Cyclic Quotients of 2-dimensional Quasi-Homogeneous

Hypersurface Singularities.

TADASHI TOMARU

THESIS

Submitted in partial fulfillment of the requirments
for the degree of Doctor of Science in Mathematics at
The University of Tsukuba

February, 1992

95301713



PREFACE

Normal surface singularities have been researched by many mathematicians
from several points of view ( i.e., complex analysis, algebraic geometry, com-
mutative algebra, differential geometry and topology ). There, normal surface
singularities with C*-action have important roles. Those singularities are de-
fined by an ideal which is generated by quasi-homogeneous polynomials with
same weight ( the converse is also true ). Then the affine ring of such singularity
has a graded structure and there are many investigations in the commutative
ring theory. On the other hand the resolution space of any normal surface sin-
gularity C*-action has a geometric structure which is similar to a line bundle
and there are many investigations about them in the topology.

Normal surface singularities with C*-action have appeared often in the clas-
sifications from the point of view of complex analysis or algebraic geometry. For
example, M. Artin [1] gave the definition of rational singurality ( i.e., the geo-
metric genus is 0 ) and exhausted every rational surface singularity whose multi-
plicity is two. We usually call them rational double poits. Eevery rational double
point is a hypersurface singularity whose defining polynomial is quasi homoge-
neous. Also, we can find many quasi-homogeneous hypersurface singularities in
Arnold’s classification of function germs.

In [4], P.Oxlik and Ph.Wagreich investigated the algebraic and geometric
structure of normal surface singularities with C*-action. They showed that the
weighted dual graphs of such singularities are star-shaped. Moreover, for quasi-
homogeneous hypersurface singularities, they showed how we can compute the
numerical data of the resolution ( the genus and the self-intersection number of
any irreducible component of exceptional set ) from the weight and the degree
of the defining equation. In [5], H. Pinkham reformulated Orlik and Wagre-
ich’s result above. He described the associated affine ring is constructed as the
graded ring which is associated with a Q- divisor on an algebraic curve ( i.e.,
compact Riemann surface ). Furthermore Orlik and Wagreich’s result has impor-
tant meanings for other researches of surface singularity theory, because many
examples have been computed by using their method in the latter research.

In Chapter 1 of present paper, we investigate normal surface singularities
with C*-action which are obtained as diagonal cyclics quotient of 2-dimensional
quasi-homogeneous hypersurface singularities. Although they are very special
normal surface singularities with C*-action, it has very important meaning to
investigate them. Because, for the class we can obtain a numerical formula to
compute the several invariants ( for example, geometric genus ) and a numerical
criterion for the singularities to be Gorenstein when the cyclic group G does not
contain any reflection. Further this class contains many examples which are well
known.

In section 2 of Chapter 1, we give the method to resolve normal surface
singularities with C*-action which are obtained as diagonal cyclic quotient of 2-
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dimensional quasi-homogeneous hypersurface singularities. Our method is based
on the techniques of Orlik and Wagreich [4] and A. Fujiki {2]. By using this
method, we can find many examples which have meaning in the research of
normal surface singularities( [10] ).

In section 4 of Chapter 1, we classify diagonal cyclic quotients of the simple
elliptic singularity 1713, which are not simple elliptic singularities or quotient sin-
gularities. These singularities had been already found by other mathematicians
from several points of view. Our result gives a concrete representation for those
singularities.

In Chapter 2, we investigate a class of normal surface singularities with
C*-action which are determined by a Weierstrass point on a algebraic curve (
i.e.,, compact Riemann surface ). Let C be an algebraic curve and P € C a

Weierstrass point. We consider the graded ring R(d,e) = @ HU(C,OG([%‘?] :
k=0

P)-t* and the associated singularity X(d, e), where 1 < e < d. In the case of
d=e=1, the ring R(1,1) has been already investigated in the field of commtative
ring theory.

In section 1 and 2 of Chapter 2, we consider the embedding dimension of
X(d,e) and the generator system of the defining ideal. For a normal surface
singularity, if it is a rational or minimally elliptic singularity, the embedding
dimension of it is written by numerical data ( i.e., fundamental cycle ) on the
exceptional set of the minimal resolution. In general, the embedding dimension
not only depends on the numerical data but also depends on the moduli of the
singularity. However, F. VanDyke [11] proved that if (X, z) is a normal surface
singularity with C*- action and the self-intersection number is high enough, then
the embedding dimension of the singularity is determined by numerical data of
the exceptional set. The singularity X (d,e) does not adapt to the situation of
VanDyke, because the self-intersection number of the central curve of X(d,e) is
—1. About the embedding dimension of X(d,e) we can find a few phenomena
which are different from the VanDyke’s observations.

In section 3 of Chapter 2, we consider the case in which the semi-group for a
Weierstrass point has two generators. Then the singularity X(d,e) is written as
a cyclic quotient of a quasi-homogeneous hypersurface singularity. In this case
we obtain a necessary and sufficient condition for the singularities to be complete
intersection. We prove this by using K-i. Watanabe’s results [13]. Moreover, in
section 4 we give a formula of the Poincare series of R(d, ¢).
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Chapter I

Cyclic quotients of 2-dimensional quasi-homogeneous

hypersurface singularities.

0. Introduction. Let (X, z) be a normal surface singularity with C*-action and o
. (X, E) — (X, z) be the minimal good resolution, so the exceptional set E is a normal
crossing divisor and the any irreducible component is smooth. Then, by P. Ozlik and P.
Wagreich [12], the w.d. graph ( = weighted dual graph ) of £ has the star-shaped form as

follows : . .
JAxl,-1 BN - " Asr,
©.)
All @ Asl
(]
where A;; ~ Plfori=1,--+,s:5=1,---,r;, and Ay is a curve of genus g which is called

the central curve. Let (Y}, v:) be the smgulanty which is obtained by blowing-down of the ¢-
th branch .— -‘(z =1,- . It is isomorphic to the cyclic quotient singularity

Calﬁ‘_cz/<(8’ eﬁ‘)>(see[ 7] ), where o;/B; = ba — ﬁ—— o= 1[by, (

the continued fractional expantion ). We call (o, 8) ( resp. & ) the type ( resp. the
cyclic order ) of Cy,1 4. In [16], H. Pinkham wrote the affine graded ring Rx of (X, z) in

terms of the above numerical data. Let D be Q-coefficient divisor Dy — 3 f;/c; - P; on
=1

Ag, and let D® be kDy— 3 {kf; o} - P:, where Dy is a divisor on Ag such that @, (Do)
=1

is the conormal sheaf of Ay in X, and for any a € R, {a} is the least integer greater
than, or equal to a. Then Ry = R(Ag, Do) = EB HO(Ap, Ouy(DF)) - 15, We call this

representation Pinkham’s construction. Also, he gave a formula of the geometric genus
Pg(X,z) in terms of Dy. Moreover, K-i. Watanabe [24] gave a condition for (X, z) to be
Gorenstein in terms of Dy. However, in general cases, when we give a curve C' with genus
g(C) > 0 and Q-divisor Dy and comsider the normal surface singularity with C"-action
(X, z) associated to R(Ag, Dy), it is not easy to obtain the concrete value of py(X, z) and
to decide if it is Gorenstein.

In this paper we study normal surface singularities with C*-action which are obtained
as diagonal cyclic quotients of 2-dimensional quasi-homogeneous hypersurface singularities.
Although they are very special normal surface singularities with C*-action, it is meaningful
to study them. Because, for the class we can obtain a numerical formula to compute the



pluri-genera 6,, ( so 6; = p, ) and a numerical criterion to be Gorenstein when G does
not contain any reflection. If the order of G is small, then we can also compute the
embedding dimension. Moreover, this class contains many examples which are well known
( for example, every quotient singularity, every simplly elliptic singularity and rational
singularity as in section 4 of this paper ) and many others.

In section 1, we prepare some facts about finite group actions on weighted projective
space or C°. In section 2, we shall give a numerical algorithm to compute the weighted dual
graph associated to (X/G,n(0)) from numerical data. For the case where G is trivial (
i.e., the case of hypersurface ), Orlik and Wagreich [14] obtained it by topological methods.
Further, A. Fujiki [6] gave a method to resoluve 3-dimensional cyclic quotient singularities
by lifting the group action through blowing-ups. Our algorithm will be shown by using
their techniques. Although the algorithm is not so simple, it is easy to program for the
computer. In section 3, we shall give a numerical criterion for (X/G, 7(0)) to be Gorenstein
and a formula for the pluri-genera &, of (X/G,n(0)). In section 4, we shall consider the
rational singularities which are obtained as cyclic quotients of the simple elliptic singularity
Eg by small actions ( i.e., actions which do not contain any reflection. ).

The author would like to express his thanks to Prof. Kei-ichi Watanabe for his helpful
advice and encouragements during the preparation of this paper, and also to Prof. Kimio
Watanabe and Prof. Masataka Tomari for helpful conversations.

1. Preliminaries. Let P(gq, -+, qx) be the weighted projective space which is defined
as the quotient space of C*** — {0} by the C™-action t-(zg, -, zx) = (t®zq,- - -,1%z;) for
t € C"=C— {0} (see[5]). Suppose G is a finite subgroup of GL(k + 1, C) which acts
naturally on P(qo,- -, qx). If g = (aij)o<ij<k € G, then from the well-definedness we have

k
Eo(zfq‘ —t%)z;a;; = 0 for any t € C* and (zq,++-,2;) € C*** (i =0,---, k). From this we
have

ai; =0 i giFq (47=0,--k) (1.1).

Therefore if go = = = ¢,,-1 < @y, = = @y 45p-1 < *** < Qoytobspmy = = Goybogap—1 (K +
A 0

l=s1+ -+ sp), then g € G has a form g = ( ), where A; € GL(s;, C)
0 A

for j = 1,2,---,m. Hence G has the decomposition G = GTEB < - @ G, where G; C
GL(s;, C). In particular, if k; # k, for any i 5 j, then any g € G is a diagonal matrix
and so G is an abelian group. In this case, since g has a finite order, a; = eb* for some p;
andfeN (i=0,---,k).

Definition 1.1. In the above situation, we denote the Veronese subgroup V(G) of G



as follows : V(G) = {g € G| g acts trivially on P(go, -+, qx)}-

We can easily see that V(G) is a cyclic group generated by an element (e¥,---,e¥)
for some N € N. We call the order |V(G)| the Veronese order of G. Also if G = V(G),
we call the action a Veronese action. The invariant subring by the Veronese action is the
Veronese subring of the polynomial ring Clzg, - -+, zx] with weight (go,-- -, qx) ( see [7] ).

Now let f € Clzo,---,zx] be a quasi-homogeneous polynomial of type (d; go, -+, gx)
(ie, f(t® - zg,--+,t% - z) = t¢ - f(zo, -+, 2x) for any t € C*) such that (X, {0}) =
{f = 0} is an isolated singularity. Let G be a finite cyclic group which is generated by a
e 0
diagonal element g = (2, -+ -, e*)(:= ). Assume G acts C*-equivariantly

0 e

on (X,{0}). Hence f is a semi-invariant polyno?nial of G (ie., g*f = el f for some
integer s ). We put ¥ = X — {0}/C* C P(qgo,-*,qx) and put Vx(G) = {g € G|g acts
trivially on Y}. Since Y is not contained in any coordinate hyperplane H; = {z; = 0} C
P(go, - ,qx) (1 =0,-+,k),Vx(G) = V(G). Thus we always abbreviate Vx(G) as V(G) in
this paper.

Let G =< g >=< (e¥,---,e'*) > be a cyclic group acting diagonally on P(go, - -, gx),
then we obtain the following numerical formula of |V (G)|.

Lemma 1.2. |G/V(G)|=min {S EN: giz =1; mod nfs (j=0,---,k) }
for some z € Z
Proof. |G/V(G)|is the minimal positive integer s satisfying g* € V(G). If ¢* € V(G),

then n is divided by s. Thus 1% = e;f/s for somet € C* (j =0,---,k ). Hence if we put

x

t=e;,, then g;z = 1; mod n/s. q.ed.

Now let G be an abelian group generated by two elements g; and g, where g; =

(ex, eij, er) (j=1,2). It acts naturally on C®. We want to compute the generators of
the stabilizer G, at a point p = (w, 0,0), where w # 0. We denote the following integers :

de = (a1,a2,n),ds = (a1,03)/ds, ds = (a1, n)/ds, d3 = (az,n)/ds,
dg = N/d3d4d5, dl = ag/dgdsds, do = al/d4d5d5 .

Furthermore we denote an integer A by the equation diA +dg = 0 mod dy (0 < X < dj ).
Since (di,d2) = 1, such A always exists.

Lemma 1.3. G, is generated by f; = g{° - g9** and f, = g@*%.

Proof. Suppose g{g% is an element of G,, so we have a17 + aj = 0 mod n. Thus
dodgt + didsj = 0 mod dad3dy. Since dy ( resp. d, ) is relatively prime to dody ( resp. dids
), we can put 7 = dyJ and J = d4J for some integers I and J. Then dol + d;J = 0 mod ds.
From the definition of A, we have doI + di\J = 0 mod dy, so diJ = —dp = d1I) mod ds.



Since d, is relatively prime to d, J = AI mod d;. Then there exists an integer K satistying
J = M+ dyK, so we have gigl = f{fi. q.ed.

Remark 1.4. Let H =< g1, 9, >=< (e2,el),(e22,e%) > be a group acting on C? and
assume H doesn’t contain any reflection of the form (1,e)), where X is an integer with
0< )<n. Putk=aby —azh,s = g.c.d(a1,a2),a1 = ¢;5 and az = c3s. Let p and g be
integers satisfying pc; + gcp = 1 and let g = gig3 = (e, 2" %), Then gogrt = (1, e%l%)
and ¢g2g5;* = (1,e?*/*). By the assumption, g% = g1 and g = g3, so g is a generator of
H. This will arise when we resolve (X /G, 7(0)) in the next step.

2. Weighted dual graph associated to (X/G,7(0)). Suppose f € Clzo,z1,22] is
a quasi-homogeneous polynomial such that (X, {0}) = {f = 0} is an isolated singularity.
Then the singularity is diffeomorphic to a singularity which is defined by a polynomial
belonging to one of the following eight classes ( p 61 in [15]) :

(I) =" +21" + 2%, (II)  zg® + 21" + 2123° (a2 > 1),
IID) 28 + 2z, + 2572, (a1,a0 > 1), (IV)  z5° + zozt + 2125 (ao > 0),
0 1 2
(V) 53’z + 27 25 + 257 30, (VI)  zg® + z124, (2.1).

(VII)  z3° + zoz] + zo25” + m’{‘xg’ ( (ao — 1)(aiby + azbi)/agaras = 1),
(VIII) 13’z + zoz7' + 20237 + :czl":cg’ ( (a0 — 1)(arbs + agb1)/az(aga; — 1) = 1),

Let G =< (e, ¢, e?) > be a finite cyclic group which acts diagonally on (X, {0}).

nl)-ni-n

Then we can prove the following proposition by the same way as in Theorem 3.1.4 in [11].

Proposition 2.1. Suppose h(zg,z1,73) is a quasi-homogeneous polynomial such that
(V(R),{0}) = {h = 0} has an isolated singularity, and h = f+g, where f belongs to one of
the above eight classes and no monomial appears in both f and g. Suppose a finite cyclic
group G acts diagonally on V() and V(). Then (V(h)/G, 7(0)) is C*-equivariantly dif-
feomorphic to (V(f)/G, 7(0)).

The numerical data ( g,b, (21, 61), - -, (o, B) ) (i.e., Seifert invariants ) associated
to the normal surface singularity with C™-action is uniquely determined by the diffeomor-
phism class of the singularity ( see [14] ). Hence, when we compute the weighted dual

graph associated to (X/G,7(0)), we may only consider the quasi-homogeneous polynomi-
als which belong to the eight classes in (2.1).

Notation. For an integer j, let [j] be the integer satisfying 5 = [j] mod 3 and 0 < [§] < 2
in this section.

2.1. Types of cyclic quotient singularities associated to (X/G, n(0)). From
now on we compute the types of cyclic quotient singularities associated to (X/G, 7(0)).
Let f be a quasi-homogeneous polynomial of type (d; g0, 91, g2) which belongs to one of the



eight classes in (2.1) and X = {f = 0}. Let n: C%(y) — C°(z) be the covering map
defined by z; =y’ (j =0,1,2), soits covering transformation group is the abelian group
H=<ey, >D < ey >D <eg > Let f(yo,yl,yg) be the pull-back of f by 7, and let
X={f=0tand C = X - {0}/C" C P? Let o : W — C°(y) be the blowing-up
centered at {0} € C° and let S the proper transformation of X by o. Then W is the total
space of the dual hyperplane bundle over P2 Let ¢ : W — P? be a bundle map. The

exceptional set of the restriction map 6 : S — X is C. Let [¢o:(1:(o] be the
o homogeneous coordinate of P2, and let U; ={[{o:¢1:¢2]

C//CS € P?|(; # 0}orj =0,1,2. If we put W, = 1(U;) =
X ij C, s =C[j+1]/<j;uj2 = C[j+2]/Cj and tj = Cj: then

<
{0} (uj1,uj2,t;) gives a coordinate of W;. These Wy, W, and
X c Cc® W, form a coordinate system of Wand o is expressed by

MCWnC =

these coordinates as follows : yo = to = Uats = Uaila, Y1 = Ugrlo = {1 = Uaals, Y2 = Upals =
U1ty = Ig. Put h() (qu,l 1) h1 = (]. R ) and hg = (1, 1,6@), so H =< ho, hl,hg >.
The action of ky ( k£ = 0,1,2 ) can be lifted to W; by the relation as above. Then the lifting

hx can be written as follows :
hj = (6;}1, 6;;,1, 6Qj) hb+1 (eq[,+1]’1 1) hb+2] = (1, 6q[1+2], 1)

Here we put ﬁj =< 715, 7LU+1], /~1b~+2 > (j=0,1,2).
Now let G =< g >=< (ei, &%, e2) > be a cyclic group acting diagonally on X C C°.

If pe X — {0} is a fixed point of G, then the C™-orbit of p is contained in the fixed point
set of G. Then 7(p) is a ramification point of 7 : X — X/G, but not a singular point.
Therefore X/G has an isolated singular point only at m(0).  We denote the following

integers :
L=lcm(q,q,q), N=1ILn, I,=1Li;/q; (=0,1,2) and V =|V(G)|,

where V(G) is the Veronese subgroup of G. Then the action of G can be lifted to C*(y)
with the form G =< (e, el,eR) > . The action of G can be lifted onto W; with the form
Gy =< §; >=< (e I[””_I', eI[’“] 5 ,ex) >. Since V(@) =< (e¥,ef,e?) >, the lifting onto
W, of the generator g, = (e}, eV,eV) is given by g, = (1,1,ey). Let W; (= C°) be the
quotient space of W; by the group generated by the reflections g, hbﬂ] and hb +3), and let
Aj : W; — W; be the quotient map. Further let G; =< G'J,H > [ < o, h[J.H] hb+2] >,
where < G;, H; > is the group generated by G, and H,. If we put vj; = uj[l’+’], vjz = uj5t?

and 7; = ¢, then (v;1,v;2, 7;) gives a coordinate on W;. Moreover §; and h; are expressed



on W, as follows :

_ gsn—Iajen  Upsa—Ia+n LV
'=(e l+1] Jq[]-H],eN[J-*-?] DA+ )

) )

hi = (eq ™, eq ™, eg), (2.2).

Now we consider the action of G; =< §j, h; > on the algebraic surface S; := A;(S N
W;) = (SNW;)/ < §v, Agiz1], Aja) >C W, and we compute stabilizers of G; at ﬁxed points
in S;. The algebraic curve C; = )\J(COWJ) is defined by the equation 7; = f(1,v;1,v;2) = 0

N k
in W,. Then, by using the Euler’s formula .ZO q:z;0f/0zi(z) = d- f(z), we can easily see

that C; is non-singular. The algebraic surface S; is defined by f(1,vj1,v;2) = 0in W; ( so
S; =~ C;x C) and is non-singular.

cNw, ¢ Snw; ¢ W, (~¢C?)

! ! l

C; - 5; - W}':—“W}'/<§V;hfj+1];hu+2]> (= C?)
ol LL/g

./ c 5;/G; < W,/G;= W/<GJ,H >

Since deg(C; — C;/G;) = deg(S; — S;/G;) = ¢;|G|/V, G; doesn’t contain any reflec-
tion with the form (1,1,e') except for the identity. Thus, if p = (v;1,v;2,0) € S; is a
fixed point of the action of G, then v;; = 0 or v; = 0. Hence we may only compute
the stabilizer of G; at the points in S; with coordinate (v;1,0,0) or (0,v;5,0) or (0,0,0).
But a point with coordinate (0,v;3,0) ((vj2 # 0 ) in W; is mapped to a point (vjj4+11, 0, 0)
in W[j+2] by the coordinate transformation, so we may only consider the point with the
coordinate (v;1,0,0) or (0,0,0) as the fixed points of G; in 5.

First we consider the fixed point p € S; with the coordinate (a,0,0),a # 0. The
tangent plane T,(5;) at p is equal to the affine plane {v;; = a} in W; = C®(v;1, v;2, 75).
Hence, in order to compute the cyclic quotient singularity C .15, we must compute the
action of the stability group G;, at p on T,(S5;) = {v;1 = a} =~ {a} x C? ('see [3] ). By
Lemma 1.3 we can find at most two generators of G, ,, so we can compute the type (;, 5;)
for Cy 1,5, (= T,(5;)/G;, ) by Remark 1.4.

Second we consider the fixed point p = (0,0,0) € S; for G;. The tangent plane
T,(S;) at p is given by {v;; = 0} or {v;z = 0} in W;. If T,(5;) = {v;; = 0} ( resp.
T,(S;) = {v;z = 0} ), then the cyclic quotient is given by the action :

< (6%[1'“1"1:')91;‘“1 Y, (e, el) > (2.3).

(1esp. < (eg\{[””_I’)q“*”,ei’,' ), (eqj‘?mz])eg;) >)

From Remark 1.4, we can compute the type (o, ;) of the cyclic quotient singularity C, .14,
(=T,(5)/G; ).



2.2. Number of cyclic quotient singularities. On each W;, if p = (0,0,0) € S; is
a fixed point of G and if T,(S;) = {v;x = 0}, then we put njp =1 (7 =0,1,2 and k= 1,2
). It shows the number of the cyclic quotient singularities associated with the fixed point
of such type. It is determined according to the class in (2.1), and it will be listed in table
1.

Next we consider a fixed point p = (2,0,0) € S; (a #0). Let p; : W; — W;/G; be
the quotient map by G;. Let n; be the number of cyclic quotient singularities correspond-
ing to the orbits of fixed points {(v;1,0,0) € S;jv;; # 0}. Then n; = #u;({(v;1,0,0) €
Silu;s # 0}) for 5 = 0,1 and 2. Let C = X — {0}/C”. Then C is a smooth curve in
P(qo, q1, g2), and it is the central curve associated to (X,z). Furthermore let

Ci={[z0:71:72] € C C P(q0,q1,92)|2; # 0, 2[j41) # 0 and z[j49 = 0},

and let £; = #C;. Let L; be the number of points in one orbit on C; by G. Then, by the

same way as in Lemma 1.2, L, is given as follows :

sEN; ka/(Qja 9U+1]) =4 mod n/s ( k=, [+1]) } (2'4)'
for some x € Z

We can easily see that n; is equal to #m(C;) which is equal to the number of orbits on

C; by the action of G. Hence

nj =4;/L; (2.5),
and for the eight classes in (2.1), £, is given by the following table 1.

L,-=min{

[ class I £y J o1 | N2 I 4 I ni; | nig l £y l 31 Lnﬂ}
I (ag, ay) (a1, as) (a2, ao)
11 (ao, a;) (a1 —1,a2)
I1I (a1 —1,62—-2) | 1 1
v (ap — 1,a4) 1
Vv 1 1 1
VI 1 1
VII (a0 — 1,a1) 1 |(az,a0—1) 1| 1
VIIT | (ao— 1,a;, —1) | 1 1 1
( We abbreviate ”0” in the above.) Table 1.

2.3. Self-intersection number and genus of the central curve. Now let f, (X, {0})
and G be as in 2.1. Further let V(G) be the Veronese subgroup of G ( ie., any ele-
ment of V(G) has trivial action on P(go,q1,92) ). Let Caj,p; (7 = 1,-++,s ) be the
cyclic quotient singularities associated to (X/G, 7(0)). Let Ny = 22: n; + szi n;; and

=0 t=07=1 :

2 2 2
N, = ‘Zo L+ _X% '21 ni;. Then the self-intersection number —b of the central curve C asso-
1= 1= J:



ciated to (X/G,n(0)) and the genus of C are given by the following.

Proposition 2.4. (i) b= d|V(G)|*/900:92|G| +J§é,1 a;/6; .
(i) 2¢9(C/G)—2- N =|V(G)|/IGH29(C) -2~ No }.

Proof. (i) Let X, S, W, C and C be as in 2.1. Consider the following diagram :

C

Sx _C

where ¢ is the normalization, § = A and 1) is the minimal resolution of
Cojnp(j = 1,---,s). For each case of the eight classes in (2.1), by using the lo-
cal uniformization at the singular point of C we can easily check that the action of
< G,H > can be lifted to the action on S. For the Veronese subgroup V (G, ), we have
[V(G, H)| = |[V(G)|. The self-intersection number of C in the quotient space $/V (G, H)
is d|V(G@)|, and the degree of $/V(G, H) — §/ < G, H > is qoq192|G|/|V(G)]| because
deg(§ — §/ < G, H >) = deg(X — X — X/G) = qoq142|G|. By Orlik and Wagreich’s
result ( Theorem 4.3 in [13] ), we obtain our formula.

(ii) If we know the ramification indices at fixed points on C by G(:= G/V(G) ),
we can obtain the value of g(C/G) from the Riemann-Hurwitz formula 2¢(C) — 2 =
|Gl(29(C/G) — 2) — }G:F(e(p) — 1), where F is the fixed points set of G and e(p) is the

p

ramification index ( = |G,| ) at p € F. Since G acts diagonally on (X, {0}), any fixed
point on C by G is contained in the subset {z; = 0} N C CP(qq, 1, ¢2) for j € {0,1,2}.
The order of the stability group (i.e., the ramification index ) at [1:0:0] or [0:1:0] or [0:0:1]
is equal to |G|. The order of stability group at the point [w:1:0] € C C P(qo, q1,92) (w # 0
) (resp. [0:w:1], [1:0:] ) is given by |G|/Lq ( tesp. |G|/L1,|G|/ L2 ), where L; is the integer
given by (2.4). The number of the points in C' with the coodinate [w:1:0] ( resp. [0:w:1],
[1:0:w] ) is equal to £ (resp. £1,%> ), whose value was shown in Table 1. From these
considerations and (2.5) we can obtain our formula. q.e.d

By Proposition 3.5.1 in [12] we can obtain the value of g(C). Then we can obtain the
value of ¢(C/G). All preparations for the computation of the w.d.graph of (X/G, 7(0))
are now completed.

Example 2.5. Let (X,z) = {z3° + 1* + 23* = 0}, then the w.d.graph of (X, z) is



SESS
given by D \' . Let G =< (e}, e, ei1) >, then the w.d.graph of
A 1 O
(X/G, m(z)) is given by
[1]

Example 2.6. Let (X, z) = {zf + 28+ z,2}* = 0}, then the w.d.graph of (X, z) is given

by O (4] O . Let G =< (e, e}, et) >, then the w.d.graph of (X/G, n(z)) is given by
SWT)
(I-3—0—0 .

Example 2.7 ( quotient singularities, cf. [2], [18] ). Let G be a finite subgroup of
GL(2, C). We consider the quotient singularity (C?*/G, m(0)), where 7 : C* — C?/G is
the quotient map. Let Gy = GNSL(2, C), then it is well known that (C*/Gy, ¢(0)) is a hy-
persurface singularity (i.e., rational double point ). Since GL(2, C)/SL(2, C) = C*,G/Gq
is a finite cyclic group < g >.

c?
Tl 2 €6,
C*/G ¢

Let Fy, Fy and F, be generators of the invariant subring Clzg,z1,25]% by Go. Then
the action by g to Fj is written by ¢g*F; = e - F; (7 =0,1,2) for some (g, 11,172; 7).

Therefore any quotient singularity is represented as a diagonal cyclic quotient of a rational
double point. In [23], J.Wahl showed that the quotient map ¢ : C?/Gy, — C*/G by
G/Go gives the canonical cover of (C?/G,(0)). We can see that the quotient singular-

ty with the w.d.graph
ity wi e w.d.grap OO—B-D (b> 2) is given as a cyclic quotient (X/G, 7(0)),

where (X,{0}) = {zf + 2z} + 25 = 0} ( i.e., rational double point of type D, ) and
G =< (e3g4-27, €25_a7> €ouna7) >. Moreover, by using the Pinkham’s construction, we can
easily check that any quotient singularity except for the above case is a Veronese quotient
of a rational double point. For example, a cyclic quotient singularity with the w.d.graph
O ---~O«3 is given as the cyclic quotient of (X, {0}) = {z2* + 2,2, = 0} by
G =< (e, €2,€3) >. It is well known that we can choose various weights for the polyno-
mial. If n is odd ( resp. even ), we choose (2n;1,n,n) ( resp. (2n;1,3,2n — 3) ) as the
weight of 22" + z;2,. Then G is the Veronese subgroup of the order 2.

Remark 2.8. Let R = R(C,D) be the Pinkham’s construction of a normal surface
singularity with C*-action (X, z). If a finite group G is Veronese (i.e., G = V(@) ), the



graded ring associated to (X/G,n(z)) is equal to R(C,dD), where d = |G|. Therefore,
when G is a Veronese group and the w.d.graph associated to (X, z) is already known, the
w.d.graph associated to (X/G, n(z)) is easily computed. For example, let f = z4+212+z2*
and G =< (es,e?,e5) >. Then G is the Veronese group of order 5 on (X, {0}) = {f = 0}.

The w.d.graph associated to (X, {0}) is given by O—O—%2—O '. Then the Q-divisor

4 6
D of the Pinkham’s construction is equal to Do— Y. 1/7+p;— 3 2/3:p;, where deg Dq = 2.
1=1 =5

4 6
Since 5D = (5D — 3ps — 3ps) — 3. 5/7 - pi — ¥ 1/3 - pi, the w.d.graph associated to
=1 1=5

3 3
O A

. : Q
(X/G, 7(0)) is given by ) ) a3
OAUNG
@ g
2.4. Brieskorn type. Let’s consider the case of type (I) in (2.1). Let G be an abelian

group generated by the elements g; = (e, e%), -+, ¢, = (e%, %) acting naturally on C>.

Lemma 2.9. The quotient singularity (C?/G,7(0)) is a cyclic quotient singularity
whose cyclic order is a divisor of g.c.d.(m,n).

Proof. Let H be the subgroup of G generated by all reflections ( i.e, the element whose
fixed point set is a line in C?). Then we have C?*/H ~ C? and C*/G ~ C*/(G/H).
Hence we may assume that G doesn’t contain any reflection. Let ¢ be a homomorphism
from G to C*=C — {0} defined by (ei,,el) € G — ¢!, € C*. Then the kernel of ¢ is
trivial and ¢ is an isomorphism from G onto ¢(G). Since any finite subgroup of C* is
cyclic, G is a cyclic group whose order is a divisor of m. By considering the map to the
second factor (ei ,el) — e , the order |G| is also a divisor of n. q.e.d.

Theorem 2.10. Let f = z5° +z3* +25%,(X,{0}) = {f = 0} and let G =< (X0, el €2) >
be a cyclic group acting diagonally on (X, {0}). Let Ca,,5, (7 = 0,1,2) be the three types
of cyclic quotient singularities ( or smooth point ) associated to (X/G, n(0)). If we take a
suitable change of 7, then the cyclic order «; is a divisor of a; for j = 0,1,2 and the num-
ber nj of Ca,u1 g, is equal to g.c.d.(a;, ag41, [S+9)]), where s; = (aj42)i+21— ap+1)0+11) /7 -

Proof. Let us consider the situation of 2.1. By (2.2) we have § = (65,\‘;‘_1")'11 , 6%2—10)”, elV),

ho= (e;®,ex®,er) on Wo, and Co = X(CNWy) = {1+ +v83 =0} ¢ W =

Cs(vm, Vo2, 7‘0). Then

= —s ~31 gV T e —ag p,—ag LnV
g= (eal 2: eag )er?qo) and h = (601 ’eaz ’enqo)'

Consider the fixed point p = (w,0,0) € Cy with w® = —1 and consider the associated
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cyclic quotient singularity C,.1 g attached to p, then the cyclic order « is a divisor of a; by
Lemma 1.3 and Lemma 2.9. Moreover we can see that the number of orbits by the action
of G =< §,h > on the set {(w,0,0)|w* = —1} is equal to g.c.d.(aq,ay, |sz]). q.e.d.

Remark 2.11. Let (X, {0}) = {z}’ + 2}' + z}* = 0}, where po,p; and p, are pairwise
coprime positive integers ( > 2 ). Let G C GL(3, C) be a finite group which acts C*-
equivariantly on (X,{0}). Then G is a Veronese group < (eP!?,eP?° ¢PoP1) > where n
is the order of G. In fact, any element of G is diagonal from Preliminaries. Let g =<
(ef,elt ) > be any element of G. Since g.c.d.(pipz2, P2po, Pop1)=1, there exist integers
ap, 0 and oy satisfying agppips + pocipa + popia=1. We put v = oo + @111 + aata. Then
it satisfies 7 - (pop1, P1P2, P2p0) = (%0, 11,172) mod m. Then < g >=< (eBP?, elP? 2270 >,

where m = m/g.c.d.(m,~). From this we can easily see the above.

3. The condition for (X/G,n(0)) to be Gorenstein and a formula for pluri-
general §,,(X/G,7(0)), m> 1.

Definition 3.1. Let Y C C**! be an analytic subvariety and G C GL(k + 1, C) a finite
group acting naturally on Y. For an element g € G, if the fixed point set of g on ¥ contains
a subvariety of codimension 1, we say g a reflection on Y. Moreover if G doesn’t contain
any reflection, we say that G is small.

From now onlet f € Cfxq,---, zx] be a quasi-homogeneous polynomial of type (d; g, -, gx)
such that (X,{0}) = {f = 0} € C**! has an isolated singularity at {0}. Assume G =<
(e, .-+ e) > acts diagonally on (X, {0}). We may consider only cases such that the group

— th.
(1,--1,e,1,,1)
If it is not so, we can reduce to the case where G doesn’t contain such reflections. How-

G doesn’t contain any reflection of the type : (1 =0,1,--+,k).

ever there exist reflections of another type. For example, let f = z3z; + 23z + 233, and
G =< g >=< (e, 1,€3) >, then g is a reflection whose fixed point set is the z,-axis. If we
consider the polynomial of Brieskorn type, we may always assume that G is small.

A normal isolated singularity (X, z) of dimension k is called a Gorenstein singularity if
the local ring Ox , is Cohen-Macaulay and there exists a holomorphic k-form on X — {z}
which doesn’t vanish anywhere. The pluri-genera §,, is an analytic invariant of the normal
isolated singularity which was defined by Ki. Watanabe [25]. Although we don’t recall the
definition, we note that &, is equal to the geometric genus p, =dimgR¥*m,0% . , where
m:X — (X,z) is a resolution.

Let f,(X,{0}) and G be as above. Let’s consider a non-vanishing holomorphic k-form
w on X — {0} which is defined by

L
dzg AV Ade
Wy, = (=1) : 0f/0z; :

- 11 -



onU; = {0f/8z; # 0}NX (i =0,1,---,k). Fora= (ag,---,a) and b= (bg,--+,bx) €Z*,
K

we denote [a,b] = 3 a;b;. Then we have the following.
=0

Proposition 3.2. Under the situation as above, assume G is small.
(i) (X/G,n(0)) is a Gorenstein singularity if and only if w is a G-invariant form.
(i) For any positive integer m,
6m(X /G, 7(0)) =#{ A € N**m . a(X) >[g, )] and m - a(G) = [i,\] mod n }
—#{re N*"m.a(X)—d>[g,)] and m-a(G) — s = [1,A\] mod n },
where A = (Ao, =, Ak), © = (40, ", k), ¢ = (qo,**",qx), and where we denote a(X) =

k k
d— Y g; and a(G) = s — 3 1;.
7=0 7=0

Proof. By the condition for G to be small, the covering map 7 : X —{0} — X —{0}/G
is unramified. From the ramification formula ( p. 41in [1] ) we have

I{X—{O} = W*(KX/G_,\-(O)) (3.1).

(i) If w is G-invariant, we have a non-zero holomorphic k-form w® on X/G — m(0).
By the result of [9], the invariant local ring O , is Cohen-Macaulay. Then (X/G, n(0))
is Gorenstein.

Conversely if (X/G, 7(0)) is a Gorenstein singularity, then there exists a non-zero holo-
morphic k-form 7 on X/G—m(0). Then 7*(n) is a non-zero holomorphic k-form on X —{0}
from (3.1). We put h = 7*(n)/w on X — {0}. Then A is a non-zero holomorphic function
on X — {0}. Since (X,{0}) is a normal singularity, h can be extended to X. Let & be a
holomorphic function in a neighborhood of {0} € C*** whose restriction to X is h. Let
h = ag +ajzh + aga:I2 +--(a #0 ) be the expansion of power series of h at {0}. We
put g*(h) = ao + 2 a;zt + €azz? + -+ - and ¢g*(w) =€),
Since hw is G-invariant, we can write as follows :

hw = g*(h) - g*(w) = (ao + eBa;zh + eb2a;z +--)|x - e)w,
Therefore ape) = ag, so A = 0 mod n, and then b; =0 mod n for j = 1,2,---. Hence h

w, where A, by, bs, - -+ are integers.

is G-invariant, so is w.
(ii) Let U be a Stein neighborhood of {0} in X. Then, from (3.1) we have
D((X — {0})/G, O(mKx—qopjy) = T(X = {0}, O(m - Kx—c))%).
Moreover, since G is a finite group,
LU )G = m(0)) = L™ (U — {0})°,
where L2/™(U —{0}) is the set of all L2/™-integrable m-ple holomorphic k-forms on U ~{0}.
Then we can obtain our formula by the same way as in the proof of Theorem 1.13 of [25].
q.ed

Remark 3.3. In [8], V.A. Hinic implicitly proved the ”only if part” of (i) of the above
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proposition in a more general content,

Corollary 3.4. Suppose G =< g >=< (%,---,¢'*) > is small and g*f = ¢’ - f for some
integer s > 0.

(i) Then (X/G, 7(0)) is a Gorenstein singularity if and only if 70+ ++ - + 4 = s mod n.

(ii) po(X/G,m(0)) = #{X € N**!a(X) > [¢, )] and a(G) = [i,)] mod n }.

Example 3.5. Let (X,0) = {z§ + z} + 25 = 0} and G =< (1,ey,¢e3) >, then the

w.d.graph of (X/G,(0)) is given by 8:,%2 . From Proposition 3.2, (X, 7(0)) is
1

Gorenstein and 6; = p, = 2,6, = 6,63 = 10,6, = 18,65 = 26. Moreover, the embed-
ding dimension is 4, so by Serre’s result (X/G,7(0)) is a complete intersection. Then
(X/G,7(0)) = {25 — 2123 = 0,28 + 22 + 22 = 0} C C*. We can easily check that
(X/G, m(0)) is a maximally elliptic singularity ( see [26] ).

4. Cyeclic quotients of simple elliptic singularity Eg. Suppose (X,z) is a
normal surface singularity and (X, E) — (X,z) the minimal resolution. If the excep-
tional set E is a smooth elliptic curve, then (X, z) is called a simple elliptic singular-
ity ( K. Saito [19] ). The self-intersection number E? is equal to -1 or -2 or -3 if and
only if (X, z) is a hypersurface singularity. It is called Es, B7 and Eg respectively. In
this section we classify all cyclic groups < (e, et e?) > which act naturally on B and
are small ( i.e., do not contain any reflection ), and classify all rational singularities ob-
tained by the quotients of the above actions ( Theorem 4.4 ). If G is not small, then
bm(X/G,7(0)) = 0 for any m. Hence (X/G,7(0)) is a quotient singularity by the result
in [25]. Since py(X/G, 7(0)) < py(X, {0}), if (X/G,«(0) is not a rational singularity, then
(X/G, m(0)) is a simple elliptic singularity.

Now let (X,{0}) = {f = 0} be a simple elliptic singularity of the type F5. Since Fjs
is defined by a quasi-homogeneous polynomial of the type (6;3,2,1) ( see [19] ), if a finite
subgroup of GL(3, C) acts C*-equivariantly on (X, {0}), it is a cyclic group generated by
a diagonal element (e, e!l, ¢?) as in section 1.

Suppose G =< g >=< (9, el e?) > is a cyclic group which acts diagonally on
(X,{0}) and satisfies the following three conditions :

(i) G issmall,

(ii) (X/G,w(0)) is a rational singularity, (4.1).

(i) g.c.d.(io,t1,42,n) = 1,
Hereafter we usually abbreviate the generator g = (e, e, e¥?) as g = (ip, i1,%9;n). The
defining polynomial of Fj is given by

22 + 23 + 128 + apz0z3 + a1 + 442223 + aszeT1 2,
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where a; € C (i =1,--+,5 ) are constants. Then g satisfies the following conditions :

2ip= 31; mod n and ¢ 1; + i, mod n (4.2).

Lemma 4.1. By a suitable G-equivariant coodinate transformation, the defining poly-
nomial f can be transformed to the following polynomial :
(i) z2+23+25+c2s2(ceC) or (i) z2+2d+z128.

Proof. If as # 0, then 2iy = 19 + 1, + i, mod n, so a5 = 0. From (4.1), if a; # 0 and
as # 0 (or a; # 0 and ag # 0 ), then (X/G,7(0)) is a simple elliptic singularity. Since
(X/G, m(0)) is a rational singularity, the defining polynomial of (X,{0}) has one of the
following forms :

(I) f =22+ 23+ a125 + azz23,
(I1) f = 22+ 23 + 0128 + a3z 25 + asz?c? .

In case (I), we may assume ay # 0. Then (ip, 13,1;n) satisfies i = 31, mod n. Since
f = (=0 + az/2 - 23)* + 23 + (a1 — az/4) - z§ and a coordinate transformation z, =
To + az/2 - 33,21 = z; and 2z, = czy is G-equivariant, f is transformed to zZ + 2} + z5.
In case (II), we may assume a3 # 0. Hence we may only consider the following two cases :
(II-) a; # 0, and (1I-i) a; = 0 and a4 # 0.
For these cases we have ¢; = 27 mod n. Then we get the G-equivariant coordinate trans-
formation : zy = 29,21 = 21 —132, 2 = 22 (t € C). We have f = 22+ 25 + (3t +a4) 2322 +
(312 + 2a4t + a3)z125 + (£ + ast? + ast + a;)z5. We choose ¢ satisfying 3t? + 2a4t + a3 = 0.
q.e.d.

By choosing the suitable generator of G, we classify the actions (i, ¢1,1;n) acting on
{zi+ z3 + 2§ = 0}

Lemma 4.2. Suppose G =< (ig, 11,72;n) > acts on (Y, y) = {z} + z7 + 257 = 0}, where

(p,q) = 1. Then there exists a generator of G with the form
(¢ + An/(p,n),p + un/(q,n), 1;n),
where ) ( resp. u ) is an integer with 0 < A < (p,n) (resp. 0 < < (g,n) ).

Proof. We have piy = ¢i; = pgi, mod n. Let ny = n/(p,n) and ny = n/(g,n), then
ig = qi, mod n; and 13 = pi; mod ny from (p,¢) = 1. From this we obtain a genera-
tor with the form g = (qiz + any, pis + bny, 12;n) for some a,b € Z. From (iii) of (4.1),
g.c.d.(ia,m1,n2) = 1. We can easily see that (n,4,) = 1 since G is small. Thus there exists
an integer « satisfying ai; = 1 mod n so that « is prime to n and g* is a generator of
G. Let \=aamodn(0< A< (pn) )and p =abmodn (0 < < (g,n)), then it
completes our proof. q.e.d.

Let’s consider the case p = 2 and ¢ = 3 in the above lemma, then g = (3+An/(2,n), 2+
un/(3,n),1;n), where 0 < A< land 0 < p <2 IfA=p=0,then Gisa Veronese group
for (X, {0}), so (X/G,m(0)) is a simple elliptic singularity. Hence we may only consider
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the following five cases :

(DA=0andpu=1(2)A=0and p=2,(3) A=1and p=0,
M A=land p=1, (5) A=1and p =2, (4.3).

Consider the case (1). We have n = 0 mod 3. If we put n = 3m, then g =
(3,2 +m,1;3m). From the condition for (X/G,7(0)) to be small, m = 0 or 2 mod 3.
If m = 0 mod 3 and m = 3¢, then (3£+ 1,n) = 1. From this ¢®*! = (3,2,3£ + 1;9¢)
is a generator of G. If m = 2 mod 3 and m = 3£+ 2, then (6£+ 5,n) = 1. Hence
g%+® = (3,2,6£ + 5:90 + 6) is a generator of G. By the same way we can obtain the
following generators for the five cases in (4.3).

(1) (3,2,3¢+1;9) or (3,2,60+5;9+6),

(2) (3,2,66+1;9) or (3,2,30+2;90+3),

(3) (3,2,20+ 1;40), (4.4).
(4) (3,2,300+ 1;36¢) or (3,2,6¢+5;36¢+ 24),

(5) (8,2,6¢+ 1;36¢) or (3,2,30¢+ 11;36£+ 12),

We can see that (3) is the only case which acts on (X,{0}) = {22 + 23 + 2§ + cziz? = 0},
where c € C™.

Next let’s classify the group G =< (4o, 41, 2;n) > which acts on (X, {0}) = {z3 + z3 +
z1z5 = 0} so that G satisfies the condition 2iy = 3i; = ¢; + 44, mod n. If 24y = 64; mod
n, then G has already appeared in the above classification (4.4). Therefore we may only
classify the actions which satisfy the condition :

Dig = 34y = iy + 4ip  6iy mod n (4.5).

Lemma 4.3. There exists a generator of G with the form (3,2,1+ 2X¢; 8), where A =1
or 3.

Proof. Let g = (49,11, i3; n) be a generator of G. Suppose nis odd. Then 1; = 27, mod
n, so 3i; = 61, mod n. This contradicts to (4.5), so nis even. We put n = 2m. Suppose m
is odd, then i; = 24, mod m. Ifi;iseven ( =2J ), then J = i; mod m. Thus ¢; = 243 mod
n, which contradicts (4.5). If ¢; is odd (= 2J + 1), then 2¢ = 6J +3 mod 2m. Hence 3 =0
mod 2,which is a contradiction, so m is even. We put m = 2s, so < g >=< (1o, 11, 12; 4s) >.
Then i; = 24, mod 2s. We put iy = 215 + 2bs for some b € Z.  Then 15 = 31z + 3bs
mod 2s. If we write g = 3iy + as, then G =< g >=< (312 + as, 2i; + 2bs, 15;4s) >. Since
g.c.d.(ig, i1,12,48) = 1,(s2,s) = 1. Let p,q be integers satisfying pi; — ¢s = 1. We may
assume that p is odd. Because if p is even, we may exchange p, ¢ for p(io+ 1) — 1, ¢(22 + 1)
respectively. Since p is prime to the order 4s, ¢ is a generator. Then we have

G=<g? >=<(3+cs,2+ 2ds, 1+ es;4s) > (4.6),
for suitable constants ¢,d and e. From (4.5) we have c = d Z emod 2 and 0 < d < 1.
Hence we may only consider the following three cases :
()c=2andd=0,(2)c=d=1,(3)c=3andd=1

For (1), the 2s + 1 — th power of the form in (4.6) is g1 = (3,2,1+ Xs;4s). If X is even
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( =2y ), then 24y = 6 = 6(1 4 2us) = 6i, mod 4s, which contradicts the condition (4.5).
Then Ais 1 or 3. If sisodd ( = 2t 4+ 1), G contains a reflection gi'*? = (e5,1,1). It
contradicts the assumption that G is small, so s is even ( s = 2t ). For cases (2) and (3),
sis even. In fact, if s is odd, then G contains a reflection g2 = (1,1,¢e,). For case (2), let
p=s+1(resp. s—1)if s =0 (resp. 2 ) mod 4. Then (p,n) = 1 and the p —th power of
the form in (4.6) has a desired form. By the same way we can show the case (3). q.e.d.

Therefore we may only consider the action of the following four types.
(1) (3,2,42+ 1;16¢), (2) (3,2,12¢+ 1;162),
(3) (3,2,44+3;16£+8), (4) (3,2,12¢+7;16£+8) (4.7).

From the considerations until now, we obtain the following.

Theorem 4.4. For the finite cyclic group acting diagonally on Es, assume the action is
small and the quotient is a rational singularity. Then the group and the w.d.graph of the
rational singularity are classified as follows :

i} i d
Defining polynomial of Ey | |G/V(G)] Weighted dual graph an

group< (19,491,132 : 1) >

7
B—LD~0 O-OL2-0-O0-0C0

(3,2,6¢ + 1; 36¢) 3230£+1 36¢)

22+ 23 + 2§ 6 :
O-O+€E2 3 @ OO0

(3,2,60 + 5; 36£ + 24) (3,2,302 + 11; 36£ + 12)

O
00275 20m0m®

(3,2,4£ + 1; 164) (3,2,12¢ + 1; 162)
@,

22 + 23 + 2} 4
< @. O—0
(3,2,4¢ + 3; 16£ + 8) 32122-{-7 16£ + 8)
cofboo
o2 + 23 + 18 3 (3,2,60 + 1; 92) (3,2,6 + 5,9 + 6)
CI-CLDEI) O-OE2-0-0
(3,2,32+1;92) (3,2,3¢ + 2,92+ 3)
23 + 33 + 2§ + cziz} 2
(c €C)

(3,2,20 + 1;44)
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Remark 4.5. The above rational singularities were already found and discussed from
several points of view ( [10], [11], [21], [22] and [25] ). Theorem 4.4 gives a concrete repre-
sentation of these singularities.

Under the situation as above, by proposition 3.2, we can see that

0 if m=#0 mod |G|/|V(G)|

bm(X/G,7{0}) = { 1 if m=0 mod |G|/|V(G)]

(see [25] ). In Theorem 4.4 we can see that the elliptic curve associated to the Eg has a
special analytic type when the order |G/V(G)] is 3 or 4 or 6, and the only case which has
moduli is the case of |G/V(G)| = 2. This fact corresponds to the fact that the induced
group G/V(G) on the elliptic curve is the complex multiplicative group when |G/V(G))|
is 3 or 4 or 6, and G/V(G) is the group generated by the involution when |G/V(G)| = 2.
From this we can clearly understand the reason why the period of 0 and 1 of 6,,, is 2 or 3

or 4 or 6 for these rational singularities.

Remark 4.6. In [23], J. Wahl defined the canonical cover of the normal surface sin-
gularity. As an example he showed that the canonical cover of the rational singularity

with the w.d.graph @‘%_@ is % . Recently, M. Tomari and K-i. Watanabe [20]

proved the following fact. If (X, z) (resp. (Y, y) ) is a normal ( resp. normal Gorenstein )
isolated singularity with C™-action and if ¢ : (Y, y) — (X, z) is the finite cyclic covering
which is unramified outside z = ¢(y), then ¢ is decomposed by the canonical covering of
(X,x). From this we can easily check that the canonical cover of any rational singularity

(X/G,7(0)) in Theorem 4.4 is given by 8, where v = |V(G)| the Veronese order of

3 O
G. For example, the canonical cover of is given b
’ BEDD (resp. D)@ ) T

@, (resp. )
[1] [1]
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Chapter II

ON A CLASS OF NORMAL SURFACE SINGULARITIES DETERMINED

BY WEIERSTRASS POINTS ON ALGEBRAIC CURVES.

Abstract Let mo be a point on a smooth algebraic curve C
with positive genus. We investigate the structure of the surface

singularities with the affine ring C)HO(C,G([E%]IO)~tk. We study
k=0

the embedding dimensions of these singularities, and determine the
condition for these singularities to be complete intersecion when the

assocliated semi-group H(mo) is generated by two elements.

§0. Introduction.

Let C be a smooth algebraic curve over C ( or.compact Riemann
surface ) and x,€C be a point. Let (X,x) be the normal c*-
surface singularity associated to the 2-dimensional normal graded

[=e]
ring : ‘Q}IfJ(C,O([E%]mO) t¥, where d and e are positive integers
k=0 |

satisfying d>ez2l and (d,e)=1, and [ ] is the Gaussian symbol.

If the genus of C is 0 ( i.e., C= Pl), then these singularities are
cyclic quotient singularities. For cyclic quotient singularities
we know their embedding dimension ( see [2] or [12] ) and the
condition to be complete intersecton ( i.e., Ak—type ). In this

paper we assume that the genus of C is positive. If (X,A) —(X,x)
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is the minimal resolution of this singularity, then the weighted dual

r
graph of the exeptional set A=iL=JOAi ( Ai is the irreducible component

of A ) is given by the following graph ( cf [11]):

R

where AO= C, Aon Al={$o}, the normal bundle of AO in X is given

d
by ~[IO], further Ai= Pl( i= 1,---,r ), g=genus of C and i °
_ _ 1 . . .
bl— 1 b2 R | br( = bl . 1 : continued fractional
2.1
. b
expantion ). r

In this paper we use the following notations

= O ek k
R(d,e)= é;%ﬁ (C,0([=glx, ) t" ¢ k(A [t],

- = o . k
R(1,1)= é;%H (C,0(kz )t ¢ k(A)I[t]

and for a real number X, let {x} be the least integer n which
satisfies n > x. Moreover let H<mo> be a semi-group whose elements
are meromorphic functions with a pole only at T and H(:O) a

semi-group whose elements are integers ordm(f) (= order of f at xo)
o)

for fe H<IO>.

In §1 we study the generators of R(d,e) and obtain the embedding
dimension of R(d,e) ( = emb(R(d,e)) ) from d, e, Py, Py when the
semi-group H(mo) is generated by integers Pis""sPg- In [14]

F. VanDyke obtained an interesting formula for the embedding
dimensions of some normal C - surface singularities. Let us review

it briefly. Let (X,x) be a normal C" - surface singularity and
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(i,A)-—>(X,X) the minimal good resolution ( n_l(x) = A ). Then
the weighted dual graph of the exceptional set A is given by the

following star-shaped graph ([10],[11]1):

where Aij ~ P:L for i= 1, ++,r ; j=1,-++,n. Let (Yi’yi) be the cyclic

guotient singularity which is obtained by the blowing-down of the i-th

branch - . ' (i=1,---,r), and {i the embedding dimension

n
of (Yy,v,) (i.e., &= 3+.Zi(bij— 2) from [2],[12] ).

Theorem ( F.VanDyke [13] ). If b = 2g+r+l, then

r r n;
emb((X,x))= b-g+l+ Z (&i— 3) = b-g+l+ X >t (bij 2).
i=1 i=1 j=1

In paticular if we insert the component @ between AO and Ail’ or
Aij and A13+1 (i=1,.++,r ; Jj= l,~~,ni—l) of the above graph, the
singularity associated to the graph has the same embedding dimension
as that of (X,x). We can see that this property does not hold for the
singularity associated to R(d,e). However if we insert the component
@ between the central curve AO and the curve A1 in (0.1), then the
embedding dimension does not change ( Remark 1.7 ).

In §2 we first study the defining ideal of R(d,e), and prove the

following ( Cor.2.3 ):
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If R(d,e) is a complete intersection for some d,e, then R(1,1)

is a comlete intersection.

Next we want to consider the converse of the above statement. That
is to say, what condition on (d,e) do we need for R(d,e) to be a
complete intersection when R(1,1) is a complete intersection ? In §3
we investigate this problem when R(1,1) is a hypersurface ( i.e., the
semi-group H(xo) is generated by two elements ), and obtain the
numerical conditions ( Th.3.7 ) for R(d,e) to be a complete
intersection.

In §4 we give a formula of Poincare series of R(d,e), which is
written by the non-gap values of X, and d,e.

The author would like to express his thanks to Prof. Kei-ichi
Watanabe for his helpful advice and encouragements during the

preparation of this paper.
§1. Generators and the embedding dimension for R(d,e).

First we give an example to show how we can find the generators

and the embedding dimension of R(d,e) ( =emb(R(d,e)))

Example 1.1 Let C be a hyperelliptic curve of genus 3 and xo a
Weierstrass point on C. Further let f and g be meromorphic function
on C which generate the semi-group H<xo>, so their order of f, g at z,
are 2, 7 respectively. Suppose that d=4, e=3, then we have the

followings:
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3k . o 3k k
k [ 1 basis of H (C'O([“Z]xo))‘t
1 0 t
2 1 2
3 2 t3, ft3
4 3 t4, ft4
5 3 5, £t
6 4 t8, £t8, £2¢8
7 5 £, eeT, £2¢7
8 6 £8, £t8, £2¢8, £34¢8
9 6 £9, £t9, £2¢%, £3¢°
10 7 th’ ftlo’ f2t10’ fsth, gth
11 8 1:ll, ftll, fztll, fstll, gtll, f4tll
= .0 3k k
We can choose the generators of R(d,e)= @H (C,O([—Z]a:o))'t as
k=0
, 3 3.8 10 -
follows: zO=t, zl=ft , zz=f t~ and 23=gt , and so emb(R(d,e))= 4.
i g (A2iTj)y
We can see that the base z, (1<k<3) has the form f th 3 for

k
(1,3)=(1,0),(3,0) and (0,1).

In the following let C be a smooth curve of genus g and :cOE C a

point on C. Let <fl,-~,fs> be a génerator system of H<xo> , let

p;= ordxc()fi) (i=1,---,s8), and let pl<~-~<ps. Furthermore we say
iJ. is m

that a monomial fl *-~fS -t is a "generator" if it is a member of

minimal generating system of R(d,e).
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Proposition 1.2. emb(R(d,1))=emb(R(1,1)).

b
Proof. The ring is generated by t,flt l,fzt ,~~-,fst
dpl_ dp, dp

then t, f,t ©, f,t %, or, £t S

generate the ring R(d,1). Q.E.D.

Moreover, let ¢ : C[zo, Zystts zs] — C[Wo’ w
- wd - ..
Zo= W, Zq= Wi,

vz 1/, then we have R(d,1) =~ Clw,, w

100 ws] be the

v, Z_.= W and R(1,1) =~

inclusion map given by s s

Zy,° wsl/<m(I)>,

where <¢(1)> is the ideal generated by ¢(I).

C[ZO l"‘.)

i
Proposition 1.3. It M =T "'fs 45 a generator of R(d,e),

d>i.p.
then m={—~gl—l}.

d>i.p
Proof. Set n={——Ei—l}. Since M € R(d,e), we have m = n.

i i
If m > n, then M = (fll-"fss‘tn)-tm_n, which shows that M is not a
generator. Q.E.D.
Proposition 1.4. The set of elements
, dzp.1i.
{ t fil---fls { } | 0<i.<e, j=1,--+,s (i, ,+-+,1 )#(0,--,0)}
’ 1 S J b ? ’ ’ l ’ ’ s » b
contains a generator system of the graded ring R(d,e).
i i
Proof. Let fll‘-~fss-tk be an element of HO(C,@([gglmo))~tk
s dZijpj
then > ., and ko{——1}. =B, .
[= d] J J nd so { } If we put iJ BJe+yJ
d- ZY P
( OSyj<e ), then k > d 2 B p +{~——~l~i} Hence if we put
j=1

ZY:p
c=k- d z ij -{————i—i} then £, ---f_S-tF

d-Zy,p;



S
Corollary 1.5. emb(R(d,e))< min{(e+l)d, d(jglpj)}.

From Proposition 1.4, the ring R(d,e) has a generator system

consisting of the following homogeneous elements:

dp dp
z,.= t, z.= T t{ el} z = T t{ es} and
O 1 l l 4 ’ S ’
dzi .D: . . dxi, .p.
o el plsels (gt I I
s+1 71 S ’ g 1 S
...... (ll),
where Oﬁij K<e for j=s+1,---,4&;k=1,--,s, and further {+1= emb(R(d,e))
and deg Zs+l< < deg z{. Hence we have emb(R{(d,e))= emb(R(1,1)).

Next we consider what conditions are required for degrees of

generators of R(d,e). From Corollary 1.5, we may assume that the

S

degree of any generator is less than or equal to d( X pj). Moreover
j=1

we have dim HO(C,@([E%]mO)) - dim HO(C,G([ELEéll]JO)) < 1 for any k.

Therefore if M, and M2 are elements of same homogeneous generator

1

system of R(d,e), then deg Ml # deg MZ'

Definition 1.8. When the semi-group H(mo) is generated by

Py, Dy, We define
S s .
H(zg)=( 1€ Bz dl = py)) | (<2 (U ror any te H(x,,i-1))
S ri,  ré,, r(i-¢)
={ i€ H(Io,d(JElpj)) | {(=5t<{=gt+ {1} for any {€ H(x_,i-1)},

where H(Io,k)=H(xO) Nn{1,2,--,k} and r = d (mod e) with Oxr<e.
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We can easily see that any element of I(mo) is the degree of the

generator of R(d,e), so we obtain the following results.

Proposition 1.7. (i) emb(R(d,e)) = #I(xo), where "#" is the
number of elements in the set. (ii) ITf dlE dz mod e, then emb(R(dl,e))

= emb(R(dZ,e)), where mo is the same point in both cases.

Remark 1.8. Under the situations of Proposition 1.7 (ii), if dls d2

mod e ( d,> dz), then dl— d.= ke for some k>0. Therefore if

1 2
d NI
2 - — — L I —
e R N 1o,
d
l - — — I ’ — —ol — .- v« ]
then g =75 = 2 ifz 12 -1fb;- 1] b R

k-times
Hence if we change the branch of the exceptional set

A A
from the form : @—@
[g]
to the form :
[g]

and if we do not change other conditions ( the central curve Ao’ the
intersection point x between AO and the branch, and the normal
bundle [—xo] of AO in X ), then the embedding dimension does not
change. However if we insert the component <:> between Ai and Ai+

1
(i>0), the above property does not hold generally.

In the remainder of this section we consider the case when mo is

a point whose semi-group is generated by two elements. Hence if the
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genus of C>1, then X is a Weierstrass point on C. In the following

let £, g be generators of H<mo>, and p, g their orders at IO

Example 1.9 (I. Ono - Ki. Watanabe). This example was given in [9]

and we recall thier results briefly. Let CO be a affine curve

q
b, m(y - o4 )= 0 ( q>p>1 p and q are

i=1

defined by the equation : X

relatively prime, and ui¢aj if 1i#j ) and Co = { [x:y:2] € Pz |

P.4-p d 2 -
X"z + My - o, z) 0 } the closure of CO in P®. If g=p+1l, then CO
i=1

is non-singuler. If q > p+l1l, then 60 has one singular point [1:0:0].

Let ¢:C —> Co be the normalization and = ¢_l([110:0]), then C 1is

a compact smooth curve of genus (p~l%(q—l). If we denote ¢*(—%—)

( resp. ¢*(—%—) ) by £ ( resp. g ), then they are meromorphic function

on C which have the poles of order p and g respectively at T, and

satisfy the relation : g% + T (f- oy ) = 0. If >1, that

i=1

is, the genus of C > 1, then Io is a Weierstrass point on C whose

p d (p-1)(q-1)
2

semi-group is generated by f and g. If the genus of C = 1, then (p,q)

= (2,3). Ono - Watanabe showed that the ring R(1,1) =

C)I{ (C,0( km }) - tk is a hypersurface defined by the equation

q
XP +igl(y + aizp) = 0. The Brieskorn type singularity with the form
xp +yq +zpq =0 1s an example of this procedure.
; = & - € - P
Notations. Set e, e.p) ' %2° Te.q) ' P17 Te.m) and
q,= (eqq) , where (a,b) 1is the greatest common factor of a and b.
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Proposition 1.10. (i) The set of homogeneous elements

e, dp oo dliprjal)y oo
1 1 i j {———=} i= 0, 1,---, e,-1 .
{:t, f ot , and f g’t e S0 1 .- pll , (1,j)#(0,0))
generates the graded ring R(d,e).
(ii) The set of homogeneous elements
e, dp e, dg . d(ip+ja) i=0,1,-++,e.,-1 .
{:t, £t L,og 2t tand elgdetT e | =01, Lepl » (1,3)#(0,0)
generates the graded ring R(d,e).
pe e2
s b , < _pbe ,
(iii) emb(R(d,e))< min{ (e,p)+1 6. p) (. q) +1 }

The proof of this proposition is similar to that of Proposition

1.4, so we omit it.

Definition 1.11. We define the set of integers as follows

So(e,r,p)={0,l} u{i] Zsisel, ip GI(mo)}

={0,1} u{i| 2<ige, {559}+{rp(é"@)}>{rgi} for @=1,+-+,i-1 },

ip+ja eI(xo)}

Sj(e,r,p,q)={il O$i<el,

r (pe+qy) rip(i-g@)+q(j-¥)) r(pi+aqj)
='{i I O£i<el, { e bl b>{ e }

for j=1,:--,p-1, and we define the numbers

for any =0,1,---,1i ;¥=0,1,---,3, (0,¢)#(0,0),(1i,])

S~ so(e,r,p) = #So(e,r,p),

sy = sj(e,r,p,q) = #Sj(e.r,p,q) (j=1,---,p-1).

We can easily obtain the next proposition from Proposition 1.7.

p-1
Proposition 1.12. emb(R(d,e))= Z sj.
J=0
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Example 1.13. ( p = 2 :hyperelliptic point case )

Let p=2, qg=2m+1 and g>e>] ( m is the genus of the curve Cuj; then

Syle,r,2)={ 0,1 } U { i | Zsigel,{22¢}+{2r(i_¢)}>{221} for @=1,++,i-1

O0<i<e e

for any =0, --,1 ;¥=0,1 ,(¢o,¥)=(0,0),

1 H

r(2¢+qy) r(2(i-g)+q(l-¥)) r(2i+q)
Sl(e,r,z,q)={li { e bl 3>4 e } }
(i,1)

{22@}+{I‘(2(l-@)+(ﬂ}>{r(zi+Q)} for (,D=l,“‘,i }

={ 1 | O<i<e,, -

1

A {1 O£i<el’{r(22+q)}+{2r(i—@)}>{r(2i+q)} for ©=0,---.i-1 }

=( 1 | osi<e,, {22¢}+{r(2(i‘9)+Q)}>{r(2i+Q)} for ¢=1,-+-,1 }

Here we suppose that e =7, d = 1 mod 7 (4 > 7 ) and q > 7, then
SO(7,1.2) ={0, 1, 2, 3, 71},

SO sO = 5, and further

s.(7.1,2,0) = { 1 ] osi<7, {22+ (BEI9)5 209y for g=1,---,1).

Therefore 1f we put v to be v=q mod 7 (0<v<7), then we have the

following TABLE 1.

TABLE 1
v ‘ $,(7,1,2,q) emb (R(d,T))= sy*s;
0 0 6
1 0, 1, 2, 3 9
2 o, 1, 2, 8 9
3 0, 1, 2 8
4 0, 1, 5 8
5 0, 1 7
6 0, 6 7
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From TABLE 1 we can write generator systems of these rings.

For example, when v = 1, the generators of the rings are listed as

follows
2d+5 44+3 8d+1
v, ft T, £ 7, £t 7, 429,
dq+6 d(q+2) 9 d(g+4)+2 3 d(g+6)
gt 7 , gft 7 , gf™t 7 , gf t 7 .

Moreover we obtain TABLE 2 which shows emb(R(d,e)) for low values

of d and e in the case of p = 2 ( hyperelliptic point cases ).

We put m = ﬂ%i, which is the genus of C ( see Lemma 3.3 ).
TABLE 2
e 1 2 3 4 5 6
d
2 3
3 3 3
3(m=1)
4 3 * 4 (m=0mod3)
5 (m#0mod3)
5(m=1mod3) -
5 3| 3 | 6(m=omod3) | gim=imOCH)
7 (m=2mod3) -
5 (m=2mod5)
8 3 * * * 6 (m=1, 4mod5)
7(m=0, 3mod5)
3(m=1) - 3(m=2) 5(m=2mod3)
4 (m=1mod3) égﬁ:ggggg; 4 (m=2mod5) 6 (m=1mod3)
(m>1) - (m>1) 7 (m=0mod3)
5(mElmod3) 5(mz2mod5)
_ 7 (m=2mods)
5{(m=1mod3) 8 (m=1mod5)
6 (m=0mod3) * 9 (m=0mod5) *
_ 10 (m=4mod5)
7 (m=2mod3) 11 (m=3mod5)
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§ 2 The defining ideal of R(d,e).

In this section we investigate the property of the defining ideal
of R(d,e). ‘Let < fl,-‘~, fs > be a generator system of semi-group
H<mo>, and Py the order of the pole of fi at T, ( i= 1,2,-+-+,8 ),
and assume D <P,<**<P.. Let I be the ideal generated by relations

between fl""’fs and Fl""’Fm a generator system of I. Left S be
a graded polynomial ring C[zo,--~,zs] with weights 1,pl,--~,ps.

pl ps
The set of elements ¢, flt , e, fst generate the ring R(1,1), so

we have R(1,1) =~ S / T, where 1 is a homogeneous ideal in S which is

generated by homogeneous elements ?1,~~', ﬁm' and where %i is an

element induced from Fi ( i=1,+-+,m ).

Now we define a generator system of homogeneous elements of R(d,e)

as follows (see 8§1):

dp dp
W.= t W.=f t{ el} e, W= f t{ es} and
0 1 1 ’ ' s S ’
m m d zms+l ipi m m d‘zmt ipi
w_ = £ STl st s} W= £ bop bsglm
s+1 1 S ! e 1 s
...... c(2.1)
Let R(d,e) =~ C[WO,"',W{]/J, where J is the defining ideal of

R(d,e). In the following we consider what generator system of J

there is. For the element G(WO,-~-,WC) € C[WO,---,Wi], let
é(fl,~--,fs) be the element of C[f,,---,f ] which is obtained by
substituting as follows
WO=1, Wl=fl,'~-,Ws=fS, and
m m m m
_e S+1,1  _Ts+l,s L e 41 LS ..
Ws+l_f1 fs , s W{-fl fs (2.2).
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For an element F € T there is an element G € J which satisfies

x

G = F. Because, if F = Z a_T ( e=(ot,,***,0t_ ) ), then
o 1 s
o K
dp dp s dp.
1, o S, o - i
G:= 2 a_ (f t{ e }) l‘“(f t{ e }) S't(b .?“1{ e b satisfies this
o 71 S i=1
o K
S dpi
property, where b = max{ 2 ai{~€—} | w€eK }. With respect to the
i=1

degree, let F* be the least among elements satisfying F*= F in J.

The element F* is not uniquely determined by F. However if FI = ;

= F, then FI— F* can be written by the elements of type II and III

2

in (2.3). Next we consider the relations associated to the basis

d>m, Py

IS PR SN FE IO S} jessl,---.t ). Let m, ., > 0 for

i1 s R ik

m,, m. -1 m {dzmj,ipi"dpk

some k<s, then the element flJ’ ~-fk3’ '-~fSJ’ -t e can

be written as Vs’(pl~~\’vqﬂ‘j*l for some integers ¢,,- -+, and then
1 j-1 g A B
s dp. j-1 d~§ m, _p. d-Z m, p.-dp
i i,070, _ Jj.,o k
2ot 2oy I B 2 }

d-¥ m, p dp ’
R~ S R >
= { Z s £y - {—gg} + g, where € = 0 or 1. Hence we have WﬁWJ )

P LAkt 951
Wl Co Wi ~~WJ._l . Then we have g=1, because Wj can not be written by
Wi ’Wj—l Therefore we have the following relations ;
k k
: - 1.y, 71 - .
Rj : Wowj LA Wj*l (3J s+1, 4 )
for non-negative integers kl' ’kj—l’ Then we have the relations

of three types as follows
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i

(II) R ( i=s+1,---,¢ ),
a a b b u v

Oy 1 1 v

(III) W Wil W, - wjl Wt O 12y L1< 3y )
v
a, au bl bV (2.3),
where Wo <o W = W, --W in (III).
u J1 v

Lemma 2.1. (i) Let F and G be homogeneous elements of J with same
degree. If F =G, then F - G is contained in the ideal generated
by the elements of type II and III in (2.3).

(1i) The ideal J is generated by elements of type I, II and III.

Proof. The proof of (i) is obvious, so we show (ii). If P € J,

m
then P € I. We can write it as P = 3 B,'F, for B.,--+,B_ €
121 i1 1 m
n % *
Clf -, f 1. Now if we put P.= Y B,-F,, then P - P, can be
S 1 i=1 i1 1

written by elements of type II and III. Then P can be written by

1
elements of type I, II and III. Q.E.D.

Theorem 2.2 There is a generator system which contains the set

{ o * R R ’R£ } as a part of it.

l’ ..‘) m ’ S+l’

Proof. First we show that we need the elements Ri (i=s+1,---,¢)
as generators. Here we must note the facts : deg Ri=‘deg Wi + 1

( i= s+1, +--,{¢ ) and deg R < deg R{. Let us assume that the

<
s+1

element Rk can be written by elements of type I, III and type II

except for R then we can write as

k b
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[§ % kil
R, = A, F, + B, R, + G «ecenvn- (2.4),
where Aj and Bj are the homogeneous elements and G is a polynomial

which is written by the elements of type III. If we put WO= 1 in

(2.4), then we have the following

m m

m
W. = W k’l-"W kK, k-1 + A FY . > B..R. + e TP (2.5)
k 1 k-1 i1 i 1 .

where P is the polynomial obtained from P by substituting 1 for WO.

Suppose that Ki‘?; contains the variable Wk for some io. Then
o o
Kﬁ does not contain Wk , because Fi has a monomial whose degree is
0

greater than one and deg Ai'F; = deg Wk + 1. If ?; contains W
o "o 0

then F; has a monomial which contains the monomial Wowk' Hence
(0]

k ’

*

m
A. € C. By the relation o A,:F.= 0 in C[f,,--+,f_] obtained from
1O i=1 i 71 1 S

(2.5), we have F, = - —%— > Ai-F , where Ai is obtained by
e} ioixio

i
substituting (2.2) for Ai. This contradicts to the fact that

m
Fl,"',Fm are mutually independent, so 2

-?* does not contain the
i=1 1

e
e

-1

variable Wk' Moreover it is obvious that 2 ﬁjtﬁj + a does not
Jj=1

k

contain W, . Then W, € C[Wl""v""wi]' which is a contradiction.

k k

Next we consider the element F. of type I. Suppose that FI can

i
be written by F; U, F; and elements of type II and III:

m
#*
F, = > Ci-F;+ H, where H is written by elements of type II and III.
i=2

u m

By substituting (2.2) for Fl , we have Fl = > Ci-Fi, this is a
i=2

contradiction. Therefore when we consider the generator system
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of J consisting of the elements of type I, II and III, we can not
delete any element of type I and II. Hence there is a generator
system which contains any element of type I and II as the member

of it. Q.E.D

Corollary 2.3. (i) If the graded ring R(d,e) is a complete
intersection for some integers d and e (d>exl), then the graded ring
R(1,1) is a complete intersection

(ii) When R(1,1) is a complete intersection, R(d,e) is a complete
intersection if and only if J is generated by the elements of type

T and II.

§ 3. Complete intersections ( when the semi-group is generated

by two elements ).

In this section we determine the condition for R(d,e) to be a
complete intersection, when the semi-group H(xo) is generated by two
integers p and gq. Let C be a curve of genus g and z, a point on C as
in §1. Let a(R) be the invariant which was defined for finitely
generated graded rings in [5]. It is very important and useful for
us. We refer to [5] for its definition and properties. In our

situation we have the following formula of a(R)

a(R(d,e)) = [Qizgéll:l] ..... (3.1),

from the result of Ke. Watanabe [17, Th.2.8]. Moreover we can easily
obtain the following equivalent condition for R(d,e) to be Gorenstein

from [17,Cor.2.9) ( also see [4] ).
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Proposition 3.1. Let C be a compact smooth curve of genus g and X,
a point on C.
(i) If g=1, then R(d,e) is a Gorenstein ring if and only if d-1 is
divisible by e.
(ii) If g=22, then R(d,e) is a Gorenstein ring if and only if Z, is

a Weierstrass point and R(1,1) is a Gorenstein ring and

d(2g-1)-1 is divisible by e.

The numerical condition for R(1,1) to be Gorenstein is given in [7]

as the symmetricity of the semi-group H<mo>.

Proposition 3.2 ( [5],Remark 3.1.8). If R(d,e) =~
C[zo,~~*,zn]/(Fl,~‘-,Fn_l) is a complete intersection, then we have
n-1 n
a(R(d,e)) = 2 deg F, - S deg zy
i=1 j=0

From now on we assume that H<mo> is generated by two meromorphic
functions f and g, which have the pole of the order p and q at z,
respectively. If the genus g of C is greater than one, then z, is
the Weierstrass point. The following lemma is already well-known

¢ [11 ).

Lemma 3.3. If there is a point of the above type on a curve C,

then we have the equality;

the genus of C = (P“lé(q—l)
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From these results we have

a(R(d,e)) = [HRLR=AIZLy .. (3.9,

and we put a(R)=a(R(d,e)) in the following. From Proposition (3.1)

we have the following.

Lemma 3.4. When H(xo) is generated by two elements p and q,

R(d,e) is a Gorenstein ring if and only if eld(pq-p-q)-1.

Lemma 3.5. If R(d,e) 1is a complete intersection and emb(R(d,e))

i j {d(ip+jQ)}
= 4, then the element of the form f g’t e (1>0, j>0) can not

be a generator of R(d,e).

o j {d(1p+ q)}
Proof. If elp or el|lq , then it is obvious that e

is not a generator of R(d,e). So we assume that e|p and el|g. If
N (dlip+ja),
f e (i>0 , j>0) is a generator, then
d(q 1)p dp _ d(p-1)q dq
Hence
(a-1)(9Ry = (Alazbipy - (datdy  4p) = (49 + ar) -0 (3.3),

also (p—l){g%} = {g%} + a(R), and then p{g%} = q{g%}. If we put

{g%}= Qgég and {g%}= Qﬂéﬁ , then we easily get gs=pt, so pls

i

and ql|t. Then we have s pec and t = gc for the same positive

integer c. From (3.3), (q-1)(3R2RC) - d9%dC . 4(R), and so
¢(p-1)(g-1)~¢c = -1. This is a contradiction, because the left hand

side is non- negative. Q.E.D.
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Lemma 3.6. If R(d,e) is a complete intersection, then emb(R(d,e))

<5

Proof. By (ii) of Corollary 2.3, we can write as follows:

R(d,e) =~ C[Wy, -+ W,1/(F,Ry,+**.Ry)
where {+1 = emb(R(d,e)) and Ri is the relation associated with
the generator Wi for i=3,--+,4. From Proposition 3.2 and (3.2),
d(pg-p-q)-1 ¢ ¢
p4-p-9 = deg F + 2 deg Ry - > deg W,
© i=3 i=0

deg F + 1 + {Qg} . {g%} v (£-2) -+ (3.4).

The inequality deg F = {g%g} holds, then

(qfRdy -Gy, ((2By - 4By, (89 -y ey pp el (3L,

so that {+1 < 5. Q.E.D.

Theorem 3.7. (i) If the ring R(d,e) is a complete Intersection,
then emb(R(d,e))x 4.
(ii) emb(R(d,e)) = 83 ( i.e., a hypersurface ) if and only if one

of following three conditions holds.

(1ii-1) e = 1.
(ii-2) e = p and eldg+1.
(ii-3) e = q and eldp+1.

(iii) The ring R(d,e) is a complete intersection ring of

emb(R(d,e)) = 4 if and only only if one of following four conditions

holds.

(iii-1) e|p, el|dg+1l and p>e.
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(iii-2) elq, eldp+1l and g>e.
(iii-3) qle, eldp+1l, e|(d+1)q and g<e.

(iii-4) ple, eldg+1l, e|(d+1)p and p<e

Proof. (i) If el|p or e|q, then we can easily see that emb(R(d,e))
<4 by (3.4), so we may assume that el|lp and e|q. In the following we

assume that R(d,e) is a complete intersection and emb(R(d,e))=5.

Then we have R(d,e) =~ C[WO,-",W4]/(F,R3,R4) from (ii) of
Corollary 2.3. If deg F = {g%ﬂ} + 1, then emb(R(d,e))x4 from (3.4).
dp q, {929}

Hence we may also assume that deg F={~€g}, so that f3*t' e and

p, (429,

gt e can not be generators. Moreover from (3.4), we obtain the
equality

_(¢dpa, dpg dp,_ dp dg,_ dg e-1 _
(=4 B+ (- T o == 2 (3.8),

then q{g%} > {g%g} and p{g%} > {9%3}. Therefore we need two

a, (420, b, {429y
generators £t e and gt e ( 1l<a,b ; a<min(e,q-1); b<p) in
q, {929, p, {429,
order to express f*t" e and gt e respectively by the

generators. Let e=xa+u ( 0 £ u < a ), then fetdp=

dap dp
(fat{ e })l-(ft{ e})“, SO A({g%E}— Q%E ) o+ u({g%}— Q% ) = 0. Hence

4 =0 ( i.e, ale ) and elap  :---- (3.7),
because el|lp and (d,e)=1. Suppose b > e, them p > b > e and
dq
gftd9. (gt Rh e,

so e|lq . This is a contradiction, which implies

b<e. If we put e =£(b +n (0 £n<b ), then as in (3.7)
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n=0¢(i.e, ble ) and elbg -::-- (3.8).

dp _ . ¢d(a-1)p
On the other hand, (ft{ e})a 1. £ lt{ e } , SO (a—l){g%} =
{d(a;l)p} = dzp - {g%} + 1. From (8.7), we have
dp, _dp _ 1 .. ...
{ e} c a (3.9).
b-1 {d(b~1)q}
For the element g t e , we obtain
d dg _ 1 .....
{~E} Sl ~ (3.10),
from (3.8). Further from (3.6), we have
e-1 _ dpgq, _dpa , . , _ (1 1.y ...
p ( A p } e )y = 2 ( i ) (3.11).

Here the left hand side of the above 1s less than one. 0On the
contrary, the right hand side of the above is larger or equal to one.
This yields a contradiction.

(ii) Let emb(R(d,e))= 3, then the defining ideal J of R(d,e)
is generated by an element F. Suppose e < g, then fetdp =

dp
(ft{ e})e. So elp and e|dg+l by Lemma 3.4. Then deg F =
max(p{g%}} q{g%}) = p{g%}, so from (3.4) we have

(p-1)( {34y - 44y el o (3.12).
dg+1
e

Therefore if e = 1, then {g%} = and e = p by (3.12). So

if e < q, then e =1 or p. Next suppose e > q, then

_ _ d((g-1)p+(p-1)q) dp, __ dg, __
rd lgp lt{ e b (ft{ e})q 1-(gt{ e})p l, 1o
(p-1) ((8}- 9y v (-1 (- By 1 L (3.13).

Furthermore from (3.4) and (3.183),
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dq dp, , . d(pa-p-q)-1 dp dq
max ( p{ e}, af e} ) = = + 1 + { e} + e}
> p(dd) + g2y - el (3.14).
So if p{g%} > q{g%}, then q{g%} < dpg*l on the other hand, elp

by the assumption, then This is a contradiction.

dp dp+1
{ e} z =
Therefore if we assume that emb(R(d,e))= 3, then e < q. If we
assume that e = q, then e|dp+l by Lemma 3.4.

Conversely if we assume (ii-1) e = 1, then 1t is obvious that

R(d,1) is a hypersurface. Next we assume that (ii-2) e = p and

eldg+1l. If we put dg+l = fe (& € Z ), then

. 5 (d(ip+ja) . tej-] X
fngt{ e } (ftd)l-gjt{ e b (ftd)l'(gt{)j
for j =1,+++,p-1l=e-1 , and for any i. So, by Proposition 1.10 (i),
d dq+1

the ring R(d,e) is generated by three elements t, ft and gt e

For the case (ii-3) e=q and el|dp+l, we can prove as in (ii-2), and
so omit it.

(iii) We assume that R(d,e) is a complete intersection ring of

4By

emb(R(d,e))=4. Then R(d,e) has three bases WO =ft" e’ and
44y a (122} b, (489;

W2=gt e’ , and another generator W3=f t' e or gt e ( a,b>1 )

=t, Wl

from Lemma 3.5. From (ii) of Corollary 2.3 we have

R(d,e) =~ C[WO,Wl,Wz,Wg]/(F,R) '''' (3.15),

where F is an element of type (i) iIn (2.3) and R is an element of

type (ii) which is associated with W3. From (3.4) we may assume that
deg F = {Q%S} or {Q%g} + 1 e (3.18).

If e|p, then e|dq+l from Lemma 3.4, and e < p from (ii) of this

Theorem. Similarly if e|qg, then we have e|dp+l and e < q. So we may
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assume that e4p and efq 1in the following. First we consider the

a {Qég} e dp
case W3= f7t" e (a>1). If we write the element ft by
dap, dp, da
generators as fetd = (fat e })l-(ft{ e})J'(gt{ e})k , then

pe = (al+J)p + ka, and 1({32B}- 92 .50y 4B ), (ddy. dd )

Therefore

j=k=0 and elap -+ (3.17),

because elp, e|lqg and (d,e)=1. Further if we write the element

dg

dap ag
dq da _ *—“})i. ~(gt{ e})n, then

dp
(£2+ {75 {=ehm

(ft

get as follows : get

m=n-=o0 and ple +---- (3.18).

Here we put ap = el. for some positive integer L. If L > 1, then

dp
—%— <a and so /Pt - (rtf ¢?)®/P This induces {Q%}= gg and

e|lp. This yields a contradiction. Therefore

e

L=1 and a = - (3.19),
so thar /Pl (HSE=UEY (O Gerp -1 oy I
so el(d+1)p  «---- (3.20).

Here suppose that deg F = {*%g} in (3.18), then a(R) = {g%g}
_{Q%}_{Q%} from (3.4). Further (gt{g%})p_l= gp'lt{gigéllg}, so
p(fdy-(9d) - (949 - (Bya(r) = (2912 tren

929y - peday Ll (3.21).

From (3.4), {Q%Q}—{Qg} - a(R)+{9§}, and so from (3.2),(3.20),(3.21)

(dpg-dp-dg)-1 , (d+1)p _ (p-1)(dg+1)

o p A , Then

(p-1) (%)
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e|dg+1 .-+« (3.22).

1f deg F = {929}+1 in (3.16), then {dpqup}={dgq}—{g%}+l by (3.4).

As in (3.22), we have
{Qgﬂ} - p{g%} 1 e (3.23) .

From (3.4) and {g%} . (d+1l)p , we have e|dgq+l. Therefore we obtain

e
b, (909,
the condition of (iii-4). If we consider the case that g t' e

( b>1 ) is a generator, then we obtain the condition of (iii-3). The
proof 1s similar to the above case, so we omit it.
Now we consider the converse. For the cases (iii-1) and (iii-2),
we omit the proof, because it can be done as in the proof of (ii).
We consider the condition (iii-3) gqle, eldp+1, e|(d+1)qg and g<e.
Then e]|(q-1)(dp+1)-(d+1)q=d(pq-p-q)-1, so by Lemma 3.4, R(d,e) is
Gorenstein. Then from Serre's result ( i.e., if R is Gorenstein and
has the embedding codimension =2, then it is a complete
intersection.) we have to show that the emb(R(d,e))=4. In the
following we prove that R(d,e) is generated by four elements t,
a4y

dp d(ap+ba)
ft{ e}, gt{ and ge/qtd. We show that fagbt{ e } can be

written by these four elements. First we consider the case a<q.

If we put b = L~(—%—) + R ( OgR<—§—), then

{d(ap;bq)} - dL + {dqR+2ap} - 4L + {(d+l)qR—qR+édp+1)a—a}

(d+1)gR , (dp+l)a

+

aL » L4+1)aR | (dptl)a _ aReay _ g

e e e e
because qR+a < (R+1l)q < ~%—'q = e. Hence
d(ap+bq) dq dp
fagbt{ e ) = (ge/qtd)L~(gt{ e})R-(ft{ e})a,
because {Q%} = (d+i) and {Q%} = QR%_.
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Next we consider the case a:q. For the element F of C[f,g]

associated with F in (3.15), we can write 1t as follows:

I S a..flgd.

pi+qj<py
a b {d(ap+bq)}
Therefore if we put a = aq + vy ( 0<y<q), then gt e
.. d(ap+bq)
= ( —gp— > a..flgj)a-gbt{ e }. So this case ax2q 1is reduced

pi*qj2pq
to the above case a<q. The proof of the case (iii-4) is similar to

(1i1i-3), so we omit it. Q.E.D.

Remark 3.8. (i) When R(d,e) is a complete intersection whose
embedding dimension is four, the degree of the defining equation F
of type I in (3.15) is given by {g%g}. Because if R(d,e) belongs to

(iii-1) of the above theorem, then from (3.4)

deg F = d(pq—g—q)—l + {g%} + {Q%}

+ —— = =
e e e e

_ d(pg-p-q)-1 _ d dg+1 _ dpg {dpq}.
[S]

Also if R(d,e) belongs to (iii-3), then from (3.4)

_ d(pg-p-g)-1 dp+1 dg+q _ dpg+q _ ,dpg
deg F = e " e T e e = e i

In the same way, we can check the other two cases (iii-2) and (iii-4).
(ii). If we assume the condition (iii-3) in the above theorem, then
we easily see that e|(p-1)q. Furthermore if we assume (iii-4), then

we have e|(gq-1)p.

Remark 3.10. Let C be the curve of Example 1.9, which is defined
by the equation yp+ Xq+l=0, and T, the Weierstrass point of Example
1.9. When R(d,e) is a complete section, we can write the defining

equation as follows:
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emb(R(d,e))=3 (i.e., hypersurface cases )

5 * z% + z%pq: 0 ceee (1i-1),
P q dg+1_ _
Zy + 2126 + Zg =0 (1i-2),
q p dp+1_ .
Zl + 2220 + ZO 0 (1i-3),
(42, 49,
where ZO= t, Zl= ft" e and 22= gt e
enb(R(d,e)) =4
p q/e, ,dpa/e _ _ e
Zo + L3+ 2 =0 , 2023 z]
where Z,= t, Z,= pe(dp+l)/e.
1
aq p/e, ,dpg/e _ _ e
Zl + Z3 + ZO =0 , 2023 Zz
_ _ dp/e -
where ZO— t, Zl— ft , 22~
a (p-1)a/e (dpa+q)/e_
Zy + L,ylg * 2, =0 ,
where Z.= t, z.= ftldp*l)/e
0 1
P (g-1)p/e (dpq+p)/e_
Zl + 2123 + ZO = 0 ,
where ZO= t, Zl= ft(dp+p)/e’ Zo=

Example 3.11.
but not Gorenstein

e=5,

. Let us consider the case

then eld(pq-p-q)-1,

’

V4

Z

2

We give an example whose

Z

2

0

=0

Z .=

2

0

gtdq/e

gt(dq+1)/e

0

AR

z€/4d_

3

2

(iii-1),

dp

and 23= fet ,

and ZB= get

0

(i1i-2),

dq

(11i-3),

- geldaral/e ;g 23=ge/qtd,

VAR

3

28/P- ¢

1

gt(dq+l)/e

(iii-4)

and Z3=fe/ptd.

embedding dimension is 4 ,

p=5, =9,

d=7 and

so this ring is not Gorenstein from Lemma

3.4. We can easily see that the embedding dimension 1is equal to 4 and

the generator system is given by Z

_ 3.38
Zg= g7t .

o=t

Z

1

= ft ,

7

9"

gt

13 and

If we consider the curve and the Weierstrass point of

Example 1.8, then we have the following independent relations

23

Z.2 9

0 =0,

3~

Z

2
22

5"

Z

Z

9

071

+

Z

64

0
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+ ZSZ

3 172

+

Z63

0 Z
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§ 4. Poincare series of R(d,e).

Let C be a curve and x_ a point on C and let H(z ) N {1,2,---,2g}

= , con ce i.e., ¢. is the non-gap
{ ¢ 09, ,ng }, where ®,< 9,9 < 0y, (i.e N
value of X for any i ). The series PR(t)= S aktk is called the

k20

Poincare series of R, where ay dlmCRk— dim H (C, @([ ]I y). This

series is important in the theory of graded rings. In this section

we express the Poincare series P (t) by g, d, e, wl,*--.ng.

It 9%] > 2g-1, then ay = [ ] g+1 from the Riemann-Roch theorem of

curves ([7]1). Let us decompose the ring R into the sum of two

(=23

a —— —

modules : R = + R tk + ( + R tk), where « =<[d(2 1) l}. First we
k k e

k=0 k=o+1

compute the latter

Sath = 3 ((E-grn)tK

k=px+1 k=c+1
@ o g-1 . . .
-t 1y Tt e 33 (1e 4RI 1Ty
k=0 i=0 j=0
o+l
1-g)t
_ ( l%'?: . (X"‘l{ ( z itld)( 2 t‘]) + z tid)( Z[M]LJ)}
i=0 j=0 i=0 Jj=0
1-g)t®d d S
- Lot 7, ey °t . L g [elardellyed
(1-t)(1-t7) 1-t° j=0
1 o+l d d-1
 (1-g) ¥ t et e(a+j+1
T TTiot ’ 1 td{ Tt t 2 [‘~J'L‘l]tj} crrre (401).
—_— J:O
de
Next we compute the former. If we denote integers {-£} by s. and
i
Si~ Sj.1 by my for 1 = 1,---,g (so=0), then
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m, -1 s i
o - -
g aktk - £ 1(12 tj)t 1-1_ § it 1 l.(tt_ll)
k=0 i=1 j=0 i=1
S
g S. S, g g-1 s,
1 i i-1 gt 1 1
= == 2 i(t -t ) = 2= - —=— Yt T - (4.2).
t 1i=l t-1 t_li=0

From (4.1) and (4.2) we have the following formula.

Theorem 4.1. Under the above notations,

g-1 s. S
Po(t)= =—=—{ 5 t - gt B+ (1-g)t¥*1)
R 1-t iZo
ox+1 d-1 . . a+d+1
. t < E[e(ugj+l)]t3 N et e (4.3)
1-t j=0 (1-t)(1-t7)

Example 4.2. Let p=2, q=7, d=5 and e=4, then g=3, «=7, sl=3,

s,=5 and s.,=8. From (4.3),

2 3
1 3 5_.8 8 2 3 4 4t1®
PR(t) = ij{l+t +t=5t"} + 5{6+7t+8t +8tT+9t 7} + £
1-t (1-t) (1-t°)
(1+t2) (1+87) _ (1-t%) (1-t*%)

(1-1) (1-€2)  (1-t) (1-t3) (1-t2) (1-t°

)
In this case, the singularity is a quasi-homogeneous complete
intersection ( see Theorem 3.7 (iii-4) ), so we can also obtain the

above rational function by using the other formula ( see [3] p.57 ).

Example 4.3. Let us consider the case : p=4, g=5, d=7 and e=4.
By the definition we have that g=6, «=20, sl=7, sz=9, s3=l4, s4=16,

55=18 and 56=21' Then, by using the above formula, we have

36
1 {1419+ t184427) - (1~t°7)

(1-t) (1-t") (1-t) (1-t7) (1-t7)

Pp(t)

It is easy to check that the above rational function PR(t) satisfies
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the Stanley's condition for R to be Gorenstein ({12]). Then this

ring is Gorenstein. Of course we can also check it by Proposition

3.4.
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