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PREFACE

Effects of electron correlations on superconductivity have been
studied since the BCS theory (1957). In the original BCS theory,
in which the electron-phonon interaction is regarded to be a
unique mechanism for superconductivity, the repulsive Coulomb
interaction between electrons 1is considered only to suppress
superconductivity. However later Kohn and Luttinger (1965)
pointed out a possibility of superconductivity not induced by the
electron-phonon interaction. The first experimental support of
this kind of superconductivity was the discovery of anisotropic
superfluidity in 1liquid He® in 1972. This experiment strongly
suggested a triplet pairing superfluidity enhanced by exchange of
the ferromagnetic spin-fluctuations, namely, the paramagnon
exchange interaction. The paramagnon theory and other spin-
fluctuation theories are very successful in explaining properties
of nearly ferromagnetic metals and liquid He?.

Furthermore, antiferromagnetic spin-fluctuations has also
been studied recently by many authors. This is because there is a
possibility that the antiferromagnetic spin-fluctuations enhance
superconductivity 1in heavy fermion compounds and quasi-one-
dimensional organic superconductors. Further, the high
temperature superconductivity in copper oxides has also been
arousing the current 1interest in superconductivity enhanced by
some magnetic interaction. Although these three types of super-

conductors have many different properties in many respects,
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they have common important features in their superconductivity.
The most remarkable similarities are that all of them are nearly
antiferromagnetic, and that evidences for anisotropic supercon-
ductivity such as d-wave pairing have been found in many
experiments.

Thus electron systems with short range repulsive interac-
tions have been studied extensively in connection with interplay

and competition between magnetism and superconductivity. These

systems are regarded as important models which exhibit various
correlation effects 1in wide range of interaction strength; from
weak 1limit to strong limit. For the organics it is almost estab-
lished that the conduction electrons are in weak correlation
regime, and their antiferromagnetism is due to spin density wave
(SDW). The SDW and magnetic field induced SDW in the organics
have been wunderstood by means of mechanism of the Fermi-surface
nesting. In the heavy fermion compounds, various physical quan-
tities are well-described in the Fermi-liquid theory as well,
although f-electrons in them are strongly interacting with each
other and hence the effective mass of quasi-particles is extraor-

dinary large. For the oxides, on the other hand, large sublattice

magnetization has been observed in their antiferromagnetic phase.
Thus it has been argued that the electrons are strongly corre-

lated in these compounds, and strong coupling models have been
studied for them.

The problem of magnetism itself besides the interplay with
the superconductivity is also of interest. Magnetic properties of
the Hubbard model have been a longstanding problem in solid state

physics. Many researchers have studied ferromagnetism and
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antiferromagnetism, as well as the Mott-Hubbard transition in

this model. After the mean-field theories by Slater (1936),
Stoner (1938), and Penn (1966), much work has been carried out to
take 1into account the electron correlation effects by such as
Hubbard (1963~1964), Gutzwiller (1963~1965), and Kanamori (1963).
The paramagnon theory mentioned before is another approach to
treat electron correlation effects, which 1is effective to
describe nearly ferromagnetic systems.

This thesis reports our study on magnetism and superconduc-
tivity both in the weak coupling regime and strong coupling
regime. For the weak coupling regime, we study the weak coupling
Hubbard model, while for the strong coupling regime, we analyse
the t-J model. The t-J model can be derived from the extended
Hubbard model describing electrons on the CuO2 planes of the
oxides 1in a strong coupling limit. It can be also derived from
the strong coupling single band Hubbard model. Our study is
performed in two ways, that is, a weak coupling theory similar to
the paramagnon theory in nearly antiferromagnetic systems and a
Green's function decoupling theory based on a strong coupling
model. We will contrast and compare the results obtained in the
weak coupling and the strong coupling systems. We discuss our
result in relation to the characteristic properties in the or-
ganics and the oxides.

For the organics we obtain a theoretical phase diagram which
qualitatively agrees with the experimental phase diagrams. For
the t-J model, we reproduce rapid change of the magnetism from
localized one to itinerant one and drastic suppression of the

antiferromagnetic transition temperature when the electron




concentration deviates from half-filling slightly. On the other
hand, for superconductivity, it is suggested that high tempera-
ture superconductivity 1is difficult to occur in the single band
Hubbard model with only nearest neighbour hopping both in the
weak and the strong coupling regimes. However it is also found
that superconductivity is remarkably enhanced by electron hopping
between next nearest neighbour sites in quasi-two-dimensional
Hubbard model in the weak coupling regime. This result seems to
suggest that some kind of frustration to the antiferromagnetism

may enhance superconductivity.

H.Shimahara

Institute of Physics, University of Tsukuba

30 December 1989
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Chapter 1.

Introduction

§1.1 Heavy Fermion, Organic, and Oxide Superconductors

Magnetic properties and superconductivity of electron sys-
tems with short range repulsive interaction have been studied for
a long time and also have attracted current interest in connec-
tion with the exotic superconductors such as heavy-fermion

1-4) 5-11)

compounds,

organic superconductors, and copper oxide

high-T_ superconductors.12-17)

They exhibit some similar charac-
teristics, such as the anisotropy of the pair wave functions and
proximity of the antiferromagnetic (AF) and the superconducting
phases, although they exhibit many differences in many other
properties, such as effective mass, transition temperatures,
conductivity, and itinerant or 1localized nature, which fact
arises from the differences in dimensionality, lattice structure,
interaction strength, hopping parameters, electron concentration,
and so on. The striking similarities are observed in the follow-
ing experiments and give rise to a new aspect in the problem of
the competition and the interplay between magnetism and

superconductivity.



Anisotropic superconductivity has been suggested by the

18-21) and accoustic atttenua-

18,22)

experiments of NMR relaxation rate

tion rate,22_24)

19)

in the heavy fermion compounds UBels,

CeCu2Siz, and UPt3,23’24) and the quasi-one-dimensional

20,21)

(quasi-1D) organic superconductor (TMTSF)2 ClO4 The

25)

nuclear relaxation rates of the oxides La-Sr-Cu-0, Y-Ba-Cu-

0,26—29) 30)

and Bi-Pb-Sr-Ca-Cu-0 also exhibit power law
behaviour just below Tc’ which also suggests a gapless

anisotropic superconductivity.

The measurements of the lower critical magnetic field31_34)
and the specific heat35) also suggest the anisotropic supercon-
ductivity in the heavy fermion compound UI_XThXBels,Sl’ss) and in

the oxides Y-Ba-Cu-0. It is found from their temperature depend-
ence that another superconducting transition appears to occur at
a temperature below the true superconducting transition
temperature. This can be explained by assuming some kind of

abrupt change of the gap function, which seems to imply an

anisotropic superconductivity.>6:37)

Furthermore, the proximity of the superconductivity and

the AF instability 1is observed in many compounds such as the

38,39)

heavy fermion compounds UPt3 and CeCuzsiz, the quasi-1D

organics  (TMTSF) X (with X=PF_, AsF_, SbF_, TaF6)6_8)

9-11)

and

and the oxides La-Sr-
43)

(DMET)2X (with X=Au(CN)2, AuI2, AuClz)

cu-0,%%)  Nd-ce-cu-0,%")  y-Ba-Cu-0,%2) and Bi-Sr-Ca-Y-Cu-0.
Phase diagrams of the normal, the AF, and the superconducting
phase were obtained for them. In the phase diagrams of the or-
ganics, the superconducting and the SDW phase exist on the border
of each other, while in most of the other phase diagrams, there

is a normal region between the AF and the superconducting phase.
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For (TMTSF)2X and (DMET)2X families, the existence of the SDW is
remarkable because most of the other quasi-1D organics such as

TTF-TCNQ exhibit Peierls transition but neither superconductivity

nor SDW.7) 44,45)

46,47)

On the other hand, in Ba-Pb-Bi-0 and Ba-K-Bi-

0 superconductivity occurs near the CDW instability, while
superfluidity in liquid He® occurs near ferromagnetic
instability.48’49)

These experimental facts have been arousing much interest in
the superconductivity enhanced by some magnetic interaction

induced by electron correlations. Moreover, this is supported by

the fact that the isotope effect of the copper oxide

50-53)

superconductors does not exhibit the behaviour expected

from theories based on phonon mediated pairing. Thus a number of

54-84)

theoretical studies have been devoted to magnetism and

superconductivity of the Hubbard model, which is the simplest but
could nevertheless describe various situations of correlated
electrons.

However these three compounds have differences as well. For
example, for the the organic superconductors (TMTSF)2X and
(DMET)2X families, the itinerant property of electrons seems to

5)

be established by conductivity measurements,
5-11,65,66)

observations of
itinerant antiferromagnetism, and others.6-8) On the
other hand for the oxide superconductors, analyses based on the
one particle picture for the experiments sometimes give inconsis-
tent results, and it has been suggested that some strong
correlation models seem to be appropriat667) from the hole coef-

ficient measurement,68_72)

73-75)

the observations of large sublattice-

magnetization, 76-79)

photo-emission spectro-scopies. In



addition, for the heavy fermion systems, although the quasi-
particles are extremely heavy owing to strong correlations, the
Fermi-liquid theory gives a consistent picture to the analyses of
the experimental results of specific heat, susceptibility, and so

on.4)

Thus in a context of the Hubbard model, the weak coupling
model would be appropriate to the organics, while the strong or
intermediate coupling model and the t-J model would be useful in
the study of the oxides. In fact, the weak coupling Hubbard model
has been successful in explaining the SDW in the organics in many

80-82)

respects, and the t-J model have been derived from the

extended Hubbard model on the CuO2 plane, so-called d-p model, in

83,84) As for the

a limiting case appropriate for the oxides.
oxides, it has been also argued that some essential nature of
realistic 1lattice structure of Cu20 plane may be needed to be

taken into account in reproducing the high—Tc superconductivity,8

5-92) ,4hd  thus the d-p mode18990)

and coupled spin-fermion
systemsgl) have been studied.

Furthermore the quasi-low-dimensionality is another impor-
tant point of this problem. The quasi-low-dimensionality causes
the following two specific features. First, in the itinerant
electron system, shape of the Fermi-surface and density of states
(DOS) are quite important to the physical properties at low
temperatures. In particular in low-dimensional systems, van Hove
singularities and - Fermi-surface nesting are characteristic.
Secondly, another specific feature is that the low-dimensionality

suppresses magnetic ordering and superconductivity, when the

corresponding quasi-long-range order grows.



As for the quasi-1D organics, which would be an itinerant
systems, the above two points have to be investigated. However,
as far as at the low temperatures which the SDW and the supercon-
ductivity concern, it 1is almost established that the three-
dimensional (3D) interactions are strong enough to suppress the
thermal fluctuations and that the system is essentially 3D in

80,92)

critical phenomena. On the other hand, for the oxides, it

has been suggested that there 1is a quasi-long-range AF

93,94)

order above the low temperature phases, which fact reflects

the weak inter-plane coupling.gs) In addition, it would be
plausible that the suppression of antiferromagnetism and that of
superconductivity due to the quasi-low-dimensionality are quite
different, because there is a Kosteritz-Thouless transition to
superconductivity but no antiferromagnetic transition in two
dimensional systems at finite temperatures.

In this paper, we study the magnetic properties and the
superconductivity in the Hubbard model and the t-J model in
itinerant and 1localized electron regimes in connection with the
organics and the oxides.

Here it should be added that there are many other organic

8,96) i, which the

superconductors, such as (BEDT-TTF)2X family,
AF phase has not been observed. These compounds exhibit many
interesting features, but we does not examine them in this paper.
Furthermore, as for the oxides, the two-band nature may be essen-
tial for the high-Tc superconductivity as mentioned above.
However we mainly study single band models in this thesis.

In the rest of this chapter, we briefly review theories of

correlated electron systems, especially those of the Hubbard



model. In chapter 2, we study electron systems on square lattices
with n.n. and n.n.n. hopping from the side of - the weak coupling
theory. First, we examine the free electrons system and the
electron system with some local attraction. Second, we examine
the Hubbard model by means of a perturbation theory and effect of
the n.n.n. hopping. The chapter 2 contains our papers published
in ref.97 and 98 and unpublished results. In chapter 3, we study
the superconductivity enhanced by the AFSF in quasi-1D organic
compounds. For example, a theoretical phase diagram and momentum
dependence of gap function are obtained. The study of this chap-
ter has been presented in our papers of ref.99. In chapter 4, the
t-J model 1is studied in an improved Hubbard III approximation,
which is valid for the strong correlation regime. For example, we
calculate susceptibility, antiferromagnetic and superconducting
transition temperatures. This chapter contains our three papers
of ref.100 and unpublished results. The last chapter is devoted

to summary and discussion.



§1.2 Hubbard model

The Hubbard model is a longstanding subject of interest as a
fundamental model of correlated electron systems, and a number of
studies have been made for the problems on Mott-Hubbard transi-
tion, magnetic properties, and superconductivity in this model,

101-103) Green's function

109-116)

by means of mean field approximation,

104-108)

decoupling schemes, variational methods, pertur-

117-125) exact diagonalization

128-135)

bation in weak correlation regime,

126,127)

of finite size systems, quantum simulations,

136-143)

exact solution for one-dimensional systems, and

144-157)

others. The Hubbard Hamiltonian is defined by

1-
H=1Y) t..c., ¢, +UYn, n,,, (1.1)
iy, 1 ie je i

where U denotes the on-site Coulomb repulsion implying the
electron screening by the electrons which do not participate in
the formation of the electron band. Justification of this model
is given in ref.104.

In the strong coupling regime it reduces to the t-J model up

to the order of t2/U:

~ 1
c,. + Y ZJij(Si’Sj - = ninj) , (1.2)

where we assume tij=—t for nearest neighbor (n.n.) sites (i,Jj)

+

and otherwise zero and we define c¢c. =(1-n )c iacid’

. . n,
ie i-6¢’ “is’ ic

sites (i,j) and otherwise JijEO' This model describes the

c

S,
1

|

h i _ =Ty 2
6'6"1/2'C16'66'o"cio"' N =N, 40, g, and Jij‘J‘t /U for n.n.



electron motions which is restricted by the strong Coulomb repul-
sion, as well as the kinetic exchange interactions. More
generally the t-J model can describe other strongly correlated
electron systems such as the d-p model in some strong coupling

83,84) although then the expression of J is no longer t2/U.

limit,

The physics of the Hubbard model varies with its lattice
structure, values of the parameters tij and U, and electron
concentration. For example, as the interaction U becomes stronger
and as the electron number approaches half-filling, the electrons
become to have localized nature, that is, the length of the phase
coherence of the quasi-particles becomes shorter. In particular
in the strong correlation 1limit, namely in the half-filled and
sufficiently large U regime, the electrons are completely local-
ized and the system 1is insulating even before undergoing AF
ordering. This metal-insulator transition called Mott-Hubbard

108)

transition is reproduced with Hubbard's decoupling scheme and

Brinkman and Rice's theory.llz)

On the other hand, as the interaction U becomes weaker or as
the electron number reduces from the half-filling, the electrons
tend to be itinerant.

In the localized electron case, the antiferromagnetism is a
localized one, 1in which the spin-moment is large, and then the
spin-susceptibility in the paramagnetic phase increases with
decreasing temperature. In particular, at half-filling and in
large U 1imit, the Hubbard Hamiltonian reduces to the AF

Heisenberg Hamiltonian:

H= Y 2J,.S,-S, . (1.3)
i3 i3°%1°73



. 158-166
This model has its own vast field of theoretical study. )

The mean-field approximation gives the susceptibility which
obeys the Curie-Weiss law.

On the other hand, in the itinerant electron case, the
antiferromagnetism is itinerant one, i.e. SDW, and the spin-
susceptibilify would become a Pauli-paramagnetic one.

Moreover, property of supérconductivity in correlated
electron systems would also change depending on whether the
electrons are itinerant or localized. In the itinerant systems,
i.e. 1in metallic systems, superconductivity occurs easily in the

presence of some attractive interaction, as the BCS theory

167)

showed. In this case, long-range nature and retardation of

the interaction are essential for the appearance of superconduc-
. tivity, and it ‘is well-known that the coherence length of pair
wave function is semi-macroscopically large.

However as the electrons become more Jlocalized, the
coherence length becomes shorter. The coherence length is roughly

VF/Tc in the BCS theory, where v. is the Fermi-velocity and Tc is

F
the superconducting transition temperature. In the localized
electron case, VF may not be well-defined and it should be noted
that the coherence 1length could not be estimated by VF/TC no
longer. Furthermore, as the insulating phase is approached with
the Coulomb interaction strengthened or half-filling approached,
the superconducting phase would disappear.

Both in the itinerant and the localized case, mechanisms of
the superconductivity enhanced by some magnetic interaction

54-58,60-64,119,120)

have Dbeen studied by many authors. In the



former .case, it has been pointed out that the AF spin-

fluctuations asisted by the Fermi-surface nesting may enhance the

55-57,60)

superconductivity near the SDW instability, while in the

later case, the kinetic or super-exchange interaction leads to

61-64)

the n.n. attractive 1interaction. Further, a new type of

superconducting transition from the insulating phase has been

argued.61_63)

-10-



§1.3 Antiferromagnetism.

A physical origin of the antiferromagnetism in itinerant
systems such as metal Cr and Mn is Fermi-surface nesting, and
that 1in localized ones, which is observed in insulators such as
transition metal oxides MnO, FeO, Co0O, and NiO, is kinetic or
super exchange interaction, as mentioned before. These pictures,
which are quite different from each other, can be studied as
opposite 1limiting cases of some unified mechanism in the Hubbard

model, and the AF transition temperature T would take a maximum

AF
in the intermediate region. In fact in the quantum simulation of
the Hubbard model on a cubic lattice for the half-filled band

131)

case by Hirsch, T takes maximum value about W/18 around

AF
U~5W/6, where W denotes band width 12t.

For the half-filled band sector, existence of the antifer-
romagnetic 1long-range-order (LRO) is plausible for bipartite
lattice structures except 1D case, in which the ground state was
proved to be antiferromagnetic without LR0.136’137)

In the weak coupling regime perfect nesting of Fermi-surface
necessarily 1leads to the AF instability in repulsive systems,
although even then existence of the AF LRO is not obvious in 2D
cases. However for the half-filled Hubbard model on a square
lattice with only n.n. hopping, Hirsch suggested that the AF LRO

exists for all values of U using Monte-Carlo simulation.lzg)

On
the other hand, in the strong coupling regime, our model reduces
to the AF Heisenberg model. The existence of the AF LRO in the AF
Heisenberg model was rigorously proved by Kennedy et al. for the

3D (quasi-2D) systems with the exchange coupling JX=Jy, JZ=rJX

-11-



158)

with 0.163rs1. The AF transition temperature was estimated by

high—temperature series expansion as T 53.83t2/U for the cubic

159)

AF

lattice. For the 2D AF Heisenberg model, the exact

diagonalization study of the finite size system (S16sites) on the

160)

square lattice by Oitmaa and Betts indicates the LRO. Further

the Monte-Carlo simulation (12x12) by Reger et al. supports the

existence of the LRO and they estimated the staggered magnetiza-

tion as m=0.3010.02,161)

162)

which is consistent with the result of

spin-wave theory and an analysis of the perturbation expan-

sion from the Ising limit by Huse.163)

It 1is almost established that La20u04, which has the one
electrons par lattice site on the Cqu-layer, can be described
very well by quasi-2D spin-1/2 AF Heisenberg model with n.n.
exchange interaction, and the inter-plane coupling is estimated

to be very weak.gs)

73-75)

Observed values of the staggered magnetiza-

tion agree with the theories mentioned above.161—163) Such

a large value of the staggered magnetization is in contrast to
that in SDW phase.

On the other hand, for unbipartite lattice structure there
would be a critical U value below which the system does not
undergo the AF LRO, even at half-filling. The n.n.n. hopping
worsens the Fermi-surface nesting 1in weak coupling regime and
suppresses the SDW transition. On the other hand in strong cou-
pling regime, it leads to an AF coupling between spins on n.n.n.
site and causes frustration to AF correlations. In fact, Lin et
al. showed that the critical U exists in the 2D Hubbard model on

a square lattice with n.n. and next-nearest-neighbour (n.n.n.)

-12-



hoppings by their mean-field approximation and Monte-Carlo
simulation.lsz)

Moreover, even in the system of bipartite structures, reduc-
tion of the electron number from half-filling leads to incomplete
nesting of the Fermi-surface in weak coupling regime, and sup-
presses the SDW transition. In strong coupling regime, the holes
doped to the half-filled band would move around and destroy the
AF ordering.

We demonstrate these behaviour of SDW in chapter 2 and those

of localized antiferromagnetism in chapter 4.

-183-



§1.4 Ferromagnetism

Now we briefly review theories on the ferromagnetism. On
this problem much work has been made. For the Hubbard model, the
mean-field approximation gives Stoner's condition101’102):
Up(eF)>l for the ferromagnetism, where p(eF) is a DOS at the
Fermi-level. This condition shows that the ferromagnetism occurs
when the on-site Coulomb interaction is sufficiently strong in
the 1itinerant model. However the Stoner's theory could not
reproduce the Curie-Weiss 1law, which is observed in almost all
ferromagnets such as transition metals Fe, Co, Ni, and gives
extraordinary large values of Curie-temperature TC'

In the next stage, the electron correlations were taken into
account. Hubbard proposed a decoupling scheme based on the equa-
tion of motion of the Green's function. in real space, and

developed it.104_106)

109-111)

Moreover, Gutzwiller proposed a variational

144)

method, and Kanamori did the t-matrix approximation.

They found approximate conditions for the ferromagnetism which
takes into account the electron correlations.

Another important development is a train of spin-fluctuation

117-125,145) 117-120)

theories

such as paramagnon theories for Pd

and liquid He® and self-consistent renormalization (SCR)

123,125)

theory for weak ferromagnets Zan2 and Scsln. Doniach and

Englesberg117)

studied a nearly ferromagnetic Fermi-liquid and
found enhancement of the temperature 1linear term and the ap-
pearance of Tsln(T) term in low temperature specific heat. The

paramagnon effect on superconductivity will be reviewed later.

The result of the paramagnon theory is fairly good for very low

_14_



temperatures, but worsens as the temperature becomes higher,
because this theory neglects mode-mode coupling of the spin-

168) 169)

fluctuation. The weak ferromagnet ZuZn2 and Scsln

exhibit low Curie temperature T,.=25K and 6K, small magnetization

C
par atom 0.12uB and O.O4uB, respectively, and also exhibit Curie-
Weiss law from just above TC to much higher temperature ~1OTC
with much 1larger coefficient than that predicted from the mag-
netic moment at low temperatures. For this problem, Moriya and
Kawabata proposed the SCR theory in which the spin-fluctuations
are treated 1in a modified random phase approximation, and they
explained the above properties of the weak ferromagnet. In par-
ticular they showed the new mechanism of the Curie-Weiss law not
based on the localized spin model, which explains why almost all
ferromagnets exhibit the Curie-Weiss 1law, whether it is weak
ferromagnet or strong one.

Furthermore, Moriya and Takahashi showed an unified descrip-
tion of the weak and the strong ferromagnetism using a functional

integral method.146)

Thus the theory of itinerant ferromagnetism has been very
progressed, but it 1is still open whether the ferromagnetic LRO
does exist or not in the Hubbard model especially for the bipar-

tite lattice structures. Nagaoka149)

proved that the
ferromagnetic ground state occurs in the case of U=»w and if the
electron number Ne and the number of the lattice sites Ns
satisfies the following condition: Ne=NSil for simple cubic
(s.c.), body centered cubic (b.c.c.), and square lattices, and

Ne=NS+1 for hexagonal closed packed (h.c.p.) and face centered

cubic (f.c.c.) 1lattices, where the electron transfer matrix
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elements ¢t are non-vanishing only between nearest-neighbor

ij
sites (i,]j) and assumed to be positive tij=t>o for h.c.p. and
f.c.c. structures. The Nagaoka's theorem is rigorous but as for
the thermodynamic limit its meaning is not clear. Fukuyama et al.
showed that the susceptibility is not singular at T=0 for any
electron numbers within a coherent potential approximation

151)

(CPA). Takahashi studied the Hubbard model of U= on finite

127) His result is

lattices (S 12 sites) with only n.n. hopping.
also negative to the ferromagnetism for bipartite lattice except
the case in which the Nagaoka's theorem holds. Moreover he found
that the n.n.n. hopping strengthened the ferromagnetism in a
b.c.c. case. Even in a high-temperature expansion up to the ninth

order 1in the strong coupling limit by Kubo et al.,l527154)

they
could not give a definite answer whether the susceptibility is
diverge or not for bipartite lattices. Furthermore, by means of a
Monte-Carlo simulation, Lin and Hirschlsz’lzg) have showed that
ferromagnetic LRO is difficult to exist in the Hubbard model on a
square lattice with n.n. and n.n.n. hoppings, but the n.n.n.
hopping enhances the ferromagnetic correlation. On the other
hand, the ground states of the finite size Hubbard models with
U202 on f.c.c., h.c.p. and triangular 1lattice are completely
ferromagnetic in most cases for t>0, while they are almost always
paramagnetic for t<0, according to the exact diagonalization
study by Takahashi. This is consistent with the high-temperature
expansion and the Nagaoka's theorem.

Thus the ferromagnetic LRO would exist in the Hubbard model

on f.c.c. and h.c.p. lattice with t>0, if the on-site repulsion

is sufficiently strong, although it would not exist for t<O0.
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However it is not settled whether the ferromagnetic LRO exists or
not in the single band Hubbard model on bipartite lattice struc-
tures, even in the strong coupling 1limit, although metal
ferromagnet Fe has b.c.c. lattice structures. Here we should note
that the real transition metals have a band degeneracy, which may

play some important role in the ferromagnetism.17o’101'105’110)
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§1.5 Superconductivity

Recently, superconductivity in correlated electron systems
have been éttracting much attention in connection with the inter-
play with the magnetism in the heavy-fermion systems, the
organics, and the oxides, and thus many theories have been
proposed on the basis of the Hubbard model. However the existence
of the superconductivity in the Hubbard model is controversial at
the present stage, and as for the single band Hubbard model with
only n.n. hopping, it is very negative.

For example, according to the quantum simulations by Imada

85,886) 87)

et al and Hirsch et al

the pairing susceptibility is
not enhanced as the Coulomb interaction U increases. Moreover

88) also

exact diagonalization studies for 8 site Hubbard model
show the result against the superconductivity; They are very
suggestive but not definite consequence on the superconductivity
at the ground states or low temperatures. This is mainly because
of the finite size of the systems examined, even by the use of a

new method proposed by Sorella,133)

although that is very effec-
tive method to this problem. Generally, the superconducting
transition temperature is much smaller than AF one, and the size
effect ought to become large as the temperature is lowered. For
example, even in non-interacting case, the pairing susceptibility
is logarithmically enhanced as the temperature is lowered, but
discreteness of the DOS due to the finite size introduces some

artificial lower energy-cutoff which 1is much larger than the

temperature at which superconductivity occurs in ordinary

materials.
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However, the result of the simulation studies strongly
suggest that the high-temperature superconductivity could not be
reproduced in the single band Hubbard model with only n.n.
hopping. In chapter 2, we also demonstrate in the same case that
the superconducting transition temperatures are very low within a
perturbation theory.

Now we mention about an interplay between the magnetism and
the superconductivity. The magnetic instability and the supercon-
ducting one conflict with each other. However it has been pointed
out by many authors that some magnetic interaction may enhance
the superconductivity, as mentioned before.

For example, in the Fermi-liquid theory, exchanges of the
charge- and spin-fluctuations may induce the superconductivity.
This kind of superconductivity has been first studied by Kohn and

171)

Luttinger, and later the paramagnon-mediated superconduc-

tivity has been studied.l19:120)

The paramagnon theory has clarified the roles of exchange of
ferromagnetic spin-fluctuations in the nearly ferromagnetic

117) showed

materials such as Pd and He® Doniach and Engelsberg
that the factor of linear T term of the low temperature specific
heat 1is enhanced by the paramagnon exchange interaction and also

118) showed that the

Tsln(T) term appears. Berk and Schrieffer
ferromagnetic spin correlations suppress the singlet pairing
superconductivity and argued that this is a reason for no super-

conductivity in Pd. Later Anderson et al. 19 120)

and Nakajima
found that the paramagnon exchange interaction enhance triplet p-

wave pairing.
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121) that for

On the other hand, it was found by Moriya
nearly AF metals, any Tsln(T) term does not appear and linear-T
term 1is not anomalously enhanced in specific heats, as in those
of the nearly ferromagnetic systems; Further Beal-Monod et al.58)
have argued that in rotational invariant systems, the AF fluctua-
tion does not enhance singlet pairings as well as triplet
pairings.

56) and Miyake et al.57) have

However, Scalapino et al.
showed that the AF spin-fluctuations (AFSF) enhance the d-wave
pairing superconductivity in a cubic lattice system near the SDW

instability, mainly in connection with the heavy fermion systems.

59)

Norman has applied this mechanism to the heavy fermion UPt3

systems and estimated TC=O.1K~O.2K from the neutron data. As

Emery discussed.ss)

the similar effects are possible in the
Bechgaard salts. We also study this mechanism in the quasi-1D
organic superconductors in chapter 3. There we obtain the phase

diagrams which agrees with the experiments. Bourbonnais et

172)

al have studied the case in which the three dimensionality

is weak and then the RPA is invalid. They also found the sensi-
tive decrease of Tc. These two studies indicate the importance of
long-range mnature of the AFSF along the conductive chains to
superconductivity in the quasi-1D systems.

There are two experimental supports of the AFSF exchange
mechanism in the quasi-1D organic compounds, that is, the phase
diagrams of the SDW and the superconductivity and the temperature

dependence of NMR relaxation rate. We discuss this problem in

detail in chapter 3.
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On the other hand, this mechanism would not be applied to
the copper oxide superconductors because the antiferromagnetism
in them 1is not SDW from the experiments of the magnetic moments
and others. Nevertheless, it is still possible that the spin-
fluctuations which are 1localized 1in real space enhance the
superconductivity as mentioned before. Thus it would be useful to
examine this mechanism from the side of the weak coupling
theories, for obtaining some suggestions.

In this itinerant mechanism, in which the AFSF are enhanced
by the Fermi-surface nesting, shape of the Fermi-surface and DOS
would sesitively change physical properties. Thus the nearly
half-filled square lattice system is of much interest because it
has following specific features of 2D systems, that is, logarith-
mic van Hove singularities in the DOS and perfect nesting of the
Fermi-surface for half-filled band.

In chapter2, we study this mechanism on the basis of the 2D
Hubbard model and examine the specific features of the two-
dimensionality and an effect of n.n.n. hopping, which acts as a
frustration to the antiferromagnetism as mentioned before. For
example, there we found that the n.n.n. hopping remarkably en-
hance the superconductivity.

Furthermore much work has been made for this mechanism in
the 2D Hubbard model,60’173—176) and the d-p model,l77’178) and

179)

SO on Yonemitsu174) has studied an effect of vertex correc-

tions and found that the next order correction to the RPA would
enhance the superconductivity. Bickers et a1.175’176) have ap-
plied the conserving approximation and found the superconducting

phase near the SDW phase 1in low temperature region. Further,
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SchultzGO) has studied the scaling theory in the 2D Hubbard model
near half-filling, and obtain the similar phase diagrams. Their
phase diagrams agree with that of ours which is obtained in
chapter 2.

On the other hand, in the strong coupling Hubbard model, it
has been pointed out that the kinetic exchange interaction may

61,64) Here we should note that

enhance the superconductivity.
although the kinetic exchange acts as a n.n. attractive interac-
tion between electrons, the strong on-site repulsion would
drastically change the property of electrons, simultaneously.
Thus we cannot conclude the superconductivity to occur only from
the existence of the kinetic exchange interaction.

Thus the t-J model has been studied as an effective
Hamiltonian of the strong coupling Hubbard model and the d-p

model, as mentioned before.b1:64,85)"

We also study the t-J model
on its magnetic properties and superconductivity in chapter 4. On
the superconductivity, we found that the superconductivity is
difficult to occur in small J s&stems and is possible in large J
ones, and that a d-wave pairing is more favourable than an s-wave
pairing, consistently with variational methods.lls)

Moreover many theories on a new type of superconductivity in
the strong coupling regime, such as resonating valence band (RVB)

61-63)

theory, have been studied for the high-Tc superconductors.

Theory of anion superconductivity has been also studied

recently.lso—lsz)
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§1.6 One-Dimensional Hubbard Model

In the one-dimensional Hubbard model, the exact solution is

136) 138)

known by the study of Lieb and Wu, and so

137,164)

Yang,
on It was found that the ground state for the half-
filling case 1s always insulating for any positive U, and that
the total spin 1is minimized in the ground state. Further the
thermodynamic properties have been investigated by many

authors.l39‘l42)

However 1in spite of the exact solution the
physical properties of this model are far from completely known
still now.

Recently the momentum distribution and the singularity of
the spin-correlation function was studied. Ogata et al.l43) have
studied the 1D Hubbard model in the large U-limit using the Bethe
Ansatz wave function. For example, they have examined the sin-
gularity of the momentum distribution at Fermi-momentum kF as

well as the weak singularity at 3k.. They have fitted the power-

F
law singularity around k=kF to their results for finite size
systems (S 32 sites), and estimated exponent is 0.13~0.15. Imada
et al.ss) have applied the Monte-Carlo simulation technigue

133)

improved by Sorella et al to the system of U=4t and 160

sites with 130 fermions, and found that the Fermi-jump in the
momentum distribution appears within their accuracy due to the
finite size of the systems. On the other hand, Sorella et al.134)
have also applied their Monte-Carlo simulation to the system of
36 sites at the largest size. They have suggested the non-Fermi-

183)

liquid nature of the marginal conducting state of the system

away from half-filling, through the finite size scaling, and have
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also showed that the model can be scaled to the Tomonaga-
Luttinger model even in the strong coupling regime, consistently
with the study of Ogata et al. Their results appear to suggest
the Fermi-liquid nature of quasi-low-dimensional systems even in

the strong or intermediate coupling regime, as far as well away

from half-filling.
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Chapter 2.

Spin-Density-Wave and Superconductivity

in Quasi-Two-Dimensional Electron Systems

In this chapter, we study quasi-two-dimensional electron
systems with 1local interactions. In particular we examine an
interplay between SDW and superconductivity in weak coupling
Hubbard model on a square lattice by means of a perturbation
theory. In the weak coupling regime, spin-fluctuations
strengthened by the Fermi-surface nesting may enhance a d-wave
superconductivity as mentioned in chapter 1.

We obtain the phase diagram of the normal, the SDW and
the superconducting phase, in which superconductivity occurs near
the SDW boundary. The superconducting transition temperature (Tc)
is found to be remarkably suppressed by the the electron self-
energy and to be sensitive to the band parameters due to the
Fermi-surface nesting and the presence of the van Hove sin-
gularity as well as to the band fillingness and the strength of
the Coulomb interaction. As a consequence Tc is enhanced by the
next-nearest-neighbour hopping integral. We discuss the relation
between the present theory and the high—TC superconductors.
Moreover we also study the specific features of the quasi-two-
dimensional band structures of the systems without interactions

and with local attractive interactions.
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§2.1 Introduction

Copper oxide superconductors, discovered recently,lgs) have

remarkably high transition temperatures (Tc) and several charac-

7-100) 7-10)

teristic features such as the small iSotope effects,

the quasi-two-dimensional (quasi-2D) motion of conduction elec-

trons,11_17)

18-29)

the existence of a magnetic order in their fami-
lies, and others. Their origin have not been clarified
theoretically yet, although much work has been devoted to this

problem.lOl)

It is believed, however, that some electronic mecha-
nism such as an antiferromagnetic (AF) interaction would be
responsible for the pairing mechanism. Thus, the superconduc-
tivity in repulsive systems has attracted a current interest, and
the quasi-2D Hubbard model has been studied in two different
ways, that is, the strong interaction theory based on the local-
ized electron picture and the perturbation theory of the
itinerant electrons.

The first picture 1is supported by the experiments of the

AF moment in La-Ba-Cu-0 family,l9 24)

30-39)

and by the Hall coefficient

measurement. The resonating valence bond (RVB), which was

102)

first proposed by Anderson and has been studied extensively,1

03-108) ;¢ pased on this picture.
On the other hand the itinerant electron pictures are sup-
ported by the experiments which show the temperature dependence

of the susceptibility like that in the Pauli-

18,40-46) 33-36,47-50)

paramagnetism, and the metallic resistivity.

The values of the density of states which is estimated from the

42-46) 68-7TT)

susceptibilities and the specific heats are roughly
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11-17)

consistent to the band calculations, although they are much

larger than that predicted by the photo emission spectro-

59-65)

scopies. From this view-point, superconductivity was

investigated for heavy fermion systems by Scalapino et a1.107)

and Miyake et al.,los)

in perturbative approach on the basis of
the three-dimensional Hubbard model, in which they showed that AF
spin-fluctuations enhance the d-wave superconductivity.

However, such perturbative approaches depend on some ap-
proximations such as a random phase approximation (RPA), the
validity of which is not assured. Moreover the electron systems
in the oxides would be in the intermediate region between the
localized and the itinerant pictures. Then, more direct treat-
ments have been proposed to examine the existence of the
superconductivity in repulsive systems.

One of them is quantum simulations by Imada et

109,110)

al They calculated a pairing susceptibility and showed

that 1t may be difficult for superconductivity to appear in the
Hubbard model on a square lattice with only nearest neighbour
(n.n.) hopping, while it is enhanced by the Coulomb repulsions in
the extended Hubbard model on the CuO2 lattice plane, which is
more realistic to the recent oxides. Furthermore, an exact
diagonalization in the present model was studied by Lin, Hirsch,

and Scalapino.lll)

They also conjectured the absence of the
superconductivity in the 2D Hubbard model.

These results are full of suggestions to clarify the
mechanism of the high—TC superconductivity, but they have an

inevitable 1limitation on the system size. In particular, in the
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diagonalization methods, the system is too small to call it two-
dimensional system. Hence they do not exclude the possibility of
the superconductivity originating from the repulsive interactions
in 2D Hubbard model. Thus we complement their results from the
side of a perturbation theory in this chapter.

Another important aspect of this problem is competition and
interplay between superconductivity and antiferromagnetism. The
experiments for La-Ba-Cu-0 system exhibit the possibility of the
following two types of the phase diagrams on the plane of tem-
perature and hole concentration. This kind of phase diagram was
obtained first by measurements of the susceptibility,ls) which
showed that the superconducting phase does not touch‘the antifer-
romagnetic phase. However, an recent NQR experiment27) have shown
that the AF phase extends close to the superconducting phase.
Further for Y-Ba-Cu-0 system, antiferromagnetism was observed in

u+SR experiments by N.Nishida et al.28)

These experiments give
rise to the problem on the interplay between antiferromagnetism
and superconductivity and the possibility of the superconduc-
tivity enhanced by the AF spin-fluctuations. In this context, we
think that it is important to clarify the effect of next-nearest-
neighbour (n.n.n.) hopping on superconductivity, since the n.n.n.
hopping acts as a frustration to antiferromagnetism.

On the other hand, the two-dimensional band structure is
also one of the most important characteristics of the recent
oxides. It 1is usually considered that the conduction band is an
anti-bonding band formed by Cu-d-orbitals and O-p-orbitals on the

11-17)

CUO2 plane. This gives the two specific features in connec-

tion with the problem of the interplay mentioned above. One of
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this 1is the 1logarithmic enhancement of the state density so-
called van Hove singularity. Several band calculations for the
stoichiometric La-Ba-Cu-0 system shows that the van Hove sin-
gularity exists near or at the Fermi—energy.ll’lz) In this case,
various quantities also exhibit the logarithmic enhancement for
low temperatures, and TC is also enhanced,112_114) due to the van
Hove singularities. Another specific feature is the Fermi-surface
nesting, which 1leads to the strong fluctuations and the Fermi-
surface 1instability. Effects of those specific features on
physical properties are sensitive to band parameters and band
fillingness.

In this chapter, we study the spin-fluctuation mechanism of
superconductivity by means of a perturbation theory in the 2D

Hubbard model:

1—

H= Y} tijciac

A jo + U % n; Nig s (2.1.1)
and examine the interplay with the SDW. Although the realistic
situation is more complicated, we restrict ourselves to the
single-band Hubbard model for simplicity. In particular we con-
centrate our attention on the characteristics of the present 2D
systém, that 1is, the Fermi-surface nesting and the van Hove
singularity. Next we briefly study the extended Hubbard model on

109,115,116) that the

a CuO2 prlane, according to the suggestion
CuO2 structure may enhance superconductivity.

In 82.2, the specific features of quasi-2D band structure
are examined for non-interacting electron systems. In §2.3, we

study the SDW transition of the quasi-2D systems with only n.n.
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hopping and that with n.n. and n.n.n. hopping. We also study an
effect of orthorhombic distortion of lattice. In §2.4, the super-
condutivity induced by local interactions and specific features
due to the van Hove singularities are examined. In §2.5,'we study
the superconductivity mediated by spin-fluctuations, and in §2.6
we show the phase diagrams for various cases. In §2.7, we briefly
examine the same mechanism for the extended Hubbard model. The
last section 1is devoted to summary and discussion. This chapter

contains the studies in our papers of ref.117 and 118 and un-

published results.
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§2.2 Noninteracting Electrons on a Square Lattice

In this section, we examine the noninteracting electron
system on a square lattice. The dispersion relation of the tight

binding electron with n.n. and n.n.n. hopping is writen as
-
e(k) = - t (cos(kx) + cos(ky)) -8 cos(kx)cos(ky) - u. (2.2.1)

Here S(E) has saddle points at K=§V=(O,in),(:w,0) in energy-
momentum space, which lead to logarithmic van Hove singularity of
the density of states (DOS) at the energy e(ﬁv)=8—u, and
if wu=6, such singularity occurs at the Fermi-energy. In par-
ticular, if u=8=0, complete nesting of the Fermi-surface occurs
simultaneously. (Fig.2.1.)

The dynamical susceptibility xo(w,a) is written in the form:

£(e(®)) — (e®+3))
o+ ( e(B+q) - e(R) ) + i0+

=, _ 1
xo(W,Q) = N ’ (2'2‘2)

o r Mg

where f(s)=(e88+l)_1. xo(w,a) has peaks at a nesting vector a=am'
In particular, in the half filled case (u=6=0), the nesting is
perfect and 3m=3=(xx,ix). In the case of u#0 and/or &#0, the
total electron density deviates from 1 (the half filling) and
then am shifts from 3 (Fig.2.1 and 2.2).

In the case of =0, the DOS is given by

o(e) = ——;l—— K( (1 - (e/2t)2)/2) | (2.2.3)
ot
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with the K function, i.e. a complete elliptic integral of the

first kind, which shows the logarithmic behaviour near €=0:

ple) = ——;———-ln (2.2.4)

Using these expressions, the free susceptibility can be obtained
for several «cases. For u=8=0, logarithmic van Hove singularity
at the Fermi-surface and the perfect nesting occur simul-

taneously, and then susceptibilities are obtained analytically as

follows:
1 16 e’ t
x (0,0+) = —— 1n( ), (2.2.5)
o 2 b1 T
Tt
1 2, 16 e’ t
x,(0,8) = —— 1n*(—=2 =) + C, ., (2.2.6)
2"t
with Co= -0.0166, which is obtained by a simple numerical in-

tegral (see 82.4). These expressions are very accurate as shown
in Fig.2.3 and Fig.2.4. This logarithmic behaviour of xo(0,0+)
and the square logarithmic behaviour of xo(O,a) are due to the
van Hove singularities in the two dimensional tight-binding
electron systems. Furthermore for 2t>>u>>T in which the band
fillingness deviate from half-filling, susceptibilities are

obtained by low temperature expansion:

1 8t 1 T 2, ...

x°(0.0+) = —— 1n( - ) + =1 ( " )%+ , (2.2.7)
72t

x,(0,8) = —I— 1n?(-2%) - —2— 112
2n2t . 2t
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. 3% 1n( 8it y ( z 2 4 aen, (2.2.8)

At the ground state, susceptibilities is related to the density

of states as follows:

x_(0,0+) = o(x) =-——;l;— K( (1 — (u/28)%)'/?) , (2.2.9)
3
N 2y1/2y _1
%,(0.8) = —— fac k(1 = e20)HY?) = (2.2.10
T K

The temperature dependences of x0(0,0+) and xo(O,a) are obtained
numerically for various u and 8 values and shown in Fig.2.3 and
Fig.2.4, respectively. It is found that the logarithmic behaviour
of x0(0,0+) and xo(O,a) are rapidly suppressed with increasing or
decreasing u# and &, and the susceptibility x0(0,0+) becomes to
have Pauli-paramagnetic form as expected.

In addition, we will briefly mention about the specific heat
C in this system. At sufficiently low temperatures, the follow-
ing expressions are obtained by the expansion in T/t for w=8=0,

_ _2T 3.999 t
Cv = 3t In -7 (2.2.11)

and by the expansion in T/u for u>>T,

2T 8 t
= —— —— .2.12
v 3T 1n " . (2.2 )

The specific heat also shows the logarithmic behaviour as well as
the susceptibility xo(o,0+).
As found 1in the results obtained above, even in the non-

interacting system, the 2D tight binding model shows
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characteristic behaviours of the susceptibilities and the
specific heat which are enhanced due to the presence of van Hove
singularities. Such properties of the present system may relate
to the unusual behaviour of the susceptibility and the electrical
resistivity, which changes from semiconductor like to metallic

like, by slight doping in (Lal_xBax)20u04.
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Fig.2.1.
Fermi-surfaces.
(a) &=up=0,

(b) &/t=u/t=0.3,

(¢) 8/t=0.3, p/t=0,

(d) 8/t=0.3, u/t=0.2.

20— ——— 77—
L (a) 3=-0. i
- (b) §=-0.1

15+ (c) &= 0.0

(d) 5= 0.1 Fig.2.2. The electron

(e) 8= 0.2

numbers per site n.

i
[ (a) ]
LO- . (a) 8=-0.2t,
i : (b) 86=-0.1t,
057 7T (e) =0,
! 1 (4q) s=0.1t,
(RS ST W WD SN YN YUNAY T NEN SN WRUNY NN TN TN RN SN T WO
9005 0.0 05 o (e) o=0.2t.
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Fig.2.3. The susceptibility x0(0,0+). (a) u=0, 8=0: The
solid 1line is given by eq.(2.3.4) and the dots express
the numerical results. (b) The broken line express the
numerical results for p=0, §=0.2t and for u=-0.2t,

6=0. These two cases give almost same values of

x0(0,0+).
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Fig.2.4. The susceptibility xo(o,a). (a) u=0, 8=0: The
solid 1line is given by eq.(2.3.5) and the dots express

the numerical results. (b) u=0, 8=0.2t, (c) wu=-0.2t,
5=0. '
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§2.3 Spin-Density-Wave

In this section, we study the SDW transition. The antifer-
romagnetic susceptibility diverges at a temperature, that is, an

SDW transition temperature T if the repulsive interaction is

SDW’
sufficiently strong. Within an RPA, the SDW transition tempera-

ture is given by the equation:

-5
= 2.3.1
1=Ux(0, q), ( )
where Hm is the momentum at which xO(O,am) takes maximum value.
In particular, for u=6=0, where am=3=(in,in), we can easily
obtain T as

SDW

16 e’ t 1/2

Topw = —5— t exp( - V' 2 7 ( - - %)) . (2.3.2)
from egs.(2.2.6) and (2.3.1). This expression gives the maximum
value of TSDw for given U, since in this case (u=6=0) the Fermi
surface is perfectly nesting. Moreover, as increasing or decreas-
ing & and &, the TSDW decreases rapidly as shown in Fig.2.5,
while the peak of the TSDW shifts at u=8 due to the van Hove
singularities.

On the other hand, the T is slightly affected by the

SDW
orthorhombic distortion, which changes the electron dispersion as

e(K) = -tl(cos(kx)+cos(ky)) —t2(cos(kx)—cos(ky)) -u. (2.3.3)
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We exhibit the SDW transition temperature for the orthorhombic

lattice in Fig.2.86.

Next, we calculate an SDW gap M, which is given by

E(R) + D(K)
2 T

E(K) - D(K)

tanh 5T + tanh

) ~ M, (2.3.4)
¥ 4 E(k)

J tz(cos(kx)+cos(ky))2 + M2,

2
[y
ot
=
txi
'X
]

Qo
B
(o]
(&
=
i}

S cos(kx) cos(ky) + 0,

within the Hartree-Fock approximation. The interaction strength
dependence of the gap M and the corresponding magnetic moment 28
for u=6=0 and T=0 are shown in Fig.2.7 and Fig.2.8, respectively.
For example, it 1is found that if the band width 4t=20000K and
TSDW=250K. then U=0.73t and 2S520.24 Hp at T=0, which is rather

large value because of the van Hove singularity.
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-52-~



0.5 rlIl_[llllllTilrllll.‘rrl'lllllllllllffl[
04}

0.3F

M/t

0.2

T v7T

0.1

0.0:‘1.. Tl vy v Vo sy oo v v v Vo s vy ¥ 3y terayts
00 02 04 06 08 10 12 14 16

ust

Fig.2.7. The SDW gap in a mean field theory.

0.7_1“.'«;:-.- LN LI N S T I R 0 R LB 70000
0.6

0.5

0.4

2S (Hg)

0.3

0.2

Illl‘lllll

0.1

s ta b 2o v x Ve g9 le g vty sy I | 0

00 TR
00 02 04 06 08 10 12 14 16
u/t

Fig.2.8. (a) The magnetic moment (2S) given by the SDW

gap M. (b) The band width (4t) with fixed TS =250K.

DW

-53-



§2.4 Superconductivity Induced by Local Attractive Interaction

Before studying the spin-fluctuation exchange model we
examine a simplified model for this mechanism in connection with
the local nature of the interactions and the van Hove sin-
gularities 1in 2D systems. It has been often pointed out that the
logarithmic enhancement of the DOS near the Fermi-level will
enhance the superconductivity%12~ll4) Here we demonstrate the
specific features arising from such characteristics of the DOS in
detail.

We study an effective Hamiltonian in this section, which

describes tight-binding electron system with hopping and local

interactions:

— 1- —
H =17 tijciacja u g n

i,j,o 1
1 s, - - - n, - -
* =3 iZj(l‘ (Fy- Fy) 65+ 65 + T'(F; - T)) ny» ny) (2.4.1)
where 1 and j denote lattice sites, and %= Y CT & .c and
’ i s G.ia o' is’
ni=XcIocia is an a (=Xx,y,z) component of the spin operator and
]

the density operator at site i, respectively. Here r° and ™

denotes the spin and charge interactions, respectively, and for
example we can adopt the spin and charge fluctuations to them,
which exchange interaction are studied in the next section in
details. Apart from this, we can include the phonon mediated
interaction in our effective Hamiltonian. In this section, we do

not study nesting instabilities.
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At first we consider the tetragonal case and assume the n.n.
and n.n.n. transfers and rewrite the Hamiltonian (2.4.1) in a

Bloch representation:

H= Y S(E)cqfc

k,o Ko Ko
s 1 5@ @3- + D @ n-D) (2.4.2)
q
-
e(k) = - t (cos(kx) + cos(ky)) -8 cos(kx)cos(ky) -, (2.4.3)
r{@ = ¥ rm,m) cos(nq) cos(mqy) (a=s,n). (2.4.4)
n,m

Here we take the lattice constant as unity.
In the ladder approximation, the superconducting transition

Tc is given by:

_"
tanh s;% )
AK) = &+ I T(R.K) —C AR, (2.4.5)
K’ 2 e(R")

where T(K,k') = 2 TS(R+K') + I'S(B-B') - ' (R-kK").
Here we neglect the interactions except the on-site and the

n.n. interactions, and thus we obtain from eq.(2.4.4)

' N AT + 'Y+ !
r'k,k') = -U + 7 (cos(kx) cos(ky)) (cos(kx) cos(ky)) +
d ' '
+ T (cos(kx)-cos(ky)) (cos(kx)-cos(ky))

+ 7P(sin(ky)sin(ky) + sin(k )sin(k})) , (2.4.6)

where U (=Fn(0,0)+Fs(0,0)) is the on-site Coulomb interaction

p

renormalized by the fluctuations, and rs,r and Td, are nearest

neighbour interactions for s,p,and d-wave pairing:
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S - 9. 37r151,0) - T1,0),

-

p

v - 2r1%01,0) - 2 t%1,0).

d

The expressions for TS,T , and 7p tell us that the antiferromag-
netic interaction (Fs(l,0)>0) leads to singlet pairings (s and
d), while the ferromagnetic interaction

(Fs(1,0)<0) yields p-wave pairings.

Corresponding these signs, we can assume the three types of

pairing, that is

(1) d-wave pairing for +.,<0

d
AR) = A (cos(k,)-cos(ky)) (2.4.7)
(2) p-wave pairing for Tp<0
A(K) = A sin(k ) (2.4.8)

(3) s-wave pairing for U<O

AR) = A (2.4.9)

This last case seems to be impossible at first glance, because
generally the Coulomb repulsion will be strong enough to overcome
other attractive interaction between two electrons on the same
site. However, 1in the real material, the site means the lattice
site which may extend in real space enough for electrons to
shield the Coulomb interactions. In addition, strictly speaking,
the n.n. s-wave is contribute to eq.(2.4.9), but such correction

is very small since the n.n. s-wave vanishes on the Fermi-

surface.
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2.4.1 Behaviour of the transition temperatures

The equations for TC are solved numerically for &=0, 0.1,
0.2, 0.3 and various u assuming d and s-wave pairing separately.
(Fig.2.9 and 2.10.) For the d-wave pairing, the Tc shows a sharp
maximum at u=8 where the van Hove singularities are on the Fermi-
level. It 1is remarkable that Tc with different & exhibit almost
the same behaviour except the translation by u-8 and slight
deviation of the maximum value. In fact, we have
TC=O.0175tiO.OOOSt for u=8=0, and TC=0.0182t10.0003t for
#=86=0.3t, although the number of electrons pér site n=1 for the
former case, and n=1.2 for the later case. Hence we have the
approximate relation Tc(u,S)ETc(u—S,O) as a function of u and &
if 6 is not too large (8<0.3t).

For negative U and s-wave pairing, the Tc have the similar
natures, although the widths of the peaks are more broad.

These behaviours are in contrast to that of SDW transition

temperatures, for which the Fermi-surface nesting is essential.
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Fig.2.9. u dependence

in the d-wave

case for 7d=

of Tc

pairing
t/4: (a)
§/t=0.1, (c) &/t=0.2,

8§/t=0, (b)
(d) 8/t=0.3. These
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if one translates

each graph by §.

Fig.2.10. gz depen-
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wave pairing case for
U=t/2: (a) 8/t=0, (b)
(c) &/t=0.2,

(d) &/t=0.3.
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2.4.2 Analytic expressions of the transition temperatures

Now we derivate the analytic expressions of Tc for wu=8=0,
which are approximately applicable for u=8#0 from the relation
mentioned above.

As an example of the derivations, we investigate the d-wave

pairing case. Eq.(2.4.5) can be written in the form;

_t

rd . tanh ( Tc X)
1 = > J dx p(x) 3 , (2.4.9)
Tt 0
2-2X y2
p(x) = de - , (2.4.10)

0

(1-(y/2 + x )?) (1-(y/2 - x)?)

where y=COS(kX)—cos(ky) and X=(cos(kx)+cos(ky))/2. Now we divide
the range of the integral of eq.(2.4.9) into two regions, that
is, O$x$xc and chx51, where we have introduced a cut X, which
satisfies T _/t<<x <<1 and will be determined later. For the

integration of OSxch<<1, the DOS p(x) can be approximated as
p(x) = 4 1n (— (—==)%) , (2.4.11)

neglecting the order of x2ln(1/x), the contribution of which

vanishes in the limit TC%O. Thus eq.(2.4.9) is rewritten as:

d *
1= —32—"—( In?(—5—) + =% ) , (2.4.12)
Tt Cc

where t*=16e7-2t/n51.2276t with r=0.57721, and
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r?Cc = [ - 1n2(4/e2xc) - 1n2%(4e” /)

t X
tanh T

1
1 + Idx p(x) < 1. (2.4.13)
X

2
ch®x

00
+ de in2x 5 X
0

C

In the integral of the last term, we can set tanh(tx/Tc)El unless
X, is too small, and it is found that C is nearly constant for
varying Xa- Therefore we set Xc=0'08’ which gives the numerical

result C£0.169, and finally we obtain the analytical expression:

t
, - (5 -c)e
T. =t e 27 . (2.4.14)

In particular for weak coupling Zrd/t<<1/055.917, T, is simply

given by

T =1t e 27 . (2.4.15)

The results eqs.(2.4.14) and (2.4.15) tell us that Tc is
remarkably enhanced by the van Hove singularity and the usual BCS
formula of TC does not work in the case where the Fermi-level is
at or 1in the vicinity of the van Hove singularity. In Fig.2.11,
the numerical results of TC are shown as well as those given by
eqs.(2.4.14) and (2.4.15). It is found that the curve given by
eq.(2.4.14) agrees very well with the numerical result over the
whole region of 79 while that given by eq.(2.4.15) could not be
d

used except very small 7 .

Along the similar way, we can obtain the formula for s-wave

case:
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2t /2
T = t*e * T ¢ cg)’ L (2.4.18)

with t*=16eTt/n59.0709t and CSEO.0332, which has an unusual form
as well as that of d-wave case. On the other hand, for p-wave

case, we obtain a BCS-like formula:

T 2
T =t —2& exp(- 2Lt . ¢, (2.4.17)
C b/ 4_rp P

with Cp5—0.610.

The accuracy of eq.(2.4.18) and eq.(2.4.17) is seen in Fig.2.12

and Fig.2.13 respectively.

2.4.3 Orthorhombic distortion

An orthorhombic distortion will change the electron disper-
sion as eq.(2.3.3). In this case two saddle points of the
dispersion are on the Fermi-surface at u=12t2. Thus, as shown in
Fig.2.14, Tc has one maximum for TC >>t2 and as t2 increases it
becomes to take two maxima, the value of which decreases with

increasing §.

As was shown above, the behaviour of the superconductivity
is quite different from ordinary one, because of the van Hove
singularities, and our result also shows that the electrons near
the saddle point of the electron dispersion is dominant in the

superconductivity.
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by eq.(2.4.14) and (2.4.15) respectively.
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Fig.2.12.

s-wave case; Tc ver-
sus |U|. The points
and line express, nu-
merical result and
that given by eq.
(2.4.18) respective-

ly.

Fig.2.13.

p-wave case; Tc ver-
sus 7°. The points
and line express, nu-
merical result and
that given by eq.
(2.4.17) respective-

ly.
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§2.5 Superconductivity Mediated by Spin-Fluctuations

As was discussed in §2.1, the exchange of the spin-fluctua-
tions gives attractive interactions between electrons and leads
to the superconductivity. Here we study this mechanisms on the
basis of 2D Hubbard model. Since this kind of electronic interac-
tion has strong coupling nature and does pnot have a small cutoff
in energy space such as a phonon exchange interaction, static
approximation and averaging on the Fermi-surface is not appropri-
ate especially for finite temperatures. Thus we do not approxi-
mate on the frequency dependence of the pairing and take into
account the renormalization effect through the self energy.

Following Scalapino et a1%07) we treat the spin- and charge-
fluctuations 1in RPA, whose diagrams are drawn in Fig.2.15. Thus
the effective vertices for anti-parallel and parallel spins are

given in the following:

u? xo(k+k‘+q)

raﬁ(k’k q) = U + 1 — U xo(k"‘k""Q)
(2.5.1)
1 U2 x, (k-k") 1 U2 x, (k-k")
M R R x(kk') T 72 T1T+U0x (kk)
Fad(k,k'q) =
y ) (2.5.2)
1 U xo(k—k ) 3 U xo(k—k )
2 1 + U xo(k—k') 2 1 -U xo(k—k') ’

with o6=a or B8, where k denotes (ﬁ.iwn). The first term in eq.

(2.5.1) 1is the on-site Coulomb repulsion, and the fourth term in
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eq.(2.5.1) and the first term in eq.(2.5.2) describe the charge
fluctuations, and the second and third terms in eq.(2.5.1) and
the second term in eq.(2.5.2) describe the spin-fluctuations. We
regard this set of diagrams as a boson propagator, and discuss
the superconductivity mediated by these bosons.

The electron Green's functions are expressed as
_ . _ 2y -1
G, = (ie - e®) - E(k) )", (2.5.3)

where E(k) 1is the electron self-energy. We take the lowest dia-
gram for the self-energy in this electron-boson system as shown

in Fig.2.16. Then, resulting self-consistent equation is

= - ' _ 2 1 0
£(k) = E'raa(k,k ) Gy E'U xo(k k') Gyr (2.5.4)

where k=(K,iw) and Y N_lZ
k' ﬁ

T Y , and Gﬁ.is the bare electron
n

Al
'

Green's function. Here the second term is added to cancel the
double counting contribution of the first term.
Now, we introduce the two-particle vertex I for singlet

pairing in a ladder approximation which is shown in Fig.2.17:

r(k,k',q) =

Fas(k,k ,q) - 1I(:"I_"as(k’kn'q) Gk"+qG_k,,r(k K ,Q) . (2.55)

The approximations for the two-particle vertex and the self-
energies are consistent with each other in a diagramatic

formulation of electron-boson systems. Then, the superconducting
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transition temperature 1is given by the condition for the first

appearance of the nontrivial solution of A(k), satisfying

A(k) = - X FaB(k,k',O) G_k.Gk.A(k') , (2.5.8)
k

i ' = .5.7
i.e. det( Spctt Fas(k,k ,0) G_k.Gk,) 0 . (2 )

The interaction given in eqgs.(2.5.1) and (2.5.2) rapidly
would decay in the real space, because the anti-parallel and
parallel correlation alternately appear and cancel out by averag-
ing over the direction in the present square lattice system.
Hence, we expand eqs.(2.5.1) and (2.5.2) up to the n.n.n., as

I o(k.k',0) = 7\ 0,10 )

+ Til)(iwn,iwn.) (cos(kx) cos(k;) + cos(ky) COS(k§))
+ Tél)(iwn,iwn,) (sin(kx) sin(k;) + sin(ky) sin(k§))
+ riz)(imn,imn,) (cos(kx) cos(ky) cos(k,) cos(k&)

+ sin(k,) sin(k,) sin(ky) sin(kg))
+ TQZ)(imn,iwn,) (sin(kx) cos(ky) sin(k,) cos(k&)

+ cos(kx) sin(ky) cos(ké) sin(k&)) . (2.5.8)

Fdd(k,O,q) = T(O)(iwn) + T(l)(iwn) (cos(kx) + cos(ky))

+ 7(2)(imn) cos(kx) cos(ky) . (2.5.9)

From egs.(2.5.9) and (2.5.4), the self-energy can be

similarly expanded in the momentum space:

20 = £ %10 ) + 21 (10,) ( cos(k ) + cos(k,) )

+ 2(2)(iwn) cos (k) cos(ky) , (2.5.10)
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~where z(o)(imn), E(l)(imn), and 2(2)(iwn) are given by eq.(2.5.4)
being mixed with each other. Moreover we neglect the symmetric

part of Z(k).

(0) (2)
1 "1

is attractive reflecting

For two electrons with anti-parallel spins, 7

(1) (1)
2 1

the antiferromagnetic correlation in the present system. This

, and T are repulsive, and 7

(2
correlation leads to the n.n. singlet pairing, especially n.n. d-
pairing, which is most enhanced by the van Hove
SingU1arity%12~ll4) Strictly speaking, the n.n. d-pairing mode is
necessarily mixed with the other pairing mode of the same sym-
metry, by the terms neglected in eq.(2.5.7). However, the
numerical calculation shows that the next order corrections are

negligibly small, as expected. Hence, we can rewrite eq.(2.5.7)

into

(1) . . _
det(Snn.+ 7] (iwn,lmn,) W(lwn,)) =0 , (2.5.11)
where
(Lo _
7] (1wn,1wn,) =

—gﬁ— § raﬂ((ﬁ.iwn),(g,iwn.),O) -(cos(kx)+cos(ky)) , (2.5.12)
k

Wie ) = —— X G_1 Gy - (cos (k) -cos (k))? . (2.5.13)
R

Thus the problem reduces to egs.(2.5.4) and (2.5.11) with

eqs.(2.5.9), (2.5.10), (2.5.12), and (2.5.13).
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Fig.2.15. The -effective vertices [ s (k.,k',q) in the
RPA. The spin index ¢ and ¢' denotes the spin of the
electrons corresponding to the four momentum k'+q and
-k, respectively, in this diagram. Other electron spins
are automatically determined from the form of the
Coulomb interaction in eq.(2.1.1). The solid and broken
lines denote the bare Green's functions and the inter-

action U, respectively. These diagrams give egs.(2.5.1)

and (2.5.2).
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S(k) = - Q

Fig.2.16. The electron self-energy. The thick and thin
line denote the renormalized and bare Green's func-
tions, respectively. The wavy line is defined in Fig.
2.15. The momentum dependent contribution from the ver-
tex FaB is already included in these diagrams, from the

definition of rcd. This diagram gives eq.(2.5.4).

I'(k,k',q)

]
4
-+

Fig.2.17. The two-particle vertex for a singlet
pairing. The thick solid line express the renormalized
Green's functions, and the wavy line 1s defined in

Fig.2.15. This diagram gives eq.(2.5.5).
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§2.6 Phase Diagrams

Egs.(2.5.4), (2.5.9), and (2.5.10) are solved by self-
consistent numerical calculation, which satisfactorily converges
in four or five iterations. Using this result, egs.(2.5.11),
(2.5.12), and (2.5.13) are also solved numerically with results

given in this section.

2.6.1 The case of 6=0

The numerical results are drawn in Fig.2.18(a)~(c) for &=0.
Here, we only study the case of u>0 since the phase diagram only
depends on the magnitude of u due to the particle-hole symmetry.
In those figures the solid, broken and dotted lines express TSDW’
Tc with and without the self-energy, respectively. As is seen in
Fig.2.18(b) and (c), if one neglects the self-energy the super-
conducting transition temperature Tc is always higher than T

SDW

and becomes higher as gets closer to TSDW' The reason for this is

the divergence of the effective interaction at T However, if

SDW*
one takes 1into account the self-energy effect, Tc is remarkably
suppressed due to the renormalization effect as 1is seen in
Fig.2.18(a)~(c). Such strong suppression by the renormalization
effect is a general feature of this kind of superconductivity, in
which the attractive part of the interaction is taken out for
pairing and the other strong repulsive part is avoided by symme-
try in the gap equation. It should be noted, further, that the
superconductivity is enhanced near the SDW boundary, although the

resultant Tc is rather low. For examples, for &=0 and U/t=0.8,

1.0, 1.2, we obtain the maximum value of TSDw/t=O.0611, 0.1028,
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4 3

0.1509 and that of Tc/t=4.0x10' , 1.0x1073, 1.8x1073, respective-
ly. (T, /Tgpy<0.0064, 0.0096, 0.012.) If we takes the value of t
which makes the maximum of TSDW equal to 250K, then we have the
maximum transition temperature Tc=1.6K, 2.4K, 3.0K and 4t=16400K,
9700K, 6600K, respectively. The region in which the superconduc-
tivity occurs increases with U as well as Tc' For U=0.6t the
superconductivity does not appear except for extremely low tem-
peratures.

The phase diagram in the U-u plane at very low temperature
T=-10"%t is given in Fig.2.19. It is found that the superconduc-
tivity appears 1in the narrow region between the SDW and normal

phase for #>0.05t. For u<0.05t, the SDW is always more favourable

than superconductivity at this temperature.

2.6.2 The case of 6=0.3t

Now we examine effects of the n.n.n. hopping. We set 8=0.3t
as an example, and the numerical results are shown in
Fig.2.20(a)~(c).

As 1is seen in Fig.2.20(a), TSDW takes the maximum at
#=8=0.3t where the van Hove singularity is at the Fermi-energy,
and rapidly decreases with increasing |u-8]|. The superconduc-
tivity appears in both sides of the SDW phases and the maximum

values of it are 4x10 %t, 1.2x107%t, and 1.8x10 3

t, for U=0.7t,
0.8t, and 0.9t, respectively. The important effects of the n.n.n.
hopping are as follows: (1) TSDw is remarkably suppressed because
the nesting worsens; (2) TC is enhanced becausé TSDW is sup-
pressed and thus the boundary of SDW approaches to the van Hove
singularities; (3) Tc is higher for u<é than that for u>6. The
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remarkable enhancement of Tc can be found by comparing

Figs.2.18(a) and Fig.2.20(b) for U=0.8t, which show that the

3

max(Tc)s4x10‘4t for 8=0 and max(T,)=1.2x10 °t for $=0.3t. The

maximum SDW +transition temperature is T =0.0074t for U=0.T7¢,

SDW

and 0.01985t for U=0.8t, and they give the ratio Tc/T <0.054,

SDW

0.060. If we fit the values of max(T ) to 250K, then we obtain

SDW
Tc§13.5K and 15.1K, and 4t=135000K and 4t=50000K, respectively.

The phase diagram in the U-x plane at T=10"%

t is given in
Fig.2.21. The superconductivity appears for u<6=0.3t and
0.3tgug0.4t, Dbetween the normal and SDW phases, and disappears

rapidly for wu>0.4t, Dbecause the most effective nesting vector

moves far from (x7,xm), and the antiferromagnetic correlation is

suppressed.
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§2.7 Superconductivity on the CuO2 Plane

According to the prediction of the preceeding section, in
the single-band Hubbard model, the superconducting transition

temperatures would be too low to explain the high—TC superconduc-

109,110)

tivities, 1in agreement with quantum simulation. However
by the simulation, an extended Hubbard model
H= Y [s_df p -s_d; D + h.c. ]
i’s X “i¢ Ti+x ¢ X il¢ "i-x ¢
T T
* 126 [ Sy ic pi+y ¢ sy ic pl—y e} + h.e. ]
T 1t
+z€d. d. +Zcp P
ile d "is “is i)s P “js “Jje
d d
2.7.1
+ Uy % n;, Dig - ( 1)

may exhibit a remarkable enhancement of pairing susceptibility,

and several theories have been proposed for this
model ., 1197116,119,120) In eq.(2.7.1), d;  and Pig denote an
annihilation operator of electron with spin ¢ on the Cu-d-orbital
at site 1 and that on the O-p-orbital at site j, respectively,
and ngd denotes the d-electron number. At first we neglect the O-
O hopping and on-site Coulomb energy on O-site for simplicity. We
briefly examine the present perturbation theoryllg_lzo) based on

this Hamiltonian.

In a band picture, we diagonalize the electron hopping terms

and obtain the following dispersions:
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£ _ 1
A= le

7 2 2 .2 2 .2
+ J e, 16 (sX sin (kx/z) + sg sin (ky/Z)) }o, (2.7.2)

which satisfy 1i<10<1;. Here we set £4=0. In the case of oxide

superconductors, the upper band 27 will be nearly half-filled.

The free (U=0) d-band-electron-Green's function is

d 2 1 -1
= i - 2.7.3
(Che [ i + u Y s, o= o+ & ] , ( )
a=x,y p

In our framework we have to calculate the spin and charge fluc-
tuations 1in an RPA on the d-band electron motion and on-d-site
Coulomb interaction. Thus the effective vertices are constructed

by d-band free-susceptibility defined by

degy o _ v od  ad
x (a) = E Crrq Ok - (2.7.4)

This can be rewritten in terms of upper and lower-band free (U=0)

Green's function

+ _ . _ .k -1
G, = [ fo) + u - A 1 , (2.7.5)
as
d a b a b
x (a) = - Y YA A’ 62 oGP . (2.7.86)
o a.b=t k k+q 'k k+q 'k
. £ =+,
with A = + xk/ak , (2.7.7)
~ _ 7 2 2 2 2 2
A, = J €, + 16 (sxsin (kx/z) + sysin (ky/z))
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It costs little error to neglect the inter-band and intra-lower-
band contributions, so we obtain
+ + +

d _ +
x,(a) = E ApeqP®k  CeCk (2.7.8)

Furthermore, we shall note that for the nearly half-filled upper-

band, the electron dispersion can be expanded near the Fermi-

surface:
2s?(cos(k_)+ cos(k_))
2 L {e_+ J e2 + 18s? )} - X 4 , (2.7.9)
k 2 P p 2 2
J e~+ 16s
b
d

where we set sx=sy=s. From this the d-band free susceptibility xo
can be scaled by the free susceptibility xo on the square-lattice

which appeared in before sections;

2 2
e - e+ 16s 2
3 = ( -k )%ex (of t= 28 ) . (2.7.10)

x p
2 J e; + 1882 J ei + 16s2

Numerical calculation of eq.(2.7.4) shows that the above ap-

proximations are very accurate.

SDW instability occurs in U = Ung with
2 2
£ - € + 16s
= d P A P 2 -
1 = Ugpy ( )2-x (3,,0) , (2.7.11)
2 J e; + 1852
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where am gives the maximum value to xo' Then the instability on

0

the square-lattice occurs in U = USDW

with

Y d o 2 d
Uspw = Uspw € Y <u , (2.7.12)

t/2 = 2 ) (2.7.13)

This means that the SDW transition will be suppressed by an
effective weakening of the Coulomb repulsion.

Nevertheless, since the scaling low (2.7.10) holds for all
momentum and Matsubara frequency, we conjecture that the super-
conductivity will not change qualitatively; the superconducting
phases will be too poor for high—TC even in the extended Hubbard
model at least in the perturbation theory.

In a more realistic model, the 0-0 hopping terms

T t
izd u (pi+X,6 pi+y,6 - pi+X’6 pl-y,d + h.c )
- 1t _ +
iza N (pi“X’G Piy,s " Pi-x,6 Pi+y,s *+ D-C- Y . (2.7.14)

should be added to the Hamiltonian eq.(2.7.1). The free part of

the Hamiltonian is similarly diagonalized with the eigen value

(a2) equation
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- (a-ep)(a—z;)(z-ai) + 18 u? 2 sinz(kX/Z) sinz(ky/Z)

_ .2 2 -
32 s_ s, u sin (kx/Z) sin (ky/2) 0 . (2.7.15)
The most important first order correction of u to the upper band

dispersion is

-8 cos(kx) cos(ky) =

16 u s?2 cos(kx) cos(k_ )
- y , (2.7.18)

2 2 2 2
"€ + 16 s - € J e- + 16 s
( J P b ) b

near the Fermi-surface of the nearly half-filled band. Thus an

enhancement of Tc by O0-0 hopping is possible according to our

results in §2.6.
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§2.8 Summary and Discussion

We have studied 2D tight-binding electron systems in free
and interacting cases and its superconductivity and SDW transi-
tion, 1in connection with high—Tc superconductors. The following
is devoted to the summary and discussion.

Specific features of 2D systems were studied:

(1) Free electron system, (2) SDW transition, (3) Local pairing.
Analytic and approximate expressions for several quantities were
derived and a relation Tc(u,a)ETc(p—S,O) was found. Drastic
effects of van Hove singularities were demonstrated.

The interplay and competition between the SDW and the super-
conductivity have been studied from the view-point of the
perturbation theory based on the 2D Hubbard model. We found that
superconductivity appears near the SDW boundary, and the transi-
tion temperatures are very sensitive to the chemical potential
(i.e. to the number of the carriers) and the band parameter §.
These sensitivities result from the nesting of Fermi-surface and
the van Hove singularity. In particular, increase of the n.n.n.
hopping & does not only suppress the SDW transition but also
enhance the superconductivity remarkably. For example, for
U=0.8t, the superconducting phase is very small with only n.n.
hopping, but the n.n.n. hopping 6=0.3t increases the
max(Tc) about three times higher, and does the ratio
max(Tc)/max(TSDw) about 10 times larger. While the superconduct-

ing phase appears in the region on the both sides of the SDW
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phase, the remarkable enhancement is found the side near half-

filling. Such tendency is found in the recent quantum simulation

study by dos Santos.lzz)

We also found the strong suppression of Tc due to the

RPA
SDW

)~0.08, for 8=0.3t and

electron renormalization. For example, max(Tc)/max(T )~0.01,

RPA
SDW

U=0.8t. If we fit the maximum value of TES% to ~250K, regarding

for 6=0 and U=1.2t, and max(Tc)/max(T

it as a transition temperature of 3D 1long range order ngw

RPA |, 3D
spw 1S larger than TSDW)’ we have 2.5K

and 15K, respectively. These values are too low to explain the

(although 1in general 2D T

high—Tc superconductors, in spite of the over-estimation due to
the RPA for the effective interaction. Even near the SDW bound-
ary, since the strong fluctuations lead to the strong pairing
interaction and the strong renormalization effect simultaneously,
the resulting TC can not be so enhanced, although a superconduct-
ing phase exists.

Here we shall comment on effects of orthorhombic distortion.
TSDW is slightly affected by the orthorhombic distortion, as was
shown 1in Fig.2.5. On the other hand, van Hove singularities are
at the Fermi-level 1in the case of u=12t2, where t2 is given in
eq.(2.3.14). If the critical u# value at which the SDW phase
vanishes 1is near #=i2t2, then the Tc may be enhanced by the van
Hove singularity, since the superconducting phase is near the SDW
boundary.

The same mechanism in the extended Hubbard model on the Cu-0
plane was studied. The qualitatively same results were conjec-

tured from the view-point of band-pictures.
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Finally we shall mention about more improved estimation of
Tc. We should be careful in the very vicinity of the SDW bound-
ary, where the AF spin fluctuation significantly increases. There
some improvements are needed for quantitative estimation of Tc'
In particular, it would be most important to taking account of
the renormalizaion effects and mode-mode coupling in estimating
vertices given by eqgs.(2.5.1) and (2.5.2). Such higher order

effects will suppress the T whereas it is still unknown

SDW’
whether Tc is enhanced or suppressed then. Moreover, we neglected
the real parts of electron self-energies, which will lead to the
quasi-gap near the Fermi-surface which may enhance TC much

more.lza) After our present theory many authors have improved

these points.124~126)

We should also note that our SDW state is 2D order obtained
in RPA while the real AF ordering is 3D one and 2D AF fluctuation
is observed with unusual behaviour. Taking into accounts the
suppression of TSDW due to the two-dimensionality, TC may be more
enhanced by the van Hove singularity and by strong fluctuations

growing into of quasi-long range.
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Chapter 3.

Long-Range Spin-Fluctuations and Superconductivity

in Quasi-One-Dimensional Organic Compounds

In this chapter, we study a weak coupling theory again. We
examine the theory of the superconductivity mediated by antifer-
romagnetic spin-fluctuations (AFSF) in the quasi-one-dimensional
(quasi-1D) Hubbard model, and apply it to the quasi-1D organic
superconductors (TMTSF)2X and (DMET)ZX, which have been suggested
to be itinerant electron systems. The superconducting transition
temperature and the momentum dependence of gap function are cal-
culated numerically. Long-range (>>lattice constant) nature of
the AFSF is found to play an important role in the superconduc-
tivity. The obtained phase diagram is compared with that of the
organics, and some qualitative agreements between the theory and

experiments are obtained.

§3.1 Introduction

It 1is one of important problems in solid state physics to
clarify the roles of electron correlations in exotic superconduc-
tivities which have been observed in heavy fermion systems,
organic superconductors, and oxide high—Tc superconductors, as we

have discussed 1in chapter 1. On this problem it has been argued
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within the Fermi-liquid theory that antiferromagnetic spin-

fluctuations (AFSF) assisted by Fermi-surface nesting may enhance

1-4)

the pairing interaction and also renormalize the properties

of normal electrons strongly§) The applicability of this

mechanism to heavy fermion compounds and Bechgaard salts has been

1) 1.2) 3)

discussed by Emery, Scalapino et a and Miyake et al.

Moreover the relation to the high—TC superconductors has been

also discussed by Miyake et al.e) We have also studied this

mechanism on. the basis of a square lattice Hubbard model in

connection with the two-dimensional specific features.s)

Among these the organic superconductors (TMTSF)2X ( X=PF6,
AsF_, SbF_, TaF_, --- )78) and (DMET) X ( X=Au(CN)_, Aul_,
8 5] 8 2 2 2

AuCl, I_, --- )9711)  seem to be a typical example, since the

AFSF dominate the system rather than CDW fluctuations, as seen in

the experimental phase diagrams7’8)

where normal, spin-density-
wave (SDW), and superconducting phase exist on the border of each
other. There the superconducting transition temperatures TC are
sensitively enhanced as one approaches SDW boundary by decreasing
the pressure in spite of the reduction of density of states (DOS)
around the Fermi-surface due to SDW fluctuations, and in some
compounds they Dbecome constant in the vicinity of the boundary.
Such enhancements seem to be explained within the above theory
straightforwardly, although the phonon mediated pairing remains

12)

as one of the possible mechanisms. We would discuss this phase

diagram in detall later. Moreover we must note that the similar
phase diagrams have been found in oxide high—Tc

13,14)

superconductors in which an electron correlation would play
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15-17) although

18)

some essential role in the superconductivity,
these are different from the organics in many respects.

Another characteristic of these organic superconductors is
the anisotropy of the order-parameter, as pointed out by Takigawa

et a1.l9) .20)

and Hasegawa et al from the behaviour of NMR
relaxation rate 1in (TMTSF)201O4 below TC, which is similar to
those of the heavy fermion compounds (UPts, UBels,
CeCu_si ) 21723

In general the anisotropic superconductivity is expected to
occur when a 1local pairing interaction is strong. The spatial
range of the pairing interaction is given roughly by VF/mC, where
Vg is the absolute value of the Fermi-velocity and @, is the
characteristic energy of the exchange boson. For example an
ordinary phonon mediated pairing interaction is of long range (>>
lattice constant (a) ) since the Fermi-energy € is much larger
than @, and then the local lattice structure would be smeared
out and the isotropic pairing would occur, if the Coulomb repul-
sion 1is sufficiently screened by electrons. However, when the @,
is as large as €ps the range of the pairing interaction is very
short (~a). Then we should be careful about the Coulomb repul-
sion, since the 1larger wc means the less retardation effect.
Nevertheless when the electron screening restrict the Coulomb
repulsion to on-site, the superconductivity would occur even by
such a short-range pairing interaction. Then the anisotropic
superconductivity 1is possible to occur according to the band
structure and other properties of the pairing interaction.

However such a large Qc seems to be difficult for phonon mediated

pairing interactions, so the anisotropy of the pairing gives the
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most important basis for the applicability of the non-phonon
theory.

In addition to such a large characteristic energy scale
comparable to the Fermi-energy, the AFSF exchange pairing inter-
action has another smallér energy scale which reflects the
critical behaviour near the SDW transition point. The AFSF shows
a critical slowing down as one approaches to the SDW transition
and 1leads to the retarded and long range pairing interaction. As
a result of such a long range interaction the superconductivity
would be remarkably enhanced near the SDW boundary. On the other
hand this long range AFSF reduce the DOS around the Fermi-surface
and make what 1is <called a pseudo gap which works against the
superconductivity. In the present case two opposite effects would
be particularly remarkable because of the gquasi-one-
dimensionality. Thus even the qualitative behaviour of Tc on the
phase diagram 1is not trivial and whether the experimental phase
diagram could be obtained or not within the theory should be
examined by a defailed calculation in which this smaller charac-
teristic energy is sufficiently taken into account. This would be
fulfilled by an accurate treatment of the momentum and/or fre-
quency dependence of the interaction.

In this chapter we study the superconductivity induced by
the exchange of the AFSF in the absence of the phonon. We take
the 1long range AFSF in the theory from above reasons through the
momentum dependence of the interactiqn. Most of our purpose lies
in demonstrating its importance.

Our treatment in this chapter 1is based on the quasi-one

dimensional (quasi-1D) Hubbard Hamiltonian;
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H= Y t.,.,c._ oc + U Y n C o (3.1)
13,6 ij “ie¢ “jo i ie iB
. ‘
with t,, = N1yel k- ﬁ)ij e, (3.2)
ij 5 2
k
and eﬁ = - 2t cos(kx) - 2t cos(ky) - 2t cos(kz) - u, (3.3)

where 1 and j denote lattice sites and ﬁ is a crystal momentum,

and the lattice constants are taken as unity. The summation ) is
-

k

taken over the first Brillouin zone and } is taken over all N
i

. t . ey s .
sites. cio and Cia are creation and annihilation operator of an

electron (or a hole) with spin ¢ at site i, respectively, and n, .

are 1its number operators. We take the x-axis along the stacks

i.e. 1in the most conductive direction. Bearing (TMTSF)2X in mind

24)

we take t as 0.25eV. Now we suppose the simplified model in

which the inter-chain-hopping integral t' increases with the

pressure from t'Z 0.02t~0.2t (the value at ambient pressure’’'2%))
and t'' 1is negligibly small compared with t1.25727) The spw
26,27)

transition is easily reproduced within this model.

More realistically there are phonons which contribute
largely. Furthermore it is not settled whether the superconduc-
tivity does exist or not in the pure single band Hubbard model as

the true ground states,28-30)

However, because our purpose is to
examine the roles of the AFSF in quasi-1D electron systems, which
dominate near the SDW boundary, we concentrate our study on the

simplest model in which the strong AFSF occurs.
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In §3.2, we examine the AFSF itself and 1its exchange
vertices. In §3.3, we study the renormalizations for the normal
state electrons and estimate the reduction of the DOS. In §3.4
the superconductivity is examined. The anisotropy of the order-
parameter and the theoretical phase diagram are obtained. Lastly
§3.5 1is devoted to discussion. The validity of the employed
approximations 1is discussed there. The study in this chapter has

been presented in our papers of ref.31.
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§3.2 Spin-Fluctuations

(i) Fluctuations and effective vertices
We adopt an RPA for spin- and charge-fluctuation following
Scalapino et al. As a result, the spin—susceptibility x(q) at

temperature T is easily obtained as

x,(a) (3.4)
a) = Tz (@) - '
(e, ) — f(e,)
. -1 k+q
with xo(q) =N~} T -6 e , (3.5)
K m K+q K

and f(g)

( ee/T + 1)1, Here q denotes (a,ium) with crystal
momentum a and Matsubara frequency ium= 2mrxiT. Within the same

2,5)

approximation the effective vertices for two electrons with

antiparallel spins are
Toelk.k",a) = v (k-k') + 7 (k+k'+q) (3.6)

with 71(q) = U +

U? x (q) U? x (q)
_ 1 0( + 1 0 , (3.7)
2 1+ U x.(q)

r,(a) = —3 2 , (3.8)

and those for electron self-energies,
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rda(k'k'-Q) =
u? x, (k-k")

u? x,(k-k")

1
2 1+ U=x(k-k") T2

T - 0 X (kK (3-8)

they are defined in Fig.2.15, where Lk denotes (K.iwn) with

imn=(2n+l)niT, and a, B denotes
respectively. The vertex

energy, and

eq.(3.9),

is different from a triplet pairing interaction.

the wup and down spins,

(83.9) is used only for electron self-

In

the minus sign due to the closed loops which appear in

diagrams for the self-energy are considered beforehand.

(ii) Spin-density-wave instability
The SDW transition

equation: 1 =

temperature

- v s
U xo(qm,O), within the

RPA
SDW

RPA, the wvalidity of which

(T ) 1is given by the

has been discussed by Yamaji?s) Here 3m gives the maximum value
of X .
o]
v _ RPA .
At t'=0, the TSDW is expressed as
T .2 .
8e sin’k 47t sin k
RPA,_, _ _ _ F
Tspw(t'=0) = % Toos I exp( T ) (3.10)
with Euler constant *=0.57721--- In particular, if we set

kF=n/4 for 1/4-filled band, then we

RPA ., 4 2 &7
Tepy(t'=0) = - t exp(-
We fix this 20K for
1.48253t. Then we have TRPA

SDW
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t=2500K which gives

= 12K for t'20.136t for example,

2 JEUn ty, (3.11)

the value of U as

and



the critical value of t' at which the SDW vanishes is té
20.142t~0.145t for sufficiently low temperatures, as shown in the
phase diagram of Fig.3.1. (For T=0, we obtain té50.145t.) our

choise of the parameters is reasonable for (TMTSF)2X with X=PF6,

i - ' _ ~ 7,25)
SbFs,-°'. which have TSDW—lZK and t'=0.02t~0.2t

pressure. It should be also noted that t' acts as an effective

at ambient

parameter which is introduced to distort the Fermi-surface, in
our simplified model.
In this chapter we take U=1.48253t and investigate the

normal state properties and superconductivity for t'zté. The

chemical potential u is adjusted for every value of t' so that
the hole number is fixed at N/2. For example, u=-y2t for
t'=0, and

#=-1.398t for t'=0.15¢t.

(iii) Critical behaviour of spin-fluctuations
For t'=0, the nesting of the Fermi-surfaces is perfect. Then

the AF free susceptibility xo is easily obtained analytically for

m>>1, as

D+ 1 D - cos(2k.)
4nt 51n(kF)Dm Dm— 1 Dm+ cos(2kF)

x (1v . 2kg) = (3.12)

v
with D_= (1+ ( 4tmsin(k ))2)1/2. This formula actually holds for
F

m>1 with only a little error (<1%).
As t' increases from zero the nesting worsens and the ex-
pression of xo(ivm,ZkF=n/2) deviates from eq.(3.12). However the

where Ae_ is of the order of the

deviation is small for |v [2Aep, F
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energy difference of electrons between the state on the Fermi-
surface and that translated by the nesting vector. The
logarithmic enhancement of the free susceptibility as T-0 is
suppressed by AsF which acts as a lower energy cutoff.
Unfortunately an accurate estimation of AeF is difficult, so we
roughly estimate as A8F~2t'2/% sin(kF), which is obtained for the
Fermi-surface at ky=ﬂ.

From the above arguments we obtain a rough estimation of
characteristic energy scale of AFSF which reflects the critical
behaviour in the imperfect nesting case in the RPA by replacing T
by AeF in the well-known Orstein-Zernike form in a perfect nest-
ing case:

Aeg, Uspw ~ U y1/2

Ku = (
(N(0)U)/2 Uspw

(3.13)

m
m

> - - .
where Ugpw xo(qm,o) 1 xo(a,o) l, aE(n/Z,x), and N(0) is the

DOS at the Fermi-level. The value of ku is estimated as O.leo-zt
for t'=0.144t and T=O.4x10—4t, and as 0.015t for t'=0.15t and

T=0.4x10 %t.

The spatial range (rX in x-direction and ry in y-direction)
of the spin-fluctuation and its exchange interaction is obtained
by wusing the relation r.~ 2t sin(kF)/xuxa and ry~ 2t' /kuxb where
a and b 1is the lattice constant for each direction. This gives

that rX~50xa and ry~10xb for t'=0.15t and T=0.4x10—4t, and

r,~80xa and r_~16xb for t'=0.144t and T=0.4x10 %t.
The characteristic energy «u sensitively changes on the

phase diagrams, and thus our theory needs to take account of this
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energy scale, 1in order to obtain the qualitatiive behaviour of

the Tc on the phase diagrams.
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t'/t

Fig.3.1. The SDW transition temperature as a function

of +the transverse

hopping integrals. We take t=2500K

and U=1.48253¢t.
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§3.3 Normal State Electrons

(i) Electron Green's function
Our basic approximations are the same as those in the pre-

5)

vious chapter, that is the Hartree-Fock approximation for
electron self-energies (Fig.2.18) and a ladder approximation for
two-particle vertices (Fig.2.17). These two approximations are
consistent with each other in a diagramatic formulation of an
electron-boson system regarding the diagrams of spin and charge

fluctuations as boson propagators.

The resulting electron Green's function is

6, = (io - e® - x0T, (3.14)

. —_ ' _ 2 _ ) o]
with (k) = E'Faa(k,k ,0) Gy r E'U xo(k k') Gpr s (3.15)
and G2, = (le,- e(®)) L. (3.186)

Here ) = N_lz T ¥, and the second term of eq.(3.15) is added to
k >

¥ n

cancel the double counting contribution in the first term.
Further the two-particle vertex I' for antiparallel-spin-pairing
is

I'(k.k',q) = I q(k,k ,q)—E"raB(k,kv,q)ek"+qu"r(k k',q) , (8.17)

(ii) Approximations for the self-energy

The self-energy E(k) can be generally written as

(k) = £5(k) + i 2%(x) , (3.18)
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where £5(k) and £2(k) are real and satisfy £5(x)=25(-k) and
£2(k)=-£2(-k). We +think that the most important effects of the

5) and the pseudo gap

self-energy are the mass renormalization
near the SDW transition. Thus our approximations should be those
which retain these two effects. So we introduce the following
simplifications: Noting that the essential effect of the fre-
quency dependence of rao mainly appears in the linear frequency
dependence of E, 1i.e. that of Ea, in the case of xu>>T, (1) we

neglect the retardation of FG in the equation of ZS, but will

¢
retain the momentum dependence of Zs, which leads to the reduc-
tion of the DOS. However, if the same approximation is taken in

a’ the Ea vanishes, and the mass enhancement

the equation for E
effects are largely missed. Therefore we will retain the fre-
quency dependence in the equation for Za, but (2) ignore the
momentum dependence there, for simplicity. The validity of the

approximation (1) is discussed later. Hence we put
E(k) = S(R) + i Za(iwn). (3.19)

The resulting self-consistent equations are

(o) = - T E'Fég)(iwn-iwn.) W (1o ) + E2(ie)),  (3.20)
and £5(®) = -N17¥ T, (B-B';0) wS(K') + zi(ﬁ), (3.21)
2
: (0) /. = -1 2.
with Faa (1um) =N § Lo (q,lvm) , (3.22)
q
S D, s - ,
raa (k-k iy 1wn,) = raa (k,k',0) , (3.23)
_ - (0_,- £%(ie_,))
W (ie_,) = N 1y L n2 —— - (3.24)
g (o .- E (e )" + (e, + £7(K"))
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- (e, + 25(k")

S, k
wS(k') =T%¥ , (3.25)
' a,. 2 S, 7, 2
n' (e .- £ (1o ,))" + (8§'+ (k"))
22(i0 ) = 1 N1 LT U?x (k-k') 62, (3.26)
=2 k o
K
S - _ 2 —)_—), - 0
Eo(k) = E' U xo(k k v 0) Gr s (3.27)

Furthermore, we introduce the following extra approximation
for numerical calculation around t'~0.1t and not in the vicinity

of the SDW transition points. It is expressed as
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s 0 0,,0, O . 0 0,,0
[ £(k_-k_(k )+kx(ky).ky) , 1f 0 = kx—kx(ky)+kx(ky) =z,

X X'y
S/ S o 1,0 0,0
27 (k)= { E (w.ky) , if n S kX kx(ky)+kx(ky) , (3.28)
S o] . 0 4] 4]
[ z (o,ky) , if kX—kX(ky)+kX(ky) S0,
where k;(ky) is a function
2t'cos k. + u
] _ -1 y
kx(ky) = cos ~(—— 5T ), (3.29)

and k; is a constant parameter taken as w/2 in this chapter.
Equations (3.28) and (3.29) mean that we regard that the be-
haviour of Es(ﬁ) around the Fermi-surface is almost independent
of ky.

If the nesting is almost perfect, this approximation would
be reasonable in quasi-1D systems. In particular eq.(3.28) holds
exactly in 1D systems. However as the nesting worsens this causes
the overestimation of the reduction of the DOS around the Fermi-
surface near ky~n or ky~0 owing to the choice of k;=x/2.
Nevertheless this overestimation would be small within our
parameter region; there the difference between the state on the
Fermi-surface and that translated by the nesting vector ~ a is
estimated as less than =#/100 in the momentum space, which is
smaller than the width of the peak of the effective vertices
around the nesting vector. Moreover such a small difference of
the Fermi-surface nesting would almost disappear when the pseudo
gap 1s formed, since the pseudo gap adjusts the Fermi-surface so
that the total energy is lowered. It is true, however, that our
approximation becomes invalid in the vicinity and inside of the
SDW boundary where the region around the Fermi-surface in which

the self-energy varies critically is smaller than the mismatching
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of the nesting in the momentum space. However we do not inves-
tigate such a parameter region in this chapter, because other
approximations we employed such as RPA would also become invalid

there.

(iii) Numerical results

Using the above approximations, we solve the self-consistent
equations (3.20)~(3.27) numerically. The results are shown in
Fig.3.2 ~ 3.5.

The value of Ea(iwn) is found to be almost t'-independent.
As seen from Fig.3.2, it increases with mn almost linearly for
“nit with the coefficient 0.168, and after reaching the maximum
around e =4t they decrease as wil.

If we could set the effective cutoff energy of the interac-
tion (mc) like the Debye frequency in the phonon system, the

expected behaviour of Ea would be as

[ ~ N(0) o (wn<< wc)
Ea(iwn) { ~ N(0) o, sign @, (wc<< W, << N(O)—l)
-1
[ ~ o, / 0, (N(0) << mn)

The present result of the numerical calculation is seen to be
consistent with this behaviour if we take ®,~N(0).

The behaviour of Es(ﬁ) is shown in Fig.3.3. It is found that
the overall behaviour of ZS(K) is almost the same for t'=0.144t
and t'=0.15t except near the Fermi-surface. The slope of ES(K)
near the Fermi-surface becomes steeper as one approaches the SDW

boundary (Fig.3.4). Thus the reduction of the DOS around the
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Fermi-level (eg~-1.2t) becomes remarkable near the SDW boundary as
shown in Fig.3.5. Contrarily the band narrowing is found to be

almost independent of t'.
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Fig.3.3(a).

The symmetric part of

the electron self-
s -

energy I (kx,ky-n/z).

for t'=0.144¢t.
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Fig.3.4.
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the self-energy E°
near the Fermi-
surface of ky=x/2.
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Fig.3.5(a). Density
of states N(g) as a
function of the
electron energy ¢,
for t'=0.144¢t.

The solid and broken
line show the cases
for U=1.48253t and

U=0, respectively.

Fig.3.5(b). Density
of states N(g) as a
function of the
electron energy ¢,
for t'=0.15¢t.

The solid and broken
line show the cases
for U=1.48253t and

U=0, respectively.



§3.4 Superconductivity

The superconducting instability is signalled by the diver-
gence of multiple scattering vertex for two electrons, i.e. by
the first appearance of the nontrivial solution of A(k) which

satisfies

G Ak, (3.30)

k'k'

A(k) = - E.raﬁ(k’k ,0) G_
in our approximation (eq.(3.17)). We introduce an eigen value ¢

which goes to zero as T—->Tc and rewrite eq.(3.30) in a matrix form

as
(1 -A)A=¢A4, (3.31)

with a matrix AE(Akk')E(‘rag(k'k"o) G ). Here A=(A(k)) is

_k‘Gk'
an eligen vector belonging to €, and at T=Tc it becomes the gap

anisotropy.

Now we employ the approximation consistent with that of the
previous section. We’neglect the @, dependence of raB and also of
A(k). Then, the Matsubara frequencies in FaB are replaced by 0,

and the summation T) is taken only on G_y Gy in eq.(3.30). The
n'

validity of this approximation will be discussed in the final

section. Moreover we expand A(f) as

hyag (KD aCK)
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in terms of the ortho-normal set of functions hmni(ﬁ) defined by

9
hmn1(k) LA cos(mkx) cos(nk_) ,

«

nne cos(mkx) sin(nk_) ,

=
P
I =
N
I
3
o

hmns(k) = W sin(mkx) cos(nky) ,
> . .
hmn4(k) = w ., sin(mk ) 51n(nky) ,

where Woni being the normalization factor, s.t. N—1 Y hm;i(ﬁ) =1
K
Then eq.(3.31) can be written explicitly as
m'n'l' m'n'i' _
Smni " Amni ) Bprprit = € Bypg o (3.32)

where the matrix A is defined by summing up Gk'G-k' in the fre-

quency space;

mn l'_ -2 o by _)v -9' m'n'i' _)v
Apni =N E § h (k) T (k. k") W(k > h (k') ,
k k'
DD,y - -,
r B(kik ) - raﬁ((k’o)’(k ,0),0) s (3'33)
Dy _
W(k ) - T E,Gk'G-k'

Since the matrix A does not have off-diagonal elements with
respect to the suffix i (=1,2,3,4) from the spatial inversion
symmetry, we can decouple the eigen equation by this suffix. From
numerical calculation we find that the i=1 order parameter is
most favourable 1in comparison with the others. Thus we will

retain the 1i=1 eigen equation only and suppress the suffix i

after this.
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The values of the Fourier transform of the singlet pairing

interaction
N1 Y ( 71(3.0) + rz(ﬁ,o) ) elMdx*indy (3.34)
—)
q
and that of the triplet pairing interaction
N ¢ 71(3,0) - 72(3,0) ) eildx*iNAy (3.35)
-5
q

are shown in Table 3.1. These are defined by

oy (B) G (B-K) + 7 (Bek™)) B0 (RY)

A

-2
N X
kK
=1,4

with 1=1,4, for the singlet pairings and i=2,3, for the triplet
pairings, and eq.(3.35) is easily derived by changing variable as
K'»-K' in the term of T, Numerical calculation shows that the
latter is much weaker than the former.

From Table 3.1, the Fourier transform of Faﬂ is seen to

decrease rather rapidly, so we introduce the upper cutoff mc and
n, in the summation of eq.(3.32). Then the eigen value € must be

replaced by a function of m, and n, (e(mc,nc)) which is expected
to converge to the true & for sufficiently large values of m, and
n,.

In Fig.3.8, the m, dependence of e(mc,nc) is shown for nc=2,
and it 1is seen that e(mc,nc) increases monotonically with
increasing m, (i.e. including the long-range components of AFSF),
and becomes almost constant for mczso. The value of e(mc,nc) is
found to be almost the same for nczz, and nc=2 is always suffi-
cient for any values of parameters used here. It should be also
noted that the saturation occurs at larger m, as the temperature

decreases.
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Now we bliefly mention about the pairing susceptibility

4 for electron pair AfEN—lza(ﬁ)c* et , which is defined by
super - -
R ka -k8
8 T = .
X EIdT(A(T)A >, where &(k) is an arbitrary normalized func-
super J
tion and A(f)EeTHAe—TH. In particular if S(K)aA(k), then within

our approximations,

_ = = 1
Xsuper = E 8(k) W(k) 8(K) —g— (3.36)
with W(k)=GkG_k. Thus for any 6(?) which is not orthogonal to
A(k) 1in four-momentum space, the xsuper diverges as T—>Tc as
expected. The temperature dependence of pairing susceptibility
for the most enhanced electron pair (eq.(3.38)) is plotted in
Fig.3.7. There the xsuper for mc=3l and nc=2, and that for mc=8
and nc=2 are compared and it 1is found that the X is

super
remarkably enhanced at low-temperatures owing to the long range
(large m) components of the pairing interaction. We obtain
TCEO.4K for t'=0.15t although this would be only rough estimation

because of our approximations.
From now on we will show the other numerical results ob-

tained from eq.(3.32).

The amplitudes of the most enhanced electron pairs (Amn) at
T=O.5KETC and t'=0.15t are shown in Table 3.2(a). They may be
regarded as the gap anisotropy at superconducting instability
point. The amplitude of the intra-chain next nearest neighbour
(n.n.n.) component ( Jf AZ,O cos(2kx) ) is seen to be largest.

This 1is because of the strong on-chain fluctuations due to the

quasi-1D motion of electrons.
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The momentum dependence of the order-parameter A(E) is
plotted in Fig.3.8. From this figure it is found that; (1) A(E)
has a line of node on the Fermi-surface; (2) the peak is found on
the Fermi-surface consistently with the itinerant electron
picture. Such a sharp peak structure is not appear in the absence
of the long range fluctuation, and then the superconductivity is
very weak as found in Fig.3.6 and 3.7. Therefore this second
point shows that the contribution of the electrons near the
Fermi-surface 1is enhanced by the long-range components of the
pairing interaction in the gap equation and thus the superconduc-
tivity is enhanced by them.

The theoretical phase diagram is shown in Fig.3.9. When the
renormalization effects for normal electrons are ignored the Tc
is seen to increase remarkably near the SDW boundary owing to the
long range AFSF. (The TC by the short range AFSF exchange only
are found to be extremely low from the numerical estimation.)
However, if one takes into account the electron self-energy
mentioned in §3.2, then the superconductivity is significantly
suppressed because of the strong renormalization effect. In
particular such a suppression becomes remarkable near the SDW
boundary because of the pseudo gap. As a result of these competi-
tions, we can see the qualitative agreement with the experimental
phase diagrams?’S) (1) The Tc sensitively decreases from ~1K to
~0K with increasing t' from ~0.144t (in the vicinity of SDW
boundary) to ~0.153t. (2) The increase of the Tc as approaching
the SDW boundary is not so remarkable. (3) Moreover the supercon-

ducting phase seems to continue to exist on the border of the SDW

phase.
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The gap anisotropy varies as a function of t' (Fig.3.10 and
Table 3.2). The amplitudes of the short range components in the
chain direction (n=0) JE A2 0cos(2kX) -+- decrease and those of

the long range components 2 Alo o cos(lOkX) --- increase as

approaching the SDW boundary.
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Table

3.1. The values of the Fourier components of the

pairing interaction of eq.(34) with t'=0.15t and
U=1.48253¢t.
(a) singlet pairing (b) triplet pairing
'/t 0.150 '/t 0.150
T/t 0.00080 T/t 0.00080
n 0 1 2 n 0 1 2
m
0 2.769 —-0.067 0.020 0 0.768 0.024 —0.013
1 0.181 0.006 —0.002 1 —0.078 -0.002 0.001
2 —0.465 0.087 —0.031 2 0.187 —0.031 0.010
3 ~0.084 —0.004 0.004 3 0.032 0.002 —0.001
4 0.252 -0.102 0.036 4 —0.100 0.036 -0.012
5 0.056 —0.002 —0.005 5 —0.020 0.001 0.002
6 —0.150 0.107 —0.044 6 0.051 —0.038 0.015
7 —0.033 0.009 0.005 7 0.014 —0.003 —0.002
8 0.084 —0.099 0.052 8 -0.029 0.036 —-0.018
9 0.025 —-0.014 —0.003 9  —0.004 0.005" 0.001
10 —0.058 0.083 —0.057 10 0.018 -0.029 0.020
11 -0.010 0.016 0.000 11 0.005 —0.005 0.000
12 0.041 -0.066 0.057 12 —0.008 0.023 —0.020
13 0.007 -0.015 0.004 13 —0.002 0.005 —0.002
14 —0.049 0.050 —0.052 14 0.012 -0.017 0.018
15 —0.004 0.012 —0.006 15 0.003 —0.004 0.002
16 0.041 —0.039 0.045 16 —0.015 0.013 -0.015
17 0.013 —0.009 0.006 17 0.000 0.003 —0.002
18 —0.042 0.033 -0.037 18 0.014 -0.011 0.013
19 —0.006 0.007 —0.004 19 0.005 —0.002 0.001
20 0.034 —0.030 0.031 20 -0.015 0.010 —0.011
21 0.010 —0.005 0.003 21 —0.003 0.002 —-0.001
22 —0.038 0.028 -0.028 22 0.008 —0.009 0.009
23 —0.007 0.004 —0.002 23 0.004 —0.001 0.001
24 0.026 —0.027 0.025 24 —0.011 0.009 —0.008
25 0.011 —0.004 0.001 25 0.000 0.002 0.000
26 —0.025 0.025 —0.024 26 0.008 —0.009 0.008
27 0.000 0.004 —0.001 27 0.004 -0.001 0.000
28 0.020 -0.024 0.024 28 —0.009 0.008 —0.008
29 0.003 —0.003 ~ 0.001 29 0.000 0.001 0.000
30 —0.026 0.023 —0.024 30 0.004 —0.008 0.008
31 —0.001 0.002 —0.001 31 0.001 -0.001 —0.000
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Fig.3.6. The m, dependence of the eigen value of the
matrix A (i.e. 1-e(mc,nc=2) ) for t'=0.15t. The closed
triangles, closed circles, crosses, and open circles
denote those for T=0.0004t (1K), 0.0018t (2K), 0.0020t

(10K) and 0.0040t (20K), respectively.
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Fig.3.7. The pairing susceptibilities and spin-suscep-

tibility for U=1.48253t and t'=0.15t. (a) The pairing
susceptibility xsuper for mc=31, nc=2 (neglecting the
self-energy). (b) mc=31, nc=2 (including the self-ener-
gy). (e¢) m,=8, n,=2 (neglecting the self-energy). (d)
m_ =8, n, =2 (including the self-energy). (e) The stag-
gered spin-susceptivility x (3.0). The lines of (a)~(d)

are to guide for eyes.
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Fig.3.8(a). Momentum dependence shown by the contour
lines of the order-parameter A(K)/A in the momentum
space for t'=0.15¢t, T=0.0002t(~Tc), and U=1.48253t. The
renormalization effects for the electron Green's func-
tions are included. Here A is the normalization factor
s.t. N_IZQ A(K)2/A%=1. The broken line shows the unper-

turbed Fermi-surface.
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Fig.3.8(b). Momentum dependence of the order-parameter

(Fig.3.8(a)) along the Fermi-surface.
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Fig.3.9. The phase diagram on T-t' plane (U=1.48253t).
The unlavelled solid line shows the SDW transition tem-
peratures. The solid 1line (a) and the closed circles
show the Tc without and with the renormalization ef-

fects, respectively. The broken line (b) is to guide

for eyes.
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Table 3.2. The amplitudes of the order-parameters Am n

(normalized as unity) for T=O.00020tETc (with the re-

normalization effects).

(a) t'=0.15¢ (b) t’'=0.144t
v/t 0.150 e/t 0.144
T/t 0.00020 T/t 0.00040
n n
-0 I 2 m 0 l 2
0 0.074 -0.220 —0.008 0 0.051 —0.249 —0.009
1 —0.081 0.017 0.001 1 —0.068 0.011 0.000
2 0.696 0.010 0.034 2 0.609 0.008 0.042
3 0.129 0.009 —0.002 3 0.101 0.004 —0.002
4 —0.051 0.297 0.009 4 —0.038 0.316 0.009
5 0.097 0.004 —0.007 5 0.080 0.006 —0.004
6 —0.451 —0.017 —0.100 6 —0.475 —0.014 —0.113
7 —0.088 0.005 0.007 7 —0.074 0.006 0.004
8 0.030 —-0.013 0.001 8 0.027 —0.044 —0.001
9  —0.038 0.006 - 0.003 9  —0.039 0.002 0.002
10 0.169 —0.005 0.106 10 0.231 -0.002 0.120
11 0.025 0.019 0.001 11 0.031 0.012 0.001
12 —0.015 - —0.156 —=0.007 12 =0.017 —-0.161 —0.004
13 0.008 —0.032 0.002 13 0.013 —0.022 0.002
14 —0.066 0.019 —0.010 14 -0.102 0.017 —0.030
15 —0.006 —0.024 0.001 15 —0.010 —0.019 0.000
16 0.004 0.126 —0.002 16 0.006 0.176 —0.002
17 0.000 0.024 0.005 17 —0.002 0.021 0.002
18 —0.017 —0.016 —0.063 18 —0.001 —0.018 —0.065
19 —0.007 0.010 —0.007 19 —0.003 0.012 —0.005
20 0.009 —0.065 0.010 20 0.006 —0.113 0.011
21 —0.008 —0.008 —0.004 21 —0.006 —0.010 —0.004
22 0.053 0.007 0.072 22 0.066 0.010 0.102
23 0.014 —0.002 0.004 23 0.011 —0.004 0.004
24 -0.012 0.003 -0.012 24 —0.013 0.030 -0.014
25 0.006 —0.002 0.002 25 0.007 0.001 0.002
26 —0.040 0.006 —0.049 26 —0.071 0.004 ~0.085
27 —0.006 —0.003 -0.001 27 —0.007 —0.001 —0.002
28 0.007 0.039 0.006 28 0.011 0.042 0.009
29 —0.001 0.006 0.000 29 —0.003 0.004 —0.001
30 0.014 —0.014 0.008 30 0.039 —0.016 0.035
31 0.001 0.002 0.000 31 0.002 0.002 0.000
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Fig.3.10. The amplitudes of the order-parameters as
functions of t', iIn the case of no renormalization ef-
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§3.5 Discussion

We have obtained the momentum - dependence of the order
parameters and the phase diagram which agrees qualitatively with
experiments. We found the importance of the long range spin-
fluctuations on each chain, by more accurate treatements in the
momentum space than previous Works,2’3’5) for the application to
the quasi-1D systems.

Now we discuss the validity of our approximations. First,
the retardation of the interaction was ignored. It leads to the
overestimation of the interaction, although that is roughly valid
because the characteristic energies N(O)-l and ku of the spin-
fluctuations are much larger than the temperatures. However,
because we take account of any characteristic energy scales of
the vertices through the momentum dependence and such energy
scales act as an effective energy cutoff in eqs.(3.21) and
(3.30), the overestimated high energy processes are not con-
sidered to contribute largely to these equations. Thus, in spite
of the absence of the energy cutoff like the Debye frequency in
the BCS theory, such an overestimation 1is not so serious as
changing the physical characteristics. On the other hand, within

an approximation employed by Scalapino et al.,Z)

the effective
vertices are averaged on the Fermi-surface in the momentum space,
and the frequency dependence is also neglected. Such an ap-
proximation would not be appropriate for our purpose of examining
the 1long-range AFSF and obtaining the Tc and its behaviour,

because there 1is not a definite energy cutoff much smaller than

the Fermi-energy.
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Further we have regarded the AFSF exchange vertices as boson
propagators. This would be roughly valid for the system dominated
by the AFSF at least semi-phenomenologically. Furthermore we have
implicitly assumed the appropriate hopping of electron in z-
direction which 1is small compared to t' but large énough to
suppress the thermal fluctuations on each conductive plane jus-
tifying the mean field approximation. From these reasons a
realistic estimation of the AFSF contribution in (TMTSF)2X and
(DMET)zX needs more accurate calculation beyond the RPA and the
ladder approximation. Moreover the maximum value of TC depends on
the choice of U, which is not accurately known experimentally.
Nevertheless we think that our treatment would clarify an essen-
tial aspect of these compound from the qualitative agreement with

the experiments, and from the agreement in the order of Tc. For
7,8)

example, Tc§0.4~1.4K and TSDW512K for (TMTSF)2X, and
T050.5~1.9K and TSDW§2.8~25K for (DMET)2X,9~11) experimentally.
On the other hand, the theoretical result is Tcg4.4x10"4t (i.e.

1.1K if t=2500K) for U=1.48253t. Then TSDW=8.0x10'3
3

t (=12K) for t'=0.136t, and the SDW phase

t (=20K) for
t'=0, and Tgp.=4.8x10"
vanishes at t'~0.145¢t.
In addition in the present case the 2D van Hove sin-
gularities of the DOS does not cause any peculiarity as seen in
the square lattice case. However if the transverse hopping t'
increases as 2t'~2t+u (=-1.3t, t'20.35t for 1/4-filled band) and
the Fermi-surface is near the saddle point of the dispersion,
then the superconductivity may be enhanced by the large DOS

according to the value of U, although the AFSF would be hardly

assisted by the Fermi-surface nesting. It must be also noted that
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a some kind of frustrations which suppress the AF ordering may
enhance the superconductivity cooperatively with the van Hove

singularities.s)
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Chapter 4.

Magnetic Properties and Superconductivity

of Strongly Correlated Electron Systems

In this chapter, we study the t-J model, which describs
the strong repulsive interaction between electrons on each site,
and reduces to the antiferromagnetic Heisenberg model in the
half-filled band 1imit. The t-J model can be derived from the
strong coupling Hubbard model in the case of J<<t.

The method used in this chapter is a Green's function decou-
pling scheme in real space, so called Hubbard III approximation
improved by Kawabata, which is appropriate to the strong correla-
tion regime. Applying this method to the t-J model of any hole
concentrations, we find that the magnetic property changes
rapidly from that of localized spin systems to that of itinerant
electron systems as hole concentration increased from half-
filling. In the half-filled band 1limit, the susceptibility is
shown to reduce to the Curie-Weiss form in the mean field ap-
proximation on the exchange term of the Hamiltonian. It is also
found that the antiferromagnetic transition temperature takes its
maximum at half-filling and decreases very rapidly with slight
hole-doping. Superconductivity is also examined within a similar
approximation. It is found that superconductivity is difficult to
occur in the strong coupling Hubbard model but it occurs in the

t-J model for large J far from the half-filling. It is also found
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that the d-wave pairing is more favourable than the s-wave pair-
ing. The relation to the oxide high Tc superconductors is dis-

cussed.

§4.1 Introduction

The strongly correlated electron system is a longstanding

subject of interest, which has been studied from various aspects

such as the Mott-Hubbard transition%) the magnetic propertiesz_s)

and the superconductivity.7—10)

11,12)

The oxide high—Tc superconduc-
tors have attracted current interest from this view-point,
since the strong on-site correlation was experimentally revealed
from the facts that Cu atoms on CuO2 planes exist almost as cu'’

13)

with spin 1/2, and also they exhibit (1) a gradual change from

the insulating phase to the metallic phase with decreasing

electron number from the half-filled state}4_16) (2) a localized

antiferromagnetic (AF) phase in the nearly half-filled case}4'l7)
and (3) the high—Tc superconductivity.ll'lz) Thus numerous works
have been devoted so far to clarify physical properties of the

strong coupling Hubbard model. In the strong coupling l1limit the

Hubbard model is transformed into the t-J model:

= 1t x -1
H =Y tij Cis Cig +.X.2Jij(si Sj 3 n.nj) + .Zdeia n, ,

i,j,o - J i,j 1 i, i,o
(4.1.1)
where we defined ¢, = n. c n, =1-n n =c+ c and
ic i-671c6’ i-o i-e¢’ isc “ie ie6’
_ .aT 1.2 _
Si-l/z Ci.%8C1g Here Jij—J—t /U and tij_ t for the nearest

-138-



neighbour (n.n.) sites (i,j) and otherwise J,.=0 and ti'=0'

ij J
Morebver we ignore the terms of the order of t2/U in the hopping
terms of eq.(4.1.1) in comparison to t.

The t-J model can be derived in a strong coupling limit of
the d-p model which 1is a realistic model of the high—Tc

superconductors.lg’lg)

It should be noted that in the half-filled
limit, the t-J model reduces to the AF Heisenberg model, since
the hopping term of eq.(4.1.1) does not work actually due to the
prohibition of the double occupancy.

In the original Hubbard model, doubly occupied sites appear,
except for 1infinite U. This effect is, however, small enough

compared to that of the second term of eq.(4.1.1), since the

expectation value <n
e—(-W+U)/T

isli-g> 1s estimated 1less than order of
with temperature T, where W is the band width of U=0
system and we have used the fact that the energy gain due to fhe
electron hopping through the occupied sites is less than order of
W. Therefore the description by the t-J model would be wvalid for
sufficiently strong correlations and low temperature satisfying
-W+U>>T.

In the strong coupling Hubbard model or the t-J model, the
short range correlations of electrons are considered to dominate
physical properties, especially for the nearly half-filled case
in which the electrons exhibit a localized character. As one of
the approximations which is appropriate for this kind of problem,
a Green's function decoupling scheme was proposed by Hubbard with
successful results in the study of the Mott-Hubbard transition,l)

(Hubbard 1III). However, later, Kawabata pointed out that in the

half-filled case the Hubbard III approximation does not reproduce
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the Curie 1law for the magnetic susceptibility, in the Hubbard
model with infinite U. He resolved this difficulty by proposing
the improved Hubbard III approximation, and showed that the
susceptibility obeys the Curie-Weiss law, although he made some
assumptions to show it.2)

In this chapter, we apply the improved Hubbard III ap-
proximation to the t-J model, and investigate the magnetic
properties and the superconductivity.

For the magnetic properties, we examine the behaviour of the

susceptibility, AF transition temperature T and sublattice

AF’
magnetization at any hole concentrations. We expect that our
approximation is adequate unless the hole concentration is large.

For the superconductivity, we attribute the attractive
interaction for the pairing to the nearest neighbour interaction
Jij’ and assume the picture of local pairing.zo) This picture is
rather different from the BCS superconductivity. In BCS supercon-
ductivity, the Kk-space condensation around the Fermi surface

24) such as

occurs, and thus the long-range nature of interactions
that mediated by phonons and para-magnon are essential in the BCS
superconductivity. On the other hand, for the superconductivity
of the local pairing, it is essential to take into account local
correlations. Hence we apply the improved Hubbard III approxima-
tion to the superconductivity of the local paifing, similarly to
the case of the magnetic properties.

Moreover, 1in the t-J model including cases of rather large
J, the favourable symmetry of the superconductivity is also

unknown theoretically. In the weak coupling Hubbard model d-

symmetry pairing is shown to be favourable because of the nature
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of the attractive interaction induced by spin—fluctuations21_25)

and also because of the van Hove singularities in the square

20,23,25)

lattice. However, in the t-J model, it is uncertain, al-

though a numerical work supports the d-wave superconductivity.g)
In §4.2, we investigate the normal state Green's function
and the momentum distribution of the quasi-particles. In §4.3,
the magnetic susceptibility is calculated in the non-half-filled
case, and the Curie-Weiss 1law 1is proven to hold in the half-
filled 1limit. In 84.4, the improved Hubbard III approximation is
extended to the antiferromagnetic case and the antiferromagnetic
transition temperatures are obtained. In §4.5, the superconduc-
tivity 1is studied and the d-symmetry of the order parameter is
shown to be favourable. In §4.6, we examine the Green's function
for various band structures in connection with the ferromagnetic
instability. The 1last section 1is devoted to summary and dis-
cussion. The main part of this chapter has been published in our

three papers of ref.26.
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§4.2 Normal Electron Green's Function in J=0

We introduce a retarded Green's function GAB(t) for Fermion

operator A and B defined by

G,p(t) = <alB>, = -i6(t) <[A(t),B] >, . (4.2.1)

with A(t)= elHtA e—lHt. It's Fourier transform is denoted by

oo s
G,g(w) = <A[B) = Jdt el®t <AlBY, . (4.2.2)

-0

First, we 1investigate the single particle Green's function
(w)= <c

following equation of motion;

|c ~r> in the case of J=0. Then Gija(w) satisfies the

lJG lo ,]d (A}

(amey ) <G 18,5,

- <n” t
R PPt (813 Z Y ik <cka|c36>w)

+ E ik < Snl s ko Ic ) E Tk 4 ck sCi-6 16| jd>w , (4.2.3)

where Snl 6= Dj_g <nj_4>- The second and third terms in the right

hand side are termed the scattering correction and the resonance
broadening correction, respectively, following Hubbard.l)
In the following, we calculate these correction terms in the

paramagnetic phase adopting the Hubbard III approximation im-

proved by Kawabata.z)
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The Green's function {én, alsjz>w (i#k) which appears in

i-e
the scattering correction approximately satisfies the following

equation of motion;

- o~ o~ t _ - - ~ t
(o-ey ) <8ny_, ey le e, = <np > % <805 & 615670

(4.2.4)

where we neglect the higher order contribution of the transfer

integral and correlation functions similarly to the Hubbard III.

Ic > > < c l f> , eq.(4.2.4)

By noting that <{én, jo

i-o

is easily solved as in Appendix 4.A and gives an expression of

the scattering correction:

T t
L tyy <8045 GglCye0, = noy %5(0) <y ey, (4.2.5)
with
2 (o) =1 (o) - gd(w)_l , (4.2.6)
ld(m) = (m—ed)/n_d , (4.2.7)
and g (@) = N L (1 (e) - g )T, (4.2.8)
K

=€, =<n, T oEl- . ) and @) are
where € ¢, , n_ =<n,_ >, and n__=1-n__. Here 1 (o) g ()

a locator and a Green's function, respectively, without both the
scattering and resonance broadening corrections.

The resonance broadening correction is similarly calculated

from the following approximate equation of motion for i#k:

_ _ ~ t ~ ~ ¥+
(o €i6*fi-6 ek—d) < ck—oci—acidlc‘ ?

~ ~*~

~ - ~-'- ~ ~1’~ N"’
- % tkl< ks €1-6%1-6%i6 ja>o - E.tik'< ck—ack'—acidlcja>m
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This approximation 1is the same with that in the Hubbard III

~ t ~ - -
k-6%k-6" = “Pk-6"ks”
k-6 <Dy - Later Kawabata pointed out that in

the half-filled and strong-coupling 1limit, this approximation

except the 1last term. In the Hubbard III <c

is decoupled as <n

does mnot result the Curie law for the susceptibility which is

expected in this 1limit, and showed that the Curie law is obtained

by using that <n —6>=O in the above 1imit, with some

k-o"k
assumptions. On the other hand in the t-J model, since the double

~t oL .
k-gCk-g>=1" D=0, with

n=na+n8, and easily extend Kawabata's treatment to the non-half-

occupancy is excluded, we can exactly put <c

filled case. Thus we obtain an expression of resonance broadening

correction from eq.(4.2.9):

n
~r ~‘1’~ ~1’ _ —6 _
E Yik < ck—dci—cciolc36>w B n- Q-o<m €6 E-
6

~ N'r
a) < cialcjd>w ’

(4.2.10)

Substituting eqgs.(4.2.5) and (4.2.16) to the equation of

motion (4.2.3), and using the Fourier transform de(m)EZe—lk'Rij

1
°Gijo(w)’ we obtain
Gy (@) = (L (o) - €077, (4.2.11)
G (o) = G, (@) = N‘1§ Gy (@) (4.2.12)

with
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n
Ld(m) 1_ [0 - €," n_dﬁd(w) - :6

n n
(]

Q_G(m—s6+e_d)] . (4.2.13)

-G

Now we introduce a self-consistency by replacing uncorrected

locator 16(0) and Green's function gd(w) in eq.(4.2.6) with

corrected ones, that is, Ld(m) and Gc(w), respectively, following

Hubbard. This is performed without any arguments on its validity,

but it would be convincing from the successful results of

Hubbardl) on the metal-insulator transition and from those of
2)

Kawabata on the magnetic properties mentioned above. Thus the

self-consistent equations are composed of eqs.(4.2.11)~(4.2.13),

and

- -1
Qa(w) = Lc(w) - Gd(m) , (4.2.14)

.
with n = - de f(w) Im Gd(w) . (4.2.15)

and f(m)E(ew/T+l)—l.

It is worthwhile noting that in this self-consistent scheme
if we neglect the resonance broadening correction given by the
last term 1in the bracket of eq.(4.2.13), this scheme reduces to

3)

the CPA. The CPA has been used by Fukuyama and Yoshida for the

study of the high Tc superconductivity in the t-J model.lo)
However, it 1is known that the CPA does not lead to the correct
localized 1imit of the magnetic properties in the half-filled
band 1limit similarly to the Hubbard I approximation, in which
both the scattering and the resonance broadening correction are

neglected.l’27_29)

-145-



In the case of €= K and particular choice of the density of

states (DOS),l'Z)

4 2€ \2q1/2
aw [T
o(e) = (4.2.186)

with the band width W, the self-consistent equations can be

analytically solved as

Gg(@) = 'éLiigl‘ (0 + u 2 J (o+u)® - (W/2)* ), (4.2.17)

where n=2n6. Here the sign before the square root is determined
so that Ga(m) satisfies the required analyticity (Im Gd(o)<0 and
Gc(m)ul/(m+u) for |e+u|>>W/2).

The momentum distribution ann(ep) is given by

n= - —%— Jdm £(0) Im 6 (o) . (4.2.18)

We calculate the np for the DOS (4.2.18) and plot them in
Fig.4.1. It is found that Fermi-surface does not exist for all n,
due to the presence of the quasi-particle damping although the
damping decreases with n, and vanishes as nhﬁl. This means that
the quasi-particle 1loses the phase coherence of the motion in a
mean-free path. It should be noted that the strong on-site cor-
relation would make the quasi-particle heavy and tend to be

localized especially near the half-filled band case. This cir-

cumstance 1is expressed by the presence of the damping in our
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treatment. It seems, however, that some global features such as
the existence of Fermi-surface might be 1lost in the present
approximation, especially in the case far from nh=0. This is in
contrast to the idea that the Fermi-liquid theory would work even
in this strong coupling case except the half-filled band case,
although it is not still clear that the Fermi-liquid theory holds
in this case. Nevertheless, even if a small Fermi-jump exists
near the half-filled band case, since the local correlation would
be most important concerning the localized AF phaseAand the
superconductivity of the 1local pairing in a nearly half-filled

band case, our treatment would be reasonable for these problems.
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Fig.4.1. The crystal momentum distribution of the
quasi-particle at T=0. ep is bare electron dispersion.

(a) nh=0.99, (b) nh=0.7, (¢) n,=0.5, (d) n

h h
nh=0.1, (f) nh=0.05. (g) nh=0.0. The unit is taken as

=0.2, (e)

W=2.
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§4.3 Magnetic Susceptibility

In this section we examine the magnetic susceptibility for
J=0 and that for J#0. In order to calculate the susceptibility we
add the term of -gugH Y. S? to the Hamiltonian, where H, g, and up

i

are the uniform magnetic field, Lande g-factor, and Bohr mag-
neton, respectively. We take g=2 for simplicity, and also put
h=pBH.

When J=0, Green's function is obtained by replacing ea=—”

with 86=—u—hd, in eq.(4.2.14):

n
[0 + & + he - n_ 2 () - - 9_6(m+2ha)] , (4.3.1)
n n

-6 G

Ly(o) =

where n6=n/2+om.

Now we define fa(w) = Ld(w-ho) and ﬁd(m) = Rd(w—ha), and
rewrite eq.(4.2.13), (4.2.15), and (4.3.1) in terms of ﬁc(w) and
ﬁd(m), as

L (0) = L o+ - n_ 8 (o) - n:d g_ (o], (4.3.2)
n n
-0 o
and
g (0) = L (0) - G (), (4.3.3)
G () = N‘1§ (E,(0) - 7T, (4.3.4)

It should be noted here that the magnetic field does not appear

explicitly in the self-consistent equations except the condition:
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+ om = de f(w) Im Gd(w)

Jdm f(®) Im 56(w+ho) } (4.3.5)

aha a -

Hence eqs.(4.3.2)~(4.3.4) determine ﬁd(w) as a function of w, n,

and m, so we expand ﬁd(w) and fd(w) up to the first order of m:

ﬁd(w) 5(0)(w) + om ﬁ(l)(w) , , (4.3.8)

L (o)

ﬁ(o)(w) + om ﬁ(l)(w) . (4.3.7)

Thus the condition (4.3.5) is written as

2 - - Jdm £(w) Im 6( () , (4.3.8)

apa -

de £(0) In[h 5— T%(0) + m ()] . (4.3.9)

Obviously 6(0)(0) ( ﬁ(o)(w) ) is nothing but the Green's function
(the locator) of h=0 system, and will be written as G(w) ( L(w) )

from now on. Equation (4.3.8) gives

uBH A
m=hA+mB, i.e. m= — , (4.3.10)
1 -8B
with
A= - —%— Jdm f(w) Im G'(w) , (4.3.11)
B=- -1 de f(w) Im 6 (0) . (4.3.12)
The susceptibility x is given by
ga M 2u2A
_ " B
X = I =95 - (4.3.13)
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Next we express 5(1)(w) in terms of G(w). From eq.(4.3.2) we

have
L(w) = 0 (w+u) + n(i‘n) G%m) , (4.3.14)
_A-n (1) _ n2 g S ) WS W 5 B é  (4.3.15)
n 4n G2 n2 n2
and from eq.(4.3.4)
ﬁ(l)(w) - T (w) xo(w) , and G'(®) = L'(w) xo(a) , (4.3.18)

with xo(m)E—N—lZGk‘j(m)2 and n=1-n/2. Differentiating each side of
k

eq.(4.3.14) and using eqs.(4.3.15) and (4.3.16), we obtain

— [} - _ Il(4-n) G' .
xo(a) =G6'/ [ n 2 o2 ], (4.3.17)
and
—2 -1
6 (yy - g —mn) (eww) - 278% G (4.3.18)

n[ (1-n) + n 1 S(G—l)/aw ]

In the 1limit of n=1, the susceptibility in the case of J=0

shows the Curie law x=ug/T, since

>
I

8 (1-n) + 0o((1-n)?) , (4.3.19)

vs]
H

1 - 2(1-n) + 0((1-n)?) , (4.3.20)

around n=1 (see Appendix 4.B). This means that in the present
approximation the 1localized free spin behaviour in the half-

filled 1limit is correctly reproduced.
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The case of J#0 also reproduces the localized spin behaviour
as following. We illustrate this within the mean field approxima-

tion of the exchange term in the Hamiltonian (4.1.1):

) — 2zJm ) 6 n, . . (4.3.21)

23 X (8;-8; — - i

1
—— n.n
1,3 4 ivj
with the number of the nearest neighbour site z. In this way the

Green's function is obtained by replacing h with hmEh—Zsz in the

above treatment of J=0. Thus we found from eq.(4.3.9) and

(4.3.10)
uBH A
m=hA+mB, 1i.e. m = 15 7 3274 ° (4.3.22)
2 ué A
X = . (4.3.23)

1 - B + 2zJA

This 1leads to the Curie-Weiss 1law in the n=1 1limit using

eq.(4.3.19) and (4.3.20):

X = . (4.3.24)

as was pointed out by Kawabata.z)

OQur proof is more rigorous than
that of Kawabata in the way of taking limit of n-»1 and introduc-
ing J in the Green's function. As a result, we find that the
analyticity of the Green's function is needed to prove, and it is

also clarified that the Curie-Weiss form is derived reasonably in

a mean field approximation.
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In Fig.4.2, we plot the numerical results of the magnetic
susceptibilities (4.3.23) for wvarious J and n: J=0, J#0, and
n =1-n=0, 0.01, ---etc. It is found in both J=0 and J#0 cases
that the susceptibilities exhibit a gradual change from the
Curie-Weiss 1law of the 1localized spins to the behaviour of
itinerant electrons as Pauli-paramagnetic susceptibility, as
doping electron holes, although the quasi-particle does not have

the Fermi-surface in the crystal momentum space, as we have

discussed in the end of §4.2.
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Fig.4.2. The temperature dependence of the magnetic
susceptibility x/yg for the analytically solvable case
given by DOS (4.2.18). The solid line and the broken
line denotes the 2zJ=0 case and the zJ=0.12 case,
respectively. (a) n, =0, (b) n, =0.01, (c) nh=0.02, (d)

=0.03, (e) =0.1, and zJ=0. (f) nh=0, (g) nh=0-1,

Iy ny
and 2zJ=0.12. The unit is taken as W=2. The dotted line

denotes the line given by eq.(4.3.23) below TAF'
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8§4.4 Antiferromagnetism

In this section we study the antiferromagnetism of the t-J
model. We divide the whole lattice into two sublattices A and B.

The operator Cia' n

5 ., A, _, a.._,
is’ Cio’ and eid are denoted by alo Ald is

and eﬁ, respectively (or bic’ Bi s B. , and 83, respectively),

6 ic

where the site i is belonging to the A- (or the B-) sublattice.
Moreover we define AoE<Aia>=n/2+6m’ A;EI—AG, BGE<B16>=n/2-am, and
Bgsl—BG. In the presence of a staggered magnetic field H, the
Hamiltonian (4.1.2) is modified by putting 8§=-u—hd and sE=—u+ha
with hEuBH.

The equations of motion in the case of J=0 is

(“'eﬁ) <gio|§j:>w = A (8, E ik <gkalajz>w)

P Lty AL yg 18557 Lty < by 63i-g?igl 25570 » (4-4-1)

+
s >

_eB I _
(o ec) <bkolbjo>m = B_ Jo'w

§ tyy <bygla

- o~ ~ ~ ¥t
* % tkl < 8Bk—oala laja>w * % 1:kl < al—db —obkolajo>w - (4.4.2)

Similarly to §4.2, the scattering correction in eq.(4.4.1)

is calculated from the equations of motion:

o~ ~
<8Ai-d bkolajc>w

1

B, \-1 TR .
16(m) § tkl<8Ai—6 alalaja>w , for i#k,

- ~ ~ 1- A ~ "I' .
<8Ai-6 aldlaj(f)w bmdlaj6>6) . for l#l,

A -1 -
lo(m) g tlm<8Ai_6

(4.4.3)

with
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A @Q - eﬁ B W - €
1 (e) = - and 1_(w) = — (4.4.4)
A-a B—a
They can be easily solved with the result:
= . , .4.5
E tik <5Ai—c bkdlajc>w A—c Rd(m) <aio|a36>w (4 )
where
A A A -1
= - 4.4.8
Q. (0) =1 (o) - g_(0) =, ( )
A = v 1 B A B _ 2431
and g (o) =N E 1 (e)/(1 () 1 (0) - e.) " . (4.4.7)

The resonance broadening correction is similarly calculated

from the equations of motion:

(m_sa+€-a—e—o) < bk—dai-aaid‘ajo>w
=B85 Lty Ca1681-03161850% - Eix(I) Cagglaggl, - (4.4.8)
A A A ~ At o~ o~ t
(o 86+8-6 e—a) < al—oai—caid]ajc>o
. &~ t o~ ~t
= A E Cim < bm—aai-aaidlaj6>m ’ (4.4.9)
which leads to
Lt (B, &Ta 5Ty - o8 oA (aehedy <3 15D
Kk ik k-6"1-6"1i6' “jo’0 ~ B- -6 6 -6 ie' “jo’w
g
(4.4.10)
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The correction terms in eq.(4.4.2) are obtained in the same way.
Next, by replacing 1?(@), 15(&), gﬁ(m), and gg(w) with Lﬁ(w),
Lg(w), Gﬁ(m), and GE(@), in eq.(4.2.8), respectively, as dis-
cussed in §4.2, we have self-consistent equations from

eqs.(4.4.1), (4.4.2), (4.4.5), (4.4.10):

A
_ L7 (@)
Gﬁ(m) = G?id(m) - N1y n ~ — (4.4.11)
k 1A0) LA (o) - e
A
L(w) = i_ [o - e a__2w) - —X%- 2 (o-ebeeh )], (4.4.12)
-0 -0
gﬁ(w) = Lﬁ(w) - Gﬁ(w)‘l , (4.4.13)
and
A= - - Jdm f(o) Im 62(w) . (4.4.14)
[+ 3 o]

Here we have used the fact that Lé(w)=L?d(w), G§(0)=G?6(w), and
A =B__.
Equation (4.4.12) can be written in terms of fﬁ(w)ELﬁ(w—ho),

Gﬁ(m)EGﬁ(w—hc), and Qﬁ(m)sﬂﬁ(w—hc) as

As

t20) = 2— [0+ » - a__0%0) -

4 (o)1, (4.4.15)
A

m

- As

where the magnetic field does not appear explicitly.
Now we calculate the staggered magnetization. First we

expand aﬁ(w) and ﬁ?(w) up to the first order of m and h

ﬁﬁ(w) G(w) + ¢ 5(1)(0) + o(m?, n?) ,

ﬁﬁ(m) L(w) + ¢ £ (0) + o(m?, n?) , (4.4.186)
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Qﬁ(m) = Qo) + ¢ Q(l)(w) + 0(m2, n?%) ,

where the functions G(w), L(w), Q(w) are those in the case of m=0

and h=0. Thus we find

n(4-n) 1

L{w) = n(w+y) + 1 5(a) (4.4.17)
EW ey - ()2 g () = - B (2(0(p) - (B2 8 0¢0) ),
2n n 2n
(4.4.18)

A
from eqgs.(4.4.15) and (4.4.16). Furthermore, we expand Ld(o),

Gﬁ(m), Qﬁ(m) as

63(0) = 6(e) + s 6P (a) + o(m?, n?) ,

L2(w) = (@) + ¢ LM (0) + o(m?, 1n?) , (4.4.19)
¢

22(0) = 2(e) + 6 1 (a) + o(m?, n?) .

Thus we have from eq.(4.4.14)

n 1

5 - = Jdm f(o) Im G(w) , (4.4.20)

m = - —%— jdm f(w) Im G(l)(w) , (4.4.21)
where G(l)(w) is obtained as
61 (0) = n B a(a) + E1)(w) (4.4.22)

from the definition of aﬁ(m) and eqs.(4.4.16) and (4.4.19).
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NA _
For simplicity, we define I*(a)=L2(0)-(-2=)?0(0)., T (0)=1 (o-
2n
hes) and also their expansion factors by I(e), f(l)(w) and

I(l)(w), similarly to eqs.(4.4.18) and (4.4.19). Thus we have

T () = - (o) ., h—=2— 1)+ T V() = 1V(a) ,

Jw

I(l)(w) = - ——%%%— G(l)(o) , (4.4.23)

I(e) = L(w) - (—gg—)zﬂ(w) = —lég— [0+ u+ ggﬁ G%w)] ’

] BIF

@

where we use the fact that G(l)(o) = - —%%%%— L(l)(w). From these
equations, it is easily derived that

6() = - 6(e) [ b gw 1n 1(e) - =1 . (4.4.24)
n

Substituting this 1into eq.(4.4.21), and using eq.(4.4.20), we

obtain
m=-htC+ -2 —%— , (4.4.25)
n
with
1 3
= - —— . .4.2
C - de f(w) Im[ G a5 1n I(w) ] (4.4.26)

Thus the staggered magnetic susceptibility x

AF is given by

Xap =~ #p —0n— C (4.4.27)

This reduces to the form of that of the localized spin system:

xAF=u§/T in the limit of n=1, as expected. This form is derived
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from the expansion C = - g(1-n) + O((l—n)2) which is easily
obtained from eq.(4.B.2).

Next we calculate the staggered susceptibility in the case
of J#0, 1in the mean field approximation of the exchange term.
This 1s performed by putting 8§=—u-hm6 and e§=—u+hma with hmEh+M
and M=2zJm. Thus the staggered magnetization 1is obtained by

replacing h with hm in eq.(4.4.25):

m=-hc+ 212 (4.4.28)
m - 2
n
which leads to
- (1-n/2) u; o 26
XAF = "(1-n) + (2-n)zJcC (4.4.29)
If we take the limit n-=1, we have
2
_ "B 4.30)
N i e (4.4.

On the other hand, the AF transition temperature TAF is

given by the condition in which spontaneous magnetization

appears:
1-n_ _ 1 3
oon = 2 =5 de f(w) Im[G(w) a5 1n I(w)] . (4.4.31)

In the n-1 limit, we again obtain the mean field result T,.=zJ.

AF
For various hole concentrations, TAF is numerically calcu-
lated from eqs.(4.4.20) and (4.4.31). We show TAF as a function

of nhsl—n, in Fig.4.3. It is found that doped itinerant holes
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destroy the AF order very effectively, and TAF vanishes even for
very small hole concentration. The critical hole concentration
ng, at which TAF vanishes, are shown in Fig.4.8 as well as in
Fig.4.3. For example nﬁEO.OZZ in the case of zJ=0.06W. This
behaviour is consistent with the experimental results of the high
Tc oxides which shows the rapid distruction of the AF phase with
slight hole-doping.

Lastly, we examine the equation of the magnetization for
T<TAF' First we examine that in the limit of n-»1. We begin with

the relation:
_ ~ 1 (2 A
1-n = <¢j ¢y > = - —— |do (1-f(e-#)) Im Gd(w~u) . (4.4.32)
-0

Here we note that thé Green's function can be written as
§§(w-p) = A:Gg(w-u) + 0(1-n) , (4.4.383)
near n=1 with a spin independent function g(w-u) defined by

glo-i) = [ o+ E)™t + 8 (0)7! - (Tie) + T2 (o)) 17}

(4.4.34)

This relation 1is obtained from eqs.(4.4.12) and (4.4.13).

Substituting eq.(4.4.33) into eq.(4.4.32), we have

1 -n-=

e‘BMd(—%— + om) D , (4.4.35)

with D

- —%— de eBlo-u) glo) , (4.4.36)
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that is

2(1-n) - ( cosh(8M) - 2m sinh(8M)) D ,

0

( sinh(8M) - 2m cosh(8M)) D , (4.4.37)

up to the order of 1-n. Therefore in the limit of n-1l, we obtain

m = —%— tanh(2zJm&) . (4.4.38)
The behaviour of the solution of mlof this equation, i.e. the
average value of SZ are shown in Fig.4.4. Equations (4.4.30) and
(4.4.38) coincide with the mean field result of Heisenberg model
as was pointed out by Kawabata,z) in the large U Hubbard model,
with some assumptions.

Second we examine the sublattice magnetization in the non-
half-filled band case. The self-consistent equations (4.4.11) ~
(4.4.14) are solved numerically for zJ=0.1W, n=0.96, using the
DOS given by eq.(4.2.18) conventionally. The results are shown in
Fig.4.4. It is found that the spin moment shrinks by ~13% because
of the hole-doping and that the temperature dependence is essen-
tially the same with the half-filling case.

In addition, we calculate the momentum distribution in the
AF phase and the result are shown in Fig.4.5, where we found that
the electrons are more localized in the AF phase than in the
normal phase. However, we should note that our treatments are
within the mean field approximation on the exchange interaction

J, in which the 1low lying excitations such as a spin-wave are

neglected.
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§4.5 Superconductivity

In this section, we study the superconductivity induced by
the exchange interaction given by the second term of eq.(4.1.1).
. s ~%
Corresponding to the normal Green's function Gija(w)=<ciolcj6>w’
we define the anomalous Green's function F (w)E<ET IET > . We
kjo k-¢' "jo'w

regard the average:

~t ~ T
kKjo 4J <€j6%k-6"

>
1]

4

i sz f(w) Im[FkJG(w+i6)] , (4.5.1)

as an order-parameter of the superconductivity, which actually

coincides with 4J<CT6ckf6> in the t-J model.

J
First we study the s-wave pairing:

a* =3 e P Reyoa¥ - ———GA: e (4.5.2)
ps i © J Bje T Tt p ' T
: . . . v ~ip-R; .
where ep is the bare electron dispersion defined by ep=Ze 1)
i

-t For example, ¢ =—2t(cos(px)+cos(py)+cos(pz)) for the cubic

ij-° p
lattice.

Now we note that the identity

= - .5.3
<€36%Kk-6" <Cx_6C56” (4 )

requires the ij6(0+ia) to satisfy the condition:
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00
Idm Im[F w+id)] = 0 . (4.5.4)
-0

kjd(
The employed approximation scheme should mnot destroy such an
identity. However a straightforward application of a decoupling
approximation scheme sometimes destroys the above identity. Thus
we propose the modified approximation scheme, in which the
ijd(m+16) satisfies the relation:

ijd(w+16) = F (-0-i8) , (4.5.5)

kjo
which guarantees the condition (4.5.4). We apply the decoupling
theory studied in the preceding sections to each term of the
equation of motion of the symmetrized form:

3 t

. _ 3 . ~F ~t _t
i35 ijd(t) = i_ﬁ—[—le(t)<[ck—-6(_2—)’ CJG(' 5 )]+>] ,

_ 1 ~t ~t _ oot ~%
= 5 K& 0 B NE D> - G I[E,, B DI . (4.5.8)
This procedure makes no difference in the application to the

normal Green's function compared to the treatment in 84.3 and

§4.4. Under the assumptions mentioned above, we have

© ijo(w)
_ 1 ot At - ~t ot
T2 [ o B <Ck-a cj6>m n % Y1 cl—dlcjd>w
§ By < 0Ny Cy o 1C5404 - § ty1 < Sk 6%k6C16! €567

* ~ ~t
* { A1k—<s <cla cjo>w }
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jng]

_ _ ~% ~t _ ~t ~t
{ u <ck—d|cjo>w E,tjk' <Ck—alck'd>w

- Y t,..<&Y ysn: &7,

k' Jk' k-0 j-6%k'6’0 ~ E, Jk'< k al jo Cj-6%k'-6”0

* ~ '|' ~ ’
* E.Ajk'a <ck-alck'—a>w Y1 (4.5.7)

Here the decoupling [¢C ¥ g7

~ *
k-’ Hoxl® % By _sC1-s has been used, where

HeX is the exchange term in eq.(4.1.1). Our approximation on HeX

resembles a mean field approximation, although it is different

from the wusual mean-field treatment of HeX in treating the

projection operator n£6=1—nk6. The scattering correction in the

first term of eq.(4.5.7) 1s calculated from the equation of

motion:

_ - ~t ~t
(o-u) <8nko Cl—alcjc>w

o ImNTke "m-6'"je’w LA lma Cjo
~t
lk6<ck6 ; >w , (4.5.8)
(w+u) <{&n, c IET >

I“"f > n

© 2 km<ckdI Jc>w ’ (4.5.9)

where k#1 and k#m. Here we neglect the inhomogeneous terms and

fluctuation terms including &! &f -<&7 &7 5 in the present mean
me l-o me l-¢

field 1like treatment. These equations are solved with use of

__nh ~t R ¢
<8nkc k cl > ) ija and <6nkd kdIch> =3 ijo' We have

the expression of the scattering correction up to the first order

of A :
[¢]
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-~ et
§ ty <8y ey _slcy42

w+id
A*
= 0 o(-) _2-n %% (5
=2 e T o Tt %k
*
A (-)g(=)
D (ply_ o L & LR o 0 (4.5.10)

where 2(7)=0(-0-15), 2=Q(0+15), L()=L(-0-18), L=L(0+i5), etec.
The scattering correction in the second term of eq.(4.5.7) is

similarly calculated as

~t - ~t )
E.tjk' Ch-g |05 Chr 6Ppeis = ~ E. <8Ny _g ENR LA S
*

~sh
- _ _n (-) 2-n 98 (-)
= 7 R Fs on T 2 Gy

-6t (=) (=) _
» B2 (1) —2 L %_) - L 8 G§kzd (4.5.11)
2n n L - L

The resonance broadening correction in the first term in

eq.(4.5.8) is calculated from the equation of motion:

(0-u) <Ck G~k6 ldlc >

~

= ~ _ ~1’ ~‘r
=n Z Ym <ck ¢ke md'c >w + (1-n) Ty, <ck—alcja>w *

%* ~ ~1’
* g 1mo< k o] ka m- al >m * Aklo<cko|cjc>w ’
At A~ A ~t
(wru) <ck 6“ks’n alcja>w
~ - ~‘|’ ~ ~r N‘r n
- n E ton <ck—cckdcn—6lcjd>w T2 <ck6l Jo>w ’
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where k#1 and k#m. The resulting expression for the resonance

broadening correction is

>

§ tkl <ck—cckaclc Cjo w+id
sh”
n (-) 4 o of-)
e Frie T2 % Bkye
n “A: Lol g
+ T Gk. (4.5.12)
2n2 Lo Jo

Similarly, that of the second term in eq.(4.5.6) is calculated

with the results:

E.tjk'<ck—a|cjdcj—ack'—o>m+16 = - E,tjk' €356%5-6%k ' 6| Ck-6"-w-15
*
-cl
~ _ _n (-) 1 0 (-)
= ket Tt Gk
-sA” (=) o(-)
T o L &% ‘- L2 G(i) : (4.5.13)
2ﬁ2 _t L(_)_ L J -0

Inserting eqs.(4.5.10)~(4.5.13) into eq.(4.5.7), we obtain an

expression for the Fourier transform de(w+16) =¥ e 1P Ry,
k
1 . *.
Fyjs(@*18) up to the first order of A :
Fpa(w+18)
*
= _l;.[ A¥ . n(2+n) L(-)Q(_)— L dﬁo 16 G(—)
n ps (2-n) 2 L(“)_ L -t pPs -p-o
* (-) (-)
ol Q G, . —Q6C
= B —P=o— . (4.5.14)
-t 2-n -

-169-



The first term in the bracket gives an anomalous Green's function
with vertex correction 1/n in an analogy of a diagramatic tech-
nique with the renormalized Green's function Gpa‘ The imaginary
part of this expression is an odd function of @, and satisfies
the condition (4.5.4) and (4.5.5), as is expected. The TC equa-

tion for the nearest-neighbour s-wave superconductivity 1is

obtained as

(=)~ (-)pa(-)_
1 = - __Zl;__ de f(w) Im[- L G 2 LGSR

ndt?x BN

n2+n) (L) Loy (w6t L)

(z_n)2 (L(-)_ L)2
) (-) (-)_
. ;_2 2 ?_&G G ) , (4.5.15)
L'7/- L

where dEN—1£8;/2t2 is the dimension of the system for the cubic
p

lattice (d=3), square lattice (d=2), and 1D chain (d=1). Then
since z=2d and band width W=4dt, the prefactor of the integral in
eq.(4.5.15) becomes 2J/ndt?z=162zJ/oW’x.

On the other hand, for the d-symmetry superconductivity, the
last two terms vanish because of the symmetry. Thus we obtain the

TC equation for the d-symmetry superconductivity:

47 -1 2 (-)
1 = - —— |do f(o) Im[N G_ G , 4.5.16
- J (@) Im| g 75 Gps -p—a] ( )

where we set Ap6=cAorp with d-symmetry real function Tp. For the
nearest neighbour pairing, we have Tp= cos(px)-cos(py).
The detailed structure of the DOS does not seem to influence

the estimation of eqs.(4.5.15) and (4.5.16) very much, since the
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damping of the quasi-particle is rather large as is seen in §4.2.
Thus we assume the DOS given by (4.2.16) for numerical estimation

of T and moreover set r; 21 in the integrand of eq.(4.5.16).

e’
The results are shown in Fig.4.6 for the d-wave case and in
Fig.4.7 for the s-wave case. We find that the superconductivity
does not appear near nh=0 in the both two cases. This is due to
the presence of the damping of the quasi-particle, which becomes

more remarkable as one approaches n,=0, as seen in 84.2. This

h
effect 1is remarkable in s-wave superconductivity owing to the
last two terms in eq.(4.5.14), which corresponds to the contribu-
tion from the vertex corrections in a diagramatic technique.
Therefore the d-wave superconductivity is more favourable than
the s-wave superconductivity, as séen in Figs.4.6 and 4.7.
Moreover we show the numerical estimation of the critical J
values for the superconductivity and the antiferromagnetism at

ground state in Fig.4.8. It is found that for the weak J (<0.7t)

case, the t-J model does not exhibit the superconductivity for

any ny .
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Fig.4.6. The hole concentration ny dependence of Tc for
d-pairing. (a) zJ=2.2, (b) zJ=1.8. The unit is taken as

W=2. We put z=4 as an example.
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Jc, at T=0. The unit is taken as W=2. (a) ZJC for z=86.

(b) ch for z=4. (c) ZJAF‘
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§4.6 Green's function for Other Band Structures

The numerical calculation 1in the preceeding sections are
based on the particular choise of the DOS given by eq.(4.2.186),
which gives the analytical solution of the self-consistent equa-
tions of the Green's function. We expected that this costs little
error at least qualitatively, because the imaginary part of the
Green's function 1is necessarily large owing to the structure of
the self-consistent equations. The purpose of this chapter is to
verify this point.

First, we calculate the Green's function in the paramagnetic
case, for electron systems on the cubic lattice, the square
lattice, and 1D <chain with n.n. hopping. We solve the self-
consistent equations (4.2.11)~(4.2.15) numerically or analytical-
ly wusing the DOS for each band structure for n=0.95. Figs.4.9
~4.10 show the results for the imaginary part of the Green's
function, 1.e. the one particle spectrum multiplied by =. It is
found that for the «cubic 1lattice the band width narrows into
about 0.883W with that in the free case W, while for the square
lattice the band width does not change from the free case. The
band width narrowed in the former case is very close to the value

calculated by Kubo30)

in the system of only one hole doped to
half-filling. For the 1D chain, the band width is unreasonably
broadened because of the unusual original band structure.
Neverthless we find from this calculation that any sharp peaks
and edges are smeared out as expected, and that the resulting

spectrums are essentially of the same shape with that of the

solvable DOS case if the band width are scaled. Therefore it is
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obvious that our result obtained in the preceeding sections are
almost unchanged for other band structures if we only scale the
all energies by the band width taking into the band narrowing,
which is found not to be so sensitive to the electron number.

In fact, we found from Fig.4.12 that the critical J values
for the AF transition for the cubic lattice case are not dif-
ferent from that for the solvable DOS case qualitatively and even
quantitatively if we scale the band width. In other words, the
result for the cubic lattice with t=1 and n=0.95 is almost the
same with that for the solvable DOS with the band width W=10.86,
quantitatively. Moreover our consequence on the hole concentra-
tion dependence are not change even if we use the realistic band
structures, because the extent of the band narrowing is not so
sensitive to the hole concentration.

Now we comment on the ferromagnetism. The above result
indicates that the magnetic susceptibility does not diverge for
any hole concentration, since susceptibility for the realistic
DOS hass almost the same behaviour with the susceptibility of the
solvable DOS case with appropriate band width, which does not
divergence as seen in 84.4. This 1is consistent with the CPA

result.s)
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Fig.4.9.

Imaginary part of the

Green's function for
the cubic lattice
band structure with

t=1 (the solid line),
and for the solvable
DOS with W=10.6 (the
broken 1line) in the

case of n=0.95.

Fig.4.10.

Imaginary part of the
Green's function, for
the

square lattice

band structure with
t=1 (the solid line),
and for the solvable
DOS

with W=8 (the

broken 1line) in the

case of n=0.95.
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Imaginary part of the
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§4.7 Summary and Discussion

Now we summarize and discuss the results which we have
obtained 1in the previous sections. In §4.2; the normal electron
Green's function in the case of J=0 has been examined. For the
analytically solvable case given by the DOS (4.2.18), the Green's
function and the momentum distribution of the quasi-particles are
explicitly obtained. We found there that the Fermi-surface does
not appear as can be seen in Fig.4.1, because of the damping of
the quasi-particle resulting from the scattering and resonance
broadening corrections.

However, in 8§4.3, we have found that the magnetic suscep-
tibility changes from the Curie-Weiss law of the localized spin
system to a Pauli-paramagnetism-like behaviour of the itinerant
electrons with slight hole-doping, while the quasi-particle
damping is still large, which indicates the localized character
of the quasi-particles. This seems to well-reproduce the
properties of the high-Tc superconductors in which the magnetic
susceptibility seems to be that of itinerant electrons,ls’ls)
while the 1localized character of the electrons is indicated by

13)

the photo-emission studies. We have also proved the Curie-

Weiss form of the susceptibility in the n,-0 limit of the t-J

h
model, within the mean field approximation on Hex'

In 8§4.4, we have calculated the AF transition temperatures
and the staggered spin moment in the half-filled and the non-
half-filled band case. At the half-filling our result coincides

with the mean-field result of the AF Heisenberg model, reproduc-

ing the 1localized nature of electrons. In the non-half-filled
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band case, the spin moment shrinks and the AF phase is found to
vanish at a very small hole concentration, in which feature the
t-J model also seems to well-reproduce the high~Tc
superconductors.

Thus our approximation would be appropriate for describing
the 1localized properties of the electrons and its change to the
itinerant character, and the t-J model seems to describe the
essential character of the high-Tc superconductors, at least with
respect to the magnetic properties. Thus in §4.5 we have treated
the correlation effect on the superconductivity through the first
term of eq.(4.1.1) within the same approximation while the ex-
change term HeX in eq.(4.1.1) is treated within the mean field
approximation, and have calculated the superconducting transition
temperatures Tc for the s- and d-symmetry cases, with the results
of Figs.4.6~4.8. However, although the mean field approximation
on HeX is sufficient to illustrate the above argument, it might
be 1insufficient for the quantitative arguments of TAF and Tc for
the high—TC superconductors, since in such compounds the inter-
Cuoz-plane coupling of J may be so weak that our resulting TAF
and TC should be modified into smaller values. Moreover it is
worthwhile noting that the superconductive quasi-long-range order
remains below its Kosterlitz-Thouless temperature while the TAF
vanishes, 1in two dimensions. Therefore it is naturally expected
that the suppression of TAF is much larger than that of Tc’ in
the case 1in which the quasi-two-dimensionality is taken into
account with an appropriate treatment. Thus we should be careful
if we apply our theory to the quasi-two-dimensional systems such

as high—Tc superconductors.
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NeVertheless our theory gives the following qualitative
results for the superconductivity in the t-J model:
(1) The superconductivity is found to be very difficult to obtain
in the strong coupling Hubbard model (J<<t), and near the half-
filled band case, at least except below the very low temperatures
mentioned above. The former result is consistent with the recent

8)

quantum simulation by Imada and that of our perturbation theory

in weak coupling Hubbard model.23)

(2) The d-wave superconductivity is more favourable than the s-
wave superconductivity in the t-J model of the rather large J
case, or the strong coupling Hubbard model with some additional
n.n. attractive interaction. This is because in the s-symmetry
pairing case the damping of the quasi-particle seriously sup-
presses the superconductivity through the vertex correction which
vanishes by symmetry in the d-wave pairing case. Such a tendency
of the t-J model 1is consistent with the recent result of the
variational Monte-Carlo studies by Yokoyama and Shiba.g)

Lastly we calculated Green's function and critical J value
for the antiferromagnetism for various DOS. We verified that the
details of the band structure are smeared out due to the damping
of the quasi-particle and does not affect the physical

properties. As a result, for example, we found that the magnetic

susceptibility does not diverge.
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Appendix 4.A

Now we show the solution of fi which satisfies that

k

= i 4.A.1
L fix % Yy Ti1 * Agx - for k71, ( )
. - _l - -l = _ip'R d
in terms of f.,., G=N g(L ep) , ep_Ee kl t.,, L an
=y e iPRy First we define the Fourier transform
ip . ik
k(#1)
“lps e 1P°Ry o - From ed.(4.A.1), we have
k(#1)
: °p -ipR; , Ay -ip-Ry v ¢ ¢ 1
ip L -¢e_ ¢ Loy L - ¢ e i1ti1 L - €
P P 1 P
(4.A.2)
On the other hand
_ _1 ip'R. e 3
§ ti1fi; = N Y e i epfip . (4.A.3)
p
From eq.(4.A.2) and (4.A.3), we have
ip-R, -
e i€ A,
- 1 -1 pip
% tiafyy = %3 v 75 VL S ' (4.4.4)

with Q=L-1/G. Inserting eq.(4.A.4) to eq.(4.A.2), we obtain the

solution:

f. = (-1+ 1 ) e 1P°R; &

G-(L — ii
ip ( ep)
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IP Ry ¢ A,
1 = _ _1 -ip-R, ..-1 p _1p
S [A —_— i N X' T |

(4.A.5)

Appendix 4.B

Now we prove the expansion (4.3.19) and (4.3.20) in the

vicinity of n=1. First we note that
1 [0 <]
> = - T J’d&) (l-f(w—ﬂ)) Im[Gd(Q‘F)] . (4.B.1)
-

Since ——%~Im[Ga(w—u)] and 1-f(e-u) is positive definite and G (w-
#) does not depend on u, u becomes very large in comparison with

the band width in the 1limit of n=1, so that 1-f(eo-u) =

elo#)8, (0=M)B,1) yanishes. In the vicinity of this limit f(e-

#) can be expanded as f(a—u)=l-e(w—“)ﬁ+ «e+. Thus it is found

uB

that e is order of (1-n) from (4.B.1).

Equation (4.3.19) 1is easily derived from above argument.
(0-u) 8

Substituting flow-u)=1-e +0((1-n)?) 1into eq.(4.3.11) and

partially integrating the right-hand-side of it, we have

A=-8 -%— de eB(O-H1) 1116(w-u)] = B(1-n) + 0((1-n)2) . (4.B.2)

Lastly we prove eq.(4.3.20). We rewrite eq.(4.3.18) as

-183-



81 (a) = 2 6(0) + L G(a)? Bt (48.3)
n n - l:-l’l &
n
and eq.(4.3.12) as
2 R
B = —— [ - - I?z f(o) Im G(w) ]
- —%— I?z f(w-u) Im[ﬁ(l)(w—u) - —%— G(w-u) ] . (4.B.4)

This first term gives 1 from eq.(4.3.8). On the other hand, since
Im[---] in the second term is 0(1-n) from eq.(4.B.3), we put f(w-

#)=1 there, correctly up to 0(1-n) in eq.(4.B.4). Thus the second

term of (4.B.4) is

< Jae s M e - 5ot |

I

- L ng [ 8 (z) - -2 6(z) 1, (4.B.5)

where C 1is the infinite circle of the complex z space, and the
function ﬁ(l)(z) and G(z) is analytic continuation to the upper
(lower) half plane of the retarded (advanced) Green's function
5(1)(m) and G(e) ( ﬁ(l)(m)* and G(w)* ), respectively. Here we
used the fact that the function 5(1)(2) and G(z) are analytic

except on the real axis. Noting that

G(z) — —%— , as |z|»e0 , (4.B.6)

we have
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6 (2) - 2 6(z) - - 2L, o(1-m)?) . (4.B.7)

Substituting this into eq.(4.B.5) and integrating it explicitly,

we obtain

B=1- 2(1-n) + o((1-n)?) . (4.B.8)
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Chapter 5.

Summary and Discussion

In this thesis, we have studied the electron systems with
short range repulsive interaction in the weak coupling regime and
in the strong coupling one, and discussed the relation to the
quasi-one-dimensional (quasi-1D) organic superconductors and the
copper oxide superconductors. We have examined the magnetism and
superconductivity of the weak coupling Hubbard model in chapter 2
and 3, and those of the strong coupling Hubbard model and the t-J
model in chapter 4. Our method used for the weak coupling model
is a perturbation theory, and that for the strong coupling model
is a decoupling scheme of the equation of motion of Green's
function in real space. The specific features of the quasi-2D and
the quasi-1D band structure have been examined in chapter 2 and
3, respectively.

The antiferromagnetic (AF) susceptibility of the half-filled
non-interacting electron system on the square lattice exhibits
the square logarithmic behaviour at low temperatures reflecting
the 1logarithmic van Hove singularity and the perfect nesting of
the Fermi-surface, as was shown in chapter 2. This means the
strong correlation exists in the half-filled electron systems on
a square lattice, even in the weakly interacting systems. Thus

even a weak repulsive interaction causes an AF instability at low
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temperatures and leads to the SDW state. Moreover uniform suscep-
tibility exhibits logarithmic enhancement at half-filling as the
temperature is lowered. However, such an enhancement of the AF
susceptibility and uniform susceptibility are sensitively sup-
pressed by slight hole-doping. Then the SDW phase vanishes and
the uniform susceptibility becomes Pauli-paramagnetic.

Such crossover is seen in the strong coupling Hubbard model
and t-J model as well. At half-filling, the susceptibility obeys
the Curie-Weiss 1law reflecting the localized nature of the
electrons. However the susceptibility becomes to show the tem-
perature dependence like Pauli-susceptibility with slightly hole-
doping. The doped holes move around and destroy the localized AF
long-range-order very effectively. The sensitive but continuous
change of the susceptibility and the antiferromagnetism have been
shown in chapter 4. This behaviour is similar to that of the SDW,
although their mechanisms are different. 1In the intermediate
coupling regime, the AF transition temperature takes its maximum,
but it would vanish with hole-doping.

The antiferromagnetism is also suppressed by introducing
some Kkind of frustration such as next-nearest-neighbour (n.n.n.)
hopping in the quasi-2D case. In itinerant electron systems, the
n.n.n. hopping distorts the Fermi-surface and worsens the Fermi-
surface nesting. As a result the AF correlation is suppressed. On
the other hand, in the 1localized electron system, the n.n.n.
hopping 1leads to the kinetic or super exchange interaction be-
tween spins on the n.n.n. sites, which is nothing but the
frustration to the antiferromagnetism. The sensitive suppression

of the SDW due to the n.n.n. hopping has been shown in chapter 2.
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The SDW in the quasi-1D organic compounds is also suppressed by
the distortion of the Fermi-surface with the pressure increased,
as many authérs argued. The same effect for the localized an-
tiferromagnetism has not been demonstrated in this thesis, but it
is quite plausible from the above arguments.

These similar behaviours of the magnetic quantities in the
weak and the strong coupling regime seem to suggest the con-
tinuous change of the magnetic properties 1in intermediate
coupling regime in the Hubbard model. However near half-filling,
this problem is closely related to the Mott-Hubbard transition,
which occurs in the intermediate coupling regime. The quantum
simulation study by Hirsch supports the continuous change of the
AF transition temperature.l)

After the suppression of the AF transition, AF correlations
remain strong and may lead to an attractive interaction between
the electrons on the different sublattice sites, as many authors

argued.2’3’4)

The 1long-range nature of the AF correlation leads
to the same natﬁre of the attractive interaction. Such nature
enhances the superconductivity remarkably in the itinerant
electron case, because in this case the contribution from the
electrons near the Fermi-surface is large. We have examined this
behaviour 1in quasi-1D systems in chapter 3, and obtained the the
phase diagram which qualitatively agrees with that of the organic
superconductors, by taking into account the long-range SDW fluc-
tuations along the conductive chains. On the other hand, in the

localized electron case, in which the Fermi-liquid description

breaks down, or even in the Fermi-liquid systems in which the
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Fermi-jump is small, the major contribution to the superconduc-
tivity would arise from the n.n. interaction, such as the kinetic
exchange interaction J in the t-J model. This case was studied in
chapter 4, and it was found that the superconductivity is dif-
ficult to appear 1in the Hubbard model with only n.n. hopping,
consistently with the result of the quantum simulation by Imada

et al.9:6)

Moreover, we found that the d-wave pairing is more
favourable than the s-wave pairing in the t-J model, consistently
with the result of the variational Monte-Carlo by Yokoyama et
a1.7)

Futhermore we have studied the superconductivity in the weak
coupling 2D Hubbard model in chapter 2. We have obtained the
vanishingly small but finite transition temperature of d-wave
superconductivity in the model with only n.n. hopping. However it
was also found that the n.n.n. hopping integral does not only
suppress the SDW transition but also enhances the superconduc-
tivity remarkably. Such tendency was also found in recent quantum
simulation study by dos Santos,s) in which they have studied the
2D Hubbard model with n.n. and n.n.n. hoppings, and showed that
the d-wave pairing susceptibility enhances as temperature is
lowered and becomes larger than that in the non-interacting case.
On the other hand, in the strong coupling Hubbard model, we have
not examined the same effect of the n.n.n. hopping. However we
conjecture that the n.n.n. hopping may enhance the superconduc-

tivity in the strong coupling case as well, from the above

argument on the relation of the weak and the strong coupling

model.
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Lastly we should comment on the low-dimensionality. We have
examined the specific features of the quasi-low-dimensional band
structures 1in chapter 2 and 3. However, in our present theories,
we have assumed the three dimensionality enough to suppress the
thermal fluctuations and to make the long-range-ordering
possible. Such an assumption may be invalid for the copper oxide
superconductors, which may have extremely small three dimensional
coupling between CuO2 planes.g) In this case the quasi-long-range
order 1is formed, and then the exchange of low energy spin-wave
like excitation may lead attractive 1interaction between

electrons. This remains for future studies.

-192-



References 5.

J.E.Hirsch: Phys.Rev.B 35(1987)1851; Phys.Rev.Lett. 51(1983)

1900; Phys.Rev.B 31(1985)4403.

. V.J.Emery: Synth.Met.13(1986)21.

D.J.Scalapino, E.Loh,Jr., and J.E.Hirsch: Phys.Rev.B34(1986)
8190; Phys.Rev. B35(1987)6694.

K.Miyake, S.Schmitt-Rink, and C.M.Varma: Phys.Rev.B 34(1986)
6554.

M.Imada: J.Phys.Soc.Jpn. 56(1987)3793.

. M.Imada and Y.Hatsugai: J.Phys.Soc.Jpn. 58(1989)3752.

H.Yokoyama and H.Shiba: J.Phys.Soc.Jpn. 57(1988)2482.
R.R.dos Santos: Phys. Rev. B 39(1989)7259; See also K.Saito
and S.Takada: J.Phys.Soc.Jpn. 58(1989)783.

S.Chakravaty, B.I.Halperin, and D.R.Nelson: Phys.Rev.Lett.
60(1988)1057.

-193-



