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Introduction

Let G be a finite group, p a prime number and B a
p-block of G with defect group D. There is an important
problem in representation theory of finite groups that is to
give a description of B when the structure of D 1is given.
Concerning with this problem there are some successful results,
E.C, Dade [9] proved his results whem D is cyclic. R. Brauer
[6] proved his results for the case where p =2 and D is
dihedral by making use of his powerful methods ([3], [4], [5]).
Using Brauer's methods J.B. Olsson [18] obtained his results
when p =2 and D 1s generalized guaternion or quasidihedral.
In [3, IV] R. Brauer investigated B when p =2 and D 1is
elementary abelian of order 4.

In the present paper we study B when p =2 and B is
the principal 2-block of G with an abelian Sylow 2-subgroup P.
Let e(G) = ING(P) : CG(P)I. Let BO(G) be the principal
2-block of G, and let 0(G) and 0'(G) be the maximal normal



subgroup of G of odd order and the minimal normal subgroup of
G of odd index, respectively. By the results on finite groups
with abelian Sylow 2-subgroups ([2], [16], [17], [20], [21]),
the structure of 0'(G/0(G)) is almost determined. In general,
however, BO(G) is different from BO(S) where S = 0'(G/0(Q)).
The main purpose of this paper is to investigate the relation
between BO(G) and BO(S). In particular we shall prove that
BO(G) is isomorphic to BO(S) for the cases where

e(G) = e(S8) = prime, 9 and 21.

In section 1 we shall state several lemmas and propositions
which will be useful for our aim. One of them is Alperin's
theorem on isomorphic principal blocks [1]. Let S = 0'(G/0(G)).
In section 2 we shall consider BO(G) for the case where
e(G) = 2™-1, In particular, we shall prove that if G is
nonsolvable and if e(G) is prime then e(G) = 2"_.1 for some
m > 2 and BO(G) is isomorphic to BO(S). In sections % and 4
we shall investigate BO(G) for the cases when e(G) =9 and 21,
respectively. Indeed, we shall prove that if e(G) = e(S) = 9
or 21 then BO(G) is isomorphic to BO(S). It is noted that
when e(G) # e(8), BO(G) is not necessarily isomorphic to BO(S).
In sections 5 and 6 we shall determine BO(G) when P is
elementary abelian of order 8 and 16, respectively.

Throughout this paper we shall use the following notation.
When S is a subset of G, NG(S) and CG(S) denote the normalizer
and the centralizer of S8 in G, respectively. Specially, for
each x €G we write CG(X) for CG({X}). If x, yeG, we
write x¥ for y‘lxy. When S 1is a subset of G, <S> denotes

the subgroup of G generated by S. When Xqs eees X, 2are



elements of G and S 1is a subset of G, we also write

Xps eees Xy 5> for the subgroup of G generated by

{xl, ceos xn}kjs. The cyclic group of order n is denoted Z,
for a positive integer n. We write G' and Z(G) for the
commutator subgroup of G and the center of G, respectively.,

We denote by Aut(G) the group of all automorphisms of G.

Let us denote by Op,(G) the maximal normal subgroup of G of
order prime to p, and by OP'(G) the minimal normal subgroup

of G of index prime to p. In particular, for p = 2 we write
0(6) and 0'(G) for O0,,(¢) and 0° (), respectively. When
P is an abelian Sylow 2-subgroup of G, we write e(G) (or
shortly e ) for ING(P) : CG(P)l. When B is a p-block of G,
let us denote by Irr(B) the set of all irreducible complex
characters in B, by IBr(B) the set of all irreducible Brauer
characters in 3B, by k(B) the number of elements of Irr(B),

by k'(B) the number of elements of Irr(B) with degree one,
and by #(B) the number of elements of IBr(B). We write BO(G)
(or shortly Bo ) for the principal p-block of G, and for each
x€G we write b, for BO(CG(X)). When ¢1 and ¢2 are
complex characters of G, let (¥, ¥,) = (l/iGI)deG ¢l(g)¢2(g_l),
that is to say, (wl, wz) is the inner product of wl and ¢2.
We write 1, for the trivial complex (or Brauer) character of G.
When H 4is a normal subgroup of G, le denotes the restriction
of ¥ to H for a character Y of G, WIH denotes the
restriction of W to H for a representation W of G, and
IG(ﬁ) denotes the inertial group of ¥ in G for a character
¥ of H, that is to say, IG(@') = {gecl 18 = T}, where V& is

the conjugate of $.



1. Preliminaries

In this section we state some lemmas and propositions which
will be needed for our aim., We fix a prime number p and we

consider p-modular representations of a finite group G.

Lemma 1.1. Let G be a finite group with a Sylow p-subgroup
P, and let X = Op,(G), G =G/K and P = (PK)/K. Then we have
the following.
(1) By(®) = By (D).
(11) Wg(P)/Cy(P) » Ng(P)/Cg(P).

Proof. We get (i) by [10, Theorem 65.,2] and [11l, V (4.3)].

Since N@-('P) (NG(P)-K)/K from [15, I 7.7 Hilfssatz (c¢)] and

i

since Cﬁ(ﬁ) (CG(P)K)/K from [19, Lemma 2.2], we easily get (ii).

We shall frequently use the next four propositions in order

to prove our main theorems.

Proposition 1.2 (Brauer). Let G = QCG(Q) where Q is a
p-group, and let G = G/Q. Then ﬂ(BO(G)) = f(BO(@)).

Proof. See [10, Lemma 64.5 and Theorem 65.2(2)].

Proposition 1.3 (Brauer). Let H be a normal subgroup of
G, If W is an ordinary or modular irreducible representation

in BO(G), then any irreducible constituent of Wiy lies in BO(H).
Proof., This is the special case of [3, I Lemma 1].

Proposition 1.4 (Brauer). Let H be a normal subgroup of
G. Then for any YeIrr(BO(H)), there is some X&Irr(B_(¢))

such that (Xly, X) £ 0.



Proof. This is the special case of [3, II Lemma 1].

Proposition 1.5 (Brauer). Let P Dbe a Sylow p-subgroup of
G, and let BCL(P) = PXV. Then k'(B,(G)) = IG:VG'I.

Proof. See [3, IV Proposition (4G)].

Next, we state Alperin's theorems on isomorphic principal
p-blocks which are very important for our aim.

Let F be an algebraically closed field of characteristic
p and FG the group algebra of G over F, Let H be a normal
subgroup of G with p/IG:HI. We write B,(G) & B,(H), if the
category of all finitely generated FG-modules in BO(G) is
isomorphic to the category of all finitely generated FH-modules
in BO(H) and if the isomorphism is given by the restriction

from G to H (ef. [1]).

Proposition 1.6 (Alperin). Let F be as above, and let P
be a Sylow p-subgroup of G. If H is a normal subgroup of G
which satisfies the conditions that pfIG:HI, G/H is solvable
and G = HCG(P), then we get the following.
(1) B,(6) g B,(H).
(ii) AO(G) g-AO(H) as F-algebras, where AO(G) and AO(H)
are the block ideals of FG and FH corresponding to BO(G)

and BO(H), respectively.
Proof. See [1, Theorems 1 and 2].

Corollary 1.7 (Alperin). Let H be a normal subgroup of
G of prime index q with q # p. Let B, = BO(G) and b, = BO(H).
Assume that k(By) = k(b)) and A(B)) = Mb,), and that



IG(Q) = G for every ?kilrr(bo). Then we have the following.
(i) The correspondence Irr(BO)~—>-Irr(bo) given by
XF—=>X1H is a bijection.
(ii) The correspondence IBr(BO)—4> IBr(bo) given by
@P—é-@iH is a bijection,

(1i1) B, o by.

Proof. (i) Since IG('DZ) = G for every 'fEIrr(bo), the
correspondence is surjective by Clifford's theorem, [8, (53.17)
Theorem] and Propositions 1.3 and 1.4. Since k(BO) = k(bo), we
obtain (i).

(ii) By (i), [1, Lemma 1] holds. Thus, by the proof of
(1, Lemma 3], the correspondence is surjective. Hence (ii) holds
since Q(Bo) = f(v,) .

(iii) Since [1l, Lemmas 1 and 3] hold, we get (iii) by the proofs

of Alperin's theorems [1l, Theorems 1 and 2].

In the remainder of this paper we assume p = 2 and let G
and P be a finite group and its abelian Sylow 2-subgroup of
order Zn, respectively. We use the notation Bo and e for

BO(G) and e(G), respectively.

Corollary 1.8 (Alperin). Let H Dbe a normal subgroup of

it

G of odd prime index. Let B, BO(G) and Db, = BO(H). Assunme

that k(B,) =k(bo) and jl(Bo) z(bo), and that H has an

involution x such that x(x) = %1 for every erIrr(Bo) and
%(x) = ¥'(x) = £1 for all ¥, ¥re Irr(b,) with ¥X(1) = ¥'(1).

Then B, z bo.

Proof, By Clifford's theorem and Proposition 1.3, we have



XIHGIrr(bo) for all x&€ Irr(Bo). Tahus, 0y Proposition 1.4,
IG(i) = G for all 'fGEIrr(bo). Thus the corollary is proved by

Corollary 1.7 (iii).

Lemma 1.9. Let P be an abelian Sylow 2-subgroup of G.
Suppose that k(BO) = IPl| and that G has an involution x
with f(b,) = 1. Then x(x) = #1 for all X€Irr(B,).

Proof. Since ﬂ(bx) = 1, b, has the unique Cartan invariant
IPl. Hence, by [10, Theorems 63.3(2), 63.2 and 65.4], we get
b X(X)2 = |Pl| where the sum runs through all XGEIrr(BO). By
[4, II (7A) and (4C)], x(x) is a nonzero integer for every
X¢51rr(Bo) since |Ixl| = 2, Therefore, the assumption k(BO) = | Pl

implies the lemma.

Proposition 1.10 (Bender, Janko, Janko-Thompson, Walter, Ward).

If G has abelian Sylow 2-suongroups, then O0'(G/0(G)) is a
direct product of an abelian Z-group and simple groups of one of
the following types;

(1) the special linear group SL(2,2") for n } 2,

(2) the projective special linear group Lz(q) for q > 3%
with g = 3 or 5 (mod 8),

(3) the Janko's first simple group Jqs

(4) +the simple group R(y) of Ree type.

Proof. For groups of types (1) and (2), see [14, p.40].

For J, see [16], and for R(q) see [21]. The proposition is

1
obtained from [2], [16], [17], [20] and [21].'

In the rest of this paper we use the notation SL(2,2%),

I,(q), J; and R(q) as in Proposition 1.10 (ef. [13, p.415]).



We also use the notation GL(m,2) for the general linear group
(cf. [14, p.40]).

The next lemma shows that Brauer's conjecture on heights of
irreducible complex characters in p-blocks with abelian defect
groups is affirmative for the principal 2-blocks of finite groups

with abelian Sylow 2-subgroups.

Lemma 1,11, If G has abelian Sylow 2-subgroups, then all

irreducible complex characters in BO(G) have height zero.

Proof. We may assume O(G) =1 by Lemma 1.1. Let H be

a normal subgroup of G of odd index. If XEEIrr(BO(G)), then
there is some ?EEIrr(BO(H)) with (1) = mX(1) for a positive
integer m from Clifford's theorem and Proposition 1.3. By
[8, (53.17) Theorem], m divides |G:HI. This shows that if
%¥(1) is odd then x(1) is also odd. Thus, we may assume
0'(G) = G. Then, by Proposition 1.10, we can write G = Q)((TTSi)
where Q 1is an abelian 2-group and each Si is a simple group
of one of the following types;

(i) sL(2,2") for =n ) 2,

(ii) Lz(q) for g >3 with ¢ = 3 or 5 (mod 8),

(iii) Jl’

(iv) R(a).
When S; is of type (1) or (ii), every XéEIrr(BO(Si)) has odd
degree from [10, Theorems 38,2 and 38,11, When Si is of type
(iii) or (iv), every XGEIrr(BO(Si)) has odd degree from [16,
Lemma 5.1] and [21, Chap.I], respectively. These show that every

xegIrr(Bo(G)) has odd degree. This completes the proof,

The next three lemmas are useful in order to obtain e = e(G).



Lemma 1.12, ILet P be a Sylow 2-subgroup of G.

(i) If G = 8L(2,2™) for n % 2, thenm P is elementary
abelian of order 2% and NG(P)/CG(P) is cyclic of order
pl-1,

(i1) If G = Ly(q) for g >3 with ¢ = 3 or 5 (mod 8),
then P is noncyclic of order 4 and NG(P)/CG(P) is cyelic
of order 3.

(iii) If @ = J, or R(q), then P is elementary abelian
of order 8 and NG(P)/CG(P) is noncyclic of order 21,

Proof. (i) By [14, Theorems 2.8,1 and 2.8.3], P is
elementary abelian of order 2B, TLet q = 2n, and let Fq be
the finite field of q elements. We may assume that
P=1{(3]) | £€FR} (cf. the proof of [14, Theorem 2.8.3]).
Clearly, CG(P) = P, Let u be a generator of the multiplicative
group Fq—{O}, and let s = (g 3_1) in G. Then, Ng(P) = <p,s>
and s has order g-1. Hence we get that NG(P)/P is cyclic
of order g-1.

(ii) P is noncyclic of order 4 from [14, Lemma 15.1,1].
Hence Aut(P) is isomorphic to the symmetric group of degree 3.
Since G is not 2-nilpotent, we get (ii).

(iii) If G = Jy, we obtain (iii) from [16, VI p.160]. Assume
G = R{(q). By [21, p.63], P is elementary abelian of order 8
and ING(P) : CG(P)I = 21. Then we know that NG(P)/CG(P) is
noncyclic since Aut(P) ~ GL(3,2)CH5GL(4,2) ~ Ag from (15, II

2.5 Satz] where A8 is the alternating group of degree 8.

Lemma 1.13. (i) GL(4,2) »~ Ag, the alternating group of

degree 8,
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(ii) If H 1is a subgroup of Ag of odd order, then
'H‘ = 1, 3’ 5’ 7, 9, 15 or 21.;

(iii) Ag has subgroups of orders 1, 3, 5, 7, 9, 15 and 21,
and the subgroups of order 9 and the subgroups of order 21 are

noncyclic.

Proof, (i) We have already showed (i) in the proof of

Lemma 1,12(iii).

(11) since IAgl = 2%3%57, 1H1 = 1, 3, 5, 7, 9, 15, 21, 35, 35,
63, 105 or 315, Since the groups of order 35 are cyclic,
IHI # 35. By elementary calculations, A8 has no subgroups of
order 45, so that [IHI # 45, Similarly, |HI| # 63, If 1HI = 105,
then H has an element of order 35. Evidently, this is a
contradiction, Hence |HI # 105, If |HI = 315, then H has
an element of order 35, and this is a contradiction. So that
IHI # 315.

(iii) By Sylow's theorem, Ag has subgroups of orders 3, 5, 7
and 9. Since A8 has no elements of order 9, Sylow 3-subgroups
of A8 are noncyclic of order 9. If G = SL(2,24), then P is
elementary abelian of order 16 and NG(P)/CG(P) is eyclic of
order 15 from Lemma 1.12(i). Thus, by (i), Ag has subgroups
of order 15. Let H = <(124)(536), (1234567)>., Then H is a
noncyclic subgroup of A8 of order 21, Since A8 has no
elements of order 21, all subgroups of A8 of order 21 are

noncyclic.

Lemma 1,14, (i) If H is a subgroup of GL(3,2) of odd
order, then IHI =1, %3, 7 or 21,
(ii) GL(3,2) has subgroups of orders 1, 3, 7 and 21, and
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the subgroups of order 21 are noncyclic,

Proof. (i) By [10, Lemma 35.2(1)], 1GL(3,2)1 = 2237, So
that we easily get (i).
(ii) By the proof of (i) and Sylow's theorem, GL(3,2) has
subgroups of orders 3 and 7. By Lemma 1,12(iii), GL(3,2)
has nonecyclic subgroups of order 21. Since GL(3,2)C>GL(4,2),
all subgroups of GL(3,2) of order 21 are noncyclic from

Lemma 1,13(i) and (iii).

The next two lemmas are useful in order to determine Bo
when Sylow 2-subgroups of G are elementary abelian of order 8

or 16,

Lemma 1.15., Let P be an abelian Sylow 2-subgroup of G,
and let B = BO(G). Assume that G has an involution x with

£(vy) = 1.
(1) If 1PI

8, then k(Bo) = 8,
(2) If 1Pl = 16, then k(Bo) =8 or 16,

Proof. Let (X, ..., xk(Bo)} = Irr(B,). Since o) =1,

by [10, Theorems 63.2 and 65.4], for each X; let dj; be the
generalized decomposition number of Bo relative to x. By
Lemma 1,11 and [4, II (74A) and (4C)], every d§1 is an odd

integer., Since bX has the unique Cartan invariant |[Pl, by

2 .
(10, Theorem 63%.3], 2?£§°>(d§1) = |Pl. These imply (1) and (2).

Lemma 1.16. Let G = Lz(q) for ¢ >3 with g = 3 or 5
(mod 8), and let B, = BO(G). Then we have the following.

(1) Q(Bo) = 3 and the degrees of all irreducible Brauer
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characters in B, are 1, (g-1)/2 and (g-1)/2.

(ii) The decomposition matrix of B, 1is as follows:

1 0 O 1 0 O
c 1 O 1 1 0
o o0 1 1 0 1
1 1 1 1 1 1 .
3 <qg =3 (mod 8) 3 <qg =z 5 (mod 8)

Proof. Since G is not 2-nilpotent, E(Bo) >1 from
[10, Corollary 65.3]., Thus k(B)) = 4 and £(B)) =3 by
[3, IV Proposition (7D)].

Case 1. 3 < g = 3 (mod 8): Let Irr(B)) = {xl, coes x4}. By
[10, Theorem 38.1], we may assume Xy = L, Xo(1) = x3(1) = (g=1)/2
and x4(1) = q. By [14, Theorem 2.8.2], G has a Frobenius subgroup
E of order q(g-1)/2, We know the character tables of E and
Lg(q) from [10, Theorems 13.8 and 3%8,1}. Thus, by [8, §84

Exercise 2], X, and X. 1 are both irreducible Brauer
2 GO 3 GO

characters of G, where xi'G is the restriction of X5 to the
o
set G, of all 2'-elements of G. Since X5 £ Xz on G,» and
since X, = X; + X, + Xz on G,s we know (i) and the decomposition
matrix of Bo‘
Case 2, 3 < ¢ = 5 (mod 8): As in Case 1 we get (i) and the

decomposition matrix of Bo'

Remark 1., If G has an abelian Sylow 2-subgroup P and
if e(G) = 1, then BO(G) ~ BO(P) since G is 2-nilpotent by
[10, Theorem 18.7].
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9, The case e = 2M-1

In this section we consider the case when e = 2%-1 for
m >»2., We use the notationmn G, P, n, e and Bo as before,
that is to say, P 1is an abelian Sylow 2-subgroup of G with
order 2% (n »2), e = e(G) and B, = B,(G). To begin with we
state the next three lemmas which will be needed for the main

result of this section.

Lemma 2,1, Let S Dbe a normal subgroup of G of odd index
such that § ~ SL(2,2™) for some n ) 3., Assume e = 2%-1,

-

Then B, o B,(S).

Proof., We may assume S = SL(2,2n). There are an element

tENS(P) and an involution x&P such that NS(P) = <t, CS(P)>

and P = {1, x, Xy wees thn—z} (cf. the proof of Lemma 1,12(i)).
since e = 2%-1, N(P) = <t, Cy(P)>. Clearly, vy 4y for all
yE€P-{1}, so that NM(P) = CM(P) where M = C,(x). Hence M

is 2-nilpotent from [10, Theorem 18.7]. Thus, by [10, Corollary
65.3], E(bx) = ﬁ(BO(M)) =1, Now, we prove the lemma by

induction on 1G|., Suppose G # S. Since 1G/SlI is odd, by

[12, Theorem], G has a normal subgroup H of odd prime index f

with S < H., Let b, = BO(H). By induction, b, «~ BO(S). Hence,

o
by the character table of SL(2,2™) [10, Theorem 38.2], we get

1 X
- 1 1
§ 21 -1 for i =1,...,2%71
%, 2t 1 FOT § = L1yas. 28711
where {1y, ég,‘ﬁj bi=1,e.0,207 5 = 1,,,,,207 1) = Irx(p ).
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Let CG(P) = PXV, If G = VH, then G = CG(P)H, so that

Bogbo from Proposition 1.6, Hence we may assume G # VH,

Then H = VH, so that CH(P) = PXV., Thus, by Proposition 1.5,
k‘(bo) = |[H:VH'l. Since bo ~ Bo(8), k’(bo) =1, Thus, H= VH'.
This implies H = VG' since G/H is cyclic. Hence k'(BO) = {
from Proposition 1.5, By Clifford's theorem and Proposition 1.3,

for each xelrr(Bo) one of the following five cases occurs:

(b) Xly = ﬁa for some i,
o o . :
(e) X1y = 9'11 + eoe *+ e'iﬂ for i; < ... < i, and all '§'ik
are G-conjugate,

are G-conjugate,

Since k'(bo) = 1, for each X €Irr(By) x(1) =1 if and only

if Xlg = 1z, Let r, s, u and v Dbe the numbers of XéIrr(Bo)
of types (b), (c¢), (d) and (e), respectively. Since ’e(bx) =1,
as in the proof of Lemma 1.9, I 76(:{)2 = 2% where the sum runs
through all xEIrr(BO). This shows £+ r + 3-22 +u + v~ﬁ2 = 20,
On the other hand, by Proposition 1.4, for every ?elrr(bo)
there is some X€Irr(B,) with (Xiy, ®) # 0. So that

k(b)) ¢ 1+ + s +u+ve., Since k(b)) = 2%, we have a

contradiction., This completes the proof,

Remark 1. We can not remove the assumption e = 2B-1 in
Lemma 2.1, Indeed, let S = SL(2,8) and P = {(% 8)! féF8}
where F8 is the finite field of 8 elements., Let u be a

generator of the multiplicative group FB—{O}. There is an
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automprphism h of TFg with h(w) - u®., For each (‘z 2)68

let (2 g)h = (?Ei’% ﬁ%gg). Then we can consider hé&Aut(S) and
hIPEAut(P) where hlp is the restriction of h to P, Hence
there is a semi-direct product G of its normal subgroup S by
<h>. Then 0'(G) = 8 = SL(2,8) and e(G) = 21 £ 29-1. By

[10, Theorem 38.2], Q(BO(S)) = 7. But we shall afterwards show
that ,Z(BO(G)) = 5, and this shows BO(G) .;é. B, (8) .

Lemma 2.2, Let S be a normal subgroup of G of odd index
such that 8 o Ly(a) X (B/(Z,%X%Z,)) for some q >3 with
Qg =3o0r5 (mod 8), or S o SL(2,2") X (B/(ZyX ...X 2Z,)) for
x NS

some m » 3, Assume e = e(S). Then k(Bo) = 2% and E(Bo) = e,

Proof. Let L = L,(q) for m =2, and let L = sn(2,2™)
for m >3, Let R be a Sylow 2-subgroup of L. We can write
S =LXQ and P = RXQ. We use inductionon n., If n=m= 2,
then the lemma is proved by [3, IV Proposition (7D)]}. If
n=m>3, by Lemma 2,1, Bo,y_: BO(S), so that k(Bo) = 2% ang
ﬂ(BO) = 28-1 = 2™-1 (ef. [10, Theorem 38.2]). Next, suppose

n > m, There are an element t€ NL(R) and an involution =x€R

m
Sl_p
such that N (R) = <t, C;(R)> eand R = {1, x, xTs suey XU 1.

Q = {1=y7, ¥p» eves yzn_m}. Then, by [10, Lemma 18.5], the

G-conjugate classes of P are as follows:

{1}

{yl} fOI’ l = 2”‘.’211'—111

y-} fOI‘ l = 1,-00’2n-mo
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Then, by [10, Theorems 68,4 and 65.4],

on-m Zn-m
k(By) = U(By) + £5_, ﬁ(byi) + 253 ﬂ(bxyi).

Fix any i with 2 i ¢ 2™, and let M = Ca(y;). Since

$/<y;>. Similarly, let H = M/ <y; >,

T = P/<y;> eand Q= Q/(yi>. Since T~ LXQ, we get

y; €%4(8), let §

fl

e(8) = e(L) = 2™-1. since S < W, the canonical homomorphism
¥5(P)/C5(P) —>Ng(P)/C(P)  is monomorphic. This shows (2%-1)|e().
On the other hand, by [15, I 7.7 Hilfssazt (c)], we get

Ng(P) = (Wy(P)<y;>)/<y;>. This implies that the canonical
homomorphism NM(P)/CM(P)_~>>Nm(?)/cm(?) is epimorphic, Hence
e(M){e(M). Since SESMESG and e = e(8) = 2%-1, we have

e(M) = e(S) = 2™-1 by considering the canonical monomorphisms

as above, Thus e(W) = 2™-1. Hence we get [(Bo(ﬁ)) = 2f1

by induction. Thus, ﬁ(byi) = (B, (1)) = 2"-1 from Proposition
1.2, We may assume O(G) =1 Dby Lemma 1.,1. Since Q # 1, there
is an involution yj(gQ. By Z¥-theorem [10, Theorem 67,1],

ijEZ(G). Hence f(B,) = Q(byj) = 281, ©Next, we consider
ﬁ(bxyi) for each i = l,...,20"™, PFor an integer k it is seen
that (xyi)tk = Xy; if and only if (2™-1) |k, Hence

NU(P) = CU(P) where U = CG(xyi). Then U is 2-nilpotent from
£(B,(v)) =1 by [10,

of,

[10, Theorem 18,7], so that E(bxy )
i

]

Corollary 65.3]. These imply k(B,)
Lemma 2.3, Assume as in Lemma 2.2, Then 3B grBo(S).

Proof, We use the same notation as in the proof of Lemma
2.2, We prove the lemma Dby induction on IGl. Suppose G # S.

By [12, Theorem], G has a normal subgroup H of odd prime index



17

with S < H. Let bg = BO(H). By induction, b g'BO(S). It
follows from Lemma 2.2 that k(B) = k(b)) = 2" and that
ﬁ(BO) = ﬁ(bo) = 2™-1, By the proof of Lemma 2.2, there is an
involution x€G with I(bx) = 1, Hence x(x) = +1 for all
X EIrr(BO) from Lemma 1.9. Thus, by Corollary 1.8, it is
sufficient to show that

. if %, ¥ €Irr(b) with ¥(1) =%X'(1),

() then %X(x) = X'(x) = +1.

Let {Qi, coos Oén—m} be the set of all irreducible complex

characters of Q.

Case 1, m = 2: By the character table of Lz(q) (ef. [10,

Theorem 3%8.1]), we can write

1 X
€, 1 1
G, (gq+e)/2 -€ {Ll if q = 3 (mod 8)
T3 (q+€)/2 -€ = 1 if g = 5 (mod 8)
Gy q €

where {%, ..., G4} = Irr(B (I,(q))). Since b, ~ B (8) and
since S = L,(q)X Q, we may write Irr(b,) = {Yijl 1= 1yeeesd;

j = 1y...,2872} such that ’i‘i.ls=€i&j for all i, j. Then

J

1 for i =1
%’ij(l) = < (q+e)/2 for i =2, 3

q for 1 =4

and
1 for i =1

N -
xij(x) =4 - for i=2,3

i}
o~

€ for i
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These imply (*).
Case 2. m » 3: By the character table of SL(2,2™) (ef. [10,

Theorem %38.2]), we know

1 X
1 1 1
5 2" -1 for i = 1,...,2%71
% o0, 1 £0T  § = L1y...,2%to1

where {1, &, %0 - 1,...,2% L 5 21,...,28 113 =
Irr(BO(SL(Z,Zm))). Using this we can show (*) as in Case 1.

This completes the proof.

Now, the above lemmas imply the next main result of this

section.,.

Theorem 2.4, Let P be an abelian Sylow 2-subgroup of G.
Assume that e 1is prime, Then we have the following.
(1) E(BO) = e, And if G is nonsolvable then k(BO) = |Pl,
(2) When G is nonsolvable, one of the following holds:
(1) e =73, and B, o B,(L,(4) XK (P/(Z,X%5))) for some
g >3 with q = 3 or 5 (mod 8),
(ii) e = 2™-1 for some m % 3, and

By % Bo(SL(2,2™) X (B/(Zy X vt %25)))

Y anmas

m

Proof. We can assume O0(G) =1 by Lemma 1.1. Let
S = 0'(G)., PFirstly assume that S is solvable., Then S = P,
so that CG(P) = P, Hence G 1is a semi-direct product of its
normal subgroup P by Z,, This shows f(By) = e. So it is
enough to consider the case where G is nonsolvable. Since

e is prime, € = e(S). By Proposition 1,10 and Lemma 1,12, one
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of the following two cases occurs:
(i) e(8) =3, and S g Ly(q) X (P/(Z2,X 2,)) for some q > 3
with q = 3 or 5 (mod 8),

(i1) e(8) = 2™-1 for some m ) 3, and

S o SL(2,2™") X (B/(Z,X +.. X 2,)).

Hence we obtain (1) and (2) from Lemmas 2.2 and 2.3, respectively.

Remark 2. For the case where G is solvable, the latter
half of Theorem 2.4(1l) does not hold in general, Indeed, let P
be an elementary abelian group of order 16 with P = <x, ¥, Z, W>.
Let t€Aut(P) such that xt = Vs yt = XY, z% = w and w?l = ZW,
There is a semi~direct product G of its normal subgroup P by
¢t>. Then G 1is solvable and e = IG:Pl = 3. Since ul £ u
for all u&P-{1}, we shall show that k(B_) = 8 # 16 (cf.
Proposition 6.1). As another example, let P be the same as
above, and let t€Aut(P) with Itl =5. If G 1is a semi-direct
product of P by <«t> and G is not the direct product P)(ZB,

then we shall show that k(Bo) = 8 # 16 (cf. Proposition 6.3).

3, The case e = 9

In this section we consider the case when e = e(S) = 9,
where S = 0'(G/0(G)). We use the notation G, P, n, € and B,

as in §2,

Lemma 3%3.,l. Let P be an elementary abelian Sylow 2-subgroup

of G of order 16. If e =9, then k(Bo) = 16 and g(B,) = 9.

Proof. By Lemma 1.1%, Aut(P) has noncyclic Sylow 3-subgroups
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of order 9, Hence we may assume that NG(P) = <8, t, CG(P)>

for some s, tGENG(P), P = <x, vy, 2, w>, x5 = X, ys = ¥, z° = W,

w® = ZW Xt = ¥, yt = XV, zt = z and wt = w., By [10, Lemma 18.5

and Theorems 68.4 and 65.4],

k(By) = KBy) + M) + Qo) + Lo ).

Since e(CG(xz)) =1, ﬂ(bxz) = 1 from [10, Theorem 18.7 and
Corollary 65.3]. Since e(Cu(x)) = e(Cy(2)) = 3, it follows from
Theorem 2.4 that f(b,) = f(b,) = 3. By [10, Corollary 65.3],
Q(BO) > 2 since e = 9, Hence, by Lemma 1.15(2), k(BO) = 16,

so that ((B)) = 9.

Lemma %.2. Let S be a normal subgroup of G of odd index
such that S Lz(q)x Lz(q')x (P/(ZZ)(ZZXZZXZZ)) for some
g, q' >3 with g = 3 or 5 (mod 8) and ¢' = 3 or 5 (mod 8).
If e =9, then k(B,) = 2% and ﬁ(BO) =9,

Proof., We may assume S = Lz(q))(Lz(q'))(Q where
Qe P/(Zz)<22)(22)(22). We use induction on n. If n = 4,
Sylow 2-subgroups of G are elementary abelian of order 16,
so that the lemma is proved by Lemma 3.l. Suppose n > 4, Let
Ry and R, De Sylow 2-subgroups of Lz(q) and Lz(q'),

respectively. We may assume P = Rl)(sz.Q. We can write

2
R, = {1, x, xs, x® 1  for some SEELZ(q) and for an involution

2
XE€Ry. Similarly, R, = {1, v, yt, vI°1  for some t€L,(gq") and
for an involution y&R,. Since e = e(S) = 9, we know that
NG(P) = <8, T, CG(P)> and that NG(P)/CG(P) is elementary abelian

of order 9., Let Q = {l=zl, Zos eees Zzn-4}. By [10, Lemma 18.,5],

{zi, XZ39 Y%y xyzil i= 1,...,2n—4} is the set of all
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representatives of G-conjugate classes of P. Thus, by [10,

Theorems 68.4 and 65.4],
on—4
k(By) = f(B,) + £5_, Q(bzi)
pn=4
+ 174 {E(bxzi) + Q(byzi) + Q(bxyzi)}.

As in the proof of Lemma 2.2, by induction, we get ﬁ(bz ) =9
i

for all 1 = 2,...,2n-4. By Lemma 1l.l, we may assume O(G) = 1,

Since Q # 1, as in the proof of Lemma 2.2, by making use of

Z¥-theorem [10, Theorem 67.1], we have Q(BO) = 9, Since

séCG(xzi) and since tGCG(xzi), we obtain e(CG(xzi)) = 3,

Hence f(bxz_) =3 for all i = l,.t..,2n_4 from Theorem 2.4(1).

i
Similarly, by Theorem 2.4(1), f(by, ) =3 for all i = 1,...,2%7"
i

Fix any i with 1 i < 22°¢
sjtk )

seen that (Xyzi) = Xyz; if and only if 3|j and Blk.

. For integers j and k, it is

Hence as in the proof of Lemma 2.2, E(bXyz ) =1 for all
i

i=1,...,2°% Tuus k(B)) = 2®. This finishes the proof.
Lemma 3.3. Assume as in Lemma 3.2. Then B x BO(S).

Proof. We use the same notation as in the proof of Lemma
3,2, We prove the lemma by induction on 1G|., Assume G £ S.
By [12, Theorem], G has a normal subgroup H of odd prime index
with S5 S H. Let b = BO(H). By induction, b, g'BO(S). By
the proof of Lemma %.,2, there is an involution =xy&G with
ﬁ(bxy) = 1. It follows from Lemmas 3.2 and 1.9 that Xx(xy) = 1
for all XGEIrr(BO). By Lemma 3.2, k(BO) = k(bo) and

f(Bo) = ﬂ(bo). Thus, by Corollary 1.8, it is enough to prove that
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- if X, ¥'eIrr(b,)) with ¥(1) = ¥'(1),
*

then X(xy) = %'(xy) = +1,

As in the proof of Lemma 2.3 we know the character tables of

Lz(q) and Lg(q'). Thus we can write

1 X
ny 1 1
N, (g+e)/2 - -1 if g = 3 (mod 8)
43 (g+e)/2 -£ ¢ s '{‘l if g = 5 (mod 8)
nooooa :

where {fl;, f,, {5, ;) = Irr(B,(L,(a))), and

1 y
g 1 1
C, (a'+e’)/2  -eg! -1 if q' = 3 (mod 8)
e (a'+e)/2  -e ° " )\'1 if g' = 5 (mod 8)
<4 q' e

where {51, Gps S50 5pd = Irr(Bo(Lp(at))) e Tet {67, cees Bp )

be the set of all irreducible complex characters of Q. Since
b, ~ BO(S), we may write Irr(bo) = {?;jkl 1= 1yeansd; J = 1yeensd;
n_4_ ~ . .
k = 1l,.0.52° '} such that Xi5xls = nicjek for all i, j, k.
Case 1. € = =1 and €' = 1: In order to show (¥*) it is enough

to prove that {1, (a-1)/2, a', (g=1)a'/2, gq(g'+1)/2} N\ {(q*+1)/2.
g, (a-1)(a'+1)/4, aq'} = ¢ since 'fijk(l) = 1,(1)%,(1) and
igjk(xy) = ﬂi(x)ﬁj(y) for all i, j, k. We can prove it.

Case 2, € = e' = =-1: We know that {1, (g=-1)/2, (q'-1)/2,
(g-1)(a'-1)/4, aa*I N {g, o', (a-1)q'/2, a(q'-1)/2} = §. This
implies (*) as in Case 1.

Case 3. € = g' = 1: Since {1, g, q', (a+1)(q'+1)/4, ag'} N
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{(q+1)/2, (q'+1)/2, (g+1)q'/2, q(q'+1)/2} = @, we can show (¥).

This completes the proof of the lemma.
The above lemmas imply the next main result of this section.,

Theorem %.,4., Let P be an abelian Sylow 2-subgroup of G.
Assume e = e(S) = 9, where S = 0'(G/0(G)). Then we have the
following.

(1) ®(B,) = 1Pl and L(B)) = 9.
(2) By o By(Ip(a) XLy(q") X (B/(Z,X Z,X Z,K Z,))) for some
Qs @' >3 with g = 3 or 5 (mod 8) and q' = 3 or 5 (mod 8).

Proof., We may assume O0(G) =1 Dby Lemma 1.1l. Since e(S) = 9,

by Proposition 1.10 and Lemma 1.12, we get that
S L?_(q)XLZ(q')X(P/(ZZX ZZXZZXZZ)) for some g, q' > 3 with
g=3o0or5 (mod 8 and q' = 3 or 5 (mod 8). Hence we obtain

(1) and (2) from Lemmas 3.2 and 3.3, respectively.

4, The case e = 21

In this section we deal with the case when e = e(S) = 21,

where S = 0'(G/0(G)). As in 81, let J., and R(g) be the

1
Janko's first simple group and the simple groups of Ree type,
respectively (cf. [16], [21] and [13]). We use the notation G,

P, n, e and Bo as before,

Lemma 4.1, Let P be an abelian Sylow Z-subgroup of G of
order 8., If e = 21, then k(BO) =8 and [B,) = 5.

Proof, By Lemma 1.1l4, NG(P)/CG(P) is noncyclic of order

21. Hence we can write that NG(P) = <8, T, CG(P)>,
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2 2 6
P={1, x, x*, x* , z, xz, x%2, x° 2} = {1, 2, 2%, ..., 2° )

for some s, tENG(P) and involutions x, z&P with z° = z,
Then, by [10, Theorems 68.4 and 65.4], k(B,) = H(B,) + f(b,).
Since e(Cy(z)) =3, f(b,) = 3 from Theorem 2.4(1). The
calculation of the generalized decomposition matrix of BO
relative to =z 1is due to J.B. Olsson [18, Theorems 3,15, 3%.16
and 3.17]. Let M = Ce(2), M = M/<z> and BZ = Bo(ﬁ). By
[10, Theorem 66.3], there is a basic set W of Ez such that
W contains the trivial Brauer character and the Cartan matrix
of b, with respect to W has the form

211
121
112,

Then, by [10, Lemma 66.1], there is a basic set W of b, such
that W contains the trivial Brauer character and the Cartan

matrix CZ of bz with respect to W has the form

4 2 2
(*) 2 4 2
2 2 4

We use the following notation here. For an integer r » 0 and
a p-block B, let EB(pr) denote the multiplicity of pr as an
elementary divisor of the Cartan matrix of B, If Q 1is a
p~-subgroup of a finite group A and if B is a p=-block of A,
let nB(Q) denote the multiplicity of Q as a lower defect
group of B (ecf. [5]. 1In [5], nB(Q) is denoted by mél)(Q) ).
By [8, (89.8) Theorem], EBO(8) = 1, Since all involutions in G

are conjugate, by [5, (7G)], [18, Proposition 1,2] and [10,

Theorem 65.4], we get Eg (2) = ny (<z>). Since every lower
o z

defect group of a 2-block of G contains all 2-subgroups U of
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G with U< 2(6), by [5, (76)], By (2) = ny (<2>). By (%),
Z Z
B, (2) = 2. Thus By (2) = 2, so that f{(B)) 3. This shows
Z 0

k(By) > 6. Let {x;I i = l,..45k(B))} = Irr(B)). Since dv,) = 3,

let N = (nia)lsiSK(Bo) be the matrix of the generalized
13
decomposition numbers of Bo relative to 2z with respect to W.

Since lzl = 2, every 0o

(4'0)]’ (n119 niZ’ n13) 7é (O, O, O) for every xi. For Xi, X

is an integer. By [4, II (74) and

J
-1
let a4 = 2140, B<3 Sniaudﬁnjp’ where C_ = = (uuﬁ)lgu,5<3' By

Lemma 1.11 and [4, II (74) and (5G)], all a;; are odd integers.

Hence nj;, + n;, + njz3 is odd for every X;. Let Ny be the

k(Bg)
1217 PiaBig

C, where ty  is

by

o~th column of N for each &, and let N,Ng

i

for all o, 8. By [10, Theorem 63.3(2)], NN

the transposed matrix of N. So NuNg = 4 if o =g, and NeNg = 2

if o #£# 8. Clearly, 12 = tr(CZ) = Zi,a nio(2 where tr(CZ) is
the trace of CZ. Then the next three possibilities arise for
the nonzero entries of N:
(i) 2 entries are +2, and 4 entries are +l.
(ii) 1 entry is x2, and 8 entries are +1.
(iii) 12 entries are +1.
By elementary calculations as in [18, Theorems 3.15, 3.16 and

3,17] we can write

61 0 0
62 0] 0
0 63 0
N = 0] 54 0
0 0 65
0 0 56
57 67 67
68 68 68



where 68, = x1, This shows k(BO) = 8, so that ELBO) = 5, This

completes the proof.

Lemma 4,2, Let S Dbe a normal subgroup of G of odd index
such that S »~ J1X(P/(Z2X szzz)} or S R(Q)X(P/(sz ZZXZZ)).
If e =21, then k(B)) = 2% and f(B)) = 5.

Proof. We may assume S = RXQ where R = J; or R(q)
and Q ~ P/(Z2)(Z2X~Z2). Let T be a Sylow 2-subgroup of R
with TXQ = P, By Lemma 1.,12(iii), NR(T)/CR(T) is noncyclic
of order 21. Hence we can write NR(T) = <8, t, CR(T)> and
2 2 t6}

]

s 8 s t
T={1,X,X,X ,ZyXZ,XZ,X Z}={1,X,X,-..,X fOI‘

some S, teNR(T) and for involutions x, z&T with z5 =z,
Since e = 21, NG(P) = <g, t, CG(P)>. We prove the lemma by
induction on n. If n = %, the lemma is proved from Lemma 4.1

because P =T and P is elementary abelian of order 8 from

Lemma 1.12(iii)., Suppose n > 3. Let G = {1=y;, ¥,s +vs) yzn_3}.

By [10, Lemma 18.5], {y;, 2y;! i = 1,...,2"°77} 1is the set of all
representatives of G-conjugate classes of P, Then, by [10,

Theorems 68.4 and 65.41],
2n-3 2n—3

As in the proof of Lemma 2,2, by induction we get Z(by.) =5
i

for all i = 2,...,2n"3. We can assume O(G) = 1 by Lemma 1l.1.
Since W # 1, it follows from Z¥*-theorem that ﬁ(BO) = 5, Since
seiCG(zyi) and tgéCG(zyi), we have e(CG(zyi)) = 3, Hence

/Z(bzy Y = 3 for all i = 1,,,.,2“'3 from Theorem 2,4(1). Thus
i .

’ ~TL
kKBO) = 2 °
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Lemma 4,3, Let S Dbe a normal subgroup of G of odd index

such that 8 o J; X (B/(Z,X Z,X%5)). If e =21, then B B, (8) .

Proof. We can assume S = JyAQ where Qv P/(sz ZZ)QZ2) .
We use induction on IGl., Assume G # S, By [12, Theorem], G
has a normal subgroup H of odd prime index £ with S & H.
Let b, = BO(H). By induction, b, BO(S). Let s, ty, X, 2
and ¥y be the same as in the proof of Lemma 4.2. Since 2z is

an involution in Jq, by [16, Theorem], Cy (z) = Ag X<z> where
1

Ay is the alternating group of degree 5. Hence Cs(z) = A5)<<z>>(Q.
Let M = CG(Z). Clearly CS(Z)4: AB)((P/(Zz)(Zz)) and Cs(z)

is a normal subgroup of M of odd index, By the proof of Lemma

4,2, e(M) = 3., Hence, by Lemma 2.3, we get that

b, = BO(M) ~ BO(ASX(P/(ZZX Zz))) since A5 ~ L2(5). By Lemma
1.16(ii), the Cartan matrix of BO(A5) has the form

1
1 4 2 2
2 2 1
2 1 2 .

Thus, by [10, Lemma 66,1], the Cartan matrix ¢, of b, has

the form

n-1 2n—l 2n—2

~
DCIEICEENCIE

n-1 2n—-2 2n-l

[ 4

By Lemma 4.2, k(BO) = 2%, Let {xl, coos in} = Irr(Bo). We can

. Z Z Z . z Z
write IBr(bZ) = {@l = 1ys @55 23} with @2(1) = @3(1) = 2
. z Z
from Lemma 1.,16(i). For each Xy and @, let n;. = dia be
the generalized decomposition number of B  relative to z.
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Since |zl 2

Ny
o, B.

p--4 (ni

n

s every n,

jx 18 an integ

n-1

28

er. Let N = (nid)l$i<2n’

0 1<03

2
“)1<i<2n for each o, and NylNg = 3I_; RigPig for each
It follows from [10, Theorems 6%.%3(2), 63.2 and 65.4] that

n-1 _ o=
3 = 2 and N2N3 = 2

For each Xj, xj, let ajy = Zléd,663 Znni“udﬁnjg, where
Cz-l = (uwﬁ)lsd,ﬁ$3‘ Then
a.. = 3n. 2 4 4(n, 2 4 n. 2) -~ 4(n. 0.n + Do Nig)
ii il iz i3 il7iz 11713
= n112 = n;; (mod 2)
for all X By Lemma 1,11, every Xy has height zero., Hence,
by [4, II (7A) and (5G)], every a;; 1is odd, so that n;,; is
odd for all i = 1,...,2%. Since N;N; = 2", n;; = 1 for all
i= l,...,2n. Let 61 = n44 and u; = nizéi for each 1.
Since NN, = NN, = 2°7%, zﬁl u, = zizl u; . Thus, u, = 1 or
for all i = l,...,2". Hence exactly 2B~ u;'s are 1 and the
other ui's are O since NlNZ = Zn"l. Then we may assume
5, for i=1,...,2°7"

fi2 T {o for i = 2%7l41,...,2%R,
Similarly, exactly ohi-1 (niBBi 's are 1 and the other
(n136i)'s are 0. Since NNy = 2n—2, we may assume

5, for i=1,...,2%72 and for i = 2°7141,...,32%7°
e {o for 1 = 2°7%41,...,2%1 and for i = 32"7%:1,...,2%,
Since xi(z) = nyq + 2(ni2-rn13) for each i, we get
45 for 1 = 1,...,2872
x;(z) = { 13 for i = 27201, .., ,32072
«1 for i = 32%7%41,...,2%,

Let CG(P) = PXV, When G = VH, G = CG(P)H, so that BO<g bo

2

o
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from Proposition 1.6, Thus, we may assume G # VH. Hence
CH(P) = PXV, Since b  « BO(S), it follows from Proposition
1,5 that [|H:VH'| = k'(bo) = 2n-3. By [10, Theorem 18.4],

6
PnG" b {l, Xy Xt’ e e o9 X.t }

« Then the order of Sylow 2-subgroups
of G' is 8. This implies 2" 2|1G:Vve'] and 227%fi1G:VG!'I.
Thus, by Proposition 1.5, k'(B_) = 16:Ve'l = f2"> where

f = 1G:H). Since b, ~ B,(8), by Clifford's theorem, Proposition

1.3 and the character table of J, [16, p.148], we get that

1
xi(z) = 1 for every xie'Irr(Bo) with degree one., These show
that the number of XiGEIrr(Bo) with Xi(z) =1 is at least
@2n-3. However, xi(z) = +1 only for i = 32n_2+1,...,2n.

n-3 S 2n-2

This is a contradiction since f-2 . This completes the

proof,

Lemma 4.4, Let S be a normal subgroup of G of odd index

such that S o R(q) X (P/(ZZX Z2X 22)). If e = 21, then Bo,; BO(S).

Proof. Let R = R(q). We may assume S = RXQ where
Q g-P/(ZZ><Z2)(Z2). We prove the lemma by induction on IGl.
Assume G # S. By [12, Theorem], G has a normal subgroup H of
odd prime index £ with S < H. Let b, = BO(H). By induction,
b, ~ BO(H). Let s, t, x, 2 and y; Dbe the same as in the

0
proof of Lemma 4.2, Since 2z 1s an involution in R,

Cg(2)

use the notation R(q) as in the sense of [13]). Hence

I,(q) X<z> from [21, p.62 III]. (It is noted that we

Cq(2) = Iy