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§ 1. An open algebra of a Stone space
We shall use usual lattice-theoretic notations and set-

theoretic ones.

Definition 1.1 A lattice L 1is distributive, if
a n(bVec) = (apab) V(aac) holds.

A lattice L is bounded, if it has the least element O
and the greatest element 1.

A lattice L is a bounded distributive lattice, if it is
bounded and distributive.

A lattice L is a Heyting algebra, if it is a bounded
distributive lattice and relatively pseudo-compemented. We
denote the relative pseudo-complement by a=b, where

x < a=»b if and only if aAx<Db.

Definition 1.2 A lattice L is complete if the least
upper bound for any subset X of L exists. We denote the

least upper bound by VX.

Definition 1.3 A lattice L is infinitely distributive,

if aAVB = \/ aAb holds in the case that \/B exists.
b eB

Definition 1.4 A subset F of a lattice L 1is a filter,
if the following hold: a<b & a¢F - b&F, acF & beF +» a nbeF
and § € F if there exists a greatest element ] in L.

A subset I of a lattice I is an ideal, if the following
hold: a<b & belI »a€l, a&l § bel »~ avbeglI and O€I

if there exists a least element @ in L.

oo



An ideal I is prime, if aAbeI implies ael or
bel and I 1is neither L nor empty.

An ideal I is maximal, if I is neither L nor empty
and any ideal which includes I is I or L.

JL 1is the set of ideals of L.

pL 1is the set of prime ideals of L.

mL 1is the set of maximal ideals of L.

Va is the set of prime ideals which do not contain a,

which is a basic open set for pL.

I, is the principal ideal {x; x=<al.

Definition 1.5 A function ¢: L - L' 1is a morphism,
where L and L' are lattices, if ¢ preserves the operations
V and A, i.e. ¢(aVvb) = ¢(a)Ve(b) and ¢(anb) = ¢(a)ad(b)
for a,bel.

A morphism ¢ is complete, if it preseves \/, i.e.

(/X)) = \/o¢"X in the case that \/X exists.

A morphism ¢: L+ L' is a (,f-morphism, if ¢(D) = O
and ¢(ZL) = 1 hold in the case D and 7 exist in L
respectively.

A morphism ¢: A »- A' 1is a strong Heyting morphism,
where A and A' are Heyting algebras, if it is a Q@ ,[-

morphism and Fvegqves = ,

We shall use abbreviations: a BDL for a bounded distributive
lattice, an Ha for a Heyting algebra, a cHa for a complete
Heyting algebra, a cH-morphism for a complete Heyting morphism

and so on.
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Definition 1.6 A subset X of a complete lattice L
completely generates L, if a = \/{x; X <£a 2% x ¢X} holds
for each a¢L. A complete lattice L* 1is a completion of
a lattice L, if there exists an injective Q,fl-morphism
j: L - L* such that the range of‘ j completely generates

L*. This j 1is called the related morphism.

Definition 1.7 0(X) 1is the cHa which is the set of open
subset of a topological space X, where the infinite sum and
the finite intersection are the set theoretical ones. We call
it an open algebra.

R(H) is the set of regular elements of an Ha H, i.e.

R(H) = {x; (x=20)>0= x}. We denote (x=0)=>0 by R(x).

By Def.l.4, FL can be regarded as a topological space.

It is known as a Stone space.

Theorem 1.1 (Stone) Let L be a distributive lattice
and 1: L - O(@L) be the function such that i(a) = Va' Then ,
O(pL) is a completion of L and i 1is the related morphism.

And 1f L 1is an Ha, 1 1is a strong H-morphism.

Proof. i(aAb) =V =\%mv

anD = i(a) A i(b) and

b
i(aVvb) = Va\jvb = j(a)Vi(b). For the injectiveness, notice
that a%b implies the existence of a prime ideal which
contains b but does not contain a. Since {i(a); aeL}

forms a topological base for pL, O = Ufi(a); i(a)<0 & ae L}

for each Ocso(pL).



Let I be a prime ideal of L.

IeV AV Ha¢’1&a=>b¢1MaAa=>b¢1+b¢I. So,

a=b

\Y% < va?v implies that

amb = On the other hand, I eV, >V

b* b
there is ¢ such that I eV, < (FL'Va) U V- Then, " cpAashb
and so c$a=~7b. Hence, Va=;>Vb = Va@b'

i(®) = ¢ and i(4) = pL.

Theorem 1.2 Let L be a BDL and A be a cHa. And
let ¢: L - A be an O,l-morphism. Then, there exists

a unique cH-morphism : O(LFL) + A that satisfies the

O(pL left diagram. And if A is completely
i T\\a}w generated by the range of ¢, then @
L —T;_S,)A is surjective.

Proof. Let y(a) = Y {¢(x); i(x)<a} for aeO(pL).
Since O(ézL) is a completion of L, a = \/{i(x); i(x)=<al
for aEO(yL) . And so, the uniqueness of Y 1is clear.

p() = {o(x); i(x)<a}l = ¢(1) = 1A

vixay) = Vo iwsxay

Vg ae(v); iw<x, i(v) <y}

P(x) AV (y), Dby the infinite distributive-ness
of a cHa. »

To show the preservation of the infinite sum \/ , it is
sufficient to show that w(\/X) = \/qb"X for X< i"L. Suppose
that w(\/i"x) = \/qs"x does not hold for some X<L. Then,
by the definition of 1y, there exists uw 1in L such that
i(u) = \/i"X holds but ¢(u) < \/cb“X does not ho.ld. So, there

exists a prime ideal I in A such that ¢(u)¢-I and



\ﬂyﬁ<el. Let 'I¢ be the subset of L defined by the postulate:

a4;I¢é~9 ¢(a) & I. Then, I is a prime ideal in L and contains

¢

every element of X, but does not contain u. However, this

- . ’I .
contradicts to the fact: V & ;éxvx

If A 1is completely generated by ¢"L, x = \/{¢(u);¢(u)§;x}
/0o ¢(u)<x}

= X.

it

for each x€A. Then, ¢(\/{i(u); ¢ (u)<x})

Hence, ¢ 1s surjective.

Corollary 1.1 Let A be a cHa and a completion of a distri-
butive lattice L. And let J be the related morphism. Suppose

that for any completion A' of L with the related morphism j'

A there exists a cH-morphism 1 that satisfies
j T =R the left diagram. Then, A 1is isomorphic to
\‘4 .
L —j,eA O((FL).

Proof. If L does not contain ® nor 1, we can add
@ or {1 and extend j and j' as the related morphisms of
completions of the extended distributive lattice of L. So,
we assume that L 1is a BDL.

Let A' be O(PL). Then, by Th.l, there exists a surjective
cH-morphism ¢': O(FL) ~ A. Now, it is easy to check that the
diagram: Aé&;T—; O(fL) commutes.

Next we shall show another representation of O(fL) for

a distributive lattice L.

Definition 1.8 For I,J e L, IAJ=1INJ. For T giﬁL,



\/I‘ is the set of finite sums of elements of UT.

For X &L, I(X) 4is the minimal ideal that contains X.

For the sake of §6, in some cases it is necessary that the
proofs are intuitionistic. So, we shall mark lemmas, theorems
and corollaries by * 1in the case that they are proved

intuitionistically.

Lemma 1.1%* gL with the operations in Def.8 is a cHa and

a completion of L for a distributive lattice L.

Proof. Since INnJefL holds for I,JecdL, IAJ is the
maximal ideal which is included by I and J. It follows from
the distributive-ness of L that VIedL for T</fL.

\/T is the minimal ideal which includes every I in T.

So, VIAT S IAVT. Cconversely, xe—I/\\/l“ implies that =xegI
JeT '

and x 1is a finite sum of elements of UT. So, x 1is a finite

sum of elements of U IANJ. Hence, x ¢ \/ IAJ. Now we have
JeTl Jel

proved that ,ﬂL is a cHa, since the infinite distributive-ness
of a complete lattice implies the relatively pseudo-complemented-
ness. By the way, I=J0 = {y; xayed for each xeI}.

Let Jj be the function such that Jj(x) = I, for =xelL.

Then, j(x)ef]L. So, ]L is a completion of L and Jj is the

related morphism.

Corollary 1.2 L 1is isomorphic to O(FL) .

Proof. By Lemma 1.1 and Th.l1l.2, there exists a surjective



cH-morphism y: O(pL) > J§1n. Let y(0) = y(P). Then,
V{ijx); i(x)<0} = V{i(y); i(y)€ P}. So, i(x)< 0 implies
X & qu(y); i(y) € P}. By the definition of the infinite sum,

i(x)< P. This argument implies O = P.
§ 2 The canonical completion

In this section we shall prove the existence of the canonical
completion of a Heyting algebra and its uniqueness. This has
been proved by Funayama [ 5 ], and Rasiowa and Sikorski [ 9 ], but
we want to prove it intuitionistically for our purpose. Our

proof is on the same line of Funayama's.

Lemma 2.1* A Heyting algebra is infinitely distributive.

Proof. A usual proof is intuitionistic. See [ 9 ].

Definition 2.1 An ideal I of a lattice L 1is closed,
if the following holds:
"a= \/{x; xel & x<al" implies "aceI".

_ch is the set of closed ideals of L.

Lemma 2.2* For any X <L, there exists a unique minimal
closed ideal IC(X) that includes X. If L 1is infinitely

distributive, IC(X) is the set of all elements u's such

that u = \/{v; veu &§ v<x for some X EXI.

Proof. IC(X) is the intersection of all closed ideals

that include X.



Let L be infinitely distributive and J be the set of

all u's in the lemma. If ue¢J and w<u, then

=\/{v,/\w; v<u & vsx for some x&X}

= \/{V; véw & v<x for some x X} and so wedJ.
If ueJ and weJ, uvw=\{vi(vsu or vw) & v<x for some xe X}

=\/{vi vSuVw & v£x for some xé&X]

and hence uvwed.
Suppose that a = \/{x; x<a & xeJ}.
Let A = {v; v€x & vy for some yeX} for xe&J. Then,

x =\/a_ for xe€J. So, a=\/{\/Ax; x<a & xeJ}

VUia; x<a & xeJ)

it

\/{vi v<a & ve X}, which is in J.
Now, we have proved that J is a closed ideal, which

includes X. The minimality of J is clear.

Here we define the operations for jCL, which are a little
different from those for jL. We shall use the same notations,

since no confusion will occur.

Definition 2.2 For I,J ¢ (L, IAJ=1INJ. For T <£{ L,
C /\ C

Vr = I,(UT), i.e. the minimal closed ideal that includes UT.

Lemma 2.3* Let A be an Ha. Then, ch is a cHa and
the embedding i: A +ch ;o i(x) = I+ is an injective strong

cH-morphism.

Proof. jCA is closed under the operations in Def.2.2.



\/I_.»\J < IAVT for T. Let x be an element of I/\VI‘.
JeTl

Then, x&I and x =\{v; v<x & veJ for some JeTl} by

Lemma 2.2 and Def.2.2. So, xe—Ic( UI/\J) = \/I/\J. Hence,
Jel Jdel
9 A is a cHa.
c
i(xAny) = Ixx\y = IXnIY = 1i(x)A i(y).

Suppose that \/X exists for XSA. Let T = {i(x); xeX},

Ve = | i).

xXeX

1l

3 -~ ] : - (W
then \/XCIC(L,I‘). so, i({/x) = I_(UT)
i(jL)=Ii\.=A=jL.

Let J be the closed ideal that satisfies the condition:

J/\IXSIy. Then, 2z2aAx<y for any 2z ¢J. And so, zZ<sxX=Dy.

AN

So, On the other hand, I < Ix=> Iy. Hence,

I .
X =y X =Y

Ix:;y = Ix'=>Iy.

Theorem 2.1* Let A and A' be an Ha and a cHa

respectively. And let ¢ be a cH-morphism from A to A'.

CA Then, there exists a unique cH-morphism V¥
™. . 1
iT ~aly from JA to A' such that the left
A—cﬁ—\‘g A' diagram commutes.
Proof. Let Y (I) = \/ ¢ (x). By the infinite distributive-
xel
ness of A', Y(I)AV(I) = \/¢(x) AVey = \/ V ¢ (xAy)
Xel yed X€l yed

< Vo) =v(EAdD.
XeIAT

Let erC(UI‘) for T C Sch. Then, x = \/{u; u<x & ueVF}.
$(x) = \/{¢(u); us<x & uelT}, by the completeness of ¢.
uelUl implies uelI for some Ie&l and so ¢(u)< P(I) for

some Iel. Hence, Y(VI) < \/Pw(z). And (1) = 1.
Ie

The uniqueness of V¥ is clear from the fact that ¥ is
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complete.

Definition 2.3 A completion of an Ha A is canonical,
if the related morphism i is complete. We denote the

canonical completion of A by A.

Corollary 2.1l* ( Funayama [5 1) _ﬂcA is a canonical
completion of an Ha A and every canonical completion of

A 1is isomorphic to .jEA.

Proof. It is sufficient to show that the morphism

in Th.2.1l is injective and surjective in the case that A' is

a canonical completion of A and ¢ 1is the related morphism.
For any x<A', x = \/{¢(a); ¢(a)<x & achl.

w(‘]{i(a); pl(a)£x & a€A} ) = x holds and so Y 1is surjective.

Suppose that \/ ¢(x) = VYV ¢(y). ¢(x) = V o(y) implies

xel ved yed
¢(x) = V’¢(x;\y). ILet 2z be an element such that xAyY=sz
yed
for any y€J. Then, o¢(xaAy) = ¢(z) for any ye€dJ. So,
o(x) = \Vo(xAy) < ¢(z). And so, ¢(x) = ¢(x) Ad(2) = ¢(xAz).
ved

By the injective-ness of ¢, x = xA2z and hence x=<z. 50,
X = V/Xf\y € J. These imply I = J.

ved

From now on, we shall assume that 1 in Def.2.3 is the

inclusion map.
£3. A co-product of Heyting algebras

We shall define a co-product of bounded distributive

lattices, the existence of which have keen well-known. Our
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object is a co-product of Heyting algebras as bounded distributive
lattices. The fact that it forms a Heyting algebra has perhaps
already known, but we shall prove it to check additional properties

for the following chapters.

)

Definition 3.1 For distributive lattices L (aen),?t

the co-product & L, is the sublattice of O('H'PLQ) finitely

ael o€l
generated by {p&_l Va; acLy, oA}, where P, is the
projection from ‘H‘FLa to PLu for each a eA. The embedding
aeh
. ; , . L _ -1
i Ly = oY L, is defined by the postulate: i (a) = p, =~ V,
oel
for o €A.

Lemma 3.1 Any element x of Q@ZHx can be represented

ael
by the following two forms.
X = \/ /\ ia(az)== /\ \/ ia(bQ), where Fr and G,
k<n ueFk j<m aeGj J J

are finite subsets of A.

The proof can be done by the induction on the construction
of &) L,- It is a routine, so we omit it.

ach

Theorem 3.1 ( Sikorski [ 10 ]) Let La and L be
distributive lattices and hu be a O,l-morphism from La

to L for each a&A. Then, there exists a unique &,1-

L, morphism ¢ that makes the left diagram
ii///\\ga commutative. And ¢ is injective if and
® L------ >L, only if /\ ho‘(aa) = \/ hu(ba) implies
ach o) OEF aeG

i) To avoid the triviality and for the simplicity, we assume that

La has at least two eleménts, when we treat the co-products & .
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that auﬁ.ba for some o &F AG, a® = @ for some aeF

or b* = 1 for some o& G, where F and G are finite.
Proof. For xe & La’ X can be represented as
agh

AVARRVAN ia(ai). Let ¢ be the function such that
k<n aeF

k
o(x) = VA h, (a ). Suppose that /\:L (a%) € x. Then,
k<n aCFk aeF
x= /N V g g (af ) by the distributive-ness.
fe'ﬂ'Fk k<n
k<n

Remind that ia is the inverse of the projection and finite

sums and intersections are the set theoretical ones. Then,

\ o . a . ;o _a
i(a’) < Vo oi % =i ¢ \/ a%  holds for some aeF,
. f(k)=a ¢ ¥ % £ (k)=a ©
a . o
a® = 0 for some aeF, or i ( V aY) = 1 holds for
o k
£ (k)=u
some océF.
) £ (k)

so, A h, %) < V’h (a,"7") for each fe | F . Hence,

f(k) k

0EF k<n k<n
An @ < /A Vobepy a5 = VA nah.
QEF fe¢ll F, k<n k<n aceF
k k
k<n

These above implies the well-defined-ness of ¢.
By the definition of ¢, V, A, @ and 1 are preserved
under ¢.

Suppose that ¢ is injective. Then, /\ h (a ) =< V’h (b )

aeF aeG
implies /\ 1 (a%) < \/.iu(ba) and so a%< b%® for some
aeF acG
aEFNG, aa=® for some oé&F or ba=ﬂ for some o €G.

The converse is similar by Lemma 3.1.

Lemma 3.2 F(@ L is homeomorphic to 'T_F(L ).
aeh ach
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Proof. Let Ioc be a prime ideal for each ae /A and

® I, Dbe the subset of ® L, defined by the following:
aeh ¥ a€el

x&e R Ioc if and only if there exist some finite F<SA and
ach
a%c I for each aeF such that x < V i, (a*). Then, ® I,
o OEF ach
is clearly an ideal. Suppose that x Ay e & I . By Lemma 3.1,
ach %

x and y have the representations; \/ /\ ia(ai) and
k<m OLGFk

\/ AN 1 (b respectively. By the definition of (¥ I_,
j<n oceG:l aeh

xAy < V ,iu(aa) for some finite F and some a%elI for

each o & F. Without any loss of generality, we may assume that
F = Gi= F for any k,j. So, A i (ak) A N\ i, % < \/ i,
J el aeF oeF

for any k,j. And so, aiela or bgc—;Iu for some a&F.

For each a€F, let Acx and BOL be the subsets of m and n
respectively such that k(—:Aa > aloéé I and jeB - b%‘e Ioc'

Suppose that UA =m, then x = \/ N\ i, (a ) € &) I,-
aEF k<m ceF aeh @
Otherwise, there exists k<m; k%Aa for any o e&F. Then, there
is a in F such that b?ela for any Jj<n. Hence, \_/B = n
o€l

and y= \/ /\ i ®hH e ) I, DNow, we have proved that X I

j<n oeF J aeh aeh &

is a prime ideal.

Let (I)a be the subset of L, for a prime ideal I and

each o &l such that xe(I) > ia(x)el. Then, (I)oc is a
prime ideal and (®I o = I, for each ach. And I= & (I),

ach o ol
holds. Let c = /\ i (a;). Then,

. ok
k<m aeF
, k
Iev, <+ /\ :La(a )q?I for some k<m
aeFk

> a]% ¢ (I)u for eaf:h o eFk for each k<m.

These above imply the lemma.
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Theorem 3.2 Let Aa be an Ha for each ael, then @uAu
oe

is an Ha and i, 1is a strong cH-morphism for each o €A.

Proof. Let Py be the projection in Def.3.1. P, is

an open continuous map and hence an easy calculation shows

that 1, 1is a strong cH-morphism from A  to R A,-
oel
By Th.3.1l, what we must prove is that X A, is relatively
ael
pseudo-complemented. By Th.1.l and Lemma 3.2, it is sufficient

to show that x=y is in @ A

, for each x,ye¢ A , where

aeh ael
= is in the sense O(.ﬂ.an)' et x= V AN ia(ai) and
ael k<m aeFk
y = /\ \/ iu(bQ). We can assume F,= G,;= F for each k<m and
j<n. Then, x=y = N (Niap=A Vi )
k<m Q&F j<n GEF J
: o . a
= N A WA i, (a) = \/lu(bj))
k<m j<n Q€F QEF

/. a .4
=N Ay 1a(%5$bj))

k<m j<n acF

Hence, x>yc® A, and @ A, is an Ha.
ae ael

In some cases, a co-product of open algebras O(Xa)'s

in the category of the cHa's is isomorphic to O('ﬁ'xa).
aEl
(cf. Isbell [ 8 ]) We next show that O(FL)'S are such cHa's.

Theorem. 3.3 Let La be a distributive lattice and I&

be the embedding such that I&: O(fLa)—§.O(TTpLu) and
oel
i (x) = p;lx, where Py 'W'FLG - fLu is the projection, for
a€EN

If A is a cHa and E&‘ is a cH-morphism from O(pL,) to A
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O(fLa) for each ae A , then there exists
T/ h a unique cH-morphism ¢ such that

o( 1T pL, )--—--¥7A the left diagram commutes.
T\ 3 0]

Proof. By Th.l.1l, there exists a unique Qﬁﬂ—morphism
ha such that the diagram (1) commute;, where 3¢ La - O(fLu)
is the morphism in Th.lifor each o&lA. By Th.3.1l, there
exists a unique O,1-morphism ¢ such that the diagram (2)
commutes. Now, by Th.1l.2, there exists a unique cH-morphism ¢

such that the diagram (3) commutes.

(L) (2) (3)
O(pL ) L O(pX L)
./f OL — /"-OC e{OO(,CA -
Jai h, o h, ]T ~a¢
Ly in A ® L >a ® L, —bha
o aelh T 3(¢ ael )
By Lemma 3.2, F(@ L ) and O( T PL, ) are isomorphic to
aeh ¢ aelh

each other and so we regard them as the same thing.

Now, the only thing we must prove is E-Id = Hu for
each oe€A. Let P = U{Va; V,eP & aeL } € O(pL ).
- § "l :

= / . [ - = M o=
i,(®) L{pa Vi V,SP & acLa} U{la(a), VP & ak_Lm}

so, %-1,(P) Vig-i (a); v,cP & aeL )
Vieei (a); v

Vih (a); V S P & ael }

Il

CP & acL }
o

i
=y

(P).

§4. A space of maximal ideals

We have studied about the open algebras of the spaces
of prime ideals. 1In this section we shall investigate the

open algebras of the spaces of maximal ideals.



Definition 4.1 For distributive lattice L, the topology

of mL 1is the subspace-topology of FL‘ ( See Def.1l.4 )

Definition 4.2 A BDL L has the T-property, if a<b
implies that there is an element c¢; aVec =1 & bVc # 1 .

A BDL L 4is normal, if aVb = [ implies that there are
elements u and v such that uav =0 and avu=DbVv = 1 .

A BDL I is compact, if /X = {I implies the existence of
a finite subset F of X such that \/F =1.

An element x of a BDLL. L is a co-atom, if there exists

no element between x and 4 and x is not 1.

By the definitions, the following are immediate.

Prop. Let X be a topological space.
If X 1is a Tl—space, then O0(X) has the T-property.
(i)

X is normal, if and only if O(X) 1is normal.

Prop. Let L be a BDL. L 1is compact if and only if

every maximal ideal contains a co-atom.

Prop. If L 1is a BDL with the T-property, then O (mL)
is a completion of L and the related morphism is e, where

e(a) = Vap\mA for ae&€A.

Prop. Let A be an Ha. A is compact if and only if

A is compact.

Prop. O(mL) has the T-property.

(i) This "normal"” has the.usual topological context.
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Lemma 4.1 Let L be a BDL and A' be a compact cHa with
the T-property. &and let Jj: L -~ A' be an @,l-morphism such

that j(x)= 1 implies x=1 and Jj"L completely generates A'.

O (mL) Then, there exists a unique cH-morphism ¢
e/[ T-3le such that the left diagram commutes. And
L —-———j—-i:; A" ¢ 1is surjective.
Proof. Let ¢( Je(a)) = \/ j(a). We prove the well-
aeh as i
defined-ness. Suppose that e(b) ¢ {J e(a) and J(b) $ \ j(a).
ael ach

By the conditions, there exists «c; Jj(b)Vi(c) = 1 &

\/i(@Vi(c) # 1. Let I be a maximal ideal which includes
ach

AV {c}. Then, b does not belong to I, since bvc =1. But,
this contradicts to e(b)< | e(a)
ael

Now, it is easy to prove the lemma.

Notice that the condition "j(x)=1-> x=1" is equivalent

to the injective-ness for a BDL A with the T-property.

Lemma 4.2 Let L be a BDL. And let L' be a compact

completion of L and 3j be the related morphism.

O (mL) Then, there exists a unique cH-morphism
. t’
e I -oaly Y: L' =+ O(mL) such that the left diagram
L —Jr-.—; L' commutes.
Proof. Let U(x) = Ufe(a); j(a)<x, aeL}. Then, the
unique-ness of ¥ and the fact Y+j = e are clear.

Iey¥(x) implies that j(a)<x and aef_LI for some a.

So, there is b such that beI and avb =1. Hence,
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xV{/3"T =1. Conversely, xV{/i"I = | implies the existence
of a and b such that Jj(a)s x, bel and J(a)V ilb) =1,
by the compactness of A'. By the property of 3j, aVb = 1,
and so a%I. So, y(x) = {I; xv\/j"I =11.

Now, it is easy to check that ¢ 1is a cH-morphism.

Theorem 4.1 Let L be a BDL with the T-property.
Then, every compact completion of L with the T-property

is isomorphic to O(mL).

Proof. By Lemma 4.2, ¢: O(mL) » A' in Lemma 4.1 1is

injective.

The next corollary is one characterization of the Wallman-—

compactification of a Tl—space.

Corollary 4.1 ( Wallman ) Let X be a Tl—space. Then,
O(mO(X)) is the unique compact completion of 0(X) with the

T-property up to an isomorphism.
Corollary 4.2 If L is a compact BDL, e: L - O(mL)
is complete.

Proof. Let j be the related morphism of A. Then,
j is complete. A is compact since A is compact. So, e

is complete by Lemma 4.2.

Corollary 4.3 Let A be a compact cHa with the T-property.

Then, O(mA) is isomorphic to A.

13



Next, we shall study about a normal cHa.

Definition 4.3 Let A be a cHa. Ux is the set
{u; xvv=1 & uAv =0 for some v} for xe&A.
T: A—>A is the function such that T(x) = \/UX.

A* 1is the range of T.

Lemma 4.3 Let A be a normal cHa. Then, T is a @, Q-

morphism.

Proof. UX_C_Uy for x<y and so T(x)<T(y).

For u eUX and u'e Uy, there exist v and v' such that
xVv =yvv' =1 and uav = u'Av' = O, by the definition.
Then, (xAy)VI(vyv') =14 and (uau')A (vvv') = 0.

-

So, upAu' €U Hence, T(x)AT(y) = T(xAy).

XAY

Let u* Dbe an element of U Then, there exists v*

xVy’
such that xvyVvv* = § and u*pv* = 0. By the normality,
there exist u; and v, such that xVvv, =yVvv*yu, = 1 and
Uy AV, = @ . Again by the normality, there exist u; and v,
such that val = v*y ug 1V u; = 41 and U AV = ® . Then,

uy e Uy and u e Uy and u*< uo\/ul. So, T(xVy)=< T(xX)VT(y)
and so T(xVy) = T(x)V T(y). Clearly, T(0) =0 and T(1)= 1.

Lemma 4.4 Let A be a normal cHa. Then, U

UT(x) = Yx
and so T(T(x))= T(x). 2And A* is a cHa, where the infinite

sum in A* is as same as that in A.

Proof. T(x)< x and so UT(X)S Ux' Let u be an element

of U,. Then, xVv = 4 and uaAv = O® for some v. By the
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normality, there exist Wy and Wy such that XVwWy= v\/wl=’_ﬂ_

and WoN Wy = & . So, W& U, and uerl. Hence, uEUT(x)‘
By Lemma 4.3, A* 1is a BDL. Let X be a subset of A*

and y =VX. Since T(x) =x for xe¢X, y= VXST(y).

So, T(y) = y and hence yegA¥*,

So, A* 1is a cHa and the infinite sum in A* is as

same as that in A.

In the next lemma we need to discern the operations of A
and those of A* and so we shall do it fixing A, A*¥ or * to

the operations.

Lemma 4.5 Let A be a normal cHa. Then, T*(x) = x

for x ¢A*.

Proof. Let ue—Ui and x¢A*. Then, xVv = { and

uAv = @ for some v. By Lemma 4.1, T(x)V T(v) =i and

; - A* n A *,_.
T(u) A T(v) = @. So, T(u)eUX . Hence, T UXEU'?{‘ < U,.
As indicated before, for ueUi, there is w eU‘i such that

u<LT(w).
A* A
These above show \/UX = \/Ux‘ So,
_ A A* s A* * _
X = \/UX = \/UX = \/ U, .- Hence, T (x) = x.
Lemma 4.6 Let A Dbe a cHa.
If T is the identity, A has the T-property.

If A is normal and has the T-property, T 1is the identity.

Proof. Suppose that xVc =1 implies yvc =1 for
any <. Then, Ux < Uy and so T(x)<T(y). By these
reasoning the first proposition is obvious.

Suppose that T(x)< x for some x. The T-property of
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A implies that T(x)Vcsxgand xVc =1 f£for some c. By
the normality of A, there exist u and v such that
xvv=cvu=g31and uav =0. So, uc-‘UX and u<£T(x).

Hence, c¢VT(x) =1, which is a contradiction.

Theorem 4.2 ILet A be a normal cHa. Then, A* |is

a normal cHa with the T-property.

Proof. Let x and y Dbe elements of A* such that
xv*y =1. Then, xVy =1 holds in A. By the normality
of A, theré are u and v such that xVvVu=yvv =1 and
uAav =C@. By Lemma 4.3, T(x)V T(u) = T(y)VT(v) =1 and
T(u) A T(v) = @®. Hence, A* 1is normal and so A* is a normal

cHa with the T-property by Lemma 4.4, 4.5 and 4.6.

Lemma 4.7 Let A be a normal cHa. Then, e = e-T.
Proof. Clearly, e*T(x)< e(x). Let Iee(x), then
xVy =1 for some yeI. By the normality, XVwy= yVw= 1

and WoA Wy = ® for some w and w,. Since W, e Ux'

0 1
w; < T(x) and so yVT(x)=1. Hence, Ice-T(x).
ILemma 4.8 Let A be a normal cHa. Then, mA and mA*

are homeomorphic to each other.

Proof. For IemA, let I* = INA*. Clearly, I* 1is an
ideal. Suppose that x&I* and xcA*. Then, x4¢I. So,
xVy =] for some yeI. Since T(ylsy, T(Y) I*., By Lemma 4.3,
XVT(y) =14 4in A*. Hence, I*& mA¥*,

Suppose that I* = J*. By Lemma 4.7, as&l <> T(a)e I

~ T{a) e I* +> T(a)c J* «+»> T(a)=J +> aedJ. So, I = J.
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Any ideal of A* can be extended to a maximal ideal of
A and so the above correspondence is injective and surjective.

By Lemma 4.7, I€e(x) +> I€e-T(x) « I* e e*T(X).

Corollary 4.4 Let A be a normal compact cHa. Then,

O(mA) is isomorphic to A%*.

Proof. The compactness of A implies that of A*. By

Th.4.2, Lemma 4.8 and Cor.4.3, the corollary is clear.

Lemma 4.9 Let A be a normal compact cHa and L be a
sublattice of A which completely generates A and contains
® and 1. And let ¢ be a ¢, l-morphism from L to L',
where L' 1is a BDL.

For Ié¢ mL, there exists a unique maximal ideal of A

that includes 1% = {x; o(x)e1Il.

Proof. Since 1 ¢ I¢, there is a maximal ideal which
includes ch. Suppose that there exist such different ideals,
then there are different co-atoms a and b such that
\/I¢:; aab. Then, aVb = 1. By the normality of A&,
aVu=bVv = (u=0) V(iv=>0) = 1 for some u and v. Since
L. completely generates A and A is compact, there are
elements uo, ul, vO and vl of I such that a’\/uo = b\/v0
=uyvv o= { and Uy AUy = VoAV, = @d. Then, u

¢

do not belong to I'. So, ¢(ul) and dJ(vl) are elements

0 and Vo

of I. But, = d>(ul\/ vy) = ¢ (ug) \/qb(vl) c?{; I, which is absurd.

Lemma 4.10 For Ieml', let £(I) be the maximal ideal
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of A which is determined by Lemma 4.9. Then, £f: mL' > mA
is a continuous function.
In addition if ¢(x) = ® implies x = in the condition

of Lemma 4.9, £ is surjective.

Proof. Let I be an element of f—l

e(x). Then,
VE@ V= L and so VE(I)Vu=xVv =1 & uav =03d for

some uwand v in L. So, I&€vV Let J be an element

¢ () *
of qu(u)’ Then, ¢(v)E TJ. 8So, ve J¢ and hence f£(J)e e(x).
So, f is continuous.

Let a be a co-atom of A and I be the subset of L'
defined by the following: xecI<x—>uVa =170 & upv =0 & x<¢(v)
for some ve¢l and some u. Then, I is an ideal of L' and
1¢I Dby the condition. Let I be the maximal ideal that
contains I. Suppose that a # \J£(I). Then, aV\/E£(I) = 1.
By the property of A and L, avu= \VE(@MVYv=1 and
uav = O for some u and v which belong to L. By the

definition of I, ¢(v)e I and so ve¢ £(I), which contradicts

to the fact \/E(T)Vv =i. Hence, f is surjective.

Let C Dbe the conjunction of the following conditions:
1) A 1is a normal cHa and is completely generated by a
sublattice L with & and 1.
2) A' 1is a cHa and is completely generated by a sublattice L'.

3) ¢ 1is a cH-morphism from A to A' and ¢"L £ L.

4) p 1is a cH-morphism which makes O (mL')
: 7

the right diagram commutative. e ’ P

L' <, A
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Theorem 4.3 Under the condition C, there exists a unique

continuous function £f: mL + mA such that the left diagram

O(mL'")e —T O (ma) commutes. In addition if
£ N
pi ieFA* d(x)= O implies x= @ , then
i
A' & STA* . A* f 1is surjective.

Proof. Let £ be the function defined in Lemma 4.10.

-1

Then, f ~e(x) = U eL,(¢(u)), where

ueW
X

ueW, > u€l & UAV O & xVv = I for some v.
On the otherhand, x = \/WX for xe&« A* Dby the compactness.

so, prfltex) = \V o) = ¢(x).
ueWX

Suppose that a continuous function g: mL' - mA satisfies
the diagram in the theorem and g # £. Then, £ (I) # g(I) for
some Ié&mL'. So, there exist u and u' in L such that
VE(I) Vu = \/g(I) vu' = 1 and uau' = ® . Since
Ic f—le(u)r\g—le(u'), there is v in L' such that
I<EeL,(v)fo—le(u)r\g_le(u’). Hence,
© # v =rpre,(v)< pr£ e A prgTte(u) = d(uau) = @,

which is a contradiction.

Since mA is a Hausdorff space and O(mA) is isomorphic
to A*, the uniqueness of the continuous function £ has
the same meaning of the uniqueness of the cH-morphism from

A* to O(mL'").
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§ 5. Completions and co-products
In Def.4.2, we have defined properties of BDL's. In
this section we shall study about the preservation of such

properties under the operations defined already.

Theorem 5.1 Let A and B be BDL's. AXB is compact

if and only if A and B are compact.

Proof. Let I be a maximal ideal in A®B and

I, = {x; iA(x)e I} and Ip = {y; iB(y)eI}. Then, I and Ig

are maximal ideals. So, there are co-atoms a and b such
that a = \/IA and b = \/IB. Then, i,(a)V ig(b) is a co-atom

and belongs to I.

The compactness is not preserved under an infinite co-
product. Let An be a compact BDL, cy be a co-atom in An

and i~ be the embedding: A+ & A, for each n<uw. Let
n<w

I be the subset of & A such that xeI if and only if
n<w

X < \/ ik(ck) for some n. Then, I is an ideal and does
k<n

not contain i1, but \/I = 4 holds.
Differing from the compactness, the T-property and the

normality are preserved under infinite co-products.

Theorem 5.2 Let LOL be a BDL for each o eA.
N L, has the T-property, if and only if L, has the T-property
ach

for each a €A, & L, 1is normal, if and only if L is normal
ach
for each ac¢A.
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i(ao):E b. Let X be the subset of A defined by: x&X +>

x<a, & i(x)=b. Then, \/i"k = i(ag)Ab<i(ag). So, VX = a,

does not hold. Since x< ag for each x €X, there exists aq
such that x< a; for each x&X and aO:\;al. By the T-property.
there exists ¢ such that ao\/ c = 1 and al\/c # 1. ‘Then,
aVi(c) =4. Suppose that bVi(c) =1. Then, (i(ao),\b)\/i(c)=ﬂ.
and so \/i"X Vi(ec) = L. Hence, i(al\/ c) = i(al)\/i(c) =1,
which is a contradiction. So, bVi(c) # 1.

Let a and b be elements of A such that a$b. Then,
there exists ¢ in A such that i(a)Vec =1 and i(b)Vec # 1.
Since ¢ = \/‘/{i(x); XxEA & i(x)Sct and c # 1, there exists <,
in A such that c<i(cy) and ¢ # 1. Then, aVe, = 1

and b\/cO # 1.

Theorem 5.4 Let L and L' be a normal BDL and a compact
complete BDL respectively. If there exists an 0,1 -morphism
j: L - L' such that J"L completely generates L' and Jj(x)= i

implies x = 1, then L' is normal.

Proof. Soppose that xVy =1 for x,yelL'. Then, by the
compactness and the property of Jj, there exist a and b
such that j(a)<x and Jj(b)<y and aVb=14. By the
normality, there exist u and v such that aVu=bvVvv =]

and uaAv = 0. Then, xVj(u)= yVi(v)=1 and j(u)aij(v) = 0.
Corollary‘S.l If L is a normal BDL, then O(mL) is

normal.

Proof. The morphism e: L * O(mL) satisfies the condition

of the theorem.



Proof. Let a and b be elements of ®LOL and a<£b.

By Lemma 3.1, a =V A i, (a ) and b= A ia(bk) for
j<m oeFy k<n Q&G o
some aJ, %, F. and G.. Then, N\ i (a ﬁt \/ i, (b for
@ @ J J acF, & 0eG
j k
some Jj and k. We now define Sy for oneFj. If «ao eGk, then
al < bX. Let c_ be the element such that aJy/c_ = 1 and
) o o aY Ta

And if oceGk, aa#ﬂ‘ Let ¢ be

k. ,
ba\/cu# 1 for aegG o

»
the element such that ag\/ca = {1 and c, # 1 for o€ Gy .

Let c = V ia(cu). Then, aVec =1 and bVc # 1 .

aeF.
J
Let a and b be elements of X L, and aVb =1 .
ael
By Lemma 3.1, a /\ \/ i and b = /\ \/ 1 (b) for
j<m aeF. k<n aé&G
3 k
some aa, blg, F. and Gk' Without any loss of generality, we
can assume F, = G = F for j<m and k<n. Then, a;\/ b}; =1

for some aeF, for each j<m and k<n. By the normality of

LOL for each o &£ A, there exist ujk and ij such that

\/l (a)\/u = { and \/1 (b)\/v = [l and ujkf\vjk: o

oEF ol

for Jj<m and k<n. Let \/ /\u and v* = \/ /\v
j<m k<n k<n 3<m

Then, aVvVu* = bVv*¥ = 1 and u*Av*x = 0.
On the other hand, the T-property and the normality of Lon
can be deduced from those of (¥ L respectively.
aeh
Theorem 5.3 Let A be an Ha. A has the T-property, if

and only if A has the T-property.

Procf. Let 1 be the embedding: A ~ X. For any a,bcA

such that a:»r‘i, b, there exists aOC—,A such that i(aO)Sa and
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Corollary 5.2 If A is normal BDL, then O(mL) is

normal and compact.

Proof. Since A is compact and the inclusion map: A -» A

satisfies the condition of Th.5.4, the corollary holds.
of A B
The normalityﬂdoes not always imply that of A. We shall
i)

see such an example later.

Theorem 5.5 QQ.A is isomorphic to & A, where A, is
aeh ael
an Ha for each ae A.

Proof. Let i and ja be the embeddings defined in Def.3.1

Qo
A, <5 Ka as indicated in the left diagram.
/ N
i/ \\\ia Then, there exists a @ I-morphism
® A\L _________ > ® T RE ¢ that makes the left diagram
aeh > ® ach * aen ¢

commutative, by Th.3.1.

By Th.3.2, C@.A is an Ha and so in the scope of Cor.2.1 what
ach

we must prove is that ¢ 1is injective and complete and the

range of ¢ completely generates C@ Kd. In this case, ¢ 1is
0 EN

clearly injective and the range of it completely generates 6@2&

o €A

Suppose that ¢ is not complete. Then, there exist au, a%,

finite F and finite FA such that /N 1 (a ) = \/ /\ 1 (a but
aeF AEN ueFx

A\]a \/ ’\ 3 (al) So, there exist b

aeF A el QEFA

in K& and finite G such that /\ Jg (a%) < \/ g for
OL&F)\ aeG

i) After the completion of this paper, the author has found
some results of C.H.Dowker, D.Strauss and H.Simmons in [ 1 ],
[ 2] and [ 11 ]. He has noticed that many separation axioms there

are preserved under the canonical completion and the co-products.
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each A€ A but /\j (a ) 55(,. ju Here,
Oth cG

0L#d}for ocEF&oc a% B% for aeF & aeG and Ea#ﬂ_

Q

for oc#F & o &G, Let cOL be the element of Aa for each

@ eG such that a®Ab%<c%<a® for aer and bB%sc%< 1 for

a&F. Then, /\ iOL(a(;\L) < \/’ ia(ca) for each A €A but
océFK 0eG

/\1 (a* ) £ \/1 (c%), which is absurd. So, ¢ is complete.
ocF 0eG

In the rest of this section, we shall investigate abkout

open algebras.

Theorem 5.6 Let X and Y Dbe topological spaces. Then,

0(XXY) 1is isomorphic to O(X)RP O(Y).

Proof. Let : O(X) - O(XxY) and : 0O(Y) - O(XXY) Dbe

Ix Iy
the cH-morphisms induced by the projections. Then, by Th.3.1l, there

0 (X) exists a unique &, { -morphism ¢
Tx / Ix that makes the left diagram
|74
O(X)Q O(Y) - -- 1-->0(XXY) commutative, where i and i
< ¢ X Y
ly H"\\ Jy are the embeddings defined in
0 (¥) Def.3.1.

By Th.3.2, 0O(X)®O(Y) 1is an Ha. So, what we must prove is that
¢ 1is injective and ¢ preserves infinite sums and the range of
¢ completely generates O(XXY).

Suppose that jX(u),,\ jY(v) < jx(u') \/jY(v'). That is
Tuxv £ u'xXYyUxXxv'., So, uc<u' or v<v'. Hence, ¢ is injective.
To show the preservation of infinite sums, it is enough to

treat the case 1X(u) A iY(v) = OL\G/./\.:L u ){'\ lY(V

a) . Suppose that

o~

. |- . .
JX(u) Fa jY(V) ;GKGJA]X(L’IO‘)/\]Y(VOL). Then, there exist x and vy
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such that (x,y)e uxv and (x,y)%;uaxva for any o €A.
iglu ) Aiglv) = iX(X—{E})\/iY(Y—{§}) for each a €A, but

ix(u)f\iy(v)i$ iX(X—{i})V’i (¥Y-{y}). These contradict to the fact

i WAL = VigInigv,).
aeh
The range of ¢ forms a base of XxY and so completely

generates O(XXY).

Lemma 5.1 n1§§1La is homeomorphic to T] mL_
ach a€eh

Proof. We use the same notation as in the proof of Lemma 3.2.

By Lemma 3.2, it is sufficient to prove that Q@ I belongs to
ach ¥

n1§3L for maximal ideals Ia's (a & l) and (I)a is maximal
ael

for a maximal ideal I for each o & A. Suppose that

\VARVAN i, (a ) & ® I, Then, A\ i, (a ) ¢ ) I, for some j<m.

j<m aeFj déA aEFJ aech &
So, a?eﬁla for each acEFj. These imply that R I, is maximal.
acs &

The other implication is obvious.

Corollary 5.3 O(f(L@)L')) is isomorphic to O(pL)RO(pL').

And O(m(LRL')) is isomorphic to O(mL)Q® O(mL').
Proof. It is clear by Lemma 3.2, Lemma 5.1 and Th.5.6.

We have proved that the canonical completion of a finite
co-product of open algebras is an open algebra. However, in the
case of an infinite co-product, that does not hold.

Let Xn be a discrete space of two elements for each n.

Then, O(Xn) is a Boolean algebra and consequently &) O(Xn) is
n<w

a Boolean algebra and is co-atomless. So, ¥ O(Xn) is a complete
n<w

Boolean algebra and atomless. This is the regular open algebra

of the Cantor space. It is well-known that an atomless complete
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Boolean algebra cannot be an open algebra. (Remind that there
exist no cH-morphism from an atomless complete Boolean algebra

to {®,01}.) So, in most cases, Q@CHX@) is not an open algebra
oel

for an infinite A. It is contrasted with the case of regular open

algebras. For, & RO(Xa) is isomorphic to RO('ﬁ'X@).(cf.[ 3 1)
aeh aeh

As stated before, the normality of an Ha A does not imply
that of A. Let X be a normal space such that XxX 1is not
normal. Then, O0O(X)® O(X) is normal by Th.5.2. On the other hand,

0(X)% O(X) is isomorphic to O(XxX) and so is not normal.

§ 6 Complete Heyting algebras in a Heyting extension

In this section, we shall study about a completion of a co-
product and a completion in a Heyting extension. So, we assume
that the readers are familiar with an extension of a universe of the
set theory with a cHa. ( cf. Grayson[ 7 1 and Takeutil 13 1)

We shall use the notation T @ ﬂ(H) or [ ¢ ] for the value

of & in a cHa H. As in [ 12 ], we assume that V(H) is seperated,
i.e. "x = y" is equivalent to " [[x = y]= 1 ™. Just as in a Boolean
extension, \§ is the element of V(H) such that dom‘g = {§; vexlt
and range % g,{le}. 'Q? is the set {y; [yvex]=1}. We say " 0

is H-valia", if [o ™= 1.

As indicated in [ 13 ], the maximal principle does not always

hold in V(H), but a weak form of it holds. Next three lemmas can

be proved as in the case of a Boolean extension and the proofs can

be seen in [ 13 ]. So, we omit them.

(H)

Lemma 6.1 If [ 3lx0(x) J] = 1, then there exists u 1in

(H)

v such that [ 2(u) J H _ 1.
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Lemma 6.2 Let @(xo,---,xh) be a Ao—formula. Then,
Loy, +-+,% )] = 1 if and only if &(xy,+++,x ) holds and

Lotxg,eeerx )]

It

@ if and only if @(xo,---,xn) does not hold.
. . . A
Lemma 6.3 If " Q@ is a cHa " is H-valid,  is a cHa.

Theorem 6.1 Let H and  be a cHa and an Ha respectively.

ZH . v (H)
And let Q be the canonical completion of & in V .
2y .
Then, is isomorphic to R(H)Q Q.
Proof. Let @(I) Dbe the formula that asserts " I is a

. . ~ Ny h%
closed ideal in Q", e. ¥xecQ Vyel (xeI & y<x > yel) &

i.
v . e
Yxed (Vue (YyeQ (yvel & yex »y<u) = x<u ) »xel).

Suppose that &(I) is H-valid. Then, we can assume that
e v Vv
dom I = dom 2 and x=<y implies I(y)=I(x) and
I(%) ,»\1(&/) = I(\f;v j;f/) for each x,y€¢§. For each xef,

A AN (1@ Alys
uel yefd

ACA ( I(§)>0)=0) £ I(X). The left part of this inequality
U<x X

XTIy <] )=[¥<u]) < IG). So,

yfu
. ! v .
‘is equal to or greater than ( I(:\</)=>G})=>CD. Hence, I(x) is
a regular element of H. So, we can assume that an element of

A
oH

o .
Q is a function which maps dom { into R(H) .l)

We now define jR(H) (p) and jQ(q) for p&€R(H) and

gef as follows.

i) Dr. Hayashi has pointed out that after this point we may work

o A
V(R(H)) ; because EIZH o h’R(H) . However, regular elements have

(H)

in
an important role for the calculation in V and here is an

example. So, we present the original proof.
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o

The domains of jR(H) (p) and jQ(q) are both dom

jR(H) (P) (;{/) = 1 for X = @,

it

P otherwise.

jQ(q) (}\{) 1 for x<q,

® otherwise.
Then, ¢ (jR(H) (p)) and @ (jQ(q)) are H-valid for each p e R(H)
and each gef.

A straight calculation shows the following:

e P Adgl@ ) =4 for x= @,

o) for x<qg and x # O,
= () otherwise.
and j are (O, l-morphisms. So, by Th.3.1l, there exists
Q 2

R(H) a unique @,1-morphism ¢ such

i —~ 3 :
R(H)~ R (H) .
- A that the left diagram commutes.
" SH J

Suppose that jR(H) (P) Adgla) = jR(H) (p")V jg(a') and p:’t_ p'.
Then, there exists r &€R(H) such that @ # r < [[?]/ejg(q’)_ﬂ .
So, g<g' holds by the definition of jQ and hence ¢ is

injective.

Let (p’q\)/e Jran (B Adgl@) = g, (Bg) Adglag)
And let A Dbe the subset of 32/ in V(H) defined by the following.
- A(\:é) = \/R(H){p; O9qg ((x<q & (p,g) €M)} for =x # @ and
A(C) = 1 . Let Iy be Jpuy (Pg) Adglay). If tem] =1

and {{iR(H) (p) A iQ(q) - Iﬂ = 1 for each (p,q)& A, then [AQI]}= i.

By Lemma 2.2, the unique minimal closed ideal I that contains

A exists. By Lemma 6.1, we can assume that I is an element of

Clearly [ I <€ IO] = 1.
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since [Vxed Vyeca (xsy »xen)] = 1,
Kxéfj = [x65§x= \/{y; yc—:\é&ysx&yéA}ﬂ by Lemma 2.2.
We claim that I, 1is equal to TI. Suppose that Py < [c}/oe'f]]
does not hold. Then, since Kci/oe"f] is a regular element,
there exists p'é& R(H) such that O # p'=< py and P'A [[Q/OE: I[=0.
131 = A A ad=o=0 -V N\ ah=o)=0.

u<q, y£q, u<q, ysd,
yiu y£u Y
So, there exists u<q, such that p" = p'A /\ ( A(y)=0) # O .
' y$q0
bEL!

%
Then, p"eR(H) and p"AA(y) = @ for any vV; y<g9, and yflT:u.

Since iR(H)‘ is a cH-morphism,
/gy @ ALg@ = Vg G@) Aiga.
(p,\q)él\ R (H) 2 qon RO 2
And so, iy (o) A dglay) = q}é ipm BE@Aig@).
=9

Hence, Ipgy (P")Aiglay) = V ipg B AP Adgla

asq, y
= Vip gy B AP Adg(a)

qsu

< i " .
which contradicts to the fact that u<q0. So, ¢ preserves

infinite sums.

Let I' = Vg ®Adg@ i Digg ®Adg@ < 1] =13
51 |
W

for 1&& . Since jR(H)(I(?z/))/\jQ(q)SI, T(N<[Fe1']

for g&€f. So, I =1I'.

Corollary 6.1 Let B be a complete Boolean algebra and

A

B : .

¢ be an Ha. Then, & is isomorphic to BRQ.

Proof. It is clear form the theorem and the fact: B = R(B).

For Boolean algebras B and C, B®C is isomorphic to
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the co-product in the category of Boolean algebras and the
canonical completion of B as an Ha is isomorphic to the
canonical completion as a Boolean algebra. So, Th.6.1 is

a generalization of the next result of Kunen and Scott.

Corollary 6.2 ( Kunen and Scott [ 12 ]) Let B and C

complete Boolean algebras. Then, C is isomorphic to BRC.

Theorem 6.2 Let L and L' be distributive lattices.

~
Then, j\f.'jL is isomorphic to g(LQQL'),where jL'gL is

in V(jL).

Proof. By Lemma 1.1, "Ji‘:/'gL is a cHa " is ﬂL-—valid.
Let jL and jL' be the following &, 1 -morphism:

. ;A\\/}fL . \V/

jp: L~ JL and jp(a)(p) = 14 for p= 0,

= I otherwise,
A g _ a .
jL.: L' ->§L" L and jL.(q) (E) = 1 for p<g

= (P otherwise.

. . v
Then, J (alA Jp.(@ (P) = 1 for p= Q,
= Ia for 0 # p<qg
= O otherwise,

for each a L and p,gelL’'.

By Th.3.1, there exists a unique ©-1

lL// JL AN
e jv,.‘! L . .
LOL"™. ¢ v, b morphism ¢ such that the left diagram
h% i
AN .
A \L' I commutes.
j (LIL") Then, there exists a unigue cH-morphism
Nt

Y such that the left diagram commutes,

AR’
L®L'— JL! by Th.1.2 and Cor.l.2.
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AVIEY
Let I € JL°

, then aeI(\p/) implies Jp (@) Adp.(p) £ I
for each ae¢lL and pe¢l'. So,

\/{jL(a) N (@i 3@ Ad (p) £ T} = I. This means that the

range of ¢ completely generates )f%'gl'. Hence, y is surjective
by Th.l.2.

Now, let Xp be the set;
{a; AF ( F is a finite subset of A & a=< A(F), & p = V(E) DI,

where (F)k is the set of the k-th co-ordinates of elements of F.

Claim) Let J = V{i( iy(a)Aig,(p)): (a,p) €A} for Je {(LBL").
Then, ¥(J)(p) = I(X).
v v
Let K(p) = I(XP) for each pel'. Then, K(®) =L = 1 and

R . v
p<qg implies K(g)‘—; K(p). Let xeK(i/)) AK(p'), then there exist

® 6 & ' . o ‘ -
hl’ ’hm’hl’ and hn such that
x £ V h AV nl o= \V h.Ah! and hyeX  for leism
1sism 1<j<n 3 l<izm J p
1sj<sn
RS i< i . e <3<
and hj \Xp, for 1l¢ij<n. Since hl/\ hj “Xp\/p' for each 1£i<m

and 1%j<n, xeK(p\v/p’). So, [Kg—)ﬂi\ﬁ'ﬂ= 1. [jL(a)‘:\ jL' (p)= k=1
for each (a,p)&A. So, "Y(J) € K" is H-valid. On the other hand,

1<y @] = 4. Hence, V¥(J) = K. Now, we have proved the claim.

Suppose that ©(I) = ¥ (J) and I£J. Then, there exist a
and p such that iL(a) A iL' (p) & I Dbut iL(a) A iL‘ (p) ':;)9 J.
By the claim, a U(I)(§) = ¥(J) (). Let & = {(a,p)iip(a)aip  (P) € T1,

- then there exist Tcrsay and finite subsets Fl,“' ,Fn of A

ajs
such that as;alv---van, ai:;/\(Fi)O and p s‘\“Fi)l for 1<€isn.
Since J is an ideal, (j“\(Fi) 0’ \/(Fi)l) & A for each 1l=zisn.

So, (a;,p) €A for each 1l<isn and so « V a;r p) €A. Hence,
l1£izn

(a,p) €A which is a contradiction. So, ¥ 1is injective.
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Corollary 6.3 Let L and L' be distributive lattices.

9/};,%

Then, is isomorphic to JL®IL'.

Proof. g(I&QL’) is isomorphic to JL®JL', by Cor.l.2,

Lemma 3.2 and Th.5.6. Now, the corollary is clear from the theorem.

The next lemma is an easy consequence of Lemma 6.2.

A4
Lemma 6.4 Let X be a topological space. Then, " X is

~~
a topological space with a base O0(X) " 1is H-valid.

Theorem 6.3 Let H be a cHa and X be a topological space.
O . — v
Then, O(X) is isomorphic to H&®O0O(X), where O0(X) 1is an open

, , N4 , . ~7 . (H)
algebra of the topological space X with its base O0O(X) in V .

Proof. Let jH and jo be functions defined by the
N
following: jH: H -~ O(\i(/) and jH(h) (;{/) = h for each x eX,
. Y . v g
joi 0(X) » 0(X) and J (P (x) = L for xep

1l

(0 otherwise.

Then, jH and jO are CD)ﬁ—morphisms. So, there exists a
iy H g @, { -morphism ¢ such that the left
\,} Y .
H®O(X)‘<_ (b—yO(X) diagram commutes, by Th.3.1..
i 3 Y
0O 0(X) -0 Let U & O(X), then
- ~ v ’ Vo T
Txeu] =[3drco(x); xsPp &« PcU = | JPrP&u] for xeX.
xXeP
P&0 (X)
So, U = \/{jH(h) Adg(B)i () A g(R) < U}, i.e. the range of ¢
S

completely generates O(X).
Suppose that jH(h) /\jO(P) = jH(h')\/ jO(P‘) and P:{;P' for

some h,P,h' and P'. Then, there is x in P that is not in P'.

0
. . A o, ) N
Jg(h) A J5(P) (x5) = h and Jjy(h') \/jo(P') (xy) = h' and so h<h'.
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Hence, ¢ is injective.
Let ig(hy) Nig(Rg) = V{ig (W) Ai (®); (h,P) €1} for some A.
Suppose that Ju(hg) Ady(Pg) £ \/{ig(h) A3y ()i (h,P)&A}. Then,

there exists xoe PO such that h, < h', where

0T 70’
h6 = \/{h; X EP & (h,P) ¢ A for some P }. XOE?P implies {§g};\P = ¢
and so implies P £ X-{xj}. So, iy(h) Aig(P)<ig(h) Vi (X-{x,})
for each (h,P) € A.

On the other hand, i.(hy) Ai (Py) Al iH(hé)\/lo(X—{xo}))

= (ighD ALV (ig(hy) A ig(Py-{XH)

A

lH(hO)f\lO(PO)’ which is a contradiction.

Corollary 6.4 Let X and Y be topological spaces and
v
O0(X) be an open algebra of the topological space X with its

~N
base 0O(X) in V(O(Y)?.

A
Then, O(X) 1s isomorphic to O(XXxY).

A —
Proocf. By Th.6.3, o(X) is isomorphic to O(X)®0(Y) and

so is isomorphic to O(XXY).

In the preceding three theorems, we have investigated the

A _
structure of & for some cHa & in V(H). By the theorem of

Fourman and Scott [ 4 ], our result can be internalized into V(H)
in some sense. For that, we shall introduce their results by
a different presentation. In many cases we shall omit the proofs,

since they are in [ 4 ] and essentially as same as in the case of

Boolean extensions.[ 12 ]

Lemma 6.5* Let & be an Ha and F be a filter of it.
Then, $/, 1is an Ha, where Q/% is the quotient by the

equivalence relation {(a,b); a=beF and b=sacFl.
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Proof. Let m: Q » Q/. be the canonical quotient map.

Then, 7 1is a strong H-morphism and Q/F is an Ha.

Iet H and © be cHa's. And let Fe be the element of

e

v v
such that dom Fe = dom{l and Fe(p) = \/Hw e(h) = p}l,
v
where e€: H - Q 1is a cH-morphism. Then, "F8 is a filter of Q"
is H-valid. By Lemma 6.5, "5/% is an Ha" is H-valid. We
€

denote the canonical quotient map by 7.

Lemma 6.6 [ m(B)< ﬂ(é)ﬂ = v{h; e(h)< p=sqg} for p,geq.
Consequently,
A% -
a) h<[m(B)<m(] if and only if e(h)< poq,

b) hsIm(B) = m(NT 4if and only if e(h)ADP = e(h)Aq.

[W(J\I) < 'lT(p\:gq)_B
\_;" th; e(h)< p=qgl.

Proof. H_ W(E) = n(é)}]

Il

\,,»
P=>qeF

1

By the completeness of €, a) and b) are clear.

Pa

v
By Lemma 6.6, we understand that QJF is the same thing

€
defined in Th.8.13 of [ 4 1.
v o
Theorem 6.4 "Q/f is a cHa " is H-valid and Q/f is
€ ‘g

isomorphic to Q.

Lemma 6.7 ( Fourman and Scott [ 4 ]) Let " §© is a cHa "

/\

is H-valid. Then, for any xg;V(H), there exists x'2£ @ such that

E.x = x'j = H:xtSQﬁﬂ.

This lemma implies that as far as concerning cHa's many things
will go well like a Boolean extension.
Let " @ dis a cHa " be H-valid and e be the function such

N\,
that e: H -+ Q@ and " e(h) = kfzfﬂ;h} " is H-valid. And let Q°
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and e' Dbe defined similarly.
Lemma 6.8 ( Fourman and Scott [ 4 1) e is a cH-morphism.

Theorem 6.5 ( Fourman and Scott [ 4 1) Let "¢ :0 » Qf is

: A A
a cH-morphism " be H-valid. And let @: Q > Q' be the function;

) A A .
L $(x) = ¢(x)ll= 1 for xeQ. Then, 9 4is a cH-morphism and
A A A A .
e+¢ = e'. BAnd conversely, let ¢:2 - Q' be the cH-morphism that
A
satisfies e-+¢ = e'. Then, there exists ¢ in V(H) such that

" $:Q +~ Q' is a cH-morphism " is H-valid and [ ¢(x) = Q(X)] = {1
)
for x eQ.

In the above, ¢ is injective " is H-valid , if and only if
2\
¢ 1is injective. And " ¢ is surjective " is H-valid, if and only

. AN . .
if ¢ is surjective.

A
Lemma 6.9 h<Jp<gl+ e(h)< p=>qg, for p,gef. So, if

. V* e ~
Q is Q/.Fe, e(h) = n(e(h)).
Theorem 6.6 Let € be iR(H)aR: H-+ RHPQ and * be
— 5 o, . .
R(H)®X Q. Then, " @ is isomorphic to Q}% " is H-valid.
€

Proof. We use the notations in the proof of Th.é6.1l.

The left diagram commutes and ¢

o) (V3 *f\
. ox T S Q%
. >

//ge

< v . .

DN A /////}7 and 7( ) are isomorphisms.
: . d
Ir(m) "R |® e ana \/*Yd:h) = §_ ., *R(h).

H So, the theorem holds by Lemma 6.9,

Th.6.1 and Th.6.5.

Theorem 6.7 Let € Dbe the unique cH-morphism that makes

the diagram(l) commutative and Q* be ((LOL').

41



N . v . F .
Then, "_§L' is isomorphic to Q?% " is JL-valid.
€

(1) J(L3Ln') ¢——-— LRL' (2) JL _
£y /r' /i\ \‘~\ jL
£ i ‘ )
| ! |
7 ' f—l 1]
. L L —57 SJL

~

Proof. We use the notation in the proof of Th.6.2. Let

be the unique cH-morphism that makes the diagram 2) commutative.

I
_ 4Y .

Then, jL = Y& and E/ {1;1} = jL(I). So, the theorem holds.

Theorem 6.8 Let € be iH: H->HYPO(X) and Q* be HO(X).
Then, " O(f) is isomorphic to 57@ " is H-valid.

£
Proof. Similarly as the proofs of Th 6.6 and 6.7,
0(%)
\/ (2 {4 ;:n} = jg(h) and so the theorem holds.

Corollary 6.5 Let L and L' be distributive lattices. Then,

N . . . 1Y . ,
" O(gL') is isomorphic to S L'" is ‘fL—valld.

Proof. It is clear from Th.6.7, Th.6.8, Cor.6.3 and Cor.l.2.

~/

Next we shall roughly state the relationship between X and

X in VO(r), where X is a sheaf representation of X in VO(T).
P
It is known that O(XT) is isomorphic to O(XxT). By Cor.6.4,
/\,

it is isomorphic to O0(X). We now internalize this fact.

f belongs to (TX)p if and only if £ is a continuous
function £f£rom dmopen subset of T to X. For £ s(TX)p, 'E

is the element of V(H) such that dom %—= dom d?%) and

B = £ . dom X, = {5; £e ("0} and x,(®) = dom :.
For P<0(X), dom P = dom XT and %%A) = f_lP. And
dom B = fE} P£O(X)} and 'B(h3 =14. Then, " X is a topological

T
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v
space with a base B " is 0(T)-valid. And " X is a dense

: \vd
subset of X " is O(T)-valid, if we embed X into X
naturally.
V »
Theorem 6.9 " 0O(X) is isomorphic to O(XT) " is 0O(T)-valid.

Proof. Similarly as Th.6.3, we can prove that O(XT) is
isomorphic to O(T)® O(X). Next, we internalize this just like
Th.6.8. I %1EVO(XT){TL;P}E = Pndom £, for ffE(TX)p. And so,

the theorem holds by Th.6.6.

Let R Dbe the set of real numbers and R(H) be the set of
Dedekind real numbers in V(H). Then, " R<O(T)) = RT "is
0(T)-valid. And so " 0(%) is isomorphic to O(R(O(T)))" is

O(T)-valid. However, this of course does not hold for many

Boolean extensions. Let B be the complete Boolean algebra that

satisfies v R = R(B) E(B) = O, Then, " R(B) is connected, but

NS

R is not connected" is B-valid. So, " O(ﬁ) is not isomorphic

(B) y"

to O(R is B-valid.

A similar situation occurs concerning Th.6.7 and Cor.6.5.

Let B be the complete Boolean algebra such that The generic

filter does not belong to V " is B-valid. Then, " JB is
isomorphic to O(fg) and O(mg)“ is B~valid, by Cor.1l.2.
Since " O(}é) is not compact" is B-valid, " O(gg) is isomorphic
to ¢B " is not B-valid. Let € be iB: B ~ BSJ/B and
Q* = BgJ¢B. Then, " ﬁf%g is isomorphic to O(%ﬁ)“ is B-valid,
by Th.6.8. So, " ﬁ}% is not isomorphic to \ﬁﬁ " is B-valid.

€
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