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ABSTRACT

This thesis focuss on the following estimation problems from the decision-theoretic point

of view:

MATRIX OF NORMAL MEAN
Let X be an m X p matrix normally distributed with matrix of mean B and a covariance
matrix I,, ® 2, where ¥ is a p X p unknown positive definite matrix. We wish to estimate

B under the loss function

tr 2~Y(B — B)(B - B).

Here we denote the transpose of the matrix A by A’. Formulae are obtained for an unbiased
estimate of the risk (the expected loss function ) of certain forms of estimate of the mean
matrix B. From these, improved estimators which beat the commonly used estimator X

are proposed.

EIGENVALUES IN THE MULTIVARIATE F-DISTRIBUTION
Let Uyx, have the multivariate F-distribution with a positive definite p X p matrix A
of scale parameters and degrees of freedom k; and k3. We wish to estimate the eigenvalues

of the scale matrix A under the loss functions
Li(A,A) = tr (A~'A) — logdet (A™*A) — p,
Ly(A,A) = tr(A™*A - L)%

By recursive use of the F-identity (integration by parts formula for this distribution),

improved estimators which beat the best scalar multiple of U are proposed with respect to
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the loss function L; or Ly. For the case where the scale parameter A is 2 X 2, orthogonally

invariant minimax estimators are given with respect to the loss function L;.
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CHAPTER 1

INTRODUCTION

Since the discovery of so-called Stein effect, the multiparameter estimation which occurs
rather naturally in statistical decision-theoretic problems has been studied in many liter-
atures. More recently the estimation problem in which procedures revolve mainly around
the eigenstructures of random and parameter matrices has been received a lot of attention.
There is a growing literature relating to the eigenvalues estimation: A useful review paper
by Muirhead[41] gives many references. This thesis is concerned with possible decision

theoretic approach to the following problems:

1. Let X be an m X p matrix normally distributed with matrix of mean B and a
covariance matrix I, @ & and let S be a p x p Wishart matrix with n degrees of
freedom and mean n¥. We wish to estimate the mean matrix B.

2. Let U be a p x p random matrix, having the multivariate F-distribution with
a scale matrix A and degrees of freedom k; and k. We wish to estimate the

eigenvalues of A.



The usual or classical estimator for these problems, i.e., the maximum likelihood
estimator or the unbiased estimator, is fully equivariant. It means that, under any groups
of transformations, it transforms in the same way as its estimand. Equivariance is desirable
but not compelling property as shown in Stein[48] that, in estimating a p-variate normal
mean vector with identity covariance matrix, the sample mean is inadmissible in terms
of sum of the squared-error loss if p > 3. Moreover, such a classical estimate ignores
information about the ordered eigenvalues of the random and parameter matrices in the
multivariate situation. All these arguments suggest that a systematic treatment of above

problems can probably give superior alternatives to the commonly used estimator.

1.1. DEFINITION

The notation A4 : p X ¢ is a matrix of p rows and ¢ columns. The transpose of 4 is denoted
by A'. When p = ¢, then det A or |4] is the determinant of the square matrix A. The
trace of A is denoted by tr A, that is, the sum of diagonal elements of square matrix A.
D = diag(dy,ds,...,dp) is a diagonal matrix with diagonal elements d;,ds,---,dp. The
expected value of a random variable X is denoted by E X.

Next let us recall some of terminology and definitions involved in decision-theoretic
estimation.

Let X denote a random variable whose distribution depends on an unknown parameter
6. Here X can be a vector or matrix, as can 8. Let 8(X) denote an estimate of . We shall
denote its estimate of parameter by "hat” over parameter. A loss function L(6,6(X))is a
non-negative function of 8 and (X). The risk function R(6,6(X)) is the expectation of
this loss function with respect to the distribution of X when 8 represents the true value of

the parameter. An estimate 6;(X) is said to be better than or beat estimate 6,(X) if
R(6,6:(X)) < R(6,6,(X)) for Ve Q,
where €2 is the parameter space of the distribution of X, and

R(#8, 9“1(2’()4_) < R(8,62(X)) for at least one 4.
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An estimate is said to be admissible if there exists no estimate which beats it. If there
is an estimate which beats it , it is called sradmisstble. An estimate 63(X) is said to be

minsmaz if there is no other estimate whose risk function has smaller supremum, i.e.,

sup R(6,0o(X)) = inf supR(,6(X)),
fEQ f(x)ecsen

where C denotes the class of estimators of 6.
To introduce invariance into decision problem, let G be a topological group which acts
on X, €2, and A where X is a sample space and A is an action space. Let P = {P4| 0 € Q}

be a family of distribution of X. The family P is said to be inveriant under G if
gFPy =Py for geG,0€0.
The loss function is said to be snvariant under G if
L(g6,90) = L(6,8) for ge G,0ecR,8¢cA.

An estimation problem is said to be snvariant under G if the family of distributions and
the loss function are invariant.

An estimator 6p(X) is said to be equiveriant under G if
o(gX) =g0s(X) for g€ G, XeX.

Eaton{13] provides a good introduction to invariant decision problem and some techniques

for finding "good” invariant decision rules.



1.2. THE GENERAL METHOD OF IMPROVING UPON USUAL

ESTIMATOR

As seen in Stein[48], a fully equivariant estimator such as the maximum likelihood estimator
or the unbiased estimator can be improved by simply requiring less invariance. However,
once we look outside the class of fully equivariant estimators, the expression of its risk
function becomes intractable in the multivariate situation. To overcome this, we shall
employ the following method, which was first introduced by Stein[48]. The following
description of this method comes from Loh[36].

1. Narrow the class of the estimators, for example, using equivariance in the

problem and work out the form of the estimators.

2. Compute the unbiased estimate of the risk of the estimators under considera-

tion using the integration by parts formula.

3. Determine promising alternative estirnators from the unbiased estimate of risk.
By reducing the size of contenders, the problem reduces the difficulty of the search for a
superior alternative to the commonly used estimator. Furthermore, equivariance is im-
posed on pooling across rows and columns, which implies that the resulting unbiased risk
estimate depends only on the maximum invariant statistics if the estimation problem con-
sidered is invariant. The final step is rather difficult to deal with, since it has not been
established to obtain the widely applicable way of deriving promising estimators (which
has frequentist risk uniformly smaller than the classical estimator )} from unbiased risk
estimate. Since the introduction of this approach, numerous researchers have applied this
technique to the problems in statistical decision theory. The literature includes Berger[2],
Dey and Srinivasan[11], Efron and Morris[15], Haff[19, 22, 23], Loh[35, 36, 37], Muirhead

and Verathworn[42], and Perron[46]. See Berger[3] for an extensive reference.



1.3. SUMMARY OF RESULTS

In Chapter 2, the problem of estimating matrix of normal mean is considered relative to the
invariant loss function where the covariance matrix is unknown. Certain form of invariant
estimators is introduced. Then the unbiased estimate of the risk is obtained, which depends
on the eigenvalues of the usual F-matrix X'XS~1. It facilitates an extensive search for
superior alternatives to the commonly used estimator X. New classes of invariant minimax
estimators are proposed, which are multivariate extensions of the estimators of James and
Stein[24], Baranchik[1], and Lin and Tsai[35]. These results also extend the estimators
of mean matrix of Stein[48] and Zheng[54] for the case in which the covariance matrix is
known. Furthermore, following an approach by Haff[23], an alternative estimator as the
solution of the Euler-Lagrange system of partial differential equations is derived.

Chapter 3 is devoted to the estimation of the eigenvalues in the multivariate F-
distribution. First, using the F-identity we derive the second order moments of this
distribution, which is useful to the statistical inference. For the Stein’s loss function,
we obtain the improved estimators (Haff-type and Perron-type ) which beat the unbiased
estimator. Furthermore, we derive the orthogonally invariant minimax estimators when
the scale matrix is 2 x 2. For the squared loss function, we give the Haff-type improved

estimators which beat the best scalar multiple estimator.



CHAPTER 2

ESTIMATING MATRIX OF NORMAL MEAN

Assume that
X:mxXp~N(B, I, ®%),
S: pXpe Wy(E,n), (2.1)
X and S are independent,

B and ¥ are unknown.
Based on (X, S) we consider the problem of estimating B with respect to the loss function
L((B,%),B) = tr="Y(B - B)'(B - B). (2.2)
The risk function corresponding to this loss function is
R((B,%),B) = Ep z[L((B, ), B)].

Several authors have considered the minimaxity under this risk function. Baranchik|1]

obtained a class of minimax estimators when m > 3 and p = 1 and Straderman[50]
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extended Baranchik’s class of minimax estimators, while Lin and Tsai[35] treated the case
where m = 1 and p > 3, and obtained a class of minimax estimators similar to that of
Baranchik. They assume that variance or covariance matrix is unknown, but it is noted
that their method to prove minimaxity is a direct evaluation of the risk function. Our
interest is how these theoretical results concerning the parameter of univariate normal law
may be extended to the multivariate one.

The case © = I, is considered by Stein[48] where our basic approach described in
Section 1.2 was introduced. Using the result of Stein, Zheng[54] extended the results of
Baranchik to the multivariate one. Later, the case where ¥ is unknown and p < m is
considered by Zidek[55] where the underlying method, a multivariate version of that of
James and Stein[24] , uses zonal polynomials expansions for the distributions of certain
noncentral statistics, while Efron and Morris[15] proposed minimax estimator, called Efron-
Morris type estimator, from an empirical Bayes argument. More recently, Bilodeau and
Kariya[5)] treated the case where m > p and proposed several types of minimax estimators
by using the unbiased risk estimate.

The objective of this chapter is to demonstrate a systematic search for superior al-
ternatives to the commonly used estimator X by following the basic approach described
in Section 1.2. In Section 2.1, we provide the basic identities, called Normal-identity and
Wishart-identity, and record some calculus on eigenstructures to help in computation of the
unbiased risk estimate. In Section 2.2, a certain form of equivariant estimators under the
group of natural transformations is introduced so that the representation of the unbiased
risk estimate could be obtained in terms of the eigenvalues of the usual F-matrix X' X5~
In Section 2.3, such calculation is undertaken. Following an approach by Haff[23] , an
alternative estimator as the solution of the Euler-Lagrange system of partial differential
equations is obtained. Furthermore, the new classes of minimax estimators are proposed.
In Section 2.5, other forms of estimators are considered for the case where m > p+ 1,

which beat the commonly used estimator X.



2.1. PRELIMINARIES

In this section we shall state basic identities and some useful calculus lemmas on eigen-
structures. For this end, we introduce additional notation.

Let Vx be m X p differential operator whose (7, 7) element is given by (9/0X,,) for
X = (X,;) and let D, be a p x p differential operator whose (z,7) element is given by
(1/2)(1 + 6i;)(8/0Si;) for a Kronecker’s delta é;; and S = (S;;). We define Vi T(X) =
(3°%_, Otx;/0Xix) as a formal product followed by differentiation at the component level
for a matrix T(X) = (t;;), where t,, is a differentiable function from R™*? to R, and
Vyet(X) = (0t(X)/0X,;) for a scalar function ¢(X ). The operation of D, on a matrix or a

scalar valued function is defined in the same way of that of V,.

LEMMA 2.1.1 (Normal-identity). Lety: pxX1 ~ Np(£,£) and f: RP — RP be
differentiable with E|0f;/Oy,| < oo (i, =1,...,p), wherey = (y,) and f = (f;). Then

E[f(y)y - €)' =E[0f(y)/0y]Z,

where 0f(y)/0y = (0fi(y)/0y, ).

This lemma is taken from Bilodeau and Kariya[5] and hence the proof is omitted.
Essentially the same lemma can be seen in Loh[36].

Let Q = @Q(S) be a p X p matrix-valued function whose (i, j) elements ¢,; are differ-
entiable with E|g¢;| < oo and E [0¢,;/0S,,| < co. The following lemma and its proof can
be seen in Haff[17] and Loh[36].

LEMMA 2.1.2 (Wishart-identity). Let S be a p X p Wiskart matriz with n degrees of

freedom and mean nX. Then

E(trQE Y =2E[tr D,Q] + (n—p-1E[tr S7'Q]

Combining these identities gives the next lemma, which is taken from Bilodeau and

Kariya[5].



LEMMA 2.1.3. Assumethat G(X,S) 15 an m X p matriz whose elements are absolutely

continuous functions of X and S such that
EG?J- < oo, E l@G.’j/@Xﬁ:l < o0, and E(@G,—,-/@S;.;)z < oo
and that the condstions in Theorem 2.1 (Haff[18]) are satisfied. Then we get

R((B,%), X + G(X,S)) =pm + 2E[ tr V.G(X, S)] + 2E[ tr D,G' (X, S)G(X, S)]
+(n—p-1DE[trG'(X,S)G(X,S)S" 1.

Next we record two lemmas which state the action of the differential operator. See

Haff[18, 21] for the detail of the proofs.

LEMMA 2.1.4. For any symmetric matriz S = (Sk:), the derivatives of S™1 are given

by
85105k = ——S"l(ewg + 6;62)5—1/(1 + 6x1),

where ¢; denotes the kth unit column vector and 63! is a Kronecker’s delia.

LEMMA 2.1.5. Let Q and T be matriz funciions of S. Assuming all relevant products

and dertvaiives ezsst, we have

D;QT = (DsQ)T + (Q'D;)'T.

REMARK 2.1.1. The familiar law for the transposing products is not available in

above lemma. The product Q'D. is computed, then the transpose is to be taken.

LEMMA 2.1.6. Assume that m > p and thal Q is a p X p matriz-valued funciion of
W = (W,,) = X'X and S. Furthermore, let D,, = (d) where d'} = (1/2)(1+6,;)(8/0W;;)

for a Kronecker’s della 6,;. Assuming that the derivaiives exzist, we have

(1) trVo XQ=mtrQ+ tr X'V, Q’,
(i1) VxQ@=2XD,Q,
(i) tr X'V SQ = 2tr SD,WQ' — (p+1) tr SQ.
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PRrROOF. (i) Let @ = (gi;). The left hand side can be expressed as

Ogx sk
Z Z aX -ngksqkakl — Z Z {5k1k3Qk3k; "l"ths BXZ;J}

ki,ks=1%k,=1 k1,k3=1k3=1
P
OQkk
=m > SkkyGhoks + Z E Kkaks 5 -
ki,ks=1 ki1,ks=1ky=1 k1

=mtrQ+ tr X'V Q'.

(i1) Using the symmetry of W and the chain rule, the (2, j) element of V% Q can be expressed

as
»
Z&X dkas = Z > 3?%1 g Vhks
. o e (2.3)
_ Z‘”: 1+ 6kk, Oqiy; O W
bt 2 OWha, 0Xiy,
From W = X' X,
m
E—XQ'ZWMS ) k.,z=:1 E—J?ik—jxk*hxk*k“
(2.4)

= Z {6ik§6k1k3Xk4ks +6ik&~6k1k3‘Xk+k2}
ke=1

= Ok, kg Xiky + Okyks Xik, -

Putting (2.4) into (2.3) and using symmetry of D,, give that

?
1+5h}=3 aq}ni {
Z 57‘11'2Xi743 +6k1k3X1'kg}
By, ko, ky=1 2 OWhk,k,
P
14 6k,%, Oqx
=9 Z Z 1k1 17 Xiky
k1=1ky=1 2 Wi, 1,
= 2(X Dy, Q)s;.

(iii) The left hand-side can be expressed as

4 8
E ZX"*‘S"”‘*ax qx,h

ki,ks ke=1ky=1

10



P P

m
14 6kcke OQror F;)
= Z Z Xkoky Sksky Z 2 = 815{{/* 1 ox Wi ks
ki ks, ke=1ko=1 ks, ks =1 ksks OXkaks

p

m
14 6 0
= z Z X}:zh Skskq- 5 5 ke 6;;1»*1 (‘&skstzis + 5*3}¢5-ng}:5)
k1,ks, ke, kg kg =1 ka=1 kskg

P
1+ Ok 0
=2 Z S"ShWklkE 2 - oW Gk k;
kiks ke ks =1 ksks

=2t S(WD,,)'Q',

where the second equality follows from (2.4) and the last equality follows from symmetry
of W and D,,. Using Lemma 2.1.5 and noting that D, W = ((p +1)/2)I,, we get

p+1

D,WQ =2=¢'+ (WD, Q"

Combining these two equalities gives the desired result.

Now we record the calculus lemmas on eigenstructures for the case when m > p. For
notation, let A = (ai,) be a p X p nonsingular matrix such that A'SA = [, A/X'XA =
diag (F), F = (f1, -, fp),and fi > fz > --- > f, are the ordered eigenvalues of X' X 5~!.
Furthermore, recall that D, = (d.’ ) with d’ = (1/2)(1 + 6;;)(8/8S:;) and § = (S;). The

following lemma and its proof are obtained from Loh[36] by minor modification.

LEMMA 2.1.7. Assume that m > p. With A = (a,;) and A™! = (a"), we have

) k!
(1) ds fi = = anax fy,
. ko1 1 /s :
(11) ds aV’ 2—2-0“’(1*,'&3, + = Ea:'; (aha&; + ag,a;”',) f" )
2 s ft" - ft
(iii) d% fo =arag.,
) . 1 " 1
(iv) diya? =5y " a' (anaza +aziah') -
24 fi— fu

PROOF. On differentiating S = A’ *A~! and W = A'~ " diag (F)A~!, we have

dS =A""HdA™ 1)+ (dA'"HA™?

and
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dW =A'"" diag (F)(dA™Y) + (dA' ) diag (F)A™! + A4’ " diag (dF)A™ L.
Multiplying these equations by A' on the left and by A on the right leads to

A'dSA =(dA™1)A + A'(dA'™) (2.5)
and

AldW A = diag (F)(dA™ V) A + A'(dA'™ ') diag (F) + diag (dF). (2.6)

I For obtaining the derivatives with respect to S;;, we may assume that dW = 0. From

(2.5) and (2.6), we can see that
diag (dF) = (dA™1)A diag (F) — diag(F)(dA™1)A — A'(dS)A diag (F). (2.7)
Then the (i,7) element of (2.7) becomes

dfi = — Z a;i(dS)jxaxi fi-

k.j

For i # j, the (1,7) element of (2.7) provides
[(dA™1)AL; f; — fil(dA™h)AL; - [A'(dS)Ai; f; = O,
since [diag (dF));; = 0. This reduces to

[(dA_l)A].'J‘ = };—%[A'(ClS)A]Q. (2.8)

Furthermore, from (2.5), we can get
(dA™1) 4l = 5[4'(dS) A (29)

Combining (2.8) and (2.9) leads to

P

(d4™1); = [(dA~") AJiwa'™

ti=1
1o t5 ! PR fir
ZE[A (dS)A]na + %{;[A (dS)A]"'a fi’ _ fi

:Z{'l‘au(dS)kzaz;a‘f+Eaxe(d5)k:azezaf'5 fe }
L2 i1 fu = fi

12



Noting that

1 0 1
(dS)kg(—z—(l +5kl!/)85k/zi) = -2-(5“15gy +5kg/5gk/),

we can conclude that
ds a- = §CL aksay + '2‘ HZ#Q (akra‘;'!’ +altakt')m-
IT For obtaining the derivatives with respect ot W;;, we may assume that dS = 0. Similarly

we get

diag (dF) = (dA™!)A diag (F) — diag(F)(dA™1)A + A'(dW)A. (2.10)

Then (¢,1) element of (2.10) becomes

df; = Z aji(dW);k ax;- (2.11)

3,k

For 7 # j, the (7, ) element of (2.10) provides that
[(dA™1)ALi; f; — fil(dA™1)AL; + [A(dW)Ali; =0,

which reduces to

[(dADA]; = 7 i 7 [A'(dW)A];.

From (2.5) and dS = 0 , we can see [(dA~!)A)i; = 0. Hence we can get

(dA™1); = [(dA™")ALiwa™
i/

= Zz{ake(dw)“a“'aw fi —1 fir }

LT

Thus we can conclude

d{‘,}a" = —2— Z a'/J (ak,‘a;,': + a;,'agu) T
T f‘l - ft’
which completes the proof.

The first part of the following lemma is also taken from Loh[36] by the minor modifi-

cation.
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LEMMA 2.1.8. Using the notation as sn Lemma 2.1.7, assume that

(F) = diag (e1(F), p2(F),...,0p(F))

is differentiable on {fy > fo > --- > fp}. Then we have

P

() tr DA p(F)A™? ZZ{W’* — fror =) fugr = frr },
k=1 5r R f

and

(i) D, Al p(F)A™ —Z{W pyo o],

Ik
where prx = Opx (F)/0fx, k=1,2,...,p.

PROOF. (i) The first part of this lemma is taken from Loh[36].

tr D, A" oA~ Zdua’”go;,a
,]l
. . 5
=S {mdt e sl o 3 2 g
.’j’k

...Z{%W:Clhd a*! Z 8 k’a"%d'J }

1,1,k

The last equality holds since the symmetry of D,. Now applying Lemma 2.1.7 gives that
trDsA'_l‘PA-l = Z [Soi ak* {ak aik a5k + Z a J(alkajl’ + ajx au’) f }
— Jk

4,3,k t‘#k
kt k) Pk

- g a a"/a“;f, ]
m Ofi

“Z{"’k R Dbl ?99;:}

£k

‘“Z{Wk fro — ), L fk f',%l }

1>k

The last equality holds since

Z firpr E Jiror — fror + fren

st fi—f by fi—fi
-V - 3 2B 3 A
’>k t1<k
=(p—1)pr — ), ——— f" f"(’o' :
>k Ch-f

14



(i1) Similarly we have

D, A" o(F Zd”a oratt
’Jl
_Z{an;ak'dﬁvak’ +Z keghs Z(Jfk & f"}.
0,5,k '

Now using Lemma 2.1.7 leads to

D, A (FAt =Y [‘Pka'“ D @ (@rayy + ajan) T Zaha“a"/a" g{;k]
k= J! v

1,0,k ES

< Pk }
d Pk ——«w}
)‘Z__::l{ kr ‘g fi ”’fi’

which completes the proof.

Next we state calculus lemmas on eigenstructures for the case m < p. For this end,

let £ = (F,) = X57'X" and D, = (d) with () = (1/2)(1 + 6,,)(8/0F},).

LEMMA 2.1.9. Assume that m < p. Let Q and T be matriz functions of F. Assuming

all relevant products and derivatives exist as needed, we have

(i) V,Q=25"1'X'D,Q,

(i1) trViQX =ptrQ + tr XVLQ,
(1) D, QT = (D, Q)T'+{Q' D, }T,
(iv) tr(Q'D,)'T = trQ'D,T.

PrOOF. (i) The (2, j) element of V. @ is equal to

S—\ Z 5‘]311 . Fyysy — Emj 1+ 6544 ) BE(SU’ .3F$753 (2.12)
1= 1’2<’3 8F3“3 aX’“ $3,93,85=1 2 OF;,s, 90X,

where Q = (g,,). From F = X$~!'X' and chain rule,

B.F; - 154 15¢ ‘
aX:I: = E {631925 X&!@Q +551335 ‘Yyisi-} (2‘13)

’Qv—-
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where S~ = (§%). Putting (2.13) into (2.12) and using the symmetry of F, we get the

desired result.
(ii) From Lemma 2.1.5, we get
trV, QX = tr(Q'V)' X + tr(VLQ)X.

Using that tr(AB)'C = tr ABC' for matrices A, B, and C and noting that V4 X' = pI,.,
we can see that tr(Q'Vy)'X = p tr @, which completes the proof.

(i11) See Haff[20].

(iv) The proof follows from the straightforward calculation.

Recall that F' = (fy,...,fm) and f1 > fa > --- > f,, are the ordered eigenvalues of
F, or equivalently XS-1X"'.
The following lemma is taken from Stein[48] and Haff[22].

LEMMA 2.1.10. Assume that m < p. Let R = (R, Ry, ..., R, ), where Ry is the nor-
malized column eigenvector corresponding to fi, and let o(F') = diag(p1(F),...,om(F))
where o (F)(k = 1,...,m) is a function from F to [0,+0c0). Assuming that all relevant

derivatives exist, we have

(1) D, fx = Ry Ry,

(i) D.Ri = f{R, fi=(1/2) ) 1/(fr — fi),
and i

(i) D,[Ro(F)R'] = RpD(F)R,

where KD(F) = diag (KP(F), ..., o0 (F)) and

,k=1,...,m.

Wy Lo (F) —en(F) | O (F)
D Dy ey S T

PROOF. Taking the differential of F = Rdiag(F)R' we obtain

dF = (dR)diag (F)R' + Rdiag(F)(dR)' + Rdiag(dF)R'.

16



Multiplying on the left by R' and on the right by R, we have

R'(dF)R = (R'dR)diag (F) + diag(F)(R'dR)' + diag(dF).

But, taking the differential of R'R = I, we have
(dR)YR+ R'(dR)=0
This means that R'dR is antisymmetric:
(R'dR) + R'dR = 0.
Reverting to coordinates, we obtain from (2.14) and (2.15),
(R'dR)ix = 0,

1

fi—f
dfy = [R’(dF)R]“

(R'dR);: = [R'(dF)R)z; for k # I,

From above equations we may find that

(dR)x: = (RR'dR)x: = Z Ryis

1 =
R'(dF)R)::,
2T f;’“fi’[ ( ) ] )

which gives that

d; Re: = % > f}i"f (R Ry + Ry Rur).
Also we can see that
d’ fi = R Rys.
Hence (1) is obtained from (2.17).
(11) Using (2.16) we can see that the mth entry of D, R; is given by

A "Rak = 5 30 (R Rk + R B

o t’;&i‘

[Z fiu = fo ]Rm“

i;&k
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which completes the proof of (ii).
(iii) The (k,1) element of the matrix D, RpR' becomes

ka ka k ka
Zbd,, Ry Ry = Z%R:bd, R + Z%Rabd,asz + ZRabR!bdF ©b-
a, a,b a,b a,b

Denote these successive terms by A, B, and C respectively. From (2.18) we can see that

R;
1/2)2% bRkb%:bfb =

From (2.16) we can see that

1/2)ZZR}H’R" f/

b /b

“(I/Z)ZERIH'RH f1 .

t! bk
Exchanging b with i/, we may get that

—(1/2) ZRHR&Z]C};%J[

HE)

Furthermore,

C= ZR,,va Z 69””

Oy
= Z RabR;’bkaRam__
a,b,m afm
1%,

-—ERkbR’b i

In summary, it is readily seen that A + B + C is equal to the (k,1) element of Re(DR!,
which completes the proof of (iii).

REMARK 2.1.2. If ¢(F) is smooth enough, D?[Rp(F)R'] can be obtained by recur-
sion of (iii) of Lemma 2.1.10. We shall use notation D [Rp(F)R'] = R (F)R' where

P(F) = diag (¢ (F),. .., 0% (F))-

18



2.2. DERIVING THE CLASS OF ESTIMATORS

First let us recall the results by Stein[48] concerning the problem of estimating matrix of

mean of normal populations with identity covariance matrix. Assume that
X:mxp ~ N(B,In®IL) (m>p+1), (2.19)

and let the loss be tr (é - B )’(é — B). He introduced the estimators of the form

B(X)=X + %v (Y, (2.20)

where Y = (y1,...,¥p), R(Y) is a scalar valued function from RP or R™ to [0,00) as
needed, y; > -+ > y, are the ordered eigenvalues of X'X, and Veh(Y)= (OK(Y)/0X:;)
for X = (X;;). Then using the Normal identity and calculus on eigenstructure the unbiased
estimate of the risk of these estimators is obtained in terms of the eigenvalues of X'X and
the first and second derivatives of A(Y) with respect to Y. Next consider transformations
X — XC for a p X p nonsingular matrix C. Then it is readily seen from Lemma 1.1 in

Kariya and Sinha[25] that the model (2.19) is transformed into
X ~ N(BC,I.®(C'C))
and the estimator of the form (2.20) is changed into

BC

Il

RC+ZVzh(Y)-C

1 ~
-+ Evih(y) .C'C

il
b

where V; = (8/8X ;) for X = (Xi;) = XC, ¥ = (fi1,-..,§5), and §u > --- > § > 0 are
the ordered eigenvalues of X' X(C'C)~!. The last equality above holds since V3 = V zC'.
Now let us return to the original model (2.1). If ¥ = C'C is unknown and the estimate

of ¥, that is S, is available, it is natural to consider the estimator of the form
~ 1
B(X,S) =X+ —Q—Vxh(F)-.S', (2.21)

where F' = (f1,..., fmin(m,p)) and f1 > - -+ > fruin(m,p) > 0 are the ordered eigenvalues of
X'X S~ It is readily checked that these are invariant under the group of transformations

(X,S)— (0XC,C'SC),

19



where O is an m X m orthogonal matrix and C is a p X p nonsingular matrix.
The following representation of the second term on the right hand side of (2.21) gives

better understanding of our estimators. For m > p, (2.21) can be rewritten as
B(X,S) = X[I, + AH(F)A™Y, (2.22)

where H(F) = diag (h1(F), ha(F), ..., he(F)), hx(F) = Oh(F)/0fx, k = 1,2,...,p, A is
a p X p nonsingular matrix such that A'SA = Ip and diag(F) = A'X'X A. This can be

seen from the following argument. First use (ii) of Lemma 2.1.6, then we have
-;-Vxh(F) = XD, h(F).

From ordinary chain rule and (iii) of Lemma 2.1.7, it is seen that the (i,7) element of

D, h(F) can be rewritten as

?
dih(F) =Y hedy fi

k=1

»
= hraia,

k=1
from which it follows that D, h(F) = AH(F)A'. Using the fact A'SA = I,, we can
conclude that
%Vx h(F)S = X AH(F)A™".
For m < p, we have, from (i) of Lemma 2.1.9 and noting that ~(Y") is a scalar, that

%Vxh(F) = D h(F)X S,

Using ordinary chain rule and (i) of Lemma 2.1.10, we can see that
D h(F)=RH(F)R'

From these, we can get that

-12—vx h(F)S = RH(F)R'X.
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Finally it follows that , for m < p, (2.21) can be expressed as
B(X,8) = [I, + RH(F)R'X, (2.23)

where H(F) = diag(hi(F), ..., hm(F)) and diag(F) = R'XS"'X'R with an m x m
orthogonal matrix R.
It is worth noting that (2.21) becomes

X + (X' X) 1S + oI,/ tr (X' X)S™1, form>p+1;

B 5)= { [Im + e (XSTIX) T+ o/ tr (X' X)STHX for p>m+1,

if we put A(F) = c; log([ i fx)+c21log(>; fr). This shows that the estimators of the form
(2.21) include the Efron-Morris type estimators.

For the case when m > p+ 1, we can consider different forms of estimators from that
given by (2.21).

Recall that W = X'X and let W = OYO' in which OO’ = 0'0 = I, and ¥ =
diag (y1,....yp) with y3 > - > y',, so that yp is the k-th largest eigenvalues of W. We

introduce the forms of estimators

S 1 , |
B(X,S)=X [Ip + ey OT(Y)O] (2.24)
and

B(X,8)=X[I, + OT(Y)0'S], (2.25)

where T(Y') = diag (t1(Y),...,t,(Y)) and t:(Y"), k = 1,...,p, is an absolutely continuous
function of Y to [0,00). The first one is a multivariate version of Stein-type estimator con-
sidered by Bilodeau and Kariya[5] and the second one includes Efron-Morris type estimator

given by Bilodeau and Kariyal3].



2.3. UNBIASED ESTIMATE OF RISK

In this section we shall compute the unbiased estimate of the risk of an almost arbitrary
equivariant estimator given by (2.21). First we start with a notation.

Let

P

hy — fih:
T(n,m,p;h) = Z{Z(m —p+ Dhx + 4fihas +4Z-f—k7£—_—_—%—4
k=1 >k k :
Zhi — fAn?
+(n+p—3)fihf — 4fhai b -—22'&“}%—_*]%"‘—},

>k
where hy = Oh(F)/0fx and hxx = 8%h(F)/0f2, k=1,2,...,p.

Now we have the following
THEOREM 2.3.1. Assume that h(F') satisfies the conditions
Ehf < oo, E|Oh /8X¢j[ < oo, and E(ahk/as.-,-)z < oo,

as well as the regularsty conditions of Theorem 2.1 in Haff [18]. Then the unbiased estimate
of the risk of the estimator of the form (2.21) is given by

(i) R((B, %), B) = pm + T(n,m, p; h) for m > p,
and
(ii) R((B.,X),B) = pm + T(n + m — p,p,m; h) for p>m.

ProoF. (i) From Lemma 2.1.3, the unbiased risk estimate for (2.21), equivalently

(2.22), can be written as

2tr Vy XAH(F)A ' +2tr D A" diag (F)H?*(F)A™ 4+ (n—p—1) tr diag (F)H*(F)+pm,

(2.26)

where D, = (d;j) is a p x p differential operator whose element is given by (1/2)(1 +

6;)0/0S;; for S = (S;;) and Kronecker’s delta 6;;. We shall compute (2.26) term by term.

Using (i) of Lemma 2.1.6 and noting that V. X = m1I,, it can be seen that the first term
of (2.26) yields

2m tr H(F) + 2 tt X'Vx (AH(F)A™1Y. (2.27)
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Furthermore, from (ii) of Lemma 2.1.6, we get that

tr X'Vx (AH(F)A™'Y =2 tt WD, (AH(F)A™!)
=2 tr D, WAH(F)A™! - (p+ 1) tr H(F), (228)
where D, = (d2) and d¥ = (1/2)(1 + 6;;)0/0w;; for W = (wi;) and a Kronecker’s delta
8i;. The last equality of (2.28) holds since tr D, Q1Q2 = tr(Q2D,Q: + Q}D,, Q) for
p X p matrices Q1 and Q2 and D, W = ((p + 1)/2)I,. Combining (2.27) with (2.28) and
noting that W = A'""! diag (F)A™! lead to

2tr VY XAH(F)A™ =2(m ~p - 1) tr H(F) + 4 tr D, A'"* diag (F)H(F)A™'. (2.29)

Applying (ii) of Lemma 2.1.8 to the second term of (2.29) gives

»

1ol 1 - frhe = fil
tr D,, A’ diag (F)H(F)A lzg{ﬂhu + hy +§—’E—J~,—:—:~_-—f———} (2.30)

and similarly we can see that the second term of (2.26) provides

P

tr D, A" diag (F)H*(F)A™! = Z{“fohk hix +(p— 1)fehf = Y
I>k

k=1

fehi - fzzh?}
fi — f '
(2.31)

From (2.29) through (2.30) we complete the proof of (i).

(i1) Using (1) of Lemma 2.1.10, we can see that the estimator given by (2.21) is changed into
[Im + D h(F)|X where F = (F,) = XS™'X" and D, = (d, ). Similarly, it follows, from
Lemma 2.1.3, that the unbiased estimate of the risk for X + D h(F)X can be expressed
as
2trVy D h(F)X +2 trDS{X'(Dih(F))zX}
+(n—p—1) tr F(D,h(F))* + pm. (2.32)
We shall calculate (2.32) term by term. From (i) and (ii) of Lemma 2.1.9 and symmetry
of D, h(F), it follows that the first term in (2.32) becomes
2p tr D h(F) 4+ 2tr XV D h(F) =2p tr D h(F) + 4 tr F‘Dﬁh(F). (2.33)

23



Next, applying Lemma 2.1.5 to the second term in (2.32) provides that

2 tr Dy {X'D, h(F)}( D h(F))X+2 tr [{X'D,h(F)} DL]' (D, h(F)X

(2.34)
=4 tr(D,h(F))X Ds{X' D, h(F)}.

The last equality follows from (iv) of Lemma 2.1.9. Using ordinary chain rule and (iii) of

Lemma 2.1.9, we shall show that

m+1 -

XD AX'D h(F)} = ~FD, (FD h(F)) + 5

T _FD, h(F). (2.35)

It can be seen that the (i, ;) element of XD A{X'D h(F)} is

‘l H 1
Z Z Yﬂ; ; ' *Yisigd :’J (F))

11,12=113=1

b4 m

u1%e 3g 1112
= > Y, XuX(d 'd7R(F)d " F., (2.36)
T2 =11y,%, 9 =1
? ™ p p
u1us fag 112
== Z Z ‘le]X")‘j"Yﬁ]‘KgXﬂ}ﬂs (dp. l(F)) S‘“I‘ﬁs
11,102,827, 03 =1 17,%7,94=1
where the last equality can be obtained by noting Fy,., = P a1 Xuywa S Xy,

Using Lemma 2.1.4, (2.36) becomes — Fjy, Fi,, d “”d’” h(F), which follows that

XD, {X'D,h(F)} = -F(FD,) D h(F)

- . m-+1 -~
= —FD,(FD,h(F)) + TFD h(F).

The last equality holds since (iii) of Lemma 2.1.9 and D, F' = ((m + 1)/2)I,,. Hence,

putting (2.35) into (2.34), it is seen that the second term in (2.32) can be rewritten as
—4tr (D, h(F)) - FD,{FD h(F)} + 2(m +1) tr F{D h(F)}*. (2.37)
Combining (2.33) and (2.37) with (2.32) leads to

pm+ tr [2;)1)! h(F)+4FD2h(F)+ (n+2m —p+1 VE{D, h(F)}*
(2.38)
~4(D, h(F))ﬁ*D,{jf‘D,h(F)}] i
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Furthermore, using (ii1) of Lemma 2.1.10 it follows that

tr D, h(F) = th (F),
(2.39)
tr F{D, h(F)}? Z fihi(F

Noting that D.Zh,(Fi) = D RH(F)R' where H(F)=diag (hy(F),...,hm(F)) and applying
(iii) of Lemma 2.1.10 where ¢(F') = diag (F)H(F'), we can find that

tr FD2h(F '—'—"Z[fk{hkk F)+,)Eh" 2 ’;:(F)}]

k=1 1k
fihx (F) = fihi(F)
F)+Dzk fr — fi ]

(2.40)

nM;

{fk hix (F) —

Similarly, we can get that

tr (D, h(F))FD {FD h(F)}

frhi(F) {M(F) + fibar (F) + 5 Z el SR H (2.41)

t"/)s

k=1 i i;ﬁi fk - fi
=}mj fih (F) + fEh(F)hy(F) + Z ffhf(F thz(F)]
k=1L i>k

Finally, putting (2.39), (2.40) and (2.41) into (2.38), we obtain the desired result.

REMARK 2.3.1. We use the same notation as in (2.19) and (2.20). Furthermore, let
us define the similar notation in Theorem 2.3.1. Stein[48] showed that, for the case where

¥ = I,, the unbiased estimate of the risk of the estimator (2.20) is given by

— ik
R= Z{Q(m P+1hk+4ykhkk+4z%+ykhk}+Pm
k=1 >k

where hy = Gh(Y)/Oyx, k = 1,...,p. Theorem 2.3.1is a counterpart of the result of Stein.

Now let us compare the distribution of the eigenvalues of X' XS~ in the cases m > p

and p > m. Assume that B = 0 for simplicity. Then, from Muirhead[40], it can be seen
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that the joint density of the ordered eigenvalues of X'XS~! is , apart from normalizing

constants,
m p—1)/2 P

H (1 + o )(nrm2 H(fk - f);[[ dfi
k=1 =1

ISk

in the case m > p while it is

p m-1)/2 m

]:_I 1 + ARG A -5 H dfx

'l>k

in the case p > m. It is easily checked that the second distribution can be obtained from

the first one by making the substitutions
m-—p, p—m, n-—n+m-—p. (2.42)

Theorem 2.3.1 tells us that the substitution rule (2.42) is valid to the unbiased estimate
of risk and the estimator of the form (2.21) so that the estimator better than the usual

estimator X in the case m > p+1 results in that in the case p > m+1 by using substitution

rule (2.42).
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2.4. ALTERNATIVE ESTIMATORS

In this section, using Theorem 2.3.1, a systematic search for alternative estimators is

carried out.

2.4.1. THE VARIATIONAL FORM OF CERTAIN BAYES ESTIMATOR
Here we derive the variational form of Bayes estimator following an approach due to
Haff[23].

First we concentrate on the case m > p+ 1. Let m(A) be an orthogonally invari-
ant prior distribution (i.e., 7(HAH') = n(A) for any orthogonal matrix H) where A =
(B'BYM/-1(B'B)1/?). Denote by g(F|)) the conditional density of F = (fi,..., fp)
given A = (Ar,..., ), Ax (k=1,2...,p), being the k-th largest eigenvalue of A. Finally
the marginal density of F is denoted by

0e(F) = [o(FINd (),
where 7*(A) = [, 7(HAH')dH. Following argument in Haff[23] the Bayes risk of the
estimator B(X,S) = X + (1/2)Vxh(F) - § is given by

r(h, dh, ) = / {pm + T(n.m, p; h)}gx (F)dF,

where h = (hy,... hy), dh = (hy1,. .. ,hpp). Since the loss function is convex, the formal
Bayes rule is then unique and is obtained by minimizing the functional r(k, dk, 7). Theo-
rem 2.1 in Haff[23] tells us that the minimizer A must satisfy the Euler-Lagrange partial

differential equations

oT o 0 oT 0 )
_ YV Zrogg(F)), k=12,....p
Ohy  Ofx ahkkT+(ahkk)(afk og g+ (F) P

where, by regarding T as T(n,m, p; h), the partial derivatives with respect to h; are com-

puted. It is readily checked that the solution of this system is given by

N P i o . ]
hy = :[(m P 1)+2z§# fo gy loggx(F)
) fr d B
/[fi{(ﬂ +p+ 1)—-23;&}‘ m+2fg—a-ﬁ-logg,(F)}], k=1,2,...,p.
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If g.(F) is a constant, then the estimator of B becomes
B(X,S) = X[I, + AH(F)A™1], (2.43)

where A is a p X p nonsingular matrix such that A'SA = I, and A'X'XA = diag(F),
H(F) = diag(hy,...,hy), and
fx ]/[ bj
hkz—[vn—p-—l—}-Q psn+p+1-—-2 , k=1,2,...,p.
; fr = £ d P % fe = f: P
Next we shall consider the case for p > m+1. Recall that F' = (f1,..., fm), diag (F) =

R'XS™'X'R, and R is an m X m orthogonal matrix . Using substitution rule (2.42), we

can see that the variational from of the Bayes estimator, g, (F') being a constant, becomes
B(X,S) = [I. + RH(F)R'X, (2.44)

where H(F') = diag(h(F),..., hp(F)) with

hi :—[p—m-1+2§:fk]i‘ﬁ]/[fk{n+2m~p+1~2zfkf_kf!}:I, k=1,2,...,m.

£k £k

REMARK 2.4.1. Let X'X = Odiag(Y)0' with Y = (y1,...,9,) and let O be a
p X p orthogonal matrix. In the problem of estimating B based on X in (2.19), Stein[48]
proposed the estimator of the form

X(I, + 0¢(Y)0")

where ¢(Y) = diag(¢1(Y),...,¢,(Y)) and

B(Y)=~|m-p-1+2) % /yk, k=1,...,p.

The estimators (2.43) and (2.44) are counterpart of that of Stein for the case when ¥ = I
and the loss function tr (]% — B)’(l% - B).

REMARK 2.4.2. The estimators proposed are modified in such a way as to make
hi’s are increasing sequence, but there may be some reversals of the order. It has not
been established that the estimators proposed by (2.43) and (2.44) have a frequentist risk
uniformly smaller than the commonly used estimator X.
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2.4.2. EFRON-MORRIS TYPE ESTIMATORS

When m > p+1, Bilodeau and Kariya[5] obtained the Efron-Morris type estimators. That

is of the form
B(X,8) = X[I, — a(X'X)"'S — bS/ tr (X' X)),

witha=(m-p-1)/(n+p+1)and b= (p—1)/(n+p+1). Unfortunately, this form
does not belong to the class given by (2.21) while it belongs to the class given by (2.25).

In this section, we derive another Efron-Morris type estimators which are in the class of
(2.21).
THEOREM 2.4.1. (i) For the case where m > p + 1, the estimator
BEM (X, S) = X[I, — a(X'X)"'S — bI,/ tr (X'X)S™ 1] (2.45)
s minsmaz relative to the loss function (2.2) fa=(m—-p—-1)/(n+p+1) aend b=

(p* +p—2)/(n~p+3).
(11) For the case where p > m + 1, the estimator

BEPM (X S)=[In —a(XS™'X')" = b,/ tr XS™1X']X (2.46)
is minimaxz relative to the loss function (2.2) sfa=(p—m—1)/(n+2m —p+1) and

b=(m?+m—-2)/(n—-p+3).

PROOF. (i) Let
KO(F) = —{log [ [ ff +108()_ /)'}, (2.47)
k=1 k=1

where a and b are nonnegative constants. Set hgl) = ahil)/ Of: and hilk) = 82h§‘1) /OfE,
¢ =1,...,p. We may observe that

w__a b
hk —_(fk+u)7
b
h(l)_(fz )
ﬁh ﬁ(“ 2. 2(p—1)b
4 = - T
z ﬁwmﬁ ﬂaﬂbz P{zw—nw 2(p — 1)?
2;‘2_:1%; = fi Z: pu }’
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where u = Y %_, fx. Use (i) of Theorem 2.3.1 and note that Yoo A u? < R (1))
and 33—, fx = 3=1u/p. Then we get

A= R((B,E),X) - R((B,E),BEM)
|
> -E {kzzl[}-k—((n—i-p—!— 1)a? — 2(m~-p— 1)a)

# o= p+ 89+ 20pm + 2) b 2(mp — 2] . (248)

The first term of the right side in (2.48) is minimized when a = (m —p—1)/(n+p+1),in
which the term is negative. For a = (m — p —1)/(n + p + 1), the second term is bounded
above by

2+ m)(p* +p =2 _
n+p+1 =

(n—p+3)p% - (n—p+3)b% — 2(p* +p — 2)b.

It is minimized when b = (p? + p — 2)/(n — p + 3) in which the term is negative. This
completes the proof of first part.

(ii) The second part of this theorem can be obtained by using substitution rule (2.42).
This completes the proof of the theorem.
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2.4.3. ADJUSTED STEIN ESTIMATOR

We consider the approximation to the estimators given by (2.43) and (2.44), i.e., the
approximation to the term 3, fi/(fx — fi) in these estimators. Since 3, fi/(fi—f) >
p—1and 3. fo/(fp — fi) <O for the case m > p+ 1, so we replace the term by p —

simply. Note that 335_; "ueq fi/(fi — fi) = Li=1(p — ).

THEOREM 2.4.2. (i) In the case m > p + 1 the estimator
B4AD(X,8) = X[I, - AHAP (F)A™1],

where HAP (F) = diag(di/f1,...,dp/fp) and dy > --- > d, are nonnegative constants, is
minimaz with respect to the loss function (2.2) sf dy = (m+p—2k—-1)/(n —p+2k+1),
k=1,2,...,p.

(ii) In the case p > m + 1 the estimator
B4P(X,8) = [I. - RHAP (F)R')X,

where HAP (F) = diag(di/fi,..,dm/fm) with dy > --- > dy, diag(F) = R'X'S"'XR,
and R is an m X m orthogonal matriz, is minimaz with respect to the loss function (2.2)

fdi =(p+m—-2k-1)/(n—p+2k+1), k=1,2,...,m.
Proor. (i) Let

P
KO(F) = =" dy log fi
k=1

in (2.22). Similar calculation to the proof of Theorem 2.4.1 shows that the risk difference

between X and the proposed estimator is

A =R((B,T),X) - R((B,x), B4?)

T ,;2 {"2(mwp_l)ﬁ= tlntetly }] (2.49)
[ 4dy + 242 — (4 + 2d2)
E .
on[LytrrtGred
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Set yx = 4dx + 2d%. Note that y; > --- > Yp. Then we get

P
Yk "yt
Z fx =

k=11>%

}; T g; fr — (yk )
L%

(2.50)

Z(y" _ y) Z (P k)ykfk Eok Ui > 0,

f)k

since fx /(fx — fi) > 1 for t > k. From (2.50), (2.49) is bounded below by

~-E

Z-};{(n—p+1+2k)d§ —2(m+p—1-2k)d + ) (44, +2d§)H ‘
k=1

1>k

Define
zx(dy) = (n—-p+1+2k)d% —-2(m+p—1-2k)dx +Z(4df —{—Qdf), k=1,...,p,
1>k

where dy > dy > --- > dp. It is sufficient to prove that z;(di) is negative when

= d E=1,...
dk n—-p+1+2k (Sa'y };)7 11 ' P

We shall fix di 15 = df 5 (K =1,...,p— k) to choose d;. Then we can see that z;(dx)

1s minimized when d; = dg and that
Zk(dg) < zk(dg-;—l) = Zi+1(d2+1) <. < zp(dg) <0,

since df > --- > dJ. This completes the proof.

(ii) The minor modification of the proof of (i) leads to the desired result.
REMARK 2.4.3. Let
BOFM = X[I - {(m-p—-1)/(n+p+1)}HX'X)"*S].

This estimator was proposed in Efron and Morris[14] and called the crude Efron-Morris

estimator. Using the notation as in the proof of Theorem 2.4.2, it can be seen that

R((B, %), X) - R((B, ), B°FM) = _ [}: L)

and
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R((B,%),X) - R((B, %), B4P) > - E[Z % zk(do)]
These give that
R((B.5), 67%) - R(2,5),54%) > =B [0 {1 (&) ~ 5(@)] >,
k=1

since z,(d9) > 2 (d}), k = 1,2,--+,p. This concludes that the adjusted estimator B4P is

better than the crude Efron-Morris estimator BCEM

2.4.4. BARANCHIK TYPE ESTIMATORS

The following theorem is a generalization of the results of Baranchik[1] and Lin and Tsai[35)
who treated the case of m > 3 and p =1, and of p > 3 and m = 1, respectively.

THEOREM 2.4.3. (i) Assumethat m > p+ 1. Let A'SA = I, diag(F) = A'X'XA
where F'= (f1,..., fp), and let A is a p X p nonsingular matriz. Let v (t) (k=1,2,...,p)

be functions salisfying

(a) 0<n(t)<2(m—-p-1)/(n+p+1),
(b) vk (t) is nondecreasingint ,k=1,---p,
(c) 71(t) 2 72(t) > - - > 7(t) for V¢ > 0.

Then the estsimator

BBA(X,S) = X[I, - AH(F)A™Y),
where v = (71,...,7,) and

H(7)(F) = diag(mi(f1)/ f1s- - %)/ F5)s

s minsmaz relative to the loss function (2.2).

(i1) Assume that p > m + 1. Let diag(F) = R XS 'X'R where F = (f1,...,fm) and R

s an m X m nonsingular matriz. Let v () (k= 1,2,...,m) be functions satisfying

(a') 0< () <2(p-m—1)/(n+2m—-p+1)
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as well as the conditions (b) and (c) (replacing p by m). Then the estimator
BB4(X,S) =[I, - REW(F)RX,
where v = (71,...,7p) end

HOF) = diag(vi(f1)/fus- s Y (Fn )/ frm)s

is minimaz relative to the loss function (2.2).

PRrROOF. (i) Similar to the proof of Theorem 2 in Zheng[54], first we suppose that
vi(t), k =1,---,p, are absolutely continuous and have bounded derivatives on [0,00). We
shall use the notation B(y) instead of BB4(X, S) for convenience. Using (i) of Theorem
2.3.1 with hx = —vx(fx)/ fx, we get that

A =R((B,%),X) - R((B, %), B(v))
_ [Z{(n-!—p-i- 1)'Yk(fk)(7k(fk) 3 2(;”—13—1))}]

k=1 fk

- (2.51)
+E[Z{ (147 (f)) 7"(f")Jrzer{H (1 () + (1)) }

k=1 1>k

{’Yk(fk ;/;(ﬂ)}}].

From the above and the conditions on i, we find that A > 0, which follows that B(~) is

minimax.

Suppose now that v (t)’s, £ =1,---,p, are general functions satisfying the conditions
of the theorem. Let v = (7({) B S )) where 'y( g Jk =1,..-,p, are functions which
are absolutely continuous and have bounded derivatives; such that ; )(t) converges to
7k (%) as i — +oo. Then the estimator B(¥("?) converges to B(7) (a.e.) as s — +oo. From
(2.51), it follows that B(7(") is minimax and || B(¥"))—-B || has the bounded expectation
independent of s. So B (v) is minimax. This completes the proof.

(ii) The minor modification in the proof of (i) leads to the desired result.

Using Theorem 2.4.3 we will now give examples of minimax estimators.
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EXAMPLE 2.4.1. (i) In the case m > p+ 1, set 1x, £k = 1,2,...,p, all equal to a
constant (m —p—1)/(n+p+1). Then we obtain the crude Efron-Morris estimator BCEM
given in Remark 2.4.3.

(ii) In the case p > m + 1, set 7, k =1,2,...,p, all equal to a constant (p —m —1)/(n +
2m — p+ 1). Then we obtain the estimator

p—m-—1
n+2m-—p—+1

B(X,5) = [Im - (XS‘lX*)'l] X.

EXAMPLE 2.4.2. (i) In the case m > p+1 set

_m-p-—1 2 L1 4 )(ntmd/2 (m—p-3)/2 -1
w(t) = n+p+1 n+p+1 [/0 (1 +tA)<ﬂ+m>/2+1’\ @l (2:52)

As in Lin and Tsai[35], it can be seen that these v, k = 1,2,..., p, satisfy the conditions
(a), (b), and (c) of Theorem 2.4.3.
(ii) In the case p > m + 1, set

—m - 1 (n+m)f2 -1

n+2m—p+1 n+2m—p+1lJy (14 tA)r+m)2+
(2.53)

Similarly, it can be seen that these vis satisfy the conditions (a'), (b), and (c).

REMARK 2.4.4. When p > 3 and m = 1 or m > 3 and p = 1, based on the
method of Brown[7] and Brewster and Zidek[6], Kubokawa[32] showed that the Baranchik
type estimator using (2.52) or (2.53) beats the crude Stein estimator relative to the loss
function (2.2). However, such frequentist risk result in the multivariate case has not been

established.
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2.5. OTHER CLASS OF MINIMAX ESTIMATORS

For m > p + 1, we consider other class of minimax estimators which do not belong to
(2.21).

Recall that X'X = OYO' in which 00" = 0'0O = I, and Y = diag(y1,...,yp) SO
that yi1,...,yp are ordered eigenvalues of X'X. We introduced two classes of estimators

of the form

X[L, + E%:TOT(Y)O'] (2.54)
and
X[, + OT(Y)O'S] (2.55)

where T(Y) = diag (t1(Y),...,tx(Y)) and t;(Y) (i = 1,.. ., p) are an absolutely continuous
function of Y. Using Lemmas in Section 2.1 we can get the unbiased risk estimates for

these forms given by (2.54) and (2.55) respectively.

THEOREM 2.5.1 (i) Assume that T(Y) satisfies the regularity condstions needed to
establish Lemma 2.1.3. The unbiased estimate of the risk of the estimators given by (2.54)

with respect to the loss function (2.2) is

pm+(1/ tr S }z_: {2(m o 1t(Y) + 4y ) ;Y) paS Y ) - yjt'(Y)}

=1 g1 Yi _yJ

i (OYTA(V)0'S™) + 2B L4y (oY TR(v)0'S ).

TR (%51
(2.56)
(i1) The unbiased estimate of risk of the estimators given by (2.55) ss
pm+ trOC(Y)0'S (2.57)

where C(Y) = diag (c1(Y),...,¢(Y)) and

O(Y) | o5 wtlV) =3t (V).

(V)= (n+p+ Dyit?(Y) +2(m —p+ Dt(Y) + dyi—5— 5 -
Yi Yi — Y5

J#

PROOF. (i) From Lemma 2.1.3, the unbiased estimate of the risk of the estimators
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given by (2.54) becomes

2 , 1
pmt—==y tr(v,;XOT(y )O') + 2 tr(DsmOYTz(Y)O') 259
n—pP— 2 to-1 '
+(t 51y tr(OYT (YYO'S™H).
Using (i) and (ii) of Lemma 2.1.6 with @ = OT(Y)0' it is seen that
tr V, XOT(Y)O' = mtr OT(Y)O' + tr X'V, OT(Y)O'
(2.59)

=mtrT(Y)+2tr D, WOT(Y)O' — (p+ 1) tr T(Y)

where W = X' X, The last equality holds since
tr D, WOT(Y)O' = tr WD,O0T(Y)O' + ((p+1)/2) tr T(Y).

Using (i) of Lemma 2.1.10 (replacing F by W) and noting that

yrt (Y yjt (Y) y.t (Y) — th (Y)
9> S»H>

1=1 351 Ye— Ys =1 1>1¢ Yo — Y

we get

tr Dw WOT(Y)O' = tr DWOYT(Y)O'
—i{ [%(Y +t(})+zy*t(Y) yits (Y)} (2.60)

> Ys — Yj

From Lemma 2.1.4 we may see that D_(1/( tr $~1)?) = 2( tr S~)"35~2. Using this fact
and putting (2.59) and (2.60) into (2.58) give the desired result.

(i1) Similarly we get an unbiased estimate of the risk of the estimators given by (2.55) as
pm+2tr VEXOT(Y)O'S + 2tr D.SOYTHY)O'S + (n—p—1) tr OYT*Y)O'S. (2.61)

From (i) and (iii) of Lemma 2.1.6 we get
tr V. XOT(Y)O'S = (m —p—1) tr OT(Y)0'S +2 tr SD,, OYT(Y)O'. (2.62)

Using Lemma 2.1.5'and noting that tr(AB)C = tr ABC' for matrices A, B, and C, the
third term of (2.61) becomes
tr (D,SOYT*(Y)0")S + tr[{SOYT?*(Y)O'}Y D,]'S (2.6
=(p+ 1) trOYT*(Y)O'S
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Putting (2.62) and (2.63) into (2.61) and using Lemma 2.1.6 straightforward calculation
lead to the desired result.

Noting that tr AB < (tr A)( tr B) for any p X p positive definite matrices A, B and
that the risk of the unbiased estimator X is equal to pm, we obtain the following corollary

from (i) of Theorem 2.5.1.
COROLLARY 2.5.1 The estimator gsven by (2.54) is minimaz with respect to the loss
function (2.2) sf

Zz’:{(n —p+3)yt2(Y) 4+ 2(m — p+ 1)t,(Y) + 4y; ot (Y)

Ay;
+ 42 yiti(Y) — yjtj(Y)} <.
S v

=1

2.5.1. OTHER FORMS OF BARANCHIK ESTIMATORS

Here we give a class of minimax estimators derived from (2.54) and (2.55). Define T(Y')
by

t:(Y) =,.Y“;L'), i=1,---.p

where «;(t) is an absolutely continuous and nonnegative function of ¢ > 0.

THEOREM 2.5.2. Assume that m > p+ 1. Let v(t), ¢ = 1,...,p, be functions

satisfysng

(i) 7 (t) ts nondecreasing in t,

(ii) M) > 72(t) 2 - 2 7(2) for ¥t > 0.
Let

DY) = ding (WD) 72(¥2)  7o(ys)
TNY) = diag ( e )

where v = (71(y1), 12(¥2)s- -+ Y0 (¥p)), ¥ = diag (y1,Y2,---,Yp), and O is an orthogonal
matriz such that X' X = OY O'. Then the estimator

B"(X,8) = X[I, - (1/ tr S~HOTM(¥V)0']
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is minimaz if

m-—p-—1

111 0<%(t) <

t=1,2,...,p,

and the estimator
BY(X, 8) = X[I, - OT™(Y)0'S]
s minsmaz if

m—p-—1

i) 0<y(ty< P=P=1
(ii1) _7()_n+p+1

1=1,2,...,p,
with respect to the loss function (2.2).

ProoF. We shall prove the minimaxity of Bg’). Then the minimaxity of BE*) is
obtained in the same way.

Similar to the proof of Theorem 2 in Zheng[54], first we supposed that v(¢), 1 =

1,2,...,p, are absolutely continuous and have bounded derivative on [0,c0). Using (2.57)
we get that
A(7) =R((B, %), X) - R((B, %), B{") 264
=—E[trOC™(Y)0'S]
where COO(Y) = diag($”(Y), §7(Y), ..., &”(Y)) and
2(. (s Ov: (u:
() =(n+p+ DI pm - p - ) g D)
' ’ (2.65)
227‘(yf 7}(y])’ i:1,27.'.’p
I T

From the conditions (i), (ii), and (iil)’, it follows that c(7)(Y) < 0. So A(y) > 0 since S is
positive definite matrix.

Suppose now that (), ¢ = 1,2,...,p, are general functions satisfying the conditions
(i), (ii), and (iii)’. Let /%) = ( (k)(t),'yzk)(t), .,'7pk)(t)) where 7, (  i=1,2,.. .,p, are
functions which are absolutely continuous and have bounded derivative; such that 7|k)(t)
converges to 7vi(t) as k — 4oo. Then Bg7 g converges to Bg’) (a.e.) as k — +oo. From
(2.64) and (2.65), it follows that B is minimax and || B’ — B |2 has bounded

expectation independent of k. So Bg’) is minimax. This completes the proof.
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EXAMPLE 2.5.1. Setting 7i(t) = (m — p—1)/(n — p + 3) in B\(X,S) and %(t) =
(m—-p-1)/(n+p+1)in Bg") (X, S) yields Stein-type shrinkage estimators

m—p—1(X'X)"1

B (X,8)=X][I, 73 G ] (2.66)
and
B,»(X,S) = X[I, - H%(X'X)‘ls] (Efron — Morris[15])  (2.67)

respectively. Note that both estimators reduce to the usual Stein estimator for the case

p=1

EXAMPLE 2.5.2. Let 7i(y:) = di(1 + dyy; ")t in B{(X,S) and %(y:) = da(1 +
day 1)t in Bé”)(X, SYfor0< dy £ (m—-p-1)/(n—p+3)and 0 < dy < (m—p—1)/(n+
p + 1) respectively. Using Theorem 2.5.2 we get that the estimators

B(X,8) = X (I, - dy (X'X +dy L)1/ tr S7Y)

and

BP(X,8) = X (I - do(X'X +dal,) ')

are minimax.
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2.5.2. ADJUSTED ESTIMATOR

Now we give another multivariate extension (being of the form (2.54)) of the Stein estima-

tor.

THEOREM 2.5.3. Let
B(X,S) = X[I, - OT")(Y)0'/ tr §71] (2.68)

where TO(Y) = diag (di/y1,d2/ya,--.,dp/y,) and dy,ds, ... ,dp are constanis with d; >
dz > --- > dy > 0. Then the estimator (2.68) is minimax relative to the loss function (2.2)
when di =(m+p—-21-1)/(n—p+3),i=1,2,...,p.

Proo¥F. From Corollary 2.5.1 it suffices to show that

d?
A= Z{(n——p+3)-—-——-2(m p—l) Z ’}<o
==l J>cy'—y’
Noting that y{/(y~—y-)>1forj>iandd1>d2>--~>d > 0 we get

PP ZZ

=1 3>¢ Yi —y t=1 Y )}t =1

J>l

>0

P (p—i)ds - E,‘>.‘dj
=y

Ye

=1
since y, /(y: — y;) > 1. It follows that
?
1 .
AL Z:I/— {(n——p—l—3)d{2 —2(m+p—2i - 1)d, +4de} .
i=1 7' 3>t
Denote the term inside curly bracket of the above inequality by z;(d;). Then it suffices to
show that z,(d,) is negative when d; = (m+p—2i —1)/(n—p+3) (say d°),:=1,2,...,p.
For fixed d; (j =¢+1,...,p), z(d;) is minimized at d; = d?, which follows that

zi(d?) < z(d2py) = 241 (dSy,)-

Then
2{(d}) < zip1(dly;) < -+ < zp(dp) <0,

since dj > --- > dJ. This completes the proof.
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2.5.3. IMPROVING UPON STEIN TYPE ESTIMATORS

Bilodeau and Kariya[5] gave the estimator (included in (2.55)) which beats the Efron-
Morris estimator given by (2.67) for the case p > 2. In this section we consider two classes
of estimators which beat the Stein-type shri;lkage estimators given by (2.66) and (2.67)
for the case p > 2, respectively.

Let a(Y") be a real-valued function of Y = diag(yy,¥2,...,¥p) satisfying

a(Y)>0 foryy, 2yz >y, 20 (2.69)

EB,EICH"(Y)\/QII < 00 (270)
where o(Y) = 0a(Y) /0y, 1 =1,2,...,p.

THEOREM 2.5.4. (i) Assume that

{2 a) - uan)} 20 (271)

1]
A

1
Then ,when m > p+ 1 and p > 2, the estimators

o I 1 ! -
8008 =X |4 - T { - p - ey

w25/ (so-2 )]

beat the Stein estimator B,1(X,S) given by (2.66) with respect to the loss function (2.2).
(i1) Assume that

I’—’L—-}-yza.»()f)go i=1,2,....p (2,72)
p—_
and that
» i1
Z {LQ(Y) - y;a;(Y)} > 0. (2.73)
1=1 2p
Then, when m > p+ 1 and p > 2, the estimators
- 1 tr X' X
s2 = - — —-p-1)(X'X)"! 21/( Y)}S]
Box,8) = X [, - 2 {m—p- 1) 2L [ (E2 a(¥)

beat the Stein estimator B,2(X,S) given by (2.67) with respect to the loss function (2.2).
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PRrOOF. (i) Let
U

plp+1)-2
where u = tr X'X. Then B?, can be written as X[I; + OT(Y)O'/ tr S~1] where T(Y) =
dlag (tl(Y),tz(Y), ‘e ,tp(Y)) and

1 m—p-—1 2 .
ti(Y)= - ( + ), 1=1,2,...,p.
(¥) n—p+3 Yi 91(u, @) P

g1(u, ) = + a(Y)

Using (2.56) it can be seen that
=R((B,%), B;) - R((B,3), B.1)
4 2 1 m 2yi  9g1(Y)
n- P+3E [Z tr.S—1 {_gx(u,a) " gz(u o) Oy }

(ts—

where Q(Y') = diag (¢1(Y),q2(Y),...,¢,(Y)) and

1 m—p—1 Ys ) )
i(Y)= + , 1=1,2,...,p.
(¥) n—-p+3( g(y,a)  gi(u,a) P

As ¢;(Y") is nonnegative by the condition on a(Y"), we have

tr (0Q(Y)0'S™?) < trQ - (trS™1)?
and

tr (0Q(Y)0'S™ M) < tr@Q- tr S

It follows from these inequalities and some simplification that

4 p+1 Y 2y Og1(u, ) }
< ex
AT [trs 121{ 91(0) | Fwa)  wa) o =

Differentiating ¢;(u, @) with respect to y; and noting that > 7_; y; = u, we can see that
the term inside curly bracket in the right hand side of (2.74) is equal to

—(p+ DY) + 2yiei(Y)
3
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which follows that A < 0 by the condition (2.71). This completes the proof of (i).
(ii) Let

u 1 m-—p—1 2 )
u,0) = ——+aY d #(Y)=-— _— .
92(,0) p—-1 () end #:(¥) n+P+1( Yi +9‘2(U,0‘)

Similarly, using (2.57) and straightforward calculation give that

A =R((B,X), B?,) - R((B, %), B,3)

4 s (VO p+1
—n+p+1E[tr(OQ (Y)O'S) — sa(u ) tr 5]
where Q*(Y) = sdiag(¢{ (Y),¢5(Y), ..., ¢;(Y)) and
(Y = 2 (p+1 : ) —1,2,...,p.

As ¢7(Y') is nonnegative by the condition (2.72), we have tr (0OQ*(Y)0'S) < trQ*(Y)-
tr.S. Using this inequality and noting that u = Y ,._, yi, we can see that

4 o SZ {zy.a.m (p+1>a(Y)}] _

< —
- n+P+1

2(u, ) p92(u, @)

This completes the proof from (2.73).

EXAMPLE 2.5.3. (i) Let a(Y) = tr X'X/{p(p+ 1) — 2}. Using Theorem 2.5.4 we get

that the estimator

.\ B m-—p- - plp+1)—2
le(X’S)——X<Ip_( —p+3) trS 1(XX) (n—p+3)trS-1 trX’X)

beats the estimator B,1(X,S) given by (2.66).
(ii) Let a(Y) = tr X'X/(p — 1). Then the estimator B}, becomes

R m-—p—1,, -1 p—1 S
* = _ X -
B, (X,5) =X (Ip m—— (X'X)"s e X’X) (2.75)

which beats the estimator B,5(X,S) given by (2.67). The superiority of B?, over B,y is
proved by Bilodeau and Kariya[5] while it is also seen from Theorem 2.5.4.
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EXAMPLE 2.5.4. Let a(Y) =37, ¢ij/(yi — yj) where c;; is a nonnegative constant.

Using the conclusion of Theorem 2.5.4 we get that the estimator

~ m—-p-—1 -
sl(X’S) =X (IP - (n___p_*_?)) trS_l(X’X) 1)

tr X' X Ci
_2X/ n—p+3)trSt | ——— + -
( ) plp+1) -2 %yf—yj
beats the estimator le(X, S).
But the condition (2.72) is crucial so that we can’t obtain the estimator of the second

form in Theorem 2.5.4 which beats the estimator B,5(X, S) for this choice.

2.6. CONCLUDING REMARKS ON THE PROPOSED ESTIMATORS

For the case m > p+1 Efron and Morris[15] derived the estimator given by (2.67) from the
empirical Bayes argument. Later, using Lemma 2.1.3, Bilodeau and Kariya[5] obtained the
estimator given by (2.75) for the same case. Since these two estimators take into account
the matrix structure of mean B, they are not trivial extension of the Stein estimator of
the normal mean vector. However, their method involves in the direct calculation and
the eigenstructure is used implicitly. The representations of the unbiased estimate of risk
in Theorems 2.3.1 and 2.5.1 shed new light on this structure and suggest us to utlize
the imformation of the ordered eigenvalues of X'XS~! or X'X. These unbiased risk
estimators facilitate a systematic seacrch for alternatives such as multivariate extensions
of Baranchik estimators, adjusted estimators, and the variational form of Bayes estimators
for the case p > m + 1 as well as m > p + 1. However, from rather complicated nature of
the estimators proposed, it appears that the analytic comparison among these estimators
is not possible at this point. But it is our belief that by taking into account the terms
Siox (fERE — 2R3/ (fi — f1) and 355 1 (fiha — fihe)/(fx — fi) of the unbiased estimate of
the risk in Theorem 2.3.1, one should be able to obtain superior alternatives which have
substantial improvement in risk over the usual estimator X. Now work is in progress along

this direction.
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CHAPTER 3

ESTIMATING EIGENVALUES IN
THE MULTIVARIATE F-DISTRIBUTION

Suppose that S; and Sy are independent Wishart matrices with S; ~ W, (k;, £;) where X;
is positive definite matrix and k; is degrees of freedom, ¢ = 1,2. The eigenvalues 61,...,6
(8; > -+ > 6, > 0)of £; £; ! are important, for example, in the problem of testing ©; = T
against ¥; # X2 as the power function of any invariant test statistics under a natural
group of transformations depends only on é1,. .., 6,. The literature includes DasGupta[9)],
Dey[10] , Muirhead and Verathaworn[42] and Leung and Muirhead[33]. Ideally, a decision
theoretic approach would specify a loss function in terms of é;,...,6, and risk calculation
would be done with respect to the expectation of the joint distribution of the eigenvalues
I, ..., (i >-->1, >0)of 5; S’;l. However, this approach seems unfeasible mainly due
to the complexity of the distribution of the ordered eigenvalues Iy, . .., ;. Instead, following
approach by Muirhead and Verathaworn[42], we construct a p X p positive definite random
matrix U with the scale matrix (whose eigenvalues are equal to éy,...,6,) and the degrees

of freedom k; and k; as a function of Sy and S> such that the eigenvalues of a p X p random
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matrix U have the same distribution as those of S15; * and this distribution depends only
on éy,...,6,. As we restrict our attention to the class of orthogonally invariant estimators
A(U) of A, the eigenvalues of A(U) may be interpreted as estimates of &y, . .. ,0p, and then
it is natural to expect that the eigenvalues of ’good’ estimate A(U) of A will perform well
as estimates of é1,...,6,.

Let U be a p X p positive definite random matrix having density function
C(det A)~*/2(det U)F1=2=1/2det (I, + AU 2, (3.1)

where k = k; + ks,

e =TGN GRIN R Tl =20 [T e~ 56— )
=

ky >p+1,1=1,2, and A is a positive definite parameter matrix. Let us denote this
distribution by Fy(k1,k2;A). This distribution generalizes usual F-distribution in much
the same way that the Wishart distribution does the y?-distribution. Some of properties of
the multivariate F-distribution are similar to those of the Wishart distribution, which are
discussed in several papers such as Dawid[8], Khatri[26], Konno[27], Olkin and Rubin[43],
Tan[52], Mitra[39], Perlman[45], and De Waal[53].

In Section 3.2, we first derive the first and second order moments for this distribution,
which are useful for the statistical inference on the parameters of the multivariate F-
distribution.

Next, we consider the problem of estimating the eigenvalues 61,...,6, in terms of the

loss functions

L1 (A, AU)) = tr (AT A(U)) — logdet (A™*A(U)) - p, (3.2)
and

Lo(A,AU)) = tr (A™TA(U) - L) (3.3)

These loss functions are originally proposed for the estimation problem of the eigenvalues

of the normal covariance matrix. Recently, Bilodeau[4] proposed a loss function

L3(A,A(U)) = tr{(A +U)"YAW) + U)} —logdet {(A + U) " HAU) + U)} - p. (3.4)
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The corresponding risk function is denoted by R;(A, A(U)) = E [Li(A, A(U))] G = 1,2, 3)
taking expectation with respect to the distribution given by (3.1). Following an approach
similar to that of Haff[22] in the problem of estimating the normal covariance matrix,
Muirhead and Verathaworn[42] developed an approximation to the Bayes rule under the
loss function (3.2). Later, using an approximation to the risk function R; (appeared in
Muirhead and Verathaworn[42]), Gupta and Krishnamoorthy[16] and Dey[11] proposed
new estimators, which are analogous to the Stein’s adjusted minimax estimator and Dey
and Srinivasan’s estimator of the normal covariance matrix, respectively. However, it
has not been established that the estimators proposed have a frequentist risk uniformly
smaller than the best multiple of U under the loss function (3.2) which is just the unbiased
estimator

A k2 —p—1

Apy = U (3.5)
ki

On the other hand, Bilodeau[4] obtained the improved estimators under the loss function
(3.4), which beat the best multiple of U under the same loss function.

Section 3.1 deals with preliminary lemmas concerning the action of a matrix of dif-
ferential operator and identity for E[tr (A~*A(U))]. After deriving the exact moments
of U in Section 3.2, several new estimators are proposed in Sections 3.3 and 3.4. An
improved estimator which modifies all eigenvalues of the estimator Ayy (U) in the same
direction similar to that of Haff[18] for the eigenvalues of the normal covariance matrix is
given under the loss function (3.2). Next, it is shown that the estimator similar to that
of Perron[46] for the eigenvalues of the normal covariance matrix is better than Aun (U)
under the loss function (3.2). Finally, for the case where p = 2, the estimators of Gupta
and Krishnamoorthy[16] and of Perron-type, are minimax under the loss function (3.2).
In Section 3.4, it is shown that Haff-type estimator beats the best multiple of U under the

loss function (3.3).
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3.1. PRELIMINARIES

In this section we state calculus lemmas and the F-identity which is similar to the Wishart-
identity in Lemma 2.1.2. For notation, let D be a p X p matrix of differential operator
whose (¢, 7) element is given by (1/2)(1+ é;;)8/8U;; for U = (Uy;) and a Kronecker’s delta
6i;. The following lemma describes the action of the operator D on matrix products of U,

A, and a p X p matrix Q.

LEMMA 3.1.1. Let Q be a p X p mairiz. Then we have

() wDQU =212 g,

(i) e DUQU =(p+ 1) tx(QU),

() (@DYU = {tx(QL+Q}  (Haff22]),
(iv) DUA™U =-;.( tr AT1NI, + 11;5_2 A

Proor. (i) It follows from Haff[18].

(ii) Put @ = e;e} where e, is the ¢ th unit column vector. The direct calculation shows

that

)
0 1 0
tr DUe;e; U ZZ{EEHU""U”‘ + §§ gﬁ;‘Ukinz}
k=1 ! N

=2U;; + Z Usj
ki
=(p+ 1)e;Ue,,
which completes the proof of (ii).

(111) Direct calculation of the (Z, ) element of the right hand side yields that of the left
hand side. See also Haff[21] for the proof.

(iv) Using Lemma 2.1.5 (replaced S and D, by U and D, respectively) and noting that U

and A are symmetric, we have

DUA™'U = (DUA™ YU + (A™'UD)'U.
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From DU = ((p + 1)/2)I, and the third part of this lemma, it follows that

(DUA™YYU = 1-’—12*—1—

ATU
and

(AT'UDYU = = (tr (AU, + A™ID) .

N =

Combining these equations we obtain the desired result.

Next we state the F-identity due to Muirhead and Verathaworn[42]. For notation, let
Q¢ry = (6505 + r(1 — 6,;)q,) where Q@ = (gi;) and r is a constant. Furthermore, recall
that U = (Uy,) and D = (di;) with di; = (1/2)(1 + &;)(9/9U;;).

LEMMA 3.1.2. Let U follow the Fy(ky,ky; A) distribuiion defined by (3.1). For a
suitable chosce of a p X p matriz-valued function V(U,A) and a scalar function g(U), we

have

FE[g(U)tr(A+U)'V]= E [Zg(U) tr (DV) + 2 tr (%%@V(l )
YoM (3.6)
+ (k= p = 1g@) 6 (09,

where 0g(U)/0U = (0g(U)/OU;;) and k = ky + k».

PROOF. See Muirhead and Verathaworn[42] for the proof.
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3.2. MOMENTS OF THE MULTIVARIATE F-DISTRIBUTION

Using Lemma, 3.1.2 we shall compute the first and second order moments of the random

matrix U.

THEOREM 3.2.1. Let U follow the Fy(ky, ko; A) distribution and put A = (A;), then

k1

(i) B[] =g

Ay ifky—p—1>0,

k1 N
=Tk = p)ks —p =1k —p— 3y (k2 =P =2+ 2}Ai Aws

+(k—p—1(Aj;AGg + AxjAn)] ik —p—3>0,

(i1) E[Ui;Ux:]

where k = kl + kz.

PROOF. (i) In the equation (3.6), set g(U) =1 and V = (A + U)e;elU, where ¢, is
the ¢th unit column vector. If k3 — p — 1 > 0, the expectation of each term in (3.6) exists.

Use (i) and (ii) of Lemma 3.1.1, then we obtain the desired result.

(i1) Set g(U) =U;j and V = (A + U)erei U in (3.6). Note that the left hand side in (3.6)
becomes kE [U;;Uy:]. Using (i) and (ii) of Lemma 3.1.1, the first term of the right hand
side in (3.6) provides

Blg(V) r(DV)] = 222 AuB U] + (p + DE[U; V).

Noting that dg(U}/OU = (e,e; + e;e!)/(1 + &;;), the second and third terms of the right

hand side become

og(U 1
E [tr (-—%%-)*V(g_) )] =-2-E Uri 5 + Ui it + Ui Uxi + UaUij]

E[g(U) tr (U™'V)] =E [Us;Ax: + Ui U],

respectively. Combining these equations and using the first part of this theorem lead to

(k2 —p— 1)E[Ui;Ux:] — E[U;:Usi] — E[Us:Uy, ]

k 3.7
= —— kA Agr + DA Ay + Ay ) S
k‘g -pP - 1
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In the similar way, from ¢(U) = Uiz and V = (A 4 U)ere.U, we obtain

(k2 —p—1DE[Us Uj;] —E[U;Us:] - E [Us; Us]
k

1
= kg — p— 1'{klAj!Aik + ArrAji + A Agj b

and, from g(U) = U;; and V = (A + U)e; el U, we get

(3.8)

(k2 — p— VDE[UalU;| — E[UxsUs] — BE[Un U]
k1

- m{klAiji: + Dj: ki + AijArr )

Thus E [U;;Us:] is determined by the linear equations of (3.7), (3.8), and (3.9), which

(3.9)

completes the proof.

COROLLARY 3.2.1. IfU follows the Fy(ky, ko; A) dsstribution and kg —p—3 > 0, then

) hi(k—p—1) { &
c Uii Vst = A Az
N R s e ) i

+ A Ak + DA, Au},

k1
(k2 — p)(ks — p— 1) (ks —p— 3) [{k1(k2 — p - 2) + 2}AQA

+(k—p - 1{(AQA) + tr(AQ)A}],

(ii) E[UQU] =

for k =k, + ky and a p X p matriz Q.
PRrOOF. From Theorem 3.2.1, direct calculation leads to the result.

REMARK 3.2.1. The results of Theorem 3.2.1 and Corollary 3.2.1 include the moments
of the Wishart matrix in Haff[18] as a special case. Put U* = kpU in Corollary 3.2.1 and

assume that ) is symmetric, then we get

lim E [U*QU*] = ki(k1 + 1)AQA + ky tr (AQ)A,

kg-*oo

which is equal to Ew[WQW] , W having the Wishart distribution W,(k1,A), as U*
converges to W weakly.

REMARK 3.2.2. We derive the second order moments of the matrix U by using the

identity (3.6), however Professor Sinha pointed out that combining the Wishart moments
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due to Haff[18] with the inverted Wishart prior on a covariance matrix also gives the same

results without using the identity (3.6). Namely, assuming that
W~ Wy(k,2)  and  B70 e~ Wo(k2, A1),

the joint density of W and ©~!

27 pk/z(detA)kﬁjz(detW)(h p=1)/2
T, (k1 /2)Tp (ke /2)(det T)k-2-1)/2 “{

STHW 4+ A)}(dW)(dZ'l), (3.10)

where k = k; + k;. By making a transformation ® = (W + A)/2S-1 (W + A)Y/2, we have
the joint density of W and @

2-7%/2(det A)F1/2(det W)k —2-1)/2
Pp(ky/2)Lp(k2/2)det (W + A)klz

(det @)k =P=1)/ 24y (-.- )(dW)(d@) (3.11)

Furthermore, by integrating out (3.11) with respect to ®, it is seen that the marginal
density of W becomes the Fy(ki,k2;A) distribution. From (3.10), it follows that the

second order moments of the multivariate F-distribution can be calculated by

2~ ?"/2(detA)’”/2(detW)U” p-1)/2 1 -
//W" MT, (ke J2)T, (k2/2)(det =)(F-2- 1/ etr{—gﬂ 1(W+A)}(dW)(dE(l),
3.12)

where W = (W,,). First, integrating (3.12) with respect to W ( having the Wishart

distribution Wy (%, %)) gives

2~ (#k2/2)(det A)(F2/2)
Pp(kZ/z)

X etr (w——lz-A‘Z"l) (d=™1h.

(det 2-—1)(1:2 -p-1)/2

fh(&kzjz + Za + k1 E )
(3.13)

From Haff[18], we get

1
(k2 —p)(k2 —p—1)(k2 — p
where £~! follows the W,(ko, A™!) distribution. By exchanging k with j or j with I,
similar formula for E [Z;; Z;:] or E[X,;T};] is obtained. This gives (ii) of Theorem 3.2.1.

E[Z;Zk] =

—3) {(k2 — p— 2)A; Ar + A A + DAy},

If U follows the F,(ki,kz;A) distribution, then U~! follows the F,(ks,k1; A71) dis-
tribution. Immediately, Theorem 3.2.1 and Corollary 3.2.1 give the following inverse mo-

ments.
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COROLLARY 3.2.2. IfU follows the Fy(ky, ko; A) distribution and ky —p—3 > 0, then

k2

() B =g

AT

:: 7kl k2 4 AR!

(11) E[U U ] —(kl _p)(k'l —p— 1)(’(.‘1 —p— 3)[{k2(k1 il 2)+2}A A
+ (k= p— (AT AT 4 AV AT,

o ko(k —p—1) [ 2 S
Cov (U, UM) = AP AR
(iif) Cov ( ) = P —p - Db —p=9) |l —p=1
+Aj;'A€k +A1:_;'Ai!],
k
(iv) E[U'QU™ "] = 2 [{k2(ky —p—2) +2}A71QA™!

(k1 — p)(ky —p—1)(k1 — p - 3)
+(k—p—-D{(ATIQA™Y) + tr(ATIQ)ATHY,

where @ is any p X p matriz, U™ = (UY), and A~ = (AY).

3.3. SOME IDENTITIES

Recall that our goal is to estimate the eigenvalues of A using the eigenvalues of the random
matrix U. Hence we shall restrict our class of estimators of A to the orthogonally invariant

estimators of the form

A(U) = He(L)H', (3.14)

where H is a p X p orthogonal matrix such that U = HLH' with L = diag(l;,...,[;) and
i >--->1; >0, and ¢ = diag(p1(L),- -+, ¢5(L))-

In an attempt to obtain the unbiased estimate of the risk of estimators (3.14) with
respect to the loss function (3.2), Muirhead and Verathaworn[42] applied Lemma 3.1.2
(being V = (A + U)"'A~'A and g(U) =1 in (3.6)) and derived that

E[tr(A™'A)] =E [ﬁ—iﬂf—l tr (U™A) + 2 4 (DA)

k
k2 2 (3.15)

+ 2 (A-1UDA)].
k>
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Unlike the problem of estimating the normal covariance, it is impossible to get rid of
unknown parameter A completely in (3.15). At this point they used a heuristic approxi-
mation to the right hand side in (3.15), namely they replaced U in the right hand side by
its expectation (ki /(k2 — p — 1))A, which gives the approximation

2(k-p-1) A kh—p-1 ~1“]
P pR— tr (DA) + T tr (U™A)].

From this, they obtained the unbiased estimate of the approximate risk (omitting con-

EHMA”AH%E[

stants) given by

oo 2k=p=D) o hiope1 .
R = mopoD tr(DA) + ————tr (U7 A) ~logdet A. (3.16)

Gupta and Krishnamoorthy[16] and Dey[11] also employed this approximate risk to look
for new estimators. However, this approximate risk is not helpful to find orthogonally
invariant minimax estimators. To this end, we apply Lemma 3.1.2 recursively and obtain

more precise formula for E [ tr (A"'A)] where A belongs to (3.14).

THEOREM 3.3.1. Assume that the third order moment of U ezists and that A(U)

satisfies (3.14). Then
2(k—1)

PN tr (DA)

Blu(ad) =B[22l uwa)+
(3.17)

+ tr (AU tr (DA) + My(A) + MZ(A)],

2
ka(ke — 1)
where D is p X p differentiation operator mairiz whose elements are given by (1/2)(1 +

6,;)(0/0U;),

Mi(A) “Elis f)(k2 =55 {(k — 1) tr (UD?A) + tr(U) tr (D?A) + 2 tr(U2D3A)}
and
My(A) S 14)(k2 — 2){ tr (A™'U) tr (UD?A) + tr (A™U?) tr (D?A)

+2 tr(UzA—lUmA)}.

PROOF. We will evaluate E [ tr (A~*UDA)] in (3.15). Putting V = (A+U)A~'UDA
in (3,6), we obtain

KE[tr (A"'UDA)] =E[2 tr (DUA™'UDA) + 2 tr (DUDA) (5.18)
1
+ (ky —p—1) tr (DA + A"*UDA)].
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From Lemma 2.1.5, the first term of the right hand side in (3.18) becomes
tr {(DUAT*U)DA} + t:[{(UA™'U) D'} DA].

Applying (iv) of Lemma 3.1.1 to the first term above and using the fact that U, A, D,
and DA are symmetric, we have

tr (DUA='UDA) =Zi'-2*l?- tr (A-'UDA) + % tr (A1) tr (DA)

+ tr (UATUD?A).

Similarly we get

tr (DUDA) = E-'z’il tr(DA) + tr (UD?A).

Substituting these two equations in (3.18) and some simplification give

E[tr (AT'UDA)] :?—L—I_E[kl tr (DA) + 2 tr (UD?A) (3.19)
2 — .

+ tr(ATU) tr (DA) + 2 tr (UAT'UD?A)).
Furthermore, an application of Lemma 3.1.2 (being V = (A + U)A™U(D?A)U in (3.6) )
to the last term of the right hand side in (3.19) yields

kE[tr (UAT'UD?A)] =E [2 tr {DUA™'U(D?*A)U} + 2 tr {DU(D?*A)U} (3.20)
3.20
+ (ky —p—1) tr (UD?A + UAT'UD?A)].

Use Lemma 2.1.5 and note that (D?A)U and UA~!U are symmetric, the first term of the
right hand side in (3.20) becomes
tr {(DUATUYD2?A)U} + tr [UAT'UD{(D*A)U}]. (3.21)
From Lemma 2.1.5 and (iii) of Lemma 3.1.1., we get
D{(D?A)U] = (D3AYU + %( tr D2AYI, + %DZA.

Applying (iv) of Lemma 3.1.1 to the first term of (3.21) and putting above equation in the

second term, some simplification leads to

p+3
2

1 -~ ~
+5tr (ATU?) te(D?A) + tr (U2ATUDA).

tr {DUAT'U(D?A)U} = tr (UAT'UD?A) + % tr (A~1U) tr (UD?A)
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Similarly we get

+

tr{DU(D?AW} = 2T = —— 2 ir (UD?A) + ; tr (U) tr (D?A) + tr (U2D3A).

Putting these two equations into (3.20), we get

E[tr (UAT'UD?A)) ——-—-E[(k1 + 1) tr (UD?A) + tr (U) tr (D?A)
ks —
+2tr (U?D*A) + tr (A1) tr (UD?A) (3.22)
+ tr (AU tr (D?A) + 2 tr (U?A™*UD3A)).
From (3.15), (3.19), and (3.22), we finally get (3.17), which completes the proof.
Note that the right hand side of (3.17) in Theorem 3.3.1 contains the differentiation D

up to the third degree. The following corollary is obtained from (3.15) and (3.19), which

contains the diffferentiation D up to the second degree.

COROLLARY 3.3.1. Assume that the second order moment of U ezists and that A(U)
satisfies (3.14). Then

2(k-1)

. ky—p—1 A -
-1 _ 1 p -1
E[tr(A7A)) _E[——————kz tr (UA) + RO tr (DA)
2 “
] _1 ,
5D tr (A7) tr (DA) (3.23)
P tr (UD?A) + ——— tr(UA’lUD2A)].
ka(ke — 1) ko(kz — 1)

REMARK 3.3.1. Formula (3.17) can be generalized up to k-th order (k is a positive

integer) provided k-th order moments exist. But we don’t develop it here.
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3.4. IMPROVING UPON THE UNBIASED ESTIMATOR

Here we give two types of estimators which beat the unbiased estimator (3.5) with respect

to the loss function (3.2).

3.4.1. HAFF TYPE ESTIMATORS

Consider the estimator of the form
Ag(U) = ar{U + 2t(2)I, } (3.24)

where a; is a constant and t(z) is an absolutely continuous, nonincreasing, and nonnegative
function of z = 1/ trU~!. It is analogous to the empirical Bayes estimator of the normal
covariance matrix by Haff[19]. Note that these estimators belong to the class (3.14).

To prove that Ag beats Ayy under certain conditions on t, we need the following

lemma.
LEMMA 3.4.1. Let U have the Fy(ky, ko; A) distribution. Then we have an inequality

- [t(zt)rté;al—l] <E [t(Z)(IIZ: :1;+ 1)],

where equality holds iff p =1 and t(z) is a constant.

PROOF. Put g(U) = t(2)/ tr (U™!) and V(A,U) = (A + U)A™! in (3.6). Then,
noting that

tr(DUA™Y) = P%l trA™!  (see Haff[18]),

the first term of right hand side in (3.6) is equal to
(p+DE[t(z) tr A™1/ te (U™1)].
Using (8/0U) tr U~ = ——U(;)Z (see Haff [19]), we get

Kl o) = t(z)U(“z)z . t'(2)Us
ou (trU-1)2 ° (trU-1)%°
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From these and the equation tr A,yB(1/,y = tr AB for any p X p matrices A and B, direct
calculation shows that (3.6) provides

t(2) trA"l] B [zt(z) tr(U™PA™L +U-%) 28" (2)tr (U2 4 U-1A7)
A (trU-1)2 * (01

+t(z)(ky—p— 1)]

Note that t(z) > 0. Applying tr (U'A™ ) < (trU ) (trA ) and tr U~%/(tx U 1)% <
1 to the first term of right hand side in (3.25) and noting that the second term of right

- [ (3.25)

hand side in (3.25) is less than zero because of t'(z) < 0, we get the desired result.

THEOREM 3.4.1. Forp > 2 and ky > p+1(z = 1,2), the estimators of the form (3.24)

given by a; = (ko —p—1)/k1 and t(z) an absolutely continuous and nonincreasing function

bounded by
2p—=1)(k1 + k2 —p-1)
ki(ks —2) ’

beat the unbiased estimator Ayy under the loss (3.2) .

0<(z) <

(3.26)

PRroOOF. Put
a1(A) = Ry(A,Ap) — Ri(A, Auw).
Noting that log |I + A| > tr A — (1/2) tr A? for any positive definite matrix A, a condition
for a;(A) < 0 may be written as

1 art(z) tr A7?
B |58%() ~ 1(2) + -—-—-——] <o.

trU-1
Using Lemma 3.4.1 it is seen that the condition (3.26) is sufficient for a;(A) < 0.

REMARK 3.4.1. Since S = kU converges to Wishart distribution W, (k;, A) weakly
as n, tends to infinity, the estimators in Theorem 3.4.1 with t*(z) = t(k22) reduces to the

estimators of the covariance matrix A given by
Ag = (1/k)(S + ut* (u)ly),

where #*(u) is an absolutely continuous, nonincreasing function of z = 1/ tr §~ ! bounded
by

0< t*(2) < 2(__13:__1_)_
ks
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Theorem 3.4.1 implies that Ay dominates Ayy = S /k1 which was obtained by Haff[19)].

3.4.2. PERRON TYPE ESTIMATOR

For notation, let L; = diag(l1,...,li-1,0,lit1,...,0,),i=1,...,p, and

1 ifm =0,
trm(L)"—" E]_S,‘:l(...("msp l—_[;n=1 l|',- ifm:l,...,p,
0 otherwise.

Furthermore, let

Wim = tTmo1(Lg) tr 71 (L) = tr (L) tr -1 (L)

and let dy,...,d, be nonnegative constants with dy < --- < d,. Consider the estimator of

the form Ap = Hp(L)H' with o(L) = diag(¢1(L), .. ,op(L)) and

p
Pi(L) =1 Y Windm. (3.27)
m=1

We shall record the computational lemma from Perron[46].

LEMMA 3.4.2.
(1) trm (L) =l trm—1(Ls) + trm(L;).
(ii) Z tr m(Li) = (p — m) tr (L)
(ii1) Setting

Lij = diag(lla-"711'—130»l|'+11"'7lj—1)0alj+17°"7l{p) fOf‘?:}L—j,
>0 trm(Li) = (p=m)(p—m—1) trm(L).
t gFL

(iv)

trm(Li) = trm(Ls) = (4 — 1) trom-1(Lij)
(v)

for i #£ 3.
tr2 (L) — trppo1(L) tr g1 (L) >0 form=1,...,p—1.

PROOF. (i) may be obtained from the combinatoric calculation.
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(ii) Observe that
Z tr m(Li) = Z{ tr (L) = L 47 -1 (L)}

=ptr,(L) - Zl.' b m-1(Li)

= (p - m) tI‘m(L),

Zli trm——l(Li)ZZli Z Hl,\,-

f Aj<e<im-1 j

i

= Z l,‘Hl,\’v-f- Z Z{HZ).,'
] 3

<A1 < <At A1 <iCA <At

+e Z liHlA,'

Ay <oA1 <1 J

=m 3 HZM

A< CAm g
=m tr,, (L).

since

(iii) Using (i) of this lemma, it can be seen that

ZE trm(L,-J-) = Z(p-—- m — 1) tr,, (Ly)

¢ ‘
=({@-m)(p—m-1)trn(l),
which completes the proof of (iii).
(iv) Using (i) of this lemma and the direct calculation give the desired result.

(v) If m = p the proof is trivial. In order to complete the proof for m < p — 1, define
A(kz) ={(a11,. .., 01k, 021, .-, 02k, ) 1 k1 =2(m —k2),1 < a1y < -+ < anpy, <1,

1< ag < -+ < ag, <p{am,...,0m, } N{aa1,. .., an, } = ¢}

By a combiantoric argument it can be seen that

m 2 k.
(L) = trmaa (D) trma@ = Y, > [TII%..

ka=0V(2m-p) A(kg)r=1s=1
which is always greater or equal to zero. This completes the proof of (v).
LEMMA 3.4.3.

(i) W = (w ;) is doulbly stochastic.
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() gy ] = - g <o

(iih) Z l,'w,-m(Ll)‘ - llj‘wjm(L)
tT Y

=p-—m.
1>

(iv) Ifd; <---<dp, then
di<¢1 <2<+ < <dy
where ¢, :Efnzl Wypn Ao -

(v) Ifly >--->1,, then o1 > --- > @, where ;s are given by (3.27).

PROOF. (1) From (i) of Lemma 3.4.2 it may be seen that

Swin(@)= Y gt - T S pom ) - pom) =1,

t

Also,

o trm-l(Lg) _ tr (L)
;w;m _;[ trm—l(L) trm(L)]
_ tro(Ly) _ tr (L) =1
~tro(L)  trp(L)

since tro(-) = 1 and tr,(L;) = 0. Finally, using (i) and (v) of Lemma 3.4.2 and some

calculation show that

tm—1(Li) tr (L) — v (Li) tr -1 (L)

tr m—1(L) tr (L)
Ry (B — (Tt pea(E))
- tr pp—1(L) tr (L)

Wim(L) =

> 0.

These complete the proof of (i).

(i) is obtained from the direct calculation.
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(iii) If m = p then Liwim(L) = jwjm(L). Form < p -1,

l,-w,-m L ~lj~w,-m L
Y (12—1,‘ (L)

t g<
TR o) e e l)/e
R R T B L)
G e o e e o )

(by (1) of Lemma 3.4.2)
_ trm-1(Lij)  trm(Lij)
ZZ[ tr po—1(L) tr (L) ]

1 1<t

(by (v) of Lemma 3.4.2 )
£ o — 1(L,_, trm(L,'j)
‘ZZ[ trpm-1(L) trm(L)]

t g

= o= m+ Dp—m) - (p—m)(p—m— 1)
(by (iii) of Lemma 3.4.2 )
=p-m,
which completes the proof of (iii).
(iv) Observe that

P
= Z Wi A

=d; + Z trm(L) dmt1 — dm ).

Since trm(Li) < trm(L;)if7 < 7, it can be seen that ¢; is nondecreasing in 7 . Moreover,
¢i is convex combination of di,...,d,, therefore d; < ¢; < dp,2=1,...,p.

(v) i< j, then

4
i — @5 = liwindy — Gwjidy + Y (liwim — §wjm)dm
m=2
_ tro(L;) — tra(L)

P
D) di+ D (lim ~ 105 m )drn.-

m=2
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The remainder of the proof is to see that Liwim — L[wjm > 0form =2,...,p. fm=p
then liwim = ljwjpm. For m < p—1, similar argument as in the proof of (iii) of this lemma,
leads that

Liwim —lLiwjm  trm_1(Li;)  trp(Lij)

-1 trm-1(D)  trm(L)
= (£ w0 22 5

which completes the proof of (v).

The next lemma describes the action of D? over the estimators proposed in this

section.
LEMMA 3.4.4. Put D*[Hp(L)H'| = Hp®(L)H' where
WD (L) = diag (K (L), ., oD (L)).
Foi=LY, Wimdn, then 02 <0,i=1,...,p.

PRrOOF. Applying Lemma 2.1.10 gives that

(1) “Ezl’w!m l_iwjm +Zwtmd +l lzwqm

JFEL m

Observe that

Liwipmdy, — 1 w_,m £ g~ (L,‘j) trm(L'-j)
I R SLON B o e

m

-1

—Z{p}_j t;’",ffi’))(dmﬂ dm )+d1}

J#!
—Z(dm+1 i) SR+ - 1
p—1

(p—m ) m(L )(dm+1—-dm)+(1’—1)d1'

m=1
The last equality follows from (ii) of Lemma 3.4.2. From (ii) of Lemma 3.4.3 and noting
that

Z w!m m — dl + Z trm(L )tr_l(L)(dm-}-l M)a

m=1
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it can be seen that

? P21 gr2 (Ly)
E w,m m:—Ew,md +d1+Z — T (g1 — )

= tr 7 (L)
These imply that
p-1 2
w_ptl (p—m—=1)tr(L;) = tr (L) B
o) = Ty + ;‘:1{ (D) 4 1) (dppt1 — do). (3.28)

Again applying Lemma 2.1.10 to (3.28), the straightforward calculation leads to

O ) (LB CECATL) R (5}

22+ 2 (D)~ 1) w2 (D0 = §)
p-1
0 [(p—m—1)tr,(L;) trfn(Lg)}
X (dme1 = dm) + 2; o, { Bn(D) w2 (D) ) Gt dm)
Note that
tr o (Li) — trm(Ly) <0
Li—1 -7
and
brm(Li) = tri(Ls)
l.’ —_ l_,' -
As tr,(L) =1 trn—1(L;) + tr,.(L;), we have
6 1 trm..]_(L,‘)
e = — < 0.
Ol; tr (L) tr2 (L) — 0

From these and d,,+1 > d,,, we can conclude that (,052) <0.

THEOREM 3.4.2. Assume that ki > 3 for1=1,2. Let
Ap(U) = HoF (D),

where H is an m x m orthogonal matriz, U = HLH' so that L = diag(ly,..., 1) are
eigenvalues of U, and ©F (L) = diag(pT,...,0F) with ©f given by (3.27) and d; =
(kg —p—1)/(ky +p—2i+1),i=1,...,p. Then the estimator Ap(U) beats the unbiased
estimator (3.5) with respect to the loss function (3.2).
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PRroOOF. Using Lemma 2.1.10, (i) and (iii) of Lemma, 3.4.3, the direct calculation leads
to

tr(DAp).—.Z{(p m +1)dp +Zz 37, Wi } (3.29)

™m

From (ii) of Lemma 3.4.2, we get

0 _ .5 trm(L
%:ltb’l"‘w:mdm = [ 31 [dl + Z trm(L) m+1 - dm)]
-1

D (e YA RELED

which implies that
tr(DAp) <) (p— m+ 1)dnm. (3.31)
m

Note that E [ tr (A~!U)] = pk1/(k2 — p — 1) from Theorem 3.2.1 and that
log det (A,) > Z{log lm +logdn}

from the convexity of logarithemic function and the Jensen’s inequality. Applying Corollary

3.3.1 and using (3.31) give that

2(k—-p
<
Ri(A,Ap) - Ry(A,Apy) < Zd Falks—p _1)}:(19 m + 1)d
4 - o
—— _E[tc{UD?A + UA'UD?A}].
+ kz(k‘z—l)E[ r{U + H

Note that the last term of the right hand side involving the expectation is negative by

Lemma 3.4.4. So we can see that

2(k—p—-
1)d
Rl(A AP) R]_(A AUN)'( Zd kz(k‘z—— —1) Z(p m+
ko —p—1
- zlogdm +plog(2—kp——) -, (3.32)
1

with d = (k2—p—1)/(k1+p—2m+1), m =1,...,p. The remainder of the proof proceeds
as in Gupta and Krishnamoorthy[16]. Lemma 3.1 in Gupta and Krishnamoorthy[16] tells
us that

P
Z log(k+p—2m+1)<plogk

m=1
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for any positive integers k and p, k > p. From this it follows that the right hand side of
(3.32) is less than zero if

ky -1 ky—p—1 2(k—-p-—1) p—m+1
Writing the left hand side of (3.33) as
k1+p 2m +1 ]c1+p 2m+1

__p(k2~p-1)+2klz p—m+1
k2 ky +p—-2m+1

shows that (3.33) holds if and only if

equivalently
)
Z{ p—m-+1 _p—m—}—l}io.
] k1+p—2m+1 k1
Let
_ p—m+1 p—m+1
am_k1+p—2m+1 ky

and T,; = G + Gp—m+1, m = 1,...,p. Note that z,, < 0if m < p/2 and that ag,41y/2 =0

if p is odd. So we can see that

P }:fnlzl Ty < if piseven
> am =
m=1

S Di2s <0 if pisodd.

This completes the proof.
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3.5. ORTHOGONALLY INVARIANT MINIMAX ESTIMATORS

Muirhead and Verathaworn[42] derived the best upper triangular invariant estimate of the

form Ay (U) = T'GT where T is upper triangular with the positive diagonal elements,
U=TT,G= diag(d{",...,dﬂ‘), and

2 (k2 —p—1+10)(ka—p—2+1)
! (ki +1—=)ka—p—-1+)+(—-i)k—p—-1)

i=1,...,p. (3.34)

Since the group of upper triangular matrices is solvable, Ap is minimax and beats the
unbiased estimator Au N in terms of the exact risk R;. However it is not orthogonally
invariant so that the eigenvalues of Ay may not be taken as estimates of those of A.

Later, Gupta and Krshinamoorthy[16] considered the estimator
Aam = Hp*M(L)H', (3.35)

where o*M (L) = diag (oM (L), p4M (L),...,02M (L)), p2M (L) = dM1;, and dM is given
by (3.34). Their Monte-Carlo study indicated that it is minimax. However, it has not been
established that the proposed estimator has a frequentist risk uniformly smaller than the
minimax risk.

In this section, following Konno[31], we shall prove the minimaxity of the estimator
A anr when p = 2 by showing that A 4ar has smaller risk uniformly than Apr. Furthermore,

we consider the estimator of the form

Apy = HoPM(L)H', (3.36)
where oM = diag (pT¥,pE¥) and
T M =( hogwy B dM)ll
1 [ A ’
! I
PM (2 _gM dM)l.
o (i g )

The estimator (3.36) is a special case ( p = 2) of the Perron-type estimator. We shall show

that this estimator is also minimax.
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THEOREM 3.5.1. Assume that k; > 3 for 1 = 1,2 and that the third order moment of

U exssts. When p = 2, the estimator
Aam(U) = Hp*™ (L)H',

where 4™ (L) = diag (dM1,,d¥ 1;) and
1 2

M = (k2—3+i)(k2—-4+i)
(k1 +1—d) (ko —3+1)+(2—19)(k—3)’

i=1,2, (3.37)

beats the minimaz estimator Ay with respect to the loss function (3.2). So it is minimax.

PRrRoOF. First, assume that p > 2. Consider the estimators of the form
A4(U) = Ho(L)H' (3.38)

where U = HLH', o(L) = diag(p1,...,%p), and ¢ = dily (i = 1,...,p) with nonnegative
constants dj < --- < dp. From (3.17) in Theorem 3.3.1, the risk of A4 can be wriiten as

ok — 1)

Ry(A,A4) =E [m

tr (DA4) + 2 tr (A7U) tr (DA,)

ka(ks — 1) (3.39)

ki —p—1 o A A '

+-l—-kg-——-tr(U—lAA)+M1(AA)+M2(AA)+Cp],
2

where M;(A4) and My(A,) are given in Theorem 3.3.1 and

Z log(d;l;)

=1

C, =-E +logdet A — p.

Note that C, is a constant term which is independent of parameter A. Using (iii) of

Lemma 2.1.10, we get
P
tr(DAL) <D (p—i+1)d.
t=1
Putting above inequality in (3.39) and noting that E [ tr (A™'U)] = pky/(kz — p— 1), some
simplification shows that R;(A, A 4) is bounded above by
2Ak-p-1) < ki —p—1

P S— ;(p— i+ 1)di + —L-E_-_._Zd‘- +E[M(As) + My(As)] + Co.
) (3.40)

=1
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Since Ml([l 4) and MQ(AA) involve in higher order derivatives of D, it is difficult to
evaluate their expectations for general p. From now on, we assume that p = 2. Then it is
sufficient to show that

Ri(A,Agm) < Co+2

in order to prove minimaxity. Note that the right hand side is the risk of minimax estimator
Apr when p =2 and d; = dM for i = 1,2.
Now we evaluate Mi(A4) and Mz(A4) in (3.40) respectively. From (iii) of Lemma
2.1.10, we have
—da)(l —20p)
2(h -2 7
@) 7y (41— )2l — 1)
P2 (L) - 2(11 _ 12)2 y
(d]_ — dz)(-—Sl]_ + 512)
4(ly = 1p)3 ’
@),y _(d1 = d2)(5l1 — 3l3)
P2 (L) - 4(11 _ 12)3 .

The term inside the curly bracket of M 1(A 4) in Theorem 3.3.1 can be rewritten as

#(L) NG

(3.41)

(L) =

(k = I{Le(D) + eS2(D)} + (1 + L) + o$(D)} + 2{B68P (L) + Bo5 (1)),

(3.42)
and, from (3.41), (3.42) becomes
(di — d2)[(k — D)1y + 1)1y — )2 + 201 (1, + 1))
2(l — 13)3
which follows
B[M(A)] < 2= N = ) (3.43)

ko(ky — 1)(ko — 2)’
since d; — dy < 0 and (ll + lz)/(ll — lz) > 1.

The term inside the curly bracket of Ma(A4) can be rewritten as tr (A~'Hh(L)H')
where h(L) = diag(hi(L), h2(L)) and

h(L) = {hpi(L) + LD (DM +{657(L) + o ()12 + 265(L)E, i=1,2

Putting (3.41) into this, we get

—do{(h ~L)’h + LB+ B} _ (di —da)hy
2(11 — 12)3 - 2

hy(L) =
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hz(L) :(dl - dz){l% + Zl%lz - 2l1l‘2'2 + lg}lz < (d]_ - dz)lz
2(11 - 12)3 - 2 '

From these, we obtain that

2(dy — d3)
ka(ky — 1)(kz — 2)
_ 4(dy ~ d3)k;
ko(k2 — 1) (k2 — 2)(k2 — 3)°

E[M;(A4)] < E[tr (A7)

(3.44)

Combining (3.43) and (3.44) gives that

2(k ~ 3)(d1 — da)

E[My(Aa) + My(Ag)] < P —

From this and hazardous calculation, (3.40) with p = 2 provides that

2k — 3)
ka(kz — 3)

ki —3 - R
1k2 (di +d2) + E[M1(A4) + Ma(Ax)] + C2
by —2)+ k=3, k-1
d ——ds + C5.
= -2k —3) TR

(2d1 + da2)+
(3.45)

Finally, letting d; = dM (i = 1,2) given by (3.37), we get that
Rl(Aa AAJIJ) é Rl (A; ALf)v

which completes the proof.

REMARK 3.5.1. If E[M;(As) + My(A,)] < 0 for general p, then (3.40) becomes
the upper bound (due to Gupta and Krishnamoorthy [16]) for the approximate risk of
the estimates A4. From this, it is seen that the approximate risk given by Muirhead
and Verathaworn[42] neglects the terms Ml(A 4) and Ml(A 4) as long as we restrict our
attention to the class of the estimators of the form (3.35). Furthermore we expect that
A 4p is minimax for higher dimensions as pointed out in Gupta and Krishnamoorthy [16].
But we can’t give analytic proof since evaluation of E[M; + M| is much more difficult
than that done in Theorem 3.5.1.

REMARK 3.5.2. In Gupta and Krishnamoorthy[16], several competitors among possi-
ble choice of d;’s are considered . The risk of the estimators of the form (3.35) is bounded
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above by the left hand side of (3.45). By differentiating (3.45) with respect to d; or da,
then it is easily seen that upper bound of the risk of the estimators of the form (3.35) is
minimized when d; = d¥ (i = 1,2) so that it seems that dM’s are the best constants for

the estimators of the form (3.35) when p = 2.

REMARK 3.5.3. From the Monte-Carlo study of Gupta and Krishnamoorthy[16], it
is found that the estimator A 4 performs better than the approximate Bayes estimator

due to Muirhead and Verathaworn[42] when p = 2.

THEOREM 3.5.2. Assume that p = 2 and k; > 3 for ¢ = 1,2, and that the third
order moment of U emists. Let U = HLH' with L = diag(ly,l2) and Iy > Iz, and let
"M (L) = diag (w7 ¥ (L), p3 M (L)) where

l [
PM _ 1 M 2
¥Y1 (L)"(Zl+lzdl + ll-{-lzdgl)ll’

l l
PM (T =( 2 M 1 M)l’
L) ( ) Zl+12 1 +ll+lzd2 2

(3.46)

and d¥ (i = 1,2) ss given by (3.37). Then the estimator
Apy(U) = HPM(L)H'
beats the minimaz estimator Ay with respect to the loss function (3.2). So it is minimaz.

PRrOOF. Note that (3.46) is a special case , i.e., p = 2, of (3.27). Use Theorem 3.3.1

and write the risk of Ap M as

« 2(k — 1) A 2 -1 A
— e S —_— AT U)tr (DA
Rl(A,ApM) E [kz(kz — 1) tr(DAPM)+ kz(kz — 1) tI‘( ) I'( pM)
ki —3

+

" tr(U_lApM)+M1(APM)+M2(APM)

- logdet (A_}'APM) - 2]

From (3.29) and (3.30), we can see that

A 251 M
tr(DApy ) =2d¥ + d&3f + m(dfl —dy ).
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From these, we can see that

2(k-1)

: 2k —
k‘z(kz — 1) tr (DAPM) < 2(3 z)dM

Fa(kz — 1)

2
tr (A™U) tr (DApn) e f{c)l(kz -5 Z(g —i)dM¥

4l l(dY — dif)
kg(kz -— 1)(11 + 12)2
From these and noting that E[ tr (A~1U)] = 2k; /(k; — 3) by Theorem 3.2.1, we can see
that

2
kg(kz — 1)

tr (ATD).

2
Ru(A, Arae) < s 35—
i=1

=1
+E [M1 (Apay) + Ma(Apar)

Alyly(dM — dM)
k(s — 1)(I; + 12)?

—logdet (A™*Apy) — 2].

(3.47)

tr (A7)

Now we shall evaluate the expectation of the terms inside the large bracket of (3.47). We
shall use notation ¢, and d; instead of @™ and ¢, i = 1,2, for convenience. From (iii)

of Lemma 2.1.10, we may see that

2 _ 1 212 } & —d
LP]_ {2(ll+lz) +(ll+lz)3 ( 1 2)

@) _ 1 21% } & —d
v {2(11 +12) * (h+1)3 (dy = da)

5 612 (3.48)
(3) _ — 2 di — d
Y1 {2(11 T 1) + (I, + 12)4}( 1 — dz)
(3 _ 3 61 } & _d
R F e A ez LR
From (3.42) and (3.48), the term inside the curly bracket of M (Apar) becomes
k-1 2l 1, { 1201, }] k-1
k—~ di —dz) < d; — da), 3.49
R~ AU evs | CROERr LR
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since k > 6, dy < dz, and l1l2/(ly + 13)? < 1/2. Write the term inside the curly bracket of
My(Apy) as tr (A"YHR(L)H') where h(L) = diag (hy(L), h2(L)) and

hi(L) = {1 e (L) + e (DM + {2(D) + P (D)2 + 26852(0)B, i

= 1,2,
Then we can rewrite
o 4lyl5(dy — d) _1
Ma(Apm) + Falhs — D)(i 1 B)? tr (A™U)
as
4 -1 '
ka(kz — 1)(k2 - 2) (AT Hg(LH)
where g(L) is a diagonal matrix whose elements are given by
— 2 —
(L) =h(r) + 2= DG = &)
(k2 — 2)1 E(dy — db) ’
L) =hy(L
92( ) 2( )+ (ll _[_12)2
Putting (3.48) into (3.50) and some simplification lead to
] 1 .
gl(L) = '2i + m{(’cz - 1)1%12 + 2(k2 - 5)1:151:,:>2 + (kz + 3)&@} (dl - d?.)
and
'l 4 -
Since k2 > 3, d; < da, and I} > I3, we get that
l; )
g,(L) S §(d1 - dg), 1= 1,2 (351)

Again using E [ tr (A™!U)] = 2k, /(k2 — 3) and combining (3.49) and (3.51) provide that

A A 4ly15(dy — da) _
. [MI(APM) FMo(Brae) + e gy (AT )]
2(k—1) 4k,
= [kz(kz ~1)(ky - 2) + ko (ky — 1)(kz — 2)(kz — 3)]((11 —dy)  (8.52)
2k — 3)(dy — d»)
" ka(ky —2)(k2 —3)°
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From the convexity of the logarithmic function and the Jensen’s inequality, we can see that

2
log det (Apar) > Z{log li +logd;}. (3.53)
1=1

Now we set d; = d¥ (i = 1,2) again. From (3.47), (3.52), and (3.53), some simplification

shows that the risk of the estimator Apys is bounded above by

balhy = 2) £ k=3 o T 1

dM + Cs,
(k2 — 2)(kz — 3) kg — ?

where

Co=—E[) log(d¥ )] + log det (A) — 2
1=1,2

and dM, ¢ = 1,2 is given by (3.3). This completes the proof.

REMARK 3.5.4. As far as we consider the estimator of the form (3.14) with (3.27),
i.e., Perron-type, we can see that E[M; + M;] < 0 for general p. However, to prove the
minimaxity in Theorem 3.5.2, we need sharper bound of E [M; + M] for p = 2. It seems
difficult to obtain similar bound of E [M; + M>] for general p.

REMARK 3.5.5. Although both Asnm and Apy are minimax, it seems that Apar is
preferable to A4y since possibly A 45 may violate the desirable order oM > oAM  nor

does Appys.

REMARK 3.5.6. To apply Theorem 3.3.1, we assume the existence of the third order
moment of the matrix U. But the minimaxity of Aan and Apar seems still true provided

the moment of the matrix U exists.

REMARK 3.5.7. Sharma and Krishnamoorthy[47] and Takemura[51] independently
obtained an orthogonally invariant minimax estimator for a normal covariance matrix by
averaging the minimax estimator of James and Stein[24] over p X p orthogonal matrix with

respect to Haar measure. Following their approach for p = 2, the estimator of the form

Ast(U) = HpST (L)H'
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where %7(L) = diag (617 (1), ¢§7 (L)) and
ST Vi M VI ou
o= (et e

"0 = (Pt + ) -

must be minimax. But we can’t give direct proof as in Theorem 3.5.1 or 3.5.2.

and

3.6. IMPROVED ESTIMATORS UNDER THE SQUARED ERROR LOSS

In this section, we will look briefly at the problem of estimating the eigenvalues of A using
the loss function (3.3). It is shown in Leung and Muirhead[34] that, for the loss function
(3.3) and k3 > p + 3, the best estimator of the form aU is given by A B = asU where

(k2 — p)(kz — p - 3)
T hitp+ V(b —p—1) +pk+2

(3.54)
We consider alternative estimators of the form
Ag = ay(U + 2tI,)

where z = 1/ trU~! and t is a nonnegative function. Here we lack the generality of ¢
under the loss function (3.3). Now our goal is to find a sufficient condition under which

the estimators A g beats AB under the loss function (3.3). Put

az(A) =Ry(Ag,A) — Ry(Ap,A)

tr (UA™?) trA'l] [ tr A2 ]
—o2 _ 2,2 ‘ _
.,aztE[ e ] 2a2tE[trU-1 +aB | e | (359)

To evaluate (3.55), we need the following lemma given by the application of the identity
(3.6).

LEMMA 3.6.1. Let U have the F,(ky, kz; A) distribuison with ky > p+ 3. Then the
following inequalities hold:

trA=2 (ki —p+1)(k1 —p+3) trU~2
[( tTU'l)z] R Sy E[(tTU"l)Z]’
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-1 -2
(i) E[trA 1]2]%]3[ trU ]+k1—P—1+25
2

trU- ({',I‘U"l)2 ks
where
_plki—p-1)42
€= Pk —2) (3.56)
- tr (UA™?) 2 (k1 + ko)(ky —p+ 1) + ky (ko — 2)
( )E[ trU-1 ]<(k2—P—1)(k2-—2)[ — k2 -
(kl - p+ 1)(k1 —-p—+ 3) tr U2 kl(kl —p— 1)
* P ]E[urv-l)?] ka(ks —p— 1)’

PROOF . For (i). Take g(U) = (trU~1)"? and V = (A + U)A~? in the F identity

(3.6). From similar calculation in the proof of Lemma 3.4.1 we may see that (3.6) provides

i e e | 539

Hence it suffices to show that

tr (U-1A1) ki —p+1 trU~2
B | < MR ) (3:58)

Set G = U~!. Then it is seen that G follows the Fy(kz,k:1; A1) distribution. Applying
Lemma 2.1 (being h(G) = (trG)~2 and V(G,A) = (A™! + G)G? in (3.6)) with the
distribution of G instead of U and noting that

tr DA™ G? p-;—2t (A™IG) + = (trA D(tr @)
and
trG® = 2p;3t G2 + 2(trG)2

similar argument leads to (3.58), which completes the proof of (i).

For (ii). Let t(z) be a constant in (3.25). Then the remainder of the proof is to
evaluate E[ tr (U"A~1)/( trU~1)?]. Using the fact p trU~2? > (trU~!)? and making a
transformation T = A~Y2UA~Y/2 we can see that the term is bounded below by

L] 2 e e asn

7



Noting that T-! has the Fy(k2, k1;I;) distribution and using Lemma 3.4 in Leung and
Muirhead[33], right hand side of (3.59) is bounded below by {p(k1 —p—1)+2}/{p*(pk2~2)},
which completes the proof of (ii).

For (iil). Set g(U) = (trU™!)™! and V(U,A) = (A +U)A™2U in (3.6). From (iv)
of Lemma 3.4.1 and similar argument in the proof of Lemma 3.4.1, we may see that (3.6)

gives

tr(UA”2):| — hE [ trA“l] - [ tr(A™IU1 4 A72)

tr U1 tr U-! (trU-1)2 ] (360)

(kz—p——l)E[

First put (3.25) (¢(z) being a constant) into the first term in right hand side of (3.60) and
use (3.57) and (3.58). Then we may get the desired result.

THEOREM 3.6.1. Assume that k2 > p+ 3 and p > 2. Let

8= 2(]{.'2-—2)(]{}2-4) [kl—p+1+28_k1(k1—p~1)
(ki —=p+1)(k1 —p+3) azks ka(kz —p—1)
_ 2 {(’ﬁ + k)b —p+ 1)+ ki(kz—2)

(k2 —p—1)(k2 - 2) k2

4= +ki)£ki - p+3) }]

where a; and ¢ are defined by (3.54) and (3.56) respectively. If B > 0, then the estimators

of the form

Ag = ay(U +tL ) trU™Y),
where 0 < ¢ < f beat Ag under the loss function (3.3).

PRrROOF. From (ii) and (iii) of Lemma 3.6.1, the coefficient of ¢ in (3.55) is bounded

above by
[ 43 {(kl + ko) (ky —p+1) + ki (k2 — 2)
(k2 —P—- 1)(k2 — 2) ko
(k1~P+1)(k1-—p+3)} 4ay [ trU=2 ]
- = ———— 3.61
+ ko —4 ko E (trU—l)Z ( )
L 2az {azkl(h -p=1) (by—p—1 +2€)}'
kz kg —pP— 1
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Noting that € > 0 and that the term inside the second curly bracket of (3.61) is bounded

by
(bt —p— 1){(792 —p(—kzl)j;_(klz);H D) 1} <0

it is seen that (3.61) can be bounded above by

_a%ﬂ(kl —p+1)(ky —p+ 3)E [ tr U2 ] (3.62)

(k2 — 2)(ky — 4) (trU-1)2
Using (i) of Lemma 3.6.1 and (3.62), straightforward calculation shows that the sufficient
condition for ay(A) < 0 becomes t? — 5t < 0, which completes the proof.

REMARK 3.6.1. Similar to Remark 3.4.1, we can see that Theorem 3.6.1 implies
Theorem 4.6 in Haff[19].

Unfortunately 8 is not always positive when p = 2. We carry out numerical calculation
to see which k; and ky satisfy 8 > 0. It indicates that § is monotonically decreasing in k1
for each fixed kg, which follows that 3 has just one sign change. Table 1 shows that ,for
example, § is not positive for k; > 43 when k; = 15. It also shows that the minimum of
k. such that 3 doesn’t take positive value for each ks first goes down and then goes up as

ky increases. When p > 3, our numerical calculation shows that 3 is always positive.

Table 1. For fixed k3, minimum of k; under which 8 is not positive.

ks 10 11 12 13 14 15 16 17 18 19 20 30 40 50
ky 298 T4 53 46 44 43 43 43 44 46 47 64 83 102
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