of this thesis

The present thesis is organized as follows. We will start, in Chapter 2, with a
general formulation of the gravitational lens effect. In Chapter 3, we review the
observed results of some candidates for multiple images, giant arcs and an Ein-
stein ring. In Chapter 4, we will analyze observed data concerning the multiple
quasar 1115+080, interpreting this as a multiple-image system in our sense. Next,
in Chapter 5, apparent superluminal motions of images are discussed, which are
induced by the gravitational lens effect. In Chapter 6, we investigate the grav-
itational Faraday effect induced by a rotating nonspherical deflector. Chapter
7 is devoted to a statistical investigation into the influence of the local inhomo-
geneities on the density parameter (. Finally, in Chapter 8, we will summarize

the results of this thesis.

pad



2. General Formulation of the Gravitational Lens Effects

In 1919 Eddington observed the deflection of the light passing near the sun
during an eclipse. This observation is famous as a test of general relativity. In
those times, however, it was not known that the source object of the gravitational
field acts as a lens. Binstein ( 1936 ) was the first to suggest the possibility of
the gravitational lens effects, showing that a star acts as a lens. Further, Zwicky
(1937 ) showed that the probability of observing the gravitationally lensed object

would be higher in the case by extranebulae than in the case by stars.

In 1960s, many authors investigated various aspects of the gravitational lens
effect: the lens effect in a spherically symmetric gravitational field ( Liebes 1964 ),
the travel time difference between images and its applications to cosmology
( Refsdal 1964a,1964b,1966 efc. ). In 1970s fundamental studies of the gravi-
tational lens effects were made by a number of authors ( Press & Gunn 1973,
Bourassa, Kantowski & Norton 1973 hereafter BKN, Bourassa & Kantowski 1975
hereafter BK, and Cooke & Kantowski 1975, efc.).

Theoretical as well as observational studies have been more extensively car-

ried out after the discovery of the twin quasar “0957+561”( Walsh et al. 1979 ).

In this chapter we briefly review the general formulation of the gravitational
lens effect. First the lens equation, which is the most fundamental equation for
the gravitational lens effects, is derived in §2.1. Next, various kinds of information
obtainable from the lens equation are discussed ( §2.2 ). Finally, we review the

travel time differences between images ( §2.3 ).



2.1 LeENs EqQuaTIiONS

In this section the derivation of the lens equation is briefly described. First

we present the general form of the deflection angle o from the geodesic equation.

A gravitational lens system is illustrated in Fig.2.1. The object which causes
the gravitational lens effect is located at the origin of the coordinate system
{a!) 22, 2%}, We call this object the “deflector”. We assume that the observer is
standing on the 2% axis. The plane {2* = 0} is called the “deflector plane”. The
photon emitted from the source is assumed to pass through the image position
(21, 1, 0) on the deflector plane (z = 2, y = 2%). And the source position on the
deflector plane, when the deflector is assumed not to be present, is denoted by

(va Yz, 0)

We assume that the gravitational field is so weak that the Newtonian approx-

imation is valid, that is, we can deal with the linearized general relativity in our

analyses.
The deflection angle & in Fig.2.1 is defined as
i=— ot (2.1)
|’LL[ obs. lul source

where @ is the velocity of light i.e., dZ/dt. The metric in this system is given by

Guv = v + P, (2.2)
nw = diag(+1, -1, -1, 1), (2.3)
hup =3¢ (1=0,...,3), (2.4)
ho; = ;i (i=1,2,3), (2.5)
others = 0, (2.6)

up to the lowest order in GG, where ¢ and ¢; are given by

=3
o(7) = ~G / %%d%', (2.7)
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"..' dt dd / (2.8)

and p(7') is the mass distribution of the deflector. From eq.(2.1),

tobs.

B d /i
“= / 7 (]'Ez'[)
tz
lobs. tobs. (29)
2 s .t o
= / Vedt — / i x (V x )dt.
c
tg ts

In estimating the deflection angle under the Newtonian approximation, we
can express the path of the light by #(¢) = (21, yy, ¢t + 23). Then & is dependent
on the image position (2, y;) on the deflector plane. For the sake of simplicity,
positions (2, y) on the deflector plane are denoted by complex variables z = z +1y
( BKN ). From eq.(2.9) we can define the complex deflection angle, a = o +iay.

Then eq.(2.9) is expressed as

o0

(o F) = / dt[—%(5x<p+i@ycp) |
- (2.10)

— {Oalu- ) + 0, (u - )}
z=2

Our next task is to derive the lens equation. There are two methods to do

so. The first makes use of the geometrical relation in Fig.2.1 ( BKN ), and the

second makes use of Fermat’s principle ( Schneider 1985, Blandford & Narayan

1986 ). We shall discuss the latter after describing travel time differences.

Since || < 1 is assumed, it is clear that the relation between zs, z; and « 1s
given by

Dy Dy
=2 = 20 4 Dys 2.11
Dy == DdZI ds@ ( )

where Dy, Ds and Dy, are angular diameter distances between the observer and



the deflector, between the observer and the source, and between the deflector

and the source, respectively. The above relation is called the “lens equation”.

There are some difficulties in evaluating the angular diameter distance. One
of them is that the distance depends on the cosmological fluctuation of the den-
sity of those matters in which the light passes through ( Dyer & Roeder 1973,
Alcock & Anderson 1985,1986 ). Another is the problem of the Hubble constant
Hg(~ 50 or ~ 100[km/sMpc]).

It is convenient to adopt the dimensionless form to the lens equation given

by:
Dys - ,
95 == (9]1 + ]:)S (X(QU 19[), (212)
where 8 = z/Dy, being the angle over the celestial sphere, is an observable

quantity. This equation contains the parameters which characterize the deflector
model employed, Dgys/Ds, and fs. On the other hand, Hy does not appear in
eq.(2.12). Then we have only to fix these parameters for constructing the deflector

model by observations.

On the other hand, the image positions are obtained by solving the lens
equation with respect to 8; for a given deflector model. In particular, we must
solve the lens equation numerically by using the computer in most cases. We
have two methods for numerical investigation: 1) the Newton-Raphson method,
it) the Schramm-Kayser method ( Schramm and Kayser 1988 ). The advantage of
method ii) is that solutions converge rapidly. There is a disadvantage, however,
such that it needs huge memories on the machine. Moreover when we adopt an
extended source in order to investigate the morphology of images, the physical
meaning of the image shapes becomes ambiguous in method ii). We thus adopt

method i) for analyses of the configuration of images ( see Chapter 4 ).



2.2 PROPERTIES OF IMAGES

In this section the properties of images obtainable from the lens equation
(2.12) will be described. Considering that the source has a small extended area
802, we expect its image also to have an extended area 56y The relation between
8§65 and 5671, which is given by the so-called magnification matrix, tells us some
important information on the deflector, on the source and on the images. Now

we have only to investigate information from the magnification matrix.

From eq.(2.12), shifting the source position by 80 B — 6+ 665, we get the

relation between 591 and 6(;; given by

—

56 = o6, + [A]66), (2.13)

N

where the 2 x 2 matrix [A ] is given by

m Dys fsé
Ds 56,

[A]

(2.14)

If the metric of the local gravitational fields is static, 1.¢., gy 0 = 0 and go; = 0,
[ A] is symmetric in general. Moreover there is a function & of f; such that
6 Dys ., =~ 81

— = ——a(fy), Al = ——,
s, Ds (6) (4] 56,56,

(2.15)

( Kovner 1987a ). When the deflector consists of a single thin object, & is
explicitly expressed by

4G Dy,
c? DyDy .

d = /dze'g(é")m 14— 4, (2.16)

where ¢ is called the “projected surface mass density” per steradian, for which

/dzﬁcr(é') = My (= mass of deflector). (2.17)

Rather than [A ] , we prefer to use another 2 x 2 matrix {M] which 1s defined

10



] = ([1]+1a]) ", (2.18)

where [M] is called the “magnification matrix” or “amplification matrix”. By

using this matrix, we can rewrite eq.(2.13) as
56, = [ M ] 86 (2.19)

In BK’s notation, [M] is explicitly given by

1 G+ ReF —ImF
[(M] = ———= | . (2.20)
G*—|F)? —I'mF G — ReF
In eq.(2.20), G and F are given by
Dys 0@ .
7 DS 391 ( )
Dy, 0a
DS (991 ( )
where G in general is real and is expressed by
4n G Dy, -
Gg=1-— by, 6¢). 2.2:

In the “dark lens” case when the light cannot pass through the interior of the

deflector, G = 1 and F is an analytic function only of 8.
Now the eigenvalues Ay of [M} are given by

1

Ay = ,
=TT A

(2.24)

Let I be the observed apparent luminosity of an image, and Iy be the imaginary

apparent luminosity of the source in the case with no deflection. The ratio I/

11



is equal to the ratio of the image area to the source area on the deflector plane,

and given by

L = det(ﬁ@)
1o b0< (2.25)
1

gi&__';r‘”l

This ratio is called the “amplification factor” ( see Chapter 7 ).

. . R P ) P L
The lines G* — |F|* = 0 on the deflector plane are called the “critical lines

( Kovner 1987a ). When an image is on this line, the amplification factor becomes

infinite. The number of images changes when an image crosses the critical line,

because the linear mapping given in eq.(2.19) is broken down on this line.

If the source-profile on the deflector plane has an eccentricity € and the semi-
major axis declines to the right ascension with the angle xs, then the image-profile

also has the eccentricity e given by

21— (g~ Feni P (g 1 Fer )
A {(l —&2)|C — Fexs|2 — |G + Feixs 2} + (1 = 8)(G — Fe2ixs )2 — (G 4 Fe?ixs )2
(2.26)

and the semi-major axis of the image profile also declines to the right ascension

H

with the angle y; given by

N AGF + &2 (Gexs — Feixs
exp(2ix:) = -

) |
- 5=, 2.27
AGF + & (Gemixs — Feixs)’ (2:27)

( Yoshida & Omote 1988 ). These expressions (2.26) and (2.27) agree with those

derived by BKN in the limit & — 0.

If the shapes of images A, B,... are known, we can obtain the mapping

between images, namely, we can decide the relative magnification matrix given

12



[Map] = [My][Mp]™
B [é@] (2.28)
T

which is a mapping from 603 to 68,. Moreover, from these quantities the relative
amplification factor I, /I and the relative orientation angle t.e. Axap = xa— X5
are obtained. These observable quantities are necessary for investigating the

structure of the deflector.

However the image configuration obtained by eqs.(2.26) and (2.27) can hardly
correspond to giant arcs or to Einstein rings because the mapping given by
eqs.(2.19), (2.26) and (2.27) is, at most, a linear transformation. This map-
ping yields an ellipse for the image shape. As stated by Narasimha and Chitre
(1988 ), and by Kovner and Paczyfski ( 1988 ), the lens equation must be solved
for every points on the source contour.

The following property of the gravitational lens effect is noteworthy: any
non-singular transparent lens produces an odd number of images. This property
was suggested by many authors ( Young e? al 1980, Dyer & Roeder 1980, efc. ),
and was confirmed by Burke ( 1981 ), McKenzie ( 1985 ), and Blandford and
Narayan ( 1986 ). A simple example was given by Dyer and Roeder as follows.
We consider a transparent lens with spherical symmetry. The deflection angle is

given by

Dys ., 4GDds 7] g‘
o = — = M )‘“‘:T‘, 2.29
D, "= ~an, MV 22
where
/i
M(|6]) = 2’2‘[‘/ o(r)rdr, (2.30)

with o being the projected surface mass density per steradian. In this case the

13



lens equation is expressed as

L o 4GDg o1
BQ = 1l - =g = ). r
- 9(1 Th M(\Hl)w'z) (2.31)

We can thus reduce this equation to one-dimensional equation, by making a
change of variables fs — s, f — 2 without loss of generality, because of gg//g

The lens equation then becomes

4G Dy
2Dy Dy M

Lonl
s=z— (|z])—. (2.32)
x
Since o is non-singular in the limit & — 0, the deflection angle becomes zero as x
goes to zero. It is now clear that M(|z]) is an even function of 2. The deflection
angle a then has odd parity with respect to . The lens equation (2.32) thus has

an odd number of images.

Burke and McKenzie proved that the system has an odd number of images

in any non-singular transparent lens system.

2.3 TraVEL TiME DIFFERENCES BETWEEN IMAGES

If the lights emitted from a source at time ts propagate along different paths,
to be observed as images A and B, the times when these lights are received by
an observer are generally different from each other. This difference between the
arrival times is called the “travel time difference between images”, and 1s briefly
described in this section ( Refsdal 1964b,1966, Cooke & Kantowski 1975, Kayser
& Refsdal 1983, and Borgeest 1983 ).

Since the light propagates along a null geodesic,i.c., ds* = 0, we can solve

the equation

o 2 y
A1+ %cp)dtz — (1= -c—Q-ép)dKz + 2eqpidat dt = 0, (2.33)

14



with respect to cdt. Up to the lowest order in (&, we have

cdl = db — Zpdl — pda’, (2.34)
)
where d{* = da® 4+ dy® + dz%. Then the travel time of the light emitted at ¢< and
observed at t., 1s given as

tobs. tob tobe. obs.

S, 2 )
cf dt =[ dl — ZE/ wdl — | apda’. (2.35)
2] ts ts tg
Therefore the travel time difference At,5 between images A and B is given by
tobs. tobs,
Dy :/ (dn— dty) ~/ { (ada' s Spdt,) = (bide's + Spdts) }. (2.36)
ts tg

The first term in (2.36) is called the “geometrical term” and the second is called
the “potential term”. We denote the geometrical and the potential terms as At,
and Aty, respectively. The former is the difference between path lengths of the

images, and the latter arises from the difference between the light velocities.

Consider the forward and the backward wavefronts of lights which are tan-
gential to each other at Dyfs on the deflector plane. The geometrical term is
expressed as the difference between the distances along each path of the light

from the forward to the backward wavefronts:

1 L L
cNtgap= 5(1 +20)(Ky + Ky)Di{]04 — 0s)* — |05 — 6s)°}, (2.37)

where K¢ and K are principal curvatures of the forward and the backward

wavefronts. The sum of Ky and Ky is given by

D
K+ Ky = ———o! (2.38)
! Dy Dy
( Cooke & Kantowski 1975 ). Thus, ¢ At,4p is expressed as
1 DyDg , ~ - 5 = .,
¢ Aigap = =(14 24) 22210, — 6|2 — | — 8:]), (2.39)
2 Dy

where z4 is the redshift of the deflector and the factor (1 + zq) comes from the



renormalization to the present scale which is necessary owing to the expansion

of the Universe. From eq.(2.12), moreover, (2.39) is rewritten as follows

1 DgDg, — _
¢ Dlgan = 5(1+2) =5 (a(0a,00) = |od,8a)[").  (240)
S

Next we derive the potential term. From egs.(2.7), (2.8) and (2.35), it follows
that

(zp —2')? + (yr —¢)*’
(2.42)
where ¥ = d&'/dt, ts — —oo and taps, — co. Since #'(y’') = Dgab,(Dad,), the

—2N)? = 2
/W“ /‘”’d“:“ﬁ B! (@) H() -y AL+ (e =0
t

potential term is written in terms of #, by use of eqs.(2.41) and (2.42), as follows

CAtpAB 2—54'—§'(1+Zd)/d291 (é’) |—Q‘-‘l"'—'-';—,,'l-
‘ 185 — 6l (2.43)
8G

- _, 9

9'[
where
p(&)d*2' = (0")d’6db),
3 = 7(@,00),
0” =X /Dd.

If we choose the path from f5 to 84 on which the deflection angle &(6) is not

singular, eq.(2.43) can be expressed as an integral of &(64 ) with respect to g, such

16



that

—-

64
cDAtpap = (1 +zd)DCJ &(8)dd, (2.44)
ip

( Gorenstein, Falco & Shapiro 1988 ).

The total travel time difference between images A and B is given by

DdDS
Dds

-

fa (2.45)

-

+(1 +zd)DJ &(6)d7,

ip

1 - — Pd -
CAtAB = 5(1+Zd) (IHA—Gslz—’HB—gslz)

which can further be rewritten by use of eq.(2.12) as

N
cAtys = (1+24)Daf {a(F)— Et—*3-12'—"‘—5}4(5', (2.46)
fp
where 0,5 = &'(JA,B). This form is useful for investigating properties of the

travel time differences. It is clear that any constant part &copst. of the deflection
angle does not contribute to the travel time differences. This means that even if
the source position is shifted by some angle, the travel time difference will remain
unchanged, that is, the travel time difference depends only on the structure of
the deflector and on the image positions. The symmetric linear part &jpear of
the deflection angle does not contribute to the travel time difference either. This
fact means that the circularly symmetric and constant part of the surface mass
distribution of the deflector does not contribute to the travel time difference. It
follows from this fact that the dark matter which are distributed homogeneously
does not contribute to travel time differences at all ( Gorenstein, Falco & Shapiro
1985,1988, Borgeest 1986, and Kovner 1987b ).
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As mentioned above, we describe the relation between the lens equation and
Fermat’s principle. The latter states that the light propagates along the path

whose length becomes stationary, z.e.,

6/dt = 0. (2.47)

This form can be extended to the case of gravitationally lensed lights ( Schneider
1985 ). For a given source the propagation time 7 of the light is given by egs.(2.39)
and (2.44) as

1 DyD,
er = 2(1 + zq) D

j—ry

i
16— 65> + (1 +zd)Dd/62( ) - df. (2.48)

By using eq.(2.16), we can rewrite eq.(2.48) in the form:

Dst

er = (1 +2a) -
s

(516~ 0+ 2(8)). (2.49)

The lens equation can then be derived from Fermat’s principle 67 = 0. That is, 7
forms the propagation time surface on the deflector plane and its extreme points

yield the image positions.

The investigation of the propagation time surface leads to some important
properties of the gravitational lens system; i) any nonsingular transparent deflec-
tor generates an odd number of images, i1} when all the travel time differences
are observed, the image which arrives at the earth earliest has the positive partial
parity and the positive total parity, iii) images with the positive partial parity are
brighter than the original source, iv) images with the negative partial parity pass
through a region with ¢ > ¢2DyD,/4mGDgy,. Here the partial parity is the sign
of tr[M] and the total parity is the one of det[ M ] (Schneider 1985, Blandford
& Narayan 1986).
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Before closing this section, we have to notice that the travel time difference
is the only dimensionful observable of systems such as multiple-image systems,
and that it enables us to determine the Hubble constant Hg, when a cosmological
model and a mass distribution of the deflector are assumed. In eq.(2.49), while
[%|J— fs? + ®(6)] depends on types of deflector models adopted and on the
observational data of images, the factor (1 + zd)Pﬁ:‘l—:ﬁ-Ho depends on cosmological
models employed and on the redshifts of the deflector and the source, but not on
Hp. We can thus obtain the relation of the Hubble constant to the cosmological

model employed™.

* We will apply this relation to the multiple quasar 11154080 in Chapter 4.
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3. Review of Observations
of Multiple Images, Giant Arcs and Einstein Rings

Since the first discovery of the twin quasar 0957+561, a number of candidates
for multiple images, giant arcs and Einstein rings have been discovered during
this decade. While early candidates for multiple-image systems were observed by
chance, recent ones have been discovered by virtue of systematic optical/radio
observations. Moreover many objects which have distorted shapes due to the

gravitational lens effect have been in the last few years.

The necessary conditions for identifying the distinct images as lights from

one and the same source are:

1) similarity of spectra of images,

11) coincidence of redshifts of images,

111) small separation between images.
On the other hand, the sufficient conditions for an event being due to the gravi-
tational lens effect have not been established yet. However some criteria for this
are stated as follows:

1) a bright galaxy with a low redshift exists close to the line of sight of images,
1i) emission lines with a high redshift exist in a spectrum of a near-by galaxy.
Some multiple quasars were discovered systematically based on the first criterion,
whereas Huchra et al. ( 1985 ) discovered the multiple quasar 223740305, to be
interpreted as a multiple-image system, with the second criterion. Other criteria

were proposed by Turner et al. ( see their paper 1988 ).

In this chapter we briefly review observational data of multiple images

( §3.1 ), giant arcs and an Einstein ring ( §3.2 ).
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Table 3.1 Candidates for multiple-image systems
redshift # of redshift of

system of QSO images separation lens object lens object
G
09574561 1.41 2 6.15" + cluster 0.36
11154080 1.722 > 4 < 24" galaxy 0.4~ 0.5
23454007 2.15 >3 7.1 — 1.48 ~ 1.49
C+D C:—
2016+112 3.2733 3 3-4:” ( galaxies ) D :1.01
16354267 1.961 2 3.72" — ~ 0.57
223740305  1.695 4 1.81" Sb-galaxy 0.0394
10424178 0.921 4 2./ — —
A
3C324 1.206 =2 2.1 0.845

(radio-galaxy)
0023+171  0.9461 2o0r3 <5.9" — —

UM673
(=0142-100) 2719 2 9,99/ galaxy 0.493
2.071 or 1.660
14134117 2.551 4 1.10" — or 1.438
UM425
(=11204-019) 1.465 2 6.3" galaxy ~ 0.6
1429—-008 1.5 2 5.14" —_ —
0537+441 0.849 2 — — —
3C194 1.779 3 — galaxy 0.312
041440534  1.2(7) 4 — — —

3.1 MULTIPLE-IMAGE SYSTEMS

Sixteen or more candidates for multiple-image systems are known at present,
as listed in Table 3.1. Here let us briefly explain some of them, one by one, in
order of their discoveries.

a) 0957+561

The discovery of the twin quasar 09574561 to be a candidate for multiple-

image system ( Walsh et al. 1979 )} stimulated theoretical investigation of the
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gravitational lens effect as well as observations of quasars. Theoretical studies
made so far for this system are as follows: analyses of this system by using
deflector models to reproduce the image configuration ( Chang & Refsdal 1979,
ete. ), estimation of the travel time difference between images ( Dyer & Roeder
1981, efc.), estimation of the Hubble constant from the observed travel time
difference between images ( Borgeest & Refsdal 1984, efc.), evaluation of the
deflector mass ( Borgeest 1986, etc.) and others. On the other hand, the geometry
of 09574561 was investigated in relation to optical observations ( Stockton 1981,

etc.) and also to radio observations ( Porcas et al. 1981, etc.).

The deflectors in this system are both the cD-galaxy ( hereafter Gy ) which
1s located nearest to images A and B and the cluster of the galaxies surrounding
this cD-galaxy ( Young et al 1980 ). An elliptical King model was applied to
both Gi and the cluster ( Young et al. 1981a, efc.). The masses of Gy and of the
cluster are obtained to be ~ 10?Mg and ~ 10 Mg, respectively.

The remaining problems about this system are: how luminous the third image
is and where it is located. It may be unnatural if the system has only two images,
because the lens with a non-singular mass distribution produces an odd number
of images in general ( see §2.2 ). Therefore the third image ( or more images )
must exist somewhere. Young et al. ( 1980 ) indicated two possibilities for the
third image ( to be referred to hereafter as By ): i) if By is close to B, the apparent
luminosity of By would be nearly equal to that of B, i) if By is located close
to the core of G1, By would be much fainter than B. Moreover, Roberts et al.
( 1985 ) showed the third possibility: iii) By may consist of three or more images

and would be close to the nucleus of Gj.

Possibility 1) was denied by both VLBI and VLA observations ( Porcas et al.,
Gorenstein et al. 1984 ). Possibility ii) appears at present not to be inconsistent
with optical observations and also with radio observations. Possibility iii) would
be acceptable if the total luminosity of the components of By becomes fainter,

by passing through Gi, than Stockton’s limit on the luminosity of B by 1.6[mag.).
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Table 3.2 a) Geometry and Magnitudes of 0957+561%)

component Ao A§  magnitude(R)
A —1.123" 6.047" 17.33
B 0.00" 0.00" 17.62
G1 0.18"  0.98" ~18.5

1) Young et al. (1981a).

Table 3.2 b) Core-Jet geometry of images 4 and B?)

A B

core Jet core Jet

flux density [mJy] 22.8 £ 0.9 30 £ 2 17.5 + 0.5 23.2 +2
major axis [mas] 1.37 +0.06 13+2 1.55%+0.05 15+1
minor axis [mas] 0.81 +0.09 12+1  0.55+0.07 9+1

position angle [deg] 18.+3 77+ 30 15+1 8+ 11
separation
from core [m.as.] — 49 + 2 — 95+ 2
position angle
core-jet axis [deg)] — 16 £ 2 — 1542

2) Gorenstein et al. (1988b).

Table 3.2 ¢) Polarization --- ¥ = ¥°% + RM x A? fit®)

component UOldeg]  RM [rad/m?)

A 94.0+5.54 —61.8+3.1

B 93.8 5.6 —161.8+3.1
difference 0.2+4 ~ 100

3) Greenfield et al. (1985a).

Narashima et al. ( 1986 ) supported this third possibility, and showed that if
there is the nucleus with ~ 1010M@ within ~ 50[pc] in G1, the images close to the

nucleus would be fainter than other images by 10[mag].
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The following properties are noteworthy of this system: i) each image has
core-jet structure. This property is important in determining the components
of the amplification matrix relating one image to another ( Gorenstein et al.
1985, 1988 ). ii) The polarization plane of each image rotates ( Greenfield et al.
1985 ). 1iii) This system has a faint radio source with 0.014 multiple intensity
of that of B, being located close to B. iv) The travel time difference between
images has been observed ( Florentin-Nielson 1985, Vanderriest et al. 1989 ).
Dyer and Roeder ( 1981 ) estimated this travel time difference between images

to be 1 ~ 1.5[years], this being consistent with the observed value.

The observed data for this system 09574561 are listed in Table 3.2a, b and c.

b) 11154080

The multiple quasar 11154080, discovered by Weymann et al. ( 1980 ), is the
first candidate for multiple-image system with three or more images. Owing to
poor resolution ( ~ 2.5” ) of their observation, they were able to determine only

the spectra of images A, B and C, but not the morphology of the images.

Hege et al. ( 1980 ) were the first to study the morphology of the images of
this system. According to their observation, image A seems to be more elongated
than other images and to have a position angle of the major axis is ~ 20°. This
structure of A was confirmed by Young et al’s observation ( 1981b ) and also by
Hege et al’s ( 1981 ). A theoretical analysis by Young et al., moreover, showed
that, in order to reproduce the geometry of this system, A should be separated
further into two images A; and Aj, its position angle being ~ 20°. Later the
duplicity of A was confirmed by more accurate observations ( Foy et al. 1985,
Shaklan & Hege 1985, Henry & Heasley 1986 and Christian ef al. 1987 ). The
fifth image, A2, was suggested to be located close to Ay (= Ajy) with the same
magnitude as Ay by Foy et al..

While the difference, Amy, _4,, between the apparent magnitude of 4; and

that of Ay was found to be nearly equal to zero by Hege et al. etc., it was reported
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Table 3.3 a) Geometry and Magnitude of 1115+080%)

component  Aa?  A§Y  magnitude(V)

Ay -1.27" -2.08" 16.99
Ay -1.44"  -1.62" 17.27
B 0.39"  -1.95" 18.74
C 0.00"  0.00" 18.26

lens galaxy  0.18" -1.67"  20.96%0.05

1) Christian et ol. (1987)
2) Aa, Ab = coordinates measured with respect to image C

+ A o = west, + A § = north.

Table 3.3 b) Travel Time Differences between Images of 1115+080%

Ata,_a, Aty_p Aty ¢

> 4[days] < 2.5[months] < 2.5[months]

3) Vanderriest et al. (1986)

to be nearly equal to unity by Foy et al. The latter regarded this difference as
one due to the variation of parameters of the lens object or to the time evolution
in intrinsic luminosity of the source. Vanderriest et al ( 1986 ) justified Foy et
al’s interpretation. Moreover it was found that the luminosity of the original
source may have varied by 0.3[mag] during years 1981 — 1985. From this fact,
they obtained the constraints on the travel time differences between A; and Aj,

between A and B and between A and C.

In this system separations between the images are quite small. And the
lens object cannot be observed by means of radio observations because the lens
object is not a radio-source. Therefore no information has been obtained on this
deflector. There were some suggestion on the location of the deflector before

1987: i) the lens object should be located between A and B, close to B because
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the color of B is redder than other images ( Young et al., Shaklan & Hege );

ii) the lens galaxy should be located between A; and Ay ( suggested by Henry
and Heasley 1986 ).

It is Christian et al. ( 1987 ) who settled this problem. They succeeded in
directly detecting the lens object by observing the images through some color
filters. According to their observation, the lens galaxy is very red and is located
close to B between A and B. The lens galaxy, moreover, is completely separated
from the images in their observation. Christian et althus suggested that it is
very compact. In their observation the redshift of the lens object, however, was
not found. They guessed its redshift to be in the range from 0.4 to 0.5 both from

the separation-redshift relation and from the mass-brightness relation.

Some models have been applied to this system. Adopting a transparent spiral
galaxy model, Young et al. ( 1981b ) located the deflector inside the triangle of
the images, and predicted that image A consists of two 1mages. Narasimha et
al. ( 1982 ), moreover, analyzed this system by adopting a King model. Their
analysis, however, was incomplete in some sense since they had no information
on the lens object such as the location and redshift of the lens object in that
time. On the other hand, in view of the fact that the lens galaxy is very compact
as pointed out by Christian et al., we analyzed this system by adopting a dark
lens model ( Yoshida & Omote 1988 ). We then estimated the mass of the lens
galaxy as ~ 10**Mg. Our analysis will be discussed in Chapter 4.

The observational data are listed in Table 3.3 a and b.

¢) 23454007

The twin quasar 23454007 was discovered by Weedman et al. ( 1982 ) as the
third candidate for multiple-image system. The separation between images of
this system is the largest among those multiple-image system known up to date
except for the QSO pair 1146+111. For the above system, two images A and B are

observed, and the missing image(s) should exist somewhere. Sol et al. ( 1984 )
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Table 3.4 Geometry and Magnitude of 23454-007

data reference
magnification of A 18.82 4 0.03  Sol et al. (11984 )
magnification of B 20.25+£0.04 Sol et al. ( 1984 )
separation between A and B 7.03" & 0.08" Nieto et al. ( 1988)
position angle of A — B 57°+1°  Nieto et al. ( 1988 )
separation between B; and By 0.36" Nieto et al. ( 1988 )
position angle of B; — By 69° £+ 1° Nieto et al.(1988)

suggested that image B has a double-image-structure. Tyson et al. ( 1988 ),
moreover, showed that the missing image brighter than 25.04-0.3[mag ] is not seen
outside 17 from B, 2" from A, and inside a search radius of 30". Therefore, if
the missing image exists in this region, its brightness must be 6[mag] fainter than
those of the other images. Nieto et al. ( 1988 ) justified Sol et al’s suggestion
by their own observation with a high resolution. They, moreover, found that
image B has a structure and can be separated into two images By and By. The
separation between B; and Bj is ~ 0.36"” and this satisfies the constraint on the

structure of B imposed by Sol et al..

The problem here is that the deflector has nbt been detected. Some suspect
that these images are not gravitationally lensed ( Canizares 1987, Bahcallet al.
1986 ). The failure in detecting the deflector gives a constraint on the appar-
ent magnitude ‘m’ of the deflector: my > 22.2[mag], mp > 21.5[mag] ( Sol et
al.). Tyson et al., moreover, suggested that some galaxies seen only in I-band
(7800-10000 A) might be acting as lenses. There is spectroscopic evidence for Sol
et al’s suggestion, such that absorption lines with redshifts 1.483 ~ 1.491 appear
in spectra of both images, thereby indicating a large amount of the dark matter.
Tyson et al. found that the deflector mass necessary to produce the separation

~ 7" is ~ 10¥Mg. They thus suggested that the object with a high M/L value
is dominant in this system. We list the data of 23454007 in Table 3.4.
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Table 3.5 Geometry and Magnitude of 20164112 )

component Aa Aé  magnitude
A 0.00”  0.00" 20.95
B -3.02" —1.49" 21.48
ol —2.03" -3.37"  22.85

1) Schneider et al. (1986).

d) 2016+112

The multiple quasar 20164112 was discovered by Lawrence et al. ( 1984 ) as
the fourth candidate for multiple-image system. Radio sources A, B and C were
discovered by VLA observations. Separation between A and B is 3.4", and C
is located south-west of B. From the spectra of the radio sources, it was found
that the spectra of A and B are similar to each other except in the red and
infrared region, while the spectrum of C' is flatter than those of A and B. They
thus concluded that A and B can be regarded as gravitationally lensed images
and that C is interpreted as a deflector. We can interpret that the difference
between the spectra of A and B in the red and infrared regions is due to the

contamination in B made by the foreground galaxy, C.

There are, however, some serious problems in the gravitational lens interpre-
tation: 1) the image configuration ZACB ~ 60°, for which it 1s unnatural that
such a configuration is produced only by C ( Lawrence et al., Narasimha et al.
1984 ), ii) the lack of the third image and iii) the difference between the ratio
I4/I5 in the radio flux ( ~ 0.93 ) and that in intensities of the emission lines e.g.
Lya (~ 1.64 ).

Problems 1) and ii) were settled by a series of observations by Schneider et al.
( 1986, 1987 ). They found that galaxy C is secondary rather than primary and
that the primary lens object is galaxy D located at 1.2" from image B. By the

discovery that the strong and narrow emission line ( Lya ) seen in the spectra of
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A and B exist also in the spectrum of the vicinity of galaxy C, the source with
this emission line being identified with the third image, C'. They discovered
extended sources A; and B; westward of A and B, respectively. Later A; and
By were confirmed to be two separate clouds of ionized gas which lie within a few
killopersec of the primary A/B QSO, not to be the images of the same source
( Narasimha et al. 1987, Schneider et al. 1988 ).

The constraints on construction of the model to reproduce this lens system

are listed as follows:

a) The model must reproduce the image configuration: A, B and o
b) There are no other images.

¢) The role of galaxies C and D must be taken into account.

d) The difference between the radio flux ratio and the intensity ratio

of the emission lines must be explained.

Moreover the constraint on the deflector mass necessary to produce the image

configuration in this system is given by

M > 9.25 x 1012h_1Mo (Ho = 100/l[km/sMpc]).

Narasimha ef al. ( 1987 ) reproduced this system by adopting two King galax-
ies with nuclei and a King cluster of galaxies. According to their analysis C' con-
sists of two images C1 and Cy, and another faint image exists in galaxy D. They,
moreover, predicted travel time differences such that Afg_, = 0.7 ~ 0.9[years],

Atgl_A ~ 0.6 ~ 0.9[years] and Atcl_cz =~ 0.05[years).

We list the data of this system in Table 3.5.
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Table 3.6 Geometry and Magnitude of 163542671

component  Aa? A  magnitude(mag.)
A 0.00”  0.00" 19.15
B -0.63"  3.74" 20.75

1) Turner et al. (1988)
2) Aa, A§ = coordinates measured with respect to image C'

+ A o = west, + A § = north.

e) 1635+267
The QSO pair 1635+267A, B was discovered by Weedman in 1978 ( Sramek &
Weedman 1978 ). However they regarded this QSO pair as two separate quasars
with slightly different redshifts. Djorgovski and Spinrad ( 1984 ) re-examined

this QSO pair, to claim that these quasars are gravitationally lensed images.

According to their observation, spectra of images A, B are similar to one
another and their redshifts are both 1.961 & 0.03. They, moreover, found that
there is an absorption line at A = 5930A in image A, and suggested that, if the
absorption line is due to the contamination from a deflector, the redshift of the
deflector is 1.118.

Since the deflector of this system has not been detected yet, some doubt
whether 1635 + 267A/B are indeed gravitationally lensed ( Canizares 1987, and
Blandford & Kochaneck 1987 ).

In contrast to the pessimistic viewpoint, there is some evidence for the grav-
itational lens interpretation. Djorgovski and Spinrad pointed out that i) this
angular separation is very small as in the cases of known other multiple-image
systems, ii) the spectra of A and B have the same emission line, and iii) the
difference between the redshift of A and that of B is very small. Turner et al
( 1988 ) further showed that iv) the emission lines at Cyyy, Mgy exist in each

spectrum of the image, and that v) there is a certain evidence for the lens galaxy,
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etc.. Turner et al. suggested that the redshift of the lens galaxy is ~ 0.57 on
the basis of the fact that the spectrum obtained by subtracting the spectrum of
A from 2.82 ( = the value of the intensity of the spectrum of A / that of B )
multiple of the spectrum of B is similar to that of known galaxies with redshift
~0.57. The observed data are listed in Table 3.6.

Narasimha and Chitre ( 1988 ) analyzed this system by assuming that the
lens galaxy is located at 0.71" from A and that its mass is ~ 1012Mg with the
mass-to-light ratio being 16.

1) 2237+0305

This candidate for multiple-image system, 223740305, was discovered on the
basis of the fact that emission lines with a high redshift exist in the spectrum at
the center of a galaxy with a small redshift ( Huchra et al. 1985 ). Clearly the
object which is emitting lights with a high redshift (z; = 1.695) is not a galaxy.
Huchra et al. then pointed out that these lights are gravitationally lensed by the
galaxy close to us ( zg = 0.0394 ). Because of poor resolution ( ~ 2 ) of their
observation, however, they could not separate the images from the nucleus of the
galaxy. Thus in those times only one QSO image was found. Later observations
made it clear that four images A, B, C and D actually exist in this system
( Tyson & Gorenstein 1985, Yee 1988, Schneider et al. 1988 ).

For this system the lens galaxy, rather than the lensed images, has been
investigated in detail. According to Huchra et al.’s observation, this lens galaxy
is very bright, possibly an early type belonging to Sa or Sb type in Hubble’s
classification. It follows from the galaxy brightness distribution that a nucleus +
disc model is applicable to this lens galaxy. They also found that, when the disc
is fitted by the exponential law ( i.e. I = Iyexp(—z/2g) ) the scale length 2 is
~ 5" (~ 3.4[kpc]) and that the ellipticity € of the disc is ~ 0.47. The observations
with high resolution, furthermore, led to the result that this spiral galaxy has two

bars, two arms and one bulge. While the disc ( bar + arm ) obeys the exponential
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Table 3.7a) Galaxy parameters for 223740305

redshift ( distance )V ellipticity!) position angle of major axis?) position angle of bar?)

0.0394 ( 118Mpc ) 0.57 T7° 38°

1) Huchra et al. (1985). 2) Yee (1988).

Table 3.7b) Geometry and Magnitude of 2237+0305)

component Ao? AS?) magnitude(V) ( dereddening )
A 0.08" £0.01" -0.94" £ 0.01" 17.25 16.89
B -0.60" £ 0.02" 0.74" +0.01" 17.38 16.95
C | 0.76" £0.01" 0.26" +0.01" 17.61 16.94
D -0.77" £ 0.02" -0.41" £0.02" 17.98 17.44
lens galaxy  0.00" £ 0.02" 0.00" £0.02" 14.540.05 —

1) Yee (1988)
2) Ao, A§ = coordinates measured with respect to image C

+ A o = east, + A § = north.

law, the bulge follows the de Vaucouleurs law. Properties of this galaxy are listed
in Table 3.7a.

The four QSO images are located close to the nucleus of the galaxy, forming
a cross ( Yee ). While the colors of images A and B are much bluer than that of
the galaxy, the colors of images C and D are slightly redder than those of other
images. Such a result is very critical for the gravitational lens interpretation,
because all images must have the same color according to the gravitational lens
hypothesis. Yee and Schneider et al. interpreted that the differences are due
to the differential reddening effect occurring when the lights pass through the
different regions in the nucleus of the galaxy. Taking into account this effect
arising from the bulge of the galaxy, Yee estimated the brightness of images in

the case when the reddening effect does not operate. On the other hand, Kent
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and Falco ( 1988 ) concluded that only with Yee’s dereddening it is not possible
to estimate the true brightness of the images, because the differential reddening
effect exists not only in the bulge but also in the direction of the bar and because
the microlensing effect due to individual stars in this galaxy must be also taken

into account. The observed data of this system are listed in Table 3.7b.

The models that reproduce this system were investigated by Schneider et al.
and by Kent and Falco. Schneider et al. assumed the constant mass-to-light ratio
for this galaxy and analyzed this system by adopting 6724 spherical deflectors
whose distribution is the same as the brightness distribution of the galaxy. On
the other hand, Kent and Falco assumed that the mass distribution is the same
as that of a King galaxy or obeys the de Vaucouleurs law. They then fixed
parameters of each model by using the least square method. According to Kent
and Falco’s analysis, their models produce almost the same image configuration
and the galaxies fixed by the least square method are similar to those other spiral
galaxies of similar morphological type which exist in our neighborhood. From

naive estimations ( Yee, Kent & Falco ) it follows that the mass of the galaxy is
9.0 x 10°Mg ~ 1.2 x 101°M,.

g) 1042+178
This candidate for multiple-image system, which is identified with system
10424178, was discovered by Hewitt et al. ( 1987a ). The system has four images.
From the VLA observation, they found that the images form a parallelogram. If
these radio sources are taken to be lensed images, the geometry shows that the

deflector is a single object located close to the center of the parallelogram.

They observed only one image in optical observations, but found that the op-
tical image has a structure and that its strong emission line indicates zg = 0.921.
Since the redshift of the radio source is small, cosmological uncertainties
( e.g. effect of the intergalactic matter ) in this system would be smaller than
that in other multiple-image systems. This is therefore the best system for de-

termining the Hubble constant efc. by using the travel time differences between
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images. At present it is premature to decide that the above radio sources are
gravitationally lensed because Hewitt ef al. did not obtain spectra of all the im-
ages and did not detect four images separately in optical observations. We must

wailt for more detailed and accurate observations.

h) 3C324

This radio galaxy was discovered by Spinrad and Djorgovski ( 1984 ). They
found that this object exhibits magnitude of 21 ~ 22mag] with a redshift
z = 1.206. Hammer, Le févre and Nottale ( 1987 ) are the first to emphasize
that this radio galaxy system is a candidate for multiple-image system. They
found that its spectrum has the absorption line which indicates z = 0.845, be-
sides the emission line which indicates z = 1.206. According to their observation
( seeing <0.7, magnitude-limit=25.5[mag] ), at least, five components A, B, C, D
and F exist within 15 [arcsec?] at the center of 3C324. Its geometry is as follows:
the separation between A and B is 1.1”; the faintest component C is located at
0.8" east of A; faint component D is located at 1" north-west of A; and com-
ponents E and F are at 2.2 west of B and at 3" south-west of A, respectively.
From their observation using some filters they found further that A is a fore-
ground galaxy with redshift z = 0.845 and that B and C are background objects
with redshift z = 1.206. Thus components B and ¢ may be interpreted to be
deflected by component A. With the above data only, however, it is premature

at present to conclude that these component are gravitationally lensed images.

i) 00234171

This candidate for multiple-image system was discovered by Hewitt et al.’s
systematic VLA survey ( Hewitt et al. 1987b ). Making VLA observations they
found three components A, B and C. The separation between A and B is
~ 3.0", and the separation between A and C is 5.9". Images A and B, moreover,
have some structures and jets are emitted from both images but in the opposite
directions. The jet from A appears to be emitted with position angle 60°.
Hewitt et al. guessed that this jet might be the fourth component.
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In optical observations, they found images Cp: ( brighter ) and 4B,
( fainter ) as the counter-components of the radio sources. The separation be-
tween ABop; and Cp is 4.8" &+ 0.1" and AB,p; could not be resolved. While in
the radio observation A and B were found to have some structures, in the optical
observation there was an extended object located at about 1.0” south of Cppe. Tt

1s not clear whether these components are gravitationally lensed images or not.

Hewitt ef al. obtained the spectra of AByy and C,p, and pointed out that
these spectra were similar to each other excepting some uncertain parts. From
each emission line it is deduced that the redshift of the source is z = 0.9641 +
0.0005. Although the necessary conditions for this system to be gravitationally
lensed images are satisfied in this candidate, we cannot still support this inter-
pretation because the deflector of this system, which could be a galaxy and/or
a cluster of galaxies, has not been detected yet. If the components of 00274171
are indeed gravitationally lensed images, high M/L value (> 10%) is needed.

j) UM673(=0142~100)
This candidate for multiple-image system was discovered by Surdej et al
(1987). They found that UM673 is separated into two images A and B. Sub-
traction of a picture with the Gaussian fits of images A and B from the original

picture shows that there is another object ( maybe a lensing object ) located

between A and B ( Surdej et al. 1988 ).

The spectroscopic observation leads us to the following properties: i) both
images A and B have very similar spectra, which have broad emission lines at the
same wavelength indicating that the redshifts for A and B are z, = 2.71930.009
and zg = 2.719+0.0119, respectively, i1) each spectrum has some absorption lines
leading to some redshifts: z = 0.493,z = 1.898,z = 2.356 and z = 2.736. The
absorption line with redshift z = 0.493 may be of the lensing object since the
residual spectrum obtained by subtracting a numerical multiple of the spectrum
of B from that of A is comparable with what is expected of galaxies in the cluster
with z = 0.493 £ 0.01. While the absorption lines with redshifts z = 1.898 and

35



Table 3.8 Geometry and Magnitude of UM673%)

component separation?) P.A.%) magnitude(V)[mag ]
A 2.22" +£0.03" 106.3° £ 0.5° 17.040.2
B — — 19.140.2
galaxy®  0.8"+£0.2" 106.3°£0.5° ~ 19.0

1) Surdej et al. (1988)
2) The separations and position angles ( P.A. ) are measured
with respect to B

3) The galaxy size is 3.2"(E-W) and 1.8”(N-S).

z = 2.356 may be those due to higher ionization, we do not yet know what

produces the absorption line with z = 2.736.

Surdej ef al. analyzed this system by adopting an axially symmetric deflector
model. They found that the mass of the galaxy is ~ 2.4 x 10'!M, and that the
travel time difference between A and B would be ~ T[weeks]. Their observed data
are listed in Table 3.8.

k) 1413+117

This is known as one of the brightest members among broad absorption line
quasars ( BAL-QSOs ). The BAL-QSO has a very broad and deep absorption
line close to an emission line in the shorter range ( Weynmann, Carswell & Smith
1981 ). Magain et al. ( 1988 ) found that QSO1413+117 consists of four compo-
nents A, B, C'and D. The mean separation between images is ~ 1.0”. They were
able to obtain the spectroscopic data of B and C only. Both spectra are very
similar to each other, and have an emission line which indicates z = 2.551. These
spectra, moreover, have the absorption lines that indicate z = 1.6603 £ 0.003 and
z = 1.4382 £ 0.002. Magain ef al. claimed that the above lines are due to some

isolated and mutually independent gas clouds.

36



Table 3.9 Geometry and Magnitude of 1413+117%)

component  Aa?  A§)  magnitude(V)?3)
A 0.00"  0.00" 0.00
B 0.75"  0.17" 0.15
C -0.50"  0.71" 0.30
D 0.35"  1.04" 0.40

1) Magain et al. (1988)

2) Ao, AS = coordinates measured with respect to image C
+ A o = west, + A § = north.

3) Am = magnitude differences with respect to image A,

the magnitude of A is 18.3[mag.]

We believe that this system can be a multiple-image system because both B
and C have the same broad absorption line with intensities being nearly zero. If
some of the four components are distinct objects, these components can hardly

have broad and deep absorption lines at the same wavelength.

Assuming the deflector to be an axially symmetric galaxy with an asymmetric
disturbance, Magain etf al. analyzed this system, with the following conclusions:
the deflector mass is 1.0 x 101 Mg ~ 1.53 x 10'2Mg, although, as suggested by
them, the deflector is very compact because of the small separations between the

1mages.

1) UM425(=1120+019)
The candidate for multiple-image system, UM425, was discovered by Meylan
and Djorgovski( 1989 ). The geometry of this system and the magnitudes of

components are listed in Table 3.10 under seeing condition a2 1.4".

This system has four components A, B, C and D. Meylan and Djorgovski,

however, reported that C and D are somewhat diffuse ( nonstellar ) in appear-
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Table 3.10 Geometry and Magnitudes of UM425%)

component separation? P.A%) magnitude(V)[mag]
A — — 16.2+0.1
B 6.5" £0.1" -29° 20.6+0.1
C 6.8" £0.1" 105° 21.840.1
D 4" ~ 5" ~ 150° —

1) Meylan and Djorgovski (1989)
2) The separations and the position angles ( P.A. ) are measured

with respect to A

ance, 1n particular, D is too faint and too close to A to make any reliable mea-
surements, and that C' is redder in color (B — V)¢ and bluer in (V — R)¢ than
A and B. They concluded that C' could be considered as a member of the fore-
ground cluster of galaxies ( maybe a deflector ). On the other hand, B is slightly
redder than A in (V — R)p. This fact may indicate the existence of the lensing
galaxy.

The spectroscopy in their observation shows that spectra of A and B are
similar to each other and that they have the same strong emission lines which
give the same redshift z=1.465. The ratio of the spectrum of B to that of A4 is
fairly constant in the blue region, and has a slight but significant increase in the

red region, being equivalent to a slight difference in color, as noted above.

The quantity ( spectrum of B ) - ( spectrum of 4 )/100 suggests the early-type
galaxy spectrum at redshift z ~ 0.6. Meylan and Djorgovski roughly estimated
the R magnitude of this component as mg ~ 2340.5[mag], and concluded that the
spectrum of this component is comparable to the spectra of luminous elliptical

galaxies at redshift z ~ 0.6.

Finally we note that there is evidence for the system to be the gravitationally

lensed system: although A is ~ 100 times as bright as B, their spectra are very
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similar and have the same strong emission lines which give the same redshift.

3.2 GIANT ARCS AND EINSTEIN RING

Lynds and Petrosian ( 1987 ) and Soucail et al. ( 1987 ) reported that there
were arc-like objects close to the center of clusters CL 2244—02 and A370. Al-
though these arcs were discovered ten years ago, no definite comments about them
had been made since then for lack of sufficient data ( Lynds & Petrosian 1989 ).
It 1s only ten years after the first discoveries of these arcs that sufficient data
were collected. Moreover other objects which have similar structures to those
of CL 2244—02 and of A370 were discovered in other clusters A963, A2218 and
CL 0500—24 ( Lavery & Henry 1988, Pello-Descayre et al. 1988 and Giraud
1988 ). These arcs have common features such that i) they are bluer than any
other members of their clusters, ii) they have long and narrow structures and iii)
these arcs point towards the direction of the center of each cluster. These arcs

each should be considered to be associated with clusters in some way.

Many astronomers and physicists have given various interpretations for the
origin of these arcs ( Miller & Goodrich 1988 and Braun & Dekel 1988 ). These
could be classified roughly into two types: the first is that the arc itself be-
longs to a cluster, and the second is that the source of the arc is a back-
ground object, which appears to be arc-like due to the gravitational lens effect
( Paczytiski 1987 ). There are more than four theories in the former type which
are based on: i) the gravitational interaction for a galaxy, ii) the light echo
( Katz 1987 ), iil) the optical jet due to the synchrotron radiation, iv) the shock

wave from the center of the cluster.

The first type of interpretations, however, has some difficulties. Theory 1)
cannot explain why similar actions do not appear in other objects near the arc.
In theory ii) the upper limit of the polarization induced by the light echo is
inconsistent with the observational data, and it is unnatural that they are arc-

like. In theory iii) the counter component of the arc-like image, which is naturally

39



expected, are not seen in the radio observation. The arc itself is not so bright as
expected in this theory. In theory iv) gas surrounding the arc should be cooled
sufficiently, but negative evidence on this point was given by Braun and Dekel

and Lynds and Petrosian ( 1989 ) in the X-ray observations.

On the other hand, since the gravitational lens effect in the second type of
interpretations is not directly associated with the cluster, this effect which may
be responsible for the arc do not suffer from the difficulties mentioned above.
Kovner ( 1987 ) showed that the probability for occurrence of an arc-like image

due to the gravitational lens effect is ~ 0.01.

It is the arc redshift that decides whether the first type of interpretations is
right or not, because, if the arc redshift z,,. is as small as the cluster redshift

ZcL, then the arc should be directly associated with the cluster.

a) A370
This arc was claimed by Soucail e? al. (1987a) as a gravitational lens system.
The redshift of cluster A370 surrounding the arc is zg, = 0.373 ( Kristian et al.
1978 ), and this cluster is one of the brightest, having a cD-galaxy in its center.

Properties of the arc in this cluster are that 1) the arc is bluer than any other
member of the cluster, i1) the central intensity peak of the arc, which characterizes
bright galaxies, does not appear, iii) the brightness distribution of the arc is very
flat ( Soucail et al. 1987b ), and that iv) the arc is reasonably circular ( Lynds
& Petrosian 1989 ).

Moreover an object at the eastern end of the arc ( #62 in Soucail et al’s
identification ) has also a blue and featureless structure. Soucail et al (1987b)
suggested that #62 1s associated with the arc in some way. The spectroscopic
observation of Soucail et al. ( 1988 ) shows that the spectrum of #62 has contin-
uum and emission lines similar to those of the arc. The emission line indicates
redshift z,,. = 0.724 ( Soucail et al. 1988, Miller & Goodrich 1988 and Lynds &
Petrosian 1989 ).
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Table 3.11.a) ArcY) in A370

curvature radius length

( xpe] ) ( xpc]) substanding angle arc redshift
Primary Arc?) 151" 2l” 0 3)
imary ¢ (103}15—01 (143}15—01) ~ 80 0.724
Secondary Arcs®)

Ay ~ 48" 3!

Ay (A1 — Ay) 4"

As ~ 37! 3/ 0.6 ~1.2
Aq (As — Ad) 2.5"

As 9.3"

Table 3.11 b) Variation of the Arc width with colors?
U B V R I
Width 1.92" 1.42" 0.89" 0.66" 0.42"

1) This cluster (zq, = 0.373) has a cD-galaxy near its center ( Kristian et ol. 1978 ).
2) Lynds and Petrosian ( 1989 ). No polarization is detected from this Arc.
3) Soucial et al. ( 1988 ).

4) There are other images Ag, By, By and B;. Ag and Ag lie on the same circle ( Fort et al. 1988 ).

It is questionable, however, whether #62 1s indeed a part of the arc, because
it breaks away from the primary arc with a sharp angle in the polar coordinate

system ( Lynds & Petrosian ).

In the observation by Lynds and Petrosian, the spectrum of the arc seems to
have BALs. Since no BAL appears in the spectra of the other members of cluster

A370, the arc is confirmed to be a gravitationally lensed image.

In explaining the arc by the gravitational lens effect, the main problem is to
explain why those counterparts of the arc do not appear which are expected in a
simple gravitational lens model. Fort ef al. ( 1988 ) surveyed in order to discover
the necessary counterparts, but in vain. On the other hand, it was pointed out
that a single arc could be well produced if the extended source was located near

one of the caustics on the source plane ( Grossman & Narayan 1988, Narasimha
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& Chitre 1988 and Blandford & Kovner 1988 ). Therefore the problem of no

counterpart is not severe.

As a by-product in Fort et al.’s observation, they found other arc-like systems.
These arc systems have the same properties as the primary arc, and their redshifts

are nearly equal to 1. They are believed not to be a physically isolated object.

Here we must notice other features: i) the width of the primary arc varies in
color ( Lynds & Petrosian ), ii) there is no polarization
( Miller & Goodrich, Lynds & Petrosian ), and iii) by means of the VLA obser-
vation some radio sources were found near the primary arc, but not in the arc

itself.

b) CL 2244—02
This arc was discovered by Lynds and Petrosian, but was not analyzed just
as the arc in A370 discovered at that time was not. The cluster of galaxies
( CL 2244—02 ) has the redshift zo, = 0.327. Its brightness distribution is well
in accord with de Vaucouleurs’ law. The cluster has a giant arc near two large

clumps ( Hammer et al 1989 ).

We show the morphology of the arc in Table 3.12. The special feature to be
noticed 1s that the arc is completely circular. A remarkable difference between
this arc and the one in A370 is that the former has a patchy brightness distribu-
tion. It is known that this arc has, at least, six brightness peaks, and its color
1s much bluer than other members of CL 2244—02 as in the case of A370. The
spectroscopic observation shows no emission and absorption lines, and the spec-
trum is rather featureless. The arc redshift has not been determined yet unlike

the arc in A370.

Despite the absence of knowledge on the redshift of the arc in CL 2244—02,
important evidence for the arc to be gravitationally distorted images was given
by Hammer ef al.: they found additional images near the center of the curvature

of the arc, which have photometric properties similar to that of the arc.
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Table 3.12 a) Arct) in CL 2244—02

curvature radius  length width
( Tkpe] ) ( kpe] ) substanding angle ( [xpc] )

Primary Arc?) 10.6" 19" . 0.74"
rimary Arc (636}15_01) (114}1;01) ~ 102 44}15.01

Table 3.12 b) Magnitudes and colors of this system®
B V R B-R
Primary Arc 21.51 20.87 2040 1.11
T 24.25 20.6 23.06 1.19
S 24.75 23.88 23.64 1.11

1) There are two clumps near the center of this cluster z¢, = 0.329 ( Kristian et al. 1978 ).
There are secondary arcs T and S. Their photometric properties are similar
to the primary arc ( Hammer et ol 1989 ).

2) Lynds and Petrosian ( 1989 ).

3) Hammer et al. ( 1989 ).

As in A370, the arc in CL 2244—02 reveals no polarization: the upper limit
of the polarization is 4% =+ 2%, as is given by Miller and Goodrich ( 1988 ). It
was also shown by Lynds and Petrosian ( 1989 ) that there are two radio sources

near the arc.

c) A2218
This arc was discovered by Pello-Descayre et al. (1988). The redshift of clus-
ter A2218 is zg, = 0.171. A2218 has a large cD-galaxy near its center, and is

well-known as one of the largest clusters in the Abell catalogue.

Pello-Descayre et al. found that this cluster has three arcs: A—A’, H and
L—L' but the redshifts of these arcs have not been determined because of their

complexity and their faintness.

The color of A—A’ is bluer than any other members of A2218, whereas the
colors of H and L—L' are redder. Therefore H and L—L' may probably belong
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Table 313 Arcl) in A2218

curvature radius length .
( kpcl ) ( tkpe] ) substanding angle magnitude

41" 25"

~ 90° 22.5
(160hzl)  (100hgd 90 25

Primary Arc?)

1) A cD-galaxy lies on the center of this cluster zgy, = 0.171 ( Kristian et al. 1978 ).
It has an extended envelope ~ 46"(~ 180h;01kpc) and it is axially symmetric?.

2) Pello-Descayre et al. ( 1988 ).

Table 3.14 a) Arc') in A963

curvature radius length
( [kpe) ) ( [xpd] ) substanding angle
18.6" 22.7" T0°
Southern AI‘C (80]1;01) (98}15—01) ~
26.7" 9.7" ,
Northern Arc (114—h5_01) (41115—01 ~ 30

Table 3.14 b) Magnitudes and colors of these Arcs)
B R B-R

Southern Arc 22.3 21.6 0.7

Northern Arc 23.6 23.1 0.5

1) This cluster ( z¢, = 0.206 ) has a cD-galaxy with ellipticity ~ 0.5

and major axis ~ 51" ( Lavery and Henry 1988 ).

to this cluster. On the other hand, A — A’ could be an image produced by the
gravitational lens effect, since this arc has the same photometric properties as
those in A370, CL 2244—02. We feel, however, that it is too early to regard this

system as a gravitationally lensed system.

d) A963

This arc system was found by Lavery and Henry ( 1988 ). Cluster A963 has
the redshift z¢;, = 0.206 and has, near its center, a large cD-galaxy with ellipticity

¢ = 0.5 and major axis = 50"
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It is a remarkable difference from other arc systems that this system has two
arcs on each side of the cD-galaxy. Both arcs are extended in the direction or-
thogonal to the major axis of the cD-galaxy. These arcs, evidently, are consistent
with those images that are produced by the gravitational lens effect. Lavery
and Henry analyzed this system by adopting the constant surface density model
( cluster ) with a point mass ( ¢D-galaxy ). The photometric properties of this
arc system are similar to those of other arc systems. In particular, the brightness
distribution is as patchy as that in CL 2244—02. The lensed object ( source )
may therefore be considered to be a LMC type galaxy. We, however, hesitate to
say that these arcs are gravitationally lensed images because of insufficient data

on this arc system.

e) CL 0500— 24
This arc was discovered by Giraud ( 1988 ). The cluster of galaxies
CL 0500—24 in which this arc is observed 1s known to have redshift z¢;, ~ 0.32
and to consist of many galaxies, that is to say, this cluster is known to be a rich

cluster of galaxies ( Wambsganss et al. 1989 ).

The remarkable difference of this arc system from other arc systems, in par-
ticular from A370, is that the shape of this arc is rather straight than circular.
It 1s not clear even whether the concave of the arc points towards the direction
of the center of the cluster. Since the arc appears to be superposed on galaxies
of the members of the cluster, the problem remains to be as to settle whether
the elongated feature is a disrupted tail of the interacting pair or due to the

gravitational lens effect.

Wambsganss et al. constructed a gravitational lens model for this arc by using
their data and showed that this model is a very natural one in explaining this

arc-like structure.

For this arc also, we believe that detailed spectroscopic observations
( sufficient to determine its redshift ) are needed for clarifying the nature of

the arc.

45



Table Arcl) in CL 0500—24

curvature radius length
( [kpd] ) ( [kpc] ) substanding angle color (B — R)
26" 14”
Arc (69 ~ 80}15_01) (37 ~ 43}15_01) ~ 30° 09~1.0

1) Giraud ( 1988 ).

1) MG1131+0456 “Einstein Ring”
Besides giant arcs, a ring-like object was also discovered in VLA observation
( Hewitt et al. 1988 ). This ring is elliptical and has two compact sources on the
opposite sides of the ring. From the VLA mapping, Hewitt et al. found a clear
difference between the ring itself and its interior part. Unlike the ring itself, its

interior part shows no emission.

The compact sources exist in the north and south of the ring. The northern
component is separated into two sources A; and A;. The southern component,

B, is accompanied by component C', which is located south-west of B.

It was shown by observing polarization along the ring that the polarization
is in north-south direction at the positions of the compact sources, and that
the all other parts of the ring appear to be polarized at angles that vary quite
smoothly around the ring. It is very likely that this kind of polarization is due
to the Faraday effect. It is not possible, however, to make any definite comment
on the polarization, since data on polarization have been obtained only for one

frequency.

A very faint object, on the other hand, was optically observed near the ra-
dio source, but the ring redshift has not been determined yet because of poor

condition of their spectroscopic observation.

Two interpretations are possible for this ring: 1) the remnant of an explosion
In a supernova, ii) the Einstein ring due to the gravitational lens effect. We feel
that the latter interpretation (i) is more desirable than the former (ii) because

the optical and infrared properties of this ring appear to be inconsistent with
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Table 3.16 Einstein Ring MG11314+0456")

major axis minor axis ellipticity P.A.
Radio observation 2.2" 1.6" 0.27 70°
Optical observation 2.5" 2.6" 0.16 45°

1) This system is located at o = 11h31™56°%.44, § = 04°55'49" 4.
Compact components were discovered by the radio observation, .

Northern components: doublet A;& A, Southern components: B&C.

those of the supernova remnant ( Hewitt ef al). However the reasons why we
cannot definitely say that this ring is due to the gravitational lens effect are that
there have been no spectroscopic observations of this ring sufficient to determine
its redshift, and the deflector has not been detected. More accurate observations

on this ring are thus required.
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4. Analysis of Multiple Quasar “11154080”

Since the discovery of the multiple quasar 11154080 ( Weymann et al. 1980),
many deflector models have been adopted for explaining the image configura-
tion of this system by regarding this as the multiple-image system. Young et al.
( 1980 ) adopted a transparent spiral galaxy model in order to reproduce their
observational fact that image A has a slightly elongated structure. In their anal-
ysis they suggested that image A should be separated into double images A; and
Ajy. Narasimha et al. ( 1982 ) adopted a transparent King model. Assuming the
apparent magnitude of the deflector to be less than 21 [mag] and its redshift to
be greater than 0.8, they estimated its mass to be ~ 6 x 10!'Mg. The above
analyses, however, contained a number of unknown parameters and many ambi-
guities because the deflector had not been detected at that time. Young et al.
and Narasimha et al. assumed the deflector to be located inside the triangle of
images A, B and C.

Table 4.1 Observed data of 11154080 ( Christian ef al. 1987 )

component Aa®  A§Y  magnitude(V)

1 ’

A -1.27" 2,08 16.99
A, -1.44"  -1.62" 17.27
B 0.39"  -1.95" 18.74
C 0.00°  0.00" 18.26

lens galaxy ~ 0.18"  -1.67°  20.96+0.05

a) Aa, A§ = coordinates measured with respect to image C

+ Ao = west, + A § = north.

Apart from these theoretical approaches, search for the deflector was made
by many authors ( Shaklan & Hege 1985, Henry & Heasley 1986, eic. ), but the
lens galaxy was not directly detected until 1987 when Christian et al. ( 1987 )
succeeded in directly detecting the deflector. Their observational data are listed

in Table 4.1. Before Christian et al.’s observation, image B had been believed
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to be contaminated by a putative lens galaxy. According to Christian et al’s
observation, however, image B and the deflector are completely separated from
each other. It reveals that we need not adopt a transparent lens model to this

system.

In what follows we adopt a dark lens model to the deflector of this system
(in §4.1 ). We will estimate travel time differences between the images and give
the relation between these differences and relative luminosities in §4.2. In the
next section §4.3 the effect of inhomogeneities in the Universe on estimation of
cosmological distances is discussed. In §4.4 the mass of the deflector is estimated
by Borgeest’s method ( Borgeest 1986 ). We will further propose another method
to estimate the mass of the deflector only from the parameter fixing of the lens
model. It is shown how the constraint on the Hubble constant Hy is imposed
by combining our mass estimations with the two methods. Finally, §4.5 will be

devoted to discussion of our results.

4.1 GRAVITATIONAL LENS MODEL

We apply a dark lens model with dipole and quadrupole moments to the
multiple-image system in question. The deflection angle o is given by the follow-
ing form in the complex representation ( Bourassa, Kantowski and Norton 1973 )

. +oo
a === [ (Oubw (o ct) + by lan ) . (4.1)

—c0
where ¢ 1s the Newtonian potential expanded up to the quadrupole moment
term, and (25, yr) is an image position on the deflector plane. Eq.( 4.1 ) can

be transformed to the following form;

4G 1 M, d~et(xatxe) 2xG
a*:____( ¢ % . QG€3 )’

Z21 21 21

(4.2)

c?

where Mg 1s the deflector mass , dg and x4 are the dipole moment of the deflector

and its projected direction onto the deflector plane, respectively; ¢ and xs are
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the quadrupole moment of the deflector and the direction of the principal axis
projected onto the same plane; z; is the image position on the deflector plane
in the complex coordinate, i.e. zr = @1 + 1y;. The complex angular coordinate
6(= 5’2—) is often more convenient than the complex coordinate z ( see §2.1 ). We

then express eq.( 4.2 ) in the following form

Ds 1 Seilxatxa)  gelixe
= — —(1 4.3
A o7 ) (:3)
where
_ 4GMg Dy
p=— DaD. (4.4a)
dg
= 4.4b
6 MGDd) ( )
4G
= 4.4
€= 1 (4.40)
The lens equation is given by
. __I"_L_ Se—i(XG'*'Xd) Se_ZiXG
0, =6 — L1+ Z——+ ). (4.5)

Since the number of parameters in this model is seven and the number of images
is four, we can fix these parameters so that the image positions 6, ,68,4,, 05 and
8o are the solutions of eq.( 4.5 ). The conditions for fixing these parameters are:
1) p is real and positive, ii) the above parameters are constant with respect to
:(f; = 04,, 04,, 05 and Oc ). We can fix these parameters by means of the
numerical method. Fixed parameters are listed in Table 4.2. Substituting them
into the lens equation ( 4.5 ) and solving it again, we obtain the results listed in
Table 4.3. In order to reproduce the observed image positions with our model,
we shifted the location of the lens galaxy to 0.01" south and 0.05" west of the
observed deflector position. Because of 0.6" seeing in Christian et al.’s observa-

tion, we believe that we can regard the above shift as insignificant one. So far
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Table 4.2 Fixed values of the parameter

m 6 I3 XG Xd
3.402 x 10711 —9.402 x 10~7 —5.715 x 10712 —22.99° —63.77°

Table 4.3 Numerical results®

component  Aa A8 Y relative intensity ©
& observed components >

4 1277 -2.08" 4.23

Ay 146" -1.61" 3.53

B 0.39° -1.95" 0.87

c 0.00°  0.00" 1.0
& additional components >>

D 0.18"  -1.67 0.08

E -0.80"  -1.21" 0.008

a) Numerical or observational error is £0.05"
b) Aa, A§ = coordinates measured with respect to image C
+ A o = west, + A § = north.

c) Relative luminosities of the images to image C

as observed positions of images A1, A3, B and C are concerned, the numerical

results are consistent with observed ones.

Next we estimate ratios of apparent luminosities between images. The ratio
of apparent luminosity I of an image to that of original source I, is, as mentioned

in §2.2, given by

I 1
— == | — 4.
I |g2—|7—‘|2‘ (4.6)
Since we are adopting the dark lens model, we have
g=1,
I 26eilxotxa)  3geixa
—_F 4.
F=-g (1+ g ), (4.7)
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Having fixed the parameters, we can calculate the ratios I/I,. However, since
I, 1s not observable, we write down the relative luminosities of all the images to
that of image C in Table 4.3. Tt is to be noted that these relative luminosities

differ from Christian ef al’s data. We will discuss these differences in the next

section.

From the parameters in Table 4.2 the position of the original source is fixed

to be

fs — 6,6 = (—0.011",-0.018"). (4.8)

We then find that the original source is located very close to the lens galaxy.

Besides these observed images, our numerical analysis suggests that there
are two more images D and F ( see Table 4.3 ). Image D is located at 0.35"
north-west of image B, and is fainter than B by 2.6[mag]. We do not think that
it 1s easy to distinguish image D from image B. Moreover, image EF is fainter
than the lens galaxy by 2.5[mag]. It is very difficult, therefore, to detect image
E. We might think of a possibility that this image is Ay ( see in §3.1-(b) ). The
feature of E, however, is not consistent with constraints imposed on Aj; such
that: 1) Afa, -4y, = 0.03”, ii) ma,, = ma,,. The above possibility is therefore
considered to be very small. Furthermore, since |€|/|05|% > 1 in eq.( 4.5 ) for

image F, this solution is beyond the capacity of our approximation.

We plot the positions of the reproduced images, new additional images, origi-
nal source and the lens galaxy in Fig.4.1. The x-marks in this figure are positions
of images reproduced by assuming the source to be point-like. Ratios of the im-
age areas show those of the apparent luminosities of the images to that of the

original source. Fig. 4.1 is obtained by assuming that the source is extended.
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4.2 TRAVEL TIME DIFFERENCES AND RELATIVE LUMINOSITIES

Asseen in §2.3, the travel time difference between any two images is expressed
as the sum of the geometrical term Aty and the potential term At,. According
to Cooke and Kantowski ( 1975 ), the travel time difference between images 1

and 2 is given as:

01
= ——|=(l6,—01|" —|8s— 8 . . :
Aty _y Do [2 (16 1|* — 10 — 621%) + D, Re( [ o dﬁ)] (4.9)
02
Let us now define the quantities T and f;_5 as follows:
1424 DyDs
T= e Da Ho, (4.10)
1 Das.
froz == (16, — 6uf* — |6, — 6a]?) + dsRe(/ o - df). (4.11)
2 D;
)

Then T is independent of the type of lens models employed and of the Hubble
constant Hg. It depends, however, on the redshifts of the source and the deflector,
the deceleration parameter qo and the density parameter {y. On the other hand,
f1—2 is dependent on the type of deflector models employed and on the positions of
observed images, and is independent of both redshifts and the above cosmological
parameters. Originally, T and f;_» were introduced by Refsdal ( 1966 ), and the
former is called the “cosmological factor” ( Yoshida & Omote 1988 ). The form
of fi_s contains a factor Dgs/Ds. Substituting the explicit form of o (eq.[ 4.3 ] )

into eq.( 4.11 ), however, we can write f;_; as follows:

fica =

[SVX B

(165—81 |2_|98_92|2) ~pRe(ln 0_1__6ei(XG+Xd)(_]L__.1_)_§_62iXG ._1____}_)] .
) 01 6

Therefore fi_5 does not depend on the cosmological parameters at all. The pa-

rameters p, 6, €, xe and xg4 fixed numerically are given in Table 4.2. Substituting
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these values into fi_5, we then find

fooa, = 7.97 x 10711,

fooa, =5.97 x 1071, (4.12)
2

foep =9.83 x 10711,

Using eqgs.( 4.10 ) and ( 4.11 ), we can write down the travel time difference

Ati_y in the following form:
Hy A t1_9g = Tfl_z. (4_].3)

Thus, if the travel time differences are observed, we can relate the Hubble con-
stant Ho to T, namely, to go ( assuming the cosmological constant Ag to vanish ).
If other observations of Hy determine its value, then the relation ( 4.13 ) fixes
the value of ¢y ( Kayser & Refsdal 1983 ).

In the homogeneous Friedmann-Robertson-Walker universe ( to be referred
to hereafter as FRW ), the angular distances Dy, Ds and Dy, are given by the
following ( Weinberg 1972 ):

c 1 1
=-_— -1 142 —1 4.14
Dy B (15207 [g02a + (g0 = 1)(v/1 + 2g0z4 — 1)], (4.14q)

¢ 1 1
P P “1)(/T+2q02 - 1), 4.14b
B3 7)7 2 [902s + (g0 — 1)(v/1 + 2gozs — 1)] (4.14b)

1 1
Dys = — 2 [q0(z67/1 + 2024 — 24+/1 + 2g02s)
0

Ho (1 +25)%(1 +2zq
+ ( go — 1 \/1 + 2qozs — \/1 + 2qozd)]. (4.140)

The cosmological factor is given by egs.( 4.14 a-c) as

[q024 + (90 = (VT + 29024 — 1)] [g02s + (90 — 1) (VT + 2q02 — 1))

g2 [q0(2sv/T+ 29024 — 2av/T + 29025) + (g0 — 1) (VT + 2q02s — T+ 2024)]
(4.15)

The relation between T and ¢y for various values of redshifts zq is shown in

T =

Fig.4.2. As can be seen there, the gp-dependence of T seems to be much weaker
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than the zg-dependence. Given Hy and observed travel time differences At ,p, we
find it difficult to fix go by use of T = l{&%—tnb-

Although the redshift of the lens galaxy is not known up to the present,
Christian et al. estimated it as 0.4 S zq & 0.45 both from the separation-
redshift relation and from the luminosity-mass relation. Then, assuming that
Hy = 100km/sMpd], go = 0.5 and 0.4 S zq4 S 0.45, we obtain the following results

for the travel time differences:

48 S A to_a, S 5.6[months],
3.6 S Ato_a, S 4.2fmonths], (4.16)
6.0S Ato_p S 6.9[months].

It is thus found that the images are to be observed in the order of B, A;, Aj and
C.

As has been seen in the previous section, it is clear that the calculated relative
luminosities differ from observed ones, and they are listed in Table 4.4, where

the calculated values are normalized to the luminosity of C.

If the intensity of the photon flux from the original source varies, the ob-
served relative luminosity of any image must also vary, but differently. In esti-
mating the relative luminosities, we must, therefore, take into account the evo-
lutionary effect as well as the gravitational amplification effect. Let us regard
top = 19/Feb/1986 as the standard time, and suppose that image C' is observed
with an apparent luminosity I at t,;. The pure gravitational amplification fac-

tors of the luminosities of other images, e.g., A;, are:

I(Ai;tep — Dtgog,)
I(C; tob) ’ .

(4.17)

Comparison of the above values with the calculated relative luminosities provides

a criterion for whether the lens model employed is valid or not.
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Table 4.4 Observed and calculated

relative luminosities
A, A, B
observation® 3.22 249 0.64
calculation 4.23 3.53 0.87

a) Christian et al. ( 1987 ).

Assuming that the differences between the observed and calculated relative

luminosities listed in Table 4.4 are due only to the time evolution of the intrinsic

luminosity of the source,” we can identify the calculated values with those given

in eq (4.17). The variation Am of the magnitude of the original source during

At 1s given by:

Amyx = m(t.) — m(t,p — Atc-x)
I(X;te — Atc_x)
I(‘Y;tob)
I(X;t0p = Dto—x) I(C; toh)

=25 ].Oglo

=251
ool I{Ci o) I(X;5t0p)

Toa (X
=25 logw %.
0bs.

Thus, Am varies during At as follows:
AmAl = 0.296 £ 0.05[mag ],

Z.‘ll’l'l,:&2 = 0.378 £ 0.05[mag ],
Amg = 0.343 % 0.05(mag..

(4.18)

(4.19)

These errors are estimated on the basis of Christian et al’s observation. The

above Am’s seem to be consistent with each other within the error. Since there

are few published data of the travel time differences, we cannot proceed any

further. It is hoped that more detailed observation will be made of this system

over long duration.

x This is a very crunde assumption because the distribution of matter, such as intergalactic

matters, along each light path is not necessarily the same.
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4.3 GEOMETRICAL OPTICs IN 11154080

In the above discussion we have assumed that the Universe is described by
the FRW universe. It is not clear, however, whether we can assume that the
Universe is homogeneous in a scale such that the gravitational lens effect affects
light-propagation. In fact, the matter density in a lens object such as a galaxy or a
cluster of galaxies is more condensed than the mean density of the whole Universe.
We should, therefore, take into account inhomogeneities in the Universe. In this
section we discuss the effects on estimation of cosmological distances ( Dy, Ds

and Dgs ) due to inhomogeneities in the Universe .

The geometrical term At, of the travel time difference given by Cooke and
Kantowski ( 1975 ) is the difference between the path-lengths of images. Fig.2 in
Cooke and Kantowski’s paper shows that the wavefront emanated from the source
( forward wavefront) and the wavefront converging into the observer ( backward
wavefront) are tangential at the point z§, onto the deflector plane. Then At, is
expressed in terms of the distances from these wavefronts to the image positions
74 and Zz on the deflector plane. That is to say, if both wavefronts are locally
spherical ( shear free |o| = 0), the path length AL along the light path from the

forward to the backward wavefronts is given by
ALg=ALsa+ ALy
= -;-Kfizs — 24 + %Kbps — z4)%,
where Ky and K, are the principal curvatures of the forward wavefront and of

the backward wavefront, respectively. Thus the contribution of the geometrical

term to the travel time difference becomes

14124

Atg - 2c

(K5 + K3)(|zs — z4|* ~ |25 — 23]%). (4.20)

Our problem now is how (K + K}) can be expressed in terms of cosmological

quantities.
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According to the geometrical optics ( Sachs 1961, Pirani 1964 ), the optical

scalars ( the expansion 6 and the shear |o| ) are given by

VA 1

f = — = —k*

T = 5t (4.21)

1 :
lal = \/Ek(“;y)k“’v - 92, (422)

where A is the cross-sectional area of the light bundle, k# is a tangent vector to
the null geodesic ( light ray ) and the prime denotes the derivative with respect to
an affine parameter A, which characterizes the null geodesic. Kantowski ( 1968 )
showed the following relation between the above two optical scalars and two

principal curvatures Ki:
0+ |o|+ (k-v)Ky =0, (4.23)

where v# is the observer four velocity. The optical scalar equations ( identities )

are given by

'+ 6> + |o|* = _%ka”k” =R, (4.24)

(lo]e?)’ + 26|oe’® = Capktkeee = Fet?, (4.25)

where € is the complex space-like vector which constructs a tetrad together
with k# ('seein §5.1). Ry, and C)4,p are the Ricci tensor and the Weyl tensor,
respectively, and # and F are called the “Ricci term” and the “Weyl term”,
respectively. While the Ricci term depends on the distribution of matter inside
the light bundle, the Weyl term depends on the distribution of matter, such as
clumps, outside the light bundle.
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As already mentioned above, if || = 0, one principal curvature of the wave-

front is equal to another. Therefore so that

KiEK:—(k'v)z—(k.v)\/z. (4.26)

Since VA is proportional to angular diameter distances, we have

Ds
DdDds'

Ki(Aa) + Kp(Ag) =

The geometrical term At, is then given by eq.( 2.40 ).

The Ricci term in eq.( 4.24 ) is given by virtue of the Einstein field equations

as

R =200, (4.27)

where u = 1+2 ( z is the source redshift ), {2 is the density parameter. Since  is
the density parameter in the light bundle rather than that in the whole Universe
(i.e., Qo ), it is doubtful whether we can identify Q with €. Taking into account
the cosmological fluctuation on the density parameter, we introduce a parameter

Yr such as:

Q = yrQy, (0< v < 1), (4.28)

( Dyer & Roeder 1973 ). If the Universe is homogeneous, i.c., 7z = 1 in the
scale where the gravitational lens effect becomes important, the angular diameter
distances in egs.( 4.14a-c ) satisfy the optical scalar equations. On the other hand,
assuming that the light ray passes through an empty space, i.e., vz = 0, Dyer
and Roeder ( 1972 ) obtained such angular distances . For the general value of
Yr, the solutions of eq. ( 4.24 ) are expressed in terms of the hypergeometrical

series.
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In general, the shear |o| of the wavefront does not vanish. In the calculation
of angular diameter distances, the contribution of the Weyl term is important.
This term depending considerably on the distribution of clumps in the vicinity of
the light bundle, cannot be determined unless the above distribution is known.

We thus assume that the Weyl term can be expressed as:

F= %7F90u5, (4.29)

like the Ricci term ( Alcock & Anderson 1985,1986 ). We now define the effective

distance Ly by
Ly

=0l (4.30)

The optical scalar equations can then be separated into three equations:

L 3

i = —-2-[7R F vr cos(f — ¢~)]Qou5, (4.31)
= 3ypL, L_Qoud —SnF=9) (4.32)

e T A 1

The relation of the affine parameter A to u =1+ z is given by

1
u' = uz\/-Q—QQ —qo — (%Qo —qo — 1)’&2 + Q()u3. (433)

The initial conditions of L4 are set for initial redshift u; as:
Li(u;) =0, Ly (w) = u;. (4.34)

The second condition indicates that Ly becomes the proper distance in the vicin-

ity of u = u;.
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Assuming that 8 =const., we find that the solution of eq.( 4.32 ) is given by
¢ = B = const.. Eq.( 4.31 ) is then rewritten as:

3
L. —5(RF 1r)Qou’, (4.35)
The relation of the effective distance to the principal curvature at A = A4 1s

obtained by the method of Cooke and Kantowski as:

HO Lis

Kir(Ag) + Kxp(Aa) = = Talis
S

(4.35)
We show in Fig.4.3 numerical solutions of eq.( 4.35 ), assuming that Q¢ = 2¢o =1
and —3 <y = vr £ 97 < 3. The cosmological factor,

LdLs

T:(l-l—Zd) Ld ,

depends considerably on our choice of the parameter v. Taking into account the
influence of inhomogeneities, we have only to investigate the y-dependence of T
in the case of 11154-080. In Fig.4.4, we show the y-dependence of Ly, L;, Lgs and
L4Ls/Lgs in the range —3 < v < 3, where Qg = 2¢gg = 1 is assumed. We find

that LyLs/Ly, varies within a factor ~ 2 compared to the case of v = 1.

4.4 MAss oF THE LENS GALAXY IN 11154080

Borgeest ( 1986 ) estimated the mass of the lens object of 09574561 on
the basis of the observed travel time differences. He expressed the travel time
difference as a product of two terms: the first term is the deflector mass, and the
second depends only on the type of the lens models employed. In his method the
deflector mass 1s calculated by use of the observed travel time differences and by
the parameter fixing of the lens model. His method, however, has a disadvantage

such that travel time differences can not be theoretically estimated. Thus other
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methods are preferable with which to determine the deflector mass only by the
parameter fixing of the lens model. In this section we present such a method.
Furthermore, we will find that a certain constraint on the Hubble constant Hg can
be imposed by combining our mass estimations with the two methods ( Borgeest’s

method and ours ).

The deflection angle o depends, in general, on many parameters besides the
deflector mass Mg. If the deflector is a single thin object, My can be factorized

in the expression for the deflection angle . The lens equation is then written as

fs =0+ pa, (4.37)
where
4GMg D
hE =g pr (4.38)
~ Dys
= - 4.39
&=, 7 (4.39)

For a given multiple-image system, we can express y in eq.( 4.38 ) as

p= o (4.40)

by using the lens equation ( 4.37 ), and can calculate fipymericqr numerically so
that the deflector model employed reproduces the observed image configuration.
Using the value of ftyumerical thus obtained and eq.(4.38 ), we can relate ppumerical

to the Hubble constant and to the cosmological factor T, to find

4GMG Ho(l + Zd)
Knumerical = 3 T .
The deflector mass is then given as
M _ Mnumerical T (4.41)

M@ - 2(1+Zd) Hom@’

where Mg and mg are the solar mass and the Schwarzschild radius of the Sun,

respectively. From eq.( 4.41 ) we can estimate the deflector mass in the FRW
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universe

2.6 x 1011p71 < %—Z— <2.9x 10MA7L (4.42)

where Q0 = 290 = 1 and Hy = 100A[km/sMpc].

As mentioned above, however, since the space in which the light ray passes
through is not homogeneous, we must take into account the cosmological fluctu-
ation in the mean density, thereby finding,

11,-1 . Mo 11y -1
1.8 x10h7 < — < H53 x 10 h™7, (4.43)
Mo
where —3 < v < 3.

Moreover, given an observed travel time difference At, we can calculate, by
using the relation: -}rf—o- = éfz, the deflector mass quite independently both of T
and of Hy ( Borgeest 1986 ).

Mg — Hnumerical cAt
My 21 +124) fmg

Vanderriest el al. ( 1986 ) obtained, for the present system, the lower limit of
Aty 4, and the upper limit of At4_p. Using their data and eq.( 4.12 ), we find

that the deflector mass is to be in the following range:

Mg < 2.5 x 10, (4.45)

O]
In the case of h =1, ( 4.43 ) is consistent with ( 4.45 ). The condition that these

two ranges ( 4.43 ) and ( 4.45 ) should overlap imposes a constraint on A such as

6.1 x 101° <

0.74 < h <8.7.
Thus, the range allowed for the Hubble constant is:
T4[km/sMpc] < Hg < 870[km/sMpc]. (446)

The upper limit of Hp in ( 4.46 ) is too large to put restraints on the value of Hy.

itself. However it is to be noted that our method puts a lower limit on the Hubble
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constant. It is expected that more detailed data of the travel time differences will
provide more definite lower limit on the Hubble constant. It is interesting that
the above range of Hy is consistent with the value obtained from the observation

of the travel time difference in 09574561 ( Florentin-Nielsen 1985, Vanderriest
et al. 1989 ).

4.5 DISCUSSION

In this chapter we have fixed the parameters of the lens model in which the
deflector potential is expanded up to quadrupole moment. We found that even
such a simple model could well reproduce the geometry of 11154-080. However,
the approximation of the multipole expansion up to the quadrupole moment term
may not be valid for some new images to be expected in this model. At any rate
careful attention must be paid to the problem of whether such a new image is

really a physical image or a ghost 1mage.

Bearing in mind the above situation, we expect that the number of images
we can observe in this system is five: A;, Ay, B,C and D. We find that the
magnitude of image D is my =~ 20.98 & 0.05[mag.] and is nearly equal to that of
the lens galaxy. Unfortunately, however, it is very difficult to observe image D for
the following reasons: 1) It is difficult to determine the subarcsecond structure of
the images since 1115+080 is not a radio-source, ii) image D will not be seen in
the residual picture obtained by subtracting image B from the original picture,

since all images have the same color, iii) image D is located close to image B.

Assuming that Ho = T5km/sMpc], Mg obtained with our model is in the
following range: (2.5 ~ 7.1) x 10" Mg. Our result shows that the deflector
should be as weighty as any typical galaxy. This fact seems to be inconsistent
with the observation by Christian et al. ( 1986 ). We can say, however, that the
existence of much fainter or dark matters may be responsible for this apparent
inconsistency. Furthermore, by combining our mass estimations with the above

two methods, the constraint is found to be imposed on the Hubble constant Hg.
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In order to obtain definite results, we certainly need more detailed observa-
tions of travel time differences over long duration as well as observations with

accurate resolution such as in the case of the Hubble Telescope.
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5. Apparent Superluminal Motions
of Images by a Gravitational Lens

Through analyses of relative positions of some pairs of radio sources for sev-
eral years, it has been found that these sources appear to have been moving away
from each other with velocities several times greater than that of light. These
sources are called the “superluminal sources”. Many sources of this kind have

been discovered, e.g., the radio source 3C120, some BL Lac objects, eic..

Since, of course, motions with velocities greater than the light velocity are
prohibited, these phenomena must be explained as illusionary motions. Most
popular models for these are: the relativistic jet model and the screen model.
In the former, plasma jets with a relativistic velocity are emitted from the core
of a quasar. If this jet is emitted with a very small angle o with respect to the

line-of-sight, its apparent velocity w is

w = vsin o
= T v\
(1—%cosa)
where v is the physical velocity of the jet relative to the core. If @ = cos™'(¥),

then w has a maximum value, given by

v

Wynar = ——1—\/___—7—%)_;-

For a relativistic speed v, w can then be greater than the light velocity. In the
latter model, on the other hand, relativistic signals are emitted from the core of
a quasar, and they brighten the foreground gas-screen. This brightened screen

may be observed as superluminal emission.

In this section we propose that such a motion may also appear in a gravita-
tionally lensed system. The apparent velocity of the image due to the gravita-
tional lens effect 1s equal to the physical velocity of the source multiplied by the
amplification factor of the image ( Omote & Yoshida 1989 ).
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5.1 APPARENT SUPERLUMINAL MOTION IN GRAVITATIONALLY LENSED
SYSTEM

The lens equation is given by eq.(2.12),i.¢.,

fs = 6+ —a(6), (5.1)
where D = DyDgys/Ds; Dy, Ds and Dy, are the angular diameter distances
between the observer and the deflector, the observer and the source, and the
deflector and the source, respectively. As mentioned in Chapter 2, solutions of
the lens equation provide us with the positions of images which are multiply
produced by the gravitational lens effect. Now let us suppose that the relative
position of the source to the deflector varies in time owing to a transverse motion
of either the source or the deflector. Then the image positions also move to the

deflector. The velocity v; of an image is given by

U = (1 +ZS) [M] Sy (52)
o 1 Dgrors
= (1+Zd)E[M]UD; (5.3)

where @ ( ¥p ) and zg ( zq ) are the source ( deflector ) velocity and the redshift
of the source ( deflector ), respectively ( Bourassa & Kantowski 1975 ), and [M]

is the magnification matrix given in eq.(2.20),i.e.,

[M] (5.4)

1 G+ ReF —ImF
T GP—|FP\ —ImF G-ReF |’

where G and F are defined in eqgs.(2.21), (2.22).

Near one of the critical lines in which G? — |F|? = 0, the velocity of the

image is expected to be infinitely large although the velocity of the source or of

67



the deflector is finite ( smaller, of course, than the light velocity ). In order to
discuss this case in detail, we consider below the gravitational lens effect induced

by an object with spherical symmetry.

—

In this case, the deflection angle & with respect to the image position 8 is
given by

e AGM § . -
ag) = “Efﬁd—ﬁ;ﬂlﬂz), (5.5)

where f is the function of |6]? given by

Om

$401) = 1= 0(6m — A5 drp(ryry/re = 182 (5.6

16

In the above equation, M, p(r) and 6, are the total mass, mass distribution and
maximum radius of the deflector under consideration. In this case the source,
multiple images and the deflector are aligned in a line on the deflector plane

because of fg / f. Thus the lens equation is now reduced to the following form:
= _ B a2
bs = 041 = 091} (5.7)
where 6; and § are positive and p = 4GM D/c? D, The critical lines are given
by

L+ 2 (62%) — 200 (62:) = 0, (5.8)

cri

where the prime denotes the derivative with respect to 2 and fg # 0 is assumed.

The locus of the source when some images are on one of the critical lines
is called the “caustic” ( Kovner 1987a ). Suppose that the source moves with
velocity vs, and it crosses over one of the caustics. Then it so happens that two
or more images near a critical line approach each other and are annihilated on
the critical line. Similarly, a pair of images may be created on a critical line and

be separated from each other.
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From eq.(5.2) the velocity of an image located at § = (0 cos ¢, 8 sin ¢) is given

by
1 B 7y ) 1 (AL
5 = . 5.9
. (1+5‘-‘5f—2uf’){l+zs}n++(l—a%f){l-i—zs}n (5.9)

L cos ¢ L —sin ¢
= (sinqﬁ)’ "= ( cos ¢ )’ (5.10)

are eigen-directions of [M]. Thus the velocity of the image near one of the

where

critical lines is given by

(s - 74) l

(1+2s)(1+ 45f — 2pf")

|5 ~ I (5.11)
where € 1s nearly equal to zero. Then it becomes possible that |¥| becomes

greater than the light velocity, that is to say, here the apparent superluminal

motion is generated as a result of the gravitational lens effect.

Images with superluminal motion are brighter than any other images pro-
duced by the gravitational lens effect because the amplification factor of the
former becomes infinitely large as they approach the critical line. We can thus
expect that the apparent superluminal motion appears in a very bright pair of
images with small separation. Among many candidates for multiple-image sys-
tem, we know that the second candidate, t¢.e., the multiple quasar 11154080,
has such a pair: A; and A, ( see Chapter 4 ). 11154080 is therefore the most

promusing candidate for apparent superluminal motion.
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6. Rotation of Polarization Plane during
Propagation in a Weak Gravitational Field

By adopting the harmonic coordinate gauge condition and making the post-
Newtonian approximation, Plebanski ( 1960 ) pointed out the possibility that the
polarization plane is rotated by the gravitational field with metric g,, = nuu+hpy
( the gravitational Faraday effect ). Plebanski found that, when a spherical de-
flector rotates rigidly, the polarization plane does not rotate for the light passing
outside the deflector ( dark lens ), but does so for the light passing through the
deflector ( transparent lens ). In the case of Kerr metric, it has been known
that the rotation of the polarization plane is absent in the approximation up to
O(my/ro,a/rq) ( Lawrence 1973, Su & Malott 1980 and Fayos & Llosa 1982 ).
Here my, a and ro are the Schwarzschild radius, angular momentum of the Kerr
black hole and the impact parameter, respectively. On the other hand, Ishihara,
Takahashi and Tomimatsu ( 1988 ) showed that the rotation appears in the case

of Kerr metric in the approximation up to the third order in mg/rg or in a/rg.

In this chapter we discuss the gravitational Faraday effect in a weak gravita-
tional field. First we construct the parallel propagator for the polarization vector
( Synge 1960 ) in terms of a null tetrad and investigate the path-dependence of
the parallel propagator in §6.1. In the next section ( §6.2 ) a formulation, without
gauge fixing, for the rotation of the polarization plane up to O(h) are presented.
Our evaluation is carried out under the post-Newtonian approximation with the
harmonic coordinate gauge condition. In the last section ( §6.3 ), we then show
that the rotation does not take place in the dark lens case, and discuss the reason

for this.
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6.1 PARALLEL PROPAGATOR FOR POLARIZATION VECTOR

We define the null tetrad {6(;)ﬂ :4=0,...,3,4=0,...,3} on anull geodesic
{C} by

n(i)(i)e(i)ﬂe(j)y = Yuv, (61)

9" e uehr = T Gy (6.2)
01 0 0
© 6 1 0 0 0

[77(;) (j)] = [77' ! ] = 00 o0 11 (6.3)
0 0 1 0

where s and p’s are indices for the null tetrad and for the coordinates, re-
spectively. Here we define the components of the tetrad as follows: oy = k,
and e, = my, both being real null vectors: k, is tangential to {C}; e, and
€syn TE space-like complex vectors, and € n 1s the complex conjugate of €oyn

€yn = € = Epyu-
Following the geometrical optics we take the potential vector 4, as follows:

A, = a”eia. (6.4)

Maxwell’s equations then lead to the following equations:

k2=0, k', =0, (6.5)

fuk* =0,  E'fun=0, (6.6)
1

(Bra)k* + §ak§,\ =0, (6.7)

where k, = 0,0, a = \/a,a", f, = a,/a and f,f =1. Eqgs.(6.5), (6.6) and (6.7)

are for the null geodesic, for the parallel displacement of the polarization vector,
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and for the amplitude of light. By using an affine parameter \, we can rewrite

eqs.(6.5) and (6.6) in the following forms:

LA
)

6L =0,

5k fu=0. (6.8)

Since the null tetrad spans the four-dimensional space-time, we can express

fu as
fu= c(o)k,‘ + c(l)mu + c(2)eu + c(3)"e'N. (6.9)
From eq.(6.6) it immediately follows that ') = 0. By rotating {e@)u} around

ky, we can always choose the coefficients in (6.9) so that ¢(®) vanishes ( Sachs
1961 and Pirani 1965 ). Thus f, is reduced to the form:

fu= e, + Fe,. (6.10)

The normalization condition for the polarization vector requires |a|? + |8|* = 1,

and eq.(6.8) becomes

5 5
o= A =0 (6.11)

Hence the coefficients o and /3 are constant along {C'}: this is naturally under-

stood from the fact that e(;),’s are parallel-transported along {C'}.

When a vector V), is parallel-transported along a null geodesic curve, we can
always define a two-point tensor for any two points S and O on this curve ( Synge

1960 ):

Ve (0) =G up"(0,8)V,(8). (6.12)
Such G”7(0,S) is called the “parallel propagator” and satisfies the conditions,
(%i-rfls G,"(0,8) = g#”(S) = 5”” (6.13)
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and
G*(0,8) = g¥'7' (0)G,*(0,8),
(6.14)
Guu(0,8) = G, (0, S)gru(S).

G " (0, S) can be expressed in terms of the tetrad {e()u}- Since {e(;),} generates

arbitrary vectors, the parallel-transported vector V,, also is expressed as
V= e, (6.15)

Here the coefficient ¢ is constant along the geodesic because of g_AVu = 0 and

'55‘):6(1')” = 0, and is given by virtue of eq.(6.2)
) =V, (\)e@H(N), (6.16)
for any point on the geodesic. We thus obtain
G,*(0,8) = e§(0)efy (8) (6.17)

It is clear that eq.(6.17) satisfies eq.(6.13).

For given two points S and O the null geodesic is not uniquely defined so
far as the gravitational lens effect is concerned. The coefficient ¢(*) in eq.(6.15)
on each geodesic curve is different from each other, and so is G,+¥(0O,S). In
dealing with GG4¥(0O,S) affected by the gravitational lens effect, we must discuss
its path-dependence.

In the following we restrict ourselves to the case of the polarization vector
fu, where the full formulation leading to eq.(6.17) is not needed. In stead of
G ,¥(0,8) we introduce the “partial parallel propagator” as

G(0,8) = e(0)2"(8) +2,(0)e"(8), (6.18)

because fym# = f,k* = 0 holdsin our cases. Let us thus discuss the propagations

of k#, e, and €.
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We assume that the metric of space-time is given by

Juv = NMuv + h/u/; (6.19)

where 7,, is the Minkowskian flat metric, and deal with the metric up to O(h)
only. Then ¢g#” is given by

g =" — b, (6.20)

where

h*Y = n““n”ﬁhaﬁ.

Since k, is a tangent vector to {C'}, we can express the vector as

d
Y
"
Defining u* as u# = k#/k® = dz#/dz®, we obtain the equation for u# in our

approximation as follows:

1 .d
hia(wo, ma(mo)) — Euzmhoo(mo,x“(mo))

1, xd
+ §u’u’ukmhjk(:c0, 2%(2?)) (6.21)

(59 ) by, 25°)

d i__ad
dzo o = udzo

RO =

+

We define further a unit vector ¢* in the 3-dimensional Euclidean space £ such

that

1 1

= (1- §hoo)ui — §hijuj — hio, (6.22)
which satisfies the differential equation
d N
E;(Tt = —-2-(5” —1 t]) [zl;‘o-hjktk - tatﬁajhal@], (623)

where t# = (1,#'). We assume that the source of lights is far enough from the

deflector and set, at the source of lights, t* = £* as the initial condition (2°=23).
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Solving eq.(6.23) under this initial condition and in our approximation, we obtain

£ =1+ At + O(h?), (6.24)

: 1, . o . .
A = —1(5 = 549) (o, + 1)

0

‘ e u .. (6.25)
—/ dmm@jhaﬂ(mo',ri+t“m0')t“tﬁ],

T,

o

where 7, is the impact vector and ¢ and ¥, must be determined on each null

geodesic curve. The quantity At® with 20 = —23 — co gives the deflection angle.

Next let us discuss the propagation of ¢, and €,. As e, is orthogonal to u¥,
we have only to discuss the propagation of e;(i = 1,2,3). The equation for ¢; is
given by

d 1.d 1
T08 = 5{@/&@5(:’:0, 2%(z%) Yeyr; + Ee//tatﬂ{ﬁihaﬁ(mo, w“(xo))}

1 (6.26)
+ §€,‘j1ce¢j€kzm{51hma(w0, fﬂa(wo))},
where
6// = eiti, €i; = € — e//ti.
We obtain, up to O(h),
° 1 0 .a fa_0y°
e = ei+-2-h5j(:z: 71+t )e;
xO
+ 588700 [ da"Ouhap(a”, 8+
0 (6.27)

Tg

0

A
1 o o o
+ S CijhEkIme L ; / dz® O hma(a”, ré %),

T,

no
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From egs.(6.23) and (6.27), the explicit form of g is given by

[ 1 [ ‘. o o o
e =—ey+ 3 [hij(xo, r% 4+ 1%2%) + 6 hoo (2, rf + tamo)] e t’
+ e;hio(2%, 74 + 1 %)

0

1 ° o
=g
xO
— ';—éijktoingMm / dz® 61hma( 7' +tax0/)t
zg
For the sake of notational simplicity, we introduce A; and B;; defined by
0
A; = —t“tﬁ / dz%d;hop(2%, 7 +1%"),
2
0 (6.29)

1
Bj; = 2Ez]k€klm/dm (91hma( , +ta Ol)t

UJ o

It then follows from eq.(6.23) that A; is related to the deflection angle. On the
other hand, B;; is related to the rotation of the polarization plane, as will be

seen later.

Finally, let us express G 4v(0,8) in terms of e; and eq:

Goi0(0,S) =ex(0)gy(S) + 20 (0)eg(S),
_2|e//| ( /e +e// )[ i0(2%, 78 +1%%) — A; + 1/ By; (6.30)

-—t {h,] (z° ,re +1 m0)+6ijhoo(w0,ri +t°az0)}],
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o

Gui(0,8) =ep (0)E;(S) + 2 (0)e;(S),
= — (%o o%)[to]*h]o Tﬁ_-}—;amo)ﬁ-x‘lj—;kBjk
+ -2-t ELhip(20, 78 +°20) + 87Fhgo(2, 18 + z"amf’)}], (6.31)
Gio(0, ) =ei1(0)gy(S) + € (0)eg(S),
(e,ek + e,ek> [ Sikt' + AitF ¢ BiijktDI

1 P
+ =hi;(2°, 1% +1%2° )t'ij], (6.32)

o]

and

o

Gi;(0,8) =e,.,(0)-é’-j(5) +22(0)e;(S),

o o o o o 1 °
(e op+eje ) [5% + Ad* + Ba P + Sha(2",r3 +7%°)], (6.33)

where B;; = §9 — {19 is the projection from £* onto the plane orthogonal to % .

The above expressions satisfy

w*(0,8)e, (8) = e,(0),

w"(0,8)e,(S) = fuf(O), (630
G*,(0,9)ew(0) = ¢,(S),
G* ,(0,9)g,(0) =£,(S).

Clearly G* ,(0,S) depends on the light path characterized by ¢' and r .

6.2 ROTATION OF THE POLARIZATION PLANE INDUCED BY A RIGIDLY
RoTaTING BODY

In this section we derive a formula for the observable rotation angle of the
polarization plane which is good up to O(h). Next we estimate the angle for

simple cases of a spherical or spheroidal deflector which is rotating rigidly.
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As in the cases of e, and €,, the equation for the polarization vector fuis

given by eq.(6.8)

d 1 d 1
1001 = §(£ﬁhij)f_l.j+‘2‘f//t t# Oihap

z (6.35)
+-2-€z‘jkf¢j6k1m(31hma)i°"

On the basis of the relations fufﬂ =1 and f,u* = 0 we now define a unit vector
S_Lz' in 53 by

1
Si=fi— §hijfj) (6.36)
S1i=F;S;. (6.37)

The equation for S ; is given by

d 1 o d
M{S_Li = éjszzmn{§Pij (Ombna) — 5z’jtmmt }Slk. (6.38)

Introducing moreover two real unit vectors ( v; and w; ) which are independent
of each other and which are orthogonal to ¢ in £2, we can express S;; and S,

as follows:

Si;= (ei‘ﬁvi - z'e_i"/’wi),

(6.39)

S = (e‘wvi + ieiwwi),

S-Sl

where ¢ and v are real constants and v;w; = 0. It is clear that S,;5; = 1 and

51:515, S1;5.1; = const. Equations for v;, w; are given by eq.(6.38),

d 1 o d
Em'—ovi = ejklflmn{§Pij (amhna) — 5ijtmmtn}'vk,

d

1 o d (6.40)
mwi = fjklelmn{ipij (5mhna) — 5ijtmmtn}wk.
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Since {t*, v;, w;} constitutes a triad in &3 e,

't = viv; = wiw; = 1,

. . , (6.41)
1= g pvjw, Vi = €kwitt, Wi = €55t ug,
dv;/d2® is expressed as
d .
o0 = Powi + Qut’, (6.42)
where P, and Q, are given by
d lo
Py —-’LU:;d gU 2ta6abc(8bhca) )
d d (6.43)
—4t R —_—12
Q, =t 700 = ——vadmot )
By virtue of eq.(6.41), dv;/dz° is written as
d lo /b
gt =[5 e O P gl oo
Eeijkﬂjvk.
As in the case of v;, the equation for w; is given by
Vi = €7k W (6.45)
We thus obtain equations for S;; and S ;
d d — —
Ta05Li = kS =551 = €r S, (6.46)
which, when integrated, lead us to
Sii=S1 +eijpwiSiy, Sii= 51+ epwiS (6.47)
where
Q}‘O
w; = / dz® (2 rs. +1°2%)
40 (6.48)
S

= €;5t *At? + Pii,
The first term of eq.(6.48) corresponds to the rotation of the polarization
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plane induced by the deflection of {C'}. It is not an observable quantity, however,

because t x Af is a rotation around the axis orthogonal to the line-of-sight.

On the other hand, the second term is an observable quantity*, because 1t
is the rotation around #. Thus, we have only to discuss P, regarding it as the

observable rotation angle of the polarization plane. The explicit form of P is

0

1 o ‘ o <]
P = —§ta€ab6/ dmolabhca(mw:"‘j_ +t5z0’)t°‘, (649)

0
Tg

which is gauge-invariant ( Plebanski 1961 ).

By using eq.(6.49) we can now estimate the rotation angles of the polarization
plane for some simple cases. In so doing we choose the harmonic coordinate
gauge and use the post-Newtonian approximation ( Weinberg 1972 ). The metric

is given by

-7
i d kil 2
hio(Z) = ﬁ d%'———e”’“l“_’, il fffx ), (6:50)
C r— T

where w' is the rotational angular velocity of the deflector. In the limit

20 = 2Q) = —2§ — oo, the rotation angle P is given by

oo

—0o0

First let us consider the case when a spherical deflector is rotating rigidly. If,

% Strictly speaking, the second term is not observable, unless we know the initial direction
of the polarization vector. However, if we have two or more gravitationally lensed images,
this term becomes observable ( see §6.3 ).
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in particular, w is constant, we find

£
167G
P= ey / drp(r)ry/r? — 2O —ry), (6.52)

Tl

where wy = {%w; and ©(f—r_) is the step function satisfying ©(z) = 1 for z > 0
and @(z) = 0 for 2 < 0. Eq.(6.52) thus shows that P always vanishes in the case
of a spherical dark lens ( Plebanski ).

As a concrete example, we first estimate eq.(6.52) for the case of a deflector

with constant mass density, and find that

4GM .3
P=——u (1~£—§) Ot —ry).

Next we consider the case of a deflector with spheroidal symmetry. It is
interesting to see whether the rotation angle of the polarization plane vanishes

or not in the dark lens case.

First, integrating eq.(6.51) with respect to z°, we obtain the following form

AGM 4G [ 7L (FL—71)
P==aar= |l 7L — o ]?
. . . (6.53)
+ 20 [y 2o P T
c? Folre—gur

where yy = f”yz,yﬁ_ =y — y//fi. The first term 1s related to the total mass
of the deflector, and the second term is given by w7} - &/c, where & is the
deflection angle for the case when the deflector is not rotating. The third term
corresponds to what vanishes owing to symmetry in the spherical lens case. In

our case we expect this term to give a non-zero contribution to P ( because

p(JL, y//) # p(¥L, —y//) in general ).
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Let us denote the third term by
— w1 H, (6.54)

where we assume that & is a constant vector and that the direction of & coincides

with the normal of the spheroid. In eq.(6.54), His given by

B = [yp()y, tii)
/yp(y)y//lu__yll2

The center of the spheroid is assumed to be located at the origin of the
coordinate system {y!,y?, ¥}, where the deflector has the mass distribution of

spheroidal symmetry given by

p(a)a a S Amaz,

o(§) = { (6.55)

0; a > amag,
(y3)2

al =) + ")+ 17 (6.56)

Here we denote the maximum major axis of the deflector by a4 and the ec-
centricity by e. Further it is convenient to introduce another coordinate system

{z1,y1,2y}, which is related to {y',y*,3°} through

yl =],
y? =y, cosy — 2y siny, (6.57)
y3 = yLsiny + zy cosy.

These relations indicate that the y!-axis coincides with the z-axis on the de-
flector plane defined in Chapter 2, and that v is the angle between the y3-axis
and the yy-axis. Using eq.(6.57) we can express eq.(6.56) in terms of 2,y and

82



zy as follows

2 gin v cos 2 25
Y cosy )+ !

l—ezcoszfy( e
LT 1T “e2cos?y

1—e?
2
i

1 —e?cos?y

We now estimate H by using eqs.(6.55) and (6.58). Since H is a vector on

the deflector plane, we can introduce complex parameters H,r; and 5 such that
H=Hy—1iHy,, ry=7rgy +iry,, m=21+1y,.

Then, H is expressed as follows

pla)
H= [d /d d , 6.59
/z//z// x| yl"'i_"’? ( )

evaluation of which can be carried out by the method of Bourassa, Kantowski
and Norton ( 1973 ).

The spheroid is divided into a shell with the major axis a(< @maz), and the
shell is further divided into an elliptical ring with z fixed. First, we evaluate
the contribution H, from the elliptical ring, and next integrate H, with respect
to zy to obtain the contribution H, from the shell. Finally we evaluate H by
integrating H, with respect to a.

a) The contribution from the elliptical ring M,

The elliptical ring is specified by

T = wcosg,

2 .
. €7 sln 7y Cos vy
Yy = EU)SIIIQIS—' mz”,

where w is given in eq.(6.58) and e is the ellipticity of the ring

€= — (6.60)



Thus H, is expressed as

Hy = ep(a) — (6.61)
where
e? sin y cos
= weos g iesing —ig 2 oaey
The integral in eq.(6.61) is rewritten as
o dé 2i dg
i
_ , 6.62
/0 ry—1n  w(l+e) |fj|{—1(£_£+)(£~£~) (6.62)
where
2
et st vea
+ = . .

w(l + €)

We separate the integration in eq.(6.62) into two cases: the dark lens case

and the transparent lens case. In the dark lens case, Hﬁddrk) 1s expressed as
(dark) _ 2mep(a)adazydzy (6.64)

V- e + ain SR
because [£-| <1 < |€4] ( Appendix A-(a) ). On the other hand, in the transpar-
ent lens case, since [£4| < 1 for some z; ( Appendix A-(b) ), (mms) is given
as

dark
,H1(‘tran3.) _ H1(* * )a (Z- > Zy or zy < Z+)a (665)
0, (Z_ < Z) < Z+),

where

p= —2307 [e cosy(ry, ) + \ﬂl —e?) (a2 - Bi)], (6.66)

1 —e?sin’ v
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2
”
B =¢) + —L—— (6.67)

L ] —e?sin’y
b) The contribution from the shell H,

Next we integrate H, with respect to z; from —a\/1 — €? sin? v to

a\/1 —e?sin? 5. In the dark lens case, we obtain

,Hgdark) = i /1 — e2 cot ')’P(a)ada 9 — TL ln(TJ_ +aSlnﬂ)]’ (668)

smf  ‘r, —asinf
where
sin 8 = esinvy.

In the transparent lens case, Hﬁ“’“’”') is given by

H.(st,,.(ms.) _ Hgd”k) — 4miecos V1 — e2p(a)aday [a? — B:J)‘_@(a - B))

Ay +tanfBy/a? — B

+ 2miecot yr, p(a)ada 1n( >6(a — B)),

A —tanfy/a? — B
(6.69)

where

r
A, = cot gL ).
L co ﬂ(riL‘J_ + C052 ﬂ)

c¢) The total H

Finally we integrate H, with respect to a, thereby obtaining H for the two
cases:

in the dark lens case,

Amaz
5 .
) —jcovy[ag - Ty f ry+asing
H icoty [M ey Ty dap(a)a ln(u — asinﬂ)}

(6.70)

2
=1icoty {M + fé—rl'&gdark)];
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in the transparent lens case we obtain H

Amaz

H(tf‘ané‘ ) _H(darl") 4mie cos YV 1 —e2 / ada\/ -B2 @(amaw - BJ-)

gmas AL+ tanﬂ,/

+ 2miecot yr / pla)adaln
B, A_L — tan ﬂ

) (amaz — B1).

(6.71)

The contribution from H to the rotation angle of the polarization plane is

thus given by eq.(6.54) in our complex representation as:

4 S 4
—Gw_LH = f[szRe('H) —wy, Im(H)]
¢’ fG (6.72)
= —Re(w_LH)
where & in our coordinate system {z,,y,,z //} 1s expressed by
&1 =(0,wsiny,0), w; =iwsin~.
In the dark lens case eq.(6.72) is reduced to the form
4G , o wcosy [4GM ar
<01l = -2 [ Re(rum ™). (6.73)

‘We thus find that in the dark lens case P vanishes.

In the transparent lens case, on the other hand, we obtain the following P:

dmaz

P =8:3Gw cosyV1 —e? HQ sin / dap(a)ay/a® — B2
B,
Amaz 2
1 A} +tanfy/a? — B}
— Re ['I‘_L / dap(a)a{ = ln( ) (6.74)
B, V1I—efcos’y ‘4| —tanp a? — B%

Al ++/a? - B2
- silllﬂ 1n(Ai ~ \/ﬁ—_é—)}]ﬂ@(“mw ~ B1).

It is clear, of course, that eq.(6.74) coincides with eq.(6.52) in the limit e — 0.
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In Appendix B, we give the results for two simple cases of mass distribution with

spheroidal symmetry.

As mentioned above, the rotation angle of the polarization plane vanishes in
the dark lens case not only with spherical symmetry but also with spheroidal
symmetry. We have presented the extended formula eq.(6.74) for the case of a

transparent lens with spheroidal symmetry.

It seems to us to be miraculous that P vanishes for the case of spheroidal
dark lens, and makes us wonder whether this is indeed a miracle. In the next
section, we discuss the problem of whether P for the cases of the general dark

lens vanishes or not.

6.3 DiscuUssION

The rotation angle of the polarization plane during light propagation with
respect to an image ( e.g. A ) is given by eq.(6.51), i.e.,

(o8]
1o ) o
P= _§tﬁ6abc/ da®Byhon (20, r3 4 +152°)5.

-0

where £ 5 and rf , are characteristic parameters of a null geodesic {C4}. In par-
ticular 7| 4 is the position of image A on the deflector plane. Since the direction
of the initial polarization is not observable, P4 is not observable either so far as
we are observing only one image A. However, the differences are observable be-
tween the rotation angles of the polarization planes of multiple images produced
by the gravitational lens effect. In this section we discuss this difference between
the rotation angle of the polarization plane of image A and the corresponding

angle of image B.
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To this end let us denote this difference by AP, i.e.,

AP = P4 — Ppg

o0
]_ o_ o o o_ o 0
= —-§eabc/dm0 [tﬁit % Ophea(20, 75 4 +152°) — 14t %Dphoa(2”, rig+ t"‘Bmo)] .
-0

(6.75)
Here the gravitational fields are assumed to be static or stationary. Once we
choose the harmonic coordinate gauge and use the post-Newtonian approxima-

tion, we can reduce eq.(6.75) to the following form:

1
AP = —%fademaabth(ws(mo)) + §€a66/dwaabh00($s($o))
Ca Cp

_ %eab¢dm“8bhw(ws(mo)),

o

(6.76)

where {C} is a closed loop such that {C} = {C4} — {Cp}. From eq.(6.76) and

Stokes’ theorem, eq.(6.76) can be rewritten as

AP = — %—/da‘“ (3a6bhb0 — Ahao)

S

:‘/;la'aRaOa

S

(6.77)

where S is the surface with boundary {C'} and R, the Ricci tensor ( Weinberg
1972 ). Then Einstein’s field equation yields,
AP - §'7CT4_G do'a a0
M

—— (6.78)
. /da (pv°).
S

~

Hereafter let us restrict ourselves to the dark lens case. If we can choose the

surface S so that p vanishes everywhere on S, AP will always vanish. Now we
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show that S can in fact be chosen quite freely. Consider two surfaces S; and S5y
sharing the same boundary {C}. The difference between AP’s estimated on .51

and on Sy is given by

8
APSl — AP52 = —-;—G /da‘a (pva), (679)
£)Y
where 9V = 51 — 5.
APs, — APg, = %@_ dV 3, (pv®), (6.80)
v

with V being the volume surrounded by two surfaces S; and S3. From the mass

conservation law, we find

Oa(pv*) = —00p = 0,

whence APs, = APs,. This completes the proof that, in the dark lens case
with static or stationary weak gravitational fields, the difference between the
rotation angles of the polarization planes of the respective images vanishes in our

approximation.

In this connection, we must notice, however, that in eq.(6.75) £9d2° cannot
be reduced to dz® when the gravitational fields depend on z° explicitly as in the
case of the gravitational fields induced by binary stars. In such cases we expect

AP to be non-zero even for the dark lens case.

Finally let us evaluate the typical dimension of P. First we consider the case
of a typical galaxy with rotational velocity vy ~ 102[km/s], radius Ggal ~ 107 (km],
and mass Myq ~ 1012 Mg. From eq.(6.52), we find

Py ~ 10_3[arcsec].

Next we evaluate the same quantity but for a typical cluster of galaxies with

rotational velocity vy ~ 10%[km/s), radius ag ~ 10 [km], and mass M, ~ 10'° Mg,
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to find that the rotation angle is

P, ~ 0.1[arcsec].

Besides the rotation of the polarization plane due to the gravitational lens
effect, the rotation in question is caused also by magnetic fields in galaxies or in
intergalactic matters ( Faraday rotation ). However, it is possible to distinguish
the contribution from the two effects in view of the fact that the latter is propor-
tional to A* the square of the wavelength. Thus in the rotation angle-A? diagram

the rotation due only to the gravitational lens effect is exhibited at A = 0.

The rotation at A = 0 was in fact measured for the twin quasar 0957 + 561
by VLA observation ( Greenfield et al. 1985 ). In this observation, AP was

estimated as

AP =0.2°+14°

This value coincides, within error, with the above estimation for the typical
cluster of galaxies. On the other hand, in Greenfield e? al’s observation, their
error is too large to decide whether AP is indeed due to the gravitational Faraday
effect. We expect that more accurate observations of 09574561 will indicate a

non-zero value of AP.
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7. Gravitational Lens Effect
on the Redshift-Volume Measurement

One of the long-standing problems in which many astronomer and physicists
have been interested is whether the Universe is open, flat or closed, namely, what
value the density parameter ‘Qg’ takes? This problem is associated with most of
astrophysical or cosmophysical problems such as galaxy formation, non-uniform
motions of galaxies etc.. Many people who accept the inflationary universe seem

to prefer g = 1 to other values, while most observations of (g show lower values.

Recently Loh and Spillar ( 1986 ), however, obtained the redshifts of a thou-
sand of galaxies not by the spectroscopic method but by the photometric method,
their observed flux £ being greater than some threshold value £y. They then es-
timated the density parameter as (2o ~ 1. In their analysis they assumed that
the number of galaxies are conserved and that all galaxies evolve by the same

amount in Juminosity

On the other hand, Bahcall and Tremaine ( 1988 ), Caditz and Petrosian
(1989 ), and Yoshii and Takahara ( 1989 ) reanalyzed Loh and Spillar’s data
without making Loh and Spillar’s second assumption. They found that the evo-
lution of galaxies affects the value of the density parameter and showed that

Qg = 0.2, which is comparable with the value determined by other observations.

In their arguments, the above authors assumed implicitly that the Universe
in the scale of z ~ 1 is described by the Friedmann-Robertson-Walker universe
( hereafter to be abbreviated as FRW universe ) in which the Universe is filled
with isotropic and homogeneous perfect fluid, and adopted Mattig’s formula for

the redshift-angular diameter distance relation.

Recently it has been found, however, that the Universe has large inhomo-
geneities in the scale 30 ~ 50[Mpc] concerning galaxy-distribution, and moreover
has voids extending over 50[Mpc]. Obviously, such a new situation does not permit

us to adopt Mattig’s formulae any longer.
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That is to say, we have now to take into account inhomogeneities, which
may cause the gravitational lens effect for propagating light beams. Hammer
and Nottale ( 1986 ) investigated the gravitational amplification effect, due to
foreground galaxies, on the Hubble diagram, with the conclusion that this effect

decreases the value of the deceleration parameter go.

In our paper we adopt the clumpy universe model, proposed by Dyer and
Roeder ( 1972 ), as a possibly more realistic universe model than the FRW
universe. Thus in our case, all matters are supposed to be concentrated into
clumps such as galaxies, while the global structure of the Universe is assumed to
be described by the FRW universe. The light emitted from a source propagates
in the empty space to be received by the observer. In the way of the propagation
the light beams may suffer the gravitational amplification effect from the clumps.
Since all the clumps are assumed to be uniformly distributed, we have to treat

their gravitational amplification effect statistically.

In this chapter, we will discuss the gravitational amplification effect on the
redshift-volume measurement, which is one of the geometrical tests of Q. First
in §7.1 we present a formulation of statistical gravitational lens effect on flux
moments. In the next section ( §7.2), on the basis of our formulation, we will
investigate how deeply the gravitational amplification effect influences on the

measurement of 2g. Our results are summarized in the last section.

7.1 GENERAL FORMULATION OF THE FLux MOMENTS

UNDER THE GRAVITATIONAL LENS EFFECT

In this section we first introduce, following Caditz and Petrosian ( 1989 ), the
kth flux moment in the FRW universe. Next we extend the flux moments thus

obtained to those in our universe model mentioned above.

The kth flux moment obtainable from those observations of galaxies in which

the observed flux is £ > £; and the redshift is within the interval
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(20 — Az/2, 20 + Az /2] is defined as:

zo+Az /2 o N
My (20, o) = / dz / (ﬂ—) n(z,0)dl  (k=0,1,2..).  (7.1)
0
z0—Az/[2 Lo

It depends on the cosmological parameters and on the luminosity function which
gives information about the brightness distribution of galaxies. If the kth flux
moment has n unknown parameters such as the density parameter or the cos-
mological constant, we can determine the above parameters from the first n flux
moments. For example, when we have two unknown parameters in the flux mo-
ment, we have only to consider the Oth moment ( the number counts of galaxies:
N ) and the 1st moment ( the total flux from observed galaxies brighter than the

minimum flux £5: F/{g ).

Before deriving the flux moments in our universe model we first review those
in the FRW universe. The metric and the volume element of the FRW universe

are given by

dr?
2 232  p2 20002 1 ain? 2
ds? = 2di> — R (t)[l_krz +r2(d6? + sin? 6dg )], (7.2)
and
R3r%dr
dV = ———=sindfd

— ¢ )3D2(z)dzsin9d9d¢
Ho”  (I+z)x(z) °

where D(z) is the angular diameter distance ( see Appendix C-(a) ) which is

measured in units of (—ﬁ?) The x(z) in (7.3) is given by

x(2) = /Q0(1 +2)3 + Ao — K(1+ 27,

where the Hubble constant is expressed as Hg = (R/R)o, the cosmological con-
stant as Ag = Agc?/3Ho?, the density parameter as Qg = 8mGpo/3Ho?, the effec-
tive curvature as K = Qy + Ag — 1 and the deceleration parameter as

g0 = —(RR/R?),.
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In (7.1) the number of galaxies with the observed flux [£, £ + df] at redshift

[z,z + dz] is expressed, in terms of the intrinsic luminosity L of the source, as

¢ \3®(z, L) D*(2)

n(z,£)dzdl = ( Ho) (1+2)x(2)

dzdwdL, (7.4)

where ®(z, L) is called the “luminosity function” which must be determined by
observations and represents the number density of galaxies with redshift z and

L. The luminosity relation between the observed flux and L is given by

L
‘= dn(5) D2(a)(1 +2)° (7.5)

With eqs.(7.3)-(7.5) we can express the kth flux moment (7.1) as

z20+Az[2

_ c \3 Dz) OO_L_ k )
Mi(zo, o) = /_m () fL (£) #60dz,  (16)

where Lg = 4%(—101—0)2(1 +2)3D%(2)4p.

The luminosity function ®(z, L) of galaxies can be determined from surveys
for redshifts, luminosities and the number of galaxies with low redshifts z <« 1,
and is shown to be fitted well with the Schechter form ( Schechter 1976, Felten
1985, Efstathiou et al. 1988 and Lapparent et al. 1989 ) given by

L L

®(z, L)dL = (1 + z)3¢*(—£:)aexp[—f;}d(—i:), (7.7)

where ¢*, o and L* are to be observationally determined. Now let us assume,
following Loh and Spillar ( 1986 ), that ¢*, o and L* have negligible dependences
both on redshifts and on galaxy-types.
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Then the kth flux moment with the Schechter form (7.7) is given by

Mg (a0, bo) = () s A ™ (20) G (o)™, (7.8)
where
D2 1 2
i) = 2
) 1+ D(ao) 242 D2(2)(1 4 2)°
Z X\Zo Zg\ 3k—2 ZQ - 3 . Z Z
Geleo) = T3 (Taa) DG TR G )
20~Azf2
471"(-%0)2D2(Z0)(1 + Zo)gfo
o = T+ .

In the above equations £(z) represents the deviation of the volume element from

(—Hc--o-)sz2 Az, and I'(a; ) is the incomplete gamma function defined by

(e e]

I(4;2) = / dt exp(—1)t¢1. (7.9)

T

By determining the dependence of £ on the cosmological parameters from obser-

vations, we can determine the geometry of the Universe.

Next we estimate the kth flux moment in the clumpy universe model ( Dyer &
Roeder 1972 ) which is possibly a realistic model of the inhomogeneous universe.
In so doing we assume that the Universe is described globally by the FRW uni-
verse, and locally by the clumpy universe in which all matters are concentrated
into clumps. The light which passes near a clump may suffer the gravitational
amplification effect from the clump. We can therefore regard such a clump as a
gravitational lens object. Most of the equations derived for the FRW universe,

except the luminosity relation, can be used in our universe here well as.

In the clumpy universe the luminosity relation must be modified as follows:

since the light mostly propagates not through the space with the mean density
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of the Universe but in almost empty space, the angular diameter distance in the
clumpy universe differs from that in the homogeneous universe. Dyer and Roeder

showed that the angular diameter distance D(z) in units of (%0) 1s given by

- dz
D(z) = /(—l-:rm, (7.10)

( see Appendix C-(b) ).

It is to be noticed here that we are concerned with two kinds of angular
diameter distance — D(z) and D(z). The former appears in the volume element
of the Universe, because the Universe is assumed to be globally homogeneous.
On the other hand, the latter has to be used in the luminosity function because

the light propagates through the space with sparse matters.

Suppose that the light passes near a clump, and is brightened by a factor p
owing to the gravitational amplification effect. The luminosity relation is then
given by
pL

L= = ,
471'(%0) D2%(z)(1 +z)®

(7.11)

where L is the intrinsic luminosity of the source corresponding to the observed

flux £ in the inhomogeneous universe.

With the luminosity relation (7.11), the number of galaxies with observed
flux [¢, £ + d{] within the redshift interval [z,z + dz] is given by

/dup<z,u>@(z,f;>, (7.12)

Ho

3 2 ~
ﬁ(z,e)dzde=( c ) D*(z)dwdzd

Ho/ (1+2)x(z)

where p(z, 1) is the probability distribution for the case when lights are brightened
by a factor g owing to the gravitational amplification effect. In eq.(7.12) po is

the minimum amplification factor, to be defined later.
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Then the kth flux moment in the inhomogeneous universe is expressed as

20+A2/2 D2(2) o0
~ (] Z
M(zo, £o) = /JZ( HO)3 /dnp(z,u)
z0—Az/2 1o

(7.13)

where plo = 4n(1 + 2)3D*(z)f;. We adopt the Schechter form (7.7) as the

luminosity function, thereby obtaining My, as follows,

M}(20, 4o) = (%0)%3 A 2dwd*€(z0)Gr(F0) 35, (7.14)
where
T (20) (14203362 D(z) / Dlao) 2%
A ~y | %2 X{Zo Z0\ "M z 0
Gi(20, %) —/ Az x(z) ( 14z ) D?(zp) < D(z) )
ZO‘AZ/jO (7.15)
. 1, 1+2 s D*(z)
X/dﬂﬂ’“p(z,n)l“(a+k+L;(HZO) Dz(zo)mD(ZO)):
Ko
and
%)’ D 3
:Eo(zo)=47r( i) D()(1+ 70) °. (7.16)

L*

Finally we have to define the probability distribution p(z, ), which depends
on the distribution of galaxies in the inhomogeneous universe and also on the type
of clump models employed as gravitational lenses. The form of p(z, x) has been
discussed by many authors ( Press & Gunn 1973, Weinberg 1976, Canizares 1981,
Vietri & Ostriker 1983, Peacock 1986, Ehlers & Schneider 1986, and Issacson &
Canizares 1989 ).
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We review the derivation of the probability distribution in Appendix D. Let
us assume that the clumps which act as gravitational lenses are uniformly dis-
tributed in the inhomogeneous universe, and that all the clumps have point-like

structures. The probability distribution is then given by

(7.17)

( Ehlers & Schneider 1986 ), where z;, and zs are the redshifts of the clump acting
as a gravitational lens and of the galaxy ( source ) of the light, respectively. In
(7.17) Dys is the angular diameter distance form the source to a clump and is

given, in units of (%O), by

g

Dst(z1,25) = (1 +21) /

2L

dz

————(1 FpsEms (7.18)

From (7.15) and (7.18), we have

Z0+Az/2 -
~ L dzs x(z0) 1+ 20\ 3%2 D?(zs)  D(z0)\ 2%
G (20, o) =30 N X(Zs)(1+zs) DZ(ZO)(D(ZS))
20 —Az/f2
zs
S 2y \E
of L D) Dl (719)
X(z0)D(z1)

1 1+z3)3b2(zs)

0
* k
7 ~
x| dp—eteeeT(a + k +1, = - ,
Ho

Since the Universe is assumed to be described globally by the FRW universe,
1t is required that the luminosity relation of the present case, on average, must

be the same as that in the case of the FRW universe. This imposes the following
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constraint:

uL L

/uodﬂp(z, M)47r(_}§1'0‘)21~)2(z)(1 + z)3 B 4 (=) 'D2(z)(1 +2)%

i.e.,
| ” 1
. s, p)dp = , 7.20
Sy | e = g (720
#o
from which po(zs) is found to be
300 [ (14 2)2D%(z)Deslzy, 25) 12
ples) =1+ = 0/ dz, L2 D7 (%) D (21, 7) | (7.21)
D(zs) x(z)D(z1)

0

It is reasonable that the lower limit up of the amplification factor yu is larger than
unity because p is the total amplification factor of those two images produced by

point-like lenses which are assumed to be too close to be separated.

Now, from (7.14), (7.19) and (7.21) we have the full formulation of M. In

the next section we reanalyze Loh-Spillar’s data by using M,

7.2 REANALYSIS OF LOH-SPILLAR’S OBSERVATIONAL DATA

According to Loh and Spillar ( 1986 ), and Caditz and Petrosian ( 1989 ),
the ratios Cj(zg,£o) in the inhomogeneous universe can be defined as
Mk(ZO)EO)

Ci(z0, lo) = —2\20:%0) 7.22
k20, o) Mj_1(z0,4o) (7.22)

The above dimensionless quantities can be obtained from observations. From

(7.14), C}, is rewritten as

ék(zoa 5'0) g'i)

Ck(ZOJZO) = T= ~
ZoGr-1(20, %0, )

(i=1,2..), (7.23)

where ¢’s (i = 1,2,...) are the cosmological parameters and the parameters

99



which appear in the expression for the luminosity function. If we have a sufficient

number of observed Cj}’s, we can determine these parameters from (7.23).

Loh and Spillar ( 1986 ) measured the first two flux moments within three
redshift bins having width Az centered at zy (= 0.25,0.50 and 0.75). They found
(g ~ 1 assuming that the light propagates in the FRW universe without Ay and
that the power-law index « in the luminosity function ®(z, L) is independent of
redshifts and galaxy-types. The first two flux moments determine the first ratio
Ci which they called the “completeness ”: The quantity represents the measure

of how deeply observations were carried out.

Now we will reanalyze Loh-Spillar’s observational data by using M. Al
though Loh and Spillar did not give the values of C} explicitly in their paper, we
can determine these values with their data on zo(zg) as C; = 2.94,2.87 and 2.10
at zo = 0.25,0.50 and 0.75, respectively.

Next we have to determine the value of o in ®(z, L). Following Efstathiou
et al. ( 1988 ), we adopt their value a = —1.07 instead of @ = —1.25 used by
Loh and Spillar. The dependence of the final results on the choice of o will be

discussed below.

In order to compare the lux moments in which the gravitational amplification
is taken into account with those in the FRW universe, we calculate, for the same
values of Cf, the ratio GO/GO, which is independent of ¢* and L*. Fig.7.1 is for
the dependence of Gi/Gy on the value of Q, and shows that the gravitational
amplification effect on the number counts N of galaxies cannot be ignored. The
deviation of Gy /Go from unity increases as redshift of the source of light becomes
large, since the probability function shows the same behavior, that is, the chances
that the light is gravitationally amplified increase as the distance between the

source of lights and ourselves becomes large.

Let us now evaluate Qg and ¢*, assuming that A\g = 0 ( z.e., Qg = 2¢p ), in the
cases of the FRW universe and of the clumpy universe model: this is necessary

because our choice of « is different from Loh and Spillar’s. We assume moreover
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Table 7.1 Qp and ¢*: the FRW universe vs. the inhomogeneous universe

Density parameter Qg ¢* x 10—2113[Mpc_3]1)
In the FRW universe 1.77 £ 0.89 1.59 +0.44
In the inhomogeneous universe 0.39 £+ 0.44 1.04 +0.31

1) Hg = IOOh[km/sMpc].

that the parameters in the luminosity function are independent of redshift and

galaxy-types. The results are given in Table 7.1.

It should be noticed that our value of 2 in the FRW universe is larger than
the corresponding value of Loh and Spillar. This shows that the value of Qg

depends on the choice of o

We find that the value of g in the inhomogeneous universe is smaller than
that in the FRW universe. It should be emphasized that when the gravitational
lens effect is taken into account for the redshift-volume measurement the value of

o 1s decreased, as Hammer and Nottale { 1986 ) showed on the Hubble diagram.

7.3 DISCUSSION AND SUMMARY

We have discussed the influence of the gravitational amplification effect on
Loh and Spillar’s redshift-volume measurement and have shown that this effect
decreases the value of Qg. This result clearly indicates that we must not ignore

the gravitational lens effect when determining the cosmological parameters.

By using Loh and Spillar’s unpublished data, Caditz and Petrosian ( 1989 )
estimated the first three flux moments in the FRW universe and suggested that
the power-law index « in the luminosity function depends on redshift z;. On the
other hand, Bahcall and Tremaine ( 1988 ), and Yoshii and Takahara ( 1989 )

showed that the value of ) is dependent on types of galaxies considered in ®.
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In the previous sections, we have not taken into account the evolutionary
effects and have restricted ourselves to discussion of the influence of the grav-
itational amplification effect on the redshift-volume measurement. Our result
shows that in order to obtain a reliable value of (g from observation we have
to take into account not only the evolutionary effects of galaxies but also the

gravitational amplification effect.

As discussed by Press and Gunn ( 1973 ) and others, the approximation
of point-like lenses is very good for clumps with mass S 105Mg. If clumps
are galaxies, our approximation, however, is not always good, and some better
approximations for lenses are needed. At any rate it is important to investigate
the dependence of {2y on types of lens models employed, and this is one of our

future problems.
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8. Summary

In this thesis we have discussed various problems concerning the gravitational

lens effects. In this chapter we will summarize our results of Chapter 4 —

Chapter 7.

In Chapter 4 we have discussed the multiple quasar 1115+080 regarding as a
multiple-image system. To specify the deflector of the system, we have adopted
the dark lens model with dipole and quadrupole moments. The parameters con-
tained in our model have been fixed by substituting observed data ( ¢.e. positions
of the deflector and images A, B and C' ) into the lens equation. In fixing these
parameters we did not use observed flux ratios between the images. The calcu-
lated luminosity ratios need not necessarily coincide with observed data, because
the intrinsic luminosity of the source may evolve with time. From these fixed pa-
rameters we can further predict the existence of a new image ( the fifth image )

although it may be difficult to observe the image because of its faintness.

We have evaluated the travel time differences between the images, and found
that our estimation is compatible with Vanderriest et al.’s values ( 1986 ). From
our estimation we can conclude that the intrinsic luminosity of the light source

has time evolution.

Further, we have evaluated the mass of the deflector using two methods: the
method proposed by Borgeest ( 1986 ) and the one proposed by ourselves. In
our method, it is possible to judge whether the deflector model employed is valid
or not by comparing the observed travel time differences with calculated ones,
whereas this is not the case with Borgeest’s method. From estimations with both
methods we have found that the deflector has the mass of a typical galaxy. This
fact may appear not to be consistent with Christian et al’s observation. We
should say, however, that richness of much faint or dark matters in the deflector
1s respounsible for the above apparent discrepancy. Furthermore, combining our
mass estimations by the two methods, we found that a constraint is imposed on

the Hubble constant Hp.

103



In Chapter 5, we have pointed out that apparent superluminal motions are
possible in a gravitationally lensed system. Our conclusion is that, if the source
passes near one of the caustics on the source plane, however normally the source
may move, some images appear to us to be moving away from each other with
apparent superluminal velocities. We thus expect that there is a possibility of ob-
serving apparent superluminal motions in the gravitational lens system in which
the bright images have small separations from each other, as in the case of images

A7 and Aj of system 1115+080.

In Chapter 6 the rotation of the polarization plane by a weak gravitational
field 1s discussed. First we have constructed the parallel propagator for the
polarization vector in terms of a null tetrad in the post-Newtonian approximation.
Next we have extended the formula given by Plebanski ( 1961 ) for a spherical
deflector to the case of a spheroidal deflector. It is then found that no rotation of
the polarization plane occurs in the case of any spheroidal dark lens, as Plebanski
suggested for the case of a spherical deflector. It can be proved that the difference
between the rotation angles of the polarization planes is absent in the general

case of dark lens if the gravitational field is weak and stationary.

In Chapter 7 we have investigated the influence of the gravitational lens effect
on the redshift-volume measurement of the density parameter €, and given a
general formula for the kth flux moment in the clumpy universe model represent-
ing the inhomogeneous universe. In this case inhomogeneities are regarded as
gravitational lens objects which amplify the flux of lights, and they are treated
statistically. In so doing we have adopted the probability function given by Ehlers
and Schneider ( 1986 ). It is thereby found that the gravitational amplification
effect on the redshift-volume measurement is not negligible, and that the effect

in fact decreases g, as Hammer and Nottale ( 1986 ) pointed out in connection
with the Hubble diagram.

Finally we wish to emphasize that the gravitational lens effect does in fact

provide us with a good tool for investigating dark matters, intergalactic matters,
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Ly-« forests and others. At any rate, it is true indeed that no astronomical

observations can be free from this effect.
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APPENDIX A

Estimation of |£4]

In this appendix we will estimate |£4| which is given by eq.(5.66) and to

satisfy the equation

w(l + €& —2(ry + ie” sin o3y )E+w(l—¢)=0. (A1)

1 —e2cos?y il

Then |£4£_] is smaller than unity because of

€461 = |

1—e¢
1+e€
It follows from the above relation that either £ or £_ is in the unit circle |£] = 1.

In introducing two real parameters X and Y and one complex ¢ such that

e’ siny cosy

X=rg, Y=r, + >

z), (=X+1Y, (A2)

1 —e?cos

we can express £4 as

_ CE /¢ —wi(l - €?)

b w(l+¢€) (A3)
_(+As+iBy
— w(l4e)
where
Ay =

:i:sgn(X)\/%[\/{X2 =Y —wi(l—-e)}? +4X2Y2 + X2 - V2 — w?(1 - €2)],
(A4)
By =

:i:sgn(Y)\/%[\/{X2 ~Y?—wi(l - )P +4XY7 - X2+ V2 + (1~ €Y)].
(A5)
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a) In the dark lens case

In the dark lens case arbitrary w satisfies

Y2
w2 S X2 + -6—2—’ (A6)

which is the condition for the dark lens. From relation (A6), we find that

AL > X2,
Bizwz_Xz) (A7)
(A4X + BLY) > ew’.

This completes the proof of [£4|> > 1.

b) In the transparent lens case

In the transparent lens case the condition to be satisfied is: for some w,

Y2
’w2 Z )(2 + —67 (A8)

We can thus show that |£4| < 1 for some w, because

AL < X2
Bigw2_X2: (A‘g)
(A+X + B.}_S/) < ewz,

and [£4] > [¢-].
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APPENDIX B

Evaluations of Rotation Angles for Simple Deflector models

In this appendix we give @y and P, defined in eqs.(5.56) and (5.77), respec-
tively, for two simple examples of mass densities distribution of a deflector with

spheroidal symmetry. We introduce the following parameters:

_Gmsing Ay _J1-BL
£ = A =5 and §=4/1 2 (B1)

where a,, is the major radius of the deflector beyond which the mass density

vanishes, and

2

. . r r
simf=esmy, AL = col ﬂ(r“ + cosyzlﬂ) and B =rg, + co:;ﬁ.

A useful relation among the above parameters is
24t -8 =1, (B2)

( Bourassa & Kantowski 1975 ).
a) p = Constant

pla) = { i (@Son) (B3)

0, (a> am),

where M and /1 — e? are the total mass and the axial ratio of the deflector,

respectively.
The deflection angle @, obtained by ignoring the deflector rotation was given
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by BK as:
1+ 5)

el a- @G

— {208+ ( 1—-—— "+‘5}® m—B1)|,

~ " a,, s B

(B4)

and the rotation angle P of the polarization plane is expressed as

3GM

P = =

w cosy [ sin 463

_ sin Re{<52_n2cot2ﬂ)ln<n+5tanﬁ>+2776cot,5}
/1 —e2cosZy ¢ n—6tan ¢

+Re{(62 ;772) ln(z-fg) + 22—6}} O(am — B1).

S, S a<a
p(a>={”vl'ez“?"“’ =) (B6)

0, (a > am),

where M and V1 — €2 have the same meanings as in a).

The deflection angle @ is

4GM [ln(1+§
+{ln

( BK ), and P is expressed as

5():— )+ ln(l

c2a, sin B

!
K
)

+% (" +‘5)+f,71 %) }(an - B1),

1 1+6
(B7)

P =

4GM
5w CosY [smﬁ{& - -—(1 - 4%)In Lﬁ}

B sin 8 27R {-1_1 (77+5ta.nﬁ> 1496

TR ¢ Lot
R () * O T

L oy, (6ot B = 61/1 — (1 — cot® B)n3¢? }
+ £z \/1 (1 - cot? B)n¢ 1n(77£ cot,B“i'a\/l -1  cot? ,6)772£2>

n+6 n. 146 1. pt—6
Re bl I MO Sl _B))
+ {éln _5+51n1_6+£2lnn£+6}]®(am B1)

(B8)
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APPENDIX C

Angular Diameter Distance

In this appendix we review the derivation of the angular diameter distance
both in the Friedmann-Robertson-Walker universe ( hereafter abbreviated FRW
universe ) which is filled with isotropic and homogeneous perfect fluid and in the

locally inhomogeneous universe.
a) FRW universe

The metric of the FRW universe is given by

2

2 _ 23,2 p2
ds® = c*dt* — R°(t) -

+ r?(df* + sin? d¢?)|. (C1)

The energy-momentum tensor for this case is expressed as
T*, = diag(pc*,0,0,0). (C2)

The fundamental equations in cosmology are derived from the Einstein field equa-

tions:
(_1'3)2 _87Gp kS Ao
R/~ 3 R 3 (C3)
2R R\? ke’ 9
7 (7) + =0

where the dot denotes the derivative with respect to the comoving time ‘¢’. Let

us introduce four cosmological parameters; Hy, Qo, qo and Ag:

the Hubble constant Hy = (%)3,
the density parameter Qo = 38

. 2
the cosmological constant Xy = %’;c—g,
0

where ‘0’ denotes the present value.
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In terms of these cosmological parameters, the first equation in (C3) is given

as,

R -
E =H0\/(1 + Z)3QO + Ao — (1 + Z)zﬁ
EHOX(Z))

(C4)

where z is the source redshift, and use has been made of the relations:

K=Q+d-1pxR® Rou(l+2) ! and K =

0’R2
The angular diameter distance D(z) in the FRW universe is defined as follows:
( Weinberg 1972 ). Suppose that we observe the distance L between two points
with redshift z expressed by a separation angle §(< 1). There holds then the

relation:

L = R(z)r(z)é. (C5)

Thus the distance D(z) between the two points and ourselves is given by
D(z) =L/é, i.e.

D(z) = R(z)r(2). (C6)]

Lets us now express r as a function of the redshift z, which from (C1), is

given by

r(z) = ——1\/—7c—_sin [\/j&j /O;C%] (C7)

We have thus obtained D(z) in units of (—}6'13) as follows:

D(z) = I—i:-\—/l—l_g sin [\/K/O-;(Z—)} (C8)

b) Clumpy universe
In order to describe the inhomogeneous universe we adopt the clumpy universe

model proposed by Dyer and Roeder ( 1972 ). In this model, it is assumed that
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all matters are concentrated into clumps such as galaxies, while the large scale
structure of the Universe is given by the FRW universe. Moreover clumps are
assumed to be distributed uniformly. Therefore all lights which are to be received

by the observer propagate in an almost empty space.

Now we consider a light bundle far from any clump. The optical scalar

equation ( Sachs 1961 ) for this bundle is given by
AU 1o P AV £ 1R ke AL = 0, (C9)
9 K

where A denotes the cross sectional area of this light bundle and the shear o is

expressed as

_|2LWW—Z(M )| (C10)
and the prime denotes the derivative with respect to an affine parameter 7 along
the light bundle.

Because the light propagates in the empty space and the large scale structure

of the Universe is homogeneous, we can reduce (C9) to the following equation™

(A1) =, (C11)

Let us now consider, in particular, a conical bundle with the vertex at the
observer and with the base at the source of lights. Then D(z) is proportional to
the square root of the cross sectional area A at the source. From (C11), it then

follows that
D(z) = 7(z), (C12)
where the initial conditions for D(z) are: D|r=o = 0 and D'|r=o = 1 in units of

(%)

* We have taken into account the facts that 7%, = 0 and that the shear averaged along the
light trajectory does not contribute to this equation.
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The relation between z and 7 is given as

-;l—j = (1+2)%x(2).

Thus D(z) in the clumpy universe is given by

2

~ dz
D) = / T+ %)

0
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APPENDIX D

Probability Function

In this appendix we review the derivation of the probability function proposed
by Ehler and Schneider ( 1986 ). First we define the cross section Ay g)(#; 2s, 2L)-
For a deflector, Ap(p) is an area of that region on the deflector plane through
which the light ray whose the gravitational amplification factor is greater than u
passes. For instance, if the deflector is regarded as a point mass, the cross section

Ar(u; zs,2.) on the deflector plane at redshift z;, is given by

8TGM , ¢ D(ZL DLS Zs,ZL

7 BT B {\/F— 1,

( Canizares 1981 ), whereas the cross section Ag(y;zs,21,) on the source plane at

Ar(pszs,20) = (D1)

redshift zg is given by

AS(/-‘; zg,21) =AL (gg:;)z

__87rGM

c?

(D2)
D(zs) DLs(Zs, 7r,)

(Ho) ( L) {\/;'T__ }

Now let us evaluate the total cross section Ao (u;2s) on the source plane for

all lens galaxies within the source sphere at z = zg. We obtain the quantity by

integrating Ag(p;zs,z.) over all lens galaxies:

73
Atot(p; 2s) =/As(#; zs, 7)1 (z)dV (z1)
0
o (L+2)7D* (@) >
_ C \3 1+ZL D VAR .
—( HO) nU/dZL X(ZL) As(ﬂqu)ZL))
where n(z;), the number density of lens galaxies at z = gz, is given by

n(z,) = (1 +2z.)%ng. Since we are considering the clumpy universe ( see Ap-

pendix C ), the present number density of lens galaxies is given by ng = po/M.
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If these lens galaxies are regarded as point masses, the total cross section is then

given by
= (1+20)2D(2.) D(zs) Dys(zs, 2.)
A =12 Q -1 /d — ,
ot (1) = 127 Ho) 0{ } n—— )
(D4)
On the other hand, the area of the source sphere at z = zg is given by
S =4r(— ) D*(zs). (D5)

Hy

Thus the probability function P(zg;> p) with the amplification factor greater
than g 1s expressed as the ratio of the total cross section Ao to the area of the

whole sphere at zg, z.e.:

Z3

he

~ (1 +2,)2D*(2) Dys(zs,2.)
P(zs;> p) = 3Q0{ —=—= x(z1) D(zs)D(z)
(D6)

Further the probability distribution p(zs; ) with amplification factor p is
defined as

d
plzs; p) = ———P(zs5;> p), D7
(zs; 1) i (255> p) (D7)

which is adopted in Chapter 7. The condition that p is meaningful as the proba-
bility is that A;o; < S. This means that there are no significant overlaps of the

cross sections on the source sphere.
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Fig.2.1

Fig.4.1

Fig.4.2

Fig.4.3

Fig.4.4

Fig.7.1

FIGURE CAPTIONS

A gravitationally lensed system. A photon emitted from a source is deflected

with an angle &, where & is assumed to be sufficiently small, |&] < 1.
Positions and shapes of the images of 11154080 from our calculation.

The dependence of the cosmological factor T on the deceleration parameter gq

with 0.3 <z4 <0.5.

The dependence of the effective distance on redshift: a)y = —3; b)y = —2;
o)y =—1;d)y=0;e)y=1; )y =2; and g)y = 3.

The dependence of the cosmological factor T on v with —3 <+ <3.

The ratio Go/Gy as a function of Q.
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