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Introduction
How should differential operators be constructed ?

Although this problem seems to be rather abrupt, it may
be seen in the following stream: Given a differential (or
psuedo-differential) operator, we usually study its analytic
properties (spectrum, signature, index etc.), and then we

take out the inherent geometrical characters and invariants.

L:differential operators
-—-= analytic properties
[ spectrum, index, signature, etc ]

~—--= geometry

This may be the standard method of studying the dif-
ferential equations. However, many geometers may have a
sort of mysterious for this procedure. For explaining this,
we shall try to place the converse to the above way. After
obtaining the construction of the differential operator L
through a specific way using the geometrical properties, as
a result, we may naturally hold the analytic properties for

L.

Now, to put our plan into the concrete shape, we will

borrow an idea in the quantum mechanics. The first and sim-
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plest problem of quantization concerns the kinematic rela-
tionships between the classical and quantum domains. When
we learn quantum mechanics, we are told to forget our naive,
classical idea of particles traveling on trajectories. That
Is, to consider that a particle might be here at one time
invite contradiction and confusion. So, at the quantum
level, the states of a physical system should be represented
by the rays in a Hilbert space H and the observables by the
symmetric operators Q on H, which in the limiting classical
description, the quantum states and observables correspond-

ing to the classical ones.

The idea of Feynman's path integral has been known as
the one of the most powerful tool to treat the quantization
problem. Though it seems hard to be justified rigorously,
the expression of the path integral have a interesting form
at the geometrical point of view. Also, it is felt to fit
our beginning problem, even if we leave the physical prob-

lem.

Therefore, throughout of this paper, we shall general-
ize the idea of Feynman's path integral more generally and
gives a rigorous meaning for it. For future interests,

there may be many applications, for examples, to

(i) Geometrical constructions of the fundamental solutions
for the evolutional equations ( parabolic, hyperbolic,

or Schrodinger equations ).



(ii) The invariant theory for the non-compact Riemannian

manifolds.

~

(iii)Construction problems of operators from variational

problems ( including the field equations ).

The best explanation of the path integrals may be found
in Feynman's paper [10]. In contrasting with the classical
mechanics which can be described as the variational formula
using a Lagrangian functlon L(x,x) considered as a function
on the tangent bundle TM over the configuration space M, the
probability amplitude at a time t corresponding to the quan-

tized one, for two points in M, is given by

(1) G(t;x,y)= s ASIXOT
x(
x(0)=y,x(t)=x

t
S(x(+)) = JOL<x(z>.k<z)>dz :

This is a sum over paths, or histories, of eks[*()] with a
all paths satisfying x(0)=y,x(t)=x, entering the sum. Here
the symbol £ is used to avoid giving the impression that we
have a bona fide measure. Also, we remark that the parameter
X in (1) will be considered mainly for the case

x<0 or »=i/h, heR.

Now, we shall explain Feynman's original idea of the
path integrals for the free particles. Consider the

Euclidean n-space R" and the Lagrangian

vi



(2) L(x,x) = 5ix|%: TR" ===~ R .

Then, the action integral (the least action) corresponding

to (2) is given by

t
Iy — |2

(3) S(t,x,y) = inf J L(x(z),x(z))dz = X

x{)

x{0)=y,x(t)=x

Set the following integral transformation, for t>0,

m

: _ 1 .2 AS({t,x,y), PRI ¢
(4)  HOF(X) = (5mp) fRne f(y)dy , feCo(R™),
where Rex<0. Then, (4) has the following properties :
(1) H(t) is a bounded linear operator on L%(R") for

each t>0.

Cii)  Uim IIH(E)f=Fll = 0 for feL?(RM),
£-0+

(IT1) H{t+s)F(x) = H(t)H(s)F(x) for FeL2(R").

n._
(iv) 3%H(t)f(x)it:o = 3of(x) , o =% i=1 azi
X

As we obtain the above properties , Feynman's original idea
is to consider (1) as a sort of ‘Riemannian integration’' in

L2-scheme which may be described as follows :

(P.1) Construct the (approximate) operator H(t) on a
Hilbert space for sufficiently small times t>0 using

the given classical mechanics.
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(P.2) lterate H(t) with respect to the division of t

and make an evolutional operator.

(P.3) Compute the infinitesimal generator to get the

“observable®.

Distincting the above example (4), we cannot expect the
evolutional property in general. So, the main investigation
is to study the convergence for (P.2). Namely, denoting
H(t;x,y) the kernel function of H(t) in (P.2), we consider
the following iterated integral : For a division & of the

interval [0,t],

(5) H(ast;x,y)

- j...jH<§;x,y]>'--H<§,YN_1,y>dv1"'dYN-1

If (5) convergences as N> ® , then we may define its limit

by (1).

Putting the above idea in our mind, we will investigate
the convergence in the sense of (5) for the various integral

transformation which arises from the classical mechanics.

In chapter |, we generalize the above example and
reformulate the path integral in a curved space, though ih_1
is replaced by -—-x(x>0). Here, we consider a certain
integral transformation on a given Riemannian manifold ,
which is given by the action integral determined by the geo-

desics. This method is based on the variational problem and

gives a rigorous meaning to the Feynman's original idea. We
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can extend our situation to the one which acts on the sec-
tions of the vector bundles, and it gives the construction
of the differential operator acting on systems. In the
frame work of this investigation, we give the construction
of the fundamental solutions for a heat type equation on the
non-compact Riemannian manifold and the asymptotic estimate
for this. Also, we remark +that this procedure can be

extended to the general Lagrangian function.

The other description of the classical mechanics s

’

given by the Hamiltonian formulation, where the action
integral ' can be also defined as an analogue to the Lagran-
gian mechanics. in chapter i, we discuss the integral
transformation which uses the action defined by the given
Hamiltonian. Here, we restrict our concerns to the case
that the configuration space is compact and the degree of
Hamiltonian 1is less than one. Our integral transformation
considered here can be described as a Fourier ihtegral
operator. Since the group of invertible Fourier integral
operator of order zero is a infinite dimensional Lie group
having a nice property which fits to our-scheme (Cf 2.1

Theorem B), we can prove the product formula for the above

integral transformation as a kernel function.
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Chapter | Path integral formulation from the Lagran-

gian mechanics.

1.0 Preliminaries and the statement of results

in this chapter, we give a rigorous meaning to the con-
vergence of path integral in a non-compact curved space.
Though comparing with Feynman's original idea, we consider
the case where 1h™! is replaced by -x(»>0). Namely, we con-
sidered a certain integral transformations (to those which
acts on sections of a general vector bundle), associated
with a given Lagranglan function of the form;
L(x,x) = gij(x)iikj, where G = (gij(x)) defines a Riemannian
metric, and show the convergence of its product integral in

a refined topology (pointwise convergence of the kernel

function).

Let (M,g) be a smooth, Riemannian m-manifold and let E
be a vector bundle over M with a linear connection D. Sup-
pose that E is furnished with an inner product preserved by
D, which is denoted by <, >y at each fiber E , xeM. We
extend the action of D to tensor fields on M with values in
E. Using the connection D, we can consider the parallel
translation along the minimal geodesic » from y to x, which

maps an element of Ey to that of Ex’ We denote It by P(x,y).

Denote by CO(M) the set of all continuous sections of E

with the compact support and by C (E) that of all smooth



<O

sections of E. Put C °(E) = C_(E) C"(E). For ¢eC (E), we

define the L%-norm as

1

el 5 = [[M<§(x),§(x)>xdug(x)]2 ,

L

(E)
where dug(x) denotes the canonical measure defined by the

Riemannian metric g. We denote by LQ(E) the Hilbert space

of sections ¢ of E such that li¢l] 5 (e,
Le(E)

Now, consider the following integral transformation in

LZ(E) with t-parameters s,t, Oss<t, and x>0 (Cf. [18]),

(0.1) H{x;t,s)g(x)

- (an—1)-m/zj p(t,s:%,y) [exp=xS(t,six,y)]
M .

xP(x,y)e(VDdug(y)-

Loy

for ¢(x)eC O(E) . Here S(t,s;x,y)=d2(x,y)/(2(t-s)), where

d{x,y) is the distance function and o(t,s;x,y) is defined by

(G.2) e{t,s;x,y)

- id . o 1/2
= fdet[-a,3 S(t,s:x,y)1/ug(X)ug(¥)| .

where ug(x)={det (gij(x))]v2 ((0.2) is assumed to be well-
defined here. in fact, it is guaranteed under the assump-

tion (A.0) which is stated in §2. Cf. [5] and [18]).



The kernel function of H(x;t,s) will be denoted by
H{x;t,s;x,y) which may be considered as a section on £ E;
the vector bundle over MxM whose fiber at (x,y)eMxM is given

by the tensor product E X E;.

We consider the product integral for the above operator

N
interval [0,t] for given t>0 and any positive integer N,

(0.1). Namely, 1tet ¢, be the N-equal subdivision of the

LS TR CRERS PR . by = /Nt

We set

(0.3) H(A;aNlt)

=H(x;t,tN_1)H(x;tN_1,tN_z) <o H(Zt,0),

and denote by H(A;GN[t;X,Y) the kernel function of (0.5).

Iin order to state our results, we introduce the follow-

ing assumptions :

(A.0) (M,g) is a connected, simply connected, complete

Riemannian manifold and has non-positive sectional cur-

vature.

(A.1) There exists a positive constant k such that

—t

for any multi-index a = (ai”"’am)’ O<ija|<3 and xeM,

e h .
(0.4) IR O s Ky
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where v and R?jk(x) is the Riemannian connection and the

curvature tensor defined by g respectively.

(A.2) There exists a positive constant k2 such that
the curvature 2-form @ of D satisfies, for Osja|=3, and

XeM

- - S
(0.5) D Q(x);x £ k2

We can state the main theorem In chapter 1.

Theorem A. Let (M,g) be a m-dimensional Riemannian

manifold and £ be a vector bundle over M which satisfy

(A.0)-(A.2). Fix T>0 arbitrarily. Then, the limit

(0.6) H(x;t;x,y) = limH(A;aNJt;X,Y)
N e

exists as an section of E E for any t, O<KLT. Moreover,
H(x;t;x,y) gives a fundamental solution of the following

parabolic equation :

(0.7) [(53 = X AJHOG Eix,Y) = 0,

Lim H{x;t;x,y) = o k(x)xld

t=0+ v

where
(0.8) A, = (1/2)8D - (1/12)Scal (x) oD = -p*p

X

b* Is the adjoint operator of D with respect to the inner



_5..
product on LZ(E) and Scalg(x) Is the scalar curvature.

On the other hand, in the course of the proof of the
main theorem, we can get the asymptotic behavior of
H(x;t,s;x,y) as t=0, which is a partial extension of results

in Molchanov [25] who treated the case where E=MxC.

Corollary 0.1. Under the same assumption as in the

main theorem, the fundamental solutions H(x;t,s;x,y) of

(0.7) satisfies, for any €, 0<e< 1/2,

(0.9) [H(x; t5x,y)
-1,..,-m/2 ; 2 P
- (2nx 1) e (X, y) [exp=x(d™(x,¥)/20)IP(X.¥) [y oy
-{m-3)
< 't 2 {exp—xc**dz(x,y)/Zt] ,

for any x,yeM, with some positive constant #»', where

"= 126, o(x,y) = |det (dExp) ), | '/?

tial mapping defined by g and |

» Exp, is the exponen-

%(x,y) is the norm in

X .
Ex Ey (Cf. & 2 ).



1.1 Cutline of the proof of Theorem A and related

remarks.

In this section, we state our plan to prove the main
theorem in s§1.0. First, in §1.3, we show the following

basic properties of H(x;t,s) defined by (0.1).

Proposition 1.1 Assume (A.0)-(A.2). On fixing T>0

arbitrarily, the following properties hold for 0=<s<t<T:

(a) The integral transformation H(x;t,s) defines a bounded

linear operator in LZ(E).

tevs L°(E)
iimHH(x;t,s)s - ¢l 9 = 0.
s+t L°(E)

Let 55(L2(E)) be the set of all bounded linear opera-
tors on L2(E) and we introduce the topology by the operator
norm in it. By Proposition 1.1, H(x;t,0) can be considered
as a curve in zﬁ(LZ(E)) starting from the identity operator.
Now, we may consider the convergence of the product integral
of H(x;t,0) in  (L?(E)). So, we prove the following in s &

1.4-1.5, which is one of the key results :

Theorem 1.2. Under the same assumptions as in Proposi-

tion 1.1, the following properties hold :

(a) There exists a positive constant C0=CO(A;T) such

that



(1.1) IHOG 47, 8) = HOGE+HE E)H( 7, s)¢ll
L°(E)

scol (tt-)3/2 — ¢¥/2 4 (t*-s)%21en

L=(E)
for any geLz(E) and 0O<s<t"<t+t°«T.
(b) There exists a Llimit H{x; t) = limH(A;t,tN_
N-e

e HOGEL0), t= (UM, J=1, L N1, i (L2(E))

for any t>0. Therefore, {H(x;’t)}tzo with H(»x;0) = the

identity operator, is a C0 semi-group in L2(E).

(c) The infinitesimal generator xTA of H(xt) s

given by

(1.2) AT (Ag) (x)
= [(52HOG )6 (x) 4]

= x"[(i/z)ag - (1/12)scal ;(x) 1€ (X)

Theorem 1.2 shows that the product integral of (0.6)
determines a fundamental solution of the heat type equation
(0.8) in the distribution sense. To show the reguiarity, we
construct a kernel function by another method which is
rather standard in the theory of partial differential equa-
tion (Cf. Friedman [12]). Using this estimate, we prove the

main theorem. Namely, we show in §1.7 the following :

Theorem 1.3. Under the same assumptions as in Proposi-

tion 1.1, we can construct a fundamental solution H(x;1)



with the following estimate : For any ¢, O<£<%, there exists

a positive constant »= »(x;T,¢) which dose not depend on IN
such that

(1.3) IH{x;x,y) - H(A;GNit:X,Y)I(X,y)

-(m-3)
2

<rt N—1/2[exp(—xe(4)(d2(X,Y)/2t))] ,

where 6(4)= 1-4e and H(x;t;x,y) is the kernel function of

H(x;t).

Remark 1. We cannot prove the convergence of
H(x;oyltsx,y) directly, which may be still an interesting

problem.

For the sake of our computations, we shall introduce
the normal coordinate. Given xeM, let U be a local coordi-
nate neighborhood of x with the coordinate (x1,...,xm) such

that E!U is trivialized as E,,,=UxF, where F is the standard

§)
fiber of E. Taking a frame f:eid {ea(x)} of EiU (i.e. ea(x)
depends smoothly on xeU and {ea(x)} forms a basis on F for
any xeuU.

Denote by FJS(X) the component of DJ= D(_éﬁ)' There-
ax
fore, for each §€Cw(E), its covariant derivative Dji can be

expressed by

. a _ . a a.b
(1.4) ng (x) = ajg (x) + iji {(x)



Also, for any w691(E). a E-valued 1-form, writting by

w(X)= wi(x)dxi, ¥ = w?(x)ea(x), we have

A a _ a kK a, s a b
(].5) D—ji/)l(X) = 3j¢i(X) - Pjiibk(X) - PJ*'D(X)V“(X) ’

where Psk

Ji is the Christoffel symbol of g. Moreover, the

local coordinate expression of the covariant derivatives for

any tensor field with values in E is obtained similarly.

D

Using these notations, a~ can be expressed as

+ TR0 103

oPe?(x) = gM(x) a0 ;

i + 1200150

for any ¢eC (E).
Finally, we give some remarks about the main theorem.

Remark 2. (i) Trivial bundle, E = MxR (or MxC). A sec-

tion of the trivial bundle can be identified with a function

on M and C(E)=C(M). Taking the trivial connection, 1i.e.
P(x,y) = id. , we get a integral transformation acting for

functions on M, which is considered in [18]. So, in this

case, the limit

limJ j LLWGHOG T, 11X 2 Yo H(xt,,0525,Y)
N=cI MIM N=-1 N-1 i 1

d”g(zN—i)"'d”g(zi)

exists as a function on MxM for fixed t, 0<t<T, under the
assumption (A.1). We may denote its limit by
> [exp—xS{x(:))] (Ct. Feynman [11]) ,

xC)
x(0)=y,x(t)=x



_]O_

(ii) The bundle of p-forms, E = APT*M. In this bundle ,

we can induce the inner product < , >« and the connection D

canonically by g. Namely, for

l‘ i

§(x)=¢ . (x)dx A...adx P
1 p
i i
n(x)=n, [ (x)dx AL ..adX Pec(Ey,
el
we define
P i
191
(1.6) C(x),m(x)>, =g (x)...g P p(x)<i1 TSI
p p
and
(1.7) D .¢ . {x)
J|1 '_jp
= 3., L (xy - r-? (X)), L (x) -
J o Jiy el
k )
IR PP I

Then, we get the operator Ax = —(1/2)AL - (1/12)Scalg(x)
along the path-integral approach : Here a s the rough
Laplacian defined by g (Cf. [21]), and it is given by

{1.8) INER . (x)
L '1""p
= a8 C(x) + sP R, Mxye, o (x)
H> i |p r=1 r o .m. Ip
=s R Vix)e, (X)),
m> Kk i by JU...V (p
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where REJ(X) and Rijkh(x) are the component of the Ricci
tensor and the curvature tensor of g respectively, and oy

denotes the Hodge-de Rham operator.

(iil) As a generalization of (ii), our method con-
structs the fundamental solution of the parabolic equation

whose infinitesimal generator is the following :
(a) The Lichnerowicz Laplacian acting on tensor fields.

(b) The spinorial Laplacian of Lichnerowicz when M admits a

spinorial structure. (Cf. [21])



1.2 Preliminaries for classical action and the parallel

translation.

Throughout the rest of chapter, notations and defini-
tions concerning the differential geometry will follow the
references [5] and [18]. We shall use weli-known facts in

{5],[6] and s2 of [18] without proof.

Let (M,g) be a Riemannian manifold. First, we recall a
geodesic, i.e. a curve »(u) which satisfies the following

differential equation,

dx-j dxk

i, 21 .
: 5 ) ,
(2.1) o XZKEL = 42X éul + ij(X(U)) i du = O
-u du
where E% denotes the covariant derivative along a curve.

Given x ¢ M, we define a mapping Exp, from the tangent space
TXM into M by EpruX = x(u), where x(u) satisfies (2.1) with
the initial condition x(0) = x and %ﬁ(O) =X e TM. Under
the assumptions (A.1)-(A.2), ExpX gives a diffeomorphism
from TXM into M for each point x ¢ M. Denote by d(x,y) the
Riemannian distance between x and y. Then, the function
S(t,s;x,y) defined by (1.3) 1is glven by 5S(t,s;x,y) =
d?(x,y)
2t )
For each X ¢ TM, identifying TX(TXM} with Ty » we may
induce naturally the scalar product in TX(TXM). Now, for
fixed xe¢ M, we denote by (dExp—i) the differential mapping

X Y,

of Exp;1 at y. Define also the function e(x,y) on MxM by
o(x,y) = jdetg(dExpx)Xj, Exp X =y (Cf. See [4]). Then, the



._13._
function #(t,s;x,y) defined by (1.5) can be written by

(2.2)] St six,y)=(t-s) ™ 2,(x,y),

~1
where po(Xx,y) = e(x,y')2 .

Recall the alternative representation of the function

[ ) )

p(X,Y), or e(x,y). Let Jy(u),...,Jd (u)} be a (m-1)-Jacobi
L J

field with the initial conditions
(i) Ji(0)=0 (i=2,...,m)

(1) {JI(O)}1=2 o forms an orthonormal basis of the

orthogonal complement of x(0) in M.

Then, we have

1

(2.3) o(xX,y) = r _deet((Ji(r),JJ(r))yH, r=d(x,y).

Remark that the assumption (A.3) implies that the any sec-
tional curvature 1is bounded below by some constant —k2
(k>0). Therefore, by the well-known Rauch comparison

theorem, we get (Cf. [5] and [6])

Lemma 2.1. Assume that (A.0)-(A.Z2). Let J(u) be a

Jacobi fleld along geodesic x{(u) with arclength parameter

and satisfying the initial conditions J(0)=0, J(0)=0. Then,
(i) There exists a positive constant k such that

(2.4) A, = 1(rl, s (SLEEDy 0y,



(i1) Particularly, we have

(2.5) 1 s o(x,y) s (SRR KMy (=172,
(2.5") (3inh kry=(m=1)/2 o ix,y) s 1.

Kr

Denote by SM and S M the unit sphere bundle over M and
the fibre of SM at x respectively. By the same proof as in

Lemma 4.1 of [18], we have

Lemma 2.2 Notations and assumptions being as in Lemma

2.1, there exists a positive constant k1 such that
(2.86) HJ(r)Hy s (kyexp kyr)id(o)l r=d(x,y).
Moreover, we have
(2.7) e (X, ¥)li s kyexp kyr, r=d(x,v),
. _d - _ _
where o = ar G(X,prx rw), Exp ro =y, o ¢ SXM.
Now, we give the estimate of higher order derivatives

of the functions o(X,y):

Proposition 2.3. Assume that (M,g) satisfies (A.0)-

(A.2). Then, there exists a positive constant ko

(2.8) e (x,Y)Il s kgexp kor,  r=d(x,y),

for Osjs<s and for any X,y € M.

To give the estimate for vép(x,y), we heed several

steps as below. From now on, we assume that x is fixed in M.
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By the assumptions (A.0)-(A.2), we deduce that the exponen-
tial mapping is a diffeomorphism from T .M onto M. Thus, we
can introduce the normal coordinate around x. (Cf. See [18]
for the precise notation). By the identification
M= S, MxR, we shall use the normal polar coordinate (r,»),
where w = (wz,....wm) in a local coordinate of SxM =
{YeT M; liYli, = 1} and re R_. Choosing an orthonormal vec-
tors {ez(w),...,em(w)}, at a point (r,w), which is perpen-
dicular to radial axis, we may assume that {ez(w),...,em(w)}
depends smoothly on « locally. (For example, we consider a
neighborhood of « in SxM and orthonormal basis with « as a

first vector, and we will deform by using the Gram-Schmit

orthogonalization). We put , for a = 2,...,m,

€
\ 1
(2.9) Ka(u,e1) = Expxu(w + (F~)ea(w)) ,
for sufficiently small €45 Since (2) is an geodesic varia-
3K
tion, 552 is a Jacobi field along the curve Ka(u,£1) for

1
each fixed €, and has the initial conditions

aK €4

(2.10) F‘?‘(o,o) =0 %Ka(o,q) = wt(z)e (0)

c|w

'H
Theretfore, for sufficiently small €15

(G (GE K (0 eIl = 0

Also, we can apply Lemma 2.1 and Lemma 2.2, we have

144

K1exp kr ,

IIA

L3 "
“EE?Ka(u’O)“x(u)



(2.11)

W 9 43 . e )
”5U§E;Ka(u’0)“x(u) < Kiexp kr ,
with some constants Ki and k.
Let us use the indices A,B,C,... =1,2, ... ,m and
a,b,c,... =2,3, ... ,m . Denote by g,5 the component of

Riemannian metric g with respect to the coordinate (r,w)

i.e.
[g (r"‘)) » 9 (r'ﬂﬂ)).I
(2.12) Ipg = | 1 1a |
lo_(rw) . gy (r.e)]
where

= g44(r,o) = g(r’w)((dixpx)rww,(dEpr)rww) =1,

gia(rw) = g 4(r,0)

I(r,e) ((FEXP) L o, (dEXP ) e, (w))
= 0,

(2.13) gab(r,w)

I(r, o) LLIEXP ) L e (w), (dEXP, ) e (w)).

Lemma 2.5. Assume that (M,g) satisfies (A‘O)—{A.i).

Then, there exists a positive constant K2 such that, for

2 < a,b =m,
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1955 (@) = Koexp Kyr,

(2.14) iargab(r,w)i < Kzexp Kzr,

1A

13,9,p(r )i = Kyexp Ky,

Proof. By estimate of Jacobi field in Lemma 2.3, we
obtain the first inequality of (2.14). For the second one

of (2.14), we obtain It by the following computation

d \ d, 3 3 ..
9.5 (re) = (5K 3K )
drZab du 351 a|c‘=0 361 bi61=0 X(U);u=r
b 3 3
= (=2 22K y K )
ou 3¢, aif1=0 3ey bi€1=0 x(r)
d o d .
+( K | . K )'
e, a}61=0 su 3¢, bi€1=0 x(r)

Thus, we have the second one of (2.14) by (2.11). To obtain

the last one of (2.14), we take a curve w(62) in SXM for

sufficiently small ¢,, and w(ey) = w + gye (o),
c=2,...,m. Consider

€4 v .
(2.15) K (u,e,,65) = Exp ulw(ey) + (Freg(ele;))).

Then, Ka(u,s1,£2) is also geodesic variation in two parame-

ters ¢, ¢, and has the following initial conditions :

- d d -
(2.16) EE;Ka(D’51’€2) 0, EEEKa(O'CI’SZ) = 0,

o

2K (0,6,,6,) = T e_(wle))

ou 361 a

(2.17)
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g’@ga—x(051,e)_w(c)+( )5 e(w(e))

€2

C

By differentiating Jacobi equation with respect to €4 Or &5,

and putting €1=52=0, we get

(2.18) Fa,i,j(u)

62 2 2 .

= 2n (U 0 0) + R(X(U) EE—EE_K (u'oio))x(u)
0€.0& . dU J

U

where Fa,i,j(u) is the function of R, VR, S%FKa’ E%EKG,
6’2 62 . .

auael“a’ ouaeJ“ , and we have the following estimate, by

Lemma 2.1 and Lemma 2.2,

(2.19) HF, o ()l

a,i, ] k2 exp k2 u

x{u)
Therefore, we get by variation of constant

2
w0 ’
(2.20)  liggisgk, (1,0, 0)1

< kéexp ku ,
J

x{u)

with some positive constants k; and k. Then, in accordance

of w = waea, w = (w2,...,wm) as the coordinate of w. using
(2.20) and
(2.21) 3.9, (rw) = 59g_, (r,w(e))

) cab' "’ d£2 ab* 2 \62=0

32 8
= Ge,peKalm 0,00 g Kp (0,005 1)
o ‘62
+ (8€1Ka(r’0’0)’362551Kb(r’0’0))X(r)’
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we get (7) by Lemma 2.2.

Remark. In the above proof, we shall use the inverse
matrix of fundamental solution of Jacobi equation, because
we use the method of variation of constant. To get this, we
use the estimate of Jacobi field J(s) with the initial con-
dition J(0)=0, J(0)=0, which is also exponetial grouwth at
infinity (Cf. See also Cheeger-Ebin [6]). Also, we use that

2
[ o K

the Initial value of U 5633€j 3

is bounded, which may be

assumed by the appropriately choosing of ea(w), a=2, ... ,m.

Lemma 2.6. Given any xe¢M, take a normal polor coord-

ninate (r,«) around x. Then, there exists a positive con-

*

stant k;z such that the following estimates holds

N ~ . AB . L2 I 4 LI A _ . .
(2.22) g7 (ro)| = kg exp kg r, r=d(x,y) ,
(2.23) jrgc(r,w)ig k3 exp ké r ,r=d(x,vy)

where gAB(r,w) and Péc(r,w) are the inverse matrix of

9=(gag(r,«) and the Christofel symbol with respect to the

coordinate (r,wz,...,wm) respectively.

Moreover, for the function pe(x,y) defined by (2.5),

there exists a positive constant k3 such that for any x,yeM,
(2.24) |vyp(x,y)zyg k ;exp k3r , r=d(x,y)

Proof. We shall only show (2.24). Recalll po(X,y) =

4

1
e(x,y) 2 and e(x,y)z1 by (A.0)-(A.1). Take normal polar
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coordinate (r,w) around x and use the same notation as in

(2.9), we have
o (x,Yy)

. 9 9 :
= }det[g(r’w)(a€1Ka(r,0) , 362Kb(r,O)).Y]a,b=2,...,m|

=|det (g, (r.«)) ],

Differentiating directly and applying Lemma 2.5 and (2.23),

we get the dlisired results.

Now, let w2,...,wm be the coordinates on part of SXM.
We denote by DP*V the differnetiatl operator , v=(v2,...,vm)
, v v
(3242 22
dw 3w

To obtain Proposition 2.3, we only get the following :

Proposition 2.7. Under the same assumptions and nota-

tions as in Proposition 2.3, there exists a positive con-

stant ko such that

(2.25) HDp’vJa(r,w)HX(r)g kgexp kgr

for p+jv|=L.

Differentiating the Jacobi equation and putting
Jy(u,e) = gg;Ka(u,O), we get
(2.28) DUV (u,e) + R(U,eIDTVI (Ue) = Fy o (Ue)
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where

Fa,t,v(r’“)

= Z Dp»V'R Dq’V"Ja(U,o}).

p+g+|v' |+ |v7|=t+|v]|+1
p+|v'|st+]v]
g+|v"|st+]|v| '

11

Jg is the 2nd derivative with respect to u , and R(u,w)X(u)

= R(x(u),X(u))x(u). By Lemma 2.6, we have

(2.27y 0PV R(u,0) |

s [ky exp kg rlz anJRH

p+iv' s

for some constant ké

Now, we show (2.25) by induction. Recall that (2.25)
holds for p+|v|~=1 . Assume that (2.25) holds for p+|v|sL-1.
by (2.27), we have

_HFa,t,v(u’w)” < ko exp ko u

.

for some positive constant k0 . Then, by the variation of
constant for (2.26), we get the estimate (2.27) for

p+iv| = L (in this case, we choose J_(0,») and J, (0,0) to

be bounded ).

Remark. Berard [3] has similar estimate for eo(x,y) for

the case that M is a compact manifold without conjugate

points.
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Next, we shall recall the parallel transformation of a
section of the vector bundle E over M. Given a curve x(z)
on M such that x(s) =y, x(t) = x (s<t), and c¢¢ As(M),
define s(z)¢ Ai(z)(M) by
(2.28) 2E(z) = 0,  FT(0)=¢(y).

Now, we write the above one by €(z) = Pg(v;x(z))é(y). Since
(2.28) the first order ordinary differential equation, the
solution of (2.28) exists uniquely for given curve x(z).
Particularly, if 7C(z) be a classical path which attains the
infimum of (1.3), we can denote by PE(V;rC)s(y) Z(t). On the
other hand, consider also a geodesic x(u)= ExpX uX, where
Exp, = v, and the parallel transport Pé(V;x(u))g(y) for
x(u). Now, easily we get Pg(v;rc) = Pé(v;x(u)) If we assume
that (M,g) satisfies (A.0)-(A.1). Moreover, we write

Pé(A;X(U)) by P(x,y) for simplicity .

Let E x Ex be a vector bundle over MxM, with the fibre

EXXE;. Since each vector spaces Ex and E; equips with inner
product ( , )X {(or ( , )y), we give the inner product on
each fibre E_ x EX. This is, given T(x,y) = £(x) x ¢(y)*

X y "
7(X,y) = n(x) x »(y)", we define

(2.29)  (FOGYLT00Y) (=00, 000 e () ™)

and
i

: > ' . , Z
2'30 ’ = ’ ’S ’ { K
( ) TEOGYIT g yy =YD s (YD) T oy



The following lemma is easily obtained (Cf. See Berger

(41).

Lemma 2.8. Assume (A.0)-(A.2). Then, we get the fol-

lowing
(1) P(x,y)eC(E ®EY),

(il1) For ££CZ(E), we have HP(x,y)i(y)Hx=Hs(y)Hy and

hP(x,y)H(x’y)=m=dIm M.
(iil) P(x,x)= 1d., the identity operator on E,
. . _
(ivy (v, d7(X,y), 7 P(X,y)), = 0,

where v is canonically extended Riemannian connection by g

with respect to x-variables on E x EX.

Lemma 2.9. Assume (A.0)-(A.1). Then, we have

(2.31) VPG ey = 00 8 POGYY oy = 0.
(2.32) vyP(x,y;)yzx = 0, AXP(x,y)|X:y = 0.

Proof. Let {ea}z=] be an orthonormal basis at Ey,
where dim Ey = p. Extend {e_} to a tocal frmame field so
that they are parallel. Take a normal coordinate

(Y1,...,Ym) at y and denote by rjg the coefficients of D.

By putting €(z) = Ea(z)ea(r(z)), (2.8) can be written as

e a, ,_ ‘d?"j‘:'b
+ ij(rﬁz))de

dz

(2.33) (z) = 0
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So, using the Taylor expansion, we can write $(z) by
(2.34) 2(z)
= T%0) + (F%9)'(0)z
£ (17203022 + o(z)

’

with respect to z, we get

(2.35)  (¥9)'(0) = - rjg(y)YJéb(Y) :

(2.36) (£3)"(0)
a Uy, J a cojY.
= - [auPJb(y)Y Y- + ch(y’rubY 1

. , i _ , I N | s
where ExpyY = X, because rjk(y) = 0, where rjk is the Chris

toffel symbol of g. Substituting (2.35) and (2.38) into

(2.34) and putting z=1, we have

(2.37) (1) = PR,y
- (53 _p @ J
= [Ob Fjb(Y)Y
. a Uy, J a. C,yyUyJ
- (1/2){aurjb(y)Y Y2 + rjcrub(y){ Y

+o(Y3ey)

where Pg(x,y) is the component of P(x,y) with respect to
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{ea}. Recall

a .
(2.38) Dx’ij(x,y)

_ a ,0\6C; Ve
= aYJPb(x,y) + PJC(Y)Pb(x,y) ,ExpyY X .

Combining (2.37) and (2.38), we get the first inequality of

(2.31). Similarly, we have

P ; a
(2.39) Dy kPx. PR (X Y)

- a c
akajpb(x,y) + aerC(Y)Pb(x,y)

a C a . ~C
+ ch(y)akpb(X'Y) + rkc(Y)aij(x’Y)

"

a,; a
- (/2) 13y (y) + 3Ty ply)
5w Bs o4 C a a
+ Zrkc(y)ij(Y) + akrjb<y) + ij(Y)

+  O(Y)

which proves the second equality of (2.32). For ({(2.14),

remark that for any xeM and vy,z<V, we have

(2.40) P{x,z)P(z,y) = P(x,x)=id.

Differentiating (2.40) covariantly and using Lemma 2.3 (i)

and (2.31), we obtain (2.32).
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Lastly, we give the estimate of higher order deriva-

tives of P(x,y).

Proposition 2.5. Let (M,g) satisfies (A.1)-(A.3).

Then, there exists a positive constant KO such that

A . 3 , iy
(2.41) “pr(X’Y)”<x,y) s Ky exp Kyr ,  r=d(x,y),
for 0= j=38.

Remark. The norm || is the extended one canoni-

H(x,y)
cally for tensor field. Hereafter, we use the same notation

without explaining it.

To obtain the above proposition, we first get the fol-

lowing

Lemma 2.6. There exists a positive constant K, such

that the following estimates hold :

HvXP(x.y)H(X’y) £ K1exp K1r ,

(2.42) o B ‘

Proof. Let { e1(y),...,em(y)} be an orthonormal basis
of T M and put Ei(x,y) = P(x,y)e (V). Take

Y
{fj(x),...,fm(x)} as an orthonormal basis of T M also. Let

, 1
xj(e1) be a C

. » - . d . .
—curve such that gj(O)_x, (EE;)Xj(O) = Tj(x),
j=1, ... ,m. Then, we get

g

Ut 05y T Bey S e =0

€
Consider the variation Kj(u,ei) = Expyu(w+(Fl)¥j(Y)), where
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Exp, re = x and ?j(y) is the parallel transport along the
geodesic from x to y, i.e. ?j(y) = P(x’y)fj(x). Also, we

define gj(u,et)eEKj(u’Cj), j=1, ... ,m by

5% ¢ . (u,

(3]
—
g
i
o
me
.
c
o
—
S
i

ej<y)

for each flixed €4- In terms of local coordinates, ?j(u,£1) =
i i
i

3 . (u,e.)dx acccadx P, we get
j,ii,...,i i
P
(2.43) 5U3CT<J(u,ei)
= Sesad Uy = R(G0K 5K T jlu, )
vE ou J su - j 661 J e
R(ﬁuK_j E‘ETK )§ (U ' )
where
(H(X7Y)§ )' H
.J “i’ »1p
hy, j~ . Kk~
=R, . XJ¢.. . 4+ ... + R.. . X.Ye.. . o,
Jk!1 le...lp JKIph J Ji1...lp_lh
vl @ gk, 3 .
X=X (Eij), Y=Y (Eif . Remark that
J k
UL T
”(EUK (0, el = nw+(——)? ()il s i+
and (+2-)K . is a Jacobl field along x(u)= Exp,uw with
51" Ji s 2p %
<
) . . 5 : a __l
the initial conditions (EET)KJ(D’O) = 0, bU€1K .(0,06) e



Then, we get by Lemma 2.4,

(2.44) a5e jie, =gl
4 1
= ZKIR“X(U> 5UK_J<U O)“X(U) 56 —K (U 0)[1X(U)H€_j‘ilX(U)
< QK; exp K; u
with some constant K; >0. Thus, we have
(2.45) o P,y = 2 T (x,y)i2
) X ’ i, =1 fj(x) i X

s 2K1! exp Ky " r, r=d(x,y)

For the second inequality of (2.42) is easily obtained by
(2.46).

Proof of Proposition 2.5. Now, use the same notations

as in the proof of Lemma A.6. To prove (2.412.41), we shall

succed to differentiate (2.10) covariantly. Let
X(5~ ""Et) be a C1—curve such that X{0, ... ,0)=0, and
. ax _ » :

EZ*(O ..,0) = fji(x), ast(O,...,O) = fjt(x). Define
§j(0,€1,...,€t) samely as in (23), by

. 6;’ N . _ ~ i_ - "
(2.47) Eﬁ‘j(u'cl""’ct) = 0, gj(O,ci,...,et) eJ(y)
along

. . Ay, . x

KJ(U’ET’ €4 = Expy u[w+(F)(el?i1(y;+...+etrit(y))}.
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Differentiating (26) covariantly, we have by Ricci identity,

-t

; o 6 ~
(2.49) %m\j(u,o,...,ﬁ)

= t Fp_ Oy, 0. X s OBy .
= ZV R[(bu)(i)&) KJ I£J=O](6€) ﬁj(U,O,...,O)
t i [N avid‘
wnere |«|st, ju|st, and (EZ) = = o+ Where
o 1 t
(061) ...(O‘Ct)
a=(«y,...,2¢.).  Then, we get inductively, if the estimate

So, we get by (2.49),

- ,6‘0(’;- o, . — o
(2.50)  li(55) sJ(F,O,...,O)H < K' exp K', r,|ajst, r=d(x,y).

Thus, we have easily the Proposition 2.5.



1.3 Basic properties of H{(x;t,s)

Recall the operator H{(x;t,s) in (1.2). Using the nota-

tion as in §2, it can be written by the following

(3.1) H{x;t,s)g(x)

2 \
= <znx‘1)"m/2fz<t,s;x,y> exp AGAZL PO, y)e(y)du (),

for §€CO(E).

in this section, we shall give some basic properties of
(3.1), wusing the result in 2. First, we prove the part (a)

in Theorem A.

Proposition 3.1. Let us assume that (M,g) satisfies

(A.0)-(A.2) and we Fix T>0 arbitrary. Then, the operator
H(x;t,s) is stable, that is, there exists a positive con-
stant CD = CO(A;T) such that

(3.2) iH(xE, )l 5, = e lig .
L7(E) L™ (E)

tor 0=s<t<T and g¢ CZ(E)
Before proving above, we recall the useful lemma in
[18]. Set the function h(x;t,s;x,y) by

-m/ 2~

h(x;t,s;x,y) = (2nx'1) Sit,s:%,Y) e AS(t,s5x,y)

By using Proposition 2.3 and the same computation as in Pro-

position 2.1 in [18], we get
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Lemma 3.2. Under the same assumptions as in Proposi-

¥

tion 3.1, there exists a positive constant CG = CO (x;T)

such that

J IR(x;t,s:x,y)ilde_(y) = (l+Cé (t-s)),
(3.3) M E

j hix;t,s;x,y)llde (X)) = (1+C0 (t-s)).
M g

Proof of Proposition 3.1. The kernel function

H(x;t,s:%,Y) of H(x;t,s) 1is given by H(x;t,s;x,y) =

R(x;t,s;x,y)P(X,y). Thus, for ce¢ C;(E), we have

(3.4) H(N t, s)e (X))l = j Rxst, 553, y)IP(X, y) s (V)i dug ()
M

= JMh(A;t,s;x.y)Hi(Y)Mydﬂg(Y),

because of Lemma 2.1. Thus, by Schwartz' inequality and

Lemma 3.2, we have

IHOxt, )8 ()11

1 1
= [J F(x:t,s;x,y)zﬁ(x;t,ss;x,y)zﬁs(y)Hydug(y)}2
M

= (T+Cé (t-S))J Fint, 5%, y)iie(y)15dua ().
M Yy g
Then, we get by Fubini's theorem,
HH{X"t,s)¢ll 'y = HH(A,t,S,)i(X)HXdﬁg(X).
LT(E) M
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A

L, .. o, . . G 2.
(1+Cq \t—SJ)JM[JMh(A.t,s,x,y>dug(X)u>(y>hy]dug(y)

2
L

A

(1+cy (t-s)) e s
(E)

which implies (4.2).~

Next, we shall study the behavior of H(x;t,s) as t-s

and s~t. Namely, we have

Proposition 8.3. Under the same assumptions as in Pro-

position 4.1, we have for Uss<t«<T,

tyvs LT(E)

(3.5) :
Lim “H(D\;t,S)§—§H 2 =0 ’
s+t L™(E)

for any ce¢ LZ(E). Therefore, for fixed sz0, putting H(x;s,s)
= the identity transformation, we have the mapping from te
[s,T] to H{x;t,s)¢e LZ(E), strongly continuous in t for each

e LZ(E). Also, similar statement in s as above holds.

Proof. By proposition 3.1, it is sufficient to prove
(3.5) for each c<e¢ CS(E). We define a cut off function xe¢
CS(E). as x(x) = 1 if d(x,suppg)s?2 and =0 if

d(X,supp¢)z3. We shall show the foliowing

(3.6) lim HHj(x;t,s)é—gH 5 =0, Llim HHT(x;t,s)g—sh 5 = 0,
tevs L(E) s+t LT(E)
(3.7) tim HHz(x;t,s)gﬂ'z =0, Llim HHZ(A;t.S)iﬂ s = 0,

tes LE(E) s+t LE(E)
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where H,(x;t,s)e(x)=x(x)H(x;t,8)¢(X) and Hz(A;t.S)i(X)

= (1=x(X))H(x;t,s)s(x).

Proof of (3.6). Putting y=Exp, re , w¢ S M, we get

wnd

]

) §(X) +€](X;rw) ’
1
2

1 + e‘(x;rw) ,

where £(x,y) = P(x,y)s(y) €E_. Then, by mean value theorem,
we have

r r

o

31(X;ru)

J ——e (x x(u))du

91(x;rw)

r 1
JO(%)G (x,x{u)) (g5 )e«x x(u)jdu,

where x(u)= EXDXUw, So, we get
Hl(x;t,s)u(x)
-1

= x(x)(2nx (x;r

where H1(x;rw)=€1(x;rw)+61(x;rw)g(x;rw). Using Lemma 2.2,

(i1) and Proposition 2.4, we get

I (xredii s 11T, (xsre)lly + fle (x5 re)lixIE(x;re)ily

jg = §(x,x(u))du=j0 (vyg(x,x(u),k(u))x(u) du

-m/2 yq,.m-1 r
) m/ JOJS M[S(X) + H w)ir exp —f?drd“



< C; r exp Kri sup HV§HX + sup ileli_l

x&eM XEM X

r = d(x,y), for some constant K » O. Remarking (an_])-m/2

0

Py
[ I m_1rm_1 e /2% rd0 = 1, we get
0-S
lH, (28, 8)e(x) = s(x)Il

< c; x(x) vol(s™ 1y (t-s) '/ 2sup [1ve ], + 181 ]
x&M

2 ;
xj rm exp[—A%¥ + K(t—s)1/2r]dr.
0

Therefore, for O=ss<t4T, there exists a constant

C, = C{(x;T,i) depending on the support of ¢ such that

(3.8)  iH{(xit,she - sll ,  sC(t-s) '/ Zsuplitveli + ligi ],
L2(E) xeM

which implies (3.6).

Proof of (3.7). Define other cut off function «(y) as

e(y) = 1 on d(y,suppe)=st and = 0 on d(x,supp¢)z3/2. Remark

that «(y)s(y) = ¢(y) and we have

Ho (25T, s)e(x) = J F(x;t,s;x,y)P(x,y)ﬁ(y)dug<y),

M

where

F(ast,s;X,Y)

2
TYyTM/200 - (30 e(y)S(t,six, y)exp ~[29 XYy

= (2nx 2(t-s)
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Since F{t,s;x,y)=0 for d(x,y)s1/2, we have F(t,s;x,y) =

(2na” 1y "M/ 2

(1 = x(x)) e(y)e(x,y) exp ~xd?(x,y), where o(x,y)
is defined by (2.5) for small Oss<t. Moreover, [F(t,s;x,y)]
-0, as tvs s+t for each (x,y) ¢ MxM. So, we have , by
Lesbegue’'s dominated convergence and the similar argument in

the proof of Proposition 3.1, we get (3.7). Then, we get

Proposition 3.3.

For later use, we shall give the some properties about
H(x;t,s;x,y). Denote by H{(x;t,s;x,y) the kernel functicn of
H(x;t,s), which 'can be consider as the section of
E X eX. Let ¢(z,y) be a mapping from [s,t] x M to E
such that for each fixed ¢(z,y) is the section of E, which

will be called a parametrized section of E. Given, any vy

e M, denote by # the Interior product between Ey and E;
M

Lemma 3.4 Let <¢{z,y) be a continuous, bounded

parametrized section defined for ze [s,t], 0ss<t<T and put,

e(t,z;x) = J H{x;t,s;x,y)#e(z,y)du (y) , s<z<it
M Y 9

Then, we have

¢ 35__ _a_ . g . &
(3.3) 3¢ = JmatH(x,t,s,x,y)tﬁ(z,y) dug(Y) ,

, Je o] oduract arvw wige
(3.10) vxg = JM VXH(A,t,b,X,y)§3(Z,y) dﬂg(Y) ,

(3.11) Lim ¢(t,z,x) = €(s;%x) , lim ¢{t,z,x)=¢(t,x)
tzzvs szz+t
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Proof is obvious by the same computation as in Proposi-

tion 3.3. So, we omit here.

Similartly, let g*(z,x) be a mapping from [s,t] x M to
. - %
E¥ such that for each fixed g*(z,y) is a section of E’

which is called also a parametrized section of Ex. Now, we

have

~

Lemma 3.5. For the parametrized section e¥ of Ex, we

have,

(3.12) Lim eX(z,5x)#H(x, t,8:%,y)du (X) = e (t,y)
s<z<t,s+t"M X 9

(3.13) Lim g*(z,x)#H(A,t,s;x,y)dug(x) = ¢*(s,y)

s<z<t,tevs' M X
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1.4 Convergence of the product integral in the opera-

tor norm.

In this section, we shall prove the parts (c¢) and (d)
in Theorem A. Take T»>0 arbitrary and fixed it. We divide a

ciosed interval [s,t], Oss<t<T into subintervals,i.e.

(4.1) o G STto<t L. <ty

tj=s+(li%:§l), j=0,....N
And we define the operator

(4.2) H(A;JN|t,s) = H{x;t,t ..H(x;tj,s)

N-i)"

Now, we prove the following , which is {(d) in Theorem

Proposition 4.1. Assume that (M,g) satisfies (A.1)-
0

(A.3). Then, there exists a C- semi-group H(x;t) t>0, on

LZ(E) such that, for any t>0, we have

(4.3) LimiH(x;t) - H(A;UN)” 2 =0,
N e (L™(E))

where | |l is the operator norm in the space of all

(L))
bounded operators on LZ(E). Moreover, we have

(4.4) HOxt) = HOualt, 00l < CotN"Zexp c,t!/?

(L™(E))

for some constant C2 = Cz(x;T).

To prove the above propcsition, we need several steps

as below. First, recall the kernel function H(x;t,s;x,y) of
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H(x;t,s) ,i.e.

(4.5) H{x;t,s,x,Y)

-1.-m/

= (zta 1 S 9Y)px,y) .

2Z(t,s;x,y) e

By the direct computation using the Hamilton-Jacobl equation
for S(t,s;x,y) and the continuity equation for o(t,s;Xx,y),

(Cf. Lemma 1.1 and Lemma 1.5 in [i8]), we have the following

Lemma 4.2 The above H(x;t,s;x,y) satisfies the follow-

ing
(4.8) 52 H(xt, 55X, Y)
N e
= (—7—)Akak:t,S,ny)
-1 .
- [—(37—)Ayp(t,x,;x,y) e—hs(t’s'x’Y)P(x,Y)-
-25(t,s;%x,y) .
+ e (Vyp(t,s,x,y),vyP(x,y))y
L L AS(t,8:%,Y)
- (et x,5x,y) e T A P(x,y) T
and
(4.7) 32 H(x; t,s:%x,Y)

_ N TP .
= =(557) aH(xt,s5%,Y)
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_ —1 -~ . -— & . 4 .
+ (2na ) m/z[(ﬁg—)axp(t.x,;x,y) eSS V)b ix vy,

_St’;r ~ 4
- e AS{t,s;X% Y)(vyp(t,s;x,y),vXP(x,y))X

s (B)Bt,x, 5%, y) e LSV, px,y)y],
because of Lemma 2.3 (iv).
For ce CB(E). and Us s<t'<t, we may write
(4.8) H(x;t+t',s)e(X) = H(x, t+t', t"H(x;t ' 5)e(x)

= J H(xt,t',sx,y)e(y)du (y),
M g

where

H{x;t,t',s;X,Y)

= H(x;t+t7,s;%,Y)

- J H(A;t+t‘,t':x,z)#H(x;t',s;z,x)dﬂg(z),
M Z

where # means that the interior product between E; and Ez.
z

Since H(a;t,s;x,y) has a singularity at t=s, we define, for

positive ¢,

(4.9) HE (it s5%,y)
t -
= -~ j ag J H(k;t+t~’d;X,Z)#H(A;J,s,x;z,y)dﬂg(y),
sS+¢€ M z
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which satisfies limHE(A;t,t‘,s;x,y)=H(x;t,t‘,s;x,y) for any
£=0

(t,t',s,x,y) and x=y. Exchanging Eg and the integral in

(4.9), we have, by Lemma 4.1,

(4.10) HE (a3, t7,s5%,y)

t,
= - [ (ZRA-1(t+t'—6))_m/2(2nx—1(o—s))—m/z
S+é&

G2

xZT J h?(x;t,t',s;x,y,z)du (z)do
=1 M g

(4.11) hT(xt,t,six,y,2)

-1
= (B5)[6,e0(x,2) - 8,(y,2)]

xexp —x[S({t+t',o,%x,2)+S(0,s,2,Y)]IP(X,2)#P(z,Y)
Z

(4.12) hs(x;t,t',s,0,%,y,2)

-1
= (P5-)exp —A[S(t+t',o;x,2)+5(0,552,y)]

x(vzp(x,z),vZP(x,z))ZP<z,y)§P(x,2)

- P\X,Z)z(vzp(y,z),VZ(Y,Z))Z

(4.13) ha(xit,t',s,05x,y,2)
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= exp -A[S(t+t',0;x,2)+5(0,8;2,Y)]e(X,2)p{2,Y)

x[a_P(x,z2)#P(z,y) - P(x,2)#a_P(z,y)],
z 5 i

Because of Lemma 2.3,(iii), where p{(x,y) Iis ‘defined in

(2.9).

lemma 4.4. For arbitrary T>0, there exists a positive

constant C'2=C’2(x;T) such that

Lim j_ IHE (R €, £, 85%, y) i

du_(Yy)
ev0 9

(x,Y)

< C, [(t+t'-5)3/ 243/ 2, (v 2y3/2y |
(4.14)
lim J HHS(A;t.t*,s;x,y)H dug(x)
0 M (x,y)
s ¢, [(t+t' =53 243/ 2 (v 5y3/2y.
Consider each term h?(x;t,t',s,a;x,y,z), i=1,2,3, in

(4.11)-¢(4.13). First, remark

la,e(X,2)-0,0(Y,2) |

< iazp(x,z)-azp(x,z)izzxi + ]Azp(x,z)iz:x—azp(y,z)izzyi

+ iAzp(sz)-azp(Ysz) iz:y

Recall that ap(x,z)lz:x=(%)3calg(x) (Cf. See [5] and [18]).
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Taking a geodesic x(u)=EprUw‘, 2=Expxrw‘, w'e S M, we have

r
inzp(x,z)~ap(x,z)izzx| < [O(VZAzp(x,x(u)),x(u))x(u)du

A

kr' exp kr* , r’=d(x,z)

6,0(X,2) 1, =8 (Y, 2) = (g)|5cal (x)-Scal (¥) |

2=y
< kr exp kr , r=d(x,y).
Thus, we have

Hazp(x,z)—azp(y,z)ﬂ

< k3[d(x,z) exp kd(x,z) + d(y,z) exp kd(y,z)]
for some constants k3 and k. Therefore, we get

. . &€ X L. . .
(4'15) Hn’i(kyt,t .S,U-X,Y,Z)Il(x’y)
-1

=( 5

ym Kald(x,z)exp kd(x,z) + d(y,z)exp kd(y,2z)]
e—A[S(t+t',o;x,z)+S(a,s;z,y)]

X

for some constant k3 >0. Then, we have

3 i1, € P v .3 i PRV
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< (27 (trtT=0)) ™ 2 (2na7  (5-0)) ™ 2k,

X[I J d(x,z) e MS(t+t -0ix,2)+5(0,s52,y)+kd(y,2)]
M M

dug(z)dug(y)
and
(4.18) I J d(y,z) exp ~A[S(t+t'=0;x,2)+5(0, 55%,2)+kd(X,2)]
MM
dug(z)dug(y)

S C, (T (t+t =0) /2 + (o-s) /7]

because of 5(t,s;x,z)= dz(x,z)/Z(t—s). Therefore, we get
4.17 J He(xt,t7,s:%X,y) |
( ) MJ (x $iX,¥) 1y, yydug(Y)

S

< C;(x,T)J [(t+t'=a) /2 4+ (o-s)/
&

2]da
Taking a limit as &v0, we get the first inequality of

(4.14). By a similar computation, we have the Lemma 4.3. ~

For fixed t,t',s and XeM, we see that

HHa(t,t’,s;x,y)H is bounded away by integral function

(X,¥)
s

in y-variables, 2?21 J hi(x;t,t',s,a;x,y,z)dug(z)da. Thus,
0

using Lebesgue’s dominated convergence theorem and a.e.,

ligHC(x;t,t‘,s,o;x,y) = H{x;t,t's,0:X,Y)
Foled
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we have
(4.18) I HHE (a5, 87, s,0:%, V)
M

(x,y)H#glY)

04[(t+t‘—3)3/2—t3/2+(t’—5)3/2]

Ii,

because of Lemma 4.3. By the same computation, we have

dug(x)

Y ) (
(4.19) IMHH (x3t,t ,s,o,x,y)ﬂ(x,y)

C l(trt =) 3/ 2-t3/24 (1 5y 372

13}

So , we have shown (c) of Theorem A, by using (4.18)-(4.18),
and the same computation as In the proof of Proposition 3.1,

i.e.

Lemma 4.4. For any t,t',s, Oss<t ' <i<T, t+t'<KT and <&

LZ(E), we have

(4.20) TR t+E",8)e = HOxGE',8)ell
LE(E)

3/2 3/2

-t 2jien

gczi(t+t’—s)
L

+ (t'-s)
(E)

Lemma 4.5. Under the same assumptions as in Proposi-

tion 5.1, H(x;oy|t,0) forms a Caushy sequence in §3(L2(E))
in operator norm, uniformly in te ([0,T), where R (LZEY)
denotes the space of bounded linear operator in LZ(E) with
the operator norm. Moreover, its Llimit H(x;t) satisfies

estimate (4.4)
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Proof. We follow the similar computations as in
3.6 in [18], which now we recall it. As
(4.21) H{x;t,s) - H(A;JNIt,S)
oo GN=T
=z gHOxit, b,
- H({x;t H(x;t i
AR LA S RIS 2
xH{x; tJ o0 j_3) ...... H(k;tj,D)
we get
HH(x; t,s)s - H(A;aNit,s)sﬂ 5
Le(E)
3
£ [C, exp C (t—s)][(t—s)2 + (N- 1)(L£—§l) il
1 0 2
LE(E)
by Lemma 4.4 and Proposition 3.1. Also, we have for

integers N,M,

HH(x; TN it,0)¢ — H(>; N 1t,0)¢l]
NM L2(E)

< z?; HIH(x; t L———l—)) H(x (NNJ)t (N-J 1)t)]

L emma

large

(N-j- 1)t (N- J 2t
N

x[H{x; ) = H(x oyl

xH(x8 W =d=20t o5 ‘)
Lo(

(N-j-1)t (N-j-2)¢
’ N

)]
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1 1

w

< [C1 exp COT]tz(N 2 + (NM) ZHSH 5
LT(E)

by (4.21). Therefore, we get

(4.22) HH(x;0,1t,0)¢ — H{x;0,|t,0)ell
' N M LZ(E)

A

HH(X; 0, 11,0)8 = H{x;o,,,]t,0) ¢
M NM LZ(E)

+ HH(x;0,it,0)¢ = H(x;o,, i t,0)]l
M MN ! L2(E)

+ IH(x;0,,.,1t,0)s - H(A;aNtt,O)iﬂ

NM LL(E)
Thus, {H(k;dNit,O)}N is a Caushy sequence uniformly in

t ¢ [t,T), in the operator norm. Therefore it converges to

a limit H(x;t). Letting M tend to « in (4.22), we get (4.4).

Remark. By a sitight modification of the above proof,
we can generatize Proposition 4.1 for arbitrary subdivision

of [0,t] (Cf. See [13] and [18]).



1.5 Computation of the infinitesimal generator.

It is easily seen that H(x;t) given in g5 is CO -semi

group. Therefore, to finish the proof of Theorem 1.2, we

only compute the infinitesimal generator of H(x;t). Namely,

we get

Proposition 5.1. Assume that (M,g) satisfies (A.0)-

(A.2). then, for any geC;(E), we have

(5.1) =2 H(x 1) (x)
P N A :
[(§>(AL)X - (Tf)SCB\g(X)]H(%,t)s(X)-
where (AL)X is the rough Laplacian, defined by g (Cf. s1).

We shall prepare some lemmas to prove the above.

Lemma 5.2 For any gcCZ(E), we have

3 L bves Y _
FT3 H(A,t)&(x)itzo = EYH(x,t,O)g(x)it=0

Proof. For each N, we have

H{x;t)s (X) - ¢(X)

= [H(x 1) = Hixo ft,0)1e(x) = [H{x;0it,0) = 1]e(x)

for subdivision UNZO=tO< ce <tN=t, tj=jt/N. By proposition

4.1, we remark

1 o
(5.2) HH(x ) — H(xjo|t,0)] < C.t N2 exp C.t1/2,
N LZ(E) a 5
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On the otner hand, we get

H(A;oNit,O)g(x) - £(X)

- Zﬁ;éH(k;t’(N&i ty L H(ns (N-£+l)t’(N§J)t)
xnﬂxﬁNy)t,(N%_”t)—IIQX)
Therefore, we have
(5.3) (1) [H(r oy 1£,0) = 1](x)
- z?;gH(x;t,iﬂﬁlli)...H(x;(N‘£+1)t,(N§1)t)
X(%)[%(H(A;(N&j)t,(Nf§—1)t) = 1)s(x)
N

Since H{x;t,(N-j)t/N)s(x)»¢(x) as N»= by Lemma 4.4, we get

a . & — e L
ﬁ H(A'GNIt’O)S(X)'}t?—'O— \N)LJ Oath(x t 0) (X)‘t G

= —Sn(- ¢
= atH(A't’O)‘(X)it=O
Combining with (5.2) and (5.3), we get Lemma 6.2 . ~
To prove Proposition 5.1, we only prove the following:

Proposition 5.3. Under the same assumptions as in Pro-

position 5.1, we have for any ¢¢ CZ(E) and xe M,

(5.4) Hint,0)e(x) — ¢(x) = ta ‘As({x) + tG(t;¢)

where Ag(x) = [(1/2)(AL)X - (1;12)Scalg(x)]s(x) and G(t;e¢)
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satisfies

{5.5) LimiG(t; e 5 = 0.
t~0 Lo{E)

Proof. Recall (4.6), we get by using integration by parts,

-1
(5.6) FEH(GE,0)8(x) = (Fg )R E,0)8 8 (X)

=‘A—1(2ﬂk_1t)_m/zj exp —AS(t,05%,y) Q(X,¥)e(y)dug(y)
M

where

(5.7) Q(x,y)

1
-§Ayp(x,y)P(x,y) + (Ayp(x,y).ayp(x.y))y

+ %P(X,'}’)AYP(X,Y)

Therefore, we have , by Lemma 4.4,

(5.8) AG(t;e)
= S2H(xit,0)6(x) - SH(xt,0)6, ¢ (X)
at A 2 L
+ —sscal _(x)¢(x)
12 g e
where
(5.9) G(ts¢)

—

= z[H{»;t,0) = 1]e(x)

~N



- %(2nx‘1t)—m/2j exp —>\S(’c,();x,y)z:‘?‘__‘l gi(x,y)g(yjdug(y)
M

(5.10) 9;(x,y) = [oye(X,y) = o p(X,¥) oy
(5'}1) QZ(X»Y) = (Axp(xvY)’aXp(x’Y))x ’
(5.12) 93(x,¥) = e(X,¥)o, P(X,Y)

Using Proposition 3.3, we have

(5.13) HH(x;t,0)a, €(x) = o, € (X)ii
1
< Ct p [Hoagii_+ligil_1 + o(t;¢),
XEM x X
limo(t;¢) = 0 ,
t-0

Also, by Proposition 2.4 , we have

(5.14) Hgi(x,y)ﬂ < K exp Kd(x,Y) ,i=1,2,3 ,

(X,y)
for any x,yeM with some constant K>0O. Then, we get with
some constant 06 = CG(A;T)

1 1

7 .
5 £ C.t" exp KtTilgil 2

(5.15) Ha(tss )il 6 v
L°(E) L™(E)

t
Remarking H{x;t,0)¢(x) - ¢(Xx) = f (d/do)H(x;t,0)¢(x)do, we
0

have the desired results. -~

By Lemma 5.2 and Proposition 5.3, we get Proposition

5.1. So, throughout s4- §6, we get Theorem A completely.
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Now, for later use in &b, we prepare the following
Let ¢{(z,y) be a parametrized section of E (Cf. Lemma 3.4),

which satisfies the following conditions:
(1) ¢(z,y) is Horder continuous in [s,T)x M.

(11) Given any closed interval [31,t}] [s,T), ¢(z,y) s
bounded on [si,t1]x M.

(iii) For any te [s,T),
t

t
Jsdszﬂs(z,Y)Hydug(y)<+w, JSdZJMne(Z,Y)Hydug(Y)<+“-

Proposition 5.4 Assume that (M,g) satisfies (A.1)-

(A.3). Let <(z,y) be as above with the conditions (i})-
(ii1i). Now, define xi(t,z;x) and ¢{(t,x) by
e(t,z;x) = I H(x;t;x,y)g(z,y)dug(y),
M

T

=(t,x) = j e(t,z;x)dz
s

Then, there exists a positive constant Cg depending only the

closed interval [81,t1] such that

1.0
3 G e 7y —(1-3) y
(5.17) 5t ezl = Cg{t-7) s, srstst,
where ¢ is the Horder exponent of ¢ at (t,x). Also, in

(5.17), the same inequality holds replacing 3% by v, and a.

Moreover, we have
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t
(5.18) A =(t,x) = J At (t,z;x)dz ,
s
t
(5.19) 3% =(t,x) = &(t,x) + I E%g(t,z;x)dz
s

Proof. Given any (t,x) ¢[s,T)xM, let @& be Horder

exponent of ¢ at this point. Take a closed interval {Si’t1]

such that s<s1<t1<T. Then, there exists C8 and 0<s<1 such

that s,<t-v and if jt-z|<s and d(x,y)<s, then,

(5.20) WP (x,y)e(z,y) = e(t, )l

s Cg ({t-zil% + d®(x,y))

and for t-s<z<{t=t’, we have

3

3. ,. , . ,
IM EH(A;t ,T;X,Y)ﬁ(Z,Y)dﬂg(Y) = I] + 12 + Ia,

J.. a§3 H(A:t',z,x,y)[e(z,y)-P(y,x)e(r,x)]dug<y) ,
d(x,y)<v

‘2=I

3 H(A;t',Zix,Y)p(YvX)f(f,x)dﬂg(Y)

| SEHOGE T, y) [e(zy) = POYL.x)e(z,%) Tdug(y)
d(x,y)so

=
1]

Combining with the above , we have that there exists a con-

stant c;, such that



o v D)
H11Hx < 08 (t'-2) ,
(5.21)  lil,il, s Cf ,
40l s Cg(t'-2) ,

which implies if t-s=st’,
P ) . ey - "(1"2‘)
lla—t—,§(?\,t,f:><)|lx < CS (t'-z) ,

¢

with some constant CB . On the other hand, if sigzgt—s,
then t'-zz5>0. Therefore, we see that (3/3t')e{x;t’,z:x) is
uniformly in (t',z,x), because of the form
(3/3t)H{x;t",z,x,y) and (ii). So, we have the estimate
(5.17). Other estimates are obviously obtained. Now, by
assumptions (ii) and (iii) of ¢(t,x), we have, for some con-
stant Cg,

-(1-3)

e 2
Cg<t Z') ’

A

Hvxi(x;t,z;x)HX

o
L2 »
Cqlt-7) , s, szECE,

1A

o, e Ot z5x) il

and

IIA

Hvxg(x;t,z;xjnx CQIM Hs(z,y)Hydug(Y) ,

A

Haxs(k:t,Z;x)Hx CQJM Hg(z,y)Hydug(y) , 5,27t
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t
Remarking J (t—z)'(1'8/2)dz<+m, we can interchange  the
s

operation A and the integration, we have (5.18).

we have (5.19).

Simitarly,

As a direct consequence of Proposition 5.4 and Proposi-

tion 3.4, we have

Corollary 5.5. Let ¢(z,x) and =(z,x) be as in Proposi-

tion 5.4. Then, we have

(5.22) A =(t,x)

t

= ¢(t,x) + J dzI .—?—H(,\;t,s:x.y)s(z.y’)du (y)
s M ot g
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1.6 Construction of the fundamental solution.

To prove Theorem 1.3, we shall construct the fundamen-

tal solution for the following parabolic equation:
. P - o
(5-1)5¥§ = A Ag »€(0,x) = iO(X)E c(8) ,

. _ L
where A = &8~ T3 Scalg(x).

N —

With a slight modification of a standard construction
of a fundamental solution of parabolic equation for func-

tions, we estimate it (Cf. See for example, Friedman [12]).

Now, let (M,g) satisfies the assumptions (A.0)-(A.2).

Also, for simplicity, we denote by L the differential opera-

tor —3% + »"'A. Recall the approximate kernel function of

H(x;t,s), 0= s< t< T, i.e.

H(x;t,s,:X,Y)

= (2 T (tms)) ™2 (%, yy eSS Yy vy
which is considered as the section of E x Ex. Put

(6.2) Jo(x;t,s;x,y)

= LH(xt,s;x,y) = —(3% - A_1A)H(x;t,s;x,y)

Lemma 6.1. For any 0ss<t<T and X,y ¢ M, there exists a

positive constant MO = MO(A;T) such that for any 0<edi, we

have



2
~ ) i . * - 2 "<d gX’Z)
(6.3) uH(A:t.s:x,y)H(x,y) £ My(t-s) " Cexp §(t~s)
and
(6.4) g (At 83,y vy
-m+1 % 2
. d ,
S MgM, (AT, €) (t-s) 2 exp -ik€z<tf§>X)1 '

* 1

e = 1-¢, where M;(x;T,¢) = C7(A;T)e-‘exp kge' T, for some

positive constants 07=C7(A;T) and k3>0.

Proof. By Lemma 2.3, and taking Moz(znx’1)"m/2m1/2, we

get (6.1). Computing (6.1) exactly, we have

Joplrit,six,y)

2
= {2nx’1(t—s)]_m/2exp —A%T%éé%l

LV, (X,y),V P(X,¥)) + p(X,Y)8 P(X,Y)

- 7 03 (X, YIP(X,y) = pScal (x)]

Then, by Proposition 1.4 and 2.6, there exists a positive

constant k4 such that

(6.5) Hdo(x;t,s;x,y)n(x,y)

_ 2
< M0k4(t—s) m/2d(x,y)exp —[5gféég%l—k4d(x,y)]



Now, put the function F(rj) by

xedzgx,x)]

F(r) = r exp [k4r - 7(t-5)

,r>0.

Then, we get

1 1 1
Fir) = (2nc)“(t—s)2[k4(t-s)2 + (ki(t—s)+4xe)]2

i 1

kz(t—s)+4xe]2.

1 2
4

xexp (4dxe) [ki(t—s)+k4(t—s)

1
s G, (mT)e H(t-s)Pexp kg et

for some constant G, = C, (x;T). Substituting (6.6) into

(6.5), we get , for any X,y ¢ M,

(6.7)  Np(xit,soy) Ly

-m+1

MoK ;Co 6—1(t—5) 2 exp k, €T ex —AS*dZ(X’Y)
'oKa®7 P K3 P 72(t-s) -

A

So, by putting M,(x;T.e) = k4c% e"1exp kg T, we get Lemma

6.1. ~

Next, we put

t
(6.8) Jixit,six,y) = J dzf JO(A;t,z:x,2)#J0(A;t,s;z,y)dug(2)
S M z
where # denotes the interior product between EZ and E;.
5 ;

Lemma 6.2. For any 02s<t<T, and x,yecM, there exists a
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positive constant M2=M2(A;T,e) such that, for any 0<e&<1/2,

0<e<i/a,
(6.9) HJ1(x;t,s;x,y)H(x’Y)

-m+2
P

< MSMQ(A:T»€)2(t‘S) B(%:%)

[ xc**dz(x,y)]
2(t-s) :

Xexp

1

where c**=1-2c, and MZ(R;T,€)=07(R;T)6_ exp k3(A)€_1T.

Proof. First, we put

Ji(xit,s,05x,y) = J do(x;t,d;x,z)#JO(A;d,s;z,y)dug(Z)

M z
By the comparison theorem, we have dz(z,y);HZ-Yﬂz, where

2=Expr, and z=EprZ. Thus, we get

HJ1(A;t,s;x,y)H

(X,¥)
ES j i {A;t,o;x.z)ﬁ Hdm(n;o,s52,y)i du(z2)
M 0 {x,z2)"'~0 (z,v)
-m+1 -m+1
< MgM1(A;T)2(t-a) 2 (g-s) 2

XJ exp _[AS*HZHZ + kf*IiZ“YHZ
T M 2(t-o) 2(o-s)

-k 1izlijdz

with some constant k. Since
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izit? |, liz-vi?
2(t-0) 2(o-3)

_ (t-s) . t-0 .2 . T v
= Z(t-0)(o-85) ' ¢ T =y F 2=y
we have
(6.10) HJ1(k;t,s;x,y)H(x,y)
-m+1 -m+1 x .2
, d ’
= MM ST % (t=0) 2 (0-5) 2 exp- (AR,
_ (t- s)xe ! t—d TR
xJTXMexp [Z(t—a)(a 5y 1Z-x gVl kliZil}dZ
iy | [
< MSM1(A;T,€)2(2A_1€* Y2 ko5)™M 2 (4-5)2 (0-35)2
NE d (x y) ,
1
x JT M exp-liiz’ H [Z(t ) (o= S>]2112 iidz*
X AE (t s)
because of 0« o fgi
S

Let Fz(r) be a function on [0,«) defined by

1

. ! 2(t-0)(0-5),7_
Fo(r) = —r +k ]
2 2 ae¥ (t-s)

Then, Fé (ry=0 means that r;—k[2(t g)(o- S)/AE (t- 3)11/2

So, we get
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2 2
L S ¢ , R . K
(6.11) iFyril s k2AEgMems)y o K gy o T
AE (t S) 4NE 4ne
Substituting (6.11) into (6.10), we have
(6.12) IIJ1(>\;t,s;x,y)il(x,y)
1 i m m
2M t- X
s MM ( o) (o- s) {(t-s) (Ae )
1
xvol(S )( )‘exp i£~§lk2
4xe
L% 2 \
N _oae dT(X,Y]) P
XIM exp - 2(t-s) kd{(x,y)]
_m 1 2
Choosing M, = M,(x:T,e)zM, (ae¥) 2 vol(s™ 1) (21)? exp 2,
we have
H\J1(x;tys’z;x,y')”(x’y)
2 Z,. -m/ 2 **dz(x v)
< MOMz(x;T,e) (t-s) exp —[ 5(t=5) ]
t
xJ (t-c0) /% (a-5)"24q
s
-m+2
MEALLES X% .2, ;
/ 3 2 3.3 " d ,
SR LTI AT I e St 2C RN
where ¢*¥ = 1-¢, which gives Lemma 6.2.

Successively, we define



(6.13) J(nitsix,y)

t
= JsdJJM Jo(x;t,o;x,z)ﬁdn_1(A;a,s;z,y)dug(z),

Now, we have the following

Proposition 6.3. We have the following estimate,

any 0Oss<t,7, and x,yeM, for 0<e<%,

(6.14) HJn(x;t,s;x,y)H(x,y)

-m+n+1

£ MOM, (25T, €)M (t-s) 2

, xx .2,
n 3.2+a, _xe dT(X,¥)5
xn,_,B(5:55)exp-| 5 (t=5) I, (nz2)

¥ X
where ¢ = 1-2¢.

Proof. 1t has been shown (6.14) for the case n=1.

assume (6.20) for the case n-iz1. Put for Oss<o<i«<T,

(6.15) Ja(xit,s,05x%,y)

= jM JO(A;t,a;x,z)ﬁJn_](A;a,s;z,y)dug(z).

By (6.5) and the assumption, we have

iiJn(k;t,s,d;x,y)H(x’y)

—m+ 1 -m+n-1

-1, Z -1.,3.a+2
SMS 1(t—cr) 2 (o-3) ¢ ng=15(§-"§‘)

=M

for

We
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xx .7 3
. _exe dT(X,Y) A& (t-s) TN
Xexp { 2(t_s) ] JTXMeXp [2(t"0)(0"8)HZ 11 ]02
1 n+l
s MIMD(t-5) ™ Z(t-0)2(0-5) 2
n-1 ., 1.a+2. ae**d%(x,y)
Moy BlgiSph)exp —[Z 5y
Therefore, we have
Hdn(x;t,S;x,y)H(x,y)
_m
B ¢ Nt D 2 _n-1 ,,1 a+2
s MgMp(t-s) & m__, B(5:555)
, t i n+1
X% 2 — LIS
xexp _[xez(g_é§,y)] J (t—a)z(o-s) 2 da
s
-m+n+1 %% .0
RN P 2 n 1.a+2, _rae dT (X, YD),
= MGMZ(t ) n__; B(5:=5)exp [ 57t=5)
which gives Proposition 6.3. ~
Remark that
1,..,at+2 iyn_.,3
]“[n B(l,a-}-_2) _ nn F(?)P(T) - 21“(2) r(z)
et e 2 =1 3 (n1)r (25
Then, there exists a positive constant Mg = Ma(X,T,€)

that

(6.16) T g MRt s5x, v

(X,¥)

such
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—mi+ 1 1

MOM3(t—s) Z exp Mz(t—s)zexp -{

Ae**dz(x,y)]
2(t-s) )

1A

Thus, on {(t,s)|0ss<t<T}xMxM, we can define a function

(6.17) K(xit,six,y) = 2,5 J(nit,six,y)

-1

and for any ©C>1, on {(t,s)|0=ss<t<T,C 'st-s=C}xMxM, the

infinite sum of (6.17) is convergence uniformly on each com-

pact set, and we have

(6.18) HK(k:t.szx,Y)h(X’y)

-m+1 1
—— 5 xx 2.
€ d , Y
2 exp M3T2exp -[A 2(t—é§ >)].

1A

MOMB(th)
Moreover, by direct computation, we get

Lemma 6.4. Let Jn(x;t,s;x,y) be the function defined

.

by (6.15). For any 0ss<t<T, there exists a constant M3 =
M3 (P\;T,C),
(6.19) Zn=OJM Hdn(x;t,s;x,y)H(x’y)dyg(y)

1 1
MOM3 (t—s)zexp M3 (t—s)z.

IIA

(6.20) Ezzc[m HJn(A:t,S;X,Y)H(X’y)dug(X)

1 1

MoMs (t-s)%exp My (t-s)2.

i



Moreover, we have
(6.21) jM liK(A;t.s;x.y)x!(x y)du (y)

1 1
s MOM3 (t-s)zexp M3 (t—s)2

(6.22) JM HK(Mt.S:X.Y)h(X y)du (x)

1 1
gMOM3 (t—s)zexp Mé (t—s)2

Now, fix (s,y) and consider (t,z) = K(xt,s;X,y).
Applying Corollary 5.5, we have
t ;
(6.23) A J dzj H(x;t,z;x,2)#K(x;z,8;2,y)du_(2)
X g
S M z
t
= J dzj AXH(x;t,z;x,z)#K(x;z,s;z.y)du (z),
s M p4 9
where Ax:%ax - —% Scalg(x). Thus, we get
t A
(6.24) 3% j dzJ H(x;t,z:x,2)#K(x;z,8;2,y)du, (2)
g
S M b4
t
= K{x;t,s;x,y) + J dzj atH(x t,70X, 2}#K(A 7,82, Y)dﬂ (z).
s M

Therefore, we have

- [gg—x A J dzJ H{x;t,z,x,z)#K(x;z,8;2, y)du {2)
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n

t
—K<X;t,s;x,y)+f J Jnalx;t,z:X,z)8K{x;z,8;2,y)du_(2)
s M pa 9

“K(ast, s5x,Y)+E _ J (x5 t,85%,Y)

—JO(k;t,S;X,Y).
Then, we obtain the following

Proposition 6.5. Under the same assumptions and nota-

tions as above, put

(6.25) H(x;t,s:x,Y)

t
= H(x;t,s;x,y)+J dzj H(x;t,z;x,z)#K(x;z,s;2,y)de_(2).
S ™ z 9

Then, we have
(1) H(x;t,s;x,y) is continuous in {(t,s)|0=s<{t<T}xMxM.
(i) H(x;t,s;x,y) satisfies

(6.26) S2 HGGt six,Y) = T TAH(x T, 85X, Y) ,

=1 _ 1
where A-2 o '2 Scalg(x).

(i11)There exists a positive constant M,=M,(x;T,¢) such that

(6.27) HH(x;t,s;x,y)H(x’y)

£ MM, (t=s) “exp M,(t-s)"exp -| 2<t-§)' I

|\7| 3
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1
M M, exp M4(t—s)2,

Il

HH{x; T, 8%, y)1i du_(y)
JM (x,¥)™"g

(6.28) 04
1
T
jM HH(A,t,s.x,y)H(x,y)dpg(x) < MOM4exp M4(t s)%,
Remark. Therefore, defining H(x;t,s)e(X) =

j H(x;t.s;x,y)i(y)dﬂg(y), we have a bounded linear operator
M

H(x;t,s) on L2(E) and is C0 semi—-group with infinitesimal

generator N (6.26).
By similar argument of Lemma 4.4, we have

Lemma 6.6. Let ¢(z,z) be a bounded continuous

parametrized section on [s,t]xM. Then, we have

limJ ¢(z,Z2)#H{x;z,s;2,y)du_(z) = £(s,Y),
(6.29) zesoM z g

limj du_(z) = €(t,x).
zegsoM 9

uniformly on an compact set of M.

Finally, we can state the following

Theorem 6.7. Assume that (M,g) satisfies (A.1)-(A.3).

Then, H{x;t,s;x,y) defined by (6.28) is the fundamental

solution for the parabolic equation (6.1).

As a direct results, we get the other proof of a par-
tial result of Molchanov [25] (Cf. See also Cheng et al

[71).

Corollary 6.8. Under the same assumptions as in
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Theorem 6.7, there exists a positive constant C

10
C1O(X;T,e) such that the kernet H{(x;t,s;x,y) of the funda-
mental solution of (6.1) has the foltlowing asymptotic expan-

sion: for any T>0 , 0ss<i<T and any x,y ¢ M,

(6.30) HH(x; t,8;%,Yy)

xd(X’Y)

- (ZnA_i(t—s)_m/zp(X,Y)EXP ‘[§T¥i§7_]P(x’y)”(x,y)

_ -3
SCy o (t-s) 2



1.7 Convergence of path integral as the kernel func-

tion.

In this section, we shall prove Theorem B, wusing the
fundamental solution considered in s6. Let {0O,t] be any
closed interval such that O0<t<T, and T be any fixed positive

number. Let ¢

N be a N-equal subdivision of [0,t],

= .:-i =
N1 <ty EjTRE, J=0, LN,

We define a operator H(x}aNit,s) associated with the subdi-

(7.1) oN:0=t0<t1<...<t

vision o,.:
N

(7.2) H(x;aN[t) = H(x:t,t ..H(x;ti,O),

N-1)

and we denote by H(x;o\lt;x,y) the kernel function of the

operator (7.2), i.e.
(7.3) H(x; oy ltix,y)

M M Zn-1

g H(%:t],0221,Y)dug(2N_1)...dﬂg(zj),
1

where H{x;t,s;x,y) is defined in (1.7).
To prove Theorem B, we shall show the following

Proposition 7.1. Let (M,g) satisfies (A.1)-(A.3). For

any fixed T>0, there exists a positive constant »r=r(x;T,¢)
|

stuch that for 0<€<8,
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(7.4) HH{X; tix,y) - H(A;GNIf:X.Y)H(X,y)

1

rt-m/ZN—f

>\g\:)iws.z
Texp-[2%

d (X’Y)]
2t )

A

X

0gs<t<T and e **=1-3¢. Here » dose not independent of t and

the sub division TN
We needs several steps to prove the above proposition.
First, put

(7.5) R(x;t,s) = H(x;t,s) — H(x;t,s)

and denote by R(x;t,s;x,y) the kernel function of (7.5).

Then, we get

Lemma 7.2. For any &, 0<e<1/4, there exists a positive

constant 71=71(A;T,6) such that

(7.%) HR(/\:t.s;x,y)iE(X,y)

-m+3 X% .2

[A€ d gx,y)]
2(t-s) ’

A

. - 2 -
M071(t S) exp
where 5**=1—2€.

Proof. Since
t
R(x;t,s;x,y) = J dOJ H{x;t,o;%x,2)#K(x;0,s;2,y)de_(2),
s M z 9
we have

iiR(/\:t,s;x,y)ii(x v)
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t
JsdJJMHH(A;t,o;x,z)ﬁ(X’Z)HK(A;J,S:z.y)n(z’y)dug(z)

A

t _m -m+1
W . . 2 2
< M0M3716Xp Mz(t—s)Js(t—d) (o0-3) do
2 xx 7
_xad7i(x,2)  oxe d7(z,Y)
XIMEXP A IEED Z(oms) 1 Hgt?)
s M071(A;T,€)
t m -m+1 .
_m X%, _, 2 XX 2
, N xe W Zi xe HZ-Yi ;
XJ-S(t"(T) 2(0"5) z do J‘TXMeXp"[ Z(t]_lo,)l - 2((;"3) ]dZ
-m+3 »
xx 7 .
Z . d X, .
= Mor](x;T,e)(t—s) exp -[Aez(t_é) Y)].
by the same computation as in §7. Thus, we get (7.6)
Now, we obtain
(7.7) H(A;oNit) - H(x;t,0)
= H(A;t,tN_1)...H(A;t1,O) - H(»; t,0)
= [HOGE E ROt t )T+ THOGE L, 0)4R (35,00 ] = H(xt,0).

Using the evolution property of H{x;t,s), we shall write

down the right hand side of (7.6). Let

(7.8)
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k _
2 =L@y, BB ) ks, N, zi:l[“i+Bi]+Bk+1’N}'

Also, we denote by

(7.9) Aj = agt.. . tay, B = Bi*. .48, J21.Ag = By = O.

Thus, Ak + Bk+‘=N. The right hand side of (7.6) is written
by

(7.10) H(A;GN) - H(»;t,0)

=z (g oo, @ B, ,B Yo
(a‘l""!ak’Bdl!'--,Bk_i_])C; g 1 k 1 k+1

where

(7.11) g-(“1""'“k'31""’8k+1)
(A +B )t

- H(x;t.——hﬁ—£—~

R(A.(Ak+Bk)t (Ak—1+Bk)t) R(x~(Ak']+1+Bk)t (Ak-1+Bk)t)
’ N , N /e M N , N
(Ak—1+8k)t (Ak-1+Bk-1)t

HOG— ' N )

R(}; N , N Y. ..R(x; N N
B1t

H(X;T»O) .



- 72 -

Now, we put

(7.12) r(J)

B L) ~1+B .
(AJ+BJ)t (A_j | J)t

= R(x; N , N ) I
(A. . +14+B.)t (A, ., +B )t
o= J j=1 "]
. .R{x; N , N )

and denote by R(J)(x;x,y) the kernel function of (7.12).

Lemma 7.3.

Given any €, 0<e<1/4, there exists a

posi-
tive constant ro = rz(A;T,s) such that
(7-1\3) 11R(1)(A;X,Y)H(X,Y)
3 m .
o, & = —_ xXx%x 2
Jo Je X2 g, iy 2 d™(x,v¥)
= Mot TRTE) Texe t IRy
where e***=1-35.
Proof. Generally, take t,, b, € 10,1,

0<t]<,...,<ta<T. Put,
(7.14) R(A;t1,...ta) = R(x;ta,tv)...R(A;tz,t1).
We dehote

by R(x;tj,...,ta;x,y) the

kernel function of
(7.14). To

prove (7.13), it is sufficient to get the fol-

lowing estimate for (7.14).

(7.15) HR(x;t1,...,ta;x,y)n(x,y)



m *xx 2

a,a_a ,. _ 2 - d (x,Y)
SMorT Mo (t =t )% (g =t)) “exp -[2 2(ta+1 D

Nl co

wWe shall show (7.1%) by induction. Remark that (7.15) holds
for a=l by Lemma 7.2. Assume that (7.15) holds for a-1z1.

Then, by the similar computation as in Lemma 7.2, we have

(7.16) IR(A E e byl vy

3 -m+3
a-1 2 2
G=1 (Hyem 00 (-t )

A
=
Qw
~
N
~
tan

dz(x 2) ., '*dz(z,y)1d” (2)
g

a+i -t ) Z(ta—t1)

tmesj exp —[
M 2(t

SE

3 3
a_a-1_ __._ kT _a-1 e N2.4 2,¢ _
072 TieXP g Moy (jymt ) T (tmt ) ()

A

M

2
HZH HZ- YH
XITXM exp —xe [Z(t ) T At y1

because exp “Z“

_ i1 caen KT
[2(t D kiizil]sexp 5—. Thus, we have

(7.17) HR(A;tT,...,ta;x,y)ﬂ(x’y)

3 _m
6_1 kT a 4 \2 H - 1 2
1 &XP >~ nJ.z1 (tj_tj—T) (ta ti)

JELLIY XXX, o, 2
d " ({xX,y) _iAE izl .
= th ]IT NOSI jdz".

xexp -
a+1 ti 2

KT A ¥ iz?
Choosing ¥y 2 7{EXP 35— JTxMeXp -1 5————L—]d2’, we get



(7.15).
Define a operator S(J)(x) by
(7.18) s(3) ()

(A+B. .) (A.+B.) .
= Hog—L e I 6yr( 6y L

(A+B.) (A.+B.)
H(A ‘N Ly ‘N e 5y

and we denote by S(j)(x;x,y) the kernel function of S(J)(A).

Using (7.13), we have

(7.19) 15t Gaxonil
3 m m
a.+1 =X, &, — = B. — =
sugt NP Il 2 2
2 XXX 2 \
I exp _{Ad éx,z) _ A€ gl(z,y)}dug(z)
M _J
252t 25t
.+ a,+1 . Sa, a,+8, - O XXk 2
sm oLt (N2 T T2 ae d (X.¥)
0 2 t N & .+B
2(—t

By the similar computations as above, we obtain the

following :

Lemma 7.4. Given ¢, 0<e<1/4, there exists a positive

constants 73=Y3(A;T,€) such that



- 5 (1
(7.20) s uxonii gy
Ajrd Agt] V gA ; ; g ae*** g 2(x Y)
s Mg? Trgd TS t) < exp - 1.

2(AJ+B S t/N

Proof of Proposition 7.1.

Combining with (7.11) and Lemma 7.4, we get
(7.21) p> Hgi(a1""’“k’ﬂi'°°"Bk+1:x’y)”(x,y)

_ , 3. .
A +k+1 A +k+1 A, —= . (4)d2 %

1A,

4 (4) .2
Mg ng [(1 + Mgrg ( 323N (262

- 1] exp - (X Y)

A

1 1

hﬂw

(4)42
73 N exp M0r3tN exp —{ 2t( Y)],

IIA

Mo

where 5(4) = i1-4¢. This proves the Proposition 7.1. ~

Remark. The above computation can be moved slightly

for general subdivision N :0= t0<t <. tN 1<t =t, 8(6N) =

j+1‘tj1» replacing N to be o(gy) in (7.4). Also, it
is easily seen that for fixed t>0, H(x;oit;X,y) converges

max |t

uniformly on any compact set on MxM to H(x;t;x,y) and
H(A:dNit) defines a bounded linear operator on LZ(E) Also,

there exists a positive constant re = 75(x;T,£) such that

IR

(7.22) HH{x; o )il ' £ reexp ret
N B2y S 5
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1.8 Generalizations and Concluding remarks

Finally, we shall give some generalizations and remarks

for Theorem 1.2Z.

(i) First, we can generalize Theorem 1.2 if we insert
the cut off function. Namely, let x(x,y) be a cut off func-
tion defined by x(x,y) = 1 on d(x,y)<s, and = 0 on
d(x,y)z2s, where & is the injectivity radius of (M,g) (Cf.
By the assumption (A.3), we see that & is a positive con-

stant ). And consider the following integral transformation

(8.1) H(t)s (x)

m
= (227 ZJMx(x,y)p(x.y)eXp —xS(t,s:x,y)P(x,y>$(y>dug(y)

Then, we get the same results as in Theorem 1.2 by following

the same computation through s s$1.1-1.5.

(ii) Also, our scheme can be examined for the more
general Lagrangian function. Moreover, we can construct the
infinitesimal generator on the intrinsic Hilbert space as

follows : Consider the following situation.

(M) M is a smooth, simply-connected and connected d-

dimensional manifold.
(L.1) L(»,») is represented by

(8.2) Loy = P00 - v, LPouh = Gvaig o)
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for (r,%)eTM. {Hereafter, we use Einstein's convention to

contract indices.) Moreover,

2

(L.11) ds =gij(x)dxide defines a complete Rieman-

nian metric on M.

(L.iit) There exists a constant k>=0 such that for
any Z-plane n, the sectional curvature KJI satisfies

22K <=
k<=K, <=0.

(L.1V) Denote by R({:) the curvature tensor of g.

Then, there exists a constant CO such that

VR() | s C for0¢ja|<=2,

O

«, o
where a« s a multi-index, v* = v11...vdd and Vj

represents the covariant derivation in the direction of

x-j for any ltocal chart at x=(x1,...,xd).

(L.V) VGCB(M) are real valued.

For any natural measure uz on M, we consider the follow-
ing transformation in LZ(M,du) with parameters t>0 and A>0.

For any feCS(M) and sufficiently small t>0, we put

(8.3) (HE(L;) £)(x)

= (2na)79/2 JAp(L;u)(t,X.Y)exp(—k_ls(L)(t»X,Y)}'f(Y)du(Y)-
M

Here we denote



_78_
t
(8.4) S(LY(t,x,y) = inf{[ L(r(z).7(z))dz : r(z)eq, e
O y N>y

»(z)=dr(z)/dz,

(8.5) gt,x,y
= {»(+)€C([0,t]=M) : absolutely continuous in z
t
with »(0)=y, »(t)=x, and J <r(z),7(z)>_,_\dz < +=}
0 r(z)
and

(8.6) (L) (t,x,vy)

2
= [det{-a ;3 _ S(L)(t.X,Y)}/ﬂ(X)#(Y)]]/
Xy
where #(X) is the density of u at X, i.e.
du(X)=u(X)dX1A...AdXd, 3 i denotes the partial derivation in
X
the direction of x' at x=(x1,...,xd), and <X,Y>x is the

Riemannian scalar product at x for X,YeTxM.
Then, we get the following

Theorem 8.1. Let M and L be given satisfying Assump-

tions (M) and (L.I)-(L.V). Then, we have the following:

(a) There exists a positive number T>0 such that, for
any natural measure u, the operator H;(L;ﬂ) defines a

bounded linear operator in L2(M,du) for O<KILT.
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(b) lim HH (Lia)f — fil =0
t->0 L(M, du)

for all feLz(M,#).

(c) There exist positive constants C and C' depending

on T independent of « such that

(8.7) IHH (L;u2)f - H (L u)H (L w)fll

t+s

< [C{(t+s)3/2_¢3/2,3/2y | o (t4s)s]lIfll
for 0<t+s<T. Moreover, we take C'=0 for V=0.

(d) There exists a limit HA(L;u) = Llim [H (L; u)]
t =Yoo t/n

in the operator norm in L2(M,du) for any t>0. Moreover,
{H;(L:u)}t;o with HS(L;”) = the identity operator, forms a

CO semi-group in L2(M,du).

(e) For any two natural measures 2 and v on M, we

have
: >\ . — —1>\ MR Y]
(8.8) Ht(L,u) = UuHHt(L,L)UV#

where Uv# is an isomorphism from L2(M,du) onto L2(M,dV).

defined by
- 1/2 2
(8.9) (Uvﬂf)(x) = f(xX)(u(x)/v(x)) for feL“(M,du).

(f)  The infinitesimal generator AML;u) of Hy(Lix) is

given by

Aoy
(8.10) at(Ht(L,ﬂ)f)|t=0



I
o
|

= AML;u)f AML;z YU f  for fecg(M),

(ANLin)FI(x) = xz(ag/z — R(X)/12)F(x) + V(x)f(x).

Here Ag is the negative Laplace-Beltrami operator associated

with g.

tn other word, the above procedure defines a C0 semi-
group H?(L) and its infinitesimal generator AA(L) on the
intrinsic Hilbert space H (M) such that if H (M) is trivial-
ized by a natural measure u as LZ(M,du), then H?(L) and

AA(L) are represented by H?(L;#) and AA(L;u) on L2(M,du)-

The above theorem gives that the old and debated ques-
tion whether the Schrodinger equation in the curved space
contains the term with th(‘) will be solved completely if

we could proceed as same as above for x=ih.
For the proof of this Theorem, see lnoue- Maeda [18].

(iii) In stead of the argument in our discussions, we
may produce any multiple of R(:), if we change the order of
our procedure and we content with the convergence of H;(t)

only in the strong sense.

To make our point clear, we consider the case where

\%

1
o

For any B<R, we define an operator H?(B) as

(8.11) (HE(8) ) (x)
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=(2nxt)‘d/2[ P, y)2
M

xexp(—x—180(t,x,y))f(y)dug(Y) ,

d/2,00(*:,x,y) is independent of t and

for feCB(M), where t
simply denoted by pO(X,y). In this case, as we may put x=1
without loss of generality, we denote Hl(B) simply by Ht(B).
And we drop the supper index 0 above for notational simpli-

city.

Theorem 8.2. Under Assumptions (M),(L.1)=-(L.1V), we

have the following : Fix T>0 arbitrarily. For any 8¢R,

(a) H (8) defines a bounded linear operator in L2(M,d#g)
for O<t«T.

Moreover, there exists a constant ClO such that

(8.12) I1H, (8) fll=exp C1Ot'HfH

for 0<t<T and feCB(M).

(b) LimiiH_(8)f-fli=0 for fel2(M,du )
£-0 g

(c) 3t(Ht(B)f)(X) [a/2 = (1-(B/2))R(x)/6]1f(x)
lt=0

(A f)(x) for feCB(M).

(d) There exists a limit s—lim(Ht/n(B))nf, denoted by
n e
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Ht(B)f for each feCO(M). {Ht(B)}t;O with HO(B) = the iden-

0

tity operator, forms a C -semi group in L2(M,dug) with the

infinitesimal generator given in (c).

Remark. Comparing above theorem with Theorem 8.1, we
remark that the order of statements is changed. And in
proving (d), we use the fact that the Laplace—Beltrémi
operator a is self-adjoint in L2(M,dug) under our assump-
tions ( This fact is proved in the previous sections but we

need that fact in order to prove (d).)

Proof of (a),(b). In our case, t%°(t,x,y) is indepen-

dent of t and denoted simply by o(x,y). We may rewrite the
operator Ht(B) by using normal polar coordinate at x and

EprX=®t’X(x) as
(8.11)° (Ht(B)f)(x)

d/? 1-(8/2)
= (2nt) [ J 6(x,Exp_rw)
olsd- X

d-1

xexp(-dz(x,Expxrw)/Zt)r drdw

To prove the statements (a) and (b), we proceed analo-
gously as proving Proposition 2.1 and 2.2. But for 8z2, we
use the fact o(x,y)>=1 for estimating @(X,Expxrw)l_(B/z).

(As V=0, we may take e(x,y)zl1 in Proposition 1.10.)

Proof of (c¢). Take a function v(x,y)ecm(MxM),

O=sv(x,y)=s1, satisfying

1 if d(x,y)=l

(
vix,y) = |
Lo if d(x,y)z3
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Define operators H1(t,B) and Hz(t,e) as follows :

- (8.13) (H1(t,B)f)(x)
= <2nt>‘d/2jMu(x,y>p(x,y>3exp(—d2(x,y>/2t>f(y)dug<y> ,

(8.14) (Hy(t,8)F)(x)

-d/2

= (2nt) J (1=v(x,y) )p(X»Y)BeXp(-dZ(X,Y)/Z‘C)f(Y)dug(Y)
M

Now, we claim the following :

(8.15) (H, (t,8)f)(x)

= f(x) + t(ALT)(x) + 16, (t,F)(x) for fecg(M)

(8.16) LimlG, (t, £) ()1l = 0,
t-0

and

(8.17) timnt“(Hz(t,B))f(-)H =0
-0

By Taylor's expansion, we get
(8.18) f(y)
= f(x) + (2 if)(x)xi + 1/203X XY ()X X + F(x.X)
X

where y=EprX. (axif)(x) =3Xif(EprX)i 0, and
X=
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1
F(x,X) = (l/G)J [3 iaxJaxkf(Expxsx)]dsx'xek
0 X

Then, it is clear that F(x,X)=v(x,Exp X)F(x,X) is a

smooth function in x and X with compact support.
Analogously, we have

(8.19)  o(x,y) ' B/2) = 1o (1/6)(1-(8/2))R; ;)Y VIve, (x,y)

where

k

1
0, (x,y) = (1/6)[ 3 133 k@(x,Expst)1_(B/z)dsYIYJY :
ov' v

Y

By Assumption (L.1V), there exist constants CH and «x

such that
(8.20) leB(X»Y)E§C118Xp@1Y’

for any x€M and any YéTxM. Inserting (8.18) and (8.19) into
(8.13), we get (8.15) by defining G1(t,f) as

(8.21) tG1(t,f)

- —f(x)(2nt)-d/2JT (1= (X, ¥))
X

.. 2
x[1+(1/6)(1—(3/2))RIJ(X)Y1YJ]e-lYi /2t aqv
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i 2
' (av‘f)(x)(znt)-d/ij iy e, yy 1T Y IE/2E gy
X

— (1/2)(av ' adFy (x) (2nt)~9/2

L iy 2
JTXM[(1'”(X»Y)] + V(X,Y)gg(x,y)]Y'YJe IY1%/2t 4y

2
+ <2nt>‘d/2JT F Vi, v) 1TE/ D IVIT/2t gy,
X .

where u(x,Y)=v(x,EprY) etc.

By (8.20) and the property of F(x,y), we have the esti-

mate in (8.16) readily.

The estimate (8.17) is a easy consequence of the intro-

duction of »(x,y).

Proof of (d). Under Assumptions (M),(L.!1)=(L.IV), it

B

also self-adjoint. Moreover as AB is bounded from below, AB

generates a Co—semi group . This and the facts (a)-(c)

is well-known that o is self-adjoint in L2(M,dug). So A, is

guarantee us to apply the generalized Lax theorem to our
case (cf. p. 214, Chorin et al [8]). So we proved our

Theorem 8.1,
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CHAPTER I! Regular Frechet Lie groups and Product

integrals.

1.0 Path integral formulation from Hamiltonian mechanics.

In this chapter, we will show that the construction
procedure in Chapter | works well even when we replace there
by using the generating function for the symplectic
transformation corresponding to the given Hamiltonian.
Moreover, we can consider it for the case »=i/h. Here, we
can use the remarkable properties for the infinite dimen-
sional group GE§8 of invertible Fourier integral operators
of order zero on the compact manifold. As is shown in the
series of the works in Omori, Maeda, Yoshioka and Kobayashi
([23],[27]-[32] and [36]), we can introduce the topology in
GEFS by the kernel function (Cf. §2.2). Therefore, it s
possible to investigate the convergence of the iterated

integral as a kernel function.

Let N be a closed smooth n-manifold with an arbi-
trarily fixed Riemannian metric g. We denote by T*M and TN
the cotangent bundle and the tangent bundle over M respec-
tively. A point bf TN (resp. T*N) is denoted by (x;X) (resp.
(x;¢)). Consider the time dependent Hamiltoninan function

H(t,x;¢) . Here we assume the following

(H.0) H(t,x;¢) is a smooth function on RxT*M.
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(H.1) H(t,x;¢) has an asymptotic expansion for &=« ;

H(t,x;¢) ~ HO(t.x;g) + ... + H_N(t,x;g) + ...,
jglzee

where H_N(t,x;g) is an homogeneous function with respect to

¢ of degree -N.

Let (t;x;¢) =(@1(t;x,£),¢2(t,x;£)) be the symplectic
transformation corresponding to the Hami ltonian H(t,x;¢),

i.e. it satisfies

d¢1(t,x;s) )
= I _H(t,e(t,x;¢
(0.1) dt ¢
0§02(t,x;§)
dt = —'3XH(t,<p(t,X,{)

with initial condition :

e(0,x5¢) = (X;¢)

Therefore, we get the generating function S(t,x;¢) for
e(t,x;¢) which corresponds to the action integral in the

Lagrangian mechanics. That is, put

t
(0.2)  S(t,x;¢) = jo(e(XH) - H) (e(-z,x;¢)) dz,

where XH denotes the Hamiltonian vector field defined by

(0.1) Associated to this, we consider the following integral

transformation

.
14

Is(t,xie)
(0.3) E(h;t)f(x) = j (vu) (x;¢&)ds

X
TXM
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Here (vﬁ)h(x;é) is a sort of the Fourier transformation

which is defined by

—h o e
(0.4) (wvu) (x;¢) = (2nh) j e v(x,z)u(z)dz, Exp X=z.
N

where v(x,z) is a smooth cut off function on MxM with the
breadth ¢ (Cf s2.1), and Exp is denoted by the exponential
mapping by g (Cf. chapter 1. in this chapter we use the

notation .XX instead of ExpxX for simplicity.).

Then, the main problem we shall consider is the conver-

gence of the successive integral ; for a division a,

A 0=t0<t1<...<tN=t, tj=(t/N)j ,
(0.5) EN(A;h,t)u(x)
= E(h,t/N)....E(t,t/N)u(x) (N-times)

Now, we can state our main Theorem in this chapter,

which is the similar results as in Chapter I.

Theorem B. Let the assumptions (H.0)-(H.1) be satis-

fies and let O0O<hsl. Then, for any T>0 and te¢[-T,T],
EN(A;h,t) defines by (0.5) converges to a Fourier integral
operator U(h,t) in GEFS by the topology in GéFg where N

tends to infinity. Moreover, we have the following proper-

ties:
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(i) U(h,t) defines a bounded linear operator in L2(M),

and we have

(0.6) IUCh, ) = Ep(h. D)l = rbh‘t|N-1[ebh]t}/2]

where » and b is some positive constant independent of N.

(ii) for any teR and ueC” (M), we have

(0.7) (£)520(h, t) = H(h, ©)UCh, B)ulx)

where H(h,t) is the psuedo-differential operator defined by

(0.8) H(h,t)u(x) = j « H(tx:¢) (v M, ¢) ) de
TN

As a direct consequence of this theorem, we have

Corollary. Let H(t,x;¢) be a Hamiltonian function on
T*M which satisfies (H.0)-(H.1) and for any te¢R, for any

u,vec,
(0.9) CH(h, B)u(x),v(x)> =<u(x),H(h,t)v(x)>

where H(h,t) is defined one by (0.8). Then, H(h,t) 1is the

essential self-adjoint operator in L2(M).
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2.1 Infinite dimensional Lie group of Invertible

Fourier integral operators.

Throughout this chapter, we use mainly the same nota-
tions as in [27]. Let N be a closed C  riemannian manifold
and TN and T*N be the tangent bundle and the cotangent bun-

dle of N respectively. A point of TN (resp. T%N) is denoted

0
by (x,X) (resp. (x,¢)). Denote by T*N the complement of the

zero section in T*N, i.e., T*N—{O} in the notation of [27].
A symplectic diffeomorphism ¢ of T*N is called to be posi-

tively homogeneous of degree one, if it commutes with multi-

plication by positive scalars. That is, if we write ¢ as
p(X;¢) = (¢1(x;§);¢2(x;§)), then it satisfies ¢ ,(x;r¢) =

@1(X:$). wz(x,rﬁ) = r¢2(x;§),. for any r>0.

Let D) be the totality of symplectic diffeomorphisms

o}
of T*N of positively homogeneous of degree one. Then, we
have proved that é)é1) is naturally identified with
g&(S*N), the group

f all contact transformations on the

unit sphere bundle S*N, and §9é1) is a regular Fréchet-Lie

group (the precise definition of regular Fréchet-Lie group

will be stated in §2.2 cf. [26] and Theorem 6.4 in [30]).

Now, in this paper, all derivatives of functions, ten-
sors, etc., on TN, T*N and S*N, etc. are taken by using a
normal coordinate system at the considered point (cf. [27],

s1, and [29], s1, (15)).

We have restricted our concern to Fourier-integral
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operators on N with the following expressions:

(1. 1) (F¢u)(x)

= Z fjxaa(x;g;x)
o

-i< JEYIX> — T ]A X;€);X) .
o wo(x5¢) | e ]Ag(eq(x;e (vu) (@ (x36);X)dXde

+ (K u)(x),
where we use the following notations:

(F.1) » is a cut off function (cf. [27], p.365) with the
small breadth ¢, 0 < ¢ < r1/12, where ry is a small constant
which depends only on the riemannian metric of N (cf. §4.2).

(vu) " (x;X) = V(X,'XX)U(-XX) (cf. [27], p.359).

0

o 2 class of amplitude

(F.2) a(x;¢;X) is an element of =

functions (cf. [27], p.366, (13)).

(F.3) KeC"(NxN) and K u is an integral operator with the
kernel K(x,y) (cf. [27], (12)).

{x,(x;€)} is an appropriate partition of unity of TN

(cf. [27], p.373) such that » (x;r¢) = x,(x:¢) for any
r>0, and A, ly;X)' s are quadratic forms written in the form
A yixy =g Al (XX added to <oy(xig) [X> in order to

make the phase function nondegenerate (cf. [27], pp.366-
368).

Remark. There are in general a lot of ambiguities in
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the choice of {Aa} and hence {ka}. The expression (1.1) is
one of the way of describing operators whose wave front set

is given by graph «cT*(NxN) (cf. [9],[15]1,[16],[33]).

However, if ¢ is sufficiently close to the identity,

one can set Ay = 0, hence (1.1) can be written in the form:

(1.2) (F¢u)(x)
_]<¢2(X;€)|X>
= jja(x;g;X)e (VU)‘(¢1(X;§);X)dng

+ (K u)(x).

Moreover, we can always eliminate the variables X in the
amplitude a (cf. [27], s4 and Corrections). Thus, (1.2) can

be rewritten as follows:

(1.3) (F@u)(x) = j X b{x;e)vul(e(x;¢))de + (K u)(x),
TN
where
(1.4)  »U(y;n) = J e 7Y Ly 2)u(z)dz, Y=z
N

Now, the above expression (1.3) can be written as a

composition of more "elementary operators”. Remark that $*N
is naturally diffeomorphic to (O,w)xS*N. We denote by )K N
the space of all C° functions f on [0,«)xS*N such that
f(r,o) is rapidly decreasing as r=«. In other words, by

identifying [0, ) with [0,1) (cf. [27], p.364, (10)),
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Ag N is the space of all c” functions on [O,1]xS*N which
are flat at {1}xS*N. Also, ASN is a Fréchet space and
§Z>é‘) acts effectively and smoothly on .8 N by
PHx6) = Flelxie)), e DI, fe . Note that the
amplitude function b(x;¢) in (1.3) is an element of 28 (cf.
[27], p.365). For each bezg, we shall denote by b+ the mul-

tiplication operator by b. Then, b: is a continuous Llinear

operator of ,X N into itself.

Define maps n: ’XN = CT(N), and c:C (N) - 8 N @S fol-

lows:
(1.5) nf(x) = j* f(x;¢)dg,
TN
X
(1.6) cu(x;¢) = wl(x;e) (cf. (1.4)).

By the formula of Fourier transformation, we have
(1.7) e = id.

Using these operators (1.5) and (1.6), one <can write

(1.3) by
(1.8) F = nb e ¢+ K.

Remark. (i) The above expression (1.2) or (1.3) still
have ambiguities. Using F¢, one can only know ¢ and the

asymptotic expansion of b. Namely, one can replace (b,K) by

another (b’',K’) to obtain the same operator F¢ (cf. [27] and

Corrections).
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(ii) By (1.7), the operator cnm: X’N > le is a projection

operator, i.e., (Ln)2 = ..

Now, we shall state the main theorem. Let u, Vi, Ug
be a connected neighborhood of the identity of §>é1), a
neighborhood of 1 in 28,. a neighborhood of 0 in C” (NxN)
respectively. Denote by (ﬂ[,v1’uo) the set of all
Fourier-integral operators of the form (1.8) such that

wEQR , aeV1, KeU Note that iif UL, V1, U0 are suffi-

0
ciently small, then every element in 1[(11,V1,U0) is Inver-
tible and the inverse is again in 7L(12,V1,U0). Also,
denote by GE}S the group generated by 12(1Q,V1,U0). Then,
theorem B in [28] shows that every element of Gf§8 can be

written in the form (1.1).
Now, the goal of §§2.1-2.7 is as follows:

Theorem C. G?§8 is a regular Fréchet-Lie group.

Remark. Once a manifold structure 1is established on
G§§0, Proposition A in [29] shows that V:Té§1 is its tangent
space at the identity. Hence, by Lemma 2.2 in [30], «fjg1
is the Lie algebra of Gg-g.
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2.2 Regular Fréchet-Lie groups and its properties.

First, we shall give the definition of Regular

Fréchet-Lie group.

An group is called FL-group if it is a topological
group and a C” Fréchet manifold such that the group opera-
tions are C°. Now, we start with considering a division
A:a=t0<t1<...<tm=b. of a closed interval J=[a,b], we denote

by {a] the maximum of |t -t.].

Jrt 7

Let G be an FL-group and be its Lie algebra. A step
function defined on [0,¢]lx[a,b] is a pair (h,a) and divi-
sion of [a,b] such that |aj<e and a mapping h:

[0,¢]lx[a,b]--=G satisfying the following:

(i) h(0,t)=e for all tc[a,b], and h(s,t) in C!

fixed t.

for each

(ii) h(s,t)=h(s,tj) for (s,t)e[O,e]x[tJ,tj+]).

Denote by J= [a,b]. A mapping h:[0,e]lxd--=G will be

1

called a C' hair at e if

(i) h(0,t)=e for all teJ, and h(s,t) is C' in s for each

fixed t.

(i1) h(s,t) and (%2)(s,t) is ¢ with respect to
(S’t)E[O,C]XJ.

Let » be a right-invariant metric on G mentioned in the

previous section, and d a metric on by which is a
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Fréchet space. Define a metric o on the space of the wunion

of C1 hairs at e defined on [0,¢c]xJ as follows:

2(h,h*)
= max e(h(s,t),h’(s,t))
[0,e]xd
+  max —DLE—El _1,§h—L§—ilh (s,t) 1).

[O,E]xJ 38
Given a C1 hair h and a division a: of J, we define a

step function (aa(h),a) by

(%) aa(h)(s,t) = h(s,tj) for te[t J+])

An FL-group G will be <called a regular Fréchet-Lie

group, if the following condition is satisfied: Let
{(hn,An)} be any sequence in the set of the all step func-
tions satisfying (x) for some ¢ and J=[a,b] such that

Limja] = 0 and limh_ = h in the topology defined by o. Then,
n=eo N>«

the product integral

t -_— -
na(hn,an) = h(t—tk)h(atk.tk_1)...(t] s)

convergence uniformly in t€la,b].

Regular Fréchet-Lie groups have many useful properties
(cf. [30]). Here, we shall explain about the extension of

regular Fréchet-Lie groups as a useful tool.

Define a mapping ¢:G 5§ 0 59(1) by

(2.1) ®(F ) = il e @én
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Then, in view of theorem 5.5 in [30], ¢ is a well-defined
homomorphism, and the image of & is the identity component
of 2)&1). The kernel of & is Ggio, the group of invertible
pseudo-differential operators of order O (cf. [30], (38)).
Since §Dé1) is naturally isomorphic to ;ZL(S*N), we have

an exact sequences as follows:
(2.2) 1 -->63%--> 639 - Q(S*N) — 1,

where the dotted arrow indicates that the image of & 1is an

open subgroup.

We note here that ggw(S*N) is a regular Fréchet-Lie

roup (cf. [26]1,[30]) and also that GI C is a regular

Fréchet-Lie group. indeed, in [36], we have seen that

ij?m) is a regular Fréchet-Lie group for m = — dimN - 1,
and that GSiO is a regular Fréchet-Lie group obtained by the

inverse limit of {Gg?m);m < —dimN - 1}.

Remark. In view of the arguments in [36], we can
easily check the following. For every m=0, Gii?m) is an
open subset of 23(m)0 and is an FL-group (cf. [30]). The
condition m £ —-dimN - 1 is used only to ensure the conver-

gence of product integrals.

Now, we define a mapping »: Ul > G‘%-g by

(2.3) ro) = moe X L.

Obviously, & » = id., and » gives a local cross section of

(2.2). Define a mapping r. by
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(2.4) r (oaw) = rlew) (o) r(v)

As <I>:G§8 + @3(11) is a homomorphism, r. is a mapping of
Y x VL into 63.0.

On the other hand, define ar(¢'A)’ for every welﬂ,
AGI by

(2.5) dy(w,A) = r(w)—1A7(¢) € Gé-o-

Recall that the topology of G}O is obtained by the inverse
lLimit of {G:Q?m);m§0}. Hence, recalling Proposition 5.2 and
Theorem 5.4 in [30], to obtain Theorem A, we have only to

show the following:

Proposition 2.1. The mappings r. and ., defined by

(2.4) and (2.5) respectively, have the following properties:

(Ext. 1) r_: |xU - G3° is a C° mapping of WxWN
into Gic()m) for every m=0.

©0

(Ext. 2) Of},:’lﬂngO + 639 can be extended to a C
mapping of Ul xG S‘C()m) into Gg?m) for every ms0.

Remark. By the above proposition, we see also that
there s Gls?m)-extension of the identity component of
§>é1), which is an FL-group for each m=<0, and a regular
Frechet-Lie group for m £ —dimN - 1. We shall denote this
extension by Gfsg(m). GS is indeed the inverse Llimit of
(63 9y ims0} .

To prove (Ext. 1-2) in Proposition 2.1, we have to know
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first the inverse of »(¢). To do that, set

(2.6) () = (e ¢ M e Yo,

then we shall show the following in §2.6:

Proposition 2.2. Notations being as above, we have

(a) if ¢ is sufficiently close to the identity, then =(¢) is
a pseudo-differential operator of order zero, i.e.,

=(e)e 2O(N).

(b) =: L » E?m), defined by =(e) in (2.68), is smooth for

every ms0. Therefore, since =(id.) = 1,

(c) =(¢) is invertible if ¢ is sufficiently close to the

identity.

By using Proposition 2.2, (c), we obtain for suffi-

ciently small g€ §Dé1),

1 -1

(2.7) (o)l = =) e ).

Hence, if ¢,» are sufficiently close to the identity, then

=(gw) is invertible. Thus, we obtain

-1

(2.8) role,w) = E(¢w)_1n{(¢w)*zn(¢¢)*—1}(w*znw* Yz.

On the other hand, any AGGE;O can be expressed as fol-

lows:
(2.9) A = naz + K,

where aezg and KeC”(NxN). Hence, we have
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(2.10) @ (o.8) = 2(e) a0 " T (o e

X —

1)z.

+ E(@)_1n(¢*LK T

Note that w*a'¢*_] = (¢*a)~, and one may write
(2.11) ar(e,A) = (o) 'n(eXzne’ TN (ota) (oFzne™ )z
- -1 X x=1
+ =Z(¢) n{e K ne Yz.

The above computations show that operators of the form

X x~—1 X X x—1
w L@ ’ ((P a)'o 4 K e

and their composition rules play an important role in study-

ing r, and a . Thus, we shall set up a certain class of

.. X X—
operators 7, containing ¢ zne 1

for every ¢ which is suf-
ficiently close to the identity. 90 is indeed a C” Fréchet
manifold and a local semi-group with smooth semi-group
operations (cf. §§2.4-2.6). Moreover, we shall see is
closed under the multiplication by w*a. This 1is indeed
smooth with respect to ¢, a and pe M (cf. 82.6-2.7). Next,
we shall prove that the "projection™ %Y. - Gig?m), m=0,

P - nPZ is smooth {cf. 2.6, Proposition 6.2).

Denote by E(¢) = o*zno* 1. Then, E can be regarded
as a smooth mapping of 4 into M (cf. §6.6). Thus, by
using these smoothness properties of 7L , we see that (2.8)
and the first term of (2.11) are smooth. To treat the
second term of (2.11), we shall need the following proposi-

tion which will be proved in s2.6 as well as some other

_1)z
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smoothness properties stated above:

Proposition 2.3. For every oc¢ &Dé1), and KéCw(NxN),

put ale,K) = n(e zK n¢*—1)z. Then, we get

(a) A(¢,K) is a linear operator on CY(N) with c” kernel

L(e,K) (cf. Lemma 6.4).

(b) The mapping L:§9é1)xcw(NxN) >~ CT(NxN) is smooth.
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2.3 Several properties of primordial operators.

First, we shall compute the kernel of o zne* 1 and

¢*7K ne*"1. Recall the definition of n and z (cf. (1.5) and

(1.8)). The, we have

. X
(3.1) (znf)(x:¢e) = ij(x,y)e_'<§|' Y>f(y;v)dydn, fe  y

where -xy =Y implies °XY = vy. Let zo(x;s,y) be a smooth

: X . 9%, S«
extension of <¢|:7Y> onto T'NxT N such that

(P.O)  zp(x5re,y) = rzg(x;¢,y), r>o.
Then, 7 has the following properties:

Lemma 3.1. For given ry>0 in (F.1), if d(X,y) < 2r /3,

then zZg(X;¢,y) has no critical point in (x;¢) for every y

and z4(x;¢,y) has no critical point in y for every

o
(x:%)eT*N.

Now, zn can be regarded as an integral operator with

—izo(x;g,y) i
smooth kernel v(X,y)e , hence the kernel of

A
X -1 ) x . ¥ g X
® Tne is given by (¢ v)e because of ¢ dydn = dydy,

X
where (¢ »)(X;¢,y;7) = vle (X;€),0q(y,7)).
Similarly, the kernel of zK n is given by

—izo(x;g,z)

(3.2) ac(x;¢,y) = Jp(x,z)K(z,y)e dz.

Since v(x,z)K(z,y) has a compact support in z, a(x;s,y) is
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rapidly decreasing in |¢|. Hence, the kernel of o 7K n¢*—1
is given by
(3.3) (w*aK)(x;s,y;n) = a(e(x;6),e(yin)).

To unify 7 and ¢*z0, we introduce a class of func-

tions, which correspond to "phase functions " defined later.

o) o}
Let z(x;¢,y;») be a smooth function on T*NxT*N which

satisfies
(P.1)y z(xsre,y:isn) = rz(X;¢,v;7) for any r>0, s>0.

The above =z 1is considered as a smooth function on

[0,«)2x(5*N)2 by putting

(3.4) Z(r,s,x;€,y:n) = z(x;r&,y;sn).

o) o
For above z, define a subset C(z) of T*NxT*N by

(3.5) C(z)

o

o
= {(x;¢,y;7) €T NxT*N ; -0 or

Vix;e)? T 0}

Viyim?® T
Then, C(z) is conic, that is, (x;¢,y;»)eC(z) if and only if

(x;re,y;sn)eC(z) for every r>0, s>0.
Consider the following property for z;
(P.2) C(z) is bounded away from the diagonal set.

It is obvious that 74 satisfies (P.1) and (p.2), and
that such properties are invariant under the action of

g§é1), hence w*zo satisfies (P.1-2) for every ¢ 25&1).
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However, what we shall need in the computation is not a
general z with (P.1-2) but ¥z, »e DSV, or "0, Thus, we

. X .
have to consider ¢ Zy more precisely.

First of all recall that each ¢¢ Z>é1) leaves the
canonical 1-form e invariant, where o is given locally by

o = 5¢.dx'. This fact gives the following:

Lemma 3.2. For each ¢¢ E>é1), ¢*20 can be written by

(P.3) o 7 = 7a + QZ)(X;2,Y:7),
0 0
and Q vanishes at (x;¢) = (y;») up to the first derivatives.

Proof. Use a normal coordinate system (yi,...,yn) at x

and its dual coordinate system (51,...,§n). Then, we get
X i
g | Ty> = 1Y and 6 = ﬁidy .

For gc¢ i>é1), we use a normal coordinate system and dual

coordinate system at @1(x;g), Denote wly:n) by
(7' YN EL .. T, Then, letting § = w,(x;¢), we have
Keq(x;8) | ei(y;n)> = &y .

Remark that ¢*e = 6 means that

=i
.Y

=i
- 3y _ , ,
= = £ ., €. = 0 (cf. [27], (25)).
Put
. —i . —i
J' = %Y raeeyyd 3Y /n.. e ;o _
Y jlosedy” + 5=(0:8)(ny=s ;) + H{#){y,7=¢),

3y J
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where H(e)(y,n—¢) is the quadratic term with respect to Yy

and »—¢. Then, we have

v 7g Con(X;€) | e1(y;7)>

= e,y + < H(@) (Y, m=g)>.
So, Q(¢) is given by the last term of the above equality.

We define amplitude functions associated with z in 3.2.

o} o
Let z be a C functions on T*NxT*N which satisfies (P.1-2)

in 3.2. (Remark that the property (P.3) is not used in this

section.) For above z, we denote by £5(z) the linear space

. ‘ Ox. O
of smooth functions h on T'NxT N such that

(B.1)h is a C° function on [O,w)zx(S*N')2 and all derivatives

of h are bounded.

(B.2)There exists a conic neighborhood Vi of C(z) on which

h(r,x;€,y;7) = h(x;ré,y;»), re = ¢, is rapidly decreas-

ing as r-=e«,

Recall the kernels obtained in 3.1 and we know the sig-

nificance of the following:

Lemma 3.3. (a) v(x,y)e B(zo). (b)
w*»f XS(w*zo) for any ec¢ i9é1). (c) w*aK(x;s,y)e EXO).

Proof. Since »=0 on a neighborhood C(zo), we get (a).

(b) and (c) are easily obtained by a direct computation of

derivatives.
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Let z satisfy (P.1—2) in (3.2) and let ae¢ (z). Con-

sider the following operator
(3.6) P(a,z)f(x;¢)

= Jja(x;s.y;v)e_iz(x;g'Y;”)f(y:n)dydn. fe 8 -
By Lemma 3.2, o¥ne* 1, and o¥iK ne* ! are written in the

above form (3.6), which will be called primordial operators

in this paper.

Now, we can give a rigid meaning of (3.6) as an opera-

tor as follows:

Proposition 3.4. Let z satisfy (P.1-2) and let

ae‘g(z). Then, P(a,z) in (3.68) defines a linear operator on

N into itself.

Proof. Let «(x;¢,y;») be a smooth function such that
e{x;re,y;sn) = ¢(x;¢,y,7), >0, s3>0, and ¢=1 on a neighbor-

hood of C(z) and supp @cva (cf. (B.2) for the notation Va).

Divide (3.6) into two parts:

(3.7) P(a,z)t(x;¢)

[[vae—izfdydn + JJ(1—¢)ae_'zfdydn

P, + P

1 2.

iz

Since gae’ is rapidly decreasing in |¢|, we see that

P,e€ X'N for every fe . Now, consider P,. Remark that on
the support of (1-¢)a, z has no critical point in (y,»).

So, let
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T+ ir(v_zv_+v.zv9v)
L = a7
1 +r%jv 7|

(y;n)

5 , r=ie|, z=z(x;%,y:n).

Then, Lze_lz = ¢ ' and the coefficients of the operator L
1

z

can be bounded by r for sufficiently large r>0. So, P,

can be written as

- ~ ~ 1
(3.8) P,(x;¢) = J J (1-pYa(x;re,y;sy)(L_)
2 S*N 0 z

xe—lrz(X;§,Yiﬁ)f(y;sg)sn*1dydsd$-

Repeating the integration by parts, we see that P,(x;¢) Is
rapidly decreasing in |g]. Smoothness at r=0 of P2(x;§)

follows from those of w(x;rg,y;n) and a(x;ré¢,y;»n) at r=0.

Finally, we remark that in what follows we shall res-
trict our concern to much narrower class of amplitudes. The
main reason to do so is that E,(z) is not Jinvariant under
ia é1). The restricted class Is invariant under ﬁbéi) and

contains zg, though ¢*a€zg even if aﬁzg.
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2.4 Phase functions of primordial operators.

Now, to fix the restricted class of primordial opera-
tors, we shall introduce a class of phase functions and
study the properties of compositions of phase functions

induced by the composition of primordial operators.

o) o)
Let © be the space of all C° functions =z on T*NxT*N

satisfying (p.1) in 3.2. Since such z is uniquely deter-

o, ©
mined by the values on S*NxS3*N, we shall give a topology fo

®© by using the C” topology on s*NxS*N. Denote by ©q the

closed affine subspace of o defined by

(4.1) 69 = {z€o:z-zy vanishes on the diagonal set

up to the first derivatives}.

Remark that every z€0, satisfies (P.2) and (P.3) in Lemma
3.2. S§é1) acts on © by the following: Given ¢ 23&1).

z€eo, we define mapping ev: E)é])XQ > © by
(4.2) ev(g,z) = exz(X;Xi,yY;n) = z(e(X:;¢),e(Y;:n)).
Then, we have

The mapping ev: §9é1)x® >~ e is a C mapping and which

leaves @0 invariant.

Proof. The smoothness of ev is obvious by that of com-
position of mappings (cf. [2], [24],[31]). The invariance

of @0 follows from Lemma 3.1.
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Given Z1,25€0, we define a composition z4tz, a@s a func-

0 0 o
tion on T NxT*NxT*N by

(4.3) z1+22(x;s,y;n,z;c) = 21(x;€,y:n) + zz(y;n.z;c)-

For a later use, we have to know at first the critical point
and the critical value of (4.3) with respect to (y;»). How-
ever, this is not so easy in general. Thus, we shall do
and they are suffi-

this under the assumption that z,,z,€6

172770
ciently close to zg- Moreover, we shall restrict the domain
of 74%7, Onto d(x,y) < r1/2, d(x,z) = r1/4, where ry is con-
stant depending only on the riemannian structure of N, which

will be given below.

On this restricted domain, one may set y = 'xX’
zZ = -yY = 'XZ and (y;Y,»n) = 'X(X,Y',v') by using the normal
coordinate system at X. \A is given by

Y= 5(x;Z,X) = 5,(2,X)(2-X)  (cf. [27), p.360, (3)). The
constant ry is defined by the supremum of r such that
3X§[X=0 and §1(X;Z,X) are invertible matrices whenever
d(x,z) £ r. For the standard sphere, r1=n/2 and for many
riemannian manifolds, ry is given as a half of the injec-

tivity radius.

Set z, =1 + QI (i=1.2). Then, 21+22 can be written

0
in the form

(4.4) CX> + " B(x;Z,X)> + Q1(X;£,'X(X,n')) + QZ(»X(X,W')z:c).

Thus, consider the equations
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(4.5)  dy(zytzyy = ¢+ 7|35 + 3,Qy + 3yQ, = 0,

(4.8) an,(z1+z =  5(x;Z,X) + 3,Qy + 3,0y = 0.

2) =

Lemma 4.2. Suppose Z4 and z, are sufficiently close to
Zq in oq and suppose d(x,y) = r1/2, d(x,z) = r1/4. Then, we
obtain the following:

(i) The equation ay(z1+22) = 0 can be solved uniquely
with respect to 7. Let %» be its solution. Then,

7w = nix;¢,y,z;2) is C and 7(X;r¢,y,z;sg) = rp(x;¢,Y,2z;8)

for any r>0, s>0.

(i1) There are constants C>0, M>0 such that

A

M(lgl+]n])

Cle| or In] = C "|¢].

(4.7) iay(z1+22)i
if | 7]

v

Proof. One may assume that there are small >0 and a

constant  K>0 such that [3,(Q+Q,)| = o(|si+[n"[), K

1 1 1

1
13,81 = K, K s [(3,8)7 | =K. By (4.5), we see easily

A

that if » exists then » must satisfy

el s 1wl s 2csl, MO IEN SR

for some constant Cz2. Moreover, on this domain on may set

: P2 NN .
lan,ax(z1+z2) aXSf < b(lgi + 1) = ®s(2C + 1).

It follows that an,ax(z1+22) is non-singular matrix on the
conical domain: d(x,y) = r1/2, d{x,z) = r1/4, fC

s £ |»| £ 2Cl¢].
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Suppose Q1 = Q2 =0 in (4.5). Then, it has the unique

solution % = —€(3X§)_1. By means of the implicit function

theorem (cf. [31], Lemma 4.9) on the above conical domain,
we obtain the unique existence of ». Smoothness of » fol-
lows from the regularity of 3 3 ,(z1+22), and the homo-

Y'Y
geneity of » follows from those of Zy,75.

-1

Now, suppose |»n| z Ci¢| or » £ C "|¢|. Then, ay(z1+22)

cannot attain O. Hence, there must be a constant M such

that iay(z1+z2)| M(|g]+]n]).

Iv

Proposition 4.3. Suppose 74,7, are sufficiently close

to 7 in 8q- If d{x,y) £ r1/2, d(x,z) = r1/4, then

(i) the function Z 7, has only one critical point

(Yoino)» which is non-degenerate;

(ii) the critical point (yc;nc) depends smoothly on

(x;¢,z:2) and satisfies

Yo (X;re,z;sg) yc(x;z.z;c)

{

(4.8) { r>o, s>0;
I
L

nc(x;rz.z;SC) rnc(x;s,z;c)

(i11) the critical value z,, = (z]+22)(2;€,yc;ﬁc.2;§)

has the properties (P.1-3) in the variables (x,¢,z;%).

Proof. We substitute »' = »'(x,¢,y,z;g) into (4.6).
Note that aﬁ,(zi+zz)(x;§,y;5,z;:) is homogeneous of degree
zero with respect to ¢. Suppose Q1 = Q2 = 0. Then, (4.6)

has the wunique solution XC =2, i.e., Yo = Z- Recall that
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axan.(z1+22) is invertible. Hence, the implicit function
theorem (cf. [31], Lemma 4.9) implies (i). The uniqueness
of (yc;nc) and the homogeneity of 71,74 yields (ii), which

indicates that =z satisfies (P.1). As for (P.2), (P.3) in

12
(iii), we may consider near the diagonal set. Put
(z;8) = (z;¢), 1i.e., ~X(Z,§') = 'X(O,E) in (4.5) and (4.6).

Then, the first derivatives of Q1, Q2 vanish at
(y;n) = (x;¢), so we get -X(Xc,nc’) = -y lo,¢) = (x;¢).
Hence, the Taylor expansion of (Xc,nc') with respect to

(Z,2') at (o0,¢) is

[ XC = aZ + b(es=x") + ...,

|

|

{ 7 = ¢ + cZ + d(s-g") + ...

Substituting this into 7,9, We see that 749 has the proper-
ties (P.2) and (P.3).

Next, we shall observe the <critical value z,, more
carefully. Choose a C° function » on R such that w=1 on
[t] = r1/5 and »=0 on |[t]| 2 r1/4, and define a function

C(ZT’ZZ) by

(4.9) c(zy,25) = w(d(x,Z))z12(x;§,z;c)

+ (1 - w(d(x,Z))zo(x;s,z).

¢ can be regarded as a function of 7y, Tg- By Proposition

4.3, we see also

Lemma 4.4. c(z1,22)e®0 for 71,79 sufficiently close to
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zg- € is a C mapping of UZOxUZO into ey, such that

c(zo.zo) = 74, where UZO is a small neighborhood of g in

oq-

Proof. The desired smoothness follows from the impli-
cit function theorem (cf. [31], Lemma 4.9). The property
c(zyg.2g) = zp is obtained by the computations in the case

Q1 = Q, = 0.

2

The following is s special case of Proposition 4.3.

Corollary 4.5. Let 7€O be sufficiently close to Zg-
Then, c(z1,zo) does not involve the z-variable, i.e.,
c(z,zy) = c(z,zy)(x;¢,2). Moreover, it is written in the
form z4(z;¢,2) + Q(z;¢,2), where Q satisfies Q(x;¢,x) = 0,

(9Q/22),_o(z3¢, . 2) = 0.

Now, set T = Z +zy = c(z1,z2). Using Proposition 4.3

and Lemma 4.2, we have the following properties of T.

Corollary 4.6. With the same notations as in Proposi-

tion 4.3, T has the following properties:

(T.1) T(x;¢,y;n,z;&) is positively homogeneous of

degree 1 in e = (¢,%) and degree zero in x.

(T.2) There are constants c>0, M>0 such that

M([€l+1n]) Tf [n] s C '|e| or |n| s 2Cle].

v

|
13T
(T.3) If %C—1|§] £ |»] = 2C{¢|, then on any conical

o) o o)
subset in T NxT*NxT*N bounded away from the critical set
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{x;¢,y_in_,2;2)}, there is ©>0 such that iv(y;ﬁ)Tl = % on

%0_1 < |n| = 2C, where T = T(a;¢,y:7,2:8).

Proof. We have only to show (T.3). Since T has no
critical point on the considered domain and (X;€,Y,7,2;8)

moves in a compact set, we see the existence of ¥>0.

We continue to assume that zy,7, are sufficiently close
to zy in ey, and let r, be as in 4.2. Let (Yoi7.) be the

critical point in the domain d{x,y) = Fy» d(x,z) = rl/d.

Recall that if @, = Q, = 0, then (yc:nc) = 'X(Z,—s(axg)

1 2
i
‘X+Z). Therefore, one may assume that there is >0 such
that X .-Z| =3, |[»u " + s(ax§)—1i £ 5j¢| in general, when-

ever z,,z, are sufficiently close to Zg-

Denote by Da the domain given by

(4.10) D

5 = {(x;i,'X(X,n').'X(Z,c'))

» o 1X]

A

ry/2, 1Z] s, /4, |7 + §(3X§)_1l < olgl}.

Obviously, (x;g,'X(XC,nC‘),z;c) € Dﬁ. Moreover, the index
of the critical point (yc;nc) is the same as that of Z5*7g
and hence 0. Thus, by a suitable change of coordinate on a
neighborhood of (yczwc), T can be expressed in the form
—<n'—nc'}X—Xc>. This is known as the Morse lemma. However,
the proof of the Morse lemma shows more precisely the fol-

lowing:

Proposition 4.7. Suppose that &>0 is sufficiently

small. There are an open neighborhood D' of Da and a C”
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o
diffeomorphism ¥ of D' into (T*N)3 such that T(x;¢,v;»,2;%)
= (X;£,¥1(*);¥2(*),2;;) and satisfy the following

(1) I(D') O D, -
1(zire,y,rv,z;sz)

e

(i) ¥1(x;£,y:n.2;z).

(ii1) ¥z(x;rs,y;rn,z;s;) r?z(x;g,y;n,z;c)

for any r>0, s>0.

(iv) ¥ depends smoothly on z,, z,.

~* ' *
(v) T = =lyptem X=X

The above proposition will be proved in several lemmas

below. At first, denote T, = z +z, - c(zo,zo). Since the

0 0 "0
critical point (yc;nc) = -X(Xc,nc') in this case, 1is given

3 "”‘1
by (Xc,r;C ) = (Z,—g(aXS) |X=Z)’ we see that

TolXi¢,  (Xyn"),2z;%) <e—n'S

I

L (6 Z,%) [X-2>

*”c'(3x§)1x=z - 7 8 (X Z,X) [ X=X >,

where S(x;Z,X) = §1(X;Z,X)(Z—X). Using

§1(X;Z,Z) _3X§‘X=Z’ we see that TO can be written in the

form
T, = —<n'-m ' |X=X_> + S _(X-X_)?
0 7 e c c c’ ’
where S_ = S_(x;¢,  (X,7"),z;%) and S_ = O(|»" [).

Lemma 4.8. On a neighborhood D’ of D.,

<

T(X;E,'X(X,v').z;c) can be written as
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T = A(n=n )

+(=14A) (7 =0 ) (XX ) + (S HAR) (X=X )7,

where A, = Ai(x;£,~x(X,n'),z:§) and Ay A2, Ay are posi-
tively homogeneous of degree -1, 0, 1, respectively with
respect to the combined variable o=(¢,»"') and of degree O
with respect to «. Moreover, if Zy > Ig, Zp I, then

|A1iie| - 0, ]A2| =+ 0, |A3|/}ei = 0 uniformly on D'.
Proof is easy by using Taylor's theorem at (Xc,nc’).
Now, consider a quadratic form h(¢,X) on R"xR" such that
h o= Pldee. &+ (ol + 1hexd + R X'XI,
h P J¢.¢ (bJ lJ)sIX ]

where (83) is the identity matrix.

Lemma 4.9. Suppose {L}\ and ;PiJRkll are sufficiently
small for all i, j, k, L. Then, there are matrices (a}),

(f;) depending smoothly on (PiJ), (l;), (Rij) such that
_ . j i il
h = (s, + aijx Y(FLX + P €))

and §f& - SLl are sufficiently small.

Proof has been done by wusing the implicit function

theorem (cf. [29], pp. 243-244). We have only to solve

\ Vi, o-1.k _ l
(4.11) fi+p DR = o+ L

and set a,. = (f"1)%R

] kj-

Set (a;;) = (P, L,R), (f}) = #(P,L.R) and apply the
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above lemma to our -T, then, we have the following:

Lemma 4.10. On the domain D', -T can be expressed in

the form

-T

= (p' - nc' +,¢(A1.A2,A3)(X—XC)]@(Ai,Az,Ag)(x—xC) - A1(n’—n

Moreover, @(A1,A2,A3) (resp. %(A],AZ,A3)) is positively
homogeneous of degree 1 (resp. 0) in the variable e and ¢, ¥

are positively homogeneous of degree 0 in the variable &’.

Proof. We have only to show the second statement.
Recall the homogeneity property of Ai‘ Since (PiJ) = -Ay,

(l}) = —A2, (Rij) = —(SC+A3), the equation (4.11) shows that

(f}) is positively homogeneous of degree 0 with respect to

1

6. Hence, by the equality a = f 'R, we get the desired pro-

perty.

Proof of Proposition 4.7.

Now, set
r"' v ] ) v A
== ot =+ @(A1,A2,A3)(X - XC)
(4.12)
LX - X, = %(AI,AZ,Ag)(X - XC) - A(r7 =g )

The estimates for Ai’s in Lemma 4.8 yield that the Jacobian
D%%QL§% never vanishes. So the above equation can be
solved reversely with respect to (X,»') by using the impli-

cit function theorem. Moreover, by the implicit function

C

">,
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theorem. Moreover, by the implicit function theorem given

in [31], Lemma 4.9, we see that

t T

7 = 7 (X;g’.x(?’;')’Z;C;A‘l’AZ’Ag)

X = X(x;¢, -X(X,n'),z;@;l\1 ’AZ’A3)

are smooth. Thus, remarking that Ai's depend smoothly on
Z1+Z9s we see 7', X depend smoothly on
(X;§.'X(i,;’),z;c,z1,22). Since zq,» 1z, are sufficiently
close to =z

gr ©ne may assume that the domain of »', X con-

tains Dg.
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2.5 Amplitude functions of primordial operators.

In this section, we shall fix a class of amplitude
functions of promordial operators. Roughly speaking, func-
tions in such a class are obtained by the blowing up of
usual amplitude functions The main reason for using such
functions is to make the class invariant under the natural

action of 51) and to make it closed under the multiplica-

tion.

o _
Recall that T*N is naturally diffeomorphic to R+xS*N,
b 3
, °_ .k
where R, = (0,~). Hence for a positive integer k, (TN)" =
%
0" o, _ K X Kk _ . ‘
T Nx...xT N can be viewed as R.x{S N)". Here, we shall give

k

a compactifiéation of Rk

g

Take a positive constant K, K>1. For each integer 1,
Osl=k, and each l-tuple of ordered integers I = (i],....ik),
lgii,...,ilgk, which are mutually distinct. (1f 1=0, we

write simply by I=¢.) We define a subset B | by

’

k, |
= {(sl,....sk}eR_‘f_;sI e d?‘>=D—1si‘ ,
i J J-1
j=2,...,1, and O(sng for Jjel}.
Then, it is easily seen that U & =

| l:all ordering, Oslsk KT
RE. Define maps Define maps 1, ,:54 i-—>[O,K]k for
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I = (s], ..,il) = ¢, by

(5.1) e ((speas) = (g, STIEPRTLRL

where

(5 2) r = Si ’ ti = Si /sl ’ ’ti = SI. -/SI ’
1 2 1 2 L -1 l

and s = tj for j # i1,...,i1.
Moreover, for I=¢, we define ik ¢ by
(5.3) 'k,¢(51""’sk) = (ti""’tk)’ sj=tJ

for j=1,...,k.

Remark. (1) We put a coordinate on B | by wusing
variables r_j,t1,...,tk. But one of these is not used for
each I (see List 5.1). (ii) To give a compactification of

RE, we use the variable r_1 Iinstead of r.

To simplify the notation, we often write (ti""’tk) by
t, a point (x1;€i”"’xk;§k) of (T*N)k by (x;¢) and a point

(xi;gi""’xk;gk) of (S*N)k by (x;2), respectively.

By attaching r~ =0, ty=...=t, =0,

K

we obtain a compactification of R, . Remark that the above

compactification of R+ is natural two points compactifica-

tion [0,«].

Since our compactification 1is complicated, we shall

list up the exact domains and used variables of By i for the

’

case k=2,3 for our later use:



List 5.1. (A) k:z;
A2,¢ {(tj!tz);0<t1;t2§K},
o, (1) {(ri’tZ);O<r—1't2§K}»
A2,(2)= {(t1’r);0<r-i,t1§K}’
- \ RS R
52’(1’2)— {(r,r/tz),0<r ,t2=K},
82,(2,1)° {(F/t1.r);0<r_1,t1gx},
(B) k=3;
by 4 = {(t1,t2’t3):o<ti§K' i=1,2,3},
= - U R
83, (157 {(r ty,t3);0<r ' t,, tysK},
= . -1 .
g ¢py= b ,rtg);0¢r™ by, tysK),
R : =1
8y (gy= {(E,t,,r)0<r 7 by, tysK),
i = { ! ¥ : e —] i .
83, (1,2)% rr/t,, t5):0¢r7 L t,, ty=K},
_ =1 -
B3, (2,1y= 1r/ty,r ty);0a ™0t tosky,
83,(2,3)° {(t],r,r/tg);0<r_],tx,tggK},
i

83,(3,1)°
83, (1,07
£3,(1,2,3)7
83,(1,3,2)°

{{r/7ty ty,r)s0cr Lty tysK),
1

{(F,tz,r/tg);0<r b, 1=K},

vt3
-1 .
,tz,tgéh},
1

{(r.r/tz,r/tz,tg);0<r
{(F,F/tz,tg,rftg);0<r— 9t27t3§K}1
. ; 3 . —]
{(r/t1,r,t1,t3),0<r oty
i

’t3§K}r
{(r/t ty,r,r/tg);0<r 7 ty, 42K},

L .. -1
{(r/ti,r/ti,tz,r),0<r ,t1
1

,tng},

{(r/t , ty,r/t,,r);0<r 7, b, t, 2K},



o)

Now, by the identification (T*N)X = R¥

+
above compactification of Ri, we get a compactification of

REx(s*N)K  and  the

0 .
(T*N)k. Namely, for I = (31,...,i1), lsk, we wuse a set

By iX(S*N)k, and a map ]k ixid.: b Ix(S*N)k——

510, K] Kx (sxn) KK

and compactify (f*N)k. Hereafter, we shall
use the same notations Bic | and ik | instead of 8y Ix(S*N)k

and 'k,ixld°‘

X
o
Now, each C° function f on (TN)k can be regarded as a

function on REX(S*N)k and therefore, we write it by the same

k, i

letter f if it is not confused, i.e.,

(%.4) f(s,x;€) = f(x1;51€1,...,xk;sk€k), S = (Sy,..-»S)>
(x;€)= (x1:€1,...,xk;§k).

For 1 = (i1,....il), sk, consider il}lx(flak’l), where

i, | Is defined by (5.2) and (5.3). We often write by ¥k,l

instead of i_! x(fia, |) for the sake of simplicity.

Definition 5.2. feC"((FxN)¥) is called an amplitude

function. if the following conditions are satisfied:

(A.1) For each I = (1,,...,1), Oslsk, ?k | can be extended

smoothly at tj=0 (j=1,...,k).

(A.2) For each I = (i;,...,0), O<lsk, T has an asymp-

totic expansion as follows:
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(5.5)  F Tt & o5 At

where Aj(t,x,g) are C functions on [G,K]k_1X(S*N)k-

Remark The condition (5.5) means that ?k | is smooth at

r=e,

Definition 5.3. (i) We denote by (LK the totality of

amplitude functions which satisfy (A.1) and (A.2) in the

above definition.

(ii) For each 1 = (i1,...,il), 0<l=zk, we denote by (ﬂ_? m

the totality of C” functions ¥, | on 10,K1¥x(s*N)¥ such that

, |
for non-positive integer m, ?k i has the following asymp-

totic expansion:

(5.6) ?k A Aj(t,x;g)rj’ Aj ¢ o“({o,K]k"1x(s*N)k).

J=m
(1il1) For small Eqrneer€iy > o, denote by
sz( 51""’5k—1) the space of all functions fe‘dL"
such that |

(5.7) f(x;¢) =0

I d(xi,xi+1) > € for some i=1,...,k=-1.

Remark. By Definition 5.3 and the remark in 5.1,

f(x;¢)e 611 if and only if it satisfies, for >0

(a) T(t,x;8) = f(x;t¢) can be extended smoothly on

[0,=)xS*N;

(b) f has an asymptotic expansion, for large >0,
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fos.

2yrd
J éoAj(Xf\)r .

‘Next, we shall put a system of norms on gzk. Let

fe dlk. Then, for every 1 = (i1,...,il), 1#0¢, and any
non-positive integer m, ?k | = i;'T(f1ak l) in (5.5) can be
written in the following form: For fixed C” function ¢(r)

such that «(r) = 0 on 0§r§2K_1, and =1 on r;3K—1, we have

(5.8) ?k | = w(r)(sumA.(t,x,;g)rj) + Ti m_1(r-1.t,x;§),
’ m< j<0 J ’
where T € ko
> T m-1 QU m-1-
Let |Ajlg be the c®-norm on [O,K]k'1x(S*N)k.
Definition 5.4. For  each function ¥k,| on

[D,K]kx(S*N)k, we define a norm H?k IH , s 20, m 20, 1=,

,1'm,s
as follows:

(5.9) H¥k,|”m,s = T JA._+ ¥

(5.10) F, 4 o = sup () TP G aPO% F L
’ r>0,p+|al=s (t,x,g) 7
(x;¢)e(s*N)K
where D _is the derivative on [0,KIKTTx(s*N)¥ by using
(t,x;¢)

a normal coordinate system.

Definition 5.5. For each fe¢ de, we define a norm

Hme’s, sz0, m=0 by

(5.11) Il = s ¥
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) o~ . v \ =%,
where T | is the C°-norm of F = :~]_(fla.
¢'s @ K, K,®

{O,K]kx(S*N)k, and the summation of the first term of (5.11)

) on

is taken by all Ll-tuple of mutually distinct indices

in{1,...,k}.

For every ms0, the system of norms {lI-li . ;s=0,1,2,...}

‘ A .. K : - ko, e
give a topotpgy Tm on G6L°. We denote by Ol(m) the compie

k
tion of ( OL ,I.). An element of Oltm) will be called an

extended amplitude function on (T*N)k. it is not hard to
see that v dlfm) = le. Thus, we define the inverse limit
m
topology for OL](. As a result, Jlk has a Fréchet struc-
ture by above system of norms. Also, we denote by
% ) ) _ . . :
61,(m)(61""'6k-1)' for m=0, the closure of

K, , k
L (eqsniig ) in oL (m) "

Remark. By the definition of amplitude functions, it
is easily seen that dzk is invariant under any permutation

of variables.

in the following, we shall investigate the differentia-

bility of some operations on de.
Given f, ge le, denote by f+g the natural pointwise
multiplication of f and g. The, it is easily seen that

fge OLK. Moreover, we have the following:

Lemma 5.6. The multiplication map M: dlkaQ, —> GZk.

defined by M(g,g) = f-g, can be extenced to a continuous

bitinear mapping of (Q’%m)xdz ?m)’ for every ms0.
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For each @§ K, ket, n k=1 can be embedded smoothly in
o o)
Jzk as follows: Let pj:(T":N)k-->(T*N)k-1 be the projection

efined by, for j=1,...,k,

5.12) PJ-(X;'i) = (Xq3€q,.0.,%

v o v

J

here x , ¢ mean that xj, §j are omitted.

For P, we have the following:

Lemma 5.7. Given fe¢ 51k-1, p?fe dlk. Moreover, the

apping pj: dlk—1* Jlk can be extended to a continuous
inear mapping of 02%;; into dl%m) for every msO0.

Proof. Let 1 = (11,...,il) be l-tuple of indices. By
he remark in 5.2, we may assume that i1<12<...<il. Then,

or any fe¢ dzk_1, we have

) *
5.13) (ij)k,l
—1 vJ. R vJ. vJ. .A
fk_l’l(rrt1p.-pt ,--.tk,X];§1...,X ME3 ,...,Xk,\k),
Jel;
-1 7 ) IR A
fk—l,l((r/tiz) A TTREFA SIS I O TR ERR L e X8 )
J=iys
f ™t t ;J £t t ¢ e )
r » . ’ H » , H » H y o oy X ;'E » -,X ;§ "'!X; »
k=1,1 1 =1 0 k, 1731 k”>k
J=ig (mz2)

rom this, we get the lemma.
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Next, we give a diagonalized operation. Given positive
x o k+1

X 15 * k o .
integer i, 1sigk-1, define a map di:(T N)"==>(T'N) by

- %

(0.14) di(x;g) = ()(1;{;“1,...,Xi;gi,xi_’_‘;{:'_f},..-,Xk;gk).

Denote by d?: le+1——> clk the pull-back mapping induced

from di' By a similar computation as above, we get the fol-
towing:
Lemma 5.8. For every fe GLk+1, d?fe aLk (i=1,...,k-

10). The mapping d?: mLk+1——> GLF can be extended to a con-

tinuous linear mapping of 0L'°+1 into dz,%m) for every m=0.

(m)

Now, for fe Jlk, ge Glﬁ', define a map x: gzkx nk —

_)Ch,k+k'—1 by
(5.15) Tx(X g€y X o1 Skt = 1)
= F(X 38 X GRS E a Xp 1 Sk )
Namely,
(5.16) fxg = d;M(pk’ke+§f,pk,’k.+;g).

Hence, from Lemma 5.7-8, we have the following:

Corollary 5.9. The mapping x: Jlkx dzk — de+k -1

can be extended to a continuous bilinear mapping of
k k' . k+k' -1 ,
JL(m)x 6l(m) into 02,(m) for every m=0.

Finally, we shall state about the differentiability of

the action of ég)él) on CQ/k. Namely, we get the following:
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Lemma 5.10. For each we(g>é‘) and f € dlk, o f s
an element of gzk. Moreover, the mapping ev: 5551)x Olk——
> JLk, defined by ev(e,f) = # f can be extended to a C” map-

ping of §9é1)x Ol%m) for every m=0.

Proof. Let ¢€¢2>§1). Write p(X;¢) by

(¢1(X:§);¢2(x;§)). Putting u(X;€) = i¢2(x;€)i. we see

#(x;€)>0 and ¢ maps r,x;€) to (u(X;E)r,e(x;%)) where

P (x58) = (o (x38)1u(x:8) e, (x38)).  Hence, we have
(5.17) m*f(x1;r1§1,...,xk;rk§k)

= f(¢1(x1;€1);u(x1;€1)r1-$z(x1;€1),...

. "P*I(xk;gk);#(xk:gk)rk‘¢’2(xk;€k))-

Thus, for any 1 = (ii""il)’ ii<"‘<il' we have

(5.18) (phi%*f), irTh %8 =

~ ’A —1; ¢ ~ ‘/\ A ‘A
fk,l((”(xij’éi )r) t ,W(Xq'yg'i)l"-!go(xkvgk))

i

where 'ti”=ti for ieI; and ’c.l o= u(xi ;gi )ti /”(Xi ;gl )

1 i 2 2 2

s e e ey ti 'o= ”(Xi ;gi )ti Ju(X, ,Ei ). For the other
{ -1 -1 N '

case of 1, the computation is similar. By the differentia-

bitity of (5.18) for each 1, we obtain the desired results.

For our later use in 2.7, we shall modify Lemma 5.10
to a certain local form. First of all, we remark the fol-

lowing:
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0 ”
Lemma 5.11. Suppose féCw((T*N)‘) satisfies the follow-

ing conditions:
(LA.1) =0 1f j¢|%+|n|%<R%, or |»|/i¢|zC, C>=1;

(LA.2) Put F(r,e,x;8,y;%) = f(x;r(cose)s,y;r(sine)n).
Then F has an asymptotic expansion

Fo= ZJ§OAJ(9,X;€»Y;$>FJ (r>>0).
Then, fe 2.

Proof. Set ?(r1,r2,x;§,y;$) = f(x;r1€,y;r2$), and

recall List 5.1. there is no problem

O 2,8 22,(1) 22,(2)"

because ?2 on each domain is identically zero. Hence, we

, |
have only to check that  Ff(r?t,r,x;&,y;7) and
F(r,r/t,x;€,y;%) above asymptotic expansions requested in
Definition 5.2. However, these functions are zero whenever

-1

t=C or t=zC. Thus, we have the desired expansion by using

(LA.2).

Now, denote by 06,6 the domain  {(x;¢,  (X,7"));
|X|=sepsiton, |¢—x%'iso(|¢i+|» 1)}, where &>0, s>0. We con-
sider C° functions f such that supp fsubse‘th,6 and f satis-
fies (LA.1-2) in the above lemma. For such a class of func-

tions, we give the restricted topology of %m)’

Let & be a C diffeomorphisms of D, 5 into an open
he i ghborhood of Dy & such  that @(x;re,y;ry) =
(PHij;réz,ég;réa) where ¢, = @i(x;g,y;n). Such a class of

diffeomorphisms can be topologized by the standard C” topol-
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ogy by which it turns out ot be an open set of & Fréchet

space. For such ¢, and for such f defined above, ¥t is

o
again a C function on (T*N)2 satisfying (LA.1-2). More-

over, by the smoothness of compositions, we have

Lemma 5.12. Notations and assumptions being as above,

*f is smooth with respect to ¢ and f for every mg<0.
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2.6 Proof of Theorem C.

In this section, we shall prove Proposition 2.2-3 and
finally give the proof of Theorem A by assuming the smooth-
ness property of some oscillatory integral (Cf. Proposition
6.1). This smoothness property will be proved in the next

section.

(a) Choose €4 £2>0 so that ei<r1/4, where ry is given
in s52.4. Recall the definition of O°(  €,,¢,) and
OLimy(€1:€p) (cf. Definition 5.3 and 5.5). Let z,, 1z, be
elements of 690 which are sufficiently close to z,. Given

a6513(£1,62), consider the following integral

. —121@22
(6.1) <(ae >(x;¢,2;8)

—i21g22(X;§ ,Y:U,Z;C)

= Os—Jja(x;xi,y:n,z;z)e dyd».

The above integral can be defined as the oscillatory

integral for any fixed (x;¢), (z,z) and it will be called

the contraction integral of a by Z,+2,.

First of all, we state the following, which will be

proved Iin §2.7:

Proposition 6.1. (i) For Zyr Z9E€ 90, sufficiently

—iz1822

close to Z5> and ae(Q?(e1,52), {ae > can be written by

—izﬁﬂzz

(6.2) (ae >(x;¢,2z;%)
—ic(z1,22)(X$§,2:§)

= b(x;¢,z,8)e ,
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where be 2(51+52) and c(z,,7,) is defined in (4.9.

(11) For a sufficiently small neighborhood U of 74 in

0
690, the mapping A(a.z1,22) = b can be extended to a C  map-

ping of 6L?m)(51,52)xuzoxuz into Gl%m)(€1+£2) for every

0
m=0.

(b) Next integral is much simpler that the above case
(a). Now, we denote by dl?(w,sz) the totality of ac Gf such
that

i

(6.3) a(x;¢,yY;»,2;%) 0 for  d(y.,z)>e,.

Denote by Ol?m)(“'52) the closure of (ﬂ?(m.Cz) in Gl?m) for

each m=0. For ac dl?(w,e2), we consider the following
integral
—izo
(6.4) <ae >(X;¢,2;%)
"iZO(Y,YI,Z)
= Os—-lla(x;¢,y;w,2;8)e dyd»n.
—i21E22

As in the case of <ae >, (6.4) is well-defined as an
oscillatory; integral, which will be called also the con-

traction integral of a by Zg- This integral has the follow-

ing property:

Proposition 6.2. (i) For every a eCQ?(m.Ez).
{ae > is contained in OZ,.

~i7g_ 03 2
(ii) The mapping <xe >xﬂ,(w,62) —> §L° can be
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extended to a continuous linear mapping of (] ?m)(W.Cz) into

62%m) for every ms0.

(i) I f aedzabn,ez) is rapidly decreasing in |¢|, then
—izo
so is <ae > in J¢f.

-iz
Proof. (iii) is trivial, since <ae 0> is defined as
an oscillatory integral. To prove (i), (ii), we have only
to repeat the standard technique on each local coordinate
system bq (cf. List 5.1), by finding operators L such that
-izo -iz
Le = e and repeating the integration by parts. We

omit here the precise procedure of these, for these will be

discussed again more precisely in the next section s2.7.

In the previous papers, pseddo—differential operators
of order 0 have been defined as operator with symbols con-
tained in zg (cf. [36]). Here, we shall remark the same

operators can be defined by using aedlT instead of aezg.

Recall the definition of () and the remark in 5.2.
Given aegz1, we define a linear operator Q(a) on c” as fol-

lows:

: -izo(x;e.y)
(6.5) (Qa)u){x) = Os—jja(x;s)v(x,y)e u(y)dydg.

o
Now, fix a C function «(x,¢) on T*N such that =1 on
l¢1sK and «=0 on |¢|22K where K is a positive constant.

Divide (6.5) into two parts:
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—izO —izO
Jjwape udyde + Jj(i—w)aue udyd¢

Q + Q.

(6.6) (Q(a)u) (x)

Since (1—¢)auefg (cf. [27), p. 365), Q, is a pseudo-

X
differential operator of order 0O, because zo(x;g,y) = L&) y>

on supp(l-¢)av. By Kuranishi's technique (cf. [29], p.269),
we can eliminate the y-variable in the amplitude (1-¢)av and

obtain a pseudo-differential operator with the amplitude

0

contained in P

On the other hand, Q1 is smoothing operator with the
kernel

. —izg(x5¢,Y)
(6.7) KQ1(x,y) = Jw(x;g)a(x;g)nU(x,y)e de,

which is obviously smooth. Hence recalling hw we defined

the norm il || on the space 0

m,s and using Lemma 1 in [36],

we obtain easily the following:

Lemma 6.3. Let a € (ﬂj. Then Q(a) is a pseudo-

differential operator of order zero on N and the mapping
Q: 6ﬂ -=> 3‘3 can be extended to a continuous linear mappling

from dlgm) into dZ?m) for every m=0.

For KeC™ (NxN) and ¢628é1), we shall consider the fol-

lowing operator
(6.8)  ale,K) = o Kk ne* 1§ -4

Then, recalling the statement o+ Proposition 2.3, we have
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aAle,K) = n x(phi,K) «. By (3.3), we have
(6.9) (Me,K)T)(x;8) = Jj(v*aK)(x;xi,y;n)f(y;a)dydn,

where

X

a(x;¢,y) = ij(x.z)K(z.y)e_i<§]'Z>d2-

First, we compute x(phi,K).. The, we have for ueC (N) that

(6.10)  (X(e,K)eu)(X;¢)

—-iza(Yim,2)
= JJJA(¢.K)(X;€,y;v,z)e = u(z)dydndz,
where

(6.11)  Ale,K)(xie,yin,2) = ( $ad(xie,yin)uly,2).

By Corollary 5.9 and Lemma 5.10, we see A(¢,K)€ CQ?(m,é) and
A(¢,K) is rapidly decreasing in |¢|, for so is a,. Hence by
Proposition 6.2, we have <A(¢,K)e > € JU and rapidly

decreasing in |¢|. Moreover this is smooth with respect to

¢ and K.

Since a(¢,K) = n x(e,K) », the kernel of a(e,K) is give
by
-iz

(6.12) L{e,K)(X,2) = I(A(¢,K)e 0>(x;£,z)d€,

which is obviously smooth on NxN. Thus, we get the follow-
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ing, which proves Proposition 2.3:

Lemma 6.4. Let KeC (NxN) and o€ 8&”. Then,
Ale,K) = n x(¢,K) ¢ is an linear operator with a smooth
kerned L(¢,K) defined by (6.12). Moreover the mapping
L1§9é1)XCM(NXN) —-> C (NxN) is a smooth mapping.

Before proving Proposition 2.2, we shall remark some
properties of a certain oscillatory integral. Namely, con-

sider the following linear operator on CT(N):
(6.13) (u{a,z)u)(x) = Jja(x;g,y)e—iz(x;s’Y)u(y)dydﬁ,

where a(x;¢,y)¢€ Olz(epsilon) and z¢ 6% do not involve »n-

variable and z sufficiently close to Zg-

Remark that on the support of a, Z(x;i,'xY) can be

expressed as

(6.14) z(x;¢, - Y)

X

= e |Y> + < |Qix;xT,Y)YEy = < |V4QYZy = <e|(1+QY)Y>.

Since 7-74 is small and |Y|<e, one may assume that
1 + Q(z;xi,Y)Y is an invertible matrix. Set ¢’ = ¢(I+QY).
Then by the implicit function theorem (cf. [31]), ¢ can be

expressed as a C~ function %z(x;s',y) depending smoothly on

o
z. Let D(e) be the domain {(X;§,Y)e(T*N)xN;d(x,y)<=e}.

Then %z is actually a €~ diffeomorphism of D(¢) onto itself

and positively homogeneous of degree 1. Hence, we have the



following:

Lemma 6.5. For ze@o, sufficiently close to zg there
exists a € diffeomorphism &suz of D(¢) onto itself such
that %:z = 7y and ¥sugz is positively homogeneous of degree
one. Moreover, & is smooth with respect to z under the c”

topology for ¥ .

Now, using the above lemma, we rewrite (6.13) as fol-

lows:

(6.15) (u(a,z)u)(x)

—izo(x;s,y)

= jj(%ia)(z;s,y)ﬂdetD%Z}e u(y)dyds,

where we see easily that (%:a)idetD%zt € 612(6) and does not
involve x»-variable, and (%Za)}detDizi depends smoothly on z

(cf. Lemma 5.10).

Thus, using Kuranishi's technique, one <can eliminate
the vy-variable in the amplitude (@Zsuop*a)ldetD%z1. Thus,

by th same computation as in 6.2, we obtain the following:

Lemma 6.6. (i) For Z€0y, sufficiently close to Zg> and
aecﬂz(e) which do not contain x»-variable, }x(a,z) is a
pseudo-differential operator of order 0. (ii) The mapping
u:6L§(6)X€9O -=> 3 O can be extended to a C” mapping of
mj,(m)(é)XQO into }?m)’ where ()1)?](6) is the totality of
a€ m?(e) which does not involve »p-variable and dli,(m)(e) is

its closure in dzfm)(e).
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Denote by E{¢), for wéé}a , th linear operator on,X N
(1)

(6.16) E(g) = o ene™ ] (cf. 2.3).

Recall the argument in 3.1. E(«) is an integral operator

. 4 X ’i¢*20 X

with a smooth kernel ¢ ve By Lemma 4.1, « 7€ 90.
and by Lemma 5.10, o ve C) if ¢ is sufficiently close to
the identity. Moreover, = (¢) of (2.6) is written as

nE{¢)., hence we have

(6.17) (2 (e)u) (x) jjs(¢)(x;s,z)u(z)dzdg,

where

b 4
-le z Bz
X uxve = O, .

(6.18) Ble)(x:¢,2)

Note that o*uxve 613(6,5) and does not involve ¢g-variable.
The, using Proposition 6.1, we have

_ -iC(w*zo,zo)
(6.19) Ble)(x;¢,2) = b(e)(x;¢,yz)e ,

b(e)e B 2(2¢).

It is easy to see that bv(e) does not involve C-variable,‘

% X
because so do ¢ vxy and ¢ z0+z0.

Also by Lemma 4.4, we have c(w*zo,zo) €0 is suffi-
ciently close to zo(x;é,z), if ¢ is sufficiently close to
the identity. Thus, by Lemma 6.6, we get Proposition 2.2,

(a), (b). Proposition 2.2, Gc) is obvious, because
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=(id.) = id. and Gg?m) is an open subset of g(()m) for

every m<=0.

Now, we shall give the proof of the main theorem. As
in 2.3, recall the operators ro ay in (2.8), (2.11). We
denote by Y the pairs (a,z) where aetﬂ?(c), z€UZ , a suffi-

0

ciently small open neighborhood of 75 in ChE By using
Fréchet structures on dl?(e) and 0g> M captures a structure
as an open set of a Fréchet space. Associating with
aedl?(e) and zeU,, we consider a primordial operator on Ag N

on the form

(6.20) (P(a,z)f)(x;¢)

= Jja(x,ﬁ,y;ﬁ)e—iz(x;g’y;n)f(y,ﬁ)dydﬁ,

and this plays an important role in the observation of r

7’
and . Namely remark that
(6.21) Fsugr(e,w) = Z(ew) nE(ew)E(e)c,
(6.22) @ (v,A) = =(s) E(e)etaEle)e + 2(e) ale.K),
where A = ma. + K , aezg, KeC™ (NxN) . REmark also that

E(ev), E(w) are primordial operators written in the form

(6.20).

First of all, we shall observe (6.21). Remark that

(6.23) (E(ew)E(e)f)(x;¢)
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= JI((?w)*wa*v)(X;é,Y:W,Z:C)
I
=1 ({ww) ZO+ZO 4 _
xe f(z;&)dydndzds.
By the result in s2.4-5, we have (ov)*vxe™v ¢ ) 3(e,¢) and
(ww)*zo, ¢*z0€®0 if ¢, v are sufficiently close to the iden-
tity. Therefore, Proposition 6.1 can be applied in this

case, and the kernel of (6.23) is given by the contraction
integral

—i(ww)*z Xz
(6.24)  <(ouw) uxe*ve 6o,

—ic((ww) 75,07 2g)
= b(ﬁp,’ﬁ')e ’

for some b(¢,w)€(ﬂ?(26). Thus, by Lemma 4.4, Proposition

6.1 and Lemma 5.10, we obtain the following:

Lemma 6.7. There exists a neighborhood V of the iden-
tity in 595’) such that the mapping of VxV into ¢1%(2¢)xe,
defined by (¢,v) ==> (b(phi,u),c((ww) zg.¢ 7y)) in (6.24) is
a smooth mapping of VxV into JZ%m)(Zs)xeo for every m<=0.

Now, we shall compute nE (v )E(e) . Set

+

z = C((ww)*zo.w*zo) in the above notation. Then, we obtain

(6.25) (E{ev)E(e)cu) (X)

—i(z'+z0)(x;s,y;n,z)

= Jjb(¢,w)(x:€,y:n)v(y,z)e u(z)dzdyd»y.

Thus
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(6.26)  (nE(ew)E(#)cu)(x)

-iz'+zo
= JJ(b(¢,¢)xue >(x;¢,z)u(z)dzde.

Since z' is sufficiently close to zy» one can apply Proposi-

tion 6.1 again and obtain

i 0 ~ —iC(Z.,Z
(6.27) bl 9 ,p)xve T Ty = Ble,u)e 0,

B(e,v)¢ m2(35).

Remark that B(e,w) does not involve n-variable. Hence, by
Lemma 6.6 we see that nE(ew)E(¢)e is a pseudo-differential
operator of order 0 and the amplitude depends. smoothly on
(e,v). This prove the smoothness of ry(w,w), because the

smoothness of Z(ew) 1 has been already obtained in 6.5.

Next, we shall consider (6.22). The smoothness of the
second term has been give in 6.3 combined with Proposition
2.2. Thus, we have only to consider the first term. How-—
ever, the smooth dependence of E(¢)¢*8'E(¢) can be easily
seen by the similar way as the above argument. Hence, we

complete the proof of Theorem A.

Now, what remains to be prove is only Proposition 6.1.
Though the proof of Proposition 6.2 is not precisely given,
the detail of the computations on each coordinate neighbor-
hood can be naturally understood from the computations in

the next section.
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2.7 Regularity of primordial operators.

Our goal in this section is to prove Proposition 6.1 in
§ 2.6.

Let z, ,z, be elements of G, and are sufficiently

close to Zq- Given ae(ﬂs(e1 52), recall the following

integral:

—iz1 B z,

(7.1) <ae >

= OS—JJG(X;Xi,Y;>7,2;C)e dyd»

The above integral is defined as the oscillatory integral.

Now, we shall show Proposition 6.1 by several steps as

below.
Put as in 4.3

(7.2) T(xX;¢,Y:w,2;%)

= 7y @ zy(x5¢,y5m,258) - clz,7,)(X5¢,25%)
where ziego (i= 1,2,3). One can define the factor topology
on H¢2) by using that of 8.

Also, rewrite (7.1) by the following:

—121EB 75
(7.3) <{ae >

—ic(zy,7,5)(X;5¢,2;8)
= A(a,z],zz)(X;i,ZJC)e
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where

(7.4) A(a,z1,22)

= OS—J[B(X:S.y:n,zzg)e_iT(x;g’y;n’z;g)dydn .

Therefore, to prove Proposition 6.1, we may prove the fol-

lowing:

Proposition 7.1 Notations being as above, we have

(i) For 21,22658CV sufficiently close to zy, and
ac m9(51.62), the integral A(a'ZX’ZZ) € JF(€1+€2).

(i1) The mapping

. 3 . . 2,
A () (61’°2)XU20XU20 &2 (9]+62) ,

defined by (7.4) can be extended to a C mapping from

3 .
&m)(e],ez)xuzoxuZ into dZ%m)(£1+52) for every m=0.

0

As an easy remark, if the integral (7.4) can be
defined, then it is easily obtained that A=0 on

d(x,z))e1 + 62.

The above proposition will be proved by dividing the
integral into several domains D(j) and by expressing A by

A(j)‘ So, in what follows, we shall denote by Lem.A(J)- It

Lem.A(j) holds for every j, then so dose Proposition 7.1.

First, we take a positive constant R and fix it. Let
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wp be a C” function on (T*M)2 such that wpz0,

(7.5)  wglxit.yin) = 1 on d(x.y)=¢e; and [s]2 + [»" |?=R%/2 ,
where . (X,7") = (y,») and

, X .2 1 2 v 2,02
(7.6) suppwn  {(x;¢,y;n)€(TN)“;d(x,y)=<e¢ el + [ »7|T=<R"} >

Using wp» We divide (7.4) into two parts;
(7.7) A(a,z1,22) = Os—Jj(1 - wR)ae—iT + JJwRae—'T

=A(O) + A

(-1)
Remark that the second term A(_1) in (7.7) is integrable in
the usual sense. Hence, a direct computation shoWs that

Lem.A holds.

(=1)
Remark. In fact, A(_1)(x;£,z;c) is bounded in jg&| and
rapidly decreasing in |¢].

Next, we divide A(O) in (7.7) into several parts.

w ©x 3 :
First, let «(x;¢,y;7;2:2) be a C function on (fN) satisfy-

ing
(1) supp ¢ {(X;¢,y;»,2z;2eta) ; d(x,y)=<ry}

(ii) »z0 and ¢=1 on |» - ncléa1]£§/2 and =0 on
|n — Wciéﬁlﬁi , where  (y_;7.) is the critical point
given by Proposition 4.3 and 94 is chosen to be a suf-

ficiently small constant.
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(ii1)  e(x;re,y;ro,z;sz) = ¢(x;¢,y;7,2;&)foranyr,s>0

Then, it is easily obtained that critical point of T
which is the same as that of zy * 75, obtained in Lemma 4.3,

is contained in suppe. Therefore, we get

(7.8) A(O)(a,zl,zz)

Jjwa'e—IT + OS-jJ(1 _oyate T

A1 + A2 ,

where a' = (1 - wp)a. Easily ¢a', (1 - phia’ ¢ Q?(61,€2)
by Lemma 5.6-7. Moreover, we divide A2 in(7.8) by using a
partition of wunity: Namely, we choose functions ¥
(i=1,2,3) with the following properties:

(7.9)  si_e =1 . weQ°;
and
4 %%, 3., a1,
supp¥; = {(x;¢,y;7,2;2)e(T' N)7; |7|=C "|¢ |}
(7.10)

suppt, = {(x;é,y;n,z;C)é(T*N)g;(1/2)0_1|€ié}ﬁlé20161}

supptg = {(Xzé,y:v,z;a)E(T*M)3;1nl;C|£t}

where C is chosen in Corollary 4.6. Now, we put

(7.11) A2
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Os—Jj%1(1 - r,o)a'e_iT + Os—JJ%2(1 - <p)a'e-iT

+ Os-JJ*I’3(1 - ¢)a e-iT

Az’1 + A2’2 + 52’3

Using Lemmas 5.7-8, we summarize the following:

Lemma 7.2. Suppose that ¢ 52<r1/4 and fix functions

1)

wp» e, ¥. (i=1,2,3) defined as above. Then, we have

i
(i) The mapping a--=a’' = (1 - wR)a can be extended to a C°
mapping on Al?m)(e].ez) for every ms0.

(ii) A(O)(a,zl,zz) in (7.8) can be written by

_ Al 2,1 2,2 2,3
(7.12) A(O)(a,z1’22) = A + A + A + A ,

where
1
(7.13) A
= JJC1(X:s,y:n,z:c)e—iT(x;€'y;”'Z:g)dydn (1=1,2,3) ,
where ¢y = (1 - wpa, Cp g = (1 - wR)(l - ¢)¥,a are ele-

ments in 623(61,52) respectively and

(7.15) suppC,<D, = {(x;g,y;v,Z;C)E(T*N)a:d(x,y)§€1,d(y,2)§62,

1612 + |»' [22R%/2, 1% = »
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(7.16)  suppc, (<D, | = {Ae(T*NY 35 d(x, y) e, . d(y, 2) 5y,
€12+ 1n 1 22R%/2, [n = mg 2172y le L 1nl<CT g1},

%
(7.17)  suppc, Dy 5 = {{X58,y5m,2;0)€(T N)3;d(x,y)se1,d(y,z)é62,

2 2 12

€12+ |n 1%2R%/2,|m = ngl2(1/2)0y 1]

(172)c Ve isin|s2cic |}

(7.18)  suppcy 4cDy 4 = {(x.ﬁ,y,n,z,z)e(T*N)g;d(x,y)§e1,d(y.Z)ssz.

L2
1€

+ 00 122R2/2, =ng 1201725 €|, [n]2C ¢ |} -

L ) - 3
(iii) Moreover, c1, CZ,I (i=1,2,3) €& (61,62) depend

continuous- linearly on a in GZ%m) topology.

Lem.Al' First, we remark that A1 is integrable 1in the
usual sense. We shall check the conditions (A.1-2) in
Definition 5.2 by using coordinate system {AZ,I} (Cf. List
5.1 for k=2). Now, we may take R by R>4k. Then,

8 @nsuppc1=¢ and we have only to investigate for four
CASES: L2,(1y, %2,(2), %2,(1,2)" %2,(2.1)"

On a, (1): By using the variables (r-1,t) in 2, (1), e
have '

(K1)2’(1)(r_1,t,x;§,z;z;)
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= JJD c](x;re,y:n.z;tc)e"'T(X;rgy;"'z;tg)dydn
1

By Proposition 4.7, if we take v, as a sufficiently small

constant, we get

(7.19) (K, (1)(r".t,x;€,z;£)

. ~ N —'I(r/'-—rlc'!X—XC>
= JJ c e (xirg,yiv,.zite)e dyd» ,

D,
where c, =(c ¥)|detd¥|, D; =¥ 'D,. Setting %=(1/r)n, we get

‘ ~ ~

(7\'1)2’(1)“"- yt,x5¢,2;%)

" o LA e (38,23 8) X=X (x5 E,Z58)>
= r c]'(x;rg.y;rn,z;tg)e dydrn ,

where .X(X,; ). Consider the function c1(x;r§.y;9,2:t§)-

By using Proposition 4.7 (ii), we have

c1'(x:r€.Y;r$,z;t%)
= C](x;r€.51(X:§,y:$,z;E):rgz(ng,y:z.z;t%)

x|detDI(x;2,y;7,2:28) |
where 5—1(y;r5) moves in D,. Thus, using (3.12), we have
c e N - Noy s (5] s clla S o+ Ne
X 1 7= X 1

for certain constants C,N>Odepending on the Riemannian
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stru;ture. Since X,Z are sufficiently small, we put
(7.20) r=rinl Lt = vty =t
and define a function o by

r
e

o (r ,t1,t3.X;€.y;5,z:2) = ¢ (x?(r/¥1)§.y;F5.Z?t3%)-

. A ]
©0

Then, o is C on 83,(2,1)" By putting »" =75 -» and
X"=X—XC, we get

(K1)2’(1)(r—1.t.x;§,z;2)

=ij((r;$i)“.;zi,t,x;Q..x(x,E )2.8))

Xelf(n | X )rnd;"dxn
Using the Taylor expansion of p(...) with respect to X" and

integration by partss, we get

(7.21) (KD, T g

-~ — -~ A ~' A . -
= spra% % ((r 1T T LT s E, . (6T ), 28 )y o (=) T
n

';7’n=0

m-1

where Rmn—1 is the remainder term obtained by Taylor expan-
sion and is of order O(rm—]). Moreover, use that o can have

the asymptotic expansion with respect to r. Then (A.1-2)

are obvious.



- 150 -

On 62’(2) : Also, use the variables in A2,(2) and the

hotation as in above. Then, we have

1

(7.22) (K1)2’(2)(r_ t,x,28,2,8)

- jJD C1(X:tz?,y:n.z;ré)e_'T(X;tg’y;nz;rg)dydﬂ
1
By Proposition 4.7, we have

~1
= [JD1C1(X;t€ Yim,2;re)

T<p =t (X 18,2, 8) [X=X_(X;t8,2;8)>
xe deT} ’

where c1'=(cx-5)|(DetD$)|. Also, by using Proposition 4.7

(i1), we get

c1'(x;t€,y;0,2:r$)
- c1(x;g,¢T<X?tg’Y?eta'z'%);gz(x;tg’y;eta’z;%)
x |detD®(x;€,y;7,2;8) |

Since |»| may be estimated by |»isK, put

(7.23) F = r,tT = t,tyltilde = |eta]

we see that
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-\——1 ~ o~ ’,C\ A Lo _ N ~ ? e ~ g
e(r 4,1, X8,y eta,2;2) = ¢ (x,t1,x.y,t2,n,2,r§)

is smooth on 84 (3)" So, by using Taylor expansion, we get

(A.1-2).

On By (2) ¢ Using varibles in 89 (1,2) and using Propo-

sitiond.7, we have

1
Ao (1,237
= JJD1.c.(x;rg.y;v,zz(r/t)g)

;' =rn " (x3€,258) (X=X (x;€,2;8)>
xe dyd»

Bh changing variables »=(1/r)»n, we have

(7.24) (‘A’1)2’(1’2)(r—1;t,X;g,2;%)

= Jle.c.(x;rg,y:n,z;(r/t)i)

ir<m'—n_"(x;¢,z;8) | X=X (x;2,2;2)>
xe ¢ c rndydn

s ans. put

12

—
-3
N
w

~
-3

1]
-
]
~t

1}
3
~+

i

t .t L x€,y:7,2,8) c, " O(r/t eyt (F/t t)H)E) |,
1 T T3
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is smooth on ag’(2,1’3), where

ci'(x;rg,y;rﬁ,z;(r/t)g)

= c1(X:rg.éT(x;g,y;ﬁ,z;i);réﬁ(x;g,y;ﬁ,z;i),z;(r/t)i)

x|detD®T(x;€,Y;5,z;£)l

Therefore, by using Taylor expansion of e, we get (A.1-2) in
b2,(1,2).

On 89 (2,1) : Using variables in By (2,1) and using

Proposition 4.7, we have

(K1)2(2,1)(F_1.t,X;g,Z;C)

= J[ S (X (r/B)E,ym,z5rE)
D," ™1
i<n'—(r/t)nc‘(x;€,z;:);X—X (x;€,2;:€)>
xe dydn ,

where c” = (c'$)](det05)|. By changing variables (r/t)n=n,

we ahve

1 ~ ~A

(7.26) (K1)2’(2’])(r— ,t,x;gvz;g)
- JJC1'(X?(r/t)g.y;(r/t)ﬁ,z;ra)

i(r/t)(%'—n "(x;xT,2;8) | X=X (X;§,2;2)>
xe c e (r/t0"dydy ,



where C~ S +Na, . If. |7 |/t<K, then

we put

(7.27)y  Tr=riyv|/r ,t =t,t =|%i/t.
7 Ty

Therefore,

Vit ot xGEysy.zie)

(7.28) (r-
¢ T3

= ¢, (x;9F/t_t )Ye,ykiry,z;9r/t )E)
‘ T3 3

: . ~ -1
is smooth on A3’(2,3’1). Also, if |»|/tzK ', then we put

Therefore,

1 A

(7'30) P(F— P‘%"‘r:\t’zvx;gvy;;;,Z;g)

= oy O (F/E T8,y (F/E,)7,2:TE)
is smooth on ag’(3’2,1). Here
e (X (r/t)E,y:i(r/t)n,z;rk)

=, (X (r/0)8,F, (€, yswtilde,z;8); (r/t)T,(x:8,y57,2;8)

x |detDE(x;8,y;7,2:8) |

Applying Taylor expansion for both case (7.28) and (7.30),
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we get (A.1-2) in 8, (2,1)

Lastly, we have to check the differentiability of A1
with respect to a,z, and Zg- It Is easily seen by differen-
tiating (7.19), (7.21),(7.24) and (7.26) directly with
respct to a, Zy, 7y and by the same computations as above.

2,1

Lem. A%’ . We shall consider the integral A2'H

in

Lemma 7.4, i.e.,

Az"(x;s.z;c)

= OS—chz 1(><:§,y;n,z;:)e'T(X;E ’y;n’z:g)dydet ,

where Cy 4 is defined by (7.14). To check the differentia-

i4

bility of A2 i with respect to 3,74, and z,, we shall check

z 14
formally differentiability of A2’1 with respect to a,zy and
75 Then, it is easily seen that these derivatives can be

written by the sum of the following integrals, for |alha|z0

(7.31)  voA% (x:ie,z;:6)

- OS'chg’T (X3¢,y;m,zie)el | OGXYimZi8) gy gy,
Tt

‘where 03’1 can be described as follows

(a) c =T, (7)Y,

N R

—
o
N
—~
—
-
S
1}

L
—
-

—_
St
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(c) 52’1€ gfg)(s1,62) and satisfies the same condi-

tions for Cy | in (7.186).

Now, we shall prove that Lem. A2’1 holds.

2,1 x 2’1) for each chart

We shall observe A (or v A

{A2 |}. Remark that on support of Cy 1. We have

1/2

¢ 1%R2/2(14C7%). Therefore, if we take Rz(2K(1+C%))1/2,

then supp Cy qndy =@ and supp Coy N8 (2y = *- So, we

shall only investigate vaA2’1 for the cases Az,(l)'az.(1’2)
and 52’(2")‘
On 02.({) Use the coordinate on 59 (1. Then, we have
o, 2,1 1

(7.32) v%A ,1,.%:8,2:8)

2, (1y(r

- OS—IJD Cg’T (X?rg,y;rzz;té)e”(x:ri»Y:n,z:tc)dyd77
2,1 <

’

Setting » = ry, we get

= jj - _1c§’? (x;ré,y;nz; tg)
|7}=C ’ »

i L2 . B
xe rT(x:$va)7,zy€)rndy.d77 .

where

cg’? (x;rs,y;nz;tg)
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= ¢ 1(X,r§,y;r5,z;t%)r'“!(T‘(x;g,y;ﬁ,zzi)alhpa
By Corollary 4.6,(2), we put
13, T(x;€,y;7,2;8) 2
(7.33) Ly = —* —
rlayT(x;i,y:n,z:c)l
-1 rT:e_trT . N N i
Then, Lre and layleM. Using the integration by
parts, we get
~
o« oL, -1 TS
(v A )2’(1)(r yt.X5¢,25%)
= JJ rn+!a1(L*)m[E, (x;ré,y;run,z;tg)
~ A=l T 2,1
|n|=<C
(T (x;8,y:%,2:8)) %) TGS Y28 gy g
where L: is the adjoint operator of LT‘ Since K can be

chosen as sufficiently large number, we put

(7.34)  T-ri7] ¥, = 7] <Fy =t

Then, the function e defined by

A

is smooth on by (2, 1) By choosing m sufficiently large, we

have

(7.35) (vaA7’1)2’(1) = o(r™) for any NzO

Also, by a similar computation, we get

(7.36) D? eyt A)(V“A§’1)2 (1) = o(r Ny for any N20 .
r.t,X;¢,2Z;¢ ’
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Qg_az,(1’2) : Use the coordinate on 89 (1,2). Then, we

have

? — Ve FaN
(7.37) (v“A"‘)z (1. 2y(r U t,x;8,2:8)

) OS—JJCZ 1(X:FQ,Y;n,z;(r/t)%)e_'T(x;rs’y;”’z;(r/t)g)dydﬁ

Setting »=r%, we have

«, 7,1

(VA 1

)2’(1,2)(F yt.x5¢,2;%)

= [J ~ _1C§’T T(x;re,y;7,z; (r/1)8)
|7|=C ’ ,

we  IrT(X5¢,y57,2;8) n

dydn

H(x;re,y;m,z;(r/t)g)
= JJ ~ _1C§’T H(x;r8,y;%,2;(r/1)8)
|7]=C ’

< T (x5 2,y 5, 2 )%

By Corollary 4.6 (2), we use the operator LT in (7.33).
Remark that by putting

(7.28) ¥ = r|%]| ,%1 = |7 ,t, = t,

the function
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~

Y37, 2,8)

r+
~+
w2
bad
s

= S (G (r/ADEyita Lz (F/GENE)

i ' c tati i . 35)
is smooth on Aa,(2’1’3). The same computation as in (7.35)

gives

(7.39) (v“A7")2’(1,2) = o(r Ny

(7.40) D? R A)(vaA2’1)2 (1.2y = Or™) CEN
r,t,X;¢£,2;¢ ’ ’

for any NzO0.

On AZ’(2'1) : Use the coordinate on A2’(2,1>' Then, we

get

(7.41y  (v%a2

_ _ . a’T\ ) R . .A
= Os JJDZ 1C2,1 (x;{r/t)e,y;in,z;%)

e 1 TOG T/, yim,23r8) 4 4,

Set et=(r/t)», and we have

= JJ_~, _1Cq’T (x; (r/t)E.,(r/t)yin,z;rg)
|71=C ’



- 159 -

. o LA .z ~
e r/DT(E,y: 8 »Z38) (p 7ty Naydy

where

cg’T (x;(r/8)8,y;(r/t)n,z;r)

= c

o 1B/, y: (/07 2:r8) (r/8) ¥ T oG 8y Tz En

Put

< it T(x:€,y;%,2:;8) 8
(7.42) Ly = —~

Y

ey hand ”~ 2
ridp(x;e,yin.z;2) |

Then, L;e—i(r/t)T = o H(r/O)T

supp 02'1 by Corollary 4.6. Thus , we get for any mz0,

and iayT(ng.y;E.z;E)lgM on

a, 7,1
(VAT g 2. 1)

= j[|~l 0_1(L%*)m[cg’T (x; (r/)E,y; (r/)7.2:(r/H2)]
nis ’

X(r/t)ne—i(r/t)T(X;ﬁ,y;n,z;g)de;

Put as in (7.37)-(7.40), we get

. a, 72,1 _ -N,N
(7.43) (VA )2’(2,1) = O(r "t') for any NzO .
and similarty

(7.44) p% (v E21

) = )
(r.t,x;€,z;28) 2,(2,1)



for any NzO.

what we have shown in the above argument is any formal

di fferentials of A2’1

with respect to (a,z1,22) are well-
defined in 612(51,62) and theses differentials are continu-
ous. To prove the differentiability of A%"'(a,z,,2,), we
have to take the formal Taylor expansion and compute the

remainder term (cf. [31]). However, the estimation of the
2,1

remainder term of Taylor expansion of the integrand A by
similar computations as above. Thus, we -obtain Lem. A2’1
Lem. A2’3: Now, we shall consider the integral Asu2,3 in

Lemma 7.4. As in 7.3, to consider the differentiability

with respect to a,74,7Z5, for jo|z0,

(7.45)  v*a% 3(x;¢,z;¢)

- OS—JJ C§’§ (xie,yim,zie)e | TOXFEYimZi8l gy,
Ds;ub2,3 =7
where cglgh,T can be described as follows:
o, T ~ o
(a) C2’3 = C2,3(T )d ’
o o .
(b)y (TH% = (T} 1...(T‘k)k T e 2y |

(c) 32 3¢ (€4.€,) and satisfies the same condition for

<y 3 in (7.18).

2,3

Now, we shall prove that Lemm. A“’" holds by observing

A£,3
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on a : Use the coordinate on a . The, we have
2, 2,9

(VdAi’g)Z,(p(t1 :tZrX;é\»Z;a)

-IT(x: b€,y 1 .25t,8)

= OS~IIC§:2 (x;t1€.y:n,zt2£)e dydy

Now, we divide the above integral into two parts.
Namely, by wusing a cut off function w(y;»n) such that

supp w(y;n)e {(y;n)€T*N ; |nj=<K} , we get

(7.48)  (v%aZ:3

}2’¢(t1 tz,x;g,zzg)

jjwcg:g (X;t1€,yk;n,z;t28)

-iT(X;t]g.Y;Y),Z;‘tzg)
xe dydn

+

OS—JJ(1-w)C§:g (X:tig.y:n,Z;tZQ)

—iT(x;tig.y;n,Z:tza), _
xe dyd»

| 2

7.3 7,3
)2,¢ + (VA

(vaA

)2.¢

1
[t is easily seen that the first integral (VaA§’3)2 o 1S
differentiable function in (t1,t2.x;€,z;2) by using the
2

coordinate g For (V“A§,3

e )2,¢, use the operator
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w 13 T(x;t.2,y;7,2;%) 2
(7.47) L= Y1 A
19, T(x;t,g,y;7,2;8) |
% 1
Then, L.{.e"“r=e_IT and layT(x;t1§,yzv,2:§)i zM|»"|>0  on

(1]

83 (2y. By using Ly and the fact that T, 5(x;t;%,y;7.2;t,2)

K8
is differentiable on ag (5. We get (v%a%+3),  is differen-

tilable on (t1,t2,x;€,z;$).

Oon b, (1): Use the coordinate on b (1). Then, we get

2, (1)
(v%2,3) (r

= Os—[[cg’g‘(x;rg,y;n,z;tg)exP =IT(x;rE,y;7,2;t8)dydy.
Putting »=r7, we have
(7.48) (vaA§’3)2 (1)(r_1,t,x;§,y;n,z;t2)

A

) Os—jjcg’T (xird,yiry,z;td)e T IXIEYim 28 Ny dy

, 3
where
cg:gs(x;rg,y;rg,z;tg)
= Ez,s(X:r?z,y;rﬁ,z;t%)(T‘(x;g,y:Z,Z:%))dr‘ai '
and {Z‘i;C>D. Now, we use LT in (7.33). integrating by

parts, we have

g
«,2,3 -1, . L2
(VAT )2,(1)(r yU,x5¢,2;8)
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X, . ~ ~ 2
= Os—JI(LT)m(cz’gsua,T (x;re,y;ron,z;tg))

R VI NP | B
Xe—lT(Xy\'Yy)/’zyg)r de)7.
Put

(7.49) Fo=r ¥, = Fy=t
| 7]
Then, 32’3(x;r§,y;r5,z;t%) is smooth on 53 (1,2)" There-

fore, we get
(7.50)  (v%a23y 2 (1) = o(r™N) for any N>=0

Similary, we have

(7.51) D? . A)(v“A7’3)2 (1 = otr Ny for any N»>=0
r,t,X;¢,2;% i

on 25, (2y¢

>

(VaA2’3)2’(2)(r-1,t,X;g,y;n,Z;‘tg)

- OS'JJ°§’§ (X:tg,y;n.z;ta)e_IT(x;t§’y;n’z;g)rndydg '

where |»|=Ct. By using a cut off function u(y;») defined

for 8y in (7.46), we divide the above integraion as

»

, x, 7,3
(7.52) (V' A )2,(2)

S
Ct=<|ni=<K

a,T" —IT

TS -iT |
e + Os—JJ (1-w)c e

’
’

N R
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?,3)2
2,(2)

@, 2,301 @
= (V A )2,(2)+(VA

Use the fact that 52 3(x;té‘Jy;n,z;rE) is smooth with respect

to (r_],}n%,f.ng,y;g,z;a) on 83 (3 if  ni=<K. Then,
2,31

(vaA )2 (29 is smooth and 1is 0(1). Nect, consider

(v“A7’3)§’(2). put, if i§i=<K ,

(7.53) T = |o| ,¥, =t T, =120,

1 3 r
and if ——=<K ,
| 7]
(7.54) ¥=1r, ¥, =%, t, = —

Then, 62’3(x;t€,y;n,z;r£) is smooth on a5 5 g and

Ag’(g,z). Use also LT defined in (7.47), and we get

2
(7.85)  (v%2,3), () = O(1)

x,2,3

Therefore, (v A )2 (2y = 0(1) . Similarly, we get

> 4
¢, z: )4 (v%plr3

(7.58) Dy i, )2,(2)

= 0(1)

On Az,(1’2): Use the coordinate in A22’(1,2). We have

(v“A7'3)2,(1,2)(r'1,t,x;g,z:é)

) OS_JIC?,E (x:r8,yim,z; (r/t)8)e | TXTE,yim, 23 (r/ts)e) g, gy,

Setting » = ry, we get
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(7.57)  (v¥al-3

o]

Xrne—an(x;g‘,y;n’csiLde,z;';)dyd)7

)2.01,2)

6; 3 T (x;ré,y;rn,z; (r/tHg)
C »

v

71

’
where

cg’g.(x;rg.y;rﬁ,z:(r/t)é)

= 52 3(X;r§,y;r§,z;(r/t)ghat)rial(T*)a(x;g,y;g,Z:g)

Use Ly in (7.33) and note that |a,T(x;&,y;7,2:2)]
2M(1+1in1) because of Corollardy 4.6 and also
iang(x;g,y;g,z;i)] =<Cu(1+15]) .  Therefore, integrating by

parts, we have

¥ ~
(7.58)  (vOATT,  oyardzir/3 )
= JJ(L¥)m[32 4(xsrd,y;rn, z; (r/1)e)
Ny ¥ 8y T2 E))

Xe—lrl(x;é.y;n,Z;C)dyd;




(7.60) Fo=r, T,=——, Ty=t

The amplitude function 32 5 in (7.58) is smooth in (r,t) on

Ag'(i’z’g) and Ag,(j,s'z) for the cases (7.59) and (7.60),

respectively. We have

4 =9d_ ,9

_ »3; = |mja_  for (7.59)
F

s

(7.61)
3, = 3_, 3, = ~(1/t)T,0_ +3_ for (7.60)
r t, 14
o]
Remark that for the case (7.80), we get (1/t)=<K|7]. Dif-

ferentiating (7.58) in (r,t,x;%,z;2), we get, by taking m so

large,

(7.62) DX (v¥a2+3

(r,t,x;¢,z;%)

= O(r—N) for any NzO

on °2,(2,1): Use the coordinate on AZ’(2,1). Then, we

get

- Os‘jjcg’g (X;(r/f)g,y;n,z:ribe-'T(x;(r/t)g’y;n’z;rg)dydﬁ

Set »=(r/t)», and we have

(7.83) (V“A§’3)2,(2,1)(r"1,t,x;g,Z:%) ‘



= OS_J[ ~ Cg'g‘(X$(rft)§,y;(r/t)$z;r£)
|7izC =7

we T/ OTOGE, Y, 258 (L ey Ngydy

where
o, T R : ~ ~
Cplg (X3(r/t)s,yi(r/t)n,2z;re)
~ 2 ~ ~ . a0 Lo ||
= c, 3(x;(r/t)g.y;(r/t)n,z;rc)(T (X;€,y;7m,2;8) (r/t)
Now, put
(7.64) F=r, ¥, =1, T, = =1

Then, the function
p(F",¥1.¥2 X;€,Y;%,2;8)

L

= 22’3(X;(F/t‘>

A S~
g

is smooth on 53’(3’1,2> . Since ar = 3? and at = 8t1, we
have

- a,.b ¥ -~ P
(7.65) ,ardtD c2’3|—<Ca’b,u

(x;¢,z:¢)

for some constant Ca b,y Use LT in (7.42), and the fact

that if |7]|zC,

iy

iayT(x;Q,y:E.z;E)i Mi%| o,



- 168 -
iagT(x;g,y;ﬁ,z;%)i§Cﬂ(1 + |70 L uizd
for some constants Cu' Integrating by parts with LT’ we have

(7.66) (vaAi’ 1,t,x;§,z;%) O(r'NtN)

i

3 -
Yo, (2,1

and

(1.67) D* (vn2+3 N

R N o(r
(r,t.x;¢,2;%)

),

)2,(2,1) =
for any NzO.

By the same reasoning as in the last paragraph of

Lem. AZ’T, we cansee the differentiability of A2’3 with
respect to a,z1,22).
Lem.A2’2. Lastly, we shall consider the integral

Asubp2,2 in Lemma 7.4. As in 7.3-4, to consider the dif-
ferentiability with respect to a,7y,7,, We have to consider

the following integral; for |«|=z0,

(7.68) V“Az'z(x;ﬁ,z;g)

«, T, . . .
OS—“:{ 02’2(:2’2 (X,grY1Y)’z’§)

xe 1T 8.y, 258) 4 g,

where cg'g can be described as follows:
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e d o
L (T subk) K

(b) (T7) = (T‘i)
(¢) 32 € 3(61 62) and satisfies the same condition

for ¢ sub 2,2 in (7.1).
Now, we shall prove that Lem. A2 5 holds:

Remark that on support of Coy 5» we have

2 1/2

1e122r%/2(1+4c%)  Therefore, if we take Rz(2(1+4C%)K)
SUpPp C, ,nby o = & and supp Cy 2M8y (7y = d. So, we have

2,2

only to consider A on the domains by (1) By (1, 1) and

b2.¢(2,1)"

On AZ’(W): Use the coordinate on a2’<1>. Then, we have

7,2,

(v¥A )2’(1)(r_

OS—Jch'? (x:ré,y:n,z;tg)

xe ITOGTE, Y, 2318) 4y,

Set » = rn, and we have

7 1

A &, 2,2 - I
(7.69) (VA )2’(1)(r zt,x5¢,2:8)

- JJ(1.2)C—1 ~ 2Cir”c§’f (x;ré,y;ru,z;tg)
/ =<|n|=(¢ ’

xe 1ITTOXGTE, Y57, 2388) 4

where
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(x:ré,y;rmw,z;t2)

= & 2(X;r§,y;r5,z;t2)(T”>“(x;€,y:5,z:$)r1di
Remark that the above integral is well-defined. Now, put

(7.70)  (2IM[3_T(x;€,y;%,2z;8)a_ + partila T(x;€,y;%,z;€)a_]
v Y Y P P

where

M = [layT(x;g,y;3,2;2)§2 + }3~T(x;€,y:3,z:8)i2]

b7
By Corollary 4.6, iayT12+ [ 27 Ti2;8>0, and we get easily
(7.71) 9% T(x:8,y3%.2:8) | =<Cu (1 + 17]) . jajzl.
(y:n)

Then, we get

(vaA§’2)2’(1)(r-

= jj(1/2)0‘1 151 <2 (Léd)*)micg’T (x;ré,y;ry, z;t8)r’)
<171 e ’

e ITT(X58,Y5m,258) 4y 45

Put as follows:

r=rinl, ty = (7l =t 0f (7=
(7.72)

~ = ST e ik

r =, t'Z = 1/in], ty = t, if |»|zK >

Then, the amplitude Funcfion §2 2 in (7.69) 1is smooth on

Ag’(2’1) andlag’(1’2) for each case in (7.72) respectively.
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Therefore, we get

(7.73) (v“A2'2>2 (= otr Ny for any N>=0

By the same computations as above, combining (7.71), we have

« Z, = O(r_N) for any N20 .

_ o 2
(7.74) D (A% 2y, oy =

(r,t,x:¢,z;%)

on 02,(1,1): Use the coordinate on 62,(1,2). Then, we

have
a,Z,2 e D .p
(v A )2’(1)(r ?thyg’Zyg)
= Os—[[cg’? (x;ré,y;n,z; (r/0)z)
ce I TIXsreLyin, 23 (r/t)e) 4 g,
Set » = r», and we get

(7.75) (v“A7'2)2’(1>(r"],t,x;€,2;2>

= [I(1» o od 3 22 rncg’T (x;rg,y;m,z;(r/t)g)
/2)C '=<|n|=<2C ’

xe 1T e, y5m, 2;18) 4 g,

(x;re,y;rn,z;{(r/t)g)

T,
2

= E2 2<X:r§,yk;r$,z:(r/t)é)r]“’(T‘)“(x;g,y:E’Z:E)



Put as follows:

F=rim B o= (5 =t 1F [Tk,

(7.76)  F=r, ¥, = /17, ¥y = ti7], F T2k T K,
F=r, ¥, = 1/i7t, T,=t, if 5=k, ntidlejtzk

”

Then, the following functions e,e",e are smooth on

A3(2,1,3), 23,01,2,3) and 63,(1,3,2). respectively:

A

p(F—],Y1,?3.x:§.y:5.x;%)

= CZ’Z(X;(r/t1)€vy;rﬁ;Z;(r/t1t3)§) for A3’(2,1’3) 4
(7.77) p‘(F—1,?2,¥3.X;g'y;5,2;£)

= Sy SO,y (F/E) 7,25 (F/E5T)8  for a3 (4 5 5y

1

e (r ,‘{Z’

= Cy 2(x;rs,y:(r/tztg)v,z:(r/tg)&) for 83 (1,3,2)

3, = |»|3_, 3, = 3 on a , ,
r - t ¥3 3,(2,1,3)
(?-?8) 3r = 3~, ' Qt = |;|3~ on A3,(T,2,3) »
r t
3
3. = 3_, 3, = —(T,/1) 2+ 3 on & " oy D
r = t 2 :E-z '{3 3,(1,3,2)

o, . < i~ < .
Remark that in the case 53,(1’3,2), (1/t)2 K|»ni= 2KC. Use

L%S) in (7.70) and Lax technique . So, we get

Z,

(7.79) (v%A 2)2 (1,2) = O{rskulp-N) for any NzO ,
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and
> s
(7.80) D¥ R R (vaA4’2)2'(1’2) = O(r_N) for any NzO .
(r,t,x;¢,2;%)

On AZ’(2’1): Use the coordinate in 32’(2,1). Then, we
have

i a?,z —I N A e

(v A )2'(2’1)(r ,t,X,{,Z,&)

= OS—JIcg’I‘(x;(r/t)g,y;n,z:ri)

Set by (r/t)y = %, and we get

(7.81)  (v%a2-2

) JI(1/2>c'1 <17 {0 e/ OE Y (/0T zirE)

e~ (T/OTOGTE, ysm, 2548) o >

where

(7.82) <500 (x:(r/0)8,y:(r/t)7,2z:rE)
- ~ .y PN e AN s N N G /t)lai
= Cp UG (r/O)s,ys (r/t)n, z;re)(T) (x58,y57,2;8)(r

Put as foliows:
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T, = rimi/t, if rivi/t=k,
= t, Yz = 1/|%1,
Pf oy /tek YTk,

il
I}
-
t
|
~+

(7.83)

1
{}
.
-
O

'F = (r/t)];;lr —{1 = t’ :Eg = |;;l/t’
ForiTl/tKT, TSk, 7] /tsK,
F =r, :E’i = [‘;;iv ‘{:’2 = t/l;l:

CE etk T sK, 1] /teK

"

Also, the following functions p,e",e are smooth on

63’(3’1)' “3,(3,1,2), and AS,(3,2,1) for each case of (7.83)

respectively.

7

P(r Y Ty x5, Y57, 258)

= Cy H(X5(r/Ty)e,yitym,25r8)  ONn bg ca 4y »

~

o (FTLE L, a8 0,23 8)

Fa
~

= c2,2(x;(r/ti)s,y:¥2;(r/t1t2)n,z;r§) on 83 (3,1,2)
(7.84) o"(F ,¥1,t2,x;€,y;5,z;2)
= cg’z(x;(r/t1t3)£.y:rzn,z:(r/t3)§) on 85 (9 3.1y

1

e T (r

,t1,t2,x;§,y;n,z;c)

= c2’2(x;(r/t]t2)€,y;(r/tz)n,z;rg) on 85 ¢3.2,1y ¢



Remark that

3. = 3+ (IMI/tha_, 3 = a_y - (tidley/tha
3. = ar,a, = a_ - (Yy/t)s_ for o5 (54 9y >
(7.85) o = (i7i/t)a_, 3 = a¥ - (?g/t)a for a3 (9.3,1)
r 1 3

=3 s, = —(X.,/05
3, = 3,8 = (¥2/inl)3? for 23 (3,2,1)
2

Use Lég) in (7.70) and‘Lax technique. So, we get

- o, 7,2 _ ~N,Ny ¢ .

(7.86) (v A )2,(2’1) = O(r "t°) for any NzO ,

and

(7.87) DX (v“A7'2)2 2.1y o(r NNy for any N20 .

(r,t,x;€,z;%)
By the same reasoning as in the last paragraph of Lem. AZ'T,
we can see the differentiability of A(Z’Z) with respect to

(a,z],zz).

By 7.1~7.5, we cbtain Proposition 6.1, completely.
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2.8 Proof of Theorem B

in this section, we shall show that the integral
transformation given by (0.3) can be written as a Fourier-
integral operator of our class G3:8 and as the results, we

can give the convergence of the path integral as the kernel

function, which proves Theorem B.

Let (X,Z) be the local coordinate of T'X around X
defined by -X(Y,E) = (x,¢). We shall first investigate some
properties of the classical orbit to the Hamiltonian H(x;¢)
satisfying (H.0)-(H.1). Hereafter, the time parameters t
are contained in the interval [-T,T] for any fixed T>0.
Denote by «(t,X,E) the solution of the Hamiltonian equation
(0.1) with initial condition «(0,X,%) = (X,£). Then, for
sufficiently small t and sufficiently small X, «(t,X,X7) can

be written by
o(t,X,5) = - (¢,(X,5),9,(t.X,5))

By the construction of successive approximation of the

solution (0.1) as in [13], we get easily the following:

Proposition 8.1 Let assumptions (H.0)-(H.1) be satis-

fied. Then, there exists a positive constant >0 such that
o(t,X,Z) can be defined for sufficiently small ¥ and for

|t|<0. Moreover, it has the following asymptotic expansions

for |¢|-~=:
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<p1(t,X,E) (g z‘___ox_‘ (t’X;E)
(8.1)

7y (1, X,E) & T E(LXE)
where fj, EJ are of homogeneous degree j with respect to =.

Also, using the similar computation as above, we get

Proposition 8.2 Under the same assumptions and nota-

tions as in Proposition 8.1, we get the following properties

for |t|<s:
(i) For any fixed t,Z, the mapping

YeTxN——+¢1(t,Y,E)eTyN
is a C"- diffeomorphism for sufficiently small Y. We write
the inverse diffeomorphism as Y = Y(t,X,E). Moreover,

¥(t,X,Z) has an asymptotic expansion

Y(t.X,5) &~ 27 _ Y., (£,X.5),
where V. is a homogeneous function of degree j with respect

J
to

(e

Similarly,

(ii) for any fixed t,X, the mapping
~ ~ o~y X
PET N={0}—%, (£,%,7) €TIN-{0}

where y=¢1(t,Y,5), is a C— diffeomorphism. We rewrite the
inverse mapping as » = »(t,X,£). Moreover, %»(t,X,E) has an

asymptotic expansion:
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7(,X,5) ~v g7 (8.XE)
where ;j is a homogeneous function of degree j.

Next, we shall construct the generating function
S(t,x;¢) for the Hamiltonian flow (0.1) for sufficiently
small t (Cf. [1], [32], [20}, [21]).

Definition 8.3. For sufficiently small t and small X,

put

il

t
(8.2) u(t,V,%) = V|7 + J (0 (X))~ W) (¢(-2,Y,7))dz
0

and

(8.3) S(t,x;¢)

1]

u(t,Y(t,0,¢),¢)

where XH denotes the Hamiltonian vector field corresponding

to H(x;¢) and e is the canonical 1-form on T*N.

The second term on the right-hand side of (8.2) is the
classical action along the classical path starting from the

position ~XY at time O with the momentum (dEpr)iE. Thus the
Y

corresponding term of S s exactly the classical action

along the path «(t,%,Z) passing through the position - X at

time t and having the momentum (dEpr)~§. For later argu-
X

ment, we give some properties for S(t,x;xi), which is easily

proved by the Hamilton-Jacobi theory ( Cf. [1]).

Proposition 8.4 Let t and X be sufficiently small.

Then,
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(1) S(0,x;¢) =0
(11) 3;S(t.x3¢) + H(X, 35y o.€)) =0

(8.4)  (3,5(t.x;¢),3,5(t,x;¢)) = + (V(t,0,¢),7(t,0,¢))

(iii) S(t,x;¢) has the follwing asymptotic expansion for

g | v

where Sj is a homogeneous function of degree j with respect

to ¢.

Now, recall the integral transformation (0.3), i.e.

ﬁs<t,x;a)eﬁ<zle>

U(h, t)u(x) = (2nh)—njje wu(x;Z)dZde

By using the above notations and Proposition 8.3, U(h, t)
can be rewritten by the following:

i[is, (t,xi¢|2)]
(8.6) UCh,t)u(x) = Jja(t,x;g)e vu(x;2)dzde

| R(S-5))
where S (t;x;¢[Z) = S (t,x;¢)+<Z|¢> and a(t,x;¢) = e
Take points (x,,¢,) of T*N-{0} and these neighbourhood U,

of (xa,éa) which cover T*N—{O} and choose a cut off function

{wa}. Then, (8.6) can be written by

(8.7) U(h,t)u(x) = zaua(h,t)u(x)
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where

i[%s1(t,x:612)]
(8.8) Ua(h,t) = J[wa-a(t,x;g)e vu(x;Z)dZde

The following is easily obtained by the Hamilton-Jacobi
theory (cf. [15], [26]):

Lemma 8.4. For sufficiently small fixed t, there

exists a symplectic transformation w(t,x;¢) such that on

U,x¥, where V is a neighborhood of w1(t,x:€)

(1) S(t,x;¢12) = <¢2(t,x;§)IX> ’XeTw1(X;€)N

for (x;¢)eU, and for sufficiently small Z.

(1) X = S(y,¥],¥g(x,€))
(i11) 'YVO(X,i) = v, (x;¢)

(iv) Y = v (Xyr ) , where ‘ys(y,Y1,Vo)=. Yo

Remark. Lemma 8.4 is trivially obtained for the case
S(t,x;¢|2) = <Z|¢> because w(0,x;¢) = id. The other case is
given by usi ng the implicit function theorem to the space

of generating functions of symplectic transformations.

By using Lemma 8.4 and changing the Variables, u(h, t)

is reduced to the following

(8.9) U, (h, thu(x)
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i<wy (X, €)Y >

= Jjg(t,x:g|Y1)e vu( )

'w1(x;€)x

Therefore, we get the following, which proves Theorem

Theorem 8.5. Assume that the Hamiltonian function

H(x,¢) satisfies (H.0)- (H.1). For an arbitrary fixed posi-

tive constant T, we have the following:

(i) U(h,t) is contained in G3Q for sufficiently small t,

and U(h,t) can be extended to the bounded operator on L2(N).

(ti) lLimUCh,t)u(x) = u(x) ,for any ueLz(N)
t-0

(i11) There exists a limit \imU(h,%}N in a topology of
No>oo

ijg.

(V) (B)520(h, thulx) = H(h)u(x)

for any ueCZ(N), where H(h) is the psuedo-differential

operator defined by
(8.10) H(h)u(x) = jH(X;E)th(Xii)dé

Proof. (i) and (iii) are easily seen by the definition
of G318 and by the results of [16]. (ii) is also obvious

because »(0,x;¢) = (x;¢) and a(0,x,¢|Z) = 1. To complete the
proof of Theorem 8.8, we only show (iv). Using Lemma 8.3,

we get

(Hy320(h, tyu(x)
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i i
TS(t,x;¢) w<Z|¢>
JJE%S(t,x;ﬁ)eh en vu(x;2)dzde

%S(t.x;e) %(Z]§>
e vu(x;Z)dZde

JjH(x,aXS(t,Xzé))e

Taking t-0 and using Lemma 8.4 (iii), we get (iv).

Remark. We must elliminate of Y1 in the amplitude
function in (8.10). This can be done by similar way as in

[27],Correction.
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