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Introduction

In these days large cardinals play important roles in set theory.
Not only their properties are interesting, but also their existence
is indispensable to show the consistency of many statements
concerening small cardinals like the least uncountable cardinal @4

and the second @ 5

What are large cardinals? We consider a cardinal «k large,
if it is a limit point of the set of cardinals with a property which
K itself also has, or if it has a combinatorial property which
small cardinals never have. The development of large cardinals in
recent years is dramatic and the theory of them has a long history.
Hausdorff [H]l had already presented the notion of weakly inaccessible
cardinals before Zermelo introduced his axiomatization of set theory,
where x 1is weakly inaccessible if it is a regular limit cardinal.
Sierpinski and Tarski [S-T] introduced the notion of strongly
inaccessible cardinals, where ¥ 1is strongly inaccessible if it is
weakly inaccessible and the cardinality of power set of v 1is less
than «x for any cardinal v < k. In this case every operation of
set theory can be carried out inside VK,“which is the set of the
sets with their rank less than «x, and Vm becomes a model of
set theory. Moretjmportant developments began after Ulam [Ul]
considered the absfract measure problem: Is there an infinite set X
with a measure w:PXO - [0,1] (where P(X) is the set of subsets
of X> such that

() p =1 and ud{z}) = 0 for any z € X; and

(ii) u 1is countably additive, i.e. if Xn c X (n< w are



pairwise disjoint, then u(Uan) = Znu(Xn?.
Of course, the Lebesgue measure on the unit interval satisfies (i)
and (ii), but is not defined for all subsets of the unit interval.
Suppose that such a set X exists, then there exists a cardinal «
with a measure a4 on & such that u not only satisfies (i) and
(ii) but also is x—additive, i.e. if Xa cX (@ < v <K are
pairwise disjoint, then u(ua<vXa) = Za<vu(Xa). In case a has no

atom, such a «k 1is called a real-valued measurable cardinal nowdays.

Otherwise, we conclude that there is a two-valued kx—additive measure

on K. Such a cardinal k¥ 1is called a measurable cardinal and
U= Xck: pnX) = 1} becomes a non-principal K—completé ultrafilter
on K. The technical invention of taking the ultrapower of the

universe by such an ultrafilter due to Scott [S] is very important.
He proved that the existence of a measurable cardinal implies V # L,
i.e. the universe is not equal to Godel’s constructible universe,
andlhe also showed that large cardinals introduce some structure into
the universe of set theory. Treating large cardinals by elementary
embeddings or ultrafilters has been popular after his work and many
strengthenings of measurability have been considered. One of them
is the notion of strongly compact‘cardinals. It first appeared in a
problem of the Compactness Theorem for infinitary language. But now
we have another definition of it using elementary embeddings or
ultrafilters, which are main subjects of this paper.

In Chapter I, we characterize the cardinals which are fixed
points of elementary embeddings induced by fine measures on
PKA = {z cx : lxl < k}. This was first done by Barbanel (Bl for

normal measures. Since every normal measure is fine by definition,



our result improves his one. Normal measures define supercompact
cardinals and fine measures do strongly compact cardinals. As wg
mention below, a strongly compact cardinal is not always supercompact.
Therefore, our improvement is essential. Our proof is more
complicated for this reason.

It is a prominent open question whether strong compactness and
supercompactness are equiconsistent. At early stage they looked the
same concept, but Magidor [Mal proved that the first strongly compact
cardinal may be either the first measurable or the first supercompact.
(There exist many measurable cardinals below a supercompact cardinal
[S~-R-K1.) Then, Apter [Al provided a model of set theory where the
first strongly compact is the least ordinal with certain degree of
supercompactness. Though he started with so many supercompact
cardinals, we get the same result assuming only one supercompact in
chapter II. The second part of the chapter is used for the
observation about the normality and the weak normality of fine
measures investigated by Menas [Mell.

In chapter III, we extend certain properties of filters on «x
to those of fine filters on PKl where Kk is not necessarily large.
We show that any fine filter of the Menas type cannot be an extension
of the (strongly) closed unbounded filter, and give full
cénsideration to its weak normality, improving the results in the
last chapter. We also present two distinct isomorphic fine measures
containing the closed unbounded filter on PKA in case X 1is |
inaccessible. Menas [Me2] has proved the corresponding statement
for A strong limit with cofinality less than «.

The author is grateful to Nobuyoshi Motohashi and Moto—o



Takahashi for their helpful advice and encouragement, and to Katsuya

Eda for initiating the author into the theory of large cardinals.
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STRONGLY COMPACT CARDINALS, ELEMENTARY EMBEDDINGS
AND FIXED POINTS

YOSHIHIRO ABE

§0. J. Barbanel [1] characterized the class of cardinals fixed by an elementary
embedding induced by a normal ultrafilter on P, A assuming that k is supercompact.
In this paper we shall prove the same results from the weaker hypothesis that K is
strongly compact and the ultrafilter is fine.

§1. Preliminaries. We work in ZFC throughout. Our set-theoretic notation is
quite standard. In particular, if X is a set, | X | denotes the cardinality of X and P(X)
denotes the power set of X. Greek letters will denote ordinals. In particular y, k, #
and 1 will denote cardinals. If k and /1 are cardinals, then 1< is defined to be
Sup, <, 4’. Cardinal exponentlanon is always associated from the top. Thus, for
example, 2* =~ means 2 =", V denotes the universe of all sets. If M is an inner model
of ZFC,| XM and P (X)™ denote the cardinality of X in M and the power set of X in
M respectively.

We review the basic facts on fine ultrafilters and the corresponding elementary
embeddings. (For detail, see [2].)

DEFINITION. Assume k and A are cardinals with k <A. Then, A= {X <
A1X1 < x}.

It is important to note that |P 4| = A=~

DEerFINITION. Assume that U is a collection of subsets of P,.A. Uisa ﬁne ultrafilter
on P, A iff the following conditions hold:

(i) Foreach Z € P 4, {Z} ¢ U (U is nonprincipal).

() fXeUand X c Yc B A, thenYeU.

(iii) For each X < P, 4, exactly one of X, P.A\X isin U.

(iv) If {X,|a <y} is a collection of elements of U wherey < «; then ﬂaar eU
(U is k-complete).

(v) For each ordinal a < A4, {Z € P.A|a € Z} € U (U is fine).

DEerFINITION. For cardinals k and 4, x is A-compact iﬁ" there is a fine ultrafilter on
P.2. x is strongly compact iff k is A-compact for all 1 > k.

Suppose now that U is a fine ultrafilter on P, A. Let ¥*<*/U denote the ultrapower
~ of V with respect to U, and let e: ¥— VP<*/U denote the usual elementary embed-
ding by constant functions. It is straightforward to show, using x-completeness of
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STRONGLY COMPACT CARDINALS 809

U, that V7<*/U is weil-founded. Thus V*=*/U is isomorphic to a transitive class M.
Let n: VF=*/U — M be this isomorphism. Then M is an inner model and j: V —» M
defined by j = n ° e is an elementary embedding. It is well known that x is the least
ordinal moved by j, j(x) > 4;and, X <« M and |X| < Aimplies thereisa Y € M such
that X < Yand | Y| < j(x). Our object is to describe the action of j on cardinals.
Only a familiarity with ultrapower technique is expected, and we use Solovay’s
famous result on powers of cardinals, which was already used by Barbanel. That is:
If x is strongly compact, n > k, and 2" < n, then

n=n if cf(n) >y,
n"=n" if cf(n) <y.

In particular, for 4 > k,

A =1  if of(}) > x,
A= A% if of(d) < k.

In the following, k is a fixed strongly compact cardinal and 1 is a cardinal greater
than or equal to k. U is a fine ultrafilter on P4 and j is the canonical elementary
embedding; j:V — M =~ VP<*/U. n always denotes a cardinal and [f]; is the
equivalence class of f in ¥P<*/U. We often drop the subscript U.

§2. The action of j on small cardinals. We begin by considering what happens to
small cardinals under j. If n < k, then j(} = 7.

LEmMMA 1. j(2%) = 24~

Proor. We inject P(P.1) into F ={f:P.A— P(PA)}/U. For A< P,
f.i: P.A — P.(PJ) is defined by f,(x) = {z € 4|z < x}. We have to show the map g
which sends A4 to [f,]y is one-to-one. Let 4, B < P, A, A # B. We may assume
3y € A(y ¢ B). Since U is fine, {x € B.A|y = x} € U.(We use the fact that | y| < xand
U is x-complete.) Then {x € F.A|ye€ f4(x)} € U. But for every x € B 4, y ¢ f3(x).
Thus [ f, 1y # [fs]u- Hence g is one-to-one. By the way, F represents Py, ( P(j(4))
in M. '

M = “j(x) is strongly compact and cf(2/¥) > j(x).” This implies M = “|F| =
2IA <0 _ 234 = j(22)” Recall that g is one-to-one. Hence 2*~" = |P(P4)| <
|F|<|F™=j2". O ,

THEOREM 1. If % < 1 < 2**%, then j(n) > 1.

PROOF. We know that j(x) > 2* (see [3]) and 2=~ = 2% or 2*"). Hence thereis no
trouble in the case that 24~* = 2% In fact, 5 < 2*~" = 2* < j(x) < j(n)). Suppose
235 2 20" 5 24 If i < 5 < 2% then 1 < 2* < j(1) < j(n). If 2% < < 2*°", then
j(2% < j(n). By the previous lemma, we have j(2*) > 24" > y. Hence j(n) > 7. O

§3. The action of j on larger cardinals. We now consider cardinals above 2*~",
Theorem 2 is due to [1]. The proof in [1] can be carried out also in our case since the
assumption that *M < M is not used there.

THEOREM 2. Let 1 be a cardinal greater than 24" If n satisfies one of the
" conditions below, then j(n) = 1.

1) n=0"""
(2 n=7y*" for somey.
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() nisa limit cardinal and cf(n) < k or cf(n) > A=".
(4) 1 =y" for some y which satisfies (3).
Next we consider the case that 7 is a limit cardinal and x < cf() < A<~
’ I;EMMA 2. If nis a limit cardinal strictly greater than 2*~" and k < cf(y) < A, then
Jn=n

PROOF. Suppose j(#) = 5. Lety = cf(y) and f:y — 5 be a cofinal funcnon such that
V6 <382 < f(6) = 6'F).

Foreachd < y,let[{6,|x € PAY]y = dand Vx(6, < k).(Since § < y < A < j(x), this
can be done.) Define k: P,A — V by

k(x) = I<5x, U f(§)> dexand d < y.

Ex=dx
dex

(1) Clearly,
M = “[k] is a function and |dom [k]] < j(x).”

Since Vx e P A(lx| < k < cf(n)) and V& <9y(f(&) <7n), Vxe P, A(ran(k(x)) < ﬁ).
Hence,

) M= “ran[k] < n = j(n).”

By the definition of f, Va < 738, < y(x < f(8,)). Since U is fine, {x € P 1|4, € x}
e U. Hence §, € dom[k] and « < f(8,) = j(f(4,)) < [k](J,). Thus,

3) M = “[k] is cofinal in = j(n).”

By (1)-(3), ME“cf(n) < j(x).” But VE “f(y)>«k” implies ME “cf(n)
cf(j(n)) = j(x).” Contradiction. Therefore j(n) >#n. O

DEFINITION. A k-complete ultrafilter W on B 4,1 is uniformiff VA € W(|A| = | B A|).

REMARK. A fine ultrafilter is uniform.

ProoF. Let W be a fine ultrafilter on P2 and Ae W. For each yE A,
A,={xePA|x <y} Since Wis fine, BA=J,cs4,. |4,] <2 <x. Hence
|A| =A*=|PA. O

In proving the next lemma, we need only the fact that U is uniform.

LEMMA 3. If cf(}) < k and n is a limit cardinal greater than 2* =" with cofinality A*,
then j(n) > n.

PrOOF. Note that | P.A| = 4<% = 2*. Let {x,| & < A*} be an enumeration of P,/
and f:A* -y a cofinal function such that V& < 1*358'2*"" < f(6) = 6'“‘)
Suppose j(n) = 1. Define k:BA—V by k(x;) = {{5,f(6))|6 < &}. It is easily
verified that

0} M & “[k] is a function, |dom[k]| < j(4) and ran[k] < 5.”
Since U is uniform, {x;|8 < y} € U for every 6 < A™. Hence
{x € P.A|f(0) eran(k(x))} e U and j(f(0)) = f(6) e ran[k].

Thus, M = “[k]is cofinalin 7 and |[dom[k] | < j(4).” Hence M = “cf(n) < j(4).” But
VE“cf(m)=A"" implies M k= “cf(j()) = cf(n) = j(A*) > j(4).” Contradiction.
Hence j(n) >n. O
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THEOREM 3. If n is a limit cardinal greater than 2*~" and x < cf(n) < 1<%, then
Jm) >n. "

PrOOF. If cf(1) > k, then A= = 4. Hence the conclusion is right by Lemma 2. If
cf(4) < k,then 1% = 17, In the case that cf() < A, we use Lemma 2. If cf() = A7,
then we use Lemma 3. [

The arguments for Lemmas 4 and 5 are analogous to those for Lemmas 2 and 3.

LEMMA 4. If n is a limit cardinal greater than 2*~" and x < cf(y) < A, then
ja*y>n".

ProOF. By Theorem 3, j(y) > n. Suppose j(n*) =#n*. Since n < j(n) < j(n*) =
n*, VE“j(x) is not cardinal and |j(n)| = n.” Hence there is a function g from
n onto j(n). Let {o5| 8 <y = cf(n)} be a cofinal increasing sequence in # and, for
each f§ <1, §; = the least  such that § < «;. Define f: A — V by

fx)={<B.g(B):> |65 € x}, where [{g(B):]|x € P 2)] = g(B).
Obviously,
(1) -~ M E“[f]is a function.”

Also, Vx € R A(dom(f(x)) = Jsex{B <n|ds=0}).Since {f <n|6 =5} cas <7
and |x| < k < cf(n), |dom(f(x))| < n. Hence

@ M & “dom[f]] < j().”

From our assumption on g, ¥¢ < j(n)3B < n(& = g(p)). Since U is fine and §; <
y< A, VB <n({xePA|6;ex}eU). Thus V8 < n({x e P.A|g(B), e ran(f(x))} e
U,ie. g(B) eran[ f]. Hence

©) ME “j(n) < ran[f1.”

By (1)—(3), M = “j(n) is not a cardinal.” Contradiction. []
The next lemma holds whenever U is uniform.

LEMMA 5. If 7 is a limit cardinal greater than 2*~" and cf(n) = 1%, cf (1) < «, then
+ .

jn*)y>n".

ProOF. Suppose j(n1*) = n*. As in the previous lemma, there is a function g from
n onto j(). Let {x;|& < A*} be an enumeration of P.A and {«;|6 <1} be a
cofinal increasing sequence in 7. (Note that |P. A| = A<* = 1% since cf(1) < k)
For each f <1, §; = the least & such that a; > . Define f:P.1— V by flxe) =

{<B,g(B)x> |85 < &}. Obviously
(1) M = “[f]is a function.”

Also, Vx,e P.A(dom(f(xg) = Js<:{B <n|d;=20}). Since {f<n|éy=25}c
as < nand cf(n) = A7 > |&], |[dom(f(x:))] < n. We get

@ M = “|dom[f]] < j(n).”

Since U is uniform, {x; € P.A|8; < ¢} € U for every B < n. Then, {x € P.A|g(f). €
ran(f(x))} e U. This means g(f) € ran[ f]. Hence,

3 ME “j(n) < ran[f].”
By (1)-(3), M = “j(n) is not a cardinal.” Contradiction. []
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THEOREM 4. If 7 is a limit cardinal greater than 2*~" and x < cf(n) < 1<%, then
j@)y>n*.

Theorem 4 follows from Lemmas 4 and 5 just as Theorem 3 did from Lemmas 2
and 3.

We have characterized the class of cardinals fixed by j and improved Barbanel’s
results by weakening the assumption of supercompactness to that of strong
compactness.

The proofs of Theorem 2 and Lemmas 3 and 5 needed only uniformity
(apparently weaker than fineness) of U. It is not known whether uniformity suffices
for the other results.

The author wishes to express his gratitude to the referee for his very thorough
reading of the manuscript and correcting many errors. His suggestions were very
helpful in preparing this paper.
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SOME RESULTS CONCERNING STRONGLY
COMPACT CARDINALS

YOSHIHIRO ABE

§0. This paper consists of two parts. In §1 we mention the first strongly compact
cardinal. Magidor proved in [6] that it can be the first measurable and it can be also
the first supercompact. In [2], Apter proved that Con(ZFC + there is a supercom-
pact limit of supercompact cardinals) implies Con(ZFC + the first strongly
compact cardinal « is ¢(x)-supercompact + no a < x is ¢(«)-supercompact) for a
formula ¢ which satisfies certain conditions. ‘

We shall get almost the same conclusion as Apter’s theorem assuming only one
supercompact cardinal. Our notion of forcing is the same asin [2] and a trick makes
it possible.

In §2 we study a kind of fine ultrafilter on P 4 investigated by Menasin [ 7], where
x is a measurable limit of strongly compact cardinals. He showed that such an
ultrafilter is not normal in some case (Theorems 2.21 and 2.22 in [7]). We shall show
that it is not normal in any case (even if x is supercompact). We also prove that it is
weakly normal in some case.

We work in ZFC and much of our notation is standard. But we mention the
following: the letters «, B,7,... denote ordinals, whereas k, 4, 4, ... are reserved for
cardinals. R(x) is the collection of sets rank <a. ¢* denotes the realization of a
formula ¢ to a class M. Except when it is necessary, we drop “M”. For example,
M = “x is ¢(x)-supercompact” means “k is ¢*(x)-supercompact in M”. If x is a set,
|x|is its cardinality, Px is its power set, and B.x = {y € Px||y| < k}.If alsox = OR,
X denotes its order type in the natural ordering. The identity function with the
domain appropriate to the context is denoted by id. For the notation concerning
ultrapowers and elementary embeddings, see [11]. When we talk about forcing, “|-”
will mean “weakly forces” and “p < g” means “p is stronger than gq”.

§1. On the first strongly compact cardinal. We state Apter’s theorem precisely.

THEOREM (APTER). Assume V = “ZFC + ¢ is a supercompact limit of supercom-
pact cardinals”. Let ¢ be a formula which defines an increasing Z , function from OR to
OR and, in addition, has the following properties.

(1) For G V-generic on P,|P| = k, P a cardinal preserving partial ordering, if & > x;
then VE“B = ¢()” iff V[G]E“p = ¢(x)”.
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(2) If o < B, o is p(a)-supercompact and B is ¢(fB)-supercompact, then ¢(x) < B.

Then it is consistent for the least strongly compact cardinal u to be at least ¢(p)-
supercompact yet not to be fully supercompact. In fact there is no o below u that is
¢(o0)-supercompact.

We, in some sense, improve this to the following.

THEOREM 1. Assume V = “ZFC + K is supercompact”. Let ¢ be a formula which
defines an increasing function from OR to OR and, in addition, has the following
properties.

(A) For every partial ordering Q, if o« >|Q|, then VE “f = ¢(o)” iff V[G] =
“B= ().

(B) There is a formula Y such that

(1) ¢() < (o) for everya,

(2) if « < B and B is ¢(B)-supercompact, then Y () < f, and

(3) if M, N are models of ZFC and R(™w) n M = RY™(«) " N, then
M) = ¢"(@).

Then, for some generic filter G,
V[G] E “k is the first strongly compact + x is ¢(kx)-supercompact
+ no o < x is ¢{a)-supercompact”.

We note that ¢ may imply additional hypothesis. For example, if ¢ says “Send o
to the least measurable >o«”, then a measurable cardinal > x is assumed to exist.
Also note that many ¢’s satisfy our assumption. If ¢(e) = o™, 2% the least inac-
cessible >a, then Y(a) = ¢(a) + 1. If (o) = the least measurable >, then (o) =
¢(e) + 2. :

Our forcing notion is the same as in [ 2], that is, Magidor’s iterated Prikry forcing
_ that destroys measurability of each element of a given set A of measurable cardinals.
(We call this forcing notion “the iterated Prikry forcing on A4”.) We assume the
reader is familiar with this forcing. See [6] for details. Most of our notation is the
same asin [6]. But we use || - || for the distant function instead of |- | thatis used in [6].
_ PrROOF OF THEOREM 1. Let V' = “ZFC + kissupercompact”. We may assume that
2¢ = a** for o inaccessible and 2* = a* otherwise. (See [8].) Following Apter [2],
we inductively define the sequences {1,; « < x} and {B,; « < k}.

P, = 0 and 4, = the least cardinal A that is ¢(1)-supercompact.

P, = the iterated Prikry ordering on {;|f < a}.

J, = the least ordinal A such that 3p e P(p |F“4 is ¢(A)-supercompact™). Let
P=P.

LEMMA 1L1.a < B = 4, < 4;.

PRrOOF. Suppose not. Let « be the least ordinal such that 3 < «(4, < ;). Let H be
V-generic on P, such that ‘

(1) : VIH] = “A,1s ¢(A,)-supercompact”

V[H] E “cf(45) = w” by the definition of F,. Thus 4, < 4;. Let y be the least ordinal
such that 4, < A,. 4, is not a limit point of {i,| ¢ < a}. Hence, by Lemma 2.3 in [6],

(2) V[H I ,] and V[H] have the same bounded subsets of Ay

|P,| < 2%« < A, since 4, is measurable in V. (No new measurable cardinal is created
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by an iterated Prikry forcing—Theorem 3.1 in [6].) Hence by property (A) of ¢,
(1), and the Lévy-Solovay results (see [5]),

¢¥(4,) = ¢ ™) (2)) and V I= “A, is $(4,)-supercompact”,

Again by the Lévy-Solovay results,
3 V[LH [ A,]F “4,is ¢(4,)-supercompact”.
By (3) and property (B)(2) of ¢, y"#'*1(],) < A,. Then by (2) and (3),

ROH(A) n VIH [ 2,] = RWYH™(3,) n VIH].
By property (B)(3) of ¢,

PVHEI(A,) = ¢VIH(R,).
Using (1), (2), (3) and the fact that ¢ ™1 )) < 4,
VIH | A,]F= “4,is ¢(4,)-supercompact”.

But 4, < 4,. This contradicts the definition of 4,. [J

LemMA 1.2. {4, | & < x} is an unbounded subset of k.

PROOF. Since {« < x| V = “ais ¢(a)-supercompact™} is unbounded in  and | B
< k for every a < x (easily shown by induction), our claim is obvious. [

By the previous two lemmas, we get

LemMMa 1.3. 4, = k.

LeMMA 14. If G is V-generic on P, then

V[G]F “no a < k is ¢(x)-supercompact
+ k is the first strongly compact”.
Proor. By Lemma 1.3, the first assertion is clear. For « < k,
V[G]E “cf(A) = @ + 2% > A7 * + A, is strong limit”.

Hence the second part s true by Solovay’s theorem [10] and the fact that an iterated
Prikry forcing below x preserves the strong compactness of « [6, Theorem 3.4]. [

Now what is left to show is that for some generic filter G, V[G] E “k is ¢(x)-
supercompact”.

Let A = {x e OR|3p € P(p |-“a = (x)")}. We have that | 4] < 2% since | P| < 2"
Let 6 = | J4 + 1. Then every condition p € P forces “6 > y/(x)".

Let j: ¥V — M be an elementary embedding such that

(1) x is the first ordinal moved by j, and '

(2) R@OI" M < M.

Note that j(P), = P and |R(d)| > 2~.

LEMMA 1.5. If G is V-generic on P, xe V[G], x « M[G], and V[G]F
“|x| <|R(S)|”, then x e M[G].

Proor. It will suffice to assume that x is a set of ordinals since both V[G] and
M[G]aremodels of AC. Let x be a term denoting x in V' [G]. Since P satisfles k *-c.c.
[6, Lemma 4.4], there is a set D € V such that 1, |-“x < D” and |D| < |R(9)].

For ¢ €D, let A, be a maximal disjoint subset of {p € P|p |-“a € x”}. Since
|4, < x, |D| < |R(8)], and ROIM = M, (A,|eeDye M. But x={ae D[4, NG
# 0}. Hence x e M[G]. [
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LEMMA 1.6. Let G. < P.

(1) G is V-generic iff G is M-generic.

(ii) ¢"1%%x) = ™M),

PROOF. (i) is clear by the two facts that [P| < 2%and "M < M.By Lemma 1.5, and
an easy induction, R(§) n V[G] = R(8) n M[G]. Since /"% (k) < 6,

R(y"%k)) n VIG] = RW" k) n M[G].

Hence ¢ "% k) = MG (k) by property (B)(3) of ¢. [
LemMA 1.7. For some V-generic filter G on P,

V[G] E “k is ¢(k)-supercompact”.
PROOF. Case 1. AM = k. There is an M generic filter G on P such that
M[G]E “k is ¢(k)-supercompact”.
Let U be a normal ultrafilter on P.¢™®Y(x) in M[G]. By Lemma 1.6, G is also V-

generic and ¢"1%(x) = ¢MN (k).

Since V[G]E= “| B.(x)] < 29 < 2% < |R(5)]", we have that

PP.$"(x) n V[G] = PR.¢ k) n M[G]
by Lemma 1.5. Hence U is also a normal ultrafilter on P.¢"%(k) in V[G]. Thus
V[G] E “k is ¢(x)-supercompact”.

Case 2. M > k. Let G be a V-generic filter on P. There is an M-generic filter H

such that
M[H]E “iMis ¢(iM)-supercompact”.

Since M = “IM is measurable + [P| < 2°7, |P|M < JM. Hence ¢M(AM) = pMHI()M)
by property (A) of ¢. Moreover, by the Lévy-Solovay results,

M = “iM s ¢(AM)-supercompact”.
G is also M-generic. Again by the Lévy-Solovay results and property (A) of ¢,
M[G]E= “iMis qS(}.KM)—super_cornpact”.
By property (B)(1), (2) of ¢, $*1%)(x) < Y (@) < 2¥. By Lemma 1.6, ¢"1%x)

< M,
We define a term U by

pl-“reU”iff p -z < R(¢(K))”
and 3g < j(p)(lg — j(p)ll = 0, g [ =j(p) [ = p, and q |- " ¢(x) € j(z)").

Note that j” ¢1Y(x) = j” ™% x) € M[G]. Using the fact that ¢"1%x) < 1 and L
is not a limit point of j(P), we can show that

1, |-“U is a normal ultrafilter on P, ¢(x)”.

For details, see [2] and [6]. O
By Lemmas 1.4 and 1.7, the proof of Theorem 1 is complete
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§2. A kind of fine ultrafilter and its normality. In this section, k is a measurable
limit of strongly compact cardinals and 4 is a cardinal > «, %, is a fine ultrafilter on
B, Afor o < k strongly compact, and U is a k-complete nonprincipal ultrafilter on
such that {& < x|« is strongly compact} € U. % is defined by

Xeu iff XcPiand{o<k|XnPie}eU.

Menas proved in [7] that % is a fine ultrafilter on P,A.

We are interested in the next fact that he also proved in [7].

THEOREM (MENAS). (i) If A is regular and {o < k| %, is minimal} € U, then % is not
normal. :

(i) If x is the least measurable limit of strongly compact cardinals and 3. = 2¥, then
% is not normal.

REMARK. (1) %, is minimal iff for all functions g from P,4 into P,4 such that {X
< PA|q™'[X] e %,} is a fine ultrafilter on P, 4, g is injective on a set of measure one.
(@7'[X]={x|q(x) e X})

(2) If Ais regular or cf(1) < «, then every normal ultrafilter on P,A is minimal.

We extend his theorem to the following.

THEOREM 2. Let x, U, {¥,|o < k), and % be as above. Then % is not normal.

DEFINITION. (i) For x € P4, let a, be the least strongly compact cardinal > |x|.

(ii) Define f: P.A— Vby f(x) = x N a,.

LEMMA 2.1. If % is normal, then [ ]g = k.

PROOF. Suppose that % is normal and let j: V — M ~ V*~*/% be the cannonical
elementary embedding. Since % is normal, j”A = [id], and [{|x||x € BA)]y =
|j"A1™ = 1. Hence M = “j(x) is a strongly compact cardinal >A” and M &=
“[Koty | x € P.AY]q is the least strongly compact > A”. Thus |

[{oe | x € BeAD]a < j(K).
Hence _
k=j"k nxc[{xnolxePA]ycj'hnjk)=j"k=x

Thus [flg=x. O ,

PROOF OF THEOREM 2. Suppose that % is normal. By Lemma 2.1, [ f]4 = k. Let
be strongly compact and & < k. Note that o, < aforx € P,A. Leto < B < . Since %,
isfineand f <k < 4,

A={xePA|pex} e,
Sincea < f<k,xNa,<xnasxn kforxeA Hence
{x e PA|x n o, = x N K} e,
Now we get
{a<k|{xePi|lxna,sxnilel}el,
ie. {xeP,JIf(x) < x Nk} € %. Since % is normal,
[(x nk|x€ePFA)]y =K

So k = [f]a S k. Contradiction. Hence % is not normal. O
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One may feel strange in comparing Theorem 2 to the following. “Let 1 be a
measurable cardinal >x and ¥, be a normal ultrafilter on P« for « between x and
A If D is a normal ultrafilter on A and W is defined by X e W iff X < B A and
{¢ < A|X N B.xe ¥} € D, then W is a normal ultrafilter on B2

Though % is not normal, it has weak normality in some case. To show this we first
state two lemmas.

LEMMA 2.2 (SEE [1] AND [3]). Let v be strongly compact and W be a fine ultrafilter
on P If { > 2" satisfies one of (i)~(iv) below, then jz () = (.

(i) { =& for some &

(ii) { is a limit cardinal and cf({) < v or cf({) > n=".

(iii) { = &% for some ¢ that satisfies (ii).

i) {=("™)"

LEMMA 2.3 (i) Let W be a fine ultrafilter on P.x and define D by X e D iff X < x and
X =Y n k for some Y € W. Then D is a k-complete nonprincipal ultrafilter on .

(ii) Conversely, let D be a k-complete nonprincipal ultrafilter on x and define W by
XeWiff X c Bxand X nxeD. Then Wis a fine ultrafilter on P.x.

PROPOSITION 2.4. Assume {o < k | %, is weakly normal} € U and A > 2" satisfies one
of the conditions below.

(@) A=EYT for some &

(ii) A is a limit cardinal and cf(A) # k.

(iii) 1 = &* for some ¢ that satisfies (ii).

(iv) A = (29*.

If fis a function from B into A such that {x € P.A| f(x) € x} e %, then {x e
PA|f(x) < 6} € U for some 6 < A.

ProoF. Since {x € BA|f(x)ex}e¥, {« <x|{xePA|f(x)ex}e,}eU. By
the weak-normality of %,

{o < x|{x e BA|f(x) < v,} € %, for some y, < A} e U.

Let [(y,|a < x)]q = 6. Clearly 6 < j,(4). By Lemmas 2.2 and 2.3, j,(1) = 1. (Note
that k=* = k. Replace  and v by k.) Hence § < 4.
Since 6 < jy(8), {« < x|y, < 6} € U. Thus

{a<k|{xePRA|f(x)<0}e¥}eU.
This means that {x e BA|f(x) <} e%. O
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Chapter III



Weakly normal filters and the closed

unbounded filter on PKA

Yoshihiro Abe

In the theory of k-ultrafilters on a measurable cardinal k, the
closed unbounded filter ( the club filter) plays an important role.
For instance, Ketonen showed that any two distinct k-ultrafilters
containing the club filter are not isomorphic.

Weakly normal filters on a regular cardinal are also important.

A filter is weakly normal iff it is a p-point containing the club
filter. Every countably complete ultrafilter is minimal in the
RK-ordering iff it is isomorphic to a weakly normal ultrafilter.

Jech is the first to introduce some combinatorial principles
into PKA from the usual fields of k. At first PKA seemed the same as
k. But it turned out to be more complicated. Menas proved that every
normal measure on PKA where X is a strong limit with the cofinality
less than k is isomorphic to a fine measure containing the club
filter on PKX. ( See Proposition 12 in [9].) In [4], Gitik constructed
a model in which there is a stationary subset of PKK+ that can not
be éplit into K+ disjointed stationary sets.

Applying Menas' result, we present two isomorphic fine measures
on PKA both of which contain the club filter under the hypothesis that
K is supercompact and A is strongly inaccessible.

In [1], a kind of fine measure on PKA investigated by Menas, was
studied. By the embedding arguﬁent, it was pointed out that such a
measure is not normal and can be weakly normal in suitable conditions.
We take a combinatorial approéch and show that filters of the same

type do not contain a standard club set, indeed strongly closed



unbounded. We extend the results in [1] on the weak normality of
such a filter.

At last, some remarks on the relation between the RK-order and
weakly normal fine measures, the strongly club filter and the partition

property are added.

§0. Definitions and notations. Kk 1s a regular uncountable
cardinal and X is a cardinal>k throughout. P A = {x<A: | x| <k}. When
we speak of a filter on PKA it is assumed to be k-complete and fine,

where U is fine iff {x: o e x} €U for all a<A.

Definition 0.1. U is normal if every regressive function is
constant on a set of positive measure. ( We write X € ut if X is
positive measure.) U is weakly normal if every regressive function
is bounded by some Y<A on a set in U. We call U a fine measure if it

is an ultrafilter.

A subset C of PKA is said to be unbounded if for each ae€ PK)\
‘thére is an x€ C so that a< x. 4 denotes the set {xePKA: a< x}. Thus
C is unbounded if 8~ C # 0 for all a€P A. C is closed if UA€&C
whenever A is a < -increasing chain of length<k in C. C is strongly
closed if UA€C for all A<C with |A[<k. The club filter CF , is the
filter generated by the closed unbounded sets. The strongly club .

filter SCF'< is the filter generated by the strongly closed unbounded

A
sets.
Let U be a fine measure on PKA and f:PKA———?PK}L. The ultrafilter

£,(U) defined by " Xe £, (U) if £71(X) e U" is a fine measure provided

that {x: o€ f(x)}€ U for all a<i.



Definition 0.2. Suppose that U and D are fine measures on P ).
K
We write UsD if U = £,(D) for some f:P A~—P A. U and D are isomorphic
(UsD) if U = £,(D) and f is one-to-one on a set X€D. D is minimal

in the RK-order if D is isomorphic to all UgD.

Definition 0.3. Suppose that f is an ordinal valued function
with domain PKA. f is the first function of U if {x: f(x)>y}e U for

any v<xA , and {x: g(x)<y}€ U for some y<) whenever {x: g(x)<f(x)} €U.

The first function tells us whether a fine measure is minimal

or not under the certain assumption on A.

Definition 0.4. A fine measure U has the partition property
if every F:[PK}\]2 = {{x,y}: x,v€ P A and X ¢ y}—>2 has a homogeneous
set in U. ( A is homogeneous for F if there is a k<2 so that for all

X,y ¢ A with x¢y, F({x,y}) = k.)

§1. Isomorphic fine measures. In this section, A is a fixed
inaccessible cardinal greater than k a supercompact. We shall
present two isomorphic fine measures including CFKA’ Though we extend

the result of Menas, we have to start from it.

Lemma 1.1. ( Menas [91) Let 8§ be a strong limit cardinal
with the cofinality less than k. Then every normal measure on P § is

isomorphic to a nonnormal fine measure containing CEKG'

Let A = {§: k<6<)\, 6 is strong limit, cf(8)<k}. For each §€ A,
, 8 ~
there is a function qszPKG—-#PKG so that CFK6<:q *(U6)= U6 where U6

§
is a normal measure on P _§. We shall sum up these Uafs and q *(UG)'S



with a suitable ultrafilter on 2.

Lemma 1.2. There exists a k-complete ultrafilter on A including
{aYUcr,. ( CF, is the club filter on Ai.)
Proof. Since X ‘is inaccessible, A is stationary. Hence we have a
A-complete filter E = {X<A: A-X is not stationary}. It is easily
seen that {A}UCFAC E. Then the strong compactness of k gives us a

k-complete ultrafilter D extending E.

We use the above D. Define F; and F, by
XeF, if X<€P X and {6€A: XNnP S€U }€D.

K€F, if XCP\ and {§€A: XnP 6€q’,(U)1€D.

F1 and F, are fine measures on PK)\. We want to show that they

are isomorphic and contain CPKA' The next is an easy but key lemma.

Lemma 1.3. Assume that cf(n)<k and U is a fine measure on
P .n. Then {xéPKn: sup(x) = n} €U.
Proof. Let {na: a<cf(n)} be a cofinal subset of n. Since U is fine,
{x: n, € x} € U for each a<cf(n). Using the x-completeness of U and

the fact that cf(n)<k, we get {x: n,€ ¥ for every a<cf(n)} €U.

Corollary 1l.4. For every S8 €A, {x€ P 6: sup(x) = 6}€UCS and
{x€P.s: sup(q®(x)) = §}eU,.
Proof. Since qd;.:(Ua) is also a fine measure on PKG and cf(§)<k,

{x: sup(x) = G}QQG*(US). This is equivalent to ({x: sup(qd(x)) = 5}GU6.

For x GPKX, let SX = the least member of A such that x € PKcS.

And q:PK}\ ~¢PK)\ is defined by;



ax) = g *(x).

By our construction,

Lemma 1.5. For every 6 €A, {XGPKG: §, 7 _<‘S}6U5 hence
{x: qx) = qd(x)}eUG.

We can see that F; and P, are isomorphic.

Lemma 1.6. q is one-to-one on a set in F;.
Proof. Let BSG U(S be such that q(5 is one-to-one on B(S. We have
already known that Cs = {xe Bg* qx) = qa(x), sup(qs(x)) = sup(x) =

G}GUG. Hence C = \U {CG: 5§ €A} is a member of Fi.

1

Suppose that x, y€C and g(x) q(y). There is a §€& A such that

§ = sup(x) = sup(q(x)) = sup(qly)) sup(y). Since x and y are in
the same CG and quCS = q6 r06 is one-to-one, we have x = y. Thus g is

one-to-one on Ce€Ff;.

Lemma 1.7. ¥, q,.(F1).
Proof. Recall that X€F, iff {6 €A; XAPKGEqG*(UG)}E D, and that
Xf\PKc‘SEqG*(,UG) is equivalent to {xe PKG: qa(x)€XAPK6}6U6. By 1.5,
the last paraphrase is the same as {xePKG: g(x) € X}e¢ Us-

Let ¥ = {xe P alx) € X}. We have shown that X€ F, is equivalent
to {8§€A: Yn PKGGUG}GD. The latter says that Y€ F; and X€ q,(F;).

Hence X€ P, iff X< q,(F1).

What is left to show is that both F: and F, contain CFKA‘ Note

that {§<i;: Xn P 6€ CFKG} ¢ CF, for every X€CF ,.

A

Lemma 1.8. CFK}\C FinF,.



Proof. Suppose that XéCFK};. Then X' = {8<A: Xnp se CFK6}€ CF,cC D.

A

Since U, and qG*(UG) contain CF ., XNP 6 belongs to both U, and

qS*(UG) for all 6€ X'. Hence X€ F;n F,.
Now we have done.

Theorem 1.9. If X is a strongly inaccessible cardinal greater
than K a supercompact, there are two distinct isomorphic fine measures

on PKA containing the club filter.

The author does not know whether a normal measure on PKA is
isomorphic to a fine measure containing CFKA under the same assumption.
It is also still open whether two fine measures can be isomorphic for a

successor cardinal A. The case that A is not strong limit is also
open.

§2. SCF prestationary sets and the partition property. For

KA
the subsets of regular uncountable cardinals, the situation is simple.
That is, Sc k is stationary iff for any regressive function f on S,
there is an unbounded set T<S on which f i1s constant. But this does
not hold for the subsets of PKA.

In this section, k is a regular uncountable cardinal and A>K.

We begin by Menas' invention again.

Proposition 2.1. ( Menas [81) There is a nonstationary subset

S of PKA such that every regressive function is constant on an unbounded

subset of S.

Definition 2.2. We call such a set S " prestationary".



Menas characterized S "stationary" as follows:

Proposition 2.3. ( Menas [81]) SC PKK is stationary iff any
function f:8—9Ax) so that f(y)e yxy for all y in S, is constant on

some unbounded TC S.

In the spirit of proposition 2.3, we can express stationarity

using prestationarity.

Proposition 2.4. If Sc< PKA is prestationary and every regressive
function is constant on a prestationary T< S, then S is stationary.
Proof. Let f:S—AxA, f;, £;:S—>X so that f(y)€ yxy for all y&S
and f(v) = (£f,(y), f,(y)). Since f,(y)€ y for all y€ S, there is a
prestationary T;< S on which f; is constant. Again by the fact that
fo(y)e y for every ye T, that is prestationary, there is an unbounded

T,<T; so that f,[T, is constant. Then f[T, is constant.

The stationary subsets are the sets which have nonempty inter-
-section with every closed unbounded set. Now we characterize the
Prestationary sets with SCFKA' First recall the theorem for SCFKA in
Carr [3].

Lemma 2.5. ( Carr) CéSCl—‘K iff there is a sequence of sets

A
in P2, <Xal d<)) so that A<§a' a<A? = {y: x, ¢y for all aeylccC.

Proposition 2.6. SCiPKX is prestationary iff SNC # 0 for all
Ce SCFKA'
Proof. Suppose that S is prestationary and SN C = 0 for some C€~SCFKA.

By 2.5, there is a sequence <Xal a<AY so that A(Q&l a<A) € C. For every



x €S, there exists an a & x such that xa¢:x. Since S is prestationary,
there is an ordinal y so that {xe¢ S: xY¢:x} is unbounded. Contradiction,
For the converse, assume that SNC # 0 for all CZéSCFKX and S
is not prestationary. There is a regressive function f such that for
every oa<A there is an a, < PKA so that {xe S: f(x) = a}r\ga = 0. Let

C = A{gul a<i}, then CéSC’EK Pick an xe CnS and suppose that

X
f(x) = a. Since o €ex and xe¢ C, a, < x. Then f(x) # o by the definition

of aa. This is absurd.

We connect the above fact to the partition property of fine

measures.

Corollary 2.7. If U is a fine measure with the partition
property assigning measure one to the strongly club sets, then U is

normal.

This is really propdsition 11 in Menas [9], where he proved it
for the club sets version. Menas' proof is applicable in our case as

well.

§3. Weakly normal filters on PKA. For weakly normal filters

on k regular, see Kanamori [7]. We briefly review the basic facts.

Proposition 3.1. For any filter on k, the following are
equivalent.

(i) U is weakly normal.

(ii) Every filter extension of U is weakly normal.

(iiid) If {Xa: a<k} are sets of positive measure such that XBC:Xd

whenever o<f8, then A{Xa: a<k} = {a<k: aéiXB for all B<o} has a positive



measure.
(iv) U is a p-point filter extending CFK.( U is a p-point if.
every function f:k—>k such that K—f_l({a})e U for all a<k 1is <k to

one.on some X € U,)

It is natural to ask whether the same thing happens to filters
on PKX. We easily get that (i)~ (iii) are also equivalent for any

filter on P - ( Note that A{Xa: a<i} = {xe PK)\:‘ x€X, for all o ex}.)
But for (iv), the author only knows the following.

Proposition 3.2. (i) Suppose that U is weakly normal. If f is
a function with the domain PKX and {x: f(x)>a} €& U+ for all a<A, then
there is a set X of positive measure so that XnE T ({ab)C P o for
all a<A.

(ii) Suppose that U extends SCFK and for any a<) there is an

A
Xelf-such that Xr\f_l({a})<:PKB for some B<A whenever f satisfies

{x: f(x)>Y}€If.for all y<A. Then U is weakly normal.

Proof. (1) Let X, = {x: f(x)>£} for each £<A. Then X €&U+ and

g€
if &<n. Now A{X

g

X, < X, . £<A} €U’ by (iii). If xe€ A{%,: £<2} and

f(x) = o, then &<o for all £ € x. Hence xca.
(ii) Suppose that f is a regressive function on PKA. Since U

extends SCF every X of positive measure is prestationary. Hence

KA’
there is an a<\ so that X/\f—l({u}) is unbounded. By our hypothesis,

{x: f(x)<y} eU for some y<A.

The question left is whether every weakly normal filter extends

CF or SCFK In [1], the fine measure investigated by Menas was

KA Al

revisited and shown to be nonnormal. We again observe it and get more



information, which gives a negative answer to the question. The author
wishes to express his gratitude to A. Blass whose advice led to a’
simplified proof. We concentrate on a filter defined below. We assume
that « is a regular limit cgrdinal.

Let <U_] a<k? be a sequence of fine filters on P,A and D be a
k—-complete uniform filter on k. Then a fine measure U is defined by

XeU if XCPKA and {a<k: X/\Pa)\e Ua}e D.

Theorem 3.3. ( Inspired by Blass.) U does not extend SCFK)\
hence is nonnormal.

Proof. Let C = {XGPKA: xnkK is an ordinal}. Then C is strongly
closed unbounded. We shall show that Cr\Pa)\ is not unbounded for all
a<k. If xe¢Xn POLA and a+e x, then cx+c x. But this contradicts to

| x| <a. Hence oe+¢x for all xe CnP A and CnP A ¢U . Thus C ¢ U. Note

+ . . .. .
that o <k<) since K is a limit cardinal.

For certain Ack we have a strongly club set which is not

unbounded for any a € A. More precisely;

Proposition 3.4. Suppose that A = A and A cx. There is a
C QSCFK)\ so that if a ¢ A and sup(Ano) # a, then CnPak is not
unbounded.
Proof. Let {xg: g<)} be an enumeration of PK}‘ and ar = the least
member of A>|x| . Then, we pick a yg 2% with IyE[;q£+. Finally,

c = A<§g| E<AY-

Suppose that a ¢ A and sup(A no) # a. Then o = og for some Xg'
Assume that there exists an x € CNPFP A with £ ex. By our definition
of C, xDV;. This implies |x[z|y5|3ug+>a contradicting x € P A. Hence

~
c f\Pal)r\ {g} = 0.
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Now we turn to the weak normality of U under the assumption that
Ua is weakly normal for all a<k, and improve proposition 2.4 in [13]
by & simple argument. In the next theorem, Kk is not necessarily a

limit cardinal in (i) and (iii).

Theorem 3.5. (1) If cf(A)>k, then U is weakly normal.
(1i) If cf(X) = x, then U is not weakly normal.

(iii) If cf(X)<k and (a) or (b) is satisfied, then, U is weakly
normal.

(a) U is an ultrafilter.

(b) D is cf(A)-decendingly complete. That is; if <XE{ gE<cf(A)Y
is a sequence of positive measure such that XHC:XE whenever £<n, then
/\{XE: £ cf(X)} X 0. (Note that D is not required to be an ultrafilter.)
Proof. Suppose that f(x) € x for every x € PKA.

(i) For a<k, Gu is an ordinal<) such that txe.Pal: f(x)<6a}€ U,
Since cf(A)>k, § = sup({éa: a<k})<A. Obviously {x<5PKA: f(x)<8l e U.

(ii) Let {Xa: a<k} be a cofinal subset of A and Ay <A if a<B. For

B
each a<k, {XG.PGK: A, € x and XJXI<XQ}€1JQ. Hence we have

xePBA: x-A_, % 0}€U.

ix]
So, there is a function g:PKA——9A such that g(x)e x and g(x)>klx’

for almost all x (mod. U). For any a<k, we know that {xe&PaA: x:>u+}e U

and then {x: A‘XI>Aa}éIL Hence‘bcePKA: g(x)>la}étlfbr every a<k.

" We are done because g is an unbounded regressive function.

(iii) Suppose that (a) holds. We already showed in Lemma 1.3 that

every fine measure on PKA is weakly normal if cf(A)<k. In fact,

Fact 3.6. A fine measure is weakly normal iff its first function

maps x to sup(x). (We denote such function by Sup.)
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When (b) holds, let {Aa: a<8} be a cofinal subset of A with
8 = of(X) so that A <A, if a<B. Suppose that {x€ P ): f(x)<>\a}éﬁ.U'
for all a<8§. Then {&<k: {xePgA: f(x)<>\a}€ UE}&D for any o¥d. Hence

C. = {g<k: {xeP

+
o A f(x)<)\u}§U£}6D )

g
If a<B, then {xePg}\:;lf(x)ﬂ\B}éiUE implies {xe€ PEA: f(x)<)\a}§\U€
since Aa<k8. So, CBCICQ. Then C = f\{Ca: a<8} X 0.

Pick a £€¢C. {XGPEK: f(x)<}\a}é§; UE for any o<8. This contradicts

the hypothesis that UE is weakly normal.

Note that a filter F on PKA is weakly normal if it is cf(X) -

~-decendingly complete.
Combining Theorems 3.3 and 3.5, we have;

Corollary 3.7. There is a weakly normal filter which does not
extend SCFKA'

Jech [5] and Carr [3] showed that CF, , is the minimal normal
filter. Is there a nice analogue for weakly normal filter? Or, what
is the consistency of weakly normal filters? ( Note here we assume

that any filter is fine and k-complete.)

§4. Weakly normal fine measures and the RK-ordering. In this
section, k is a fixed strongly compact cardinal. We observe the weak
normality in view of the RK-ordering. First we review the fact

established by Menas in [8].

Theorem 4.1. ( Menas) (i) If cf(\)<k or A is regular, then

every normal measure on PKA is minimal.
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(ii) If X is regular and the first function of U is one-to-one

on a set of measure one, then U is minimal.

We hope that every weakly normal measure is minimal as in the
theory of uniform ultrafilters on a regular cardinal. In fact any

minimal fine measure is isomorphic to a weakly normal measure.

Proposition 4.2. Every fine measure has a‘weakly normal measure
below it.
Proof. Let U be a fine measure and g its first function. Define
f:PKk-—?PKA by f(x) = xng(x).

By an easy observation, {x: ace f(x)}€ U for all oa<i and f%(U)
is a fine measure.

Suppose that {x: f(x)e€ x}¢€ f,(U). It means that
{x: hof(x)€ xng(x)}€ U. Since g is the first function of U, we have

{x: hof(x)<y}€U for some y<A. Hence {x: h(x)<y}é€ £, (U).
The next fact appeared already in [8] implicitly.

Proposition 4.3. Let A be regular and U a fine measure on PKA.
U is minimal iff its first function is one-to-one on a set X € U.
Proof. Let {Ak(u): a<A} be a partition of {a<i: c¢f(a) = w} into
disjointed stationary subsets. Let f be the first function and define
q by q(x) = {a<f(x): A, (a)n f(x) is stationary in f(x)}. Then q,(U)
is a minimal fine measure. ( Theorem 2.14 in [81)

Suppose that U is minimal. q[X is one-to-one for some X€ U.

But q(x) = q(y) if f(x) = f(y). Hence f[X is one-to-one.
Corollary oy, A weakly normal measure on PKA with A regular
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is minimal iff Sup is one-to-one on a set of measure one.

A filter F on a regular cardinal p is called a g-point if every

<p to one function from p to p 1s one-to-one on a set X€ F. It is

known that any filter extending CFp is a g-point. SCFKx also plays
a role on the minimality of weakly normal measures.
Proposition 4.5. Let X be regular. If U ié a minimal fine

measure on PKA that is not weakly normal, then SCFKAd;U.
Proof. Let f be the first function. By our assumption, there is a
set X€U so that f[X is one-to-one and f(x)<sup(x) for all x€ X.

Suppose that SCFK < U. Then X is prestationary. For x € X, set

A

g(x) = the least member of x greater than f(x). There is an unbounded

set YCX such that g"¥Y =y{y} for some y<A. Thus, f'"Y<Cvy and

<

Y| = A%*>y, which contradicts the fact that f[Y is one-to-one.

Corollary 4.6. Let A be regular. If U is normal and
£,(U)CSCF_,, then f,(U) is weakly normal and {x: sup(f(x)) = sup(x)}€&U.
Corollary 4.7. For any regular A>k, there is a non-minimal

fine measure extending CFKK'
Proof. Let A = {a<X: cf(a)<k} which is stationary in A. We repeat
the construction in §1.

There is a k-complete ultrafilter on A, DIDCFA\){A}. For each
o e¢A, fix a fine measure Uu on qu extending»CFKd; and define U by

XeU iff {a<)h: Xr\PKocéUd}éD.

Then U is a fine measure extending CFKA'
We shall see that U is not weakly normal, hence non-minimal by

Proposition 4.5,
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Since A€ D, D is not normal. Thus there is a function g so that
[g]D = X and {a<)X: g(a)<al}eD.

For xe PKA, let a, = the least a such that x e PKoc and
f(x) = gla,). For every @€ A, {xe P a: f(x)<sup(x)}65Uu since
{x: o, = o = sup(x)}GEUa. Let h(x) = the least member of x greater
than f(x). h is a regressive function on a set in U.

Pick a y<A. Then B = {a€A: y<g(a)}€ D. For all a¢B,
{x ¢€P a: £(x) = g(ax) = g(a)} e U, and {x éPKu: f(x)>y}r e U, Hence

{XGPKA: vy<f(x)}€ U. It shows that Sup is not the least function.

On the other hand, we have a minimal fine measure which is
weakly normal and does not extend SCPKA' We recall the fine measure
in §3. Suppose that A is regular and <Ua| a<k ) 1s a sequence of
normal measures on Pa)\ and D is @ normal measure on k. Define U by

X€U iff {a<k: X(\Pa}\ G.UQ}GD.

Following the argument of 3.1. 3, 4 in [10], we get;

Lemma 4.8. (i) {x: the order type of x is regular}e€ U.
(ii) Let G be a w-Jonsson function over A. ( G is w-Jonsson over y
if 6:%y —y and G"z = y whenever zcy and |z| = |y|.) Then we have
{x: 6[Yx is w-Jonsson over x} € U.

(1ii) There is an X€ U so that Sup[X is one-to-one.

Note that normality of Ua's is necessary in the above. Using

the results proved in §3, we can show;
Theorem 4.9. For every regular A>k, there is a weakly normal
minimal fine measure which does not extend SCF 5 -

Proof. It is clear that every normal measure is weakly normal.
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Hence our U is weakly normal by Theorem 3.5-(i). Theorem 3.3 asserts

that U does not extend SCF At last U is minimal by Fact 3.6,

3

Theorem 4.1-(ii), and Lemma 4.8-(iii).

It is not known whether U can be isomorphic to some fine measure
extending SCFKA' We also do not know whether non-minimal weakly

normal measures exist.

References.
[1] Y. Abe, Some results concerning strongly compact cardinals,
J. Symbolic Logic 50 (1985) 874-880.
[2] A. Blass, private communication.
[3] D. M. Carr, The minimal normal filter on P _X, Proc. Amer. Math.
Soc. 86 (1982) 316-320.
(4] M. @Gitik, Nonsplitting subset of PK(K+), J. Symbolic Logic 50
(1985) 881-894.
[5] T. J. Jech, Some combinatorial problems concerning uncountable
cardinals, Ann. Math. Logic 5 (1973) 165-198.
{61 J. Ketonen, Ultrafilters over measurable cardinals, Fund. Math.
77 (1973) 257-269.
[7] A. Kanamori, Weakly normal filters and irregular ultrafilters,
‘Trans. Amer. Math. Soc. 220 (1976) 393-399.
[8] T. K. Menas, On strong compactness and supercompactness, Ann.
Math. Logic 7 (1974) 327-359.
[9] T. K. Menas, A combinatorial property of PKX, J. Symbolic Logic
41 (1976) 225-234.
[10] R. M. Solovay, W. N. Reinhardt, A. Kanamori, Strong axioms of

infinity and elementary embeddings, Ann. Math. Logic 13 (1878) 73-116.

-16-



	0001.tif
	0002.tif
	0003.tif
	0004.tif
	0005.tif
	0006.tif
	0007.tif
	0008.tif
	0009.tif
	0010.tif
	0011.tif
	0012.tif
	0013.tif
	0014.tif
	0015.tif
	0016.tif
	0017.tif
	0018.tif
	0019.tif
	0020.tif
	0021.tif
	0022.tif
	0023.tif
	0024.tif
	0025.tif
	0026.tif
	0027.tif
	0028.tif
	0029.tif
	0030.tif
	0031.tif
	0032.tif
	0033.tif
	0034.tif
	0035.tif
	0036.tif

