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Abstract

The Qinghai-Tibetan Plateau plays a critical role in regional and global climate change.
More than 60% of the surface area of the plateau is covered by grasslands. To reveal the
potential contribution of grassland ecosystems to climate change, I examined the CO2 exchange
between the atmosphere and an alpine Kobresia meadow (lat 37°29—45'N, long 101°12-23'E,
3250 m a.s.l.) on the northeastern Qinghai-Tibetan Plateau. The ecosystem CO2 flux was
measured continuously using the eddy-covariance method from August 2001 to December 2002.
I examined the diurnal and seasonal variations of carbon fluxes and assessed their
environmental and biological controls. I further explored the long-term pattern of carbon
dynamics in the alpine ecosystem using meteorological and biomass data available for the
period from 1981 to 2000 with a simulation model of the carbon cycle in terrestrial ecosystems
(Sim-CYCLE).

The major findings from the CO2 flux measurements were as follows: (1) The daily
changes in CO2 exchange showed COz2 uptake in the daytime and CO2 release in the nighttime
in summer and small CO2 release during all the day in winter. In 2002, net ecosystem
productivity (NEP) during the five months of summer amounted to 138.4 g C m™. NEP during
the rest of the year reached -59.9 g C m™ and the winter flux measurements provided very
important information to estimate the annual carbon dynamics. The maximum daily CO2 uptake
(3.9 g C m*day™) in this site was smaller than that in other grassland ecosystems at almost the
same latitude, although the maximum LAJ was larger. The 78.5 g C m™>yr™ annual NEP in 2002
was lower than those of warmer ecosystems, e.g. temperate and tropical grassland ecosystems,
and as much as those of other cool ecosystems, e.g. alpine and boreal ecosystems. (2) The CO2
exchange as influenced by the environmental factors was analyzed on daily and seasonal scales.
The increment of photosynthetic photon flux density (PPFD) increased the net CO2 uptake on
all temporal scales. The increment of temperature decreased the NEP on all temporal scales,
which was caused by the enhancement of ecosystem respiration in daily and seasonal changes.

The increment of moisture, e.g. soil water content, atmospheric water vapor, did not affect the



daily NEP (net COz2 uptake). The CO2 efflux in the nighttime was suppressed by soil moisture
increase. The patterns of soil water content and CO2 efflux in the alpine ecosystem seems to be -
different from that reported for semi-arid grasslands.

Sim-CYCLE model simulation showed the following major findings. (3) The transition
experiment for 1981-2000 showed that the annual NEP ranged from -70 to +70 g C m™ yr”' over
the 20 years. (4) The CO2 exchange as influenced by the environmental factors was analyzed in
the interannual changes. The light increments in the growing season promoted the annual gross
primary production (GPP) and NEP. Increases in temperature decreased the NEP on all
temporal scales, through enhancement of the heterotrophic respiration in the interannual
changes. Increases in precipitation did not affect the NEP in the interannual changes. (5) The
model sensitivity analysis showed that GPP, autotrophic respiration (AR), net primary
production (NPP) and plant biomass responded quickly and the heterotrophic respiration (HR),
litter and soil biomass responded very slowly to the climate change. Temperature increases of 5
°C increased the GPP and those over 7.5 °C decreased the Global Warming by 5 °C advanced
the ecosystem photosynthetic activity and the duration of the growing season, and increases the
GPP. In contrast, warming greater than 7.5 °C may exceed the optimum temperature for
photosynthesis and decreased the GPP.

This study suggests that (1) the alpine meadow was a CO2 sink, at least in 2002. The
current CO2 sink strength is comparable with those of many sub-alpine ecosystems reported so
far. The very low temperature, which suppressed photosynthetic activity and shortened the
duration of the growing season, decreased the net CO2 uptake. (2) Soil water availability was
high in the alpine meadow. The high soil water might reduce the ecosystem respiration, because
of the decrement of microbial activity in the well-watered anaerobic conditions. (3) The
measured annual CO2 uptake is close to the fluctuating range derived from model analysis,
although CO2 uptake data may contain estimation errors caused by energy imbalance and
gap-filling methods. (4) The interannual relationships between the annual CO2 exchange and
environmental factors did not differ significantly from those of seasonal changes. (5) Long-term

global warming will increase the ecosystem carbon uptake. However, extreme warming may

vi



shift this ecosystem to another biome type through invasion of other plant species adaptive to
warmer environments.

The primary conclusions are that the alpine meadow has the potential to sequester
atmospheric CO2, but the potential appears to be small, possibly because of the limitation of low
temperature. However the data are not enough to judge whether this ecosystem is a CO2 sink or
source on average from the current measurements and model analysis, mainly due to the limited

observation data. Multi-year data acquisitions of the CO2 exchange are therefore required.
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Chapter 1 General Introduction

1.1. Background

1.1.1. Global climate change and terrestrial ecosystems

The Earth climate system and the functioning of terrestrial ecosystem interact strongly
each other. A change in one affects the other and feedback mechanisms occur. These natural
interactions are now disturbed by human activities at an unprecedented scale, both in their rate
and in their geographical extent. Global climate change is now in progress. Atmospheric CO2
concentration has increased by nearly 30% since the pre-industrial 1850, when it was about 280
ppm. It is currently 370 ppm and the Earth’s Surface has been warmed by 0.6 °C during the
twentieth century. Climate and terrestrial ecosystems maintain their interactive relationships
through CO2, water cycles and energy flow. Therefore, climate are strongly affected by changes
in the productivity of terrestrial ecosystems, and a major integrated process between living
organisms and the atmosphere, and land use and feeds back on productivity of terrestrial
ecosystems (Roy et al., 2001).

Considering the global CO2 budget, there are imbalances between the CO2 efflux by the
combustion of the fossil fuel, cement production and land use change, the CO2 uptake by the
ocean known as the “missing sink” (IPCC, 1990). Eight years ago, IPCC (1996) suggested that
“missing sink” may be in several forest ecosystems, tropical and boreal forests, but has not
concluded. Houghton (2003) has estimated the “residual” terrestrial CO2 flux to be as much as
-2.9 + 1.1 Pg C yr in 1990s (Table 1.1). It was equivalent to one-third of the CO2 emission by
the fossil fuel and land use change (6.3 + 0.4 and 2.2 + 0.8 Pg C yr', respectively) and as large
as the other two major CO2 sinks; the atmosphere and the ocean (-3.2 £ 0.2 Pg C yr'’, -2.4 + 0.7
Pg C yr’, respectively).

The Kyoto Protocol, agreed in Kyoto COP3 Conference (the 3rd Session of the
Conference of the Parties to the United Nations Framework Convention on Climate Change)
held in Kyoto, Japan, December 1997, has not only set legally-binding greenhouse gas emission

objectives for each industrialized country, but also allowed for an international emissions



trading scheme. During the Kyoto commitment period, carbon sinks may be included in
emissions trading by allocating credits for the amount of carbon sequestered; increase of carbon
stocks due to human induced forest establishment, afforestation and reforestation. However, the
COz sequestration functioning of terrestrial ecosystems, including forests, grasslands and
deserts etc., has not been understood sufficiently, and is needed further researches using the

scientifically correct method are needed to predict the progress of global warming.

1.1.2. Measurement and modeling of carbon dioxide between the atmosphere and

terrestrial ecosystems

The “FLUXNET” research network project, including AmeriFlux, CarboEurope (former
EUROFLUX), AsiaFlux, KoFlux, OZFlux etc., will provide current understanding of how COz2,
water cycles and energy flow and the productivities of various type ecosystems interact. The
FLUXNET is a global network of micrometeorological tower sites that use eddy covariance
methods to measure the exchanges of CO2, water vapor, and energy between terrestrial
ecosystems and atmosphere. At present, over 200 tower sites are operating on a long-term and
continuous basis. Researchers also collect data on site vegetation, soil, hydrologic, and
meteorological characteristics at the tower sites. Valentini et al. (2000) presented data of net
ecosystem carbon exchange, collected between 1996 and 1998 from 15 EUROFLUX forest sites,
and suggested that many European forest ecosystems act as carbon sinks. Falge et al. (2002)
used the FLUXNET database to research the factors that control seasonal changes in gross
primary production (GPP) and ecosystem respiration (R.) in a wide range of terrestrial
ecosystems. Their results showed that the seasonality of GPP was determined by the life-form
(e.g. broad leaf or needle leaf), and that of R, was affected by the climatic types that are
characterized usually by temperature. Wilson et al. (2002) presented data of the warm season
partitioning between sensible and latent heat flux, and Bowen ratio at 27 FLUXNET sites over
66 site years. Their result showed that the climatic control on Bowen ratio was quantified using

the climatological resistance, which is proportional to the ratio of vapor pressure deficit to net



radiation, and in which there were some general differences between vegetation types and
climates.

Recently, many integration models that represent carbon, water and energy exchanges
between terrestrial ecosystems and the atmosphere have been developed. Based on approaches
to estimate photosynthesis (GPP) or NPP, these models are divided into three categories; Light
Use Efficiency (LUFE) approach, Biochemical approach, and Carbon assimilation approach
(Cramer et al., 1999; Arora, 2002). LUE approach, e.g. in CASA (Potter et al., 1993), BIOME2
(Haxeltine et al., 1996), GLO-PEM (Goetz et al., 2000), uses satellite data (NDVI) to determine
the temporal behavior of the photosynthetic active tissue, and calculates GPP or NPP as the
product of absorbed photosynthetic active radiation (4PAR) by a conversion efficiency factor .
These models can be used to examine the effect of climate variability on NPP, but the time‘of
interest is limited to that of the satellite archive. The satellite observations provide some
biosphere production. Biochemical approach, e.g. in BIOME-BGC (Running and Hunt, 1993),
CARAIB (Warnant et al., 1994), DOLY (Woodward et al., 1995), BIOME3 (Haxeltine and
Prentice, 1996), HYBRID (Friend et al., 1997), simulates changes in both structure (vegetation
distribution and phenology) and function (biogeochemistry) of ecosystems. Generally,
equilibrium between climate and vegetation is assumed, but the models can be turned into
dynamical global vegetation models (DGVMs). To date, they have been applied to potential
vegetation only. This is in contrast to some of models in the other categories which account for
land use either explicitly (CARAIB) or implicitly through the use of satellite observations.
Carbon assimilation approach, e.g. in FOREST-BGC (Running and Coughlan, 1988), TEM
(McGuire et al., 1992), CENTURY (Parton et a., 1993), FBM (Ludeke et al., 1994), PnET-DAY
(Aber et al., 1996), Sim-CYCLE (Ito and Oikawa, 2002), simulates the biogeochemical fluxes
on the basis of soil and climate characteristics, using either vegetation maps or biogeography
models to prescribe vegetation structure. These models simulate phenology either explicitly or
implicitly so that the seasonal activity of a canopy can change in response to climate change.

Sim-CYCLE is a mechanistic model, on the basis of the dry-matter production theory

established by Monsi and Saeki (1953). The atmosphere-biosphere CO2 exchange is composed



of physiological processes, such as gross primary production (GPP), autotrophic respiration
(AR), and heterotrophic respiration (HR), and then this simulator enables us to estimate the
ecosystem carbon budget in a mechanistic way. Terrestrial ecosystems were conceptualized as a
five-compartment system: foliage, stem and branch, root, litter, and mineral soil. Sim-CYCLE
also contains water, heat and radiation subschemes to estimate physical environment in
terrestrial ecosystems. Ito and Oikawa (2000) performed a model analysis of the effect of
climatic perturbations from 1970 to 1997 on the carbon budget of terrestrial ecosystems on a
global scale, using Sim-CYCLE. During the 28 yr experimental period, global NEP ranged from
-2.06 Pg C yr' (source) in 1983 to +2.25 (sink) Pg C yr' in 1971, being sufficiently large to
give rise to anomalies in the atmospheric CO2 concentration from +0.97 to -1.06 ppmv.
Regression analyses demonstrated that annual ANEPs had the highest correlation with the
temperature anomaly on a global scale and the responsiveness was primarily attributable to the
temperature sensitivities of plant respiration and soil decomposition, and secondarily to the
moisture sensitivity of decomposition. They also showed that an ENSO event and a volcanic
eruption, affected global ANEP. Thus, the climate dependencies of global terrestrial ecosystems
may contain significant implications not only for the present functioning of

atmosphere-biosphere carbon exchange, but also for ongoing global warming.

1.1.3. An alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China

On a global basis, grasslands are one of the most widespread vegetation types. Natural
grasslands, including tundra, cover 30% of the Earth’s surface and contain 452.3 Pg (1/4 of the
Earth’s total amount) of organic carbon in both biomass and soil (Adams et al., 1990). Scurlock
and Hall (1998) reported that temperate and tropical grasslands sequester 0.5 Pg of carbon a
year, and suggested that grassland ecosystems might play an important role as a sink of
atmospheric carbon. However, most studies of the carbon budget have been conducted only on
lowland grassland ecosystems at elevations below 1500 m; studies on alpine grassland

ecosystems at elevations above 3000 m are rare.



In alpine meadow ecosystems on the Qinghai-Tibetan Plateau in the western part of
China, abundant light and precipitation allow plants to grow efficiently (i.e. sequester carbon) in
spite of the restricted growing season. Additionally, low temperature in winter restricts the
decomposition of litter. Therefore, this ecosystem might be an annual net sink of atmospheric
CO2. Alpine meadow ecosystems in China cover approximately 63.7 x 10* km® and contain
11.3 Pg of carbon in biomass and soil (Ni, 2002). The soil carbon density of this ecosystem
(18.2 kg m™; Ni, 2002) is much higher than that of savanna (5.4 kg m™; Adams et al., 1990)
and temperate grassland (13.0 kg m™; Adams et al., 1990) and similar to that of tundra (22.0 kg
m™%; Adams et al., 1990), where low temperature also limits the growing season. However,
tundra is reported to be at risk of changing from a sink to a source of CO2 with global warming
(Oechel et al., 1993). Will the alpine ecosystem on the Qinghai-Tibetan Plateau also be a net

carbon source in the warming climate?

1.2. Purpose of this study

IPCC (2001) reported that if the atmospheric CO2 concentration rises at a rate of 1.0%
yr', annual averaged temperatures in 2071-2100 on the Qinghai-Tibetan Plateau will become
higher of 3.3-8.4°C in summer (June, July and August) and 3.2-10.9°C in winter (December,
January and February) than those in 1961-1990. How will the plants and soil microbes react
against those great warming and other climate changes? There are no series of fundamental
studies on carbon dioxide flux and its dynamics to answer this question.

To fill the regional blanks in knowledge identified by global network of carbon
dynamics studies, in this study, the CO2 exchange between the atmosphere and an alpine
meadow ecosystem was measured and simulated at the Haibei station, Chinese Academy of
Sciences on the Qinghai-Tibetan Plateau, China, for short and long-term periods. First, a field
measurement by the eddy covariance method was conducted to investigate the diurnal and
seasonal relationships between the CO2 flux and environmental factors from August 2001 to
December 2002. Second, a model simulation by the Simulation Model of Carbon cYCle in Land

Ecosystem (Sim-CYCLE), developed by Ito and Oikawa (2002), has been made to investigate



the interannual relationship between the CO2 dynamics and climate changes from 1981 to 2000
using the climate data derived at fhe Haibei meteorological observation field for 20 years.
Finally, the differences in the relationships between the CO2 dynamics and environmental
factors on the different temporal period were analyzed and the influences of future climate
changes on the CO2 dynamics were discussed.

The objectives of this study are summarized as follows:

To clarify the daily, seasonal and interannural patterns of CO2 flux.

To investigate the relationship between COz2 flux and the environmental factors.

To predict the influences of global warming on the CO2 flux and dynamics in an alpine

meadow ecosystem.

1.3. Composition of the thesis

Chapter 1 introduces the relationship between the global climate change and terrestrial
ecosystem, and the global network of flux measurement and model studies to investigate that
relationship, and summarizes the objectives of this study. Chapter 2 describes the geographical
and vegetation characteristics at the study site. Chapter 3 clarifies the diurnal changes of the
CO2 flux measured by the eddy covariance method and the relationship on the environmental
factors in the field study. Chapter 4 clarifies the seasonal changes of the CO2 flux measured by
the eddy covariance method and the relationship on the environmental factors in the field study.
Chapter 5 clarifies the interannual changes of the CO2 dynamics simulated by the Sim-CYCLE
and their relationships on the climate changes from 1981-2000 in the model analysis. Chapter 6
summarizes the differences in the ecosystem responses to the environmental changes between
the various time scales, and predicts the influences of future climate change. Chapter 7 gives the

conclusion of this study.



Table 1.1. Global carbon budgets for the 1980s and 1990s (Pg C yr').

1980s 1990s
Fossil fuel emissions 5403 6.3+04
Atmospheric increase 3301 32%0.2
Oceanic uptake -1.7+0.6 -24*0.7
Net terrestrial flux -0.4 £0.7 -0.7 £ 0.8
Land-use change 2008 22*08
Residual ‘terrestrial’ flux 24=+1.1 29+1.1

From Houghton, R.A. (2003).



Chapter 2 Site description

Measurements and estimations of carbon, water vapor and sensible heat fluxes and
environmental factors were conducted at the Haibei Alpine Meadow Ecosystem Research
Station, Northwest Plateau Institute of Biology, Chinese Academy of Science (lat 37°29—45'N,
long 101°12-23'E; 3250 m a.s.l; Figs. 2.1 and 2.2). The research stati(;n is located in a large
valley oriented northwest—southeast in northeast Qinghai-Tibetan Plateau, and surrounded on all
sides by the Qilian Mountains. The average altitude of the mountains and the valley are 4000
and 2900-3500 m a.s.l.. The Datong River passes from north to the south. The landscape is
characterized by large mountain ranges with steep valleys and gorges interspersed with
relatively level and wide inter-mountain grassland basins.

The climate at Haibei Station is characterized by low temperature and limited
precipitation. The annual average temperature and precipitation for 1981-2000 were —1.7 °C
and 561 mm. In the growing season from May to September, the plentiful sunshine and rainfall
(80% of annual total rainfall) allow plants to grow effectively, although harmful UV-B radiation
is high (Li and Zhou, 1998).

The soil is a clay loam,; its average thickness is 65 cm. The surface 5-10 cm horizons,
which are classified as Mat Cry-gelic Cambisols according to the Chinese national soil survey
classification system (Institute of Soil Science and Chinese Academy of Sciences, 2001), are
wet and rich in organic matter.

The plant community is dominated mainly by three major perennial sedges, Kobresia
humilis, K. pygmaea and K tibetica (Cyperaceae), and by one dwarf shrub species, Potentilla
fruticosa (Rosaceae) (Li and Zhou, 1998). The plants start to grow in May, when the air
temperature starts rising, and reach maximum aboveground biomass (342 g d. w. m™; average
for 1980-1993) in July and August, when the air temperature and precipitation are the highest
of the year. Their aboveground parts die in October (Li and Zhou, 1998). During the growing

season, the plants accumulate photosynthates in belowground storage organs for new shoot



grouth in next spring. This characteristic is a feature of alpine grassland plants (Li and Zhou,

1998).
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Chapter 3 Diurnal changes of the CO2 exchanges

3.1. Introduction

The Qinghai-Tibetan Plateau covers vast area, about 2.5 x 10° km? (Zheng et al., 2000),
and may contribute significantly to the CO2, water and energy exchange between the
atmosphere and vegetation on a regional or even a global scale. However, in contrast with
extensive information obtained in recent years about water and energy exchange (Yasunari,
2001), little evidence is available for understanding CO2 exchange and its relation to
environmental controls in this unique ecosystem.

Eddy covariance method that acquires the fluctuations of wind speed, CO2 concentration
etc. directly, enable us to measure the CO2 flux without any assumption and has been used
widely in various terrestrial ecosystems (Aubinet et al., 2000; Baldocchi et al., 2001; Yamamoto
et al., 2001). Net ecosystem exchange (NEE) data measured by this method shows that
knowledge of leaf and whole plant physiology can be used to interpret whole system variability
(e.g. Hollinger et al., 1994; Amthor et al., 1994). Furthermore, Valentini et al. (2000) divided
daytime NEE data from a global network of tower observations of flux into gross primary
production (GPP) and ecosystem respiration (R.) by extrapolating site-specific exponential
relationships between nocturnal soil temperature and CO2 efflux. This approach allows the
diurnal pattern and amplitude of GPP and R, to be investigated.

From August 2001 to December 2002, long-term CO2, water vapor and energy flux
measurements using the eddy covariance method were carried out in an alpine meadow on the
Qinghai-Tibetan Plateau. Additionally, measured net ecosystem exchanges were divided into
GPP and R,. The aims of this chapter are 1) to show the diurnal changes NEE, GPP and R,, 2)

to clarify the environmental controls on the diurnal changes of the COz2 fluxes.

3.2. Materials and Methods
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3.2.1. Micrometeorology

Micrometeorological measurements were conducted at the winter pasture in the Haibei
station of CAS from 9 August to 31 December 2002 (Fig. 2.2). The study site is flat with a fetch
of at least 250 m in all directions. Net radiation and photosynthetic photon flux density (PPFD)
were measured at 1.5 m above the ground with a net radiometer (CNR-1, Kipp & Zonen Inc.,
Saskatoon, Saskatchewan, Canada; Table 3.1) and a PPFD meter (LI-190SB, Li-Cor, Lincoln,
NE, USA). Air temperature and humidity were measured at 1.1 and 2.2 m above the ground
with a humidity and temperature probe (HMP45C, Vaisala, Helsinki, Finland). Wind speed was
measured at 1.1 and 2.2 m above the ground with cup anemometers (034A-L and 014A, R. M.
Young Co., Traverse, MI, USA). Soil heat flux was measured at 0.02 m below the ground at
three points with heat plates (HFT-3, Campbell Scientific Inc., Logan, UT, USA). Soil
temperature was measured at 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 m below the ground
with copper-constantan manufactured thermocouples. Soil water content was measured at 0.05,
0.2, and 0.5 cm with time-domain reflectometry sensors (CS-615, Campbell Scientific Inc.).
Soil surface temperature was measured at three points in a 1-m’ area with thermistor
thermometers (107 probe, Campbell Scientific Inc.). Rainfall was measured at 0.7 m above the
ground with a tipping bucket (TE525MM, Campbell Scientific Inc.). Fifteen-minute averages of
all data were logged by an analog multiplexer (AM416) and a digital micrologger (CR23X,

Campbell Scientific Inc.) (Fig. 3.1-3.5).

3.2.2. Eddy covariance method
3.2.2.1. Fundaments of the eddy diffusion flux calculations
1. Definition of the turbulent flow

Figure 3.6 shows the time series of x, y, z-axis wind velocities (u, v, w), air temperature
(T.), specific humidity (g) and carbon dioxide concentration (o.) at the Haibei grassland in
winter, 2003 at the frequency of 20 Hz by a sonic anemometer and an open-path Infra-red gas

analyzer (the details are in the section 3.2.2.2). Those scalar values were disturbed, and there
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seems to be no relationship with each other. This fluctuation is caused by the eddy generation

and passage, called as a ‘turbulent flow’.

2. Calculation of the turbulent transfer
The vertical turbulent transfer of substance and energy is generated by the turbulent
flow and the vertical gradient of substance concentrations and temperatures. The turbulent flux

of voluntary substance or energy is represented as follows:

Qc = wl pC ) 3.1
= p\wC 3.2)

where Qc is the turbulent flux of substance or energy (kg m™ s™), w is the vertical transfer
velocity of air (m s™), C is the voluntary substance concentration (kg kg air), p is the air
density (kg m™). The upper bar means an average. The air density is assumed to be constant in

Eq. (3.2). w and C are divided into average and fluctuation components as follows;
w=w+w (3.3)
C=C+C (3.4)

where the prime mark means fluctuation value. Eqgs. (3.3) and (3.4) are inserted into Eq. (3.2) as

follows:

Qc = pv_vE + pw_'E— + p% + pW 3.5)
= pw'C' (3.6)

where w’' and C' are zero. w , the average vertical component of air transfer, is assumed

to be zero. When sensible heat (H), latent heat (AE) and carbon dioxide fluxes (FCO2) are
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calculated, C is assigned for air temperature T =T +T (K), a specific humidity q=—q-+q’ (kg

kg) and atmospheric CO2 concentration p.= p. +0.’ (mg CO2 m™), respectively as follows:

H=C,pwT (3.7)
AE = Apw'q' (3.8)
FCO, =w'p,' 3.9)

where p is the air density (kg m™), C, is the specific heat at constant pressure (J kg™ K™), A is

the latent heat (J kg™') as shown in the next:

p =100x P/(287.1x (T, +273.16)x (1 + 0.61x q)) (3.10)
C, =1004.7 (3.11)
4 =(2.501-0.00237xT, )x10° (3.12)

where P is the air pressure (hPa), 7, is the air temperature (°C), and T is the soil surface

temperature (°C).

3. Power spectrum of turbulent fluctuation -Verification of turbulent measurement-

To confirm the successful acquisition of turbulent flow across all frequency bands
contributing the flux calculation, the power spectrums of each scalar fluctuation should be
checked. If acquiring successfully, the spectrum in high frequency band should conform the
concept of an inertial sub-range, a part of equilibrium range of turbulent flow (Kaimal, 1988).
An equilibrium range is high frequency zone that comprises the local isotropic under which

condition the low frequency eddy, caused by the obstruction, is transferred by inertial force and
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pressure. The inertial sub-range exist in the frequency range, in which energy does not generate
and disappear and energy is only handed off to smaller scale filed, between the energy holding
frequency kpand the viscidity dispersing frequency k,. This sub-range usually generated in the
atmospheric boundary layer in the condition of high Reynolds number. In this sub-range, the
energy spectrum Fx(x), is with no statistically relation to energy holding eddy and viscidity
relevant eddy, is determined by energy dissipation rate ¢ exclusively and described in the

dimension analysis as follows:
Fx(x)=ae¥ k" (3.13)

where « is wave number and « is defined as an absolute constant.

Existence of inertial sub-range in the energy spectrum shows that the eddy covariance
measurement instruments acquire the turbulent flow through high frequency zone normally.
Although the spectrum theory is usually formulated in wave number space, in the most of
turbulent flow measurement, the spectrum is able to be converted into the frequency scale in
their spatial scales using the formulation of a Taylor’s hypothesis. In the u-spectrum, conversion

is described as follows:

K =2af Ju (3.14)

where f is the frequency. The spectrum of frequency Su(f) is defined as follows:
fo(K}iK =0, =fSu(f Wf (3.15)
0 0

where o, is variances of wind speed and substance concentration. Eq. (3.15) is assigned by Eq.

(3.14) and differentiated by f as follows:
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TFx(g_”—) = Su(f) (3.16)
u

that is:
KFx(x) = fSu(f) (3.17)

Next, the similarity function ¢, of the dissipation rate of turbulent movement energy E is

defined as follows:
¢, =kze/u.’ (3.18)

where k is the karman constant (dimensionless), z is height (m), u«is the friction velocity (m
sh).
The u-spectrum of inertial sub-range is presented in conformity with similarity theory of

surface boundary layer as follows:

S.0f)  a [32/322/3](E)—2/3

.z = (zn)z/3 2

" U
_ a, ¢ 2/3 _f;z_ s (319)
(2 7 \u

where a; is uniform value. If the fz/ ¥ is assumed as a dimensionless frequency n:

u*2¢ 23 (2711()2/3

/S, (f) a, n2 (3.20)
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The spectrum in the inertial sub-range is described by a line with the slope of —2/3 in the
logarithmic graph.

Figure 3.7 shows the power spectrum of x, y, z-axis wind velocities (u, v, w), air
temperature (7,), specific humidity (g) and carbon dioxide concentration (C) measured at the
Haibei grassland for 12:00-12:15, 13, Aug., 2002. Vertical axes of the figures are normalized
with the frequency. The spectrums of each variable are proportional to frequencies in the slope
of —2/3 within the inertial sub-range. This confirms that the measurements of turbulent

fluctuations are acquired normally in this study.

4. Cross spectrum of turbulent fluctuation -Determination of sampling frequency and
calculating period-

All turbulent fluctuation, which contributes to flux calculations, should be acquired
between sampling (cut-off) frequency and average time periods, and calculated flux must retain
constancy. These frequency and time periods should be determined after checking the
cross-spectrum of each fluctuation.

Wyngaard and Cote (1972) present that the cross-spectrum declines in the slope of —7/3
within the inertial sub-range of uw and wT in their empirical equation. In this sub-range which
z/L and n are only normalized cross-spectrum, w and T are described in the logarithmic scale as

follows:

- &Tz(—f) « G(z/L)n ™ (3.21)
U,

where G(z/L) is determined experimentally as a function of z/L.

Figure 3.8 shows the cross spectrum between z-axis wind velocities (w) and air
temperature (7,), specific humidity (g) and carbon dioxide concentration (C) at the Haibei
grassland for 12:00-12:15, 13, Aug., 2002. Vertical axes of the figure are normalized with the

frequency. The cross spectrums of each variable are proportional to frequencies in the slope of
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—4/3 within the inertial subrange. The cross spectrum between vertical wind w’ and air
temperature, specific humidity and CO2 concentration ¢’ showed that co-variance was close to
zero when the noise was at frequencies lower than 0.002 Hz (8.3 min per cycle; Fig. 3.8). A
period of 15 min was thus enough to avoid the effect of noise. The mean, variance, and

covariance values were then calculated and logged for every 15 min.

3.2.2.2. Measurement of eddy diffusion fluxes

Wind speed and sonic virtual temperature were measured at 2.2 m above the ground
with a sonic anemometer (CSAT-3, Campbell Scientific Inc.). Carbon dioxide and water vapor
concentrations were also measured at the same height with an open-path infra-red gas analyzer
(CS-7500, Campbell Scientific Inc.). Wind speed, sonic virtual temperature, and CO2 and H,0

concentrations were sampled by the digital micrologger at a rate of 10 Hz.

3.2.2.3. Correction of measured turbulent flux data
1. WPL correction

In a CO2 flux calculation, the air density variation was taken into account in the
calculation processing of turbulent flux, as supposed by Webb et al. (1980). CO2 flux (FCO2)

was given in the next:
FcCo, =w'pc‘+w'pq‘(,up—c/;):)+ p_c(1+ ,ua)(w'_T’/f) (3.22)

where FCO2 is the CO2 flux (mg CO2 m?s™), p, and p, are densities of water vapor and air (kg

m™), u is the ratio of dry air mass to water vapor mass (kg kg™), ois the ratio of Py to pg.

2. Coordinate rotation, trend removing, and water vapor correlation
In this study, flux data correction, e.g. coordinate rotation, trend removing and water
vapor correlation, are not enforced to all sampled fluctuation data. However, the influences of

un-correction on the calculated flux are examined for 10 days in July, 2002, using fluctuation
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data sampled at the frequency of 10 Hz, and implicit estimation error in the flux data are

discussed.

Coordinate Rotation Although sonic anemometer is usually settled horizontally,
slight inclination of instruments will generate for long-term experiment. The landform,
installation mast and instrument body also generate the wind disturbance and bias the horizontal
wind (Fig. 3.9) and ‘w will not become zero. In that situation, it is necessary to rotate the
coordinates of wind vectors by the degrees of blowing up and down angle ().

First, horizontal wind directions are rotated as follows:

U
6 = tan 1[—Y) (322
UX
U=Uycos@ +U, sinf (3.23)
V =-U ysin@ +U, cos@ (3.24)

where 6 is the degrees of anticlockwise rotation angle from the center line of anemometer, Uy,
and Uy are horizontal and vertical wind velocities in the direction toward the center line of
anemometer, U and V are x- and y-axis wind velocities after coordinate rotation. After this
coordinate rotation, U and V become zero.

Second, vertical wind directions are rotated as follows:

w
Y =tan”'| = (3.25)
U, =Ucosy +Wsiny (3.26)
W_=-Usiny + W cosy (3.27)
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where y are the degrees of blowing up and down angle, U and W are average horizontal
and vertical wind velocities, U. and W, are x- and z-axis wind velocities after coordinate

rotation. After this coordinate rotation, U, and W, become zero.

Trend removing Gradual changes of air temperature and humidity in the morning and
evening, or instrumental signal drift may bias the averaged data during 15 min average period.
In those cases, the differences from the average will be bigger apparently, and this affects the
turbulent statistical values, e.g. standard deviation and covariance. Consequently, trend values

derived from regression line against time series, are subtracted from the fluctuation data.

Water vapor correction Virtual sonic temperatures derived from sonic anemometer, was
affected from the fluctuations of atmospheric water vapor. The water vapor correction is
necessary to measure temperature fluctuations and calculate sensible heat flux accurately

(Tsukamoto et al., 2001).

T =T,(1-0.514q) (3.28)

where T is corrected air temperature (°C), and T, is uncorrected air temperature (°C).

Figures 3.10, 3.11, 3.12 make comparisons between corrected fluxes and
uncorrected fluxes in sensible and latent heat and CO2 flux calculations. Each regression line
slope shows small differences, within 4%, between corrected fluxes and uncorrected fluxes.

This indicates that it is unnecessary to apply these three corrections to turbulent fluctuation data.

3.2.2.4. Validity of measured flux data
1. Flux dependent on the wind direction

Figure 3.13 shows the dependence of sensible and latent heat and CO2 fluxes on the
wind direction. The black line in the figure indicates moving average of 100 points. Sensible

heat flux H fluctuates between 90 and 270 degrees, and show two minimum peaks in 160 and
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260 degrees. This holds in the case of latent heat AE and also hold in the case of CO2 flux FCO2
in inverse. It is considered to be due to biased average wind flow, as shown in Figure 3.8,
disturbed by installation mast and data logger box settled in the direction of 180 degrees.
However, moving average line shows small bias in the measured fluxes, indicating that it is

unnecessary to rotate coordination of turbulent fluctuation data.

2. Dimensionless universal function
(1) Monin-Obukhov similarity

According to Monin and Obukhov (1954), in ideal surface boundary layer, i.e. keeping
steady state and horizontal homogeneity, all kinds of statistics concerning wind velocity and
temperature in the turbulent flow, can be described by momentum 7/p, vertical heat flux
H/C,p and buoyancy parameter g/T at ground surface, except for height z. This is called
“Monin-Obukhov similarity theory”.

From the three fundamental quantities mentioned above, dimensional scales of velocity,
temperature and length, which describe the statistics of wind velocity and temperature, are

drawn as follows:

12

u=[Z) =(aw)? (3.29)
0

re-—H ___WT (3.30)
C,pu. U,
-u’T,

L=—%r0 (3.31)
kgw'T,'

where 7is momentum (kg m™ s?), 7. is friction temperature (K), L is Monin-Obukhov length
(m), g is acceleration of gravity (= 9.8 m s°), and Ty, is temperature near ground surface (°C)
According to Monin-Obukhov similarity theory, the statistics of wind velocity and

temperature are described by z/L exclusively as follows:
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LS (—Z—) (332)

where F is the statistics of wind velocity and air temperature near ground surface, F. is the

scales of velocity, temperature and length, and g is universal function of F.

(2) Standard deviation of turbulent fluxes o and dimensionless universal function ¢
According to Monin-Obukhov similarity theory, the standard deviations of wind velocity,
air temperature, specific humidity and CO2 concentration are expressed by z/L exclusively as

follows:

Z—j -4, (%) (3.33)
E (%) (334
% -9, (%) (3.35)
Z" -9, (%) (3.36)

where o,, or, 0; and 0, are standard deviations of vertical element of wind velocity w, air

temperature 7, specific humidity g, CO2 concentration p., g+ is friction specific humidity

(=E/Apus= w’q’ /ux), p.» is friction CO2 concentration (=FCO2/u+= w’p,’ /u+) and ¢ is universal

function of all kinds of fluctuations.

(3) ¢ under strongly unstable condition

23



Strongly unstable condition, under which vertical convection becomes near natural
convection state, makes L extremely small; H becomes bigger and u+ becomes near zero. In the
case, L is useless scale and universal functions are described by L, which eliminates u- in itself,

as follows:

o, _z 3
é., - ( L) (3.37)
1
or (_z\:?
¢r = T ( L) (3.38)
O'q _i T3
¢, —q—* ( L) (3.39)
O, _z 3
P, = s ( L) (3.40)

Thus, the dimensionless universal functions are in relation to cube root or minus cube
root of stability under strongly unstable condition. These are founded in the field experiments,
e.g. Kader and Yaglom (1990), Kaimal and Finnigan (1994) and Ohtaki (1985).

Figure 3.14 shows the relationship between aerodynamic stability and dimensionless
universal functions under unstable conditions from 14 Jan. to 31 Dec., 2002. Data show 15 min
average values. Universal functions are distributed along the lines with the slopes of 1/3 (g,,) or
-1/3 (or, 0y, 04) against the stability -C under unstable condition (- >= 0.2), and this confirms

the reasonability of sampling turbulent fluxes in this study.

(4) ¢ under near neutral condition

Figure 3.15 shows the relationship between aerodynamic stability and dimensionless
universal functions under near neutral conditions from 14 Jan. to 31 Dec., 2002. Data shows 15
min average values. The geometric means of o;,/u«for neutral condition (-0.1 < z/L <0.1) was

1.08 in this study site and is similar to 0.93-1.14 reported by Yaglom (1977) and slightly lower
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then 1.2 reported by Ohtaki (1985) for the paddy field, 1.2-1.4 compiled by Pasquille (1974).
The o7/Ts, 0,/q+, and o,/pc+are scattered for neutral condition (-0.1 < z/L <0.1), but and are
also distributed around the reported mean values; o7/T+, 2.4 reported by Phelps and Pond (1970)
for over water, 0,/g+, 2.6 reported by Ohtaki (1985) and 2.3 reported by Phelps and Pond (1970)

for over water, 0,./0c, 3.5 reported by Ohtaki (1985) as a geometric mean (-z/L 0-0.14).

3. Energy imbalance

Historically, energy balance closure has been accepted as an important test of eddy
covariance data, and a number of individual sites within the FLUXNET network report energy
balance closure as a standard procedure (Wilson, et al, 2002). In this study, the energy balance
ratio (EBR) between H+AE and Rn-G is also examined.

Figure 3.16 shows the energy balance during 2001 and 2002. The regression coefficients
show the surface energy fluxes (H+AE) are underestimated by 41 % (2001) and 30 % (2002)
relative to estimates of available energy (Rn-G). The seasonal changes of EBR may be constant
for a whole year (Fig. 3.17), but the EBR is slightly larger in summer than in winter. The EBR
shows the apparent diurnal changes in Figure 3.18. During morning and evening transition
periods, when the mean value of Rn-G was close to zero, the EBR is not especially meaningful.
The EBR dependence on the wind direction, shown in Fig. 3.19, was lower in near 160° than
other directions. The effect of friction velocity on the EBR was analyzed separately for daytime
and nighttime data using all 15 min data in 2002 (Fig. 3.20). In daytime, when the friction
velocity exceeded 0.3 m s™, the EBR might be convergent to near 0.7. In nighttime, there was no

obvious trend in the relationship.

3.2.3. Omega factor calculation

The Penman-Montieth model, the most popular evapotranspiration model, uses an
electrical analogy to treat vertical water vapor movement in the Soil-Plant-Air-Continuum
(SPAC) circulation, and is the one-dimensional model of crop evapotranspiration from a single

source. Evapotranspiration from the canopy to atmosphere is obtained as follows:
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o AR, -G)+ pc,D]r, Ga1)
A +y(1+rc/ra)

in which 4 is the slope of the saturation vapor pressure versus temperature curve (hPa K™), p is
the density of air (kg m™), C, is the specific heat at constant pressure (J kg™ K*), D is the vapor
pressure deficit (h Pa), r. is the canopy resistance (s m™), and , is the aerodynamic resistance (s

m™). Jarvis and McNaughton (1986) rewrote the Penman-Monteith model as follows:

JE =QAE, +(1-Q)E, (3.42)
pc D
AE,,, = P (3.43)
.
A+y
= 0<Q=<1 3.44
A+y(1+rc/ra) ( = S) (3.44)

where AEimp is the imposed evapotranspiration rate and £ is the decoupling factor. When € is
near 1, the evapotraspiration rate is almost dominated by the available energy. AFeq, the
equilibrium evaporation, is defined as the evaporation rate attained by a free surface after it
saturates the atmosphere (Penman, 1948). Although this condition is rarely found in the field,
comparing measured evaporation with predicted equilibrium evaporation helps diagnose the
balance between supply capacity and atmospheric demand for evaporation. Equilibrium

evaporation is defined as follows (Jones, 1992):

) (3.45)
A+y «
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where IE,, is the equilibrium evaporation (W m™), A is the slope of the relation between
saturation vapor pressure and temperature (hPa °C™), R, is the net radiation (W m™), G is the

soil heat flux (W m™), and y is the psychrometric constant (hPa °C™).

3.2.4. Bowen ratio calculation

The Bowen ratio 8 is defined as follows:

B=H/AE (3.46)

3.2.5. Canopy resistance calculation

Canopy resistance, or diffusion flux resistance, (i.e. the stomatal resistance of a “big
leaf”) is determined by the physiological activity of the canopy plants in the Penman—Monteith
evaporation theory (Monteith, 1972). By transformation of the Penman—Monteith equation,

canopy resistance is derived from environmental factors as follows:

AR, -G -AE )+ VPD/R,,,
Rcanopy =Raero ( . )YAEPCP / = -1 (347)

where Rcgnopy is the canopy resistance (s m™); Ree,, is the aerodynamic resistance ( =1/ku
In(Z-d/Zo) (s m™)); k is von Karman’s constant (= 0.4); u- is the friction velocity (m s™); Z is the
reference height (= 2.2 m); d is the zero plane displacement (m) (= 0.63 x canopy height (m));

Zy is the roughness length of the grassland (m) (= 0.13 x canopy height (m); Montieth, 1973).

3.2.6. GPP and R, calculations

Ecosystem respiration R, was measured directly during nighttime periods with strong
turbulence (as a NEE at a friction velocity 4+ > 0.2 m s™'), and was extrapolated to other periods
by using exponential regressions of measured R, with soil temperature at a depth of 5 cm with

an Arrhenius equation reported by Lloyd and Taylor (1994):
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R, = R,.r_exp , (3.48)

(Ea/RiTlef —é]

r

where R, is nighttime ecosystem respiration rate (umol CO, m™ S_l), Ro1ep 1S €cosystem
respiration rate at T, (= 283.16 K), and E, is the activation energy (J mol™). These two
parameters are assigned as the site-specific parameters. R is a gas constant (8.134 J K™ mol™),
and Tk is the soil temperature at a depth of 5 cm T, R, 7rr Was evaluated for every month. E,
was evaluated from a regression of all R, data in 2002 against T,,; as a constant value
throughout the year (81 519 J mol™).

Values of GPP was calculated as the difference between NEP, as a negative value of NEE,

and R, as follows:
GPP = NEP +R,, (3.49)

where GPP is ecosystem gross primary production (umol m™ s™), and NEP is net ecosystem

production as CO, uptake flux (-NEE) (umol m~s™).

3.2.7. LAI and biomass sampling

Aboveground biomass and LAl were investigated within a radius of 250 m around the
measuring station once in 2001 (20 August) and nine times from May to September in 2002.
The aboveground plants were cut at ground levels in five randomly placed 0.5-m> quadrates.
LAI was then measured with an LAl meter (LI-3100, Li-Cor). After oven drying for 48 h at

70 °C, the dry matter was weighed on an electric balance.

3.3. Results

3.3.1. Micrometeorology and vegetation growth
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Figure 3.21 shows the seasonal changes of monthly averaged diurnal changes of air
temperature T,,. In summer, July 2002, T,;, reached a minimum of 5.5 °C at 0600 and a
maximum of 16.9 °C at 1500. In winter, January 2002, T, reached a minimum of —-24.8 °C at
0900 and a maximum of —8.1 °C at 1700. Thus, this alpine meadow is characterized by a large
diurnal amplitude of air temperature variation and extremely low temperature in winter. Figure
3.22 shows the diurnal changes of monthly averaged soil temperature 7,; at the depth of -5Scm.
In summer, July 2002, 7,; reached a minimum of 14.0 °C at 0800 and a maximum of 20.7 °C at
1700. In winter, January 2002, T,; reached a minimum of —6.2 °C at 0900 and a maximum of
-3.4 °C at 1900. Figure 3.23 shows the seasonal changes of monthly averaged diurnal changes
of photosynthetic photon flux density (PPFD). In summer, May 2002, PPFD reached a
maximum of 1660.9 umol photon m? s at 1200. Thus, this alpine meadow is also characterized
by a large amplitude of light intensity.

In 2001, LAI and aboveground biomass were 3.1 and 347 g d. w. m™, respectively, on 20
August (DOY233), which were the annual maximum values. In 2002, the values increased from
late May (DOY145); LAI reached a maximum of 3.8 on 16 July (DOY197) and then decreased
slowly (Fig. 3.24). The aboveground biomass reachgd a maximum of 283 g d. w. m™ on 30 July

(DOY211), remained high during August, and then decreased rapidly in September.

3.3.2. Sensible and latent heat fluxes

To investigate the diurnal courses and amplitudes of sensible H and latent heat fluxes AE,
monthly averaged diurnal courses are shown in Figs. 3.25 and 3.26. The amplitudes of H were
large in April when plants were beginning to grow and in October when they were dead, but
small in January in winter and July when aboveground biomass peaked. On the other hand, the
amplitudes of‘ AE were large in July and August when aboveground biomass peaked, but so
small from October to March.

To investigate the relationship between these heat fluxes and environmental factors, the
diurnal courses of them during a sunny week, 9-15 August 2001 (DOY221-227), were shown in

Fig. 3.27. H paralleled the differences between T, and Ty,puc., and their relationship was
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apparent linear (Fig. 3.28). AE seems to parallel available radiation (Rn-G), however the
afternoon AE was bigger than the forenoon AE (Fig. 3.29). The decoupling factor @, introduced
by Jarvis and MacNaughton (1986), kept nearby constant value during 9:00-16:00 and
decreased after 17:00. This presents that high VPD lead to high AE in the evening when Rn-G,
drove AE in the afternoon, decreased. The Bowen ratio, the ratioy of H to AE, decreased
gradually in the afternoon. This indicates that in the afternoon AE kept high value and, H

decreased with the decreasing 7y, - Tyurface-

3.3.3. Carbon dioxide flux

The author examined the seasonality of the FCOz diurnal course (Fig. 3.30). The
minimum FCOz, i.e. maximum uptake, was —10.8 gmol m™ s™ at 1300 in August 2001. The
maximum FCO2, i.e. maximum release, was 4.4 umol m~ s at 0100 in August 2002, The
amplitudes of FCO2 were large in July and August when aboveground biomass peaked. FCO2
was small in May and June when piants were beginning to grow, and in September when they
were dead. In winter, October to April, the FCO2 was positive even in the daytime. The time
courses of FCO2were similar for August 2001 and July 2002, but the amplitude of FCO2was
larger in August 2001 than in August 2002.

FCO:2 is plotted against PPFD in Fig. 3.31. FCOz decreased as PPFD increased in any
month. During the period from July to August, however, the afternoon FCO2 was higher than
. the forenoon FCO2, and FCO2 values in June, July, and August were smaller than those in May
and September. Light intensity was similar between August 2001 and August 2002, but the
magnitude of FCO2 was larger in August 2001.

During 9-15 August 2001 (DOY221-227), a sunny week, FCO2 was positive (i.e. efflux)
for several hours after 0000 (midnight, Beijing Standard Time), and then became negative (i.e.
uptake flux) at 0800 (Fig. 3.32). FCO2 decreased to a minimum of ~12.4 umol m~ s~ at 1300 as
PPFD increased. Then FCO:z started to increase, becoming positive at 2000. T, reached a
minimum of 2.2 °C at 0700 and a maximum of 19.9 °C at 1700. Thus, this alpine meadow is

characterized by a large diurnal amplitude of air temperature variation. 7,; reached a minimum
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of 12.4 °C at 0800 and a maximum of 20.6 °C at 1800. SWC ranged between 0.267 and 0.286
because of daytime evapotranspiration and small precipitation on the morning on 12 August
2001. AE paralleled PPFD. VPD paralleled T,;, and reached a maximum of 15.4 hPa at 1700.
Reanopy Temained low at 100-140 s m™ in the forenoon, but increased in the afternoon and
reached a maximum of 168 s m™ at 1800.

FCo:2 is plotted against PPFD in Fig. 3.33. In the afternoon, when soil temperature was

high, FCO2 was higher than the forenoon FCO2.

3.3.4. GPP and R,

The monthly averaged diurnal courses of GPP and R, are shown in Fig. 3.34. GPP
shows a maximum value of 15.1 #umol m™ s™ at 1200 in August (Fig. 3.34a). Large GPP
occurred in July and August, when LA and biomass were maximum, and small GPP in May,
June, and September. R, showed a maximum value of 7.0 umol m™ s™ at 1600 in August (Fig.
3.34b), and increased in the afternoon as soil temperature increased.

The relationships between GPP and PPFD and between R, and T,; in July, when plant
growth and photosynthesis were maximum, are shown in Figs. 3.35a and 3.35b. As PPFD
increased, GPP increased but showed no significant difference in light response of GPP
between morning and afternoon. As T,; increased, R, increased exponentially and also showed
no significant difference in response to temperature between morning and afternoon values.

To assess the production efficiency of radiation use (RUE) and water use (WUE), hourly
averaged GPPs are plotted against to PPFD and evapotranspiration E in Fig. 3.36. The GPP
increased as irradiance PPFD increased during growing season, except for October — April. The
GPP was large in the order August € July < June < September < May < October — April (Fig.

3.36a). The GPP increases as E increased in the same order.

3.4. Discussion

3.4.1. Measurement accuracy of eddy covariance method
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In the spectrum analyses of turbulent fluctuations in wind velocity and other scalars, the
power spectrums showed —5/3 power slope (Fig. 3.7) and the cross-spectrums showed —4/3
power slope in the inertial sub-range (Fig. 3.8). The dimensionless universal functions showed
-1/3 slope against the atmospheric stability under strongly unstable conditions (Fig. 3.14, 15).
These confirm the reasonability of turbulent flux sampling in this study. The estimation errors
generated by the absence of coordinate rotation, trend removing and water vapor correction, are
very small (Fig. 3.10-12) and this ensures that it is unnecessary to apply these corrections.

However, the energy imbalance, the disagreement between the energy fluxes (H+AE)
and the available energy (Rn-G), existed for whole experimental periods. The regression
coefficients show the underestimation of the surface energy fluxes (H+AE) of 41% (2001) and
30% (2002) relative to active energy (Rn-G) (Fig. 3.16). These slopes of regression lines are
lower than the mean of 0.79 presented by Wilson et al. (2002), who compiled the EBR data of
22 sites and 50 site-years in FLUXNET, however they are within the range of 0.53 to 0.99
presented by Wilson et al. (2002). The EBR is slightly larger in summer than in winter (Fig.
3.17). This may be because total available energy, as the denominator in the EBR calculations,
was much greater in the peak summer period relative to the winter period (Wilson et al., 2002).
During day/night transition periods in morning and evening, since the mean value of Rn-G was
close to zero, the EBR is not especially meaningful (Fig. 3.18). This pattern of a greater EBR in
the afternoon relative to the morning was observed in other flux sites (Wilson et al., 2002). The
EBR shows no significant dependence on the wind direction (Fig. 3.19). This shows that the
EBR was not influenced by the footprint land cover. The EBR shows the convergence to near
0.7 in the daytime, when the friction velocity exceeded 0.3 m s, and the dispersion in the
nighttime against to the friction velocity (Fig. 3.20). These results show the low EBR values
were within a range of data from other flux measurement sites (Wilson et al., 2002), and show
no obvious trend in the relationship to wind direction and friction velocity. The energy
imbalance may be caused by sampling error, instrumental biases and other energy sinks as

pointed out by Wilson et al. (2002).
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3.4.2. Environmental controls on the diurnal change of carbon dioxide dynamics

One major process may affect the afternoon CO2 exchange between the land and the
atmosphere (FCO2; Fig. 3.31): the increasing air and soil temperatures accelerate plant
respiration and soil organic matter decomposition, and as a result suppress the net CO2 uptake
flux. In grassland ecosystems with low LAI, because of the low interception of sunlight by
vegetation, the soil surface temperature could be very high, which will further accelerate the
increase of soil CO2 efflux. This is supposed by the higher values of FCO2 together with higher
soil temperature in the afternoon as shown in Fig. 3.33. In addition, the high VPD might cause
the closure of stomata and thus suppress CO2 uptake. Such a stomatal response to increased
VPD has been observed in a C3/C, prairie grassland (Verma et al., 1992), a black spruce forest
(Jarvis et al., 1997), and a jack pine forest (Baldocchi and Vogel, 1997). In the alpine meadow,
the increase of R..uqpy is correlated with the decrease of AE but with the increase of VPD (Fig.
3.32). The amplitude of the diurnal SWC change was small and may play a very limited role in
ecosystem respiration (Fig. 3.32b). Cui et al. (2003) founded out apparent photoinhibition at a
high PPFD, caused by reduced electron transport rate (ETR), founded out in two Asteraceae
species at the Haibei alpine meadow. However, the net CO2 uptake flux was not suppressed in
the high PPFD over 800-1000 umolm™s™.

Daytime R, and GPP were estimated from the regression relationship between the low
nighttime respiration of plant and soil microbiota biomass and soil temperature (Fig. 3.34).
Therefore, it is possible that respiration of aboveground plants is enhanced significantly by high
soil temperature, or PPFD in the daytime increases R, more than expected. However, these
results provide evidence that respiration by plants biomass and soil microbes greatly decreases
the diurnal changes of net CO2 exchange in alpine meadow ecosystems, as hypothesized above.

R, increased significantly in the afternoon (Fig. 3.34 and 3.35). In this grassland,
because of the small interception of sunshine by plants, the soil surface temperature increased in
the mid-afternoon was significantly higher than in the nighttime and early morning, and as a

result the CO2 efflux was noticeably enhanced. GPP increased nearly linearly with increasing
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PPFD (Fig. 3.35), and there was no suppression of GPP flux in the afternoon, as found in net
ecosystem flux of CO2 exchange.

The diurnal course of GPP response to the PPFD (Fig. 3.36a), showed smaller
hysteresis than found in FCO2 (Fig. 3.31) during the growing season. Furthermore, the diurnal
course of GPP response against the evapotranspiration (Fig. 3.36b), showed no hysteresis in
afternoon, except for July (Fig. 3.36a). This presents that the plant photosynthesis was not
suppressed by water loss through leaf stomata. Cui et al. (2002) also showed that photochemical
reaction in leaves of two Asteraceae species was aggravated by high leaf temperature at the
Haibei alpine meadow. However, the light response of GPP was not suppressed in the afternoon

with high air and soil temperature.

3.4.3. Ecosystem carbon assimilation ability

The maximum CO2 uptake flux (minimum FCO2 value) of study site (—10.8 umol m™
s™; Fig. 3.30) was compared with those of other sites at a similar latitude (Table 3.2). The
maximum CO2 uptake flux was two-thirds less than those in an Oklahoma C;/C, prairie (-15.5
umol m~ s7%; Sims and Bradford, 2001) and a Colorado subalpine conifer forest of subalpine fir
and black spruce (-15.5 umol m™ s™'; 3050 m; Monson et al., 2002). But it was 20 %40 % less
than those in a Kansas C, prairie (25 umol m™ s™'; Ham and Knapp, 1998), an Oklahoma
tall-grass prairie (-31.8 umol m™ s™'; Suyker and Verma, 2001), and a Japanese Cs/C, grassland
(-56.7 umol m~2s™; Li and Oikawa, 2001).

The maximum CO2 release flux (maximum FCO2 value) of study site (4.4 gumol m™ s™";
Fig. 3.30; Table 3.2) was compared similarly. It was 20%—50% less than those in the Colorado
subalpine conifer forest (8-9 #mol m™ s™'; Monson et al., 2002), the Kansas C, prairie (10 #mol
m™ s™'; Ham and Knapp, 1998), the Oklahoma tall-grass prairie (11.4 umol m™ s™'; Suyker and
Verma, 2001), and the Japanese C3/C; grassland (21.6 umol m™ s™; Li and Oikawa, 2001).

Thus, this Tibetan alpine meadow ecosystem shows a lower CO2 uptake and lower

release potential than C, grasslands, but a similar net CO2 uptake potential to an alpine conifer

forest because of its equal uptake potential and its lower release potential.
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The K humilis meadow had relatively high LAI (3.1) with relatively low aboveground
biomass (ca. 300 g m?). With a similar LAI to study site, the aboveground biomass in an
Oklahoma grassland was reported to be as large as 800 g m™. The lower ratio of aboveground
biomass to LAI in the K humilis meadow seems to have been due to the low canopy height in
the alpine meadow, which resulted from the relatively greater abundance of broad-leaved
species and the low height of vegetation. The high LAI, on the other hand, seems to contribute
to the high belowground biomass in the alpine meadow. The belowground biomass was 6-7
times higher than the aboveground biomass (e.g. 1892 g d. w. m” on 11 August 2001;
unpublished data). This particular allocation pattern of plant biomass may favor high soil carbon
storage in the alpine ecosystem.

Although the CO2 uptake was not high, the daily net ecosystem carbon gain reached a
fairly high value during a sunny week in August 2001. One reason may be why the low
nighttime temperature (e.g. near freezing air temperature 2.2 °C) limited ecosystem respiration.
Another reason is perhaps the low maintenance respiration due to the low aboveground biomass

in the alpine meadow (Table 3.2).
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Table 3.1. Instruments and installation height

Meteorological elements Instruments Height (m)

. . . Sonic anemometer
Wind velocity and air temperature (CSAT/CSI) 2.2

. CO2/H20 infrared gas

CO2, H20 concentration analyzer (CS-7500/CSI) 2.2
Short wave and long wave radiations  Radiometer (CNR-1/Kipp & 15
from the sky and the ground Zonen) )

. . Thermo-hygrometer
Air temperatures and humidity (HMP45C/Vaisara) 22,11

. Cup anemometer (034A-L and
Wind speed 014A /R. M. Young) 22,11
Soil moisture TDR sensor (CS615/CSI) -0.05,-0.2, -0.5
Soil temperature Thermocouple -0.025, 0.05, 0.1, 0.2,

-0.3,-04,-0.5,-0.6,-0.7

Soil surface temperature Thermistor probe (107/CSI) 0 (3 points)
Soil heat flux Heat plate (HFT-3/CSI) -0.02 (3 points)
Precipitation g‘ggggﬁﬁ}‘é‘sﬁ‘m gage 0.5

PPFD (LL1908B L5 Cor LS

uv-A (PD204AMacam) Ls

uv-B D20 L5
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Table 3.2. Different components of carbon exchange fluxes and environmental conditions for
the Kobresia humilis meadow and other sites at similar latitude.

. . . Maximum Minimum Maximum  Maximum
Site LLE“::‘::; (‘:‘nh:';‘ie) Maz:qnl‘“m aboveground FCO2 FCO2 NEP;
& o biomass (g m?) (umolm?>?) (umolm?s™) (gCm?d™)
C; alpine 37°37'N
meadow 101°18'E 3250 3.8 283 -10.8 44 39
G/Cy 36°36'N
prairie? 99°35'W 630 1.5 370 -15.5 --- ---
subalpine Ormr
. 40°02'N
;:(c;rxllsf? 105°32'W 3050 4.2 --- -15.5 8.0-9.0 1.0
..4 39°12'N .
C, prairie 96°35'W 324 1.6 414 -25.0 10.0 4.9
..s 39°03'N - N
C, prairie 99°30'W 445 3.2 1100 - 6.3
tall-grass 36°56'N
prairie® 96°41'W - 2.8 --- -31.8 114 8.4
G/Cy 36°06'N
grassland’  140°06'E 27 35 B -36.7 21.6

'Qinghai-Tibetan Plateau, China (This study). *Oklahoma, USA (Sims and Bradford, 2001). *Colorado, USA
(Monson et al., 2002). “Kansas USA (Ham and Knapp, 1998). *Kansas, USA (Kim et al,, 1992). (’Oklahoma

USA (Suyker and Verma, 2001). "Tsukuba, Japan (Li and Oikawa, 2001).
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Figure 3.5. A view of the setting of the instruments (belowground)
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Figure 3.6. Time series of x, y, z-axis wind velocities (4, v, w), air
temperature (Zair), specific humidity (¢) and carbon dioxide concentration
(C) at the Haibei meadow, 12:00-12:03, 13 February, 2003. Data show
scalar fluctuations measured at the frequency of 20 Hz by a sonic
anemometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA) and an

open-path Infra-Red Gas Analyzer (CS-7500, Campbell Scientific Inc.).
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Figure 3.9. The wind direction dependent deflection of the 15 min average

wind inclination from 17 July to 26 July 2002. The effect of the tower is
clear in between 100 and 270 degrees of wind direction.
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Figure 3.10. Comparisons of 15 min averaged fluxes of corrected sensible
heat (H omree:) With uncorrected sensible heat (/,.r,) measured from 17
July to 26 July, 2002 at the Haibei station. “Rot”, “Tre” and “Vap” mean
rotation, trend removing and water vapor correction, respectively.
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Figure 3.11. Comparisons of 15 min averaged fluxes of corrected latent
heat (AEcorrect) with uncorrected latent heat (A£uncorr) measured from 17
July to 26 July, 2002 at the Haibei station. “Rot”, “Tre”” and “Vap” mean
rotation, trend removing and water vapor correction, respectively.

48



—<~FCOzcorrect_Rot
—H=-FCO2correct_Rot+Tre
FCOzcorrect_Rot+Tre+Vap

Fcoz,,,,,..(mg CO2 m2 s1)

™ | - -
i T y=0.00260 + 0.969x R’=0.860
| / — y=0.00260 + 0.969x R’=0.860
]_, T y=0.00259 + 1.027x R'=0.922
- | | | J
-2 -1 0 1 2

Fco:2 (mg CO2 m2 s)

uncorr

Figure 3.12. Comparisons of 15 min averaged fluxes of corrected CO2
(FCO2.0pree;) With uncorrected CO2 (FCO2,e0r) measured from 17 July to 26
July, 2002 at the Haibei station. “Rot”, “Tre” and “Vap” mean rotation,
trend removing and water vapor correction, respectively.
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Figure 3.13. Wind direction dependent deflection of the 15 min averaged H,
AE and FCO2 fluxes from 14 January to 31 December, 2002. Black line
shows 100 point moving average.
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December, 2002. Data show 15 min average values.
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Figure 3.15. Relationship between aerodynamic stability and dimensionless
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December, 2002. Data show 15 min average values.
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Figure 3.16. Daily energy balance between H+AE and Rn-G in 2001 and
2002.
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Figure 3.17. Seasonal changes of daily energy balance ratio (£BR) between
H+AE and Rn-G in 2001 and 2002.
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Figure 3.18. Daily changes
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Figure 3.19. Wind direction dependent of the energy balance ratio (EBR)
from 14 January to 31 December, 2002. Data shows 15 min averages.
Black line shows 100-point moving averages.
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Figure 3.20. Energy balance ratio (EBR) dependent on the friction velocity
from 14 January to 31 December, 2002. Data show 15 min averages.
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Figure 3.21. Diurnal changes of hourly averaged 7, at the Haibei station in
2001 and 2002. Data show monthly averaged values.
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Figure 3.22. Diurnal changes of hourly averaged 7}, at Haibei station in
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biomass and the LA/ (leaf area index) for the Koresia humilis alpine
meadow in 2002.
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Figure 3.25. Diurnal changes of hourly-averaged H flux at the Haibei
station for each month of the years 2001 and 2002, respectively.
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Figure 3.26. Diurnal changes of hourly-averaged AE flux at the Haibei
station for each month of the years 2001 and 2002, respectively.
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Figure 3.27. Diurnal courses of hourly-means of H, AE and environmental
conditions from 9 to 15 August 2001. a) available radiation (Rr-G, O);
sensible heat flux (H, <) ; latent heat flux (AE, [J); b) the difference
between canopy surface temperature and air temperature (T face = Tuirs X);
vapor pressure dificit (VPD, +); c) Omega factor (L2, A); Bowen ratio (5,
@®); friction velocity (us, M). The canopy surface temperatures are
estimated from the upward long wave radiation data using the
Stefan-Boltzmann’s law; Rl = £ 0 (Tsufuce + 273.15)4, where Rl is the long
wave radiation (W m™), ¢ is radiation emmisivity (adopted for 0.98), o is
the Stefan-Boltzmann constant = 5.67 x 10°W m?K™).
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Figure 3.35. Relationship between (a) gross primary production (GPP)
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ecosystem respiration (R,) and 5 cm soil temperature (7y,;) in July 2002
(0-12 h, O with solid lines, 12-24 h [, with broken lines). Data show
hourly mean values with standard deviation (n = 30 or 31). The equation
for predicting GPP from PPFD is y = 0.000292x + 0.18; r = 0.612 (0-12 h),
0.432 (12-24 h); s.e. = 0.0102 (0-12 h), 0.00763 (12-24 h). The equation
for predicting R, from Ty, is y = 0.0174exp(0.117x); r = 0.594 (0-12 h),
0.726 (12-24 h); s.e. = 0.000857 (0-12 h), 0.00149 (12-24 h). There is no
significant difference between 0-12h and 12-24h in ANOVA of GPP and
R, data (P < 0.0001).
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Chapter 4 Seasonal changes of the CO2 exchanges

4.1. Introduction

Net ecosystem production (VEP = -NEE) between the atmosphere and terrestrial
ecosystems is influenced by various factors, e.g. temperature, light intensity, soil water content
and phenology (Aubinet et al., 2000; Baldocchi et al., 2001; Valentini et al., 2000). Gross
primary production (GPP), COz uptake by plants via photosynthesis, and ecosystem respiration
(R.), CO2 efflux by plants and soil microbes via respiration, determine the NEP. Seasonal
changes in GPP are affected mainly by leaf physiological activity, leaf area index (LAI),
weather, and growing period. R, is composed of autotrophic respiration (4R) and heterotrophic
respiration (HR), which are controlled by plant and soil microbe activities disparately. AR is
composed of plant growth and maintenance respiration. HR is strongly regulated by soil
temperature and moisture (Lloyd and Taylor, 1994; Davidson et al., 1998; Xu and Qi, 2001).
Thus, the phase and amplitude of these components determine the seasonal pattern of net CO2
ecosystem exchange (NVEE) (Randerson et al., 1999; White et al., 1999; Cramer et al., 1999;
Falge et al., 2002). By using the FLUXNET database, Falge et al. (2002) recently studied the
factors that control seasonal changes in GPP and R, in a wide range of terrestrial ecosystems.
Their result showed that the seasonality of GPP was determined by the life-form (e.g. broad leaf
or needle leaf), and that of R, was affected by the climatic types that are characterized usually
by temperature. Saigusa et al. (2002) reported that the maximum GPP of a cool-temperate
deciduous forest, derived from a PPFD-GPP regression curve of a rectangular hyperbolic
function, was associated with LAI, but that light use efficiency as the initial slope of the
regression curve did not show clear seasonal changes. Flanagan et al. (2002) found that GPP in
northern temperate grasslands was strongly related to LAl and canopy nitrogen content. Thus,
GPP and R. seems to be affected by plant phenology and climatic seasonality in lowland
ecosystems. On the other hand, these relationships in alpine ecosystems are expected to exhibit
differént patterns from those in lowland ecosystems, even at similar latitudes (Li and Zhou,

1998). Little evidence, however, is available for us to determine the influence of environmental
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factors on the seasonal changes in carbon dynamics of alpine ecosystems. Specifically, how do
GPP and R, of alpine grassland change seasonally?

From August 2001 to December 2002, long-term CO2, water vapor and energy flux
measurements using the eddy covariance method were carried out in an alpine meadow on the
Qinghai-Tibetan Plateau. Additionally, the measured net ecosystem exchanges were attempted
to be divided into GPP and R.. The aims of this chapter are 1) to show the seasonal changes of
those CO2 fluxes, NEP, GPP and R,, and 2) to clarify the environmental controls on the

seasonal changes of those CO2 dynamics.

4.2. Materials and Methods

COz2 and H;O flux were measured by the open-path eddy covariance method from 9 August
to 31 December 2002. The study site is ﬂat with a fetch of at least 250 m in all directions. Wind
speed and sonic virtual temperature were measured at 2.2 m above the ground with a sonic
anemometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA). Carbon dioxide and water
vapor concentrations were also measured at 2.2 m with an open-path Infra-red gas analyzer
(CS-7500, Campbell Scientific Inc.). Details are described in subsection 3.2.

Micrometeorological measurements were conducted at the same site. Net radiation and
photosynthetic photon flux density (PPFD) were measured at 1.5 m above the ground with a net
radiometer (CNR-1, Kipp & Zonen Inc., Saskatoon, Saskatchewan, Canada) and a PPFD meter
(LI-190SB, Li-Cor, Lincoln, NE, USA). Air temperature and humidity were measured at 2.2 m
and 1.1 m above the ground with a humidity and temperature probe (HMP45C, Vaisala,
Helsinki, Finland). Wind speed was measured at 2.2 m and 1.1 m above the ground with a cup
anemometer (034A-L and 014A, R. M. Young Co., Traverse, MI, USA). Soil heat flux was
measured at 0.02 m below the ground at three points with heat plates (HFT-3, Campbell
Scientific Inc.). Soil temperature was measured at 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7
m below the ground with copper-constantan manufactured thermocouples. Soil water content
was measured at 0.05, 0.2, and 0.5 cm with time-domain reﬂectometry‘ sensors (CS-615,

Campbell Scientific Inc.). Soil surface temperature was measured at three points in a 1-m” area
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with thermistor thermometers (107 probe, Campbell Scientific Inc.). Rainfall was measured at
0.7 m above the ground with a tipping bucket (TE525MM, Campbell Scientific Inc.). Details

are described in subsection 3.2.

4.2.1. NEP, GPP and R, gap-filling methods

When natural and anthropogenic impacts on the global ecosystem carbon budget are
being compared among biome types, phenology, and stress conditions, the calculations usually
use annual sum data of net ecosystem exchange (Valentini et al., 2000; Falge et al., 2002).
However, Falge et al. (2001) found that the average data coverage during a year was only 65%,
owing to system failures or data rejection. They reviewed several methods of gap-filling and
applied them to data sets available from the EUROFLUX and AmeriFlux databases. They used
mean diurnal variation (MDV), look-up tables (LookUp), and nonlinear regression (Regression)
methods, and investigated the impact of different gap-filling methods on the annual sum of NEP.
In this study, those three methods were also used to fill gaps in order to obtain annual sums of
NEP. Details of the methods are reported in Falge et al. (2001).

In the MDV method, a missing datum is replaced by the mean for that time period (15
min) from adjacent days. The data windows of 7 and 14 days and two different algorithms of (a)
an “independent” window and (b) a “gliding” window were chosen. In (a), for each subsequent
period of data, mean diurnal variations are established to fill gaps within that period. In (b), a
window of prescribed size around each gap is used to construct mean diurnal variations for
gap-filling within that window.

In the LookUp method, look-up tables were created for six bimonthly periods or four
seasonal periods ranging from 1 April to 30 May, 1 June to 30 September, 1 October to 30
November, and 1 December to 31 March. For the look-up table, average NEEs were compiled
for 27 PPFD classes x 35 T,;, (air temperature) classes. PPFD classes consisted of 100 zmol
m™ s intervals from 0 to 2600 umol m™ s~ with a separate class for PPFD class = 0. Similarly,
T,;r classes were defined through 2 °C intervals ranging from —35 tb +34 °C.

In the Regression method, regression relationships were established between the NEP
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component, i.e. R, and GPP, and associated controlling factors (temperature and light) for every
month. Missing R, was extrapolated by using exponential regression equations (Eq. (3.48))
between measured nighttime R, with strong turbulence (u+ > 0.2 m s™') and soil temperature at a
depth of 5 cm. Nighttime eddy covariance flux data under the condition of below the u-
threshold (Aubinet et al., 2000) (0.2 m s™ in this study) were also corrected with the regression
equations (Eq. (3.48)); called as “us-correction”. GPP was extrapolated by using rectangular
hyperbolic regressions of daytime GPP against PPFD with Michaelis—-Menten type equation

(Falge et al., 2001) for every month:

a GPP,,, PPFD

GP P = ’
GPP,,, +a PPFD

4.1)

where a is the initial slope of the light—GPP curve (umol CO, [umol photon]™) and is
equivalent to the quantum yield. GPPg,r is GPP at light saturation (umol m™ s™). Those two

parameters are assigned as the monthly-specific parameters.

4.3. Results

4.3.1. Micrometeorology

The PPFD reached the maximum of 63.9 mol m™ d™ in late June and then decreased
gradually (Fig. 4.1a). The daily average air temperature and soil temperature ranged from 2 to
15.5 °C and 6.3 to 19.2 °C, reaching maximum of 15.5 and 19.2 °C in the middle of July,
respectively (Fig. 4.1b, c). Rain fell mainly from May to September in both years (Table 4.1).
During 7-14 consecutive dry days following the rainy days in 2002 (Fig. 4.1d), the soil water
content (SWC) decreased gradually from 0.54 cm® cm™ (saturation) to 0.2 cm® cm™ (Fig. 4.1e),
and the vapor pressure deficit (VPD) often increased to 56 hPa (Fig. 4.1f).

H had two peaks in April and October and AE reached the maximum status in July (Fig.
4.2a, b; Table 4.2). The Bowen ratio () showed very high value in winter season and kept low
value below 1.0 during the growing season (Fig. 4.2c; Table 4.2). The ratio of actual
evaporation (AE) measured by eddy covariance measurement to equilibrium evaporation (AE .q)

ranged from 0.8 to 1.0 during the growing season (Fig. 4.2d). This indecates that this ecosystem
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has the capacity to produce enough evaporation to meet atmospheric demand, yet remain wet.
Omega factor (£2) ranged from 0.2 to 0.8 during the growing season, and the seasonal pattern
was quite similar to that of AE (Fig. 4.2¢). Reanopy derived from Eq. (3.47) remained low at
around 100 s m™' from 23 May (DOY143) to 17 September (DOY260) in 2002 (Fig. 4.2f). This
result supposes that the soil moisture was high enough to keep the stomata of canopy plants
open. After this period, canopy resistance rose gradually to 300 s m™. Albedo kept around 0.20
during the growing season, from May to September, and around 0.23 during other period of the

year, except occasional snow (Fig. 4.2g; Table 4.2).

4.3.2. Carbon dioxide flux

The seasonal changes of NEPyiime; NEPnighuime, and NEP,,,;, are the daily integrated
values of CO2 uptake flux (—FCO2) as net ecosystem production for daytime, nighttime, and the
whole day, respectively (Fig. 4.3). In 2002, NEPym. started to increase from 23 May
(DOY143), and reached its maximum status on 30 June (DOY181) and local maximum of 5.4 g
Cm?d'on7 July (DOY188). NEP juyime started to decrease from 19 August (DOY231) and
reached the early summer value on 30 September (DOY273). NEP,iguime Showed the opposite
change, reaching the minimum of 2.5 g C m~ d™ on 19 August (DOY231). NEP,,,,; showed
similar changes to those of NEP,me, and peaked at 3.9 g C m™ d™ on 7 July (DOY188).
NEP, ., rarely became negative, but reached the minimum of —1.3 g C m™~ d™' on 29 September
(DOY272). The cumulative NEP,,,; for the growing season from 23 May to 30 September 2002
was 153.1 g Cm™.

The author performed a linear regression (Fig. 4.4) of NEP ;,.im. (Fig. 4.3) on integrated

PPFD. The slopes of the regression line showed similar seasonal change pattern to LAI (Fig.
3.24; Table 4.3), peaking in July and then decreasing in September 2002.

To investigate the relationship between ecosystem respiration and temperature, the
nighttime average FCO2 was plotted against the nighttime average soil temperature at a depth of
5 cm (Fig. 4.5). The nighttime average FCO: increased exponentially as soil temperature

increased. However, the nighttime average flux was scattered widely within a narrow range of
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soil temperatures in each month. Next, to assess the effect of SWC on ecosystem respiration, the
nighttime average FCO2 was plotted against SWC for five periods of low SWC after heavy
rainfall in summer time (Fig. 4.6). The CO2 efflux increased as SWC decreased. CO2 of at least
0.94 umol m™ 5™ was released even in saturated conditions. In the 2002 periods 23 May-1 June,
11-19 August, and 24-31 August (see Fig. 4.1d, 2nd, 4th, and 5th data sequences), the nighttime

average soil temperature increased from 2.8 to 4.2 °C as SWC decreased.

4.3.3. GPP and R,

GPP equals to the sum of R, and NEP. The estimation accuracy for GPP is thus affected
by the estimation error of R,. Consequently, the estimated R, was compared to the R, derived as
an offset of the rectangular hyperbolic regression in the light response curves of the FCO2(as
shown in Suyker and Verma, 2001; eq. (1); Fig. 4.7). The regression line showed a good
agreement between two R.s; the slope was 1.08 and offset was 0.06 g C m™>d™.

Seasonal changes in the monthly parameters of R, and GPP regression curves; Ry, @,
and GPPg,r, in Egs. (3.48) and (4.1), are given in Table 4.4. R;, reached a maximum status of
2.27, 1.88 umol m™ s™ in August and September. R;, showed negative values in January and
February, and that was assumed to be from using the constant parameter in E,. However, even if
daytime R, calculation has the internal errors, the very small magnitude of R, in winter don’t
have so significant influence in annual R, estimation. @ showed abrupt high value in May and
reached maximum status in June to August, and kept near zero values in October to April.
GPPgs,r increased from May and reached maximum status in July and August, and kept near
zero values in October to April.

Seasonal changes in the 15-d moving average values of PPFD and T,,;, which strongly
affect GPP and R,, are given in Fig. 4.8a. PPFD shows three maximal and three minimal values
during the growing season from May to September, which corresponded to three rainfall events:
maximums on days of the year (DOY) 181, 207, and 232; minimum on DOY166, 190, and 217.
Toi; also shows three maximum and three minimum values during the growing season, but those

dates lag by 1-13 d in comparison with those of PPFD: maximum on DOY189, 213, and 237;
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minimum on DOY167, 203, and 230. T,,; decreased gradually after the first day of maximum
(DOY189).

Seasonal changes in the 15-d moving average values of GPP to R, are given in Fig. 4.8b.
GPP started to increase on 1 May (DOY121), reaching a first maximum value of 5.90 mol m™
s™ on 7 July (DOY188), a second maximum of 6.46 umol m™s™ on 2 August (DOY214) and a
third maximum of 5.71 #mol m™ s™ on 19 August (DOY231). After that day, GPP decreased
gradually to 1.0 #mol m™ s™ on 28 September (DOY271). R. started to increase at the
beginning of March, reaching a first maximum value of 3.48 gmol m™s™ on 12 July (DOY193),
a second maximum of 5.40 umol m™s™ on 8 August (DOY220), and a third maximum of 4.45
umol m™ s™ on 24 August (DOY236). Thus, the seasonal changes of GPP show that the plant
growing season ranges from May to September in this alpine meadow ecosystem, but do not
correspond perfectly with those of PPFD, although the seasonal changes of R, show a good
agreement with those of T,;.

Figure 4.8b also shows the seasonal changes in the ratio of GPP and R.. The ratio
remained mostly larger than 1 form May to September. This indicates that this ecosystem was a
sink of carbon during the growing season in 2002. The maximum value of the ratio was 2.07 on
24 July (DOY205).

Figure 4.8c shows the seasonal changes in the 15-d moving average values of GPP
and R,m., the maximum values of diurnal GPP and R. change, which are potential values of
assimilation and respiration of CO2. GPP,,, started to increase rapidly on 1 May (DOY121),

exceeded 20 ymol m™> s™

for the two months from 2 July (DOY183), and reached a maximum
of 23.6 umol m™ s on 31 July (DOY212). After 20 August (DOY232), when GPP was 20.4
umol m™ s™, GPP decreased rapidly to 1.0 umol m™ s on 10 October (DOY283). R, started to
increase on 1 May (DOY121), reaching a first maximum value of 8.10 umol m™ s™ on 1 July
(DOY182) and an annual maximum of 12.0 umol m™ s on 25 August (DOY237), and then
decreased rapidly to 1.0 umol m™ s on 25 October (DOY298). Thus, the seasonal changes of

GPP,,, corresponded well with those of GPP, although the annual maximum of R, lagged

two weeks behind that of R,.
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The radiation use efficiency (RUEgpp), the ratio between GPP and PPFD ranged from
10 to 20 mmol CO2 mol photon'l from June to August, RUEgpp change with plant growth (Fig.
4.9). The water use efficiency (WUEgpp), the ratio between GPP and evapotranspiration (E)
ranged from 2.0 to 4.0 mmol CO2 mol H20™ from June to August, and also changes along with
plant growth (Fig. 4.9).

To clarify the effect of LAl on CO2 assimilation potential and resource use efficiency,
the relationships between LAl and GPP,,, RUEgpp and WUEgpp are shown in Fig. 4.10.

GPP,.., RUEgpp, and WUE pp tended to increase with the increase of LA/ increased.

4.3.4. Annual sums of net ecosystem carbon dynamics

Table 4.5 lists annual sums of GPP, R, and NEP, and daily GPP and daily NEP as the
quotient from the division of annual GPP and NEP by the number of days when NEP > 0.
Missing data are filled by the Regression method for all parameters, and by the MDV and
LookUp methods for NEP. Gap-filling methods reduced the proportion of missing data from
33.3% to 4% (Table 4.2). The remaining missing data are almost all in the coldest part of winter,
from 1 to 13 January, when there is no biological activity at all, and does not affect annual sums
of fluxes. The residue of peak aboveground biomass (134.7 g C m™ multiplying a peak
aboveground dry weight biomass 283 g d.w. m™ by a conversion coefficient to carbon 0.476
(unpublished data)) taken from annual NEP (78.5 g C m” y™), as annual carbon storage below
ground, is —=56.2 g C m™ y™'. In the data gap-filled by the Regr. methods without u«-correction,

annual balances of GPP and R, are less than those with u.-correction.

4.4. Discussion

4.4.1. Environmental controls on the seasonal changes of net carbon dioxide
exchanges

The linear regression slopes of NEPg,yime against PPFD were higher for August 2001
than August 2002 (Fig. 4.4). There are two major processes directly involved in this difference

of slope, that is, a higher CO2 uptake rate and a lower ecosystem respiration could result in a
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higher slope. The LAl seems the major factor causing the increase of ecosystem CO2 uptake. As
the LAl increases, a larger photosynthetic leaf area and thus a higher ecosystem COz2 uptake
would be expected. It is indeed true for low LAI values (Larcher 1995). The LAI measured on 20
August 2001 was 3.1, which was about 20% higher than the LAI of 2.6 obtained on 25 August
2002 (Table 4.3). A detailed assessment of the effects of soil respiration on FCO2 was beyond
the scope of the current work, but it should be further clarified in order to understand the
underlying mechanisms for the carbon cycle in the alpine meadow.

The nighttime CO2 efflux (ecosystem respiration) shows a positive exponential
relationship with soil temperature (Fig. 4.5) and an apparent linear relationship with SWC (Fig.
4.6). Similar response of nighttime CO, flux to SWC has been observed in tundra under
near-saturation (Oechel et al., 1998). At this site, an excess of SWC beyond the optimum level
(e.g., 0.3) seemed to have greatly affected CO, emission. The effect of SWC on CO, efflux in
the alpine ecosystem seems different from that reported for relatively dry grassland (Hunt et al.,
2002), likely because of the different range of SWC encountered. However, the decrease of
FCoO2 with SWC in Fig. 4.6 could be an artifact of changing soil temperatures whose effect was

not separated in this analysis, and therefore deserves further investigation.

4.4.2. Environmental controls on the seasonal changes of GPP and R,

The timings of the maximum and minimum daily mean GPP synchronized with those of
GPP,,,, an index of potential ecosystem photosynthesis (Figs. 4.8a—c). GPPy, is positively
related to LAI (Fig. 4.10a) as shown in Saigusa et al. (2002) and Flanagan et al. (2002). RUEgpp
and WUEpp also tended to increase as LAl increased (Figs. 4.10b, c). These results suggest that
LAI determines the ecosystem capacity for assimilation and resource requirements.

The timings of the maximum and minimum of the daily mean R, and R,,,, synchronized
with those of T, an environmental factor, when these parameters were maximum
(DOY180-230) (Figs. 4.8a—). R.max, however, increased even though T,; decreased during the
same period, as seen in R (Table 4.4). In general, seasonal changes in respiratory processes are

controlled by climate more strongly than by biological factors (Falge et al., 2002). However, at
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this study site, R,m.x, Which reached the maximum in autumn, may be associated with above-
and below-ground biomass, which reached the maximum at the same time (Kato et al., in press,
2004b; Li and Zhou, 1998).

Seasonal changes of mean GPP and R, were synchronized in the phases, as seen in
temperate and Mediterranean ecosystems (Falge et al., 2002) (Fig. 4.8b). In contrast, those of
GPP,,, and R..x were out of phase, as presented in GPPs,r and R;y (Table 4.4) and seen in
boreal coniferous forests (Falge et al., 2002). That time lag of GPP.x and Remax phases is
expected to be caused by the differences in the seasonal patterns of biological functions, i.e. LA,
plant and soil biomass, affecting the potential of assimilation and respiration, respectively.

When the GPP/Re ratio was assumed to be conservative in an alpine meadow as
suggested in forests (0.47 + 0.04 s.d.; Waring et al., 1998), the relatively high ratio of GPP/R,
indicates a high contribution of photosynthesis and autotrophic respiration to the carbon
dynamics of this ecosystem (Fig. 4.8b). Values of GPP/R, near 2 in late July correspond to NEP
= R,, indicating a low overall contribution of HR. This suggests that mainly autotrophic
processes govern ecosystem carbon fluxes, as was observed in field crops and at temperate sites
(Falge et al., 2002). When GPP considerably exceeds R, like this, the accumulation of litter can
reduce free nutrients in the ecosystem. Considering the close link between soil organic matter
decomposition and nutrient cycling, this system may show negative feedback in growth and

CO2 assimilation or be susceptible to disturbance (Shulze et al., 1999; Amiro, 2001).

4.4.3. Ecosystem carbon assimilation ability

The author compared the maximum NEP,,,; of study site (3.9 g C m> d") with those of
other sites at similar latitudes (Table 3.2). The maximum NEP,,, in the present study was
slightly less than that of the Kansas C, prairie (6.3 g Cm™ d”, Kim et al., 1992; 4.9 g Cm>d™,
Ham and Knapp, 1998), but 50% less than that of the Oklahoma tall-grass prairie (8.4 g C m™
d”', Suyker and Verma, 2001). It seems that the alpine meadow ecosystem has a smaller daily
COz2 uptake potential than other grassland ecosystems. The daily uptake potential of this site

was 4 times that in the Colorado subalpine conifer forest at approximately the same elevation

83



(1.0 g C m™ d'; 3050 m; Monson et al., 2002). The low temperature may suppress plant
respiration and decomposition of soil organic matter. The small biomass may also an important
factor decreasing plant respiration significantly. On the other hand, the short growing season
was compensated by the high daily COz2 uptake potential. Consequently, the alpine ecosystem
sequestered a large amount of CO2 (153 g C m™) during the growing season in 2002. Although
it is still under debate whether or not CO2 fluxes should be corrected by the magnitude of
energy budget closure, the simple correction that compensate the lack proportion of energy
balance as presented by Saigusa et al. (2002), was applied: 226 g C m™ in the growing season
CO2budget.

The author compared the GPP of the alpine meadow with those of other ecosystems.
The annual GPP of 575 g C m™ was lower than those of boreal coniferous forests (723-959 g C
m™ y™) and Colorado subalpine coniferous forest (831 g C m™ y™'; 3050 m) at similar
elevations, and much lower than that of tropical forest (3249 g C m™ y ™), but within the range
for temperate ecosystems, including forests and grasslands (542-1924 g C m™ y™'; average,
1262 g C m™ y™'; Falge et al., 2002). The daily GPP of the study site (3.59 g C m™ d™', Table
4.5) was similar to those of boreal evergreen forest and Colorado subalpine coniferous forest
(4.6 and 4.4 g C m™ d”, respectively), although slightly lower than those of temperate
coniferous forest and C; crops and grassland (5.7-6.9 g C m™ d™). Thus, although the alpine
meadow ecosystem has a daily COz2 assimilation equal to that of a Colorado subalpine forest
ecosystem, it has a lower annual GPP because of the restriction of the growing period.

The annual NEP in our study site (78.5 g C m™ y', Table 4.5), which was gap-filled by
the Regr. method using the u«-correction reported by Falge et al. (2002), was close to that of the
Colorado subalpine coniferous forest (71 g C m™ y™), although substantially lower than that of
lowland grassland (231.3 g C m™ y™) and boreal ecosystems (121.4 g C m™ y™). The daily
NEP of this site (0.49 g C m™ d”!, Table 4.5) was similar to that of the Colorado subalpine
forest (0.38 g C m™ d™). Although this alpine meadow ecosystem has a lower annual GPP than

that of the subalpine forest ecosystem, it has a comparable annual NEP. It is assumed that not
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only low temperature but also small biomass suppresses the ecosystem respiration; as a result,

this ecosystem may sequester substantial C.

4.4.4. Gap-filling methods and annual carbon dynamics

Annual NEPs differed largely with some gap-filling methods (78.5-149.5 g C m™%; Table
4.5). For the Regression method, which calculates GPP and R, separately, R, with u«-correction
‘was higher by 83.1 g C m™ y* than without u.-correction. This fact, based on the principle that
us-correction replaces nighttime eddy covariance fluxes under more stable condition with fluxes
under higher turbulence, should be reasonable. The consequent decline in annual NEP due to
u.-correction (-35.4 g C m™ y™') was lower than that observed in other ecosystems (-77.0 g C
m > y'; Falge et al., 2001). Among the three gap-filling methods, MDV gave the highest annual
NEP. This fact suggests that environmental factors during gap-periods have potential to be
biased by the extreme climate. The differences among the gap-filling methods were smaller than
those among various ecosystem types (Falge et al., 2001). It is not able to answer conclusively
which method is best. However, when the annual NEP estimated from gap-filled data is used to
evaluate an ecosystem’s capacity for CO2 assimilation or for comparison with other ecosystems,

the reduction of errors should be considered.
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Table 4.3. Aboveground biomass
and leaf area index (LAJ) in 2002
in Haibei, Qinghai, China.

Date Aboveground LAJ

Biomass

gD.W.m? m’ m*
25-May 49.7 -
31-May 48.5 ---
13-Jun 79.2 0.53
30-Jun 107.5 1.1
16-Jul 205.0 3.8
30-Jul 283.4 2.7
13-Aug 260.6 31
25-Aug 280.0 2.6
10-Sep 194.5 23

Table 4.4. Parameterization of ecosystem respiration (R.) and gross primary
production (GPP) regression curves using 15 min averaged data in 2002.

Month R, GPP
R]o ]'2 a GPPSAT 1'2
umol CO2 m?s™ x 10° pmol CO2 pmol CO2 m*s™
umol photon™
Jan. -0.75 0.003 0.86 -0.02 0.004
Feb. -0.03 0.004 0.12 -0.01 0.089
Mar. 0.52 0.007 0.36 -0.02 0.076
Apr. 0.93 0.008 0.12 -0.01 0.120
May 1.31 0.018 139.50 1.54 0.004
Jun. 1.50 0.026 43.99 10.46 0.137
Jul. 1.23 0.006 31.83 20.37 0.489
Aug, 2.27 0.009 48.56 18.29 0.446
Sep. 1.88 0.124 24.47 8.20 0.276
Oct. 1.26 0.440 -2.32 0.10 0.119
Nov. 0.21 0.000 -1.36 -0.88 0.055
Dec. 0.44 0.009 -2.33 -0.22 0.007

The regression follows an Arrenius-type exponential relationship for Re (nighttime FCO2 (u+ > 0.2 m
sN): R, = Rypexp (E./R (1/283.15 - 1/(T,,y + 273.15))), where Ry, is the respiration rate at the soil
temperature of 10 °C (umol CO2 m> s™), E, is the active energy (is adopted for only one value for
whole year; 81519 J mol™), R is the gas constant (= 8.134 J K™ mol™), and a rectangular hyperbolic
relationship for GPP: GPP = a x GPPsyr x PPFD | (GPPg r+ a x PPFD), where a is quantum yield
(dimensionless), and GPPg,r is the saturated GPP (umol CO2 m™ s™).
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Table 4.5. Ecosystem carbon dynamics in 2002 in Haibei, Qinghai, China.

Method  Specification Average GPP R, NEP Days daily daily
period (NEP>0) GPP NEP
(gCm?) (gCm?) (eCm™) (days)  (eCm™) (gCm?)
Regr. with us-correction 1 month 575.1 496.6 78.5 160 3.59 0.49
without lmonth 5274 4135 1139 164 322 069
u-correction
MDV independent-window 7 days 147.2
14 days 1452
gliding-window 7 days 149.5
14 days 141.8
LookUp T 2 months 122.3
Seasonal 96.9
T, 2 months 142.3
Seasonal 113.8

“Day (NEP > 0)” means the number of days when daily NEP > 0 (length of growing season). GPP, R,, and
NEP mean the periodic sums of gross primary production, ecosystem respiration, and net ecosystem
production, respectively. Daily GPP and daily NEP were calculated by dividing GPP, R,, and NEP by the

length of the growing season.

89



06

¢00¢ 1002
29 AON 10 dog Sny mp unp fe ady e qod uep 29 AON 10 dog Sy
| | | | | ] | | ] | | ] ] ] |
| | I i ] | | | | [ | | | | |
087 097 (1744

0Z€  00€ vz
ﬁ : _ 0
-~ To
LA
“““ L0

{80

o oo
-Nan"wN s o




16

‘9" "S1 U1 umoys (HMS) JUIU0D IdJem [10S 0) puodsariod
(© ~ @) souoz Le1p (@dA) woysp amssaxd 1odea 1o9em (3 (200z S0V T€—C ‘S 200T 3NV 61-TT b 200T
unf 81— ‘¢ “200T unf [-Ke €2 ‘T ‘100Z 3nv 82-8T ‘T) (OMS) yidop wo-g je juajuod 1atem [1os (o ‘uopendioard
(P ‘mdop wo-g 1 srmeradwa) Tros (9 ‘oryersdway 1e (q (qdd) Ansusp xnp uojoyd oneuisoloyd (e 700z
pue 100z Ul eury) ‘rey3uI)) ‘raqreq ul ooz pue Qg Ul SUOIIPUOD [eo130[0109)0W UT SAFUBYD [BUOSBAS "T'{ 2INT1



6003 10038

d8(g AON £20) dag Sny mp unp fey 1dy e qod uep 29 AON 190
| | | | | | ] | ] 1 ] | ] ] 1
| | 1 | 1 1T | | | | | T | | |
oeme ove ) eNﬂ 00€ 08C 09C O¥T 0CC 00T O8I 09T OF¥I OCI 001 08 09 or 07 09¢ oObE 0Z€ 00E 08T 09T OF 0T
” 1 m T : - : , - , 9

! T T T T T T T T T T T

TS o R R s

SSO[UOTSUA IP

LY s

SSI[UOISUA

S SI[UOISUII IP

p

SSouoISsudux

N

1P

P2 [N



€6

‘opaq[e (J pue (““'y)
soue)sisar Adoued yyrouop—urwudd (3 (¢5) 10308) eSowo (5 (**7y) uonerodeas wnuqinbs pue (Fy) xn[y 1eay
Jusje] uaam3aq onjer oy (p {(g) oner uamog oy (9 xnyy jeay juare| (q ‘xnyJ 1eay S[qIsuss (e “Z00Z PUB [OOT Ul BUIYD
‘TeySuI) ‘rdqreH ur suonipuod [esrfojorsAyd Adoueds pue arnjsiour ‘soxnyy 1eay A[Iep Ul saSuRYD [RUOSEDS 7' NI



v6

‘A1oAn0adsal
‘Kep 11 pue ‘aumy3iu ‘smnAep 10} (z00,—) xnpj ayeidn QD 19U 2y} JO Swns Y} e MIJHN pue coumBI At
coundop rorar -(ydeis 1omor) zooz pue (ydeis raddn) 1goz ur uononpoid was£sode jou Aqrep ur saguey) "¢'p 21N

2Q wcz 190 dag Sny ::., unf Aely ady  Jey qaq uef

il | | N | |
i 1 t _ i “ “ “ “ 1 ;

09€ ObE 0T€ 00€ 08T 09T OvC 0CZ 00Z 0ST 09T OvI 0TI O0OT 08 09 Oy 0T O
T T T 1 7 ”‘ " d\\l

[ _, _ , - , T
| i M w : m i m m ﬂ, m , m m
*” : ! : ! H : : !

P, D 8) JAN

G

(1P W D 3) JAN




6 — S e B —
& Aug01 ) |
- -4 Sep-01 h
5 &~ May-02 - -
e Jun-02 . mo
- Jul-02 e _m _
:]5 4w Aug-02 “ 8 \-I//Fi-f% *
-8 —A Sep 02 é ai x\y j/ ' O A ykm\ )
O 3 ] 9:/'@ e ///,,/' -
Y 0, Lm0 e g e
~ v @A A A )
8o S R AETL S . ‘.f . |
N 7 e Y - m e -
> ) add “ A W
N A o .
AT N A .. .
s A-- VAN A A @ A . _e— — = —
T T . A e, A .
oOr=——-- AJa e _
N S
1 L I \ : l _ ! | J
0 10 20 30 40 50 60 70
PPFD (mol m2d1)

Figure 4.4. Linear regression of daytime accumulated CO, uptake flux
(VEP j4y1ime) on incident photosynthetic photon flux density (PPFD). The
regression follows a linear relationship: NEP juime = @ x PPFD. Monthly
values are presented as follows: Month (symbol, a, r*). August 2001 (OJ;
0.0793, 0.418 ), September 2001 (A ; 0.0556, 0.324 ™), May 2002 (¥;
0.00671, 0.0653 ns), June 2002 (@; 0.0398, 0.170 ), July 2002 (X; 0.0773,
0.0441 ns), August 2002 (H; 0.0641, 0.222 7), and September 2002 (A;
0.0322, 0.0344 ns). The linear relationships were significant at p<0.05 *,
p<0.01 ** levels of correlation coefficients. ns shows nonsignificant linear
relationships.

95



6 | ! |

o Aug. 01 Y  May 02 )

*  Sep. 01

< Oct. 01 S Jul. 02
5,; t  Nov. 01 Aug, 02
e | Dec. 01 7 Sep. 02
E 4 _ v . o
=) Feb. 02 T Nov. 02 G 4
o Mar. 02 Dec. 02 o ¥
z Apr. 02
=2 H
& 2 - &
£
> <
>
t - ‘A¢ %
= _— - -:Y,t‘ . 1
2 0 ¥ ”i"iii‘*' fary O 1
S . ”
2

FCO:2=0.513 exp (0.117 * Tsoilsem) r*=0.75 Q10=3.21
_2 | I | | | |
-10 -5 0 S 10 15 20

T, nighttime average (°C)

801

Figure 4.5. Relationship between nighttime CO, flux density and nighttime
soil temperature at the depth of 5 ¢cm in 2001 and 2002. Data show
nighttime averaged values. The exponential relation is described by FCO,
=0.513 exp(0.117 x Typ)), r* = 0.75, p<0.0001.
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Figure 4.6. Relationship between nighttime CO, flux density and nighttime
soil water content (SWC) during a dry spell after heavy rainfall (1, 18-28
August 2001; 2, 23 May — 1 June 2002; 3, 7-18 June 2002; 4, 11-19
August 2002; 5, 24-31 August 2002). Data show daily mean values. In
2002 during 23 May — 1 June, 11-19 August, and 24-31 August (the 2nd,
4th, and 5th periods, respectively), daily mean nighttime soil temperature
rose gradually (first day-last day, °C): 1, 11.7-11.5; 2, 7.5-11.7; 3,
13.5-15.7; 4, 12.9-15.7; 5, 12.6-15.8. The linear relation is described by
FCO, =-9.97 x SWC + 6.77, I* = 0.345, p<0.0001.
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Figure 4.7. Ecosystem respiration (R,), calculated from light response
relationships (Eq. (1) in Suyker and Verma (2001)) compared to the values
derived from exponential regressions between soil temperature and
nighttime fluxes under turbulent conditions (Eq. (3.48)). Data represent
average daily sums of each month on which R, and GPP regression curves
are made in 2002.
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Figure 4.8. Seasonal changes in (a) daily mean photosynthetic photon flux
density (PPFD; solid lines) and 5 cm soil temperature (T,;; broken lines);
(b) daily mean gross primary production (GPP; solid lines), ecosystem
respiration (R.; broken lines), and ratio between GPP and R, (dashed lines);
and (c) daily maximum GPP (solid lines) and R, (broken lines) in 2002.
Data represent the daily means of 15-d moving average GPP/R, ratio
from 14 January to 31 December, 2002.
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Figure 4.10. LAI controls on (a) maximum gross primary production
(GPP,,), (b) radiation use efficiency (RUEgpp), and (c) water use
efficiency (WUE¢pp) of GPP. Vertical axis data show daily mean value of
less than 4 d backward and forward LAI sampling day. GPP,,,, data when
the PPFD was below 1500 umol m™ s™' were eliminated from the average.
Error bars mean standard deviation (horizontal axis: n = 5, vertical axis: n =
7). In the equation for predicting GPP,,,,, RUEgpp, and WUEpp from LAI,
standard errors are 1.560, 0.913, 0.177, respectively; P < 0.0001, 0.0001,
and 0.05.
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Chapter S Model analysis on the relationship between
climate perturbations and carbon dynamics: 1981-2000

5.1. Introduction

Sim-CYCLE is a mechanistic model, on the basis of the dry-matter production theory
established by Monsi and Saeki (1953). The atmosphere-biosphere CO2 exchange is composed
of physiological processes, such as photosynthesis (GPP), respiration (AR), and decomposition
(HR), and then this simulator enables us to estimate the ecosystem C budget in a mechanistic
way. Plant growth process was retrieved by the Monsi (1960) scheme, and C dynamics
including soil organic matter was captured by the Oikawa’s (1985) compartment model. Then,
terrestrial ecosystems were conceptualized as a five-compartment system: foliage, stem and
branch, root, litter, and mineral soil. In addition to GPP, AR, and HR, carbon flows such as
litterfall, photosynthate allocation, and humus formation were properly formulated. GPP was
regulated by a couple of physiological processes at a single-leaf scale (e.g. stomatal
conductance and quantum yield), and scaled up to a canopy scale. AR consists of two functional
components, i.e. maintenance respiration and growth respiration, each of which is regulated by
environmental factors independently. The difference between GPP and AR is termed net
primary production (NPP), and the difference between NPP and HR is termed net ecosystem
production (NEP). Sim-CYCLE contains water and radiation subschemes to estimate physical
environment in terrestrial ecosystems.

Ito and Oikawa (2000) performed a model analysis of the effect of climatic perturbations
from 1970 to 1997 on the carbon budget of terrestrial ecosystems at the global scale, using
Sim-CYCLE. During the 28 yr experimental period, global NEP ranged from -2.06 Pg C yr'
(source) in 1983 to +2.25 (sink) Pg C yr' in 1971, being sufficiently large to give rise to
anomalies in the atmospheric CO2 concentration from +0.97 to -1.06 ppmv. Regression analyses
demonstrated the following: (1) annual ANEPs had the highest correlation (r* = 0.38) with the
temperature anomaly at the global scale; (2) the anomalies in precipitation resulted in a

considerable ANEP in northern high and middle regions; (3) an anomalous global warming by
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+1°C brought about a negative ANEP of -2.7 Pg C yr''; (4) the responsiveness was primarily
attributable to the temperature sensitivities of plant respiration and soil decomposition, and
secondarily to the moisture sensitivity of decomposition; and (5) the temperature dependence of
ANEP had a clear seasonality, i.e. most sensitive from July to September (summer in the
northern hemisphere) relative to other seasons. In 1983, when an ENSO event happened and the
tropical zone was anomalously hot (0.4 °C above the long-term mean), the largest negative
ANEP (-2.06 Pg C yr') was estimated. On the other hand, in 1971 when global mean
temperature was relatively low (0.2°C below the long-term mean), the largest positive ANEP
(+2.25 Pg C yr') was estimated. Furthermore, in 1992 when an anomalous cooling during the
growing period (0.3°C below the long-term mean) was caused by the Mt. Pinatubo eruption
(June 1991), a considerable positive ANEP (+1.14 Pg C yr') was estimated. The climate
dependencies of global terrestrial ecosystems analyzed here may contain significant
implications not only for the present functioning of atmosphere-biosphere carbon exchange, but
also for ongoing global warming.

Frozen soil has a large apparent heat capacity due to the latent energy of freezing and
thawing, and act as an impermeable layer because of the large hydraulic conductivity when
frozen. Frozen ground, covering mid- to high-latitude regions widely, affects not only the
regional scale energy and hydrological condition in those area, but also the continental scale
energy and water circulation in the world. A General circulation model (GCM) simulation
showed that soil freezing elevates the ground surface temperature in the mid- and high-latitude
region in summer (Takata and Kimoto, 2000). The higher temperature over land results from
lower evaporation caused by lower surface soil moisture, and the lower surface soil moisture is
caused by additional runoff of snowmelt in spring due to the impermeability of frozen soil and
low soil liquid water due to the lower evaporation. Thus, soil freezing gives the thermal and
hydrological impacts on the climate system, and consequently the carbon dynamics on the
ecosystem. In this study, the estimation schemes of soil freezing were adjoined into basic

schemes in the Sim-CYCLE newly.
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Water budget, e.g. evaporation, transpiration, runoff, infiltration and precipitation,
determines the soil water content and plays an important role on the water availability for plants.
When ground surfaces are sparsely covered with vegetation, estimation of evaporation and
transpiration using the energy transfer model is difficult, because that evaporation from the soil
surface beneath the crop canopy can not be negligible in quantity, and it is necessary to treat the
vapor flux from the crop fields as the total of soil and plant fluxes, transpiration from leaf
stomata, and evaporation from the soil surface. However, the precedent Sim-CYCLE did not
take sparse vegetation cover into account. Shuttleworth and Wallace (1985) designed a
compartment model (S-W model) to estimate the evaporation from soil and transpiration from
crops separately. This model accuracy also was examined by Kato et al. (in press, 2004a) in the
sorghum fields, Tottori, Japan, and its availability for sparsely vegetated ground surface was
confirmed. This study adopted this compartment model and adjoined into the basic schemes in
the Sim-CYCLE as new subschemes. In precedent Sim-CYCLE, the runoff is parameterized by
using the Bucket model (Manabe, 1969). This model has the simple calculation schemes that the
storage water over a bucket capacity outflows as the runoff, and used widely in the GCM
simulation. On the other hand, the Tank model (Sugawara and Maruyama, 1952; Sugawara,
1961), used widely in the flood forecast, has the complex calculation schemes and many
parameters to control the runoff from multi-poles installed at the tank sidewall, however, also
has a high estimation accuracy. Kondo (1993) developed “a new bucket model”, gathering both
the simplicity of the Bucket model and the higher accuracy of the Tank model, to calculate the
infiltration into the deeper soil layer in the soil surface having the heterogeneity in its soil
properties and thickness. This model expresses the runoff in the hyperbolic approximate
equation parameterized by precipitation, and applicable for various time scale estimation, from
one hour to one month. This study adjoined this new bucket model into the basic schemes in the
precedent Sim-CYCLE.

For twenty years, 1981-2000, the monthly carbon fluxes and carbon storages were
simulated using the Sim-CYCLE at the Haibei station on the Qinghai-Tibetan Plateau, China.

The aims of this chapter are 1) to show the interannual patterns of CO2 flux, 2) to clarify the

104



climate controls on the ecosystem carbon dynamics in the alpine meadow ecosystem, and 3) to

predict the ecosystem response of the carbon sequestration against the global warming,.

5.2. Model description

5.2.1. Sim-CYCLE -Basic model-
5.2.1.1. Overview of Sim-CYCLE

Sim-CYCLE was developed based on the ecosystem-scale model of Oikawa (1985),
which has been used to simulate and analyze a tropical rain forest ecosystem (Oikawa, 1986), a
temperate broad-leaved evergreen forest (Oikawa, 1998), and grassland (Oikawa, 1993;
Alexandrov and Oikawa, 1995). In Sim-CYCLE, terrestrial carbon dynamics is conceptualized
as a five-compartment system (Fig. 5.1). A water and radiation subscheme is required, because
carbon dynamics is closely coupled with water and radiation budget (Fig. 5.1). Carbon in a
given ecosystem (WE) is composed of plant biomass (WP) and soil organic carbon (WS). WP is
distributed in three compartments: foliage (subscript F), stem and branch (subscript C), and root
(subscript R); WS is distributed in two compartments: litter (subscript L) and mineral soil

(subscript H):

WE =WP + WS (5.1a)
WP =WP, + WP, + WP, (5.1b)
WS =WS, + WS, (5.1c)

Atmosphere-biosphere CO2 exchange occurs through three major processes: gross
primary production GPP, autotrophic plant respiration (4R), and heterotrophic soil respiration

(HR). Net primary production (NPP), defined as:

NPP =GPP - AR (5.2)
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ecology but also for agronomy and forestry. Net ecosystem production (NEP), defined as

follows:

NEP = NPP - HR (5.3)

indicates the carbon balance of the ecosystem during a given period: a net sink or a source.
Within a terrestrial ecosystem, carbon is transferred in the form of various organic compounds
(largely carbohydrates) through several processes (Fig. 5.1), including translocation of
photosynthate (PT), litterfall of dead biomass (LF), and synthesis of humic mineral soil (HF).
At this stage, animal processes and lateral transportation of carbon from one ecosystem to
another are neglected. The net change in each compartment (4) during a given period is given

by the following equations:

AWP, =PT, - ARG, - LF, (5.4a)
AWP, = PT, - ARG, - LF., (5.4b)
AWP, = PT, - ARG, - LF, (5.4¢)
AWS, =LF - HR, - HF (5.4d)
AWS, = HF - HR,, (5.4¢)

where photosynthate translocation (PT) is the difference between GPP and ARM. It is apparent
that AWE is equal to NEP. Since in Sim-CYCLE these fluxes are calculated monthly, the
seasonal, interannual, and successional behaviors of terrestrial carbon dynamics can be
simulated. By carrying out of these simulations, such important quantities as plant biomass, soil
carbon storage, leaf area index (LAI), NPP, and NEP can be estimated. The model calculation
was launched at the juvenile stage, when initial carbon content was 0.1 Mg C ha™ for each
compartment, and repeated for a period sufficiently long to attain the equilibrium state under

stationary environmental conditions. The annual NEP was used to determine whether the
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ecosystem carbon dynamics had sufficiently equilibrated (i.e. climax stage): NEP < 0.0001 Mg

Cha'year"

5.2.1.2. Single-leaf processes

Single-leaf gas exchange is the most fundamental process in plant ecophysiology, which
investigates the controls of various environmental factors on stomata, the leaf vents for
photosynthesis and transpiration. The controls are described at a physiological scale and
extended to a canopy scale (Fig. 5.2). The single-leaf photosynthetic rate (PC) is formulated as a

Michaelis-type function of the incident PPFD (PPFDyy):

_ PCy,; -QE-PPFD,
PC,,, +QE - PPFD,,

(5.5)

where PCsyris the single-leaf photosynthetic rate under light-saturation, and QF is light-use
efficiency, or quantum yield of photosynthesis. PCssrand QF are complicated functions of
temperature, CO2level, air humidity, and soil water, and they are different among biome types
and between C;and C, species. They are formulated by using coefficient functions of important

environmental factors, in a multiplicative way:
QFE =QF, 'FQE(TG)'FQE (CDICL) (5.6)
PCy = PCyypo * Fuo(TG): Fpe(CDyey ) Fpe (SW,) (5.7)
where QFyand PCsypp are potential maximum values under optimal conditions, and Fpgand Fpc
denote the coefficient functions for temperature, CO2, and water conditions, respectively.

Before describing these coefficient functions, the author first explains the regulation of

single-leaf gas exchange through stomatal conductance (GS). Sim-CYCLE adopts the
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semi-empirical model of stomatal conductance described by Ball et al. (1987) and modified by

Leuning (1990):

X, PC

GS=x, +
' (CDATM —CDyp )(1 +VPD/X3)

(5.8)

where CD4ryis the atmospheric CO2 concentration, VPD is the vapor pressure deficit, CDcypis
the CO2compensation point of photosynthesis, and ;, X» and 3 are biome-specific parameters.
Eq. (5.8) suggests that GS decreases with increasing atmospheric CO2 concentration, which is
the case according to many observations (Morison and Gifford, 1983; Field et al., 1995). Since
gas exchange through the leaf cuticle is negligible, the leaf intercellular CO2 concentration

(CDyc,) is defined as follows:

PC

CD,y =CD ,py - m

(5.9)

where 1.56 is a factor to convert GS into CO2 conductance. CDc;, rather than CD 4z, is directly
related to photosynthetic capacity, although CDy¢; tends to change in parallel with the CD .
As with the photosynthetic quantum yield QF, Ehleringer and Bjorkman (1977) showed that C;
and C, species respond to temperature and CO2 conditions in a disparate manner. Typically, the
QOF of C, species is virtually insensitive to surrounding condition (i.e. For (TG)=Fgg(CDicr)
=1), because their CO2 condensation mechanism eliminates photorespiration. In contrast, the QF

of C; species depends strongly on temperature (7G) and COzlevel (CDyc;):

52-TG

F, (TG)= 5.10a

2z (76) 3.5+0.75(52 - TG) (5100)
CD

F,(CD, )=—""2 5.10b

oz (CDicr) 90 + 0.6CD,, (5-106)
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Ehleringer et al. (1997) suggested that the difference in QF between C;and C,species
may be so important that it determines the geographical distribution of these two photosynthetic
types. Moreover, it is fully recognized that PCsyrof C, species is much higher than that of C;
species, and that C, photosynthesis is vulnerable to low temperatures (Pearcy and Ehleringer,
1984). Sim-CYCLE incorporates such findings into the corresponding coefficient functions.
The temperature dependence function of PCg,ris a bell-shaped curve, formulated as follows

(Raich et al., 1991):

(TG - T, TG -T,,, )
(TG—TMXXTG_TMIN)_(TG_‘TOPT)2

Fpe (T )= (5.11)

where Tayux, Tmv, and Topr are, respectively, the maximum, minimum, and optimum
temperatures for photosynthesis. For C; plants, Tppr is a function of intercellular CO2

concentration:

Topr =Tppro +0.01CD,,, (5.12)

where Toppp is the minimum value of Tpprat very low CDjc;. Egs. (5.9) and (5.12) indicate that
increases of atmospheric CO2and temperature may be interactive, making a prediction difficult
even at the physiological scale, as has been demonstrated by a biochemical model study (Long,

1991). The CO2dependence of PCsyris expressed by a Michaelis-type function:

CDICL - CDCMP
KM, +CD,,

F,.(cD,, )= (5.13)

where KMcpis a parameter of CO2 sensitivity. The relationship between CDjc; and PCgyris

strongly affected by temperature, which alters OF and the CO2 compensation point (CD¢yp). At
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lower temperatures, an elevated CO2 concentration would have a small fertilization effect, as
observed in tundra species (Tissue and Oechel, 1987). CD¢ypdiffers greatly between C;and C,
species: Cyspecies have a very low and constant CDcyp(e.g. 5 ppmv), while C;species have
higher and more variable CDcyp. Brooks and Farquhar (1985) formulated the CDcypof Cs

species as a function of temperature:
CDyyp = CDgypolL + 8, (TG - 20) + 6, (TG - 20)? | (5.14)

where CDcypy is the control value at 20 °C, and 6, and &, are parameters of temperature
sensitivity. Apparently, Fpc (CDjcy) represents the stomatal limitation of water stress on
photosynthesis, because CDc; is strongly regulated by stomatal conductance, which responds to
air humidity. On the other hand, Fpc (MS,w) indicates the non-stomatal limitation of water stress,

that is, the direct effect of soil-water availability on photosynthetic capacity:

MS,,
KM g, + MS,,

Fpc (MSLW ) = (5.15)

where KM;y/is a parameter for soil-water availability. Since the components of single-leaf gas
exchange, i.e. GS, CDy, PC, and QF, change interactively, a stationary state is numerically

found by iterative calculations of Egs. (5.5)~(5.9), (5.10a), (5.10b), (5.11)—(5.15).

5.2.1.2. Ecosystem-scale processes
1. Photosynthesis

GPP is the ultimate origin of all organic car-bon, through which atmospheric CO2is
fixed into dry matter. Indeed, the scaling procedure in terms of GPP is one of the characteristics
of Sim-CYCLE, such that GPP is estimated by the dry-matter production theory established by
Monsi and Saeki (1953). In our parameterization, it was assumed that environmental factors,

such as temperature, CO2, and water, were similar among all leaves. Monsi and Saeki (1953)
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first formulated the downward attenuation of PAR irradiance due to mutual shading of leaves in

a canopy with accumulating leaf area, as follows:
PPFD,, = PPFD,,, exp(- KA- LAl ) (5.16)

where PPFDropdenotes the photosynthetic photon flux density at a canopy top. It is apparent
that PAR irradiance attenuates exponentially with the biome-specific coefficient K4, such that a
leaf underlying the cumulative leaf area index (LAIcyy) receives light equivalent to PPFDyy. If a

spherical distribution of leaf inclination is assumed, then KA is a function of solar height:

(5.17)

where KAyis the value for vertical incident radiation (biome-specific value), and SEyy is the
solar elevation at midday. In Sim-CYCLE, the single-sided leaf area index LA/ is a prognostic

variable, given by the following:
LAI = 0.5SLAW (5.18)

where SLA is the specific leaf area. Based on the above assumption with respect to light
attenuation, PPFD;y in Eq. (5.5) can be substituted with Eq. (5.16), and integrate for the total

leaf area index (LAJ), in order to obtain the instantaneous GPPpys rate.

GPP,, = Jj’“ PCALAI

_PCyyy
KA

[In(QE + KA - PPFD,,, ) - In(QE + KA PPFD,,, )x exp(- KA~ LAI )]

(5.19)
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According to Kuroiwa (1966), the diurnal change in PPFDropis approximated well by a

sine-square curve with the peak at midday, as follows:

360-t) 520

PPFD,,, = PPFD,,, sinz( DL

where ¢ is time since sunrise, DL is day length, and PPFD,pis the irradiance of PPFDyopat
midday. After substituting PPFDzopwith Eq. (5.20), Eq. (5.19) is integrated for DL to obtain the

daily GPPp4y rate:

GPP,,, =¢ jf " jj’“ PCALAIdt

_ 2¢PCg,; DL

PC,,; PCyyr

(5.21)

The units is converted from umol CO2m™per day to Mg C ha™ per day by multiplying a

unit conversion factor ¢ (= 4.32 x 10™*) and the number of days in a month.

2. Respiration

Although autotrophic plant respiratidn (AR) is a major CO2flux comparable to GPP and
NPP in magnitude, our ability to model AR is insufficient, especially at an ecosystem scale.
However, physiological studies (e.g. Amthor, 1989) suggest that AR is composed of two
components that have distinct functional meanings (i.e. for maintenance and for growth), and
that different plant organs respire at different rates. AR is calculated as a sum of six respiration

rates, thus:
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AR = ARM + ARG

F,C,R( ) F,C,R( )
AR= S(4rM )+ S(4rRG (5.22)
X=ozrgan X X=02rgan X

where ARM denotes the maintenance respiration of the whole plant, foliage, stem, and root, and
similarly ARG denotes growth respiration. ARM is a function of the amount of existing carbon

(WP) and temperature (7G):

In(QT)
10

ARM , = SARM , exp[ (1G - 15)]WPX (5.23)

where SARM is the specific respiration rate, and TG is the temperature (control temperature,
15 °C). QT represents the sensitivity to temperature change. A typical value for QT is 2.0, and it
ranges from 1.0 to 3.0 (Ryan, 1991) for various biomes and plant organs. However, as implied
by Paembonan et al. (1992), Yokota and Hagihara (1996), OT may vary seasonally in temperate
and boreal ecosystems that experience a large temperature change between summer and winter.

Based on their findings, QT is formulated as a function of temperature:
QT =2.0exp|- 0.009(TG -15)] (5.24)

This modification results in a reduced sensitivity of ARM at higher temperatures, but
very limited data are available to characterize biome specificity. In forest ecosystems, the
maintenance respiration rate per unit biomass (SARM) for stem WP, and root WPg would
decrease as passive woody tissues, or heartwood, accumulate (Yokota et al., 1994). The

size-dependence of SARM can be approximated by a function of standing biomass, given as:

¢,

SARM = ¢, +
/ ¢ + exp@ (WP - s )]

(5.25)
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where ¢,to ¢sare parameters for size-dependence. On the other hand, ARG is not an explicit
function of environmental factors but of plant growth rate, because ARG represents the cost to
produce new biomass (Amthor, 1989). Thus, ARG is calculated only when biomass has a net

gain (i.e. AWP > 0), as follows:

PT,

ARGX = SARGXAI’VI)X = SARGX m
X

(5.26)

where SARG is the specific growth respiration rate (foliage has a higher value than stem or root)
and PT is the photosynthate translocation to each organ (cf. Eq. (5.33)). Consequently, ARG is

indirectly regulated by environmental factors, via the GPP and ARM rates.

3. Decomposition

Soil organic carbon was divided into two compartments, because the decomposition rate
differs greatly between them. The labile part of litter (WSL) circulates once every few months or
years, while the passive part in mineral soil (WSH) lingers for decades or centuries.

Heterotrophic soil respiration (HR) is composed of two constituents from each compartment:

HR =HR, + HR, (5.27)
Both HR; and HRy; are affected by temperature and soil moisture conditions:

HR, =SHR, WS, - Fyp (TS))" Fyp (MS,;) (5.28a)
HR, =SHR, WSy - Fyp (IS, ) Fpr (MS,;, ) (5.28)
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where SHR; and SHRyare the specific respiration rates and Fyg, and Fyry are the coefficient
functions for temperature and soil-moisture conditions, respectively. For temperature
dependence, an exponential function similar to Eq. (5.23) has been frequently used, but Lloyd
and Taylor (1994) showed that it is not the best model, and they alternatively proposed an

Arrhenius-type model:

1 1
F, \TS )= exp| 308.56 - 5.29

m 75) p[ (56.02 TS + 46.02)] 29
where TS is soil temperature (7:Sofor WS, and TSy for WSy). Eq. (5.29) resulted in a lower
responsiveness at higher temperatures than does the exponential equation (Lloyd and Taylor,
1994). Although this process does not explicitly include the effect of soil freezing, it would have
a negligible effect on HR estimation. The coefficient function with respect to soil moisture

Fyp(MS) is the minimum of two contrasting components:
Fy (MS) = min{F,,, (WA), F.,, (E4)} (530)

Fur(WA) represents the effect of soil moisture on microbial activity, while Fyr(4AE)

represents the effect of soil air space (i.e. aerobic or anaerobic conditions):

F,(WA)=wA, + MS/WHC (5.31a)
KM, + MS/WHC
F(AE)= 4E, + MS/WHC (5.31b)

KM . + MS/WHC

where WA, and AE, are minimum values of, KMy, and KM,z are parameters related to
responsiveness, and WHC is water-holding capacity. In sum, a larger MS increases HR under

dry conditions, whereas a larger MS reduces HR near the water-saturation point.
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4. Litterfall

In the equilibrium state, the amount of annual LF must be identical to annual NPP, so
plant biomass becomes stable. However, the shedding of dead biomass is one of the most
difficult processes for mechanistic models to simulate. Consequently, a constant mortality or

turnover rate irrespective of environmental conditions is assumed for evergreen biomes:

F,C,R
LF = Y (SLF,WP, ) (5.32)

X =organ

where SLF is the specific litter-fall rate, or mortality. In grasslands, plants shed most of their
shoots (WPrand WP, ) during the winter (C;, TG > 5 °C; C4, TG >8 °C) or the dry season (MS

> 0.1 x WHC), while the roots have a constant mortality.

5. Photosynthate translocation

Although a mechanistic model of photosynthate allocation (PT7) is far from sufficient,
the dry-matter production theory provides keys for addressing the problem. First, Monsi (1960)
created a schematic diagram of plant growth, from CO2assimilation to biomass incrementation.
This scheme suggests that assimilated carbon should be partitioned among plant organs, after

subtracting the maintenance cost of the organs (4RM):

F,.C,R
EP=GPP-ARM = Y (PT,) (5.33)

X =organ
where EP is effective photosynthate for growth. If EP is negative, translocation and vegetative

growth cannot be expected. Accordingly, a positive EP is partitioned among WPp, WP ,and

WPr, such that the fixed carbon is utilized by the plants most profitably to survive. Second,
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Kuroiwa (1966) derived the optimal leaf area index (LAlppr) to maximize daily net carbon

uptake from the daily GPP estimate using Eq. (5.21), as follows:

1 KA-QE - PAR,,,

LAl ,pp =—1In 5.34

O " KA | PCyy{PCyyy - DL /(PC,, - DCST)-1} .39
where DCST is the daily cost of maintaining a unit amount of foliage:
SARM 1+ SAR

pest - ISARM ; + SLF; (1+ S4RG, ) (5.35)

2SLA

When the community LA/ is identical to the LAIopr, almost all leaves, even those at the
bottom of the canopy, may perform as a carbon source. In other words, this model prohibits the
existence of heterotrophic leaves. Many empirical studies support shoot independence in terms
of carbon economy; therefore, the theoretical prediction of LAIopr will be a valid indicator of
carbon allocation to WPr. Thus, if EP is positive, photosynthate is allocated first to WPrso that
LAI becomes close to LAIopr. Note that to avoid overshooting, an excessive amount of carbon
should not be allocated to WPp, and that the LAlopr can be enlarged by stimulating the
photosynthetic properties, i.e. QF and PCg,r. Residual carbon is allocated to WPcand WPgrwith
a constant ratio, in order to realize the biome-specific growth form; woody biomes invest a

considerable fraction to stem WP, while in herbaceous biomes mostly is allocated to root WPx.

5.2.2. Soil thermal profile

When the soil water was freezing, the decline of the rate of thermal change induced
by the latent heat (334.7 J g), and the changes of the specific heat and thermal conductivity
induced by the phase change of soil water vary the heat transfer in the soil layer. Especially at

the temperature of near 0 °C, the former affects strongly. The vertical thermal profile of frozen
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soil is calculated by changing the specific heat at the temperature of near 0 °C (Fukuda et al.,
1980; Fig. 5.4).
The heat conduction equations in the frozen and unfrozen soil layer are described as

follows:

ATS/At =K, [C,p- N'TS/AZ? (5.36a)
ATS/At =K, [C,p - NTS/AZ? (5.36b)

where TS is the soil temperature (°C), Z is the depth (m), Csp, and C,p are the specific heat of
frozen and unfrozen soil (J m> K™), K}, and K, are the thermal conductivities of frozen and
unfrozen soil (W m™ K). The latent heat generation induced by soil water freezing reflects on
increasing the specific heat near the freezing point, and the heat conductivity equation is

rewritten as follows;

ATS/At =K, /[MS -L +1/2(C,p +C,p)]- A*TS/AZ* (5.37)
where MS is the volumetric soil water content (m® m™), L is the latent heat of freezing and
thawing (344.7J g™).

The three heat conduction equations described above are solved by the boundary condition,

initial condition and the “Pure Implicit”-type difference equation as follows (Fig. 5.4):

T(p+1,n)=0T(p+Ln+1)+T(p+1L,n-1)-2(p +1,n))+T(p,n) (538)
6 =A-At/(Ax) (5.39)

where A4 is:

K,/C,p (T<=-1) (5.40a)
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K,/Ms-L+1/2(C,p+C,p))  (-1<=T<0) (5.40b)
K,/C,p (0<=T) (5.40c)

where T(p,n) is the temperature at the time of At (sec) x p and the location of Ax x n (m). The
boundary condition is given for the top and bottom soil layer temperature, and the calculation is

repeated to be at a steady state.

5.2.2.1. Thermal parameter
1. Specific heat
The volumetric specific heat C of soil is defined as a sum of the specific heat of all soil

components.
C =Cm ¢m +CW0 +Ca¢a +C0¢0 (5'41)

where C is the volumetric specific heat (J m> K™), @ is the volumetric soil water content
(cm3cm'3), ¢ is volumetric fraction of each phase, subscripts m, w, a, and o indicate mineral soil,
water, air, and organic matter, respectively. C, is very small, and C, is similar to C,,. So the C

could be simplified as follows:

c=C (1-¢4,)+C,0 (5.42)

where ¢ is the porosity, C,, is adopted for 2.01, and C,, is adopted for 4.18 (water) and 1.88 (ice)
(de Vries, 1963).

2. Thermal conductivity

The thermal conductivity of soil K depends on the solid density, water content, quartz

density and organic matter content. Their qualitative relationship was examined in many
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experimental studies. However, there is no universal equation to apply for various soil textures.
This study adopted the experimental equation derived by Kersten (1963):

- for unfrozen sandy soil:

K, =0.1442(0.7 1og(9)+ 0.4)-10°%% - p_ (5.43a)
- for frozen sandy soil:
K, =0.01096-10""° - p_ +0.00461-#-10*"" - p, (5.43b)

where p, is the bulk density of soil (Mg m™).

5.2.3. Water budget

The water cycle in terrestrial ecosystems is simulated by a subscheme (Fig. 5.1) simply.
The water storage is divided into three compartments, upper layer (MSve, from 0 to 30 cm
depth), lower layer (MSw.w, from 30 cm to rooting depth), and snow accumulation (SNA). For

each water compartment, net balance of water content (4) during a given period is represented

as follows:

AMS,, = PR,,., +TW - (EV + TR, )-PN (5.44)
AMS,, = PN -TR,, - RO (5.45)
ASNA = PRsan -TW (5.46)

where MS is the soil water content (mm), SNA is the amount of snow cover (mm), PRrain/snow
are the rainfall and snowfall (mm), 7W is thawing snow (mm), EV and TR are evaporation and
transpiration (mm), PN is the penetration from upper storage to lower storage (mm), RO is the
runoff (mm), subscript up and Iw indicate the upper and lower storage, respectively. The

calculations of each water budget component are explained in the following subsections.
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5.2.3.1. Rainfall, snow and thawing
The amounts of the rainfall and snowfall in the total precipitation are estimated in the
following equation:

PR_. =PR-PR (5.47)

rain snow

PR, =PR/(1+exp(0.75-T4 - 2.0)) (5.48)

snown

where PR is the total precipitation (mm), 74 is air temperature at a height of 2.0 m (°C). The

snow thawing is estimated as a function of the soil temperature as follows:

TW = SNA/(1+ exp(-0.375-TG)) (5.49)

where TG is the soil surface temperature (°C).

5.2.3.2. Evaporation and transpiration

The S-W model also uses an electrical analogy to treat vertical water vapor movement in
the SPAC circulation (Fig. 5.5), similar to the P-M model. The S-W model combines a
one-dimensional mode! of crop transpiration and a one-dimensional model of soil evaporation.
Surface resistances regulate the heat and mass transfer at the plant and soil surfaces, and
aerodynamic resistances regulate those between the surfaces and the atmospheric boundary

layer.

AET = AT+ AE =AC, T, + AC, E, (5.50)

where AET is the sum of the latent heat flux from the crop (AT) and soil (AE) (W m?), AT, and
AE, are terms similar to those in the Penman-Monteith model (Montieth, 1965) that would apply

to transpiration from the canopy and evaporation from the soil, respectively. C. and C; are the
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canopy resistance coefficient and soil surface resistance coefficient, respectively. They are

obtained as follows:

AR + (p(pD-AracRs)/(raa + rac)

. 5.51
o A + y(l + rsc/(raa + rac)) ( )
AR 4 D-Ar (RR ). +r
i (o(, wRR Ny +1,,) (5.52)
A + y(]. + rss/(raa + ras))
c . 1 (5.53)
l"'l)::/)a//)s(pc +p”)
c . 1 (5.54)
1+pspa/pc(p5+p“)
p. =(A+yr., (5:53)
p.=(B+pr, +o, (3:56)
P, =(A+y)r, +r, G-57)

where r, is the canopy resistance, and r, is the aerodynamic resistance of the canopy to
in-canopy flow, and r is the soil surface resistance. r, and r,, are eddy diffusion resistances
from the reference height to in-canopy heat exchange plane height and from there to the soil
surface, respectively. R and R; are the active radiation at the top of the canopy and the soil

surface, respectively, and are defined as follows:

R=R, -G (5.58)
R =R, -G (5.59)

where Rn and Rns are net radiation fluxes into the complete canopy and the substrate (W m?),

respectively, and G is soil heat flux (W m™).
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The radiation reaching the soil surface can be calculated using Beer's law as follows (e.g.

Ross, 1981).
R, =R, exp(-CLAI) (5.60)

where C is the extinction coefficient of light attenuation, for which 0.7 was adopted (Monteith,

1973).

1. Stomatal and leaf boundary resistances

The canopy resistance r,, and the aerodynamic resistance r,. are defined as values
dividing thé bulk stomatal resistance r, and the mean boundary layer resistance r, of the
canopy, respectively, by the sum of the abaxial and adaxial leaf areas.

r, =r,/2LAI (5.61)

C

T, =r,/2LAI (5.62)

C

where r,, was taken as an inverse number of stomatal conductance GS. r, was taken as a typical

value of 25 s m™ (Denmead, 1976; Uchijima, 1976).

2. Soil Surface Resistance
The soil surface resistance, r, is the resistance to water vapor movement from the

interior to the surface of the soil, and was calculated using Kondo's model (Kondo et al., 1990).

r, = F(6)/D,, (5.63)

6)" (5.64)

where 6 is the volumetric soil water content (cm® cm™), T is the soil surface temperature (K).

F(6) is the water vapor diffusion distance (m) as a function of 6 introduced by Kondo et
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al.(1990) that developed the simple model of evaporation from the bare soil surface in
laboratory experiments. In loamy soil, F; is 2.16 X 10> (m) and F; is 10.0. 6., is the saturated
volumetric soil water content, and was taken as 0.54 m’> m” of the Mat Cry-gelic soil value at
the experimental site (Cao et al., 1998). The molecular vapor diffusivity for movement from the

interior to the surface of the soil, D,,, has been given by Camillo et al. (1983)

D, =D,(T,/273.16)" (5.65)
where D, = 0.229 X 10 (m® s™) is the diffusivity of water vapor in soil air at the standard state;

(Camillo et al., 1983).

3. Eddy Diffusion Resistance

The aerodynamic resistance of the mean canopy flow, r,,, and the aerodynamic
resistance of the soil surface to in-canopy flow, r,, were calculated from the vertical wind
profile at the field and the eddy diffusion coefficient. In this paper, the scheme is referred to as
Shuttleworth and Gurney (1990). This empirically and simply simulates the more important
results of a second-order closure theory of in-canopy turbulence and, for this reason, is arguably
superior to the earlier submodel in Shuttleworth and Wallace (1985), in both diagnostic and
predictive applications of its theory. Above the canopy height, the eddy diffusion coefficient, K,

is given by
K=ku,(z-d) (5.66)
where u+, for neutral atmospheric stability, is given as follows:

u, =ku/ln[(z -d)/z, ] (5.67)
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where u is the wind speed at the reference height z. d, z is the zero plane displacement and the
roughness length (m), and are given by the relational expression as a fixed fraction of crop

height h as presented by Monteith (1973):

d =0.63h (5.68)
z, =0.13h (5.69)

Beneath the canopy height, the exponential decrease of the eddy diffusion coefficient, K,

through the canopy, is given as follows:
K =K, exp[-n(1-Z/h)] (5.70)

where K, is the eddy diffusion coefficient at the top of canopy, and n is the extinction
coefficient of the eddy diffusion, chosen as a typical value for crops (wheat, rice, clover and

corn), 2.5 (Monteith, 1973). K}, is determined as follows:
K, =ku,(h-d) (5.71)

r.s and r,, are assumed as integrations of Eqgs. (5.66) and (5.70), respectively, over the

height ranges 0 to (zo+d) and (zo+d) to z; thus

r, = h—f;(g(n—)[exp(— nz, '/h)— exp[— n(z, + d)/h]] (5.72)
r, = kllz. [ln(; :Z )] + nIh(h [exp{n(l— (z, +d)/h)}—1] (5.73)

where zp’= 0.01 m (van Bavel and Hillel, 1976) is the roughness length of the substrate.
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5.2.3.3. Runoff and Infiltration

Two buckets are settled for runoff and infiltration calculations (Fig. 5.6). The overflow
from the upper bucket comes into the lower bucket as an infiltration. The overflow from the
lower bucket outflows from the ecdsystem as a runoff. In a new bucket model (Kondo, 1993),
the soil water content M, the inflow water into the ground R/, and the runoff RO are expressed
in the following equations.
(a) in the upper bucket

AMS, =(MS

up

wowe —MS,, ) tanh(X ) (5.74)
where MS,,m.. is the maximum water storage (mm), and MS,, is the water storage in the
previous time step (mm). X,, and tanh(X,,,) are described as follows:

X, =RI/(MS,, ... -MS,,) (5.75)

up max

RI = PR

rain

+TW -(EV +TR,,) (5.76)
tanh(X up )= (1 - exp(— 2X,, ))/ (1 + exp(— 2X,, » (5.77)

From these equations above, the penetration from the upper bucket to the lower bucket

PN is defined as follows:
PN =RI - AMSuP (PN > 0) (5.78)
(b) in the lower bucket

AMS,, =(MS,, . -MS,, ) tanh(X,, ) (5.79)

Iw max

126



where MSyma: 1S the maximum water storage (mm), MS,, is the water storage in the previous

time step (mm). X}, is described as follows:

X, =PN/(MS,, . -MS,) (5.80)

Iw max
From these equations above, the runoff from the lower bucket RO is defined as

follows:

RO = PN - AMS,, (RO > 0) (5.81)

In the frozen soil, the moisture movement induced by unfrozen soil water should be taken into
account. However, its hydraulic conductivity is as very small as in the order of 107 (m s™) at
the temperature of 0 °C, in the order of 107 (m s™) at the temperature of -1 °C and extremely
smaller at the lower temperature. Consequently, the moisture movement in the frozen soil is

assumed to be negligible in this study.

5.3. Model experiment designs

Three model experiments were made in this study: a steady state simulation, a transient
simulation and a sensitivity analysis. All experiments used the monthly climate data measured
at the meteorological observation filed of the Haibei station, the Chinese Academy of the
Sciences for twenty years from 1981 to 2000 as the input climate data, and adopted the
ecophysiological parameters (Fig. 5.3, Table 5.1) equipped as a Tibetan meadow ecosystem (No.
20 biome) in the Sim-CYCLE.

In a steady state simulation, calculation is launched from the juvenile stage, where initial
carbon content is 0.1 Mg C ha™ for each compartment, and repeated for a sufficiently long
period to attain the equilibrium state under a stationary environmental condition using 20 years
averaged monthly climate condition for 1981-2000 (Fig. 5.7). Annual NEP is used as the criteria

to determine whether the ecosystem carbon dynamics is sufficiently equilibrated (i.e. climax
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stage): NEP < 0.0001 Mg C ha™ yr’. The resulting equilibrated carbon dynamics was compared
to observed values for examination of the model estimation accuracy.

In a transient simulation, calculation is started from an equilibrium state, where annual
NERP is less than 0.0001 Mg C ha™ yr after the steady state simulation. The carbon dynamics
was simulated for 1981-2000 using the 20 years transient monthly climate data, and compared
with the climate perturbations and global climatic events, e.g. volcanic eruptions and ENSO.

In a sensitivity analysis, calculation is also started from the equilibrium state where
annual NEP is less than 0.0001 Mg C ha™ yr after the steady state simulation. The carbon
dynamics was simulated for the equilibrium state using the 20 years averaged monthly climate
data including the prescribed climate shifts, e.g. *10 °C in air temperature, *50 % in

precipitation and 200-1000 ppm in CO2 concentration.

5.4. Results

5.4.1. Steady state experiment

In the steady state experiment using 20 years, 1981-2000, averaged monthly climate data,
1003 years are necessary to equilibrate the annual NEP. Figure 5.8 shows the growth of
ecosystem carbon fluxes and storages for the first 200 years. GPP, AR and NPP increased in the
beginning of calculations rapidly, and were re-equilibrated in the 50 years. On the other hand,
the HR increased slowly, and NEP (=NPP-HR) decreased slowly toward zero. The plant
biomass W, and LAI, gas exchange area in the photosynthesis, increased in the beginning of
calculations rapidly, and were re-equilibrated in the 50 years. The soil microbes and litter
biomass W,,;, determined by the input of plant litterfall, increased slowly.

The annual carbon fluxes, equilibrated by Sim-CYCLE, were compared with the
observed and estimated values around the Haibei station derived from the literatures (Fig. 5.9;
Table. 5.2). Although the GPPs are 1.5 times larger than the observed values (Sim-CYCLE,
847.8; Observation, 575.1-527.4), the other fluxes are as much as the observed values (NPP;
Sim-CYCLE, 427.8; Observation, 124.2-823.0; SR; Sim-CYCLE, 602.3; Observation,

578.0-2721.0).
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In the seasonal changes of the carbon fluxes, the GPP, AR and NPP are positive from
May to September, and zero during other months (Fig. 5.10). The HR is positive from May to
November, and zero during other months (Fig. 5.10). The NEP reached maximum state in July
and August, and decreased to be negative in October. In the seasonal changes of the carbon
storages, the leaf, and stem biomass and LAI are positive from May to September (Fig. 5.11).
The root biomass increases from May to October gradually, and the litter biomass increases
rapidly in October induced by the plant litterfall. The mineral soil biomass does not change
during whole year.

The soil thermal profiles show a good agreement with the measured data except for June
and July (Fig. 5.12). The soil freezing depths are also estimated successfully. The heat budgets
are shown in Fig. 5.13. The Rn reached its maximum in June and the G reached its maximum in
April and minimum in November. The H reached its maximum in May and the AE reached
maximum in July. The water budgets are shown in Fig. 5.14. The 7R reached its maximum
status in summer (July and August), when the LAI reached the maximum status (Fig. 5.11). The
EV was large in spring (April and May) and the end of autumn (October), when the LAl was low
(Fig. 5.11). The RO existed during the growing season. The TW reached its maximum in the
spring (April). The SWC,, started to increase from May and reached its maximum in September,

and the SWC,,, did not change significantly.

5.4.2. Transient experiment

In the transient state experiment using the 20 years, transient climate data, the averaged
annual carbon fluxes were similar to the observed and estimated values around the Haibei
station derived from the literatures (Table 5.2). Aboveground NPPs were slightly larger than the
observed values for 1981-1993 (Fig. 5.16).

In the interannual changes of the carbon fluxes and storages (Fig. 5.16), the GPPs
ranged from 7.66 to 9.11, the ARs from 3.95 to 4.64, the NPPs from 3.71 to 4.47, the HRs from

3.61 to 4.41 and the NEPs from —0.65 to +0.65 (Mg C ha yr'l). The W4 ranged from 6.63 to
p
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6.75. The W,,; reached a maximum of 207.25 (Mg C ha) in 1984 and decreased to 205.82 (Mg
C ha®) in 2000 (Table 5.3).

In the comparisons of the climate and carbon flux anomalies, the variation from their 20
years averaged values (Fig. 5.17; Table 5.4), the GPP, AR, NPP, NEP anomalies are
synchronized with each other. The GPP and NEP anomalies ranged in 10.76 and +0.68 Mg C
ha, respectively. The HR anomaly changed along with the surface temperature variations.

Carbon flux anomalies plotted against the climate (annual average temperature, annual
precipitation and annual averaged solar radiation) anomalies are shown in Figs. 5.18, 19, and 20.
The increment of annual averaged temperature increased AGPP, AAR and ANPP slightly, but
increased AHR largely with relatively higher determinant coefficient, and decreased the
resulting ANEP (Fig. 5.18). The increment of annual precipitation and annual averaged solar
radiation increased or decreased the carbon fluxes so slightly with relatively lower determinant
coefficient (Figs. 5.19 and 5.20).

Figure 5.22 shows the seasonal changes in the slope of regression lines between
temperature, precipitation, solar radiation and carbon flux anomalies. The increment of
temperature in June to August increased the HR and decreased the NEP, and the increment of
temperature in September increased the GPP, AR and NPP. The fluctuations of precipitation
seemed not to affect the carbon fluxes. The increment of solar radiation from June to August

increased the GPP, AR and NPP.

5.4.3. Model sensitivity analysis

In the model sensitivity analysis, the time courses of carbon fluxes and storage variation,
calculated using 20 years averaged climate data with the increment of temperature of 5 °C, solar
radiation of 10 % and precipitation of 30 % and the CO2 concentration of 700 ppm, were shown
in Figs. 5.23 and 5.24. These results show the potential responses of the carbon dynamics to
climate changes. The GPP, AR and NPP increased rapidly in the beginning of the experiment,
and were equilibrated after 20 years elapsed. In contrast, The HR increased slowly, and the NEP

decreased slowly toward zero. The plant biomass W,,, increased in the beginning of
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calculations rapidly, and were re-equilibrated in the 20 years. The soil microbes and litter
biomass W,,; increased slowly.

Next, the equilibrated carbon, water and heat fluxes and storages calculated using 20
years averaged climate data with the temperature data of £10 °C, the solar radiation data of =+
30 % and the precipitation data of 50 % and the CO2 concentration data of 200-1000 ppm
respectively, were plotted against the prescribed climate fluctuations in Fig. 5.25 and 5.26. The
increment of temperature by the 5°C increased the carbon fluxes and storages larger than the
present values, and the increment over 7.5 °C decreased them reversely. The magnitude of
photosynthesis (GPP) links to the magnitude of the transpiration (7R). The increment of
temperature by the 3°C increased the latent heat flux larger than the present values, and the
increment over 5 °C did not increase them moreover. The increment of solar radiation and
precipitation did not affect the carbon dynamics largely. The increment of solar radiation leads
to increase the TR and decrease the soil water content significantly. The decrescent of
precipitation leads to decrease the soil water content significantly. The increment of CO2
concentration by the 700 ppm increased the carbon fluxes and storages, but that at the

concentration of 1000 ppm did not change the carbon dynamics significantly.

3.5. Discussion
5.5.1. Model accuracy

In the validatioh of the simulated annual carbon dynamics (Fig. 5.9; Table 5.2), the
model estimated values coincided with the observed values, and this confirms the successful
model simulation.

In the seasonal changes, the GPP and R, (AR+HR) coincided with the measured data by
the eddy covariance method in 2002 (Fig. 5.10; Table 4.2). But, the NEP did not synchronized
in the maximum and minimum timings with the measured data. However, it is not enough to
judge whether this results are reasonable or not from the current limited measurement.

Furthermore multi-year data acquisitions of the CO2 exchanges are therefore required.
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In the transient state experiment (Fig. 5.16), the simulated aboveground NPPs were
slightly larger than the observed values for 1981-1993 (RMSE = 0.089 MgC ha; Fig. 5.15).
Because the observed values may contain the sampling error, these relatively high agreements

confirm the high model accuracy.

5.5.2. The Relationship between climate perturbations and ecosystem CO2
exchanges

The increment of temperature increased the HR, and decreased the NEP reversely in the
transient state experiment. This was caused by the microbial decomposition rate increasing in
the mineral soil and litter biomass. On the other hand, there was no clear relationship between
the precipitation fluctuations and carbon fluxes. This indicated that the water is not a limiting
factor in this ecosystem in the contrast to other relatively dry grassland, e.g. steppes, savannas.
There was also no clear relationship between the solar radiation fluctuations and carbon fluxes.
This may be caused by the seasonality of plant response to solar radiation increment; the
increment of solar radiation only from June to August increased the GPP, AR and NPP (Fig.
5.22).

The global climate events affected the ecosystem carbon dynamics. Mt. El Chichon
eruption in 1982 lead to lower temperature and the decrements of GPP and R, (AR+HR) in the
next year 1983. The ENSO (EI-Nino and Southern Oscillation) event in 1997 winter to 1998
summer lead to higher temperature and the increments of GPP and R, (AR+HR) in 1998. Thus,
the increments of temperature increased the ecosystem carbon fluxes. In contrast, Mt. Pinatsubo
eruption in 1991 lead to lower temperature and the increments of GPP and R, (AR+HR) in the
next year 1992. This increment may be caused by the increments of solar radiation in the
summer of 1998 (Figs. 5.21 and 5.22). The anomalies in the NEPs did not synchronize with
those in a global scale as presented by Ito and Oikawa (2000a). Resultingly, the NEPs tended to
be negative and the W,,; decreased gradually for 20 years period. However it cannot be
concluded that study site was a source of atmospheric CO,, because the transient calculation in

the carbon dynamics started from the neutral condition (i.e. NEP ~ 0) and have the possibility to
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balance out the long-term effects on ecosystem carbon uptake by global warming and CO2

fertilization.

5.5.3. The potential response of the ecosystem CO2 exchanges against global
warming

The model sensitivity analysis showed that the GPP, AR, NPP and W, responded
quickly and the HR and W,,; responded very slowly against the climate change. Consequently,
the NEP was positive in the beginning of the model simulation. These may indicate that the
long-term global warming will increase the ecosystem carbon uptake, and now the alpine
meadow ecosystems maybe in this situation.

The increments of temperature by 5 °C increased the GPP and that over 7.5 °C decreased
the GPP (Fig. 5.25). Zhang and Welker (1996) showed that while the peak community biomass
showed no significant change, the duration of peak biomass was extended in the warming
experiment by 5 °C of air temperature at the Haibei alpine meadow. Thus, the warming by 5 °C
advances the ecosystem photosynthetic activity and increases the duration of growing season,
and thus, the GPP. But, the warming over 7.5 °C may go beyond the optimum temperature of
photosynthesis and decrease the GPP. In this extreme warming, this ecosystem may shift to
another biome type that can survive the new climate.

The increments of CO2 concentration by 700 ppm increased the GPP, but that at the
concentration of 1000 ppm carbon dynamics showed no significant change (Fig. 5.25). One

possibility is that such high CO2 concentration as 1000 ppm induced the stomatal conductance.
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Table 3.1. Site-specific parameters used in Sim-CYCLE running at the Haibei study site.

Parameter  Value Unit Explanation Remarks
albev 0.2 dimensionless reflectivity or albedo field experiment
allocation ratio for assimilation
alloc_assv  0.22 .
organ, fraction
alloc_abgv  0.05 allocallc.)n .ratl‘o for abovegrm.lnd
non-assimilation organ, fraction
slav 240.0 cm® g dm™ specific leaf area field experiment
KOV 0.7 dimensionless llght att.enuatlon coefficient, no
dimension
luev 0.06 g;::)ltgr?‘z mol zgzgclienltlght dependence
. 2
pmaxv 20 ;1_111cro mol €02 m potential maximum rate
toptOv 18 deg C optimum temperature
tminv -1 deg C minimum temperature
tmaxv 40 deg C maximum temperature
gs bOv 10 mmol H,0 m™ s™ parameters of stomatal conductance
gs_blv 170000 mmol H,0 m™ s parameters of stomatal conductance
gs_b2v 4.8 mmol H,0 m?s™ parameters of stomatal conductance
km_nstlv 0.32 maximum stomatal conductance
. dependence of photosynthesis on
kmeiv 40 ppmv intercellular CO2 concentration
cmpcdv 50 CO2 compensation point, ppmv
rgfv 0.57 g CgClalloc specific growth respiration rate
rgev 0.31 g CgC'alloc specific growth respiration rate
Igrv 0.39 g CgC'alloc specific growth respiration rate
1 g -1 specific maintenance respiration
rmfOv 1.61 mg Cg C* day rate at 15 degC
1 1 specific maintenance respiration
Imc_sv 0.095 mg Cg C day rate at 15 degC
1 1 specific maintenance respiration
rmr_sv 0.51 mg C g C day rate at 15 degC
1y -1 specific maintenance respiration
rmc_hv 0.009 mg Cg C day rate at 15 degC
rmr_hv 0.037 mg C g C* day™ :;);c;ftlcl ;n;:;t(e:nance respiration
qTfv 3.0 dimensionless temperature dependence field experiment
qTcv 3.0 dimensionless temperature dependence field experiment
qTrv 3.0 dimensionless temperature dependence field experiment
Ifv 0.0017 specific litter fall rate, fraction
lev 0.000128 specific litter fall rate, fraction
Irv 0.00093 specific litter fall rate, fraction
dcdv 1 dimensionless deciduous leaf fraction
root_stratv  0.8833 dimensionless root profile parameter field experiment
topography, orology, and altitude,
topo 3250 m m above MSL
soil water holding capacity at the
whe30 15 om depth of 0-30 cm
soil water holding capacity at the
whe 42 cm depth of 30-100 cm
sd 42 cm soil rooting depth
hyd_cond  0.005757 hydraulic conductivity
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Table 5.4. Climate and carbon fluxes annual anomalies in the Haibei alpine meadow.

Year AT,  APR ASWR  AGPP  AAR ANPP  AHR ANEP
°C mm W m? Mg C Mg C Mg C Mg Mg C
ha! ha’! ha ha’ ha
1981 043  -61.32 0.36 -0.30 -0.14 -0.17 0.09 -0.25
1982 041  -105.62 1.75 0.35 0.16 0.19 -0.49 0.68
1983 098  -31.52 1.73 -0.29 -0.16 -0.12 -0.30 0.17
1984 072 -75.02 0.97 -0.28 -0.16 -0.11 -0.13 0.01
1985 023  263.18 0.36 -0.69 -0.34 -0.35 0.12 -0.47
1986 -0.18  112.88 0.39 0.02 -0.01 0.03 -0.17 0.20
1987 0.47 57.98 -1.15 -0.16 -0.07 -0.08 0.02 -0.10
1988 0.43 21178 227 -0.18 -0.08 -0.10 -0.09 -0.01
1989 038  289.08 -1.27 -0.23 -0.10 -0.12 0.03 -0.15
1990 044  -39.62 4.75 0.36 0.17 0.19 0.02 0.17
1991 047 -136.02 23.34 -0.41 -0.19 -0.21 0.02 -0.23
1992 -0.82 1.38 44.96 0.12 0.03 0.09 -0.13 0.21
1993 0.04  -53.72 49.65 -0.07 -0.04 -0.03 0.11 -0.14
1994 0.85  -39.02 39.02 -0.55 -0.25 -0.31 0.31 -0.62
1995 -0.16 -8.42 39.02 0.76 0.35 0.41 -0.17 0.58
1996 060  -5592  -16.86 0.50 0.22 0.28 0.03 0.25
1997 012 9732  -47.27 -0.72 -0.34 -0.37 0.01 -0.38
1998 092  -1992  -37.51 0.46 0.26 0.21 028 -0.08
1999 083 -153.62  -35.36 0.69 0.38 0.32 0.12 0.20
2000 051  -59.22  -37.07 0.59 0.32 0.27 0.32 -0.04
s.d. 0.58  125.65 26.43 0.46 0.23 0.23 0.20 0.32
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-------- <+— freezing
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Soil thermal profile

¢ y,i+1=rT y-I,i+(].-2r)T y,i+rT y+1,i

Ty,i, temperature at the horizon y in
the time step i (y=1~32)
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Figure 5.4. Schematic diagram of soil thermal profile processes in
Sim-CYCLE.
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Figure 5.5. Schematic diagram of a one-dimensional description of energy
partitioning for a canopy. Illustration shows the S-W model description
(Shuttleworth and Wallace, 1985). AET is the evapotranspiration from the
crop (AT) and soil (AE). r. andr, are the canopy resistances, and r is the
soil surface resistance. r, is the aerodynamic resistance of the canopy, r,.is
that of the canopy to in-canopy flow, r,, and r,;are those of the reference
height to in-canopy heat exchange plane height and there to the soil surface,
respectively. e,, e, e, and e, are the vapor pressures at the reference height,
the leaf surface, the mean flow height, and the soil surface, respectively. e,,
(Ts) is the saturated vapor pressure at temperature 7.
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Figure 5.6. Schematic diagram of runoff and infiltration processes in
Sim-CYCLE. RI is the inflow derived from precipitation PR, thawing snow
TW and evapotranspiration ET. PN and RO are the penetration and runoff,
respectively. MS is the soil moisture in the tank. MS,,, is the storage
capacity in the tank. AMS is the increment of water storage in the unit time.
up and /w indicate the upper and lower tank, respectively.
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Figure 5.9. Schematic diagram of carbon dynamics in the Haibei alpine
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Figure 5.10. Seasonal patterns of carbon fluxes, estimated by Sim-CYCLE
equilibrium run
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Figure 5.12. Seasonal patterns of soil thermal profiles, estimated by
Sim-CYCLE equilibrium run. Solid lines show the estimated profiles and
broken lines show the measured profiles.
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Chapter 6 General Discussion

6.1. Carbon dioxide assimilation capacity of alpine meadow
ecosystem on the Qinghai-Tibetan Plateau

The daily changes of CO2 exchanges showed the CO2 uptake in the daytime and CO2
release in the nighttime in summer and small CO2 release during all the days in winter in an
alpine ecosystem (Fig. 3.30). The seasonal changes of CO2 exchanges showed the growing
season that the ecosystem absorbed CO2 from May to September (Fig. 4.3). In 2002, the CO2
uptake during those five months was amounted to 138.4 g C m™. The CO2 release during the
other seven months was amounted to 59.9 g C m. The measurement provided very important
information to estimate the annual carbon dynamics.

The maximum daily CO2 uptake (3.9 g C m™”day™) was smaller than other grassland
ecosystem at a similar latitude, although the maximum LAI was larger than those reported for
these ecosystems (Sec. 4.4.3). The low temperature seemed limit the photosynthetic activity and
thus the net CO2 uptake of the alpine ecosystem. The annual CO2 uptake (78.5 g C m™yr?) in
2002 was lower than those reported from other warmer ecosystems, e.g. temperate and tropical
ecosystems, but was similar to those for other cool ecosystem, e.g. alpine and boreal forest
ecosystems (Sec. 4.4.3). The low temperature shortened the growing season and thus may
decrease the net CO2 uptake of the alpine meadow ecosystem.

The eddy covariance measurement indicated that this ecosystem was a CO2 sink,
amounted to 78.5 g C m™ yr' in 2002. On the other hand, the transition experiment for
1981-2000 using Sim-CYCLE showed that the annual NEP ranged from -70 to +70 g C m” yr’
in the 20 years widely (Fig. 5.16). The measured annual CO2 uptake is close to the fluctuating
range derived from model analysis, although this may contain the estimation errors caused by
the energy imbalance and the gap-filling methods. However it is not enough to judge whether
this ecosystem is a CO2 sink or source in average from the current measurement and model
analysis. This is mainly due to the limited observation data. Furthermore multi-year data

acquisitions of the CO2 exchanges are therefore required.
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6.2. The response of the CO2 exchanges in alpine meadow
ecosystem to the characteristic environments on the
Qinghai-Tibetan Plateau

The Qinghai-Tibetan Plateau is characterized by extremely intensive sunlight, low
temperature, little precipitation and limited plant growth. How do they affect the carbon dioxide
uptake in this ecosystem? Which do they have a good influence or bad influence 6n it? In this
chapter, the site-specific responses of CO2 exchange to four environmental factors, light,

temperature, water and biology, were summarized and discussed in the followings.

Light:  In the diurnal changes, the light responses of the afternoon CO, uptake are lower than
those of the beforenoon (Fig. 3.31 and 3.33). In the grassland ecosystems with low LAI, because
of the low interception of intensive sunlight by vegetation, the soil surface temperature could be
very high, which will further result in the increase of soil CO, efflux as estimated in Fig. 3.35.
In addition, the high VPD might cause the closure of stomata and thus suppress CO, uptake.
Such stomatal response to increased VPD has been observed in grassland (Verma et al., 1992)
and forest ecosystems (Jarvis et al., 1997; Baldocchi and Vogel, 1997). In the alpine meadow,
the increase of Reunepy is correlated with the decrease of AE but with the increase of VPD (Fig.
3.32). The amplitude of the diurnal SWC chaﬁge was small and may play a very limited role in
ecosystem respiration (Fig. 3.32b). The photosynthesis (i.e. GPP) in response to high PPFD did
not differ between the beforenoon and the afternoon in this study (Fig. 3.35). It was concluded
that the increasing air and soil temperatures accelerate plant respiration and soil organic matter
decomposition, and as a result suppress the net CO, uptake flux in this study.

Extremely intensive sunlight may induce down-regulation of photosynthesis in plants
living in this alpine ecosystem. The depression of photosynthesis (i.e. GPP) increment in
response to PPFD increasing was founded both in the beforenoon and the afternoon in this
study (Fig. 3.35). Cui et al. (2003) investigated the leaf gas exchange and fluorescence emission

in response to the changes in PPFD and leaf surface temperature for two Asteraceae herbaceous
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species at same alpine meadow. They showed that under natural environmental conditions,
apparent photoinhibition, indicated by reduced electron transport (ETR), was evident at high
PPFD for both species. They also showed that the thermal dissipation, indicated by enhanced
non-photochemical quenching (NPQ), which is associated with the xanthophylls cycle
(Deming-Adams et al., 1996), played an essential role in photoprotection at low leaf
temperature in the morning. At higher leaf temperatures, photorespiration was reported to play a
more prominent role (Park et al., 1996; Streb et al., 1998; Manuel et al., 1999). Cui et al. (2003)
showed the significant reduction of ETR in S. katochaete in the afternoon with high leaf
temperature and expected that more than two-thirds of the photochemical energy was flown
through the photorespiration pathway at a PPFD above 1800 pumol m™~ s™ if there were no other
significant electron acceptors. Thus, the photoinhibition and photoprotection was evident at the
high PPFD for two Asteraceae herbaceous species, which is non-dominant species. Further
research about the photoinhibition and photoprotection in dominant species is necessary to
clarify the representative response to intensive sunlight.

In the seasonal changes, the daily NEP was correlated to daily PPFD positively in the
growing season (Fig. 4.4), however, those linear relationships were slight weak. Gu et al. (in
press, 2003) showed that for the same PPFD, the NEP was significantly higher on cloudy days
than on clear days at the same site. Law et al. (2002) also founded that the NEP is more positive
for cloudy condition than for clear sky condition in boreal aspen and Scots pine forests. Gu et al.
(2002) suggested that diffuse radiation result in higher light use efficiency in plant canopies and
has much less tendency to cause canopy photosynthesis. It is possible that the light quality
caused the weakness of the linear relationship between daily NEP and PPFD. These findings

call for different treatments of diffuse and direct radiation in models of ecosystem carbon cycle.
Temperature:

Respiration by autotrophs and heterotrophs was correlated positively with temperature in

the seasonal changes (Fig. 4.5) and interannual changes (Fig. 5.18). The exponential coefficient
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for the relation corresponds to a Qjp of 3.21 (Fig. 4.5), higher than the value of 2.0 that is
typically used as a default in modeling respiration (Law et al., 2002).

The annual GPP of 575 g C m™ (Table 4.5) was lower than those of boreal coniferous
forest (723-959 g C m™ y™') and Colorado subalpine coniferous forest (831 g C m™ y™; 3050
m) at similar elevations, and much lower than that of tropical forest (3249 g C m™ y™'), but
within the range for temperate ecosystems, including forests and grasslands (542-1924 g C m™
v}, average, 1262 g C m™ y; Falge et al., 2002). The daily GPP of the study site (3.59 g C m™
d™', Table 4.5) was similar to those of boreal evergreen forest and Colorado subalpine
coniferous forest (4.6, 4.4 g C m™ d', respectively), although slightly lower than those of
temperate coniferous forest and C; crops and grassland (5.7-6.9 g C m™ d™). Thus, although
our alpine meadow ecosystem has a daily CO, assimilation equal to that of a Colorado
subalpine forest ecosystem, it has a lower annual GPP because of the restricted growing period,
which was caused by low temperature.

The annual sum of NEP (78.5 g C m™ y™, Table 4.5) was close to that of the Colorado
subalpine coniferous forest (71 g C m™ y™), although substantially lower than that of grassland
(231.3 g C m™ y™) and boreal ecosystems (121.4 g C m™ y™). The daily NEP of the study site
(0.49 g C m™ d™', Table 4.5) was similar to that of the Colorado subalpine forest (0.38 g C m™
d™). Although our alpine meadow ecosystem has a lower annual GPP than that of the subalpine
forest ecosystem, it has a comparable annual NEP. It is assumed that not only low temperature
but also small biomass suppresses the ecosystem respiration; as a result, this ecosystem may
sequester substantial amount of C. Thus, much of the dynamic response of processes to

temperature is lost in annual estimates, because of factors such as phonological influences.

Moisture:

In the seasonal changes, the CO, efflux increased as SWC decreased, and a CO, release
of 0.94 umol m™ s™' was maintained even in saturated conditions. This response to SWC has
been observed in tundra under near-saturation (Oechel et al., 1998). Figure 4.6 might partly

show the effect of increasing temperature. However, it is considered that the temperature
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increment is not enough to increase respiration, and the depression of SWC from saturation to
adequate contributes significantly to CO, efflux. This is an opposite response to that in
relatively dry grassland (Hunt et al., 2002). It is assumed that the transition from aerobic
condition (adequate moisture) to anaerobic condition (saturation) contributes to the rise in plant
root and microbial activity. It suggests that ecosystem respiration in this meadow has an optimal
SWC of approximately 0.3. Many respiration models mostly neglect the decline in microbial
activity at high soil water content (Paul, 2001). So this result suggests that respiration depends
on SWC.

In the diurnal qhanges and interannual changes, the apparent relationships between
moisture factor and carbon dynamics were not founded. This suggested that alpine meadow
ecosystem was advantaged in available water, although annual precipitation is not plentiful,

because of low temperature.

Biology:

The linear regression slopes of NEP ,y.im. against PPFD changed with the changes in the
LAI (Fig. 4.4). GPP,,,, is positively related to LAI (Fig. 4.10a). RUE gpp and WUE gpp also tended
to increase as LAl increased (Figs. 4.10b, c¢). These results suggest that LA determines the
ecosystem capacity for assimilation and resource requirements in the seasonal changes. The LAI
also seems the major factor causing the increase of ecosystem CO, uptake in interannual
changes. The linear regression slopes of NEP ;,yime against PPFD were higher for August 2001
than August 2002 (Fig. 4.4), probably due to higher CO, uptake rate and/or lower rate of
ecosystem respiration. The L47 was 3.1 in August 2001 and 2.6 in August 2002.

In general, seasonal changes in respiratory processes are controlled by climate more
strongly than by biological factors (Falge et al., 2002). However, at this study site, Remax, Which
reached the maximum in autumn (Fig. 4.8), may be associated with above- and below-ground
biomass, which reached the maximum at the same time (Fig. 3.24).

2
s1

The maximum CO, uptake (—10.8 umol m ) at our site has lower potential of CO,

uptake and release than C, grasslands, but similar potential of net CO, uptake to alpine conifer
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forest because of its equivalent uptake potential with lower release potential. The Kobresia
humilis meadow had relatively high LAI (~3.1) with low aboveground biomass (ca. 300 g m™).
With a similar LA to our study site, the aboveground biomass in a grassland in Oklahoma was
reported to be as high as 800 g m™. The lower ratio of aboveground biomass to LAI in the K.
humilis meadow might have been due to the low shoot system in the alpine meadow, which
resulted from the relatively greater abundance of broad-leaved species and the low canopy
height. The high LAI, on the other hand, suggests a likely contribution to the high belowground
biomass in the alpine meadow. The belowground biomass was 6-7 times higher than the
aboveground biomass (e.g. 1892 g d.w. m? on 11 August 2001; unpublished data). This
particular allocation pattern of plants may favor high soil carbon storage in the alpine ecosystem.
Although the CO, uptake was not high, the daily net ecosystem carbon gain reached a fairly
high value under clear weather conditions in August 2001. One of the reasons could be the low
nighttime temperature (e.g. near freezing air temperature 2.2 °C) that limited ecosystem
respiration. It also could be the low maintenance respiration due to low aboveground biomass in
the alpine meadow (Table 3.2).

The maximum NEP,, of our site (3.9 g C m~ d}; Table 3.2) was 20-55% less than
those of tallgrass prairies in Kansas and Oklahoma, USA (4.9-8.4 g C m™ d™’, Kim et al., 1992;
Ham and Knapp, 1998; Suyker and Verma, 2001). However, seasonal maximum was almost
four times larger than that of a subalpine conifer forest in Colorado (1.0 g C m™ d'; Monson et
al., 2002) at similar altitude (~ 3050 m). As pointed out earlier, not only low temperature but

also small biomass significantly suppressed plant respiration at our site.

6.3. The global warming effects on the ecosystem carbon
sequestration

The model sensitivity analysis showed that the GPP, AR, NPP and W, responded
quickly, while the HR and W,,; responded very slowly against the climate change. These may
indicate that the long-term global warming will increase the ecosystem carbon uptake. Cao and

Woodward (1998) used a terrestrial biogeochemical model, forced by simulations of transient
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climate change with a general circulation model to quantify the dynamics variations in
ecosystem carbon fluxes induced by transient changes in atmospheric CO2 and climate from
1861 to 2070. They predicted that these changes increased global net ecosystem production
significantly, but that will decline as the COz2 fertilization effect becomes saturated and is
diminished by changes in climate factors. Cox et al. (2000) presented results from a fully
coupled, three-dimensional carbon-cycle model, ‘indicating that carbon-cycle feedbacks could
significantly accelerate climate change over twenty-first century. They found that under a
business as usual scenario, the terrestrial biosphere acted as an over all carbon sink until about
2050, but turn into a source thereafter. Thus, both in alpine meadow and in global scales, the
long-term global warming seems to make the terrestrial ecosystems as a carbon sink at least in
its initial period (i.e. ~ 2050), but that seems decline as the CO2 fertilization effect is saturated.

The increments of temperature by 5 °C increased the GPP but the increase over 7.5 °C
decreased the GPP. Zhang and Welker (1996) showed that while the peak community biomass
showed no significant change, the duration of peak biomass was extended in the warming
experiment by 5 °C of air temperature at the Haibei alpine meadow. Thus, the warming by 5 °C
advances the ecosystem photosynthetic activity and increases the duration of growing season,
and thus, the GPP. However, the temperature increase over 7.5 °C may go beyond the optimum
temperature of photosynthesis for the objective ecosystem and decreases the GPP. This suggests
that the ecosystem may shift to another biome type that would survive the high temperature
environment. In this analysis, the optimum temperature of photosynthesis plays an important
role to determine the threshold temperature to change the warming effects on the ecosystem
canopy growth from positive to negative.

To obtain the ecosystem response to the climate change qualitatively and quantitatively,

shorter- and longer-term measurement about the ecosystem carbon dynamics are necessary.

6.4. Recommendations for future research

1) The validation of hypothesis in the several environmental controls on the CO2 exchanges.
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To clarify the mechanism involved in the environmental controls on CO2 dynamics in
the alpine ecosystem, for examples, the CO2 uptake depression in the afternoon at the same light

intensity, the smaller scale measurements on single leaf are necessary.

2) The long-term eddy covariance measurement of the CO2 exchanges
To assess the average and fluctuation of the CO2 exchange in this ecosystem, the CO2

flux measurement using the eddy covariance method is necessary to continue for several years.

3) The model construction using the measured ecophysiological parameters
To construct the representative model to simulate the ecosystem carbon dynamics, the
ecophysiological parameters are necessary to be measured at the experimental sites. In this

study, Sim-CYCLE used the ecophysiological parameter provided for global scale simulation.

4) The longer-term model simulation to investigate the effect of global warming

In general, there are three experimental styles in the model simulation studies; the
spin-up experiment, the historical experiment and the future experiment.

The spin-up experiment is conducted to equilibrate the carbon dynamics using the
climate data before 1850s, in which the ecosystem reached the climatic climax. The historical
experiment is conducted to investigate the past climate perturbation effect, containing the global
warming, and the ecosystem carbon dynamics using the re-analyzed climate data. The future
experiment is conducted to predict the climate change effect on the ecosystem carbon dynamics
using the future modeled climate data induced by the global warming scenarios.

In this ecosystem, these three experiments are necessary to represent the more real

ecosystem response to climate changes in the long-term scale.
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Chapter 7 Conclusions

Considering the vast area of about 2.5 x 10° km® of the Qinghai-Tibetan Plateau with the
large variation in topography, it seems difficult to determine a ‘representative’ site for CO2 flux
observation. The alpine meadow is located at either the horizontal extreme of the plateau, or at a
low altitude within the plateau with averaged elevation of above 4000m. However, the alpine
Kobresia meadow ecosystem is one of the most widely distributed vegetation on the
Qinghai-Tibetan Plateau (Zhou, 2001). The alpine meadow occurs in the areas with a large
elevation ranging from 3200 to 5200 m with variable climatic conditions. If it can be assumed
that carbon budget depend on more on vegetation types than on any particular geological
conditions, it is thus conclusive that the knowledge obtained from the current ecosystem should
provide an important insight into our understanding on the carbon dynamics for the grassland
ecosystems on the Qinghai-Tibetan Plateau. It should be noticed here that various grassland
ecosystems occupy more than 60% of the plateau (Wang et al., 2002).

The CO, flux measurement was conducted for two years by the eddy covariance method
in an alpine Kobresia meadow on the Qinghai-Tibetan Plateau. Such the measurement provided
the first example of CO, exchange in the blank area of global flux network in an extreme
environment from China. The evidence from the observation led to the conclusion that the
alpine meadow was a CO, sink at least in 2002. The current CO, sink strength seems not too
high (78.5 g C m? yr''), but is comparable with many sub-alpine ecosystems reported so far.
Moreover, it is also concluded that temperature was the major environmental control on CO,
exchange and the low temperature limited evidently the ecosystem respiration. Soil water
availability was high in the alpine meadow. The high soil water might reduce the ecosystem
respiration. This conclusion seems subjected to the argument that it is difficult to separate the
effects of the temperature and soil water contents on the ecosystem carbon budget. However, it
is evident that the soil water content showed very sharp temporal variations during a short
period such as one week or so, while temperature exhibited much gentle and small variation at

the similar temporal scale. Therefore, it is concluded that a high soil water content is correlated
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with a low ecosystem respiration at nighttime for the alpine ecosystem.

The CO, flux was modeled by the ecosystem carbon dynamics model, Sim-CYCLE, for
20 years at the same site. The modeling provided the reasonable interannual changes of CO,
exchange. The results of modeling led to conclude that annual carbon budgets were fluctuated
ranging from +70 to -70 g C m™ yr and it was unclear whether this ecosystem was a carbon
sink or source for long-term periods qualitatively. It is also concluded that temperature was the
major environmental control on annual CO, exchange similarly to the measurement results. The
model sensitivity analysis suggested that the long-term global warming by 5 °C in annual
average temperature would increase the ecosystem carbon uptake due to the extension of the
ecosystem photosynthetic activity and the duration of growing season. However, the long-term
global warming over 7.5 °C may go beyond the optimum temperature of photosynthesis for the
objective ecosystem. This suggests that the ecosystem may shift to another biome type that
would survive the high tempefature environment.

The alpine meadow exhibited a relatively low ecosystem CO, uptake when taken into
account of the fairly high leaf area index of about 3. From this study, it is further concluded that
the alpine meadow has the potential to sequester carbon, but the potential appears to be small
possibly because of the limitation of low temperature. Further studies are needed to clarify the
environmental controls on the carbon dynamics of the alpine meadow ecosystem from in

short-term to in long-term periods.
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