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ABSTRACT

Consider the problem of nonparametric probability density
estimation. Recursive kernel estimators are proposed and their
asymptotic properties are investigated. Also, a class of stopping
rules based on the idea of fixed-width interval estimation is
proposed. Finally, applying the idea of sequential density esti-

mation, the problem of estimating a multiple regression function

is considered.
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INTRODUCTION

Recently, nonparametric density estimation has been attract-
ed by statisticians and scientists. In density estimation the
useful statistical methods are parametric. The assumption in
these methods is that the sample of observations comes from a
population with a known parametric family. But when no assump-
tions about the functional form of the density function are made
we should use another methods. These methods are nonparametric.
In this thesis we consider the problem of nonparametric probabil-
ity density estimation.

For the nonparametric estimation of density functions sev-
eral methods have been developed. Furthermore, applications of
nonparametric density estimators have been studied. Prakasa Rao
[25] has made a survey of the methods developed in this area.
Since Rosenblatt [27] has proposed the kernel method in 1956,
Parzen [23] and many authors have investigated two types of the
kernel estimators. One is nonrecursive and the other is recursive.
The Parzen-Rosenblatt kernel estimator is nonrecursive. A dis-
advantage of this type is that the estimators are not easy to
update when new data become available. In order to improve this
disadvantage, Wolverton and Wagner [37], and Yamato [38] have
developed the recursive kernel estimators. In this thesis we
treat the recursive kernel estimators. Devroye and Gyorfi [12]
published a book about nonparametric probability density estima-
tion, in which they discussed various types of kernel estimators
containing our recursive kernel estimators.

On the other hand, in estimating the probability density

function there are many situations in practice where the number



of observations on which the density estimators are to be calcu-
lated is not fixed but random. Carroll ([6] has introduced two
classes of integer-valued random variables (stopping rules) and
developed sequential density estimators. By using these sequen-
tial density estimators he has given confidence intervals for

the density function of fixed-width and prescribed coverage prob-
ability.

In Chapter 1 we propose recursive kernel estimators fn(x)
of the nonparametric probability density function f(x) in the
multivariate case. Also, we study their asymptotic properties
including consistency and asymptotic normality.

Chapter 2 deals with sequential density estimators in the
univariate case. We define a certain class of stopping rules

N(d) and take IN —d,,fN(d)(x)-kd] as a 248-

»(d),d(X)=:[fN(d)(X)
width confidence interval for f (x) with prescribed coverage prob-

ability a. The rate of convergence of P{f(x)el d(x)} to o as

N(d),
d+0 is investigated.

In Chapter 3 we consider a modified class of the stopping
rules in Chapter 2 and study the limiting behavior of the mo-
ments of the stopping rules.

In the last chapter we apply the idea of sequential density
estimation to the problem of estimating a multiple regression
function m(x). We define a class of stopping rules N(d), and
by using the recursive kernel estimators mn(x) of m(x) we give
IN(d),d(x):z[mN(d)(x)-—d ,mN(d)(x)-Fd] as a 2d-width confidence
interval for m(x) with prescribed coverage probability o. We also

show the convergence of P{m(x)c¢ (x)} to a as d-0.

Ny ,a



1. RECURSIVE DENSITY ESTIMATION

1.1. FORMULATION OF THE PROBLEM
Let f(x) be a (unknown) probability density function (p.d.f.)
on RP with respect to the Lebesgue measure where RP denotes the
p-dimensional Euclidean space. There is a vast literature on the
problem of recursively estimating the p.d.f. f(x). Yamato ([38]
introduced the recursive estimator defined by

...l):/E\

1>

£ (x) = (1-n

n (x) + (nh2) TR (Ge=x ) /h) (

n-1
Carroll [6] and Davies [9] considered this estimator %n' The
following recursive kernel estimator f; was introduced by Wegman
and Davies [36]:

-1

£ (x) = (1-n"H) (a__ /b ) 2Ex o+ (nh) TRROG-X) /h)

for stl.

In this section we shall propose a recursive kernel estima-
tor fn(x) in a modified form of fn(x), that is, n_:L is replaced
by an™1 with 1/2<a<l. The estimator £ (x) defined in Section

1.2 and the estimator fn(x) can be rewritten, respectively, as

n

— -p _
£ (x) = milamﬁmnhm K((x xm)/hm) + BOnfO(X)
and
~ n p _l
fn(x)==m£l(nhm) K((x—xm)/hm).

If we put a=1 then it turns out that aman:n“l for all 1<mZ<n
and Bon=0. Hence fn(x) can be obtained by substituting a=1 into
fn(x).

In this chapter we shall consider the problem of estimating



f(x) at a given point x. Yamato [38] showed the weak consistency
of %n(x) and its asymptotic normality. Davies [9] showed the
strong consistency of %n(x). We shall show the strong consistency
of fn(x) and its asymptotic normality. The estimator fn(x) will
also be shown to be better than %n(x), from the viewpoint of the
criterion of the asymptotic rate of variances, for some choice of
the smoothing parameter hn.

In Section 1.2 we shall define the recursive kernel estima-
tor fn(x) in a certain form. Also, auxiliary results will be giv-
en. In Section 1.3 the estimator fn(x) will be shown to be strong-
ly consistent and its asymptotic normality will also be shown.
Further, the rate of convergence of the mean square error will be
given. Section 1.4 is devoted to comparison between fn(x) and
%n(x) under the criterion of the limit of Var(fn(x))/Var(%n(x)).
We shall give a special type of the sequence {hn}, by which it
will be demonstrated that the above limit is strictly less than 1
for certain a depending on this sequence {hn}. Thus, in this case
the estimator fn(x) is better than the estimator %n(x) under the

above criterion. Further, an optimal choice of the coefficient a

in the estimator f_(x) will be given for the special type of {hn}.

1.2. ASSUMPTIONS AND AUXILIARY RESULTS

In this section we shall give a recursive kernel estimator
of the p.d.f. f(x) and give several results which are needed for
the sections that follow.

Let K be a real-valued Borel measurable function on rP satis-



fying

JIK(y)|dy < and JK(y)dy=1, (K1)
IRl = sup [K(y)]| <= (K2)
yeRP
and
Lim  [y[I® [x(x) ] =0, (K3)
|y |+
where ||-|| denotes the Euclidean norm on RP and the domain of

integral is RP unless otherwise specified. Let {an} be a sequence
of positive numbers defined by

an=a/n with 1/2<a<l for all n>1. (A)

Let {hn} be a sequence of positive numbers satisfying the follow-

ing conditions:

lim h_= 0, (H1)
n->o n
hn ;hn +l; -+-+ for some nO;l, (H2)
0 0
1im nhP ==, (H3)
n—?m n
lim (nhp)—l/zlogr1=0, (H4)
n-=o n
£ (nhP) 7L< =, (H5)
n
n=1

Define Kn by
Kn(x,y)==h;pK((x—y)/hn) for all x,yeRp, n=1,2,---.

Consider the modified recursive kernel estimator fn(x) for f(x)

given by



f_ (x) =K(x) for all XeRp (F)

Hh
x
0

- p =
(1 an)fn (x)-+anKn(x,Xn) for all xeR*, n=1,2,

-1
where Xl’Xz’X3' -++ is a sequence of independent and identically
distributed p-dimensional random vectors with the common p.d.f.

f, and the conditions (K1)~ (K3), (A) and (H1l) are assumed to be
satisfied. In what follows, for the estimator fn we shall assume
the conditions (K1)~ (K3), (A) and (H1l) without restating them

repeatedly. Throughout this chapter Cl,Cz, -+ - denote appropriate

positive constants, and for any function g on rP C(g) stands for

the set of all points of continuity of g.

REMARK. If K(x) >0 for all xeRp, then it is easy to see
that fn(x) (n=1,2,---) are actually probability density functions.
If we put a=1 in (A) then the estimator fn(x) coincides with the

estimator %n(x)-

Now, we introduce notation. Let

n
Tl (l—ak) for 0<m<n
8 - k=m+1
mn
1 for m=n;0
Yo=Yy =1
and
n
Yy.= N (1l-a.) for all n> 2.
n =2 3j =

It is clear that y >0 for all n>1, g, <1 for all n>m>0 and

§

mnzYnYm for all n>m> 1.

Sacks [29] showed that



- a —a - a —a
(l—em)m n < ani (l+em)m n for all n>m>1, (1.2.1)

where eé-»O as m~+o, By (l1.2.1) and the fact that l-—aj >0 for

all j>2, there exist two positive constants Cqy and C, such that
a_-a a_-a
Clm n ;aniczm n for all n>m > 1. (1L.2.2)
In particular, it holds that
-a -a
C;n "<y 2C,n for all n> 1. (1.2.3)

LEMMA 1.2.1. Let {hn} satisfy (H1l) and (H2). If for some

a>1/2 there exists a positive constant B such that

n
nl—zahﬁ X mz(a_l)h P R as n= «, (1.2.4)

m=1 m

then for any positive integer m,

n —
by a2m 2Y 2h pf\fazB(nhﬁyi) 1 as n-= o,

m=m m m
0

where "¢nnan as n-o" means that ¢n/wn + 1 as n=o.

PROOF. It suffices to show that

-1.p 2 22 -p
B “nh I m "R°_h - 1 as n-+ =, (1.2.5)
n mn m
m=m

Let any € with 0<e <1 be fixed. Choose § with 0 < g <1 such that
(1+2e¢/3) (1+&) < 1l4e and (1-2¢/3) (1-&) > 1-€. (1.2.6)
By (1.2.1) there exists a positive integer my greater than both of

m, and n,, where n, is given in (H2), such that
2a -2

(l-e¢/3)m" n 2

m

<8 n;(l+€/3)m2an_2a (1.2.7)

for all n>m>m By the monotonicity of hn and a>1/2 we get

1°



n
I m
m=1

2 (a"']-) h—p

> ® as n > w, (1.2.8)
m

From (H1), a>1/2, (1.2.4) and (1.2.8) there exists a positive

integer m, >m. such that

2 =M
-1 1-2a D (a-1). -
1-£ < B *n hﬁ 5 m h P<i1+g (1.2.9)
m=m m
1
and
m. -1
2 1 2 -2 p/ B 2(a-1),-p
-e/3<cy T v hm/ I h P <e/3 (1.2.10)
m—mo m—ml

for all n>m,. Combining (1.2.3),(1.2.6),(1.2.7),(1.2.9) and

(1.2.10) we obtain

n
87 lnnP z w22 P (1.2.11)
n mn m
n= 0

m. -1
n 1 o
< B lnl_zahﬁ z mz(a_l)hmp{(cg I m 2Y 2hp//

m=m m=m mom
1 0
n )
g mz(a"l)hmp) +1+¢e/3}
m=m
< (14E&) (142e/3) < 1+e for all n>m,.
In the same manner as above we have
-1 o 2.2 -2
87" nh? ¥ m “g® h °>1-e for all n>m,. (1L.2.12)
n mn m =2
m=m

Thus the combined use of (1.2.11) and (1.2.12) yields (1.2.5),

which completes the proof.

The next lemma is one of the results given by Sacks [29].



LEMMA 1.2.2. Let g>-1. Then for any positive integer m,

n
I m
m=m ,

q —lnq+l

~ (1+q) as n > o,

The following two propositions can be found in Watanabe [34].

PROPOSITION 1.2.3. Let {An} be a sequence of nonnegative
numbers. Suppose that there exist two sequences of nonnegative

numbers {bn} and {dn} such that

An+lﬁi(lubn+l)An'+bn+ldn+l for all n>1, (1.2.13)
I b =« and lim b =0, (1.2.14)
n=1 n->o n
and
n-+oo n

Then we have

PROPOSITION 1.2.4. Let {Un} and {Vn} be two sequences of
random variaBles on some probability space (Q,F,P). Let {Fn} be
a sequence of o-fields, Fn<: Fn+l(: F for all n>1, where Un and
Vn are measurable with respect to Fn for each n>1. And let {bn}
be a sequence of real numbers. Suppose that the following condi-
tions are satisfied:

0<U a.s. for all n>1, (L.2.16)

E(U] <=, (1.2.17)



E(U_ |7 1z (1-b_,,)U_+V_~ a.s. for all n2>1, (1.2.18)
I E|V | <w (1.2.19)
n
n=1
and
0<b <1 (n=1,2,---), lim b_=0 and I b_ ==, (1.2.20)
= n-= n n
n-+e n=1
where E[-] and E[-|-] denote the expectation and the conditional

expectation operators, respectively. Then we have

lim U =0 a.s. and 1lim E[U ] =0.
n n

n-—reo n—>o
Cacoullos [5] gave the following proposition.

PROPOSITION 1.2.5. Let K(y) be a real-valued Borel measur-
able function on RF satisfying (K1) ~(K3) without SK(y)dy= 1.
Let g(y) be a real-valued Borel measurable function on rRP such

that f|g(y)|dy <, and let
g, (x) =h Prr(y/n g (x-y)ay,

where {hn} is a sequence of positive constants satisfying (H1).
Then at each point xeC({(g)

lim g (x) =g(x)/K(y)dy.

n-o©

DEFINITION 1.2.6. A bounded real-valued function g defined
on R® is said to be locally Lipschitz of order A, 1/2<X<1, at
Xq (abbreviated as loc. Lip. A at xo) if there exist two positive

constants L and n , which may depend on Xy such that ||y]| < n

implies Ig(XO“‘Y) —g(X0)| L HY”)\ .

- 10 -



1.3. STRONG CONSISTENCY AND ASYMPTOTIC NORMALITY
In this section we shall show the strong consistency of the
estimator fn defined by (F) of Section 1.2 and we shall discuss
the asymptotic normality of the estimator.
The following theorem shows the strong consistency of the

estimator fn.

THEOREM 1.3.1. Let {hn} satisfy (H1) and (H5). Then for

each xeC(f)

1im fn(x)==f(x) a.s. (1.3.1)
n-o

and
lim E(fn(x)-f(x))2==0. (1.3.2)
n-+o

PROOF. From the algorithm (F) it follows that

IEfn(x)-f(x)I (1.3.3)
< (l—an)lEfn_l(x)-f(x)|-Fan|EKn(x,Xn)-f(x)|

for all n>1. By Proposition 1.2.5 we get

lim lEKn(x,Xn)-f(x)|==0. (1.3.4)

n-e
Thus, making use of (1.3.3),(1.3.4) and Proposition 1.2.3 we have

lim |Efn(x)-f(x)|= 0. (1.3.5)

n->oo

Now, by the algorithm (F) and the independence of X, we

obtain

2
E[(f (x) -Ef_ () 7[Xy 00y X 4] (1.3.6)

n-1

< (Lma) (£, (0 -BE__ ()7 + alvar (K (x,X))]

...ll._



< (1-a ) (F 2

n n—l(x)‘—Efn—l(x))

2 2
+ anE[Kn(x,Xn)] a.s.

for all n > 2, where Var (X) denotes the variance of X.

By Proposition 1.2.5 we have

lim hEE[Ki (x,X_) ] = £ (x) K2 (y)dy,

n—+o°
which yields by using of (K1) and (K2) that

nPE[K? (x,X_)] <C, for all n>1. (1.3.7)
n n n = =

3

Hence, combining (1.3.6) and (1.3.7) we obtain

2
E[(f_ (x) -Ef_ (x)) lxl,---, X 1] (1.3.8)

< (1-a ) (f ) 2

< + C a?'h_p a.s. for all n> 2.
= n n-1 nn o

(x)-Efn_l(x) 3

From (H5) it follows that

2

% anh;p<°°. (1.3.9)

n=1
By (K2) we have

E(fl(x)—Efl(x))2<°°. (1.3.10)

Thus, from (A),(1.3.8),(1.3.9),(1.3.10) and Proposition 1.2.4

we get
lim (£ (x) ~Ef_(x))%=0 a.s. (1.3.11)
o

and
lim E(f_(x) -Bf_(x))% = 0. (1.3.12)
oo

On the other hand

|fn(x)-f(x)|:§|fn(x)-Efn(x)| + IEfn(x)-f(x)l (1.3.13)

and

E (£ (x) —f(x))2=E(fn(x) -Efn(x))?+ (B (x) —f(x))%  (1.3.14)

- 12 -



for n>1. Hence we get (1.3.1) from (1.3.5),(1.3.11) and (1.3.13),

and get (1.3.2) from (1.3.5),(1.3.12) and (1.3.14), which complete

the proof.

We shall give the following theorem concerning the orderxr of

convergence of Var(fn(x)).

THEOREM 1.3.2. Let {hn} satisfy (H1) and (H2). Assume the
following condition:
For some a in (A) with 1/2<a <1 there exists a (1.3.15)
positive constant £ such that

n
nl—2ahp 5 m2(a-—l)
n
m=1

._p- o o
hm » B as n >,

Then for each xeC(f)

1im nhﬁVar(fn(x))==Bf(x), (1.3.16)

n->c
where

B==a28fK2(y)dy> 0.

PROOF. Let

= - . 1.3.17
Zm Km(x,Xm) EKm(x,Xm) for all m>1 ( )

From the algorithm (F) we get

n

- = . 1.3.18
fn(x) BEf (x) mﬁlamsmnzm for all n>1 ( )

Tt follows from (H1) and Proposition 1.2.5 that

1im hPEz? = £(x) /K (y) dy. (1.3.19)

n—>o

- 13 -



Let

n
b = I a’y’?
n m m

h'P for all n >1.
m =
m=1

By Lemma 1.2.1 we obtain
p.2 2 -
bnnhnyn voat B (>0)‘ as n > o,

On the other hand, by (1.2.3) we have

p.2 l1-2a,p
0 <nh vy <Cyn ho

which yields, together with a >1/2 and (H1), that

lim nhpy2 = 0.
n'n

n—r«

Thus it follows from (1.3.20) and (1.3.21) that

b T © as n -,
n

By (1.3.19),(1.3.22) and the Toeplitz lemma (see Loéve
have
n

L a Y—
n=1 ® M

b;l 2Ezi + f(x)sz(y)dy as n > o,

From (1.3.18) we get

n
N 2.2 .2
Var(fn(x)) = Z amanEZm
m=1
p, -1 p.2..-1 X 2 .22
= (nhn) (bnnhnYn)bn ) a Yo EZm ,
m=1
which yields
p p2,-1% 2 -2 2
nthar(fn(x)) = (bnnhnyn)bn milamym EZm.

Combining (1.3.20),(1.3.23) and (1.3.24) we obtain

1im nhEVar(fn(x)) = Bf (x) ,

n->oo

- 14 -
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[20]) we

(1.3.23)

(1.3.24)



which concludes the theorem.

LEMMA 1.3.3. Suppose that in addition to (K1) ™~ (K3), K(y)
satisfies the condition

Syl R (y) [dy < e . (K4)
Then for each x at which f is loc. Lip. A, there exists a posi-

tive constant C, which may depend on x, such that

|EK (x,X_ ) -£(x)| <Ch® for all n>1. (1.3.25)
n n == n —
PROOF. Iet
§ =EK_(x,X ) -f(x) for all n>1 (1.3.26)
n n n o
and
|E]l, = sup £(y). (1.3.27)

yeRp
The boundedness of the p.d.f. £ implies |[£||_ <«. By (K1) and
Definition 1.2.6 we have

K (1.3.28)

2 SR E(x-hyy) - £(x) |y

e, St e layn) v ol S lxi fay
iy ll< hJivllz n

A

A
n

i

c, Ayl k) lay nd + 2 Tgll,n ™02 rlly il k() |ay

A

= (e +2 I£ll,n™M syl xR ) lay n)

for all n>1. If A=1, then it follows from (K4) that

Myl 1Ry lay < »

- 15 -



If 1/2< X <1, then it follows from (K1), (K4) and the HOolder ine-

quality that

Myl 1%y |ay

< LAyl IR |ayl MR (v) [dy1 i < .

Hence, putting C= (C, + 2 Hf]hﬁnnx) Myl 1R (y) |ay we get

3
C <o, (1.3.29)
Finally we get (1.3.25) from (1.3.28) and (1.3.29). The proof is

complete.

The following theorem presents the rate of convergence of

mean sguare error.

THEOREM 1.3.4. Let x be a point such that f£(x) >0 and f is
loc. Lip. X at x. Let K(y) be given in Lemma 1.3.3. Suppose
that {hn} satisfies (H1), (H2), (H3) and (H5). In addition to

(1.3.15), assume the following condition:
a, A
Z m h® = O(n"h ) as n->w, (1.3.30)
m n

where a is given in (1.3.15).

Then there exists a positive constant C, which may depend on Xx,

such that
E(f_ (x) - £(x))?<Cb_ for all n21, (1.3.31)
_ p.-1 .2\ _-2a
where bn-—max{(nhn) ,hn , n .

PROOF. By Theorem 1.3.2 there exists a positive constant



C3 such that

-1
Var (£ (x)) < Cy(nhP) for all n>1. (1.3.32)

Let ém be given in (1.3.26). From (1.2.2),(1.3.30) and Lemma 1.3.3

we get
n n
- -1, A A
| ag 6 ]<c,n®zrn®n<c.h’ for all n> 1.
m=] mmnom = 4 m=1 m= 5'n =
Hence we have
o 2 22
( z amanGm) ;§C6hn for all n> 1. (1.3.33)
m=1

since |f (x) - £(x)| < [|K|[,+|I£]], <=, where |[[£]|_, is defined by

(1.3.27), it follows from (1.2.3) that

2 -
B (£,(x) -~ £(x))° 2cn™?® for all n21. (1.3.34)
n
Since Efn(x)-f(x)==80n(f0(x)-—f(x))-+milam8mn6m, by (1.3.33)
and (1.3.34) we have
(Bf_(x) - £(x)) % <Cgb_ for all n31. (1.3.35)

Let C==C3-+C8-<w. Hence by (1.3.14),(1.3.32) and (1.3.35) we

obtain (1.3.31). This completes the proof.

We shall now show the asymptotic normality of the estimator
fn' In the remainder of this section K(y) is assumed to satisfy

(K1) ~ (K4).

LEMMA 1.3.5. Let 2 be given in (1.3.17). Suppose that {hn}

satisfies (H1l), (H2) and (H4). Assume the following conditions:



For some a in (A) with 2/3 <a <1 there exists (1.3.36)
a positive constant B such that

n

nl—Zahp = m2(a—l)h—p - R as n-+®
m
m=1
and
HEll, = sup £(y) <. (1.3.37)
yeRP

Then for each xeC(f) it holds that

n

L afB 72 ——> N(0,Bf(x)) as n-—>owo, (1.3.38)
m=] monTmoo

p.1/2
(nh )

where B is given in Theorem 1.3.2, N(O,o2) stands for the normal

n

. . . 2
random variable with mean 0 and variance ¢ and _

L
means convergence in law.
-1 2 2
PROOF. Let U =a vy %2 ,S_ = © U and s_ =Var (S ) for all
n n'n n n o qm n n
n n .

n>1. Then it holds that 52== ) azy 2EZZ. Let b_= I azy 2h P
= no oy mm m no oy mmom

for all n>1. First we consider the case when f(x) =0. Since

n
2. p.2, . -1.2
milamanzm} 1 = (bnnhnyn)(bn Sn)’

E[{ (nhP) 1/2

it follows from (1.3.20) and (1.3.23) that
n
lim E({ (nnP)1/?2
n
n-> m=1

which implies that

n

milamanZm +~ 0 1in probablllty as n > o,

(nhp)l/z
n
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Thus (1.3.38) holds.
In what follows we consider the case when f(x) >0. It fol-
lows from (1.3.20) and (1.3.23) that

2 p.2, -1
s, v Bf(x)(nhnYn) as n - o, (1.3.39)

If the Lyapounov condition

._.3n

[} I E|U

n m
m=1

l3+o as n-—+w (1.3.40)

holds, then it follows that

s S ——> N(0,1) as n- =, (1.3.41)
n“n

Using the inequality {a-kb|3=i4(|a|3-+|b(3) and the H6lder ine-
quality we get

|3 3_.-3

_ 3
= %n'm EIZm|

3.-3 3
Elu, <8a vy "ELIK (x,X )|7]. (1.3.42)

Since
3 -2 3 2 0 -2
B[R, (x,% ) |"1=hnP [|R(y) |"£(x - h y)dy <||K||_ || £]l,, /R (y) |ay b °F
for all m>1, it follows from (K1), (K2) and (1.3.37) that

3 -2p
E[|R (x,X ) |7] <Cih for all m>1, (1.3.43)

where C = [|K|P |[£]|, f|K(y)|dy < =. From (1.3.42) and (1.3.43)

we obtain

13<c,m™3y3h7%P  for all m>1. (1.3.44)

EIUm 4 m m

Let n, =n,+ 1 with n, being given in (H2). Thus, by using (1.2.3),

1 0 0
(1.3.39),(1.3.44) and (H2) we have

n n .
s 3 mluPceydmnP)3? p 3 3nT%P (1.3.45)
n m' = "5'n n _ m m
m=nl m—'nl



2- gh -
< Cen Ba(nhﬁ) 1/2 . 3(a l)(h /h )2p
n
m=n
1
2-3 -
< Cgn a(nhﬁ) 172y m3<a L) for all n>n,.
m=n o

It is easy to see that (H4) implies (H3). We now consider the
following two cases for the value of a.
Case (i). 2/3<acx<]1.

It follows from Lemma 1.2.2 that

n
s mo @) o (3a-2)

m=nl

_ln3a—2 as n -+ o, (1.3.46)

By making use of (H3), (1.3.45) and (1.3.46) we obtain

-3 0

s I E|U

n m
m=nl

|3 - 0 as n oo, (1.3.47)

Case (ii). a=2/3.
n

Since I m
m=n,

1o logn, we have (1.3.47) from (H4) and (1.3.45).

Hence (1.3.47) holds for 2/3<a<1l. From (1.2.3) it follows that

1-2a
n

p. 2
0< nhnﬂyr1 < C7

nP for all n>1,
which yields, together with a> 2/3 and (H1), that

1im nhPy2 = 0. (1.3.48)
nn

n->-oo

By using the fact that Bf(x) >0, (1.3.39) and (1.3.48) we get

lim s = o, (1.3.49)

n->co

which implies that
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n,—-1
s73 3 E|U
m

|3
N =1

+ 0 as n->o, (1.3.50)

Combining (1.3.47) and (1.3.50) we obtain (1.3.40). Since

n
_ P, 1l/2 L1
mElamanZm (nhn) Yn®n"%n Sn’

(nhp)l/z
n

we have (1.3.38) from (1.3.39) and (1.3.41). Therefore the proof

is complete.
The following theorem gives the asymptotic normality of fn.

THEOREM 1.3.6. Let x be a point at which f is loc. Lip. A.
Suppose that {hn} satisfies (H1l), (H2), (H4),(1.3.36) and (1.3.30)
with a being given in (1.3.36). Furthermore assume the condition

lim nh?*P = o, (1.3.51)

n--oce n

Then it holds that

(P2 (£ (x) - £(x)) ——> N(0,BE(x)) as n+w,  (1.3.52)
L

where B is given in Theorem 1.3.2.

PROOF. Let Zm and 6m be given in (1.3.17) and (1.3.26),

respectively. Then we can rewrite fn(x)-f(x) as
fn(x)-f(x) (1.3.53)

n n

= BOn(fO(X) -f(x)) + E amanZm + E
m=1 m=1

am aném

for all n>1. Definition 1.2.6 implies (1.3.37). Thus by virtue

of Lemma 1.3.5 (1.3.38) holds. If it holds that



mhP)128 (£ (x) ~£()) » 0 as n+e (1.3.54)
and
n
(nhPy172 5 a5 5 >0 as now, (1.3.55)
n m=lmmnm

then by the use of (1.3.38),(1.3.53),(1.3.54),(1.3.55) and
corollary of Chung [8] (page 93) we can obtain (1.3.52).
We next show (1.3.54) and (1.3.55). By (1.2.3),(K2) and

(1.3.37) we get

p,1/2 B 1/2-a,p/2
(nh) ™ "8, [£,(x) - £(x) ] <Cyn he e
Hence (H1) together with a > 2/3 implies (1.3.54). In view of

(1.2.2),(1.3.30) and Lemma 1.3.3 we have

a

n
(mhP) /2| £ a g s | (1.3.56)
n m=1 m mn m

n
p\1/2 _-a a-1,. A
< C4(nhn) n milm hm < CS(

nh2x+p)l/2-
n
From (1.3.51) and (1.3.56) we get (1.3.55). This completes the

pxoof.

We shall give an example of {hn}.

EXAMPLE.

Let hn=n_r/p for n>1. If 1/2<a<1 and 0<r<min(ap/X , 1),

then {h_} satisfies all of (Hl) v (H5), (1.3.15) with 8= (2a+r-1) *

and (1.3.30). If 1/2<ax<1 and p/(2\+p) <r <min(ap/A , 1), then
{hn} satisfies (1.3.51) in addition to (H1l) ~ (H5), (1.3.15) with

8= (2a+r-1) % and (1.3.30).
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1.4. CHOICE OF THE COEFFICIENT
Let the estimators En and fn with the kernel K satisfying
(K1) v (K3) be given by (ﬁ) and (F), respectively. In this section
we shall discuss the asymptotic rate of variances between %n and
fn' and we shall give an optimal choice, in a certain sense, of

the coefficient a in (A).

THEOREM 1.4.1. Let {hn} satisfy (H1) and (H2) with nj=1.
Suppose the following condition be satisfied:
For some a in (A) with 1/2 <a <1l there exist two positive con-

stants o with o < 1 and B such that

n
nl=23pP 5 p2@-1)y"P L g 4o pnow (1.4.1)
n m
=1
and

...l n —
n"*hP £ hP s> o as n-o. (1.4.2)

n m=1 m

Suppose that f(x) is continuous on RP. Then for each point x with
f(x) >0

lim Var (£_(x)) /Var (£_(x)) = a’g/a. (1.4.3)

n-—+o

PROOF. From Theorem 3 of Yamato [38] it follows that

of (x) FK2 (y)dy (>0), (1.4.4)

1l

- o X
lim nthar(fn(x))

n--c
which together with (1.3.16) implies (1.4.3). This completes the

proof.
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COROLLARY 1.4.2. Let {h } be given by

hn=n”r/p where 0<r<1. (1.4.5)

If £f(x) is continuous on Rp, then for each point x with £f(x) >0

lim Var(fn(x))/Var(JA‘fn(x)) = a2(l+r)/(2a+r-l) , (1.4.6)

N>
where 1/2 <a<1l. Furthermore, if for each fixed 0<r<1/2 we put
a=1-r, then

lim Var(fn(x))/Var(En(x)) = l—r2 . (1.4.7)

-+

PROOF. As 1s seen in Example of Section 1.3, all the condi-

1 and

tions of Theorem 1.4.1 are satisfied by taking a= (1+x)
B = (2a+r—l)_l, where 1/2<a<1. Hence (1.4.6) is a direct conse-

quence of (1.4.3).

Now we shall discuss an optimal choice of the coefficient a.
Let {hn} be given in (1.4.5). It is easy to see that

a2(1+r)/(2a+r—l) in the right hand side of (1.4.6) achives its

minimum at a=1-r as a function of a for each fixed re(0,1). Thus,
taking account of the condition that 1/2 < a<l, for each fixed
0<r<1l/2, a=1-r gives the minimum value of the asymptotic rate

of variances, lim Var(fn(x) )/Var(%n(x)) . For each fixed 1/2<r<1,
T+

the closer the coefficient a is to 1/2, the better it is in the
sense of making the asymptotic rate of variances smaller.
We next consider the speed of convergence of variance. By

Theorem 1.3.2 and (1.4.4) we have
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Var (£_(x)) = Var(f_(x)) = o(™1*F)

Thus the closer r is to 0, the better it is from the viewpoint

of the speed of convergence of variance. If 2/3<a<1l and

p/ (2 A+p) <r <min{ap/A , 1} in (1.4.5), then the sequence {hn}
satisfies all the conditions in the previous sections. Hence, in
this case, a=2/3 is the best and the closer r is to min{ap/A , 1},
the better it is from the viewpoint of the asymptotic rate of

variances.
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2. SEQUENTIAL DENSITY ESTIMATION

2.1. STATEMENT OF THE PROBLEM
Let f be a nonparametric probability density function on the
real line R. There is a vast literature on nonparametric density
estimation (see Devroye and Gyorfi [12]). In this chapter we shall
treat the problem of sequential estimation of f(x) at a given

point x. Let X --+ be a sequence of independent and iden-

17 %27%3
tically distributed random variables, with the common density
function f, on a probability space (R,F,P). The estimator is of

the following form:

n
f (%) =n_l X

n ; Kj(x,Xj) for n>1.

1
Here,

Kn(x,y)==h;1K((x~y)/hn) for x,yeR and n>1, (2.1.1)

K is a given bounded probability density function on R satisfying

lim |x|K(x) =0, /xK(x)dx =0 and [x2K (x) dx <

|x|+m
and

hn=n‘r with 1/5<r <1, (2.1.2)

where the domain of integral is R throughout this chapter.

The problem of sequential estimation of f(x) by fixed-width
confidence intervals has been studied by Carroll [6] and several
authors (see Prakasa Rao [25]). For given a (0<a<1l) and 4d>0
Carroll [6] defined stopping rules Nd as the first n such that

nh_ > (b/d)%f (x), with some b >0, and then took I.. (x) =
n= n Nd

[f. (x)-4a, f

da Ng

N (x) +d] as a 2d-width confidence interval for f(x).



Stute [33] considered the following class of stopping rules: He
constructs a sequence {In(x),nil} of random intervals, defines
Ny as the first n such that the length of I (x) £2d and takes

INd(x) as a 2d-width confidence interval. The second class of

stopping rules as considered in Carroll [6] is of this form. For
both of the classes of stopping rules they showed that the prob-

ability P{f(x)eIN (x)} converges to o as d tends to zero.
d

The aim of this chapter is to introduce a certain class of
stopping rules Ny of the first type and derive the rate at which

P{f(x)eIN (x)} converges to a as d tends to zero. The main tool
d

in the proof is the result of Rychlik [28] on the convergence
rate in the random central limit theorem.

The chapter consists of four sections. In Section 2.2 the
main theorem is presented, that is, the rate of convergence of

P{f(x)eIN (x)} tending to o is given. Section 2.3 contains several
d

lemmas that will be used for proving the main theorem in Section

2.4. In Section 2.4 the main theorem will be proved.

2.2. MAIN RESULT
In this section we define stopping rules Nd and a class of

fixed-width sequential confidence intervals (I (x) ,n>1}, and

n,d

derive the rate at which P{f(x)eIN d(x)} converges to o as d
dl

tends to zero.

Fix any d > 0 and define a confidence interval of fixed-width

2d as In d(x)==[fn(x)--d ,fn(x)—+dl for each n>1. For given a

’
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(0 <a<1l) choose D==Da2>0 such that ¢ (D) - ®(-D) =a, where ¢ is

the standard normal distribution function. Define stopping rules

(x) for each x as follows:

Nd==Nd
Nd = first n>1 such that
(0°8) 't TTa? > £ (x) +n7 (2.2.1)
where
-1 2
B= (l+r) JK™ (y)dy. (2.2.2)

The following is our main theorem.

THEOREM. Assume that the density f has a bounded second

derivative £~ on R. Then for each x with f (x) > 0 we obtain

P{f(x)eINd’d(x)} =0 + 0(da") as d-0,

where

n = min{r/2, 2(1-r)/5(2-xr) , (5r-1)/(1l-r)}.

REMARK 2.2.1. By the same argument for Theorem 3.3 of

Isogai [15] it can be shown that for each x in the above theorem

and each d > 0 P{Nd<<W} = 1.

NOTATION AND PRELIMINARY LEMMAS

Throughout Sections 2.3 and 2.4 let an arbitrary point x
(2.1.2) be fixed. In this

2.3.

with f(x) >0 and the constant r in

chapter we use the following notation unless otherwise stated:

Zn==Kn(x,Xn)-EKn(x,Xn) ,5n==EKn(x,Xn)-f(x),
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n n n
S_ = ZZj,Oi—-:Var(Zn),si: 202.,Br31= ZE]Z.]B,
=1 j=1 7 j=1 J

n
— + —
W o=n (1 r)/‘Q‘sn/‘/a_fﬁ)— , V_=n (I+r)/2 5 65/ /BE(Y
j=1
where Kn(x,y) and B are as defined in (2.1.1) and (2.2.2), res-
pectively. When there is no confusion, we drop the argument x in
£, (x), £(x) and In,d(X)' and write them as £ , f and In,d'
Throughout this chapter C’Cl’c2’ --+ denote positive constants
appropriately chosen for the context in which they appear, [a]

stands for the greatest integer less than or equal to a, and the

symbol " " means asymptotic equivalence.

LEMMA 2.3.1. Under the conditions of the preceding theorem,

1+x

si/(Bf(x)n ) =1 + O(n_r) as n- o,

PROOF. It is easy to see that

|nl—rVar(fn)-—Bf]

n n
z EKz.(x,X.) -BE| + n”(HT) 5 {EK.(x,X.)}2
j=1 J ] j=1 J J

|n"' (l+r)

= I + II, say.

By the Taylor theorem and the conditions on f and K we get that

EK_(x,X_) = £(x) + 0(n 2%), (2.3.1)
n n
which implies that
|EX (x,X )] <C; for all n>1. (2.3.2)

Hence we have that II==O(n_r) It is obvious that
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n” (147 ) - £(x) Hy|

[aal
A

2or 2
L 37| /R (y) (£ (x~]
j=1

- (1+xr)
J

r

+ |n 37 - (1+r) "1 £ (x) K2 () dy

I3

= 11T + IV, say.

By the use of the Taylor theorem and the conditions on K we have

FKZ () (£ (x - 37Fy) - £(x) }y = 0 (3 R

r), which yields that III =0(n

n
2 jr"(l+r)«l <n”! for al1 n>1, we get that
J=1

Since 0 <n—(l+r)

1

IV=0(n ). Thus, taking account of the fact that Var(fn)==si/n2,

we obtain the statement of this lemma.
The following lemma was proved by Rychlik [28].

LEMMA 2.3.2. Let {Xn ,n>1} be a sequence of independent
. _ 2 3_.3_
random variables such that EX =0, Var(Xn)-~ocn and E|Xn| =B <=,

and let {Nn ,n>1} be a sequence of positive integer-valued ran-

83.. If

1 J

ft 13

n n o, 3
dom variables. Set S = L X., s_. = ¥ o, and B =
n - .21 J n 3

3,3 2 2 _
B /s <V/e and P{Ian/Tsn 1| >e } = 0(Ye ) for some constant
T> 0 and a nonnegative sequence {en yn>1} with e, 0 as nre,

then

sup |P{S, <ts,  }-a(t)| = 0(/e ).
—m< <o Nn- Nn n

The rate of approach of the distribution of SN /sN to the
d d
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standard normal distribution is given by the next lemma.

LEMMA 2.3.3. Let n=min{r/2, 2(1-r)/5(2-r)}. Then, under
the conditions of the preceding theorem we have

sup |P{s. <ts
—~o< <o Nd o Nd

}-o(t)]| = 0(@") as d-o0.

PROOF . Let {dk » k>1} be any sequence of positive numbers
converging to zero as k tends to infinity. It suffices to prove
the lemma for this sequence. Throughout this proof let k be suf-

ficiently large, so that dk is sufficiently small. First we shall

show that
Bi/si = o (xr-1)/2y, (2.3.3)

By Holder's inequality, the boundedness of K and (2.3.2) we get

that Elzn[3==0(n2r), which implies that

3 1+2r
n

Bn=0( ) - (2.3.4)

Hence, according to (2.3.4) and Lemma 2.3.1 we have (2.3.3). Set

C.=D%B, 8= (1-r)/(l+r) , TB=le

and

n, = [d]';z/(l"r)]. (2.3.5)

Then, we shall show that

2 2 ‘ 2ny _ n
P{lst/Tsnk -1]> td, '} = 0(d) (2.3.6)

for any fixed r > 0, where Nk==Nd . Let any ¢ > 0 be fixed. For
k

notational simplicity we drop the subscript k of N and d

k" "k k
throughout the proof of (2.3.6). By (2.2.1), Remark 2.2.1 and

the fact that £,20 we get that N2—r;;cld~2 almost surely. Hence,

n
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putting
—2)1/(2—r)

g1=gl(d)= [(Cld 1, (2.3.7)
we have that
Pﬂi;gl} = 1. (2.3.8)
Set
-2r .
if 1/5<r<1/2
b(m) =b _(m) = (L+logm)/m if r=1/2 (2.3.9)
mt if 1/2<r<1.
. 1™ -or .
Since m Zj :;Czb(m), it follows from (2.3.1) that
Jj=1
-1
lm™~ I EK.(x,X.)-f] < Cb(m) for m>1. (2.3.10)
j=l J ] - -

By Lemma 2.3.1 we get

[s;/BfmlJrr - 1] gcgm " form>1. (2.3.11)
It is obvious that
p{|sl/ts? - 1| > za®™ (2.3.12)

2 .20, 2 2 2n, .2
P{SN<(1 zd )Tsn}+P{SN>(]_+Z;d )Tsn}

Il

I + II, say.
Set

p=p(d) =Cy(g] +n ") /(1-Cy97") (>0),

and

-1 1-r.2

Ay =R (d) =C g, d” - £ + Cb(gy).

1
Then, it follows from (2.2.1),(2.3.8),(2.3.10),(2.3.11), the def-

inition of fn and the monotonicity of b(m) that
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I<plg, sN<g,} (2.3.13)

;P{j_lsj <A, for some g;<j<g,}.

From (2.3.5),(2.3.7) and (2.3.9) we have that

b(g,) = 0(@®M and p = o(a?M), (2.3.14)

where o(d) means that o(d)/d+0 as d 0. By using the inequality
that (l—t)£<l—£t for 0<t<1l and 0< £ <1 we obtain that

c—lgl—rdZ -

E f(1+p)Pa-wa®Mb - 1

A

1

~£82d%M{1 - (8z) Lod 2"+ o},

A

which, together with (2.3.14), yields that lim sup Al/dzn;— fRe
d-0

< 0. From this we get that A d2n for d sufficiently small.

127 Cy

Hence, by virtue of the Hajek-Rényi inequality (see Petrov [24],

page 51) and (2.3.13) we have that

I<P{ max j"l|sj| > c,a’" (2.3.15)
9,329,
9, 9,
;;Csd—4n{g12 z EK?(X,Xj) + T j_2EK§(x,Xj)}.

From (2.3.2) and the boundedness of K we get that

291 271 1
—— — .r r—
g L EK.(x,X.,) £ C_g L j- £ C.g (2.3.16)
1 j=1 3 J 671 j=1 7°1
and
°2 2 1
2 j—zEKj(x,Xj) < Chgy s
j=gl+l
which, together with (2.3.15), imply that I;CBd_Llng]l:—l. Thus,
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by (2.3.7) and the definition of n we obtain
I =o0(". (2.3.17)

Next, we shall estimate II in (2.3.12). Put

_ -X =X -r

g = ({1(1=p) (1+ga®ht/ (1) g,
and
=1 1-r._ 2
A,=C] gy "d" - £~ (C+1)blg,).

Then, by the same argument for (2.3.13) we have that

IT < P{N2gy+1} < P{g;ls > A (2.3.18)

g5 2}
By making use of (2.3.5) and the inequalities that (lﬁ-t)£;1,+gt/2
for small t and £ >0 and that (t--l)E >tg-1 for t>1 and 0<Eg<1
we obtain that

-1 1-r. 2

Cl 93 a® - £

\%

Mt (- p) (1 ra?Myy /(40 3 lmTg2 g

> tt-pfa+a®mBa-a® 1) - c[ta?
> £{(1-p) (L + (Bz/2)a’™) -1} - c,a°
= (£8z/2)a?M(1 - (2/80) pd"2" - p} - g a’.

Hence, in view of the fact that b(g3)==o(d2n) and p==O(d2n) we

have that 1lim inf Az/d2n3=fBC/2> 0, which yields that Azilclodzn
d-0

for d sufficiently small. Thus, according to Chebychev's inequal-

r-1

ity, (2.3.16),(2.3.18), the fact that g3 ==O(d2) and the defini-

tion of n we obtain that II==o(dn), which, together with (2.3.12)
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and (2.3.17), yields (2.3.6). Now, let

0 ={Nk 1f n=n, for some k >1
n
[Tl/(l+r)n] otherwise
and
n : -
oo gdk if n=n, for some k> 1
n —
n i otherwise,
where T and n, are as defined in (2.3.5), and the positive con-

stant ¢ will be chosen later. Without loss of generality we may
assume that L 21 for all n>1. Hence by Remark 2.2.1 {Ln,llil}
is a sequence of positive integer-valued random variables. First

we shall show that

2 2 2
|sLn/Tsn - 1] < ef (2.3.19)

for n (#rh<) sufficiently large. Let n;énk for all k> 1 be suffi-
ciently large. By the use of (2.3.11) and the definition of n we
get that

2n, 2 2
n (sLn/Tsn 1)

< 2N (L +c1E) /(1 —cn Ty (Lo I )y ooy
3™n 3 n
2n-r r _ -r
<n C3{(n/Ln) +1}/(1 C3n ) £ Cll'
which implies that
2 2 -21M
sLn/Tsn 1 < Clln . (2.3.20)

Set q_ = (1-C,L-F)/(1+Cyn""). By the use of (2.3.11) and the

3

inequality that (l-—t)E >1-Et for 0<t<1l and £ >1 we have that
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2n, 2 2
n (sLn/Tsn - 1)

> n?M g (1 - (/g thbr

l/(l+r)q n2n—l

2 -
>n n(qn-—l) - (1l4+1r)T n

vomcy (T ) 20T o (TR

which yields that

n”en, (2.3.21)

2 2
sLn/Tsn -1 > —C12

It follows from (2.3.3) and the definition of n that

B

A

C,am ' for m> 1. (2.3.22)

3
/% 13

3
m
From (2.3.5) it is clear that

-n n
n, < (Cl4/Cl3)dk for k> 1. (2.3.23)

Here, ¢ is chosen as max{C C } +1. Then the rela-

11 7 €12 7 €13 7 C14
tions (2.3.20) and (2.3.21) imply (2.3.19). Thus, by virtue of

(2.3.6) and (2.3.19) we have

2 2 2,
P{|sLn/Tsn - 1l >e } = 0(e ). | (2.3.24)

From (2.3.22) and (2.3.23) we get

B3/s3 < & for n> 1. (2.3.25)
n”“n = "n =

Therefore, since the conditions of Lemma 2.3.2 are satisfied by
(2.3.24) and (2.3.25) we have that

sup |P{s  <ts

b -o(t)]| = 0(e).
—~00 < < n n

In particular, putting n=n, we obtain the result of Lemma 2.3.3.

Thus the lemma was proved.



The next lemma is due to Michel and Pfanzagl [21]-

LEMMA 2.3.4. Let {Xn,11;]J and {Yn']‘i=l} be twO sequences

of random variables. Assume that

_wftgmlp{xn;t} -¢(t)| = O(a))
and

P{ly, -1[>a } = O(a ).
Then

_mfigwlp{xn;tyn} o (k)| = o(a,) .

2.4. PROOF OF THE THEOREM
In this section we prove the theorem presented in Section

2.2. Throughout this section let N==Nd. It is easy to see that

|P{fel, ,}-ol <2sup |Ple - f<tD ta} -6 (k) ]. (2.4.1)
14 + -
Set ¢, =D°B. If it holds that as d 0
sup |p{n {17/ 2 (£ - £) < t/BE} -0 (t)| = 0@ (2.4.2)
t
and
p{| (dle_r/fC1)1/2 - 1] >a" = ow@@M, (2.4.3)
then by Lemma 2.3.4 we have that
sup |P{fg - f<td fa}-o(t)| = 0@ as da»o,
t

which, together with (2.4.1), yields the theorem. Hence it suf-
fices to show (2.4.2) and (2.4.3). First we shall show (2.4.3).

By the use of the inequality that



ly-1| >z if |/y-1|>/z for y>0 and z >0, (2.4.4)

it is sufficient to show that

P{ldle“r/fc - 1| >a?"} = o(@". (2.4.5)

1

Put g, = [(cld"?)l/(z“r)] , g, = [{fc, (1 —a?Mya 2/ ATy g

g,= [{fCl(l-kdzn)_z}l/(l~r)]. In view of (2.3.8) we easily get

P{Idle_r/fCl - 1] > a%™ (2.4.6)

< Plgy 2N<g,} + PIN>g,+1} = I + II, say.

By means of arguments similar to I and II in (2.3.12) we can
prove that I-FII==O(dn), which, together with (2.4.6), yields

(2.4.5). Next, we shall show that

sup |P{Wg <t} -o(e)]| = oM. (2.4.7)
t

Suppose the following relation be valid:

1l+r

p{|sl/BENtT - 1] >a®"} = o(aM. (2.4.8)

Then from (2.4.4) and (2.4.8) we get that

l+r)l/2

P{|sy/ (BEN - 1] >a" = o@. (2.4.9)

It is easy to see that for a random variable Y and a positive
number € (< 1/2) P{|Y—l-ll> 2e} <2P{|Yy -1] >e}. By this fact
and (2.4.9) we have

p{| (BenttEYL/2 /s~ 1] >2a") = o@™. (2.4.10)

N
Hence, by virtue of (2.4.10), Lemmas 2.3.3. and 2.3.4 we obtain
(2.4.7). Thus, in order to prove (2.4.7) it suffices to prove
(2.4.8). Lemma 2.3.1 implies that

l+r -Y

|s2/Bent*® - 1] < c,n™" for nx1. (2.4.11)

= 72
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. - 2 N .
Since C2g1r<<d " for 4 sufficiently small, it follows from

(2.3.8) and (2.4.11) that

P{lsI%I/Ble+r - 1 > a2y

1l+r -r

-1l <cn” , N=n}

oo
5 p{a’" < |SI21/Bfn
n=gl

< I P{d2n<02g1r , N=n} = 0 for d sufficiently small.
n=g
1

Hence (2.4.8) holds. Last of all, we shall prove (2.4.2). Let

Id’ d>0, be the closed interval given by Id==[g2 ,g3]. Since

(nl_r/Bf)l/z(f -f)=W_+V_ and V_ is finite for each n>1 by
n n n n =
(2.3.2), we get that
IP{N(l'r)/z(fN-f);t/“Bf“}—@(t)] (2.4.12)

< |Plwg<t-vy, NeI b -o(t)| + P{NAT )

N

for all teR. From (2.4.5) we have
P{NET,} = o@h. (2.4.13)

Set Md==max{|vj| : jeIg}. Since

P{Wg <t=-Mg, NeIgl <P{W <t -V NeIgl < P{Wg <t +My}

N 14
and |®(x) - d(y)]| < |x-y| for x,yeR, we obtain that

P{W,<t-V,,NeI.}~a(t)] (2.4.14)
N= d

NI
< IP{Wg <t =Myl -o(e-Mg) |+ [e(t-My) - o (t)| + P{NEI;)
+ [P{w <t 4+ Mg} - <I>(t+Md)| + [o(t+My) -o(t)]

< 2{sup |P{Wg <t} -o(t)| + My} + P{NEI;} for all teR.
t



Hence, according to (2.4.7),(2.4.13) and (2.4.14) we get that

n
sup |P{W <t-V_,NeI_.}-0(t)]| < 2M.+0(d"). (2.4.15)
£ N N’ d = d

By the use of the Taylor theorem and the conditions on f and K

we have that IanQ;C3n—2r. Hence, it holds that IVn|;;C4b(n),
where
n~ (5¥-1)/2 if 1/5<r<1/2
b(n) n—3/4(l-+log1ﬂ if r=1/2
n~ (1Fr) /2 if 1/2<r<1.

Since b(n) is nonincreasing for n> 2, we get that My <C,b(g,) for

small d. It follows from the definition of n that b(g2)==0(dn).

Hence from (2.4.15) we have that

sup |P{WN;t -V

, NeIgl-o(e)| = o(@h. (2.4.16)
t

N

Thus, combining (2.4.12), (2.4.13) and (2.4.16) we obtain (2.4.2).

Therefore the proof of the theorem is complete.
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3. STOPPING RULES IN DENSITY ESTIMATION

3.1. STATEMENT OF THE PROBLEM

In this chapter we consider the problem of sequential estima-
tion of a probability density function f at a given point x, on
the p-dimensional Euclidean space RP. In connection with this
problem Carroll [6] proposed two classes of stopping rules. The
first class is based on the idea of fixed-width interval estima-
tion (see Chow and Robbins [7]). The idea for the second class is
to find two statistics for f(xo) and to stop when the difference
in those two statistics becomes at most 2d (see, e.g., Geertsema
[13], and Sen and Ghosh [31]). Stute [33] treated the second class
of stopping rules. In Chapter 2 that of the first type was dis-
cussed.

In this chapter we consider the following first class of
stopping rules. For each d > 0 we define the stopping rule N(d) as

N(d) = smallest integer n > 1 such that
nhP > (b/a)2%f (x.) (3.1.1)
n = n' 0"’ o

where hn, b and fn(xo) will be given in Section 3.2. The defini-
tion of this stopping rule N(d) given by Carroll [6] is motivated
for the construction of a 2d-width confidence interval for f(xo),
[fN(d)(xo)-—d ’fN(d)(XO)'*d]’ with prescribed coverage probability.
The discussion in the present chapter focusses on the limiting
behavior of the moments of the stopping rule N(d).

The purpose of this chapter is to show that for any given

function g with certain properties

g(N(d)hg(d)dz)/g(b2f(x0)) + 1 a.s. as d-+0



and

£{g (N(d)h dz)]/g(b2f(x0)) > 1 as d-o0.

(d)
As an application of this result we obtain an approximation to
the g-th moment E{ (N(d))9} of N(d) for each g>o0.

This chapter consists of four sections. In Secticn 3.2 we
give assumptions. Section 3.3 presents the main result and its
application. The proof of the theorem of Section 3.3 is given in

Section 3.4.

3.2. ASSUMPTIONS

In this section we shall give assumptions used throughout
this chapter.

Let £ be a (unknown) probability density function on RP with
respect to the Lebesgue measure. Let {Xn,llilj be a sequence of
independent and identically distributed random vectors, taking
values in RP with the common density f. For estimating f we use
the recursive kernel estimators defined as follows:

X) =0

where

-n P _ P
Kn(x,y)-—hn K((x y)/hn) for x,yeR

Throughout this chapter we assume the following conditions on £,

K and hn' referred to as the "stated conditions":

f is continuous and bounded on Rp;



K is a bounded probability density function on rP satisfying

lallPk@) ~ 0 as [lull+=,
where |[|-|| denotes the Euclidean norm on RY;

{hn rn>1} is a sequence of positive constants satisfying

hn ¥ 0 and nhg T ©® as n-+ o, (H1)
nhg/log logn - » as n-+®, (H2)
hn/hn—l + 1 as n-~ o, (H3)

for some constant Re (0,«)

N ,
(hﬁ/n) % h.P > B as n- . (H4)

EXAMPLES.
After some calculations the following sequences {hn ,n>1}
can be seen to satisfy all the conditions (H1) v (H4).

(1) For each fixed integer d > 1
h_ ={(n+ny%(log (n+ng) 7P for nx1

with 0<r <1, where ng = lexp{d/(1-r)}], and [a] denotes the

largest integer not greater than a;

(1ii) hn=n_r/p for n>1 with 0<r<1.

In both cases B in (H4) is equal to (L+1) L.
Let any ae(0,1) be given. Set
b=vBE o (L -0a/2), (3.2.1)

where

B=BIK2(u)du, B is as in (H4), the domain of integral is RP
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and ¢ is the standard normal distribution function. Throughout

this chapter let any X with f(xo) >0 be fixed and we use the

stopping rule N(d) defined by (3.1.1).

3.3. 'ASYMPTOTIC BEHAVIOR OF THE STOPPING RULE
In this section we shall give three results about the asymp-
totic behavior of the stopping rule N(d) defined by (3.1.1).

The following is our main result.

THEOREM 3.3.1. Let g be a continuous, strictly increasing
function on [0,») satisfying

g(0) =0, g(x) + « as x> and

logg(x)/x =+ 0 as x-—«. (3.3.1)

Then, under the stated conditions on £, K and hn for any X with

£(x4y) >0

g (V@2 5,3%) /g (b%E(xg)) » 1 a.s. as d>0 (3.3.2)
and

Blg (N (@)1 5,d%) }/g(b?E(xg)) » 1 as d»0, (3.3.3)

where b is as in (3.2.1).

As applications of Theorem 3.3.1 we can obtain the following two

corollaries.

Put g(x) =x for x> 0. Then we have
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COROLLARY 3.3.2. Under the conditions of Theorem 3.3.1

o) 2 -2
N(d)hN(d)/(b f(xo)d ) 1 a.s. as 4+ 0
and
P 2 -2
E{N(d)hN(d)}/(b f(xo)d ) =1 as d-+0.
REMARK 3.3.1. This corollary with the result about the ex-
pectation corresponds to Lemma 4.1 of Carroll [6], though his

and our assumptions are different. Also, by the same argument for
Theorem 3.7 of Isogai [15], under additional assumptions on £, K

and hn we obtain

lim P{|£

d-0

N(d)(xo)

q/(l-r)

Set hn==n_r/p with 0<r<1l. For gq>0 put g(x) =x on [0,®).

Then Theorem 3.3.1 gives

COROLLARY 3.3.3. Under the conditions of Theorem 3.3.1 for

qg>0 and re(0,1)

(N(d))q/(bzf(xo)d_z)q/(l_r) ~1 a.s. as d-0
and

B{ (v(a) ¥/ (%E(x)a”H Y 1) 51 as a0,

REMARK 3.3.2. This corollary with g=1 corresponds to

Lemma 4.3 of Carroll [6].



3.4. PROOF

In this section we shall prove Theorem 3.3.1 of Section 3.3.
Throughout this section C,Cl,Cz, -++ denote appropriate positive
constants.

The following lemma was given by Bennett [2].

LEMMA 3.4.1. Let Yl, ..., Yn be a sequence of independent
random variables satisfying

EY, =0 and |Y,[<C a.s. for 1gign.
th 2
Set S_= L Y, and o_=Var(S_ ). Then for any € >0
n .- .71 n n

p{|s_| 2 e} < 2exp{-e’/2(c> +Ce)}.

Before proving the theorem we shall define two functions. Define

a real-valued function n(x) on [0,») as

n(X)=nhE+{(n+l)h§ -nhg}(x—n) for n < x < n+l,

+1
where n=20,1,2, --- and h0==hl. By (Hl1) it is easily seen that n
is continuous and nondecreasing and n(x) +« as x +®. Next, let a
real-valued function ¢(x) on [0,») be defined as

¢ (x) =sup{u>0:n(u) <x} for xel0,x).
Then by (H1) and the properties of n we can show that ¢ is strict-
ly increasing and

dp(x) - © as x>, (3.4.1)

n(d(x)) =x for xe[0,=). (3.4.2)

It follows from Theorem 2 of Devroye [10] that fn(xo) > f(xo) a.s.

as n—+». Thus we can apply Lemma 1 of Chow and Robbins [7] to
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obtain that N(d) <« a.s. for each d > 0 and

2 2
N(d)hg(d)d + b E(xy) (>0) a.s. as d+0,

which, together with the continuity of g, yields that
gN()hP d%) » g(b%F(x.)) a.s. as d=+0 (3.4.3)
N(d) 0 T . T

. 2
Since g (b f(xo))> 0 (3.3.2) is implied by (3.4.3). Now, if it
holds that for d02>0 chosen later

0

£  sup P{g(N(d)hg

m=1 0<d<d0

2
(d)d ) >m} < o, (3.4.4)

by the use of (3.4.3) and Lemma 3.2 of Bickel and Yahav [3] we
will obtain

Elg(@hd L a%)} » g(b%E(xy)) as d~ o,

(d)
which implies (3.3.3) because of g(bzf(xo))> 0. Hence in order to
prove the theorem it suffices to show (3.4.4). By the properties
of g and (3.3.1) we can prove that the inverse function g_l(x) is
continuous and strictly increasing on [0,») and that g_l(0)==0,

g—l(X) > © as x> (3.4.5)

and

gt (x)/logx + @ as x-o. (3.4.6)
It follows from Lemma 2 of Devroye [10] that Efn(xo) - f(xo) as
n +«,. Hence there exists a positive integer ng such that

O . 4.7
Efn(xo) < 2 f(xo) for all n>ng, (3 )
For x>0 and d > 0 define an integer-valued function Yy (x,d) as

- -2
Vi) = (o (g Tt a )T,
where [a] denotes the largest integer not greater than a. Set

Cl==g—l(l) (>0). It is clear that
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1 -2 2

(m)d ) >¢(cyd ).

inf ¢ (m,d) > cp(cld‘z) -1 and inf ¢(g
m>1
2. m>1

Thus, since by (3.4.1) ¢(Cld_2)-Mo as d+ 0 there exists a constant

d, (e(0,1)) not depending on m such that for all m>1

. -1 -2
inf ¢(g “(m)d 7) > 2 (3.4.8)
0<d<d
0
and
inf ¢ (m,d) > n,. (3.4.9)
0<d<d
0
(3.4.7) and (3.4.9) imply that
sup Efw(m d)(xo) < 2f(x0) for all m> 1. (3.4.10)

0<d<dO

It follows from the monotonicity of hn and the definition of n

that
3n(n) > n(n+ 2) for all n>1. (3.4.11)

Thus by the use of (3.4.2),(3.4.8),(3.4.11), the definition of ¥

and the monotonicity of n we obtain that for ds(O,dO) and m>1

npm,d)) > n (el ma ) -11) > n(lgg Hma™) -11 +2)/3

> nplg ™ ma )3 = g tma /s,

which yields that

inf n(p(m,d)a? s g"tm /3 for all m> 1. (3.4.12)
0<d<d B
0

By (3.4.5) there exists an integer m, > 1 such that

-1 2

g (m) > 9b f(xo) for all m>mg,. (3.4.13)
Combining (3.4.12) and (3.4.13) we get that

(3.4.14)

inf b—zn(w(m,d))d2 > 3f(xy) for all m>m,.

0<d<d0
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For notational simplicity let N=N(d). According to (3.4.2), the
definition of Yy and the monotonicity of n

1 2

N £ ¢(m,d) implies n(N) < g— (m)ya “. (3.4.15)
Thus, taking account of the monotonicity of g_l, the definition

cf n, (3.1.1),(3.4.10),(3.4.14) and (3.4.15) we obtain that for

de(O,dO) and m;mo
P{g(NnPa%) >m} = P{n(N) >g " (m)d %} (3.4.16)
< PN Ymd)) < PLE, o) (k) > “n(bm,d))a’)
< Py, a) %) T EEy (m,a) (o) > £(xg))
< PUE (m,a) ®o) = BEy(n,a) (xg) | > £(xy) ).
2 n
Set Z, =K, (x.,X.) —EK, (x,,X,) for 1<i<n, s = I Var(Z,) and
i 170771 i 701 =T = noiq 1

lall = sup{]a(x)] : xeRP} for a real-valued function g on RP. By

the boundedness of K and the monotonicity of hn

|2z, | ;Czh_p a.s. for 1<iz<n (3.4.17)

1 n = £
According to the boundedness of f and K and the monotonicity of

h we have
n

2 no_2 Do-p.2
s° < I EK (x.,X.,) = h.P/K* (u) f (x, - h,u)du (3.4.18)
n=,_ 1770771 A 0 1
i=1 i=1
o 7P -p
<&l H£Ell, = h;¥ < Cynh =,
l.—_.
_l n
Since f (x.) —Ef _(x.) =n £ 2., by the use of (3.4.17),(3.4.18)
n 0 n =0 i=ll

and Lemma 3.4.1 we have that for da(O,dO) and m>m,
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- 3.4.19
PUE, (ma) o) = BEy (m,ay (o) | > Elxg)d ( )

< 2exp{-C n(¥(m,a)}.

It follows from (3.4.12) and d0< 1 that

inf n(p(m,d)) > g T(m)/3 for m> 1. (3.4.20)
0<d<dO B -

Thus, by virtue of (3.4.16),(3.4.19) and (3.4.20) we obtain that

for all m ;mo

sup  P{g(N(@)hE . a%) >m} < 2expl-Cg ™ (m)). (3.4.21)

0<d<d0

From (3.4.6) there exists an integer my > mg such that

(@)
1

Cg— (m) > 2logm for all m2m, . (3.4.22)

Combining (3.4.21) and (3.4.22) we have

I sup P{g(N(@)hE 5 d%) >m} < 2(my-1) +2 = n? < w,
m=1 0<d<d m=m

which implies (3.4.4). Therefore the proof of Theorem 3.3.1 was

completed.
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4. SEQUENTIAL ESTIMATION FOR A MULTIPLE REGRESSION FUNCTION

4.1. STATEMENT OF THE PROBLEM

Let z2=(X,Y), le(xl'Yl)’ e, Zn=(Xn’Yn) be independent and

identically distributed RPxR-valued random vectors on a probabil-
ity space (Q,F,P) with a unknown joint probability density func-
tion (p.d.f.) f*(x,y) with respect to the Lebesgue measure. There
have been many papers on the estimation of the nonparametric re-

gression function m(x) =E[Y]X=x] (of Y on X) by

n
mn(x)==.2 Wni(X)Yi’ (4.1.1)
i=1
where Wni(x)==Wni(x,Xl,---,Xn) for each i (1<i<n) is a suitable
real-valued Borel measurable function of x,Xl,---,Xn.

Nadaraya [22] and Watson [35] proposed the estimator (4.1.1)

with p=1 and
n
W (x) =K”X‘Xi’/hn)/jle((X‘Xj’/hn)'

where K(x) is a suitable kernel function and {hn} is a sequence
of window-widths tending to zero. Later on, many authors have
studied its asymptotic properties (see Prakasa Rao [25] for ex-
ample) .

When data increase we may be faced with computational bur-
dens in processing them. To decrease these burdens Ahmad and Lin

[1] proposed a recursive version of (4.1.1) with

W, (x) =h] K((X—Xi)/hi)/.z

-p _
ni . hj K((X Xj)/hj),

1

or equivalently,
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b
I

fO(x)E 0

)P

Hh
5
9
|

= (b _/h (x) +K((x =X )/h) (4.1.2)

n-1 n-1

mo(x) =m__j(x) + fr_ll () {¥y -m _ (x)IK((x-X)/h)

and they proved some pointwise results for these estimators.
Devroye and Wagner ([l1l1l] considered a still simpler recursive esti-
mator than (4.1.2). The author [16] proposed a class of recursive
estimators mn(x) defined in Section 4.2 and used in this chapter,
which contains (4.1.2) as a special case. Stone [32] has investi-
gated the estimator (4.1.1) and discussed sufficient conditions

on {Wni(x)} for m_(x) to be consistent.

On the other hand, when one uses a recursive estimator in
practical situations one may be required to terminate the compu-
tations to obtain the estimator with given accuracy. In this case
the sample size is a random variable. Suppose that Nt for each

te (0,») is a stopping rule. Recently, Samanta [30] has shown the

asymptotic normality of m,, (x) by using the estimator (4.1.2).

Ne

In this chapter we propose a class of stopping rules N=
N(o,d,xX) based on the idea of Chow and Robbins [7], construct a

sequence of 2d-width sequential confidence intervals

N(x)-f-d] for m(x) and show that the probabil-

IN,d(X) = [my(x) -d, m
ity P{m(x)elN d(x)} converges to o as d tends to zero.
14
In Section 4.2 we shall make some preparations and give sev-
eral lemmas. In Section 4.3 we shall prove the asymptotic consist-

(x) .

ency of the sequential confidence intervals IN a
r



4.2. PRELIMINARILES AND LEMMAS

In this section we shall make some preparations for Section

Let K(x) be a given bounded p.d.f. on rRP with respect to the

Lebesgue measure satisfying[IuHSI(hn + 0 as||u||p—>~Oo , where

I-||p denotes the Euclidean norm on RP. We shall impose either of

the following conditions on K (x):

S uiK(ul,---,up)dul---dup =0 for all i=1,---,p (K1)
Rp

and
1l 2xwan < w. (K2)
Rp

Let {hn} be a nonincreasing segquence of positive numbers conver-

ging to zero, on which some of the following conditions are im-

posed:
nhE T » as n - wo; (H1)
For some a (0<a<l) (H2)
l—2ahp + 0 as n-» o,
n
1-2 T 2(a-1), -
n P 3 J a hP » B as n-+o for some constant g >0,
n =1 j
n
n>/2732,30/2 5 3‘3’(""‘1)1r1:.,2p + 0 as n-ow, and
Jj=1

J hy = 0 as n-»w;

For any € (> 0) there exists a constant § > 0 such that

In/m-1| <§ implies |h /h -1[<e ; (H3)
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(nzhﬁ)‘l < ; (H4)

1

I ™ 3

n

1+n, p+
n nhﬁ 4, 0 as n—+« for some constant n > 0. (H5)

Throughout this chapter we use the following class of recursive
estimators mn(x) of the regression function m(x), which is pro-
posed by the author [16]:

mo(x) =0, fo(x) = c for an arbitrary constant c¢ >0

H
)
x
il

f (x) +an{Kn(x,Xn) —fn__

n-1 (x)}

m_(x) =m

n n__l(x) +anG(fn(X)){Yn—m

n_l(x)}Kn(x,Xn)

for each n> 1, where
an==a/n with 0<a<1, (4.2.1)

{ yml if vy>0

0 otherwise,
and

- 1w P - P
Kn(x,s) hn K((x s)/hn) for x,seRY.

In this chapter, if in some term its denominator is less than or

equal to zero we define the value of the term to be zero. Let

£(x) =Y E* (x,y)dy , a(x) =JyE* (x,y)dy , g (x) = y2£* (x,y) dy,
R R R

0i(x) = Sytex (x,y)ay and v (x) = (g(x)/E(x)) - (q(x) /€ (x)) 2

R

(>0).

Clearly, v(x) >0 is equivalent to £(x) >0 and v(x) > 0. Throughout
this chapter we assume that f(x) , g(x) , g(x) and y(x) are all

finite on RP and write m(x) =q(x)/f(x). Also, let C,C,,C

1772

denote appropriate positive constants.

Define sequences {qn(x)},'{gn(x)} and {vn(x)} as follows:
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a,(x) =q ;) +a {0 (x,2 ) —g,_ (x) !

I, (x) =g _(x) +a {6 (x,2 ) -9 _, )]}

2

<
3
I

; (9, (x) /£ (x)) = (q, () /£_(x))

for each n>1, where for xeRp, z==(u,y)€RPXR and n>1

_ _ .2
Qn(x,z)-yKn(x,u) and Gn(x,z)——y Kn(x,u).
For a, in (4.2.1) set
n
Yo=vp=1.,vy= T (1-ay) fornz2 and
Jj=2
n
T (l-a.,) 1if n>m>0
_ j=m+1 -
an

1 ifn=m;0.

Obviously, Yn + 0 as n > o, yn:>0 for all n>0 and

-1
Bon = Y Y

if n>m> 1.
mn m = =

n

It is known that

a_-a
B v m n as n>m=+*« and

-a <c.n® for all n>1,
n = 2 =

Q
o]
I
<

" n as n-> " mean im ) =1.
where ¢n wn eans i+w ¢n/un

(4.2.2)

(4.2.3)

(4.2.4)

REMARK 4.2.1. We can write fn(x) ,qn(x) and gn(x) as fol-

lows:

n

£ 00 = T yBy,K; 00%g) + 60,0
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n .
q, (x) =j£laj8anj(x,Zj) and g _(x) = 1I a.BjnGj(x,Z-) ,

where I (+)=0 if n<m.

Jj=m

For any real-valued function 0 on rRP 1et C(B6) be the set of all
continuity points of & and ||6]|_= sup{]|6 (x) | : xeRP}. For any fixed

xeRp and n>1 let

(0) _ _ (1) _ _
U, —Kn(x,Xn) EKn(x,Xn) » U —Qn(x,Zn) EQn(X'Zn) '
n
Wo=ay tw'® , v@y- 5 - mn?)/%y W, ana
n n'n n n n n n =1 j

_ p,1/2 - - -
BX = (nh?) /(£ (x) ~£(x) , q (x) ~q(x)) ",

where the prime denotes transpose.

We shall summarize some results obtained in [15] and [16].

LEMMA 4.2.1 ([1l6]). Let {dn} be a sequence of positive num-
bers converging to zero. Let k(x) be a bounded, integrable, real-
valued Borel measurable function on RP satisfying ||u||§ k(| = o0
as ||u||p+ ©. Let 6(x) be an integrable, real-valued Borel measur-

able function on Rp. Then, for each point xeC(8) we have

S d;pk((x—u)/dn)e(u)du - e(x)g k(u)du as n-+o and
rP rRP

sup S d;pIk((x—u)/dn)He(u) |lau < C,
n>1 rP

where C may depend on Xx.
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LEMMA 4.2.2 ([16]). Assume E[Y2] <o, Let (H4) be satisfied,

and let x be a point with f(x) > 0, belonging to the set

C(f)MN\C(g)NC(g). Then

lim £ _(x) =f(x) a.s., lim g_(x) =g(x) a.s. and
n n
n->o n->o

lim m (x) =m(x) a.s.
n-+-o

LEMMA 4.2.3 ([15]). Let {yn} be a sequence of random vari-
ables on a probability space (Q,F,P). Suppose that there exists
a null set A such that each weAC

yn(w) >0 for all n>1, lim yn(w) =1 and
n—>o

yn(w) >0 for all n>m if ym(w) >0 for some m=m(w).
Let {b(n)} be a sequence of positive numbers satisfying

lim b(n) = «® and lim b(n)/b(n-1) = 1.

n-o n--

For each te(0,~) define Nt as the smallest integer n>1 such that

b(n)/t;yn > 0. Then

P{Nt<+00} = 1 for each te(0,x) , P{NtT © as t+o} =1 and

P{b(Nt)/t + 1 as t>o} = 1.

The following lemma gives the asymptotic normality of Bn'

LEMMA 4.2.4. Assume E[Y4] <ew,_, Let (H2) be satisfied. Con-
sider a point xeC(£)NC(g)MNC(g) with v(x) > 0. If either xeC(y) or
|¥]l, <> holds, then

Bn——> N(O,T) as n—+« (in law),
L
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where the covariance matrix T =T(x) is given by

F==a2BS K2(u)du (f(x) q(x)) .
rP q(x) g(x)

PROOF. By the Cramér-wWold theorem (see Billingsley (4],

2

page 49), it suffices to show that for D™ = (d dl)eR

0’

D'Bn ———> N(0,D°TD) as n-—+cw, (4.2.5)
L

We may assume D # 0. Let oi be the variance of D’Bn. It holds that

DB /o — > N(0,1) as n-= (4.2.6)
n"n

if we verify Lyapounov's condition

n
(nbP)3/%y3 1 Elpw. |30 » 0 as n-e. (4.2.7)
n n .- j n
j=1
It is easy to see that
2 p2 N 2.2 L 5 (t), 2 (0).. (1)
o  =nh’y_ jilanj {tioth[(Uj )]+2d0dlE[Uj Uj 1}, (4.2.8)

By Lemma 4.2.1 we get that as n—+«

RPEru{®)?1 » £0 k% (W au (4.2.9)

nPEL )%+ g ) K (w)au
and

Prorqy (0) (1) 2
hnE[Un U, ] » g(x)JK" (u)du,
where the domain of integral is RP. According to (H2) and (4.2.4)

%YfthP’T © as n~+, which, together with (4.2.9)

n
we have that a 5 by

J=1

and the Toeplitz lemma (see Loéve [20], page 238), yields that
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2_.-2 -p, -
a%y > %n:
52173730 )

™3

( 121 > £(x) /K> (u)du as n- .

We note that Lemma 1.2.1 can be proved under the condition (H2).

Thus by making use of Lemma 1.2.1 and the above result we obtain

2 2 -
nhEYn 2 ainzE[(U§0))2] + a26f(x)fK2(u)du as n>. (4.2.10)
J=1

By the same argument for (4.2.10) we have that as n->®

n
nhPy2 1 a2y7Zerw{M)?) » a%8g(x) /K% (W) du (4.2.11)
and
n
hPy2 5 a2y 2gpul®gll) 2 2
"0 Tn j=lan3 E[U;7 05771 > a®Ba(x) /K" (w)du . (4.2.12)

Combining (4.2.8), (4.2.10) ~ (4.2.12) we get

oi +~ D'I'D as n-—+o©. (4.2.13)

As v(x) >0 and f(x) > 0 we have
D°TD > 0. (4.2.14)

It can be easily shown that

1
E|D’w.|3 < 4( I |a |3)a?y.3max{E|U§0)|3 ,E|U§l)|3}. (4.2.15)
3= T b J' 3 J J
It follows from Lemma 4.2.1 that
E|Ujf°)|3 < cn3%® for all 321 (4.2.16)

By HOlder's inequality we get that for each j2>1

. (1) 3 , 3
E[lUj 171 < 8E[|Qj(x,zj)! ]

-8 § {lyIBKi(x,u)(f*(u,y))3/4}{Kj(x,u)(f*(u,y))1/4}dudy
RPxR
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< 8] y K, (x,w) 1338+ (0, y) quay 1374
j
RPxR

x [ ’S K?(x,u)f*(u,y)dudy /4 8hgszIlXI2,
RPxR

where

1, =10§ PR (- w) /003 Yy wan 1374 ana
P
R

= ~p.4 1/4
I,=1 S hj K ((x—u)/hj)f(u)du ] .

As xeC(f), it follows from Lemma 4.2.1 that I,<C,. If xeC(¥) then

by Lemma 4.2.1 we get I, <C,, and if [|[y]|_ <= then we have

1< Cllwll k] 22w

In any case, Il><I2 is bounded by a constant and therefore, we

obtain

Bljuit 17 < ¢,n;?P for all j>1. (4.2.17)

Combining (4.2.15) ~ (4.2.17) we have

.3 3 -3,-2p .
E|{D W, < C_.a.y. h. for all j> 1. (4.2.18)
D717 £ CgagvyThy sz

Since by (4.2.4) and (4.2.18)

n
r Elpw. | < C6n3/2_3ah§p/2

j‘3 (a-1) h—'2p
j=1 ) j

1P
(n n) L j

3/2.3
Yn

14

I3

it follows from (H2) that

>0 as n->o,

which, together with (4.2.13) and (4.2.14), implies (4.2.7). By
virtue of (4.2.6) and (4.2.13) we obtain (4.2.5). Thus the lemma

was proved.
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LEMMA 4.2.5. Let {hn} be a nonincreasing sequence of posi-
tive numbers converging to zero and satisfy (H1) and (H2). Let
{Vn} be a sequence of independent random variables on a probabil-

ity space (Q,F,P) satisfying

EV,=0 and hPEV. < C for all n>1.

For any de(0,») let N(d) be a positive integer-valued random var-

iable on (Q,F,P) and n(d) a positive integer with lim n(d) =«. Set
a-=o0

n

T = I a.,B. V. for each n>1,
n j=1 J in j =

where a, is given in (4.2.1). If

N(d)/n(d) ———> 1 as d-+0 (in probability) ,

then

-7 d)) Q—-9 0 as d-0.

N(d) P

n(

PROOF. For simplicity let N=N(d) and n=n(d). Let any
positive numbers € and & be fixed. For any p (> 0) set

My =[(1-p)n] and M, = [(1+p)n],
where [b] denotes the largest integer not greater than b. Since
as d~»0

20/(L-p) >0 and {(l-p)/(L+p)}% > 1,

there exists a positive constant p=p(e,£) <1/2 such that
20/(1-p) < €2E/2 and (1-{(1-p)/(1+p)})?2 (4.2.19)

< 52&:,/2 .

As lim n=o we get M, +« as d » 0 for i=1,2 and M,/M v (L=p)/(1+p)
d-0 1 17772



as d+ 0. Hence by (4.2.3) and (4.2.19) we have

2
(L=By pm ) < €2E for d sufficiently small. (4.2.20)

12

Also, since (M, -M;)/M; v 2p/(1-p) as d+0, it follows from

(4.2.19) that

(M, —Ml)/Ml < €2£ for d sufficiently small. (4.2.21)

It is clear that

MZ/Ml < C1 for all d>0. (4.2.22)

Now, we shall prove the lemma. By assumption we get

P{|N/n-1| >p} < & £for d sufficiently small. (4.2.23)

Put
1/2

I=P{(Nh§) / |TN—Tn|;e, |IN -n| <pn} .
Then

I<P{(ihp)l/2|T -T | >¢ for some ie(M,,M,]} (4.2.24)

= i i n' = 1772

<P{(ihp)l/2(lT -7 | +|T_-T, |)>e for some ie(M;,M,]}

= i i My n M= 1772

<P{ max (ihljo_)l/2 x 2 max [T, - Ty | > e}

M. <i<M M, <i<M 1

1 2 1 2

=P{ max (ih?)‘l/2 X max |Ti—TM | >e/2} .
Ml<i;M2 Ml<i_‘<=M2 1

By (4.2.2) and the definition of Tn we have that for ie(Ml,M2]

Ml i
T, -T, | < | L a,(Bs: =Bupy Vsl + | & aiBL.V.|
I i Ml = =1 J 731 le ] j=Ml+l Jjoji1
M .
< (YM —Yi)| Zlanglvjl + Yi‘ JZ- aj'Y;j.l ]| ’
1 J=1 j=Ml+1
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which, together with (4.2.24) and the monotonicity of hn’ nhE

and Yor implies that

M
1
I:;P{(Mzhﬁ )l/z(yM = Yy )| a.y.lV.| (4.2.25)
1 1 2 4=1J 7 J
i
+ (Mzhﬁ )l/2 max Yi' z 347y le e/2} < T+,
2 Ml<l;M2 j=Ml+l
where
My
Jl==P{(M2h5 )l/z(yM ~ Yy )| Z a.yTlV.I:;€/4} and
1 1 2 g=1 13 3
i
J2==p{(M2h§ y1/2 nax Y| T ajyglvjlti€/4}
2 M, <i<M, j=Ml+l
From (H2), (4.2.4) and assumption we get
o2 2 1-2 I 2(a-1) -
in? $ a.Bl.EVS < c it %P 1 39'%7H TP < ¢, for all i>1.
i 5=1 37JiT ) = T2 i j=1 3 = 73 =

Hence by Chebychev's inequality, (4.2.2),(4.2.20),(4.2.22) and

the above fact we obtain

M
“2(1-8, . )%(M,/M )M NP -
wpm) Mo/ My

2
a.

5 EV§ (4.2.26)
1 .

2
J, < C,e BjM

1 =74 1

< C5§ for d sufficiently small.
From assumption, the Hajek-Rényi inequality (see Petrov [24],
page 51), the monotonicity of hn’ (4.2.21) and (4.2.22) we have

that for d sufficiently small

M M

2 2
3, < C6e_2M2hﬁ I a’EVS < ce 2M2 R (4.2.27)
1 1
< Coe™MMI% (M, -M,) < C.E
Y ot Wy =) 2 Cy



Combining (4.2.23) and (4.2.25) v (4.2.27) we obtain

l/2i

p{(Nhg) T “Tnliﬁ};I“LP{lN‘n'ipn}écgg

N

for d sufficiently small, which concludes the proof of the lemma.

4.3. FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS
In this section we shall propose sequential confidence in-
tervals In d(x) for m(x) with prescribed width 2d and coverage

probability o. Then the asymptotic consistency of these confidence

intervals will be shown, that is, P{m(x)EIN(d) d(x)} +~ 0 as 4+ 0,

where {N(d)} is the class of stopping rules defined below.

Let any o (0<a<1) be given. Define D=D(a) >0 by
®(D) —¢(~D) =a, where & is the standard normal distribution func-
tion. Let d be any positive number, and let any xeRP be fixed. We
define the stopping rule N(d) =N(a,d,x) as the smallest integer
n>1 such that

(0°B) “ta®nnP > v_(x)/f_(x) > 0,

where

5=a2pf k2 (wau (>0) with B being given in (H2) .  (4.3.1)
P
R

Define the confidence interval In d(x) as
In,d(x) = [mn(x)-d ,mn(x)-kd].

Also, define n(d) =n(a,d,x) as the smallest integer n>1 such that

(0%B) Fa®nhP > v(x)/£(x) > 0.

Let o2(x) = Bv(x)/f(x) with B being given in (4.3.1).
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The following lemma states the asymptotic properties of N(d).

LEMMA 4.3.1. Assume E[Y4]<<w. Let (H1), (H3) and (H4) be sat-
isfied. Consider a point xeC(£)NC(g)N\C(g) with v(x) >0. If ei-

ther xeC(y) or ||v||_ <« holds then we have

P{N(d) < +o} =1 for each d>0, P{N(A)fT « as d~+0}= 1,

N(d)hg(d)dz/(uzoz(x)) +1 a.s. as d-0, and
P P N >
N(d)hN(d)/(n(d)hn(d)) 1 a.s. as d-=>0.

PROOF. From the definition of N(d) we get

N(d) = smallest integer n > 1 such that b(n)/té;yn>»o, (4.3.2)
where
v_(x)/E_(x) ohP
__ n n _ n _ 2 -2
T T YR /EX) , b(n) TR JE () , and t=D"Bd “.
Clearly,
b(n) >0 for all n>1, 1lim b(n) =« and (4.3.3)
n--

lim b(n)/b(n-1) =1.

n-—r-o©
We shall show that

v (x) >0 for all n>1 on (4.3.4)

and that for any fixed wefl

vn(x)> 0 for all n>m if vm(x)2>0 for some m=m(w)2>1. (4.3.5)

For simplicity we omit w. By the definition of vn(x) it suffices
to consider the case where fn(x) >0.

That v_(x) > (resp. > ) 0 for all n>1 is equivalent to



5 .
9, (x) £ (x) =g (x) > (resp. > ) 0 for all n2>1. (4.3.6)

Let any wef be fixed. First we shall prove (4.3.4). By the defini-
tions of fn(x), qn(x) and gn(x) we have

2

A ,,=Q-a)’a +a (1-a)D for each n>1, (4.3.7)
where
- 2
A =g (x)Ef _(x)-q () and
D =G (x,2 )E _ (x) +K (x,X )g _,(x)-20 (x,2 )a, ;(x).
By Remark 4.2.1 we get
n-1
D= j:lajsj n-1 {Gn(X,Zn)Kj (x,Xj) +Kn(x,Xn)Gj (x,Zj) (4.3.8)

- 2QI’1(X’Zn)Qj (X’Zj)} + Gn(xlzn) BO n-—lc

for each n>1. From the definitions of Kn(x,Xn), Q (x,Zn) and

n

Gn(x,Zn) we have

Gn(x,Zn)B0 n-1 € > 0 for each n>1 and

Gn(x,Zn)Kj(x,Xj)-+Kn(x,Xn)Gj(x,Zj) —2Qn(x,Zn)Qj(x,Zj) >0
for each j=1,---,n-1 with n> 2, which, together with (4.3.8),
yields that

Dn > 0 for each n>1. (4.3.9)
It follows from (4.3.7) and (4.3.9) that

2
An+l > (l—an) An for each n>1. (4.3.10)

As Al==0, by (4.3.10) and induction we have Ani=0 for each n> 1,
which, together with (4.3.6), gives (4.3.4) . Next we shall prove
(4.3.5). Assume that vm(x)> 0 for some m>1l. From (4.3.6) we get

Am+l:>0. Suppose that A > 0 for some n>m+l. Then by (4.2.1) and
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(4.3.10) we have An+l> 0. Hence by induction we obtain An>>0 for
all n>m+l, which is equivalent to vn(x)> 0 for all n>m. Thus
(4.3.5) was proved. Next we shall show that

gn(x) ~ g(x) a.s. as n-ooeo., (4.3.11)
Since EGn(x'Zn) > g(x) as n+« by Lemma 4.2.1, the definition of

Gn(x,Zn) and xeC(g), it follows from Remark 4.2.1 and the Toeplitz

lemma that

Egn(x,Zn) + g(x) as n-+o . (4.3.12)

Lemma 4.2.1 and (H4) give

a
1

o 8

2862 (x,2) <=,
n

which, together with Kolmogorov's convergence theorem, Kronecker's
lemma, Remark 4.2.1 and (4.2.2), implies that

g (x)-—Egn(x) + 0 a.s. as n->o,. (4.3.13)

n
Thus, according to (4.3.12) and (4.3.13) we obtain (4.3.11).
Lemma 4.2.2 and (4.3.11) give

vnbd -+ v(x) a.s. as n-+ o, (4.3.14)

From Lemma 4.2.2, (4.3.4),(4.3.5),(4.3.14) and the property of
fn(x), there exists a null set A such that for each weAc

y,(w) 20 for all n2>1, lim y (w) =1 and
n->co

y,(w) >0 for all n>m if y (w) >0 for some m=m (w)>1 ,

which, together with (4.3.2) and (4.3.3), permits us to apply
Lemma 4.2.3 to obtain the first three assertions of Lemma 4.3.1.

Replacing N(d), vn(x) and fn(x) by n(d), v(x) and f(x), respec-
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tively, we have that as d+0 n(d) -« and

2

n(d)hi )dz/(DZG (x)) » 1, which, together with the third asser-

(d

tion, implies the last assertion. This completes the proof.

REMARK 4.3.1. By the use of Lemmas 4.2.2 and 4.3.1, and
Theorem 1 of Richter [26] we have that under all the conditions
of Lemma 4.3.1

mN(d)(X) -~ m(x) a.s. as d-»0.
The following theorem is one of main theorems.
THEOREM 4.3.2. Assume E[Y7] < w. Let (K1), (K2) and (HL) ~ (H5)

be satisfied. Suppose that there exist bounded, continuous second

partial derivatives 82f(x)/8xi8xj and azq(x)/axiaxj on RP for

i,j=1,---,p. Consider a point xeC(g) with v(x) > 0. Assume xeC(y)
or |[[v||, <= . If
N(d)/n{(d) —— 1 as d-~0 (4.3.15)
P

then we obtain

/2

(x) ~m(x)) —> N(O,cz(x)) as d- 0.

(N (d) hP
N L

)l
(a) N (a)

PROOF. For simplicity put N=N(d) and n=n(d). It follows
from Lemma 4.3.1 that n+« as d>0. First we shall show that

BN —> N(0,T) as d-0, (4.3.16)
L

where I' is given in Lemma 4.2.4. From Lemma 4.2.4 and the Cramér-
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Wold theorem we get
DB, ——> N(0,D°ID) as d+0 for any D eR? . (4.3.17)
L

Since D’BN==D’Bn-+(D’BN-D’Bn) for any D’eRz, in order to prove

(4.3.16) it suffices from (4.3.17) and the Cramér-Wold theorem to

show that
D’BN--D’Brl —> 0 as d-+0 for any D’ERZ. (4.3.18)
P
Let any D’==(d0,dl)€R2 be fixed. For i>1 set
i
s{8) = 3 a.e.iuft) for £=0,1.
jo1 373173
It is clear that
D’B..-D’B (4.3.19)
N n
_ 34 wnP) 172 (58 _g(B)y 4 {(unP/ (mnP)) /2 - 1)p7B
£=0 t N N n N n n’

Put
- t
e 0 = £ @ ® for £=0,1.
It follows from assumption and Lemma 4.2.1 that for t=0,1

()2 <« OnPr?((x-w/npe'™ (wau < ¢) for all ix1.

nPE[ (U <
l =
rP
Thus by the use of Lemma 4.2.5 we have
! 1/2 o (t) _ o ()
£ d_(NpE) (st -8 ") ——> 0 as d-0. (4.3.20)
t N N n
t=0 P
Let any € (>0) be fixed. From (4.3.15) and (H3) we get that for
§ in (H3)

P{|hy/h -1|2>¢€} < P{|N/n-1|>8} ~ 0 as d»0,

which implies that hN/hn —> 1 as d~+ 0. Therefore, (4.3.15) gives
P



{Nhg/(nhg)}l/2 ~1—>0 as d-=+o0,
P

which, together with (4.3.17), yields that

{(Nh{i/(nhp))l/2 - 1}D"B. —> 0 as d-+0. (4.3.21)
n n o5

From (4.3.19) v (4.3.21) we obtain (4.3.18). Set

d.. =EK.(x,X.) - f , .. =EQ.(x,Z.) - ,
51 j(x ]) (x) d32 Qj(x J) g (x)

D:=(d. dj2) for j>1 and D = (c-£f(x),-g(x))

Jj j1’f 0
Then
i
* _ = P 1/2 -1 .. P l/2
B B (1h ) Yi T anj Dj-k(lhi) OlDO on § . (4.3.22)

j=1
. py1/2 .

It follows from (4.2.4) and (H2) that (lhi) BOi + 0 as 1+ ™.

Thus, if we show that for each t=1,2

1/2, : -1

(ih?) >0 as i+o, (4.3.23)

then it follows from (4.3.22) that

B* - B, + 0 as i1« on Q. (4.3.24)
i i''2

We shall show (4.3.23). By the Taylor theorem, (K1), (K2) and the

boundedness of azf(x)/axiaxj and 8 q(x)/ox, axj, we get that for

each t=1,2 |djt| < Czhi for all j >1, which, together with

(4.2.4), yields that for each t=1,2

537142

() 2y 3 a. gl < c i1/27app/2 ;
1

i 5=1 33 = "3

It o~ -

J
Hence by (H2) we obtain (4.3.23). By Lemma 4.3.1 and (4.3.24) we

get that HB&-—B + 0 a.s. as d-+ 0, which, together with

wll2
(4.3.16), implies that

Bﬁ ——> N(0,T) as d4d-~>0. (4.3.25)
L
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Define a function T(u,v) on R2 as

v/a 1f u#0
T(u,v) =

0 otherwise.
Let L~ = (—q(x)/fz(x) , f_l(x)). By the Taylor theorem we get
R M2 {0 (£ (), g () = TIE(x) , q(x))]) (4.3.26)

= L'BI’\‘] + ey ||B§[]2 on [N < +w] ,
where

eg * 0 L [(£,(x) ,q;(x))7 = (£(x) ,ax) |, 0.

Suppose N<». Define N, = smallest integer i >1 such that fi(x) >0.

1
It is clear that Nl_<__N. From the nonnegativeness of K(y) we can
easily get
fi(x) >0 for i;Nl (4.3.27)
and
Ki(x,Xi)=0 for Nl>1;l. (4.3.28)
It follows from (4.3.27) and the definition of Nl that
i
= i . 4.3.29
fi(x)mi(x) j-—EN aijin(x,Zj) for 1iN1 ( )
1

l>j;1, using Remark 4.2.1

and (4.3.29) we obtain fi(x)mi(x) =qi(x) for i;Nl. Thus by

Since by (4.3.28) Qj(x,Zj) =0 for N

(4.3.27) we get mi(x) =qi(x)/fi(x) for i;Nl, which yields
mN(X) =qy(x)/f(x) on [N<+=]. Hence by the definitions of T(u,v)
and N we obtain

T(fN(X) , qN(X)) =mN(x) on [N < +=] . (4.3.30)
Since m(x) = q(x)/f(x) it follows from (4.3.26) and (4.3.30) that

<Nh§)l/2 (my(x) -m(x)) =L BX + e ||B§I||2 on [N< +=]. (4.3.31)



Lemma 4.2.2 gives that Ei + 0 a.s. as i~+», which, together with
Lemma 4.3.1, yields that

EN - 0 a.s. as d=+0. (4.3.32)

Combining (4.3.25) and (4.3.32) we get

ex I1BEIl, —> 0 asd-o. (4.3.33)

Therefore, according to (4.3.25),(4.3.31),(4.3.33) and Lemma 4.3.1

we obtain

(Nhg)l/z(mN(x)-m(x)) — > N(0,L°TL) as d-0,
L

which concludes the proof of Theorem 4.3.2.
We are now in the position to give our main result.

THEOREM 4.3.3. Under all the conditions of Theorem 4.3.2
we have

P{m(x)aIN(d)’d(x)} +~ o as d-0.

PROOF. Put N=N(d). By Lemma 4.3.1 and Theorem 4.3.2 we
have

Ddul(mN(x)-m(x))

= (0%6% (x) / (nPa?)) M2 (wnb /6% (:0) M % (g () - m(x))

—> N(0,1) as 4~ 0.
L

Thus we obtain

P{m(x)eIN’d(X)}

= p{|pd™  (mg(x) ~m(x))| <D} > 2(D) =& (-D) = a as A+ 0.
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This completes the proof.

COROLLARY 4.3.4. Assume E[Y4] <o, Let (Kl) and (K2) be sat-
isfied, and let ||y||_ <= . Suppose that there exist bounded,
continuous second partial derivatives azf(x)/axiaxj and
a?‘q(x)/axiaxj on RP for i,j=1,---,p and that g(x) is continuous

on RP. set

hn=n“r/p with p/(p+4) <r<1.

Let a in (4.2.1) satisfy 1>a> (1 -1xr)/2. Then, for each point x
with v(x) > 0 we obtain

P{m(x) el (x)} > oo as d~0.

N(d) ,d
PROOF. We can easily verify (H1) ~ (H5) with g= (2a+r - l)—:L .
Lemma 4.3.1 gives (4.3.15). Thus, since all the conditions of

Theorem 4.3.2 are fulfilled, we obtain Corollary 4.3.4 by Theorem

4.3.3. This completes the proof.
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