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part ,

                                CONrl[iENr]rS

Ackmowledgements
  References

Part Z, An equgvaria]iit xK}ap from (SLs×GL4, (A2C5)xC4) to (GL4,Sym2(C4))

  IRtroduction of Part 1

  1,1, SLs-invariant polynomials on Alt94

  1,2, Construction of the equivariant map

  References

Part 2, Archimedean local zeta functions which satisfy G.-primitive

clifference equatiGns .
  Introduction of Part 2

  2,1. TheOre-Satotheorem

  2.2, Reductive prehomogeneous vector spaces and its b-functions

  2,3. Local zeta functions overC

  2,4, Local zeta functions overR

  References

Part 3, Picascd--Vessiot theories for ar¢inian simple medule akgebras

  Introduction of Part 3

  Conventions

  3,1, Basic notions and results on D-module algebras

  3.2. Tensor equivalences associated tg Hopf subalgebras

  3,3, Artinian simple D-module algebras

  3,4, The Sweedler's correspondence theorem

  3,5. Galois correspondence for Picard-Vessiot extensions

  3.6, 'Ihranslation into affine group schemes

  3.7. Copying and interlacing

  3,8. Splitting algebras

  3.9, Liouvillian extensions

i

i

1

1

2

3

8

9

9

10

15

17

19

22

23

23

29

30

35

39

43

45

51

52

59

69

ii



3.9.1. Liouvillian group schemes

3.9.2. Finite etale extensiens

3.9.3. G.-prinkitive extensiens and

3.9.4. The solvability theorem

References

Gm--primitive extensieits

70

73

74

76

79

iii



Part 1. Ait eqeiivaxiant map from (SLs × GL4, (A2C5)x ¢`) to (GL4,Syitlt2(C`))

                         INTRODUCTION OF IPART 1

  The prehomogeneous vector space (SLs × GL4, (A2C5) x C4) ef quadruples ef quwtary

alternating forms is known as the classificatien number (11) iR [7, Theorexit 54 (I)]. Iit

this part, we censtruct an equivariaitt polynemial map fre](} (SLs × GL4, (A2C5) x ¢4)

to the prehemegeneous vecter space (GL4,Sym2(C4)) ef quateritary quadratic forms.

The presented result was obtained by Kogise, Fujigami, and the author [1] to get ait

expressien of the irreducible relative invariant ef the former space explicitly. Theit I heard

that the equivariant map had further impertance as follews. thr a field k iit geiteral, the

structure ofthe space (SLs × GL4, (A2k5)Xk4) has ait arithgnetic sigitificance by reason ef

the correspondence between its non-singular orbits and isegnerphism cgasses of separable

quintic k-algebras (see [8]). Kable I3, Theorem 5.7] listed all equivariant pelyitemial twaps

from this space to any ether prehomegeneous vecter space and showed those maps could

be ebtained from twe maps; the map preseitted here is oite ef the twe. Such equivariaRt

maps seem to be used in [4, 5] for arithxnetic purpeses. ¥(Though we censider the map

ever C conventionally, it is defined over Z by the censtructieit.¥)

  Let Alt. be the set of all skew-symmetric n × n complex xnatrices (i.e. A}t. == {X E

Mh(C) I `X = -X}). One sees that the ¢-vecter space (A2<C5)x(C` is isomerphic te Alt9`.

The space (SLs x GL4, (A2(C5) x C4) is identified with (SLs × GL4,p == A2 X Ai,Altge`)

in which the representatien p is defined by

p(A, B) : (Xi, XT2, X3, X'4) - (AXitA, AX2tA, AX3tA, .ij<I4tA)tB

for (Xi7 X2, X3, X4) E AIt94 and (A, B) E SLs × GL4. 0ur ceitstruction of the equivariant

map is inspired by the method treated in I6, g3], constrRtctiitg ait eqRxivariant xnap frox¥)t

(SLs × GL3, (A2( 5) x (C3) to (GL3,Sym2((C3)). Especially a certain SLs--equivariant bi--

linear for]n 6 : Alts × Alts -> C5, which is introduced originaliy iit [2], plays an impertant

role. As in [2, 6], we define SLs-invariant po}ynemials eit Alt94 by

[i2'klm] (Xi, X2, X3, X4) : = t6(Xi, Xj)Xk6(Xi, Xm)

for Xi7 X2, X37 X4 E AIts and i, 2' , k, l,m E {1, 2, 3, 4}. Here each ixx}age sf 6 is ceitsidered

as a column vector. We identify Sym2(¢4) with the space of 4 × 4 symmetric matrices.
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Then the equivariant map op : Alt94 --> Sym2(¢4), X H (q,t(X)) wi}l be defiited like

              qst == 2 c,tijicl.i,jtktlt.t [op'klm] [itikrltm,],

                   i,ik,l,m,it,oV,kt,lt,mt

where the coefficients cstijkimitj/k,itmi are determined suitably.

  Iit gl.1, we defiRe the map 5 and the pelynomials [i2'klm], aitd describe sexite properties

of thexn which are used te ebtaiR the result. The equivariant map O wil} be defiited iit

gl.2 aitd we will show the equivariance and the surjectivity ef @ ¥(Propesitieit 1.2.1 aitd

Theerem 1.2.2¥).

Nstatioks. For ori,or2,dv3,cy4,E E C, let diag(ai,dv2,cy3,cy4) aitd E. be the follewiRg

matrlces:

                            ai eoo lsoo
                           O or2 O O                                                   O I O O       diag(cel, ce2, ct3, a4) := o o dv3 o ; Ee:: e o 1 O '

                           ooo a4 eoel
Let ¥(54 be the fourth sy]nmetric group. In S4, a transpositien between i and 2' is deitoted

by (op'). One sees each permutation a E (Si54 is censidered as the 4 × 4 itzltatrix such that

its (i,2')-element is 1 or O with respect to i = o(]') or net. So we xnay apply fer regarding

one as the ether.

                 1.1. SLs--iNvARiANT poLyNoMgALs oN AIt94

  In the beginning, we define a certaiR SLs-equivariant map 6 : Alts × Alts --> C5 which

is used in [2, 6]. Let Pf be the Pfaffiait oit Alt4. Fer X G Agts and i == 1,･･･ ,5, let X(i)

denote the matrix in Ak4 which is obtained by deleting i-th row aitd i-th ce}umit froifk

X. For X == (xij),Y= (yij) E AIts, 6(X, Y) is defined by

                    pf(x(i) + y(i)) - pf(x(i)) - pf(y(i))

                     -(pf(x(2) + y(2)) - pf(x(2)) m pf(y(2)))

5(X,Y) :- pf(x(3) + y(3)) - pf(x(3)) - pf(y(3))

-(pf(x(4) + y(4)) - pf(x(4)) - pf(y(4)))

pf(x'(5) + y(5)) - pf(x(5)) - pf(y(5))

X23Y45 - X24Y35 + X25Y34 + Y23X45 - Y24X35 + Y25X34

X34Y51 - X35Y41 + X31Y45 + Y34X51 - Y35X41 + Y31X45

X45Y12 - X41Y52 + X42Y51 + Y45X12 - Y41X52 + Y42X51

X51Y23 - X52Y13 + X53Y12 + Y51X23 ' Y52X13 + Y53:C12

X12Y34 - X13Y24 + X14Y23 + X12Y34 M. X13Y24 + X14Y23
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Then, for i,2' ,k,l,m E {1,2,3,4}, we define a pelynomial [op'kl7n] oit Alt94 by

               [op'klm] (X,, X2, X3, X4) := t6(Xi, Xj)Xk6(Xi, X.)

fer Xi,X2,X3,X4 E AIts. They are fifth multilinear forxns, and satisfy the foiiewing

iemmas:

Mescakma X,i.X ([2, g2, Lemxita]). Fbr agl i,2',k,l,m E {1,2,3,4}, the polynomial Ii2'kgm]

is invariant with respeet to SLs, i.e.

         [op'klm] (AXi`A, AX2`A, AX3tA, AX4tA) = [i2'kgm] (Xi, X2, X3, X4)

for all 24 E SLs･

LekK}ma 1,g.2 ([2, g2, (4)]), lf there are ongy one or two kinds Gf nzLmbers among

{i,1',k, l, m}, then [i2'klm] = O.

Lexbl xma a,X.3 (I6, Lexnma 3.1]). R)r each i, 2',k,l,m E {1,2,374}7

       (i) [i]'klm] = [2'iklm], [op'klm] - Ii]'kml], (ii) [op'klm] --[gmki2'],

       (iii) [op'klm] + [failm] + [kop'lm] - O, (iv) [iiklm] - -2[kiiZm],
       (v) [iikli] = : - [iiZ ki] - [iklii] - - [ilkii], (vi) [iiigm] =- O, [i2' ki2'] : O.

  Finally in this sectien, we censider the actien of GL4 eit [i2'klm]. GL4 is generated

by the fellowing three types of matrices: diag(cyi, a2, cu3, a4), perxK}utatieit matrices, aitd

E.. Thus we only need to think on these types. For B E GL4 aRd P a peiynemial on

Altge4, let PB denete the polynomial such that PB(X) = P(X`B), Diagema1 Knatrices

D = diag(cyi,a2, dv3, c¥4) aitd o G 64 act on [op'klm] by

                [i2'klm]D = cticyjcykorlcy.[2'ikZm],

                [op'klm]a =: [ff-i(i)ami(2')a-i(k)a-i(l)a-i(m)].

Since [i]'klm] are multilinear forms, we see, for i,2',k,l,m E {2,3, 4},

             [op'kZm]Ee - [i2'klm],
             [1op'kg]Ee =: llop'kl]+6[2i2'kl],

             [11i2'k]Es - [11i2'k]+2El12i2'k]+62[22i2'k],
             [11i.7'1]EE -= [M.7'1]+6(2[12i.7'1]+[11i.7'2])

                          +s2(2[12i2'2] + [22i2'1]) + e3[22il'21, etc.

               1.2. CONSTRUCTION OF THE EQUIVARIANT ]X¥([AP

  Our first objective is to define a Knap op : Ait94 - Sym2(C4), X H (q,t(X)), where

each q,t is written iike

                   qst = 2 Cstijkimit3tbltmt [i2'klm] [i'ik'l'm'l.

Then we will shew the following lenill}a.
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Propositien 1.2,g. FbrX G AItg` and (A, B) E SLs × GL4,

                     ¢(p(A, B)X) - (det B)2B¢(X)tB.

  First we observe that op should be determined uniquely fro]r} gii and qi2, se that e(X)

is equivariant with respect te the actioit of 64:

(1.l) so,, == soiii S) (s == l,,..,4), so.-i(i).-2(2) = sof2 (a E S4)･

Furthermere, qi2 should also be determined frexn qn. To obtain ¢(p(A,E.)X) =
E.e(X)tE, (A E SLs), the polyno]z[tia}s q,t should satisfy at least the fe}}ewing:

¥(1.2¥) gfr = qn+26qi2+62q22,
¥(1.3¥) qg2e -- q22,
¥(x4¥) q3E3E =q33,
¥(1.5¥) qe3e = qi3+Sq237
(1.6) 9?4e - q34･
If we obtain qn, then g22 = qiii 2) and qi2 wiil be determiited frexn (1.2).

  Censidering the actieit ef diagonal matrices for ¢(X), we start by assuming that each

term [i2'klm][i'ik'l'm'] in qn is coitstructed by the fellewing itumbers:

              {i, 2', k, l, m, i',i, k', l', m'} == {1, 1, 1, l, 2, 2, 3, 3, 4, 4}.

But from Lemiita 1.1.2 and Lemma 1.1.3, we need net to think en the all combinatioits

of the above nuxnbers. By cheosing combinatiens and using the method of indetermiitate

ceeMcients, it is pessible to determine the polynei] tial qii so that the equatieits froin (1.2)

te (1.6) are satisfied. Indeed, we conclude that the foliowing definitieits are sEgitable:

         gn := 160 [31114] (3 [24132] - 2[21342] - 2[2 3412])

                 +160[41112](3[32143] - 2[34213] - 2[31423])

                 +160[21113] (3 [43124] - 2[41234] - 2[42314])

                 +5e([11233] [11244] + [11322] [11344] + [11422] [114331)

                 -288([13241]2 + [14321]2 + [12431]2)

                 +224([13241][14321] + [14321] [12431] + [12431][13241]),
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      qi2 :- 400[31114][32224]

             -100([21113] [22344] + [21114] [22433])

             -100([12223] [11344] + [12224] [11433])

             +20[11422] (4[31423] - I34213] - [32143])

             +20[11322] (4[41324] - [43214] - [42i34])

             -25([22144] [l1233] + [11244] [22133])

             +368[13241] [23142]

             +112([13241]([21342] + [23412]) + [23142]([12341] + [13421]))

             +192([14321][23412] + [13421][24312])

             -2e8([14321] [21342] + [12431] [23412]).

These polynomials satisfy the follewing properties:

   (i) If a G S4 aitd o(1) =: 1, then q7i == qii,

  (ii) If a E (54 and {a(1), cr(2)} = {1,2}, then qf2 = qi2･

Then we define the map @ : Alt94 ---> Sym2(C`), X H (g,t(X)) so that (1.1) is satisfied;

the well-defineditess fo11ews from (i), (ii). It is easily seen that q,t == pt, aRd qgt =

qa-i(s)a-i(t) fer all a E 64.

Proof of Proposition 1.2.1. Let D = diag(cui, cy2, (tz3, cy4) and let A be ait arbitrary eleinent

of SLs. Since go9t = (cyicy2cy3cy4)2cesdvtgo,t for all s,t E {1,2,3,4}, aitd each so,t is iitvariant

with respect to SLs, we have

                   op (p(A, D)X) =: (det D)2D¢(X) `D.

By the definitien, it foliows

               ¢(p(A a)X) : (q.-i(,).-i (t) (X)) = ff@(x) `o

for all a E <54.

 The rest of the preef is to show O(p(A, E.)X) =: 4op(X)tE]., i.e.

   @ qfte = qn + 2Eqi2 + s2q22,

   tw qg,e =: q,Eie =: qit +6g2t fort=: 2, 3, 4,

   tw ggete == qtE,e == q,t for s,t :2,3,4.
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Recall that we defined q,t te satisfy the equations from (1,2) to (1.6) (iit fact, they are

shown directly). By E.2 = E2. and (1.2), we have

                     qfie2 = qn + 46qn + 462q22･

Oit the ether hand, by (1.2) and (l.3),

                 go?f2 = (gon + 2s goi2 + s2 go22)Ee

                     - sofle + 26 go F,e + E2 sp g,E

                     = goii + 2Esoi2 + 2sgoF2e + 2e2 so22.

Therefore ge2e = gi2 + 6g22. Similarly by (1.5),

                     qe3e2 = qi3+26q23

                         = qi3 + sp23 + sqg3e .

Hence qg3e = q23. By (1.5) and E.(3 4) = (3 4)E,, we have

             softe -- goi3, `)Eg == soei(3 `) = (so?i)(3 `) =qi4 +ego24･

Simiiarly by (1.4), we have

                     g,E,e - q8,e(3 4) - gg3, 4) - g44･

Now the proof is completed. P
 To prove that ¢ is surjective, we en}y need te find five points iit Alt94 such that each

image has rank O,1,2,3,4. For '

                               6
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Therefore ¢ is surjective and especially det¢(X) 7E O. This fact aitd Prspositien 1.2.1

implies that det ¢(X) is the relative invariant in degree 40.

[Eiheorem 1.2.2. (i) 7-7Le mop ¢ : AItse4 - Sym2(C4) is szLnjective.

  (ii) f(X) = det ep(X) is the irredzLcible relative invariant of the prehomogeneozLs veetor

space (SLs × GL4,A2 X Ai,Alt94) in degree 40 corresponding to the rational eharacter

¥(det B¥)4.
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Part 2. ArchimedeaKa 1ocEall zeta fuikctions which satisfy G.-priyxgfitave

       difference eqexations

                         IN[rRoDucTgoN oF PART 2

  Let K be the complex number field ¢ er the real nuxnber field R, (G, p, V) a redxkctive

prehemogeneous vector space defined ever K, and Vk the set of K--ratieital peints of Y.

Let Pi(x),･･･,a(x) be the basic relative invariants ef (G,p, V) ever K. FQraSchwartz

functien <b(x) oit Vk and s == (si,･･･,s.) E Cr, the integral

                      ZK(s, ep) == IC. ).C!l=, l"Z li(x)l?･¢(x)dx

is called the archimeaean local zeta function associated with (G,p,V). Wheit we take

@(x) as

                     ¢(x) - { 81BE:;T.Xtts) EKK : illl,

ZK(s,¢) will be deneted by ZK(s) signply.

  In the case r = 1, Igusa suggested in [7, g3, Remark] and preved iit [8, Chapter 6] the

follewing theorem:

Theorem (ggaxsa). LetP be the basic relative invawiant of (G,p,V), asszLming r == 1.

Let d = degP and b(s) = cll,d･..,(s + c¥j) the b-junction of P(x).

  (1) When K == ¢,
                       z.(s)=((2r)-dc)stg.,r(i(+.82)

  (2) When K = R and when every ter77z of P(c) is a mugtilinear form,

                      z.(s)-(T-dc)gtg.,r((i(".,%))/2)

  In this part, we exteitd this theorem to several variables (r ) 1). Theugh basically eur

preof presented here is ait easy modificatien of the preof given iR [8], a carefu1 treatment

ef the Ore-Sato theerex]t (see Section 2.1) is needed. The Kitost ixitpertant point of the

proof is the fact that Zc(s) aRd ZR(2s) satisfies a difference eqxtation in a certain type,

called hype73geometrie (or G.-primitive) which is writteit by the b-fkxnctions. The preef

can be divided into twe steps. The first step is te characterize a desired solutioit ef sijkch a

difference equatien, written as a product ef an exponeittial function aitd gait lt]na functieRs.
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The next step is to preve that the characterization cait be adapted to Zc(s) aitd ZR(2s).

To obtain a suitable differeitce equation (especial}y for ZR(2s)), very delicate facts which

are seen in the proof of the Ore-Sate theerexn are needed. Fer this reaseit, we include a

detailed preof of the theorem in Section 2.1. The main results wilg be described in SectioR

2.3, 2.4 (Theorem 2.3.1 and Theorem 2.4.3).

                        2.1. [["HE ORE･-SATO THEOREM

  Let k be a fiegd ef zero characteristic and k(s) = k(si,...,s,) the ratioital functioit

field of r variables. Let :' be the free abelian group ef rank r (:' cy Zr) aitd Ti,...,z,

a basis of :'. Then :' acts on k(s) as k-algebra automorphisms by 7lef($) = f(s + ei)

¥(f¥(s¥) E k¥(s¥)¥) where ei = ¥(1,O,...,O¥),...,e, =: ¥(O,...,O, 1¥), the caitonicai basis of kr.

Consider the group algebra k:' as a Hepf algebra in the usual sense, k(s) a k:'-medule

algebra, and k(s)#k:' the smash product; i.e. k(s)#k:' is k(s)Xkk:' with the semi-direct

product: (A X g) ･ (fe X h) = fi (g f2) Xgh (g, h E :' ). We say that & k(s)#k :--me dule V is

Gm-pwimitive, or hype71geometric, iff dintk(,) V = 1. (We will see in Part 3 that the Picard--

Vessiet group scheme of such a k(s)#k:'-module is a closed subgroup scheme of G..) Let

k(s)× == k(s)X{O}. For a fixed k(s)-basis v ofa G.-primitive k(s)#k:'-module V, we have

an asseciated map b. : :' ---> k(s)×, g h--> bg,.(s) defined by gv =: bg,.(s)v. Since bi,v(s) = 1

and bgh,v(s) : (gbh,.(s))b,,.(s) fer all g,hG :', b. is iit the set Zi(:';k(s)×) ef 1-cocycles.

Let v' be another k(s)-basis of V. Theit there exists ait f G k(s)× such that v' = f(s)v.

It fo11ews b,,.,(s) = (gf(s))f(s)-ib,,.(s) for all g E :-; this i]nplies that both ef b.t aitd

b. define the same cohomology class in Hi(:';k(s)×) since the map g b-> (gf(s))f(s)mi

is in the set Bi(:';k(s)×) of 1-cobouitdaries. Thus G.-primitive k(s)#k:'--modules are

classified by ff'(:-;k(s)×).

  An explicit descriptien of Zi(:'; k(s)×) is given by a resuk called the 0re-Sato theorem,

which was first ebtained by Ore [13] for the case r = 2 and by Sato [16] for arbitrary r.

Detailed proofs are alse seen iit [ll, gl.1] and [5, gl]. The purpose ef this sectioit is to

introduce the theorem for later use. Since some delicate facts such as CereglarY 2.1.4 are

important to us, we follow carefully the discussieit giveit in [16, Appeitdix]. ¥(ThEts our

statement of the theorem may be verbose accerding to the interest of the reader. Fer a

more elegant descriptien of Hi(:';C(s)×), [11, Propesitieit 1.1.4] is recoi[}mended. See

Remark 2.1.5.¥)
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  k(s)× has a natural Z:'-moduie structure as fo11ews:

              (¥. nigi)f(s)=". (gif(s))"i (7ziEZ, giE:').

We easily see k(s)× c>t kX × k(s)×/kX as Z:'-medules. Mereever, by decemposing to

irreducible pelymoxnials, it fellows that k(s)×/kX is a free Z:'-moduge. We have the

fo11owing Z:'-medule isemorphisms:

                 k(,)× => kx oez:-f 3 kx oez(:-/:-,),

                              ff
where f runs over aZ:'-basis of k(s)×/kX and :'f := {g E :'lgf =: f}. We ebserve that

we can take such a Z:'-basis that each f is the image ef an irreducible polynoiitial.

  Since :' is a finitely generated group, we have

                zi(:-;k(s)×) or zi(:-;k×)o (D zi(:-;z(:-/:-f)).

                                       f
One sees that Zi(:-;kX) is equal to the character group Hoxx}(:',kX). The structure ef

each Zi(:-Z(:-/:-f)) is described by the foliewing two leKnmas.

Lemma 2.X.1, Let f be an irrediLcible polynomial in k[s] == k[si,...,sr]. Then :'f :=

{g G :- l gf - (const.)f} -= {g E :' I gf = f}.

  (i) :'/:'f is a free abelian grozLp of rank :'/:'f > O.

  (ii) [Z-dke an arbitrary (tz E Zi(:';Z(:'/:'f)). Then (x(g) =O for aglge :'f.

  (iii) if rank:'/:-f ) 2, then Hi(:-;Z(:-/:-f)) == e.

Proof (i) Since f is not a constax}t, :'f 7C :'. Suppose g (E :- aRd g" E :-f for seKite

pesitive integer n. There is ait m G Zr such that gf(s) =: f(s+m). Consider P(t) :=

f(s+tnm) -f(s) as a pelynerrtial in k(s)[t]. Since P(l) == g`"f(s) -f(s) =- O for alU E Z

and since k(s) is an infinite field, we have P =- O. Hence O == P(1/n) = gf(s) -f(s), and

so gE :'f･

  (ii) [I]ake a g' E :' which is itot in :'f. Let g' be the image ef g' in :-/:-f. rl"heR for alg

gE :'f, we have

                   or (gg') == a(g') + c¥ (g) = g'cy(g) + cy(g').

Thus (g'-1)cy(g) = O. Since Z(:'/:'f) is an integral domain by part (i), we have &(g) = O.

  (iii) By part (ii), we have ffi(:';Z(:'/:'f)) cy H'(:'/:'f;Z(:'/:'f)). Let Ai,...,Ai be a

basis of :'/:'f. For all cy E Zi(:'/:'f;Z(:'/:'f)), we have

                 cy (Ai Aj ) = Ai cu (A,･ ) + c¥ (Ai) = A,ny cM (Ai) + af (A,･ )
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and hence (,>Li -- 1)cy(A,･) = (A,･ - 1)cu(Ai) for i,2' = 1,. . . ,g. Since Z(:'/:'f) is the Laiarent

polynemial ring, there exists an a E Z(:'/:'f) such that

                     c¥(Ai) == (Ai - 1)a (i = 1,･･･,l)･

Moreover, since

         O - or(1) - ce(A,: iAi) - A,: icy(Ai) + cu(A,: i) = (1 - A,: ')a + cy(A,: i),

we have cy(Ai･ i) =: (A,: i- 1)a. r]7herefore

                        C¥ (9) = 9a -a (9 G :-/:-f),

concluding cy E Bi(:'/:'f;Z(:'/:'f)), fbllows by iRductisn. Indeed, if cy(g') = g'a-a fgr a

g' E :'/:'f, then

               ce(Aig') == Ai(g'a - a) + (,>ti - 1)a = Aig'a -- a,

               cy(A,: ig') = A,-･ i(g'a - a) + (A,: i - 1)a = A,: ig'a -a

Memma 2,1.2, Let f be an irreducible polynomZal in k[s]. Szrppose that raitk:'/:'f = 1

and let A be a basis of :'/:'f.

  (i) There exist a linear fo rm pa (s) : nisi +･ ･ ･+ n. s. lai, . . . , n. E Z? and an irredzc cible

polynomial h(t) G k[t] of one variable t, szech that f(s) = h(pa(s)) ana Af(s) = h(pa(s)+1).

Moreover, there ecists an m E Zr szech that pa(m) =: 1, i.e. the greatest common aivisor

                              'of non-zero coejEEcients of pa is 1.

  (ii) for every cy E Zi(:';Z(:'/:'f)), there is an n E Z(:'/:'f) szLch that

                                  pa(m)-1
                                 ep 2 AY (pa(m))1),

                                   u==O
                a(T,mi ･･･ 7-irnr)- O (pa ("z) - O),

                                    -l
                                -n 2 Av (pa(m)s-i),

                                  u =pa(m)

for all m= (mi,...,mr) G Zr.

  (iii) ffi(:-;z(:-/:-f)) ct z.

Proof (i) Let Ai,...,A, be a basis of :' such that the image of Ai in :'/:-f is A aitd

A2,...,A, e :'f. [[heit there exists an invertible r × r matrix (ni2･)i,2･ in GL,(Z) such that

t7-l = A?ii ･ ･ ･ APir for i = 1, . . . , r. Put sL (s) : = nnsi + ･ ･ ･ + n,is, aitd take ii]mear forms

s'i (== pa (s)), . . . , s', by (sl, . . . , s',) = (si, . . . , s,) (ni,･ )i,,･ . [ff? hen we have A,･ st･ : st･ +6i,･ , where
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6i3･ denetes the Kronecker's delta. There exists an irreducibie polyitoinial h(ti, . . . ,t.) E

k[ti;･･･)tr] SUCh that f(S) == h(Sl)･･･7$'r)･ BUt

         h(Sl, S'2 + M27･ ･･ , S', + Mr) = AY2 ''' Age'f(S) = f(S) == h(S17･･･ ) s',)

for all m2,･･･,mr G Z, since A2,...,A, E :'f. 'Thus lt foI}ows that h is actually a

polynemial of one variable ti. The secend part obviously fo11ews by the defiititieit ef pa.

  (ii) By part (ii) of Lemma 2.1.1, we have Zi(:';Z(:'/:'f)) c)t Zi(:-/:-f;Z(:-/:-f)). Fer ait

arbitrary cy G Zi(:'/:'f;Z(:'/:'f)), set n = cif(A). Theit the assertien fellows by inductioit

en pa(m), since the image ef TiMi ･･･CInr in :-/:-f is Apa(M>.

  (iii) We see that Zi(:-/:'f;Z(:-/:'f)) - Z(:'/:'f), ce --> cy(A) is aZ:'-liitear isemerphism.

Then Bi(:-/:-f;Z(:-/:-f)) is isexnorphic te Z(:'/:'f)' = Z(:'/:'f)(A-1), the axegmeittatien

ideal, under this isomorphism. Heitce ff'(:-/:-f;Z(:-/:-f)) cv Z(:-/:-f)/Z(:-/:-f)+ bl Z;

the last isomorphism is induced by the couitit s : Z(:'/:'f) - Z, :i ziAi F--> £i xi. U

  By translating the legnmas above, we have the fol}ewing theorem.

[g]heorem 2.1.3 (Ore-Sate), Let :' . k(s)×, g F--> bg(s) be a 1-coeyele in Zi(:';k(s)×).

Wntte TM : TiMi ･ ･ ･ 7"ilnr for 77z = (mi, . . . , m,) G Zr . Then b is wri tten as the followi ng

form:

                                        pai(m)-1
                                          MI hi(pai(s)+y) (pa,(m))1)

¥(2 i¥) bTm¥(s¥) :c¥('m¥),"N=,<;hjCi¥(jll;lsi¥)M¥) IQ-inz ...fi¥(Il,¥) h,i,¥(,i¥)+.¥) [:1¥(¥(:l lll [l¥)i¥)

for all m G Zr. ffere, e : :. - kX is a character, hi,...,hi E k[t] are irredzLcibge

polynomials of one vawiable, pai, . . . , pai G Zsi + ･ ･ ･ + Zs, are non-xero linear forms whose

eaeh greatest common divisor of non-zero coejCiCZeients is 1, m E Z(:'/:'pa,(s)) a = 1, ･ ･ ･ , l?,

A,･t･,fzv are irredzLcible polynomials in k[s] which satistw that rank:-/:-fj > 1 ij =

1, ･･･, N? and fi (s),･.., fiv (s), hi (pai (s) ), ..., hz (paz (s)) are Z :' -ginea rly indepenae nt, and

<;h E Z(:-/:-f,) ij - 1,...,N?.

  Let 6 : Z(:'/:' va(,)) --> Z denote the counit (see the last sentence in the preof ef Lemma

2.1.2). We nermalize each ni, pai, hi in (2.1) so that 6(nyi) > O (i : 1,. .. ,l) (wheit E(opi) < e,

replace n,, la, hi(t) with -ni, -k, hi(-t - 1)). Put f(s) = R,"=,gh(s).
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CorggSary 2.1,4. In Th eo rem 2. 1. 3, asszeme b., (s) , . . . , b.. (s) are puolynomials. CZ2zke the

empression (2.1? Mth f(s) = 1 (Czvhich neeessarigy holds? and m, la, hi nornzagized as above.

Then they satislv the following eonditions (1), (2).

  (1) Agl eoej(IZcients of each pai are non-negative integers.

  (2) f7br each i -- 1, . . . , l, let Ai be the bas is of :' /:' .(,) s2L ch th at Ai xLi (s) = xLi (s) + 1･

Wwt te m " 2,n･ 2. zij' Al･ ki2` E Z, iin, zin, 74 O?. Then hi (la (s) + n) Zt" and hi (la (s) +

n' + la(m) - 1)Zin' are not cancelled in the proazLet ff7n.l.j {k(oM)-i hi(pai(s) + 2' + y)Zzj

(O # m E Zr>o?. Hence zi. and zi.t are positive integers.

Proof (1) Necessarily xLi(ei)6(m),...,LLi(e,)E(ni) are noit-negative integers feri :1,...,g

by the assumptien.

  (2) This is easily seen. U
Re7nark 2.1.5. (i) The 1-cocycle given by (2.1) and the follewiitg eite both define the sall}e

cohomology class in ffi(:.;k(s)×):

                            pai(m)-1
                              ]flI hi(pai(s) + y)e(opi) (pai(m) ) i)

                       g Li=O
            7MHc(TM)" 1 (th(77Z)=O)
                      i==1 -1
                             " hi (la (s) + y)-e(ni) (th (m) s -O.

                            u=va(m)

In [5, gl], ni,la,hi are itermalized to be s(opi) < e. Another iteritixa}ization is given iit

[11, Proposition 1.1.4] with a restrictioit on pa-nstead of 6(ni). To describe the greup

structure ef cehemelogy classes, such descriptiens are xnore elegant. But, in this article,

the OreSato theorem should be iittreduced in the preseitted ferrrlt for a reaseit which will

arise later (especially in Lemma 2.4.2). Here we are interested in Zi(:-;k(s)×) rather

th an ffi(:'; k (s) ×).

  (ii) The assumptien in Corollary 2,1.4 does not imply that each nihi(k(s)) is a poly-

nomial; for example, let r = 2 and consider the 1-cocycle defined by (2.1) with c =: 1,

f(s) = 1, l : 1, hi(t) =: t, LLi(s) = 2si + 3s2, m =: 1 -A+ A2 (here A is the basis of

:'/:'va(,) represented by Ti-iT2). In addition, we observe that the coitditieits (1), (2) wt

the cerellary are net sufficieitt fer the assumption; coRsider the 1-cocycle where ni in the

abeve example is repiaced with ni = 1 - A - A2 + A3 + A4. ¥(But these two exait ltples defiite

the same cohomelegy class in Hi(:-;k(s)×)).
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  Let k = (C. Take a 1-cocycle b E Zi(:';(C(s)×) and keep the netatioit in Theereitt

2.1.3. Write hi =t+cri (c¥i E (C) and c(TM) = clZZi･･･cgebr (ci,...,c, G CX). rlrhen the

G.-primitive difference equatien associated with b has a solution

                                      i
                    or(s) = cfii ･ ･ ･ c;rf(s) " mr(wis) + cyi).

                                     i=1

Assurrte bT,,...,bT. are polynomials. In this case, or(s) has ite zeres by Corollary 2.1.4.

There are several metheds to characterize 7(s) ameitg other solutiens; by asyxitptotic

behavier (see [1, Sl], Ill, S4.1], and [14, Ch. 11]) and by leg convexity: M. Fujigami [4]

gave a generalization ef the Bohr-MolEerup theerem [2, rTheerexit 2.1]. Rixther xnetheds

may be suggested in [2, S6].

    2.2. REDUCTIVE PREHOMOGENEOUS VECTOR SPACES AND ITS b-FUNCTIeNS

  Let V be an n-dimensienal C-vector space and G a connected reductive linear algebraic

greup over C. Suppose (G,p,V) is a reductive prehemogeaeous vecter space. Theit, by

the definition, there exists a preper algebraic subset S of V such that V X S is a siitgle

G-orbit. Let Se denote the unien of the irreducible coxnpenents of S with codixiteitsieit

1. We always assuxne that So is itot exnpty. Since p(G) is cennected reductive, it is sele

adjoint with respect te a C-basis of V by the theorem of Mostew [12]. By such a basis,

we identify the coordinate ring C[V] ef V with C[x] = C[xi,...,x.], the pegynomial

ring of n variables. Let A,...,R E C[x] be irreducible polyiteKx}ials which defiite the

irreducible componeitts ef So. These pelynomials are relative invariants aitd eveyy relative

invariant is uniquely expressed ln the forrr} cPt(x)Mi ･･･g(x)M' (c G CX, (mi,...,mr) E

Z'). In this sense, PL,...,e are called the basic relative invariants of (G,p,Y) [10,

Definitien 2.10]. They are necessarily homegeneeus polyitomiags [10, Corollary 2.7]. Let

Pl , . . . , R be the polynemials obtained by complex cenjugatieit of ceeMcients ef Pl , . . . , g

respectively. By the choice of the basis of V, these are the basic relative invariaRts ef the

dual prehomogeneous vecter space (G,p*,V"), when we identify C[V*] with ¢[x] by the

dual basis (see [6, Lemma 1.5] er [10, Prepositien 2.21]).

  In the following, we consider Pt (x)Si ･ ･ ･ e(x)Sr as a xnany-valued helemorphic functioit

on Cr × (V X So). Write grad. == (a/0xi, . . . , 0/ax.). Fer each m = (mi, . . . , m.) E Zr>o,

   A(grad.)M' ･ ･ ･ R(grad.)Mr (Pt (x)Si+Mi ･ . . a(x)sr+mr)
                                                 eC[Sb･･･7SrlXb･･･75Cn]
                  Pt (x)Si ･ ･ ･ A(x)sr
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is (abselutely) invariant under the action of G. Since every absolfiJEte iitvariant in C[x] is

a constant [10, Preposition 2.4], it is independent of x. Thus there exists a poiyneiEkial

bm(s) G ¢[sl,...,sr] such that

   Pl (grad.)Mi ･ ･ ･ a(grad.)Mr(IZt (x)Si"Mi ･ ･ ･ a(x)Sr"Mr) = b. (s)Pz (x)$i ･ ･ ･ g(x)ST.

Moreover, it is known that the degree of b. (s) (on s) is equal to the degree ef R,Z..i B(x)Mi

¥(en x¥); this follews from an easy modificatiog ef the proof giveit in [6, Lemyna 1.7] er [10,

Propositien 2.22].

Defig}itiolt 2,2.1. The polynemiais b.(s) are called the b-junctions of Pl, . . . ,a.

  By calculating

        Pt (grad.)M'+Ml ･ ･ ･ A(grad.)Mr+m; (pi (x)si+mi+ml . . . e(x)sr+mr+m;)

in two ways, we have

                         bm+mi (S) = bmt($ + M)bm(S)

for all 77z == (7?zi,...,7n,),m' == (7nl,...,m;) E Zr.o. Hence the map Zr.o - ¢(s)×,

m " b.(s) is uniquely extended to a 1-cocycle b : Zr ---> C(s)×. By the Ore-Sato theorem

¥(Theerem 2.1.3¥), each b.¥(s¥) ¥(O #m = ¥(mi,...,m.¥) E Zr>o¥) is writteit as

                              l va (m)-1
(2.2) b.(s) :c?i･･･cYr"I" " (psi(s)+dvi+2'+y)Zij,
                             i=1 2' u=O

where the itotations are taken as in S2.1 and ni = £j･ xijAli satisfylitg the conditiens

in Cerellary 2.1.4. We take them so that (th(s) + cyi),...,(pai(s) + cyi) are Z:'-1inearly

independent. It is known that each cei + 2' (with zij > O) is a positive ratienal itumber

¥(due to M. Kashiwara [9]¥). Mereever, we have ci,...,cr E R>o siitce

          b.(e) = R(grad.)Mi ･ ･ ･ g(grad.)Mr (Pt (x)M' ･ ･ ･ e(x)M') E IR.o

for all m= (mi,..,,7n,) E Zr>o. Let dk be the degree ef a(x) for k= 1,...,r. Then the

ebservatien just before Definitien 2.2.1 implies that

                          i
(2.3) dk ==2pai(ele)s(m) (k =1,･t･,r),
                         i=1

where ei = (1,O,...,O),..･,er = (O,･･･,O, 1)･
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                    2.3. LocAL zETA FuNc'TIoNs ovER ¥(Cl

  We identify V with Cn by the basis fixed in g2.2. Let dx denete the }Iaar iflteasure oit

V itormalized te satisfy

                          Lexp(-27rsc`x)dx = 1,

where x = (xi,..,,x,) E (C" and tX denetes the transpositioit of the cemplex conjugate

ef x. Let I ･ lc be the vaiuatien of (C defined by lzlc == 2z- = lil2 for z E C. rThe iittegral

                Zic (s) = 1:, IA(x)l&' ' ･ ･ R(x)l&' exp(-2rx`x)dx

cenverges wheit (si,...,sr) E {(si,...,sr) E (Cr I Re(si),...,Re(s,) > O}, aRd heitce

Z¢(s) is a holomorphic function on this region. Our purpese is te show that Zc(s) is

equal to

             orC(S) :- tr.,((2T)-dkc,)sle I.i..l, ". (I"(pazi(flEf. +cyi)+ 2'))Zij

with the notatiens in (2.2) (recall that orc(s) has no zeres iit Cr by Cerollary 2.1.4):

Theorem 2.3,a, Zc(s) has a meromo7zphie contin2Lation to Cr and Zk](s) = 7c(s).

  Actually, the first part ef this theerem has been kRewn (see [3]) aitd our aim is to

obtain the second part. To prove this theorem, we need the fo11owing gerrltxna:

themxxea 2,3.2, Aor s = (si, . . . , s.) E Cr and 7n = (mi, . . , , 7nr) E Zr>o, zve have

         Pt (grad.)Mi ･･･ a (grad.)Mr (lRL (x)l&i ･･･Ig (x)l&r Pi (x)mi ･･t e (x)mr)

      - b. (s)1.Pt (x)1&i ･･･ 1Ri. (x)l&i

on VX So･

Proof Locally we choese the braitching of the value of legR(x) and loge(x) = legR(X)

so that IB(x)I&` = Ft(X)SiF}(x)Si holds. Since Ri･(grad.) and R(af)Si commute as differen-

tial operators for i,2' = 1,･･･,r, we have

         Pt (grad.)Mi ･ ･ ･ a(grad.)Mr (1A(x)1&' ･ ･ ･ la(x)l&r Pt (x)Mi ･ ･ ･ a(x)Mr)

      = A(grad.)M! ･ ･ ･ g(grad.)Mr (P, (hi)Si ･ ･ ･ a(f)sr p, (x)si+mi . . . a(x)sr+mr)

      = A(X)Si ･ ･ ･ A(tn)Sr PL (grad.)Mi ･ ･ ･ a(grad.)M' (Pt (x)Si+Mi ･ ･ ･a(z)Sr'Mr)

      = RL (T)Si ･ ･ ･ R(T)Sr b. (s) PL (x)Si ･ ･ ･ e(x)Sr

       : b.(s)I.Z)lt(x)l&i･･･liZi.(x)l&i.

                                                                     D
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Proof of TheoTem 2.ge.1. By Lemma 2,3.2, we have

           b. (s) Zc (s)

        = IC((n.,e(gradx)MT) (tl.I(,I4(x)1&3pb(x)m3))exp(-2..tx)d.

        = 7C (tll.i(, l4(x)l&j4(x)Mj) (n.,A(-grad.)mt) exp(-27;xtx)ax

                         rr        = (27r)£%--idkMk 1[. iP...(l.P]i(x)I&j4(x)Mj ",..,A(x)Mi exp(-2rx`x)dx

         : (2T)Z%--idkmk10tr.yRi(x)l&j+mjexp(-2rxtx)dx

        = (2r):%=-i dicMle Zc (s + m)

for (si,...,s.) G {(si,...,s,) E Cr l Re(si),...,Re(sr) > O} and nz : (mi,...,mr) E

Zr>o. Hence Zc(s) satisfies the follewing equatien:

¥(2.4¥) Zc ¥(s + m¥) = ¥(2T¥)-Zrte --i dleMk b. ¥(s¥) zc ¥(s¥).

Then Zic(s) has a meromerphic continuatien to Cr by this equatieit (as iit [3]). Further-

mere, (2.4) implies that both Zc(s) and orc(s) satisfy the sante (G.-primitive) dffereRce

equation. Therefore C(s) : : Zc(s)/orc(s) is a holexnorphic and periodic fuitctioit with pe-

riods ei,...,e.. To show that C(s) is a constaRt functieit, we investigate the asyxnptetic

beh avior of C(s) en the st rip S = {(si, . . . , s,) E (Cr l 1 s{ Re (si) ffl 2 (i -- 1, ･ ･ ･ , r)}･

  Put S"-i((C) =: {x E V l x`x =: 1} (y SO(2n,IR)/SO(2n - 1,IR) as real inantfoids).

We identify VX {O} with R>o × S"-i(C) via x --> (g,ze) = (v/IilZii,x/viZEI2S). Take the

SO(2n,R)-iitvariaitt xneasure dze en S"-i(C) such that ax = 2"C2n-idCdzL on YX{O}. Let

V(s) - 2n-i ,/I.-,(.) IA(z`)l&i
･ ･ ･ Ie(zL)l&r dz`.

Then we have

zc ($) =:

 ,IC.x{,}IPI(x)l&i'''le(x)l&rexp(-2Txtx)dx

,..

 2v (s) Zl oo 62(£ rk --i aic sk +n)-i exp(-27r62) d6

.. (2T)- 2) n-i dkSle-"V(s)T(disi + ･ ･ ･ + d, s, + n)
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when Re (si) > 0 (i = 1, ･ ･ ･ , r). Siitce

l(27T-)-:rleul dicsk-nzb(s)l s (27r)-X%--i dk Re(sk)-n2n-i ZI.-,(.) IA(z`)lllle(Si) ･ ･ Ie(ze)Ige(S')dzL,

l(27r)-£rk-i dleSkm"th(s)l is bounded in 8. Let ai, . . . ,a, be arbitrary positive reftl numbers

and to a real variable. Then the well-known asymptetic behavior ef the gamma fuitctioR

and (2.3) imply that

          C(1 + vi=Taito, . . . , 1 + v'Ti[a,to) - o(exp(ltol)) (Itol - oo)･

Unless C(s) is a censtant functien, this is impessible. Thus the preof is ceinpleted since

                    2.4. LOCAL zETA FUNCTIONS OVER R

  In this section, we assu]ne that the prehonmogeiteeus vector space (G,p, V) is dofned

over IER (in the sense ef [15, gl] or llO, g2.1]) and replace A,...,e and b as fellews.

Since So is defined over R (see [l5, Lemma 1.1]), we can take irreducible polyitomials

A,...,g G R[x] which define the R-irreducibXe ceixkponents of So ¥(pessibly r becoxnes

smalier¥). Here, we are assuming the basis of Y is fixed se that the llR-ratieital poiitts of

p(G) is selgeadjoint with respect to the induced R-basis ef Vk, the R-ratienal peints ef V.

Those Pl,...,g are often called the basic relative invariants of (G,p,V) over R. They

are also coitsidered as the basic relative invariants of (G, p", V") ever IR. Theit there exist

pelynomials b.(s) such that

   A(grad.)Mi ･ ･ ･ g(grad.)M' (Pt (x)Si'Mi ･ ･ ･ g(x)S"Mr) == b. (s)Pi (x)Si ･ ･ ･ R(x)Sr

for "z = (mi,･..,mr) E Z'>o. All properties en b.(s) described ig g2.2 alss hold. Keep
the notatiens iit (2.2) aitd ih (2.3).

  Let dx denote the Lebesgue measure en Vk identified with IRr. As in the previeus

section, the integral

                 ZiR(s) = L, IA(x)IS' ' ' Ia(x)ISr exp(-rxtx)dx

converges when (si,...,s.) E {(si,...,s.) E (Cr 1 Re(si),...,Re(s,) > O}, and hence

Zksg(s) is a holomerphic functien on this regioR. From new en, we assume the fol}ewiitg:
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Assixmptioga 2.4.g, Every term of R(x) is a ][tultilinear form on x for i = 1, . . . ,r, i.e.

each R(x) is of the forKn:

             -P} (x) = 2 ah ･･･j,, xh ･･･xj,, (i = i, ･･･,r)･

                    ISj'1<･･･<3-d･<n
                           1-
  We will see that ZR(2s) satisfies a certain G.-primitive differeitce equatien in such a

case. By the assumptien above, we see

        f?2(grad.)exp(-Txtx) == (-2r)diR(x)exp(-rptx) (i = 1,･･･,r).

Thus
    bei (s) Zk (s) = lli, {e (grad. )(I Pi (x) ISi ･ ･ ･ la({z]) 1Sr e(sc))} exp (- 7rx` c) dx

               = (-1)dz 4(I pt (x)lS' ･ ･ ･ le (x) ISr a(x))R (grad. ) exp(--Tx`x)dx

              - (2T)dz4IPL(x)ISi･ ･le(x)ISrR(x).RL(x)exp(-7rxtx)dx

              - (2T)dt 4 I -Pl (x) ISi ･ ･ I .Z }(x) 1$t'2 ･ ･ le (x) ISr exp(-Tx`x) dx

              = (2r)di Zk (s + 2ei),

feri= 1,...,r. Hence ZR(s) satisfies the equation

¥(2.5¥) ZR ¥(s + 2ei¥) = ¥(2T¥)-di b,, ¥(s¥)ZR ¥(s¥) ¥(i = 1, ...,r¥).

                                                           '
We can ebtain a meremorphic continuatioit of ZR(s) to ¢r. By ceitsidering Zk(s + 2ej +

2ek¥) in twe ways, we have

(2.6) be,･ (s) be, (s + 2eo') : be,･ (S + 2ek)bek (S) (2'7 k = 17 ''' 7r)･

Lemma 2.4,2. When Assumption 2.4.1 holds, th(ej) a :1,･･･,g, 2' = 1,･･･,r? are

eqzLal to either O or 1 and hence eaeh m ･ (k(s) + cyi) is a polynomiaL

Proof For each i = 1,･･･ ,Z, take any 2',k such that pai(ej),la(ek) > O and write m ==

:Cl.. ZiztAY' (xiK7 ziKt 7C O)･ By (2.6), we have

       tll.I,lill. (va lil),-i(xLi(s) + cyi + zL + v) vaiiijL.),-i(xLi(s) + 2KLi(e,･) + cy, + 2L + zv)) ZZU

     = tll.ll. (va(.ii)o-i(xLi(s) + 2,"i(ek) + cyi + zL + v) vaiijl.o-i(KLi(s) + c¥i + z, + zv)) ZZ"
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In each side, the constant terms of the factors

                    (KLi(s) + 2,Lei (ej･) + cyi + K' + iLei(ek) - 1),

                    (,"i(s) + 2icLi(eic) + cyi + K' + icLi(e2･) - 1)

are Knaximal respectively; recall that these factors are Ret caitcelled (Corellary 2.1.4).

}Ience the twe factors coincide and we have la(ejny) = la(eic). Therefoxe the all ftoit-zere

numbers among pai(eD,...,pai(e,) ceincide. This preves the lei]ti)ta siRce the greatest

commoit divisor of them is 1. D
[E]heerem 2.4.3, When Assumption 2.4.1 holds, we have

             ZR(s) =- tr.,(r-dzc,)S£'･ I.i..l U. (T((tt2iiE;. i.cy1)l,2)')/2))Zij .

Proof Let 6 : Zr - C(s)× be the map given by

                              va (m) -1 .                               " (pa,(s)+`Mi2+2+u)zij (th(m))1)

           r l u==O   6. (s) ="(T-dk ck)Mfo "" 1 (th (m) =O)
          k:1 i=:1 7' -1 .                               ]" (la (,) + ori 2+ 2 + y)-Zij (k (m) S -O.

                             u= va (m)

We see that 5 is a 1-cocycle siitce ZR(2s) satisfies the G.-primitive differeitce equatien

                        Z.(2(s + m)) =- 6.(s)ZIFk(2s)

by (2.5) and Lerr}xna 2.4.2. In addition, the second assertion of Lem][ta 2.4.2 iKnplies that

ali zio･ js itoit-negative. Let

            orue(S) :== tr.,(T-dte,)S" I.i..! U. (T((ttES(&i .ce/f)l,1')/2))Zij .

Then both orR(2s) and ZR(2s) satisfy the sa]ne difference equatien.

  Put Sn-i(R) = {x E Vig l x`x == 1} (fy SO(n,IR)/SO(n - 1,IR)). We identify ViR X {O}

with R>o × Sn-i(IR) via x F--> (6,zL) = (viZETEE,x/vilEiZil). Take the Se(n,R)-iitvariaitt

measure dze en Sn-'(IR) such that dx == e"-idCdzL en ViR X {O}. Let

                   th (S) = S .](;.m,(.) IA (U) IS' la(zt)lsr dz`
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Theit we have

Zisg(s) ==
Kkx{o}

2v(s) ,lgOO ex

lA(x)lSi ･ ･ ･ le(x)lSr exp(-Txtx)dx

ric=i dicsic+n-i exp(-r62)aC

= r(- Erle=i dlesle -n)/2 zb (s)T ( diS2 +

                         N

''' +drSr

when Re(si)

obtain that

 > O (i = 1,･･･,r). Therefore, sixnilarly te the

ZiiR(2s)/t-yR(2s) - 1.

2

proef ef Theerexxk

+n)
2.3.1, we

      []
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Part 3. Picard-Vessiot thegries for artiniaxbl siK}kple gxkgdRklle aAgebras

                         INTRoDucr]rEoN oF PART 3

  The purpose ef this part is to develep a unified Picard-VkDssiot theory, iRcluding Picard-

Vessiot theeries for differeittia} equations and for difference equatioits. The presented

result wEts ebtained by the author and Masuoka [1, 2].

  In the usual sense, the "Picard-Vessiot theory" means a Galeis theery for linear ordinary

differential equations. See [21] for modern treatrrltent. Fer example, coitsider the following

differential equatioR over ¢:

                        i

¥(3.1¥) z/" ¥(a¥)- z/' ¥(x¥)-z/¥( c¥) = O.

Let (C[a] (0 = d/d{x) be the ring of differential operaters with coitstaitt coefiicieitts. rl"he

differential module (C[0]-module) associated with the equatien (3.1) is

      C[0]/<02 - a - i> cy (¢[0]/<a - (i + Vg)/2>) o (C[a]/<0 - (i - vi5)/2>).

rl'hus the space of solutions is giveR by the 2-dimensional ¥(C-vector space Ca + C6 with
ce ,.. ei"2Vigx, 6 .. e"2Vgx. A differential field (i.e. a field given a derivatieit) L inclixding

this space is called a splitting fZeld fer the equatieit. If L is mini]¥(}al with this prepeyty,

it is called a minMal splitting field. Fer the equation above, L == C(cy,6) is a ]zninimal

splitting field. Like Galois extensiens, L/C is theit ait extensieit of a special type, called

a AcGrd-i!lessiot extension. Fer such an extensien, we can take a Galois group, ealled

the d2bCferential GaloZs group (er the Picard- Vessiot gromp) as ait algebraic group defiRed

by Autqol,c-aig(L) =: G(L/(C), where Autc[a],¢-aig denotes the C[a]-linear aitd C-akgebra

automerphisms. We have G(L/C) = G. × G. in this case, aitd we cait obtaiR the Galois

correspondence between closed s"bgroups ef G(L/C) and intermediate differeittial fields

ef L/C. For example, the differential field C(cv) corresponds to {1} × G. (er G. × {1}

according te the cheice of the greup actioit¥).

  An analogous theory for dlfft3rence equations is alse known. Biaftyiticki-Birula [4] and

thanke [8] first developed such a theory for inversive difference fields, i.e. fields given

an autemorphism ¥(though the Bialyiticki-Birula's paper was intended fer mere general

theory, ltet only for difference fieids¥). A definition of Picard-Vessiet exteitsioits ef iitversive

differeRce fields and Galois cerrespondences were obtained there. But the theory had a

difiiculty on the existence of suitabie solutien fields. For exaffnp}e, consider the Fiboitacci
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recurrence

¥(3.2¥) a¥(n+2¥)-a¥(n+1¥)-a¥(n¥) -= O.
Let ¢[r, T-i] (T : n " n+1) be the ring of differeitce operators with censtaitt coeff}cients.

The differeRce xnodule (¢[T,Tmi]-meduge) asseciated with the equation (3.2) is

     (C [T, T-l]/<T2 - T - 1> c,t (<C [T]/<T - (1 + Vilii)/2>) o ((Cl [T]/<T - (1 - Vlii)/2>).

Let 8c deitete the ring ef complex sequeitces (see [20, Examp}e 3]). The space ef selutioits

in 8c is giveit by the 2--dimensiowa1 C-vector space Cce + C5 with cy = {(i+2V[i)n}, 6 =

{(i-2VS)n} G 8c. But one can nettake any splitting field which becoines & Mcard-Vessiot

extensioit fox this equation. If a subring iit Sc centains dv,6, then it has a zere diviser:

                           (or6 - 1)(&6 + 1) - O.

Oit the other hand, if we take aity iitversive differeitce fie}d which includes a 2-dimeitsionag

¥(C-vecter space ef solutions ef ¥(3.2¥), theR it itecessarily contaiits a itew ceitstag¥)t ¥(see [20, p.

2]¥). Hewever, overcoming this difficulty, the Picard-Vessiot theory for differeitce equations

in moderit sense was deveioped by vait der Put aRd Singer [20] with the notieit of Acard-

Ilessiot rings, as follows. Consider the Laurent polynomiai riitg C[x,y, (xy)-i] as ait

inversive difference riitg by

                            1+ v!El 1- vi5
                       Ta= 2 2], TY= 2 Y'
Oit sees that <(xy - 1)(xy + 1)> c C[x,y, (xy)-i] is a maximal difference idea}. Put

                    A = ¢[x, y, (xy)-i]/<(xy - 1)(xy + 1)>.

Then A is a Picard-Vessiet ring for the equation (3.2) iit their seitse (see [20, Definition

1.4]¥). The total quotient ring of a Picard-Vessiot ring is called the total Acard- l!bssiot ring

[20, Definition 1.22]. For the equatiex} (3.2), we have the foIlewi]kg totaR Picard-Vk)ssiet

ring:

                          <[?(A) at C(ce)×¢(cy)

¥(3.3¥) X F---> ¥(Cy,ct¥)
                             y F--> (cy-1,-cy-1).

Then the d2Zference Galois grozmp for the equatioR can be defined by G(Q(24)/¢) :=

Autc[T,7-i],c-aig((2(A))･ In this case, we have G((2(A)/C) )t G. × Z/2Z. We obtain

the Galois correspendence between closed subgroups ef G(Q(A)/C) and interK]tediate

difference subrings of Q(/k)/C such that every non-zero diviser is invertible (see l20,
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Theorem 1.29]). For example, C(cy) (== C(dv)(1, 1)) cerresponds to {1} × Z/2Z and C × C

correspoitds te G. × {1}.

  A unified approach te beth differential and differeitce cases was first attexnpted by

Bialynicki-Birula [4], though it was a theory for field extensieits. Iitcludiitg the case that

the solutioit algebras can have zere divisers, Aitdr6 [3] gave such a uitified approach freKn

the viewpoint of non-commutative differential geontetry with the theery ef tannakiait

categories [5, 6]. Alternatively we develop a uitified Picard-Vessiet theory by a different

way based oit the Takeuchi's Hopf algebraic approach: Takeuchi [27] beautifully clarified

the heart of the Picard-Vessiot theory in the generalized context of C-fereittial fields, iit-

trinsically definiitg PV extensieits and the minimal splittiitg fields of C-fereittial medules.

By replacing linear algebraic greups with afiine greup schemes ¥(or equivalently ce] [kgiuta-

tive Hepf algebras¥), he succeeded in rerr¥)oving from x¥)tany of the resuks the assuifkptieits

ef fiitite generatioit, zere characteristic and algebraic closeditess. Fer a cocorr}mutative

cealgebra C with a specific groupRike lc, a C-ferential field [27] is a field giveit a uitital,

Kxkeasuring action by C; the concept includes differential fields, A-fields [13], fields with

higher derivations [18], and difference fields (eveit noit-inversive enes are iitcluded). How-

ever, it was alse a theory for field exteitsions and the assurritptieR that the tensor bialgebra

T(C+) [27, p. 485] is a BirkhoffLWitt ceaigebra (see [27, p. 504] er Assugitptieit 3.3.g), is

required fer the existence thesrem of miitimal splittiitg a}gebras.

  In this article, we consider module algebras ever a cQco][tmutative, peiitted sittooth

Hopf algebra D. Thus D is of the form D = Di#RG over a fixed field, say R, where

G is the group of grouplikes in D, and the irreducible compeneitt Di containing 1 is a

Birkhoff:Witt coalgebra. An inversive difference ring which includes R iit its constants is

preciseey a D-module algebra when Di = R and G is the free group with oite generater.

Differential rings are also within oikr scope, though only iit characteristic zero because

ef the smoothness assumptien. Precisely a differential riitg which iRcludes R ¥(of zere

characteristic¥) iit its censtants is a D-x¥)todule algebra when Di = R[0] with a priffititive

0 aitd G is trivial. Algebras with higher derivatiens ef infinite length fit in the assEkmp-

tieit, iit arbitrary characteristic. An algebra (over R) with R-linear higher derivatieits

de = id,di,d2,･.. ef iitfinite length is precisely a xnoduEe algebra ever the il{epf algebra

R<di,d2,...>, which denotes the (noR-commutative) free algebra generated by di,d2,...,

and in which 1,di,d2,... ferm a divided power sequeitce. This esopf algebra becomes a

BirkhoffWitt ceaEgebra in arbityary charactexistic.
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  Throughoutthis article, D-medule algebras are all suppesed to be cemmutative. A D-

inedule algebra K is said to be artinian simpZe (AS) if it is artiRiait as a riitg aRd simple

as a D-module algebra. The last cendition meaits that K has ito iten--trivial D-stable

ideal. For example, the totai Picard-Vkessiot ring considered iit (3.3) is ait AS C[T,T-i]-

xnodule algebra. Of course differential fields over ¢ are AS ¢[0]-medule algebras. in this

sense we can generaiize and unify the Picard-Vessiot theeries for differentiag aitd differeitce

equations, invelving the theory of van der Put and Singer [20].

  Let L be ait AS D-medule algebra. If P c L is a maximal ideal, theit oite wili see that

Li : : L/P is a medule field over the Hopf subalgebra D(Gp) := Di#RGp, where Gp

deitotes the subgreup (necessarily ef finite index) ef the stabilizers of P. Moreover, L can

recever frem Li, so as

                      L=DXD(G.)Ll= e gXLI,
                                       gGG/Gp

where the product in K recovers from the compeneitt-wise preduct (g X a)(g X b) =

gX ab in the last direct sum; see Sectieit 3.3. ¥(For exarr}ple, wheR D = ¥(] [T,Tmi] and

L == (?(A) f)ti C(cy) x C(ce) as above, take P == <xy - 1> c (2(A). TheR Gp == {g2 I g E

G} => 2Z under the group isomorphism G : Z.¥) The D--invariaitts LD == {a E L l da =

s(d)a for all d E D} (where E denetes the counit ef D) in L form a subfield, such

that LD £t L?(GP). Fellowing [27], we say that an iitclusieit K c L ef AS D-iitodule

algebras is a Pieard- Ylessiot (PV) extension iff KD == LD aitd there exists a (necessarily

unique) D-inedule algebra K c A c L such that the tetai quotient ring Q(A) equals

L, and H := (A XK /g)D generates the left (or right) A-medule A XK A. Then ff

has a natural structure ef a corr}mutative E[opf algebra over KD (=: LD), with which

A/K is a right H-Galois exteitsion; see Propositioit 3.5.2. (Iit the exaixtple (3.3), we have

H = C[zi, x2]/<zi2x22 -1> with greuplikes zi = xxx-i, z2 = yxy-'.¥) If ait iitclusioit K c L

of AS D-xnodule algebras ls a PV exteitsion, then the induced iitcgixsien K/P fi K c L/P

of D(Gp)-xitodule fields is a PV exteitsion, where P is an arbitrary maximal ideal of L.

The cenverse helds true if Gp is nermal in GpfiK; see Prepesitieit 3.7.4 and Theore]n

3.7.6.

  As eur main theerems we prove:

Galois Correspuondenee (Theorem 3.5.4): Given a PV extensieit L/K of AS D-gnodule

algebras, there is a 1-1 correspondence between the iittermediate AS D-medule algebras

K c M c L aitd the ffopf ideals Z in the associated Hepf algebra H; L/M is theit a PV
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extensieit with the associated Hopf algebra H/I (Prepositien 3.5.7). This has the ebvieus

interpretation in terxns of the affIRe group scheKne G(L/K) = SpecH correspending to

ff, and G(L/K) is isemorphic te the automerphism group scheme AextD,Kmalg(A) (see

Sectien 3.6¥).

enaracterization (Theerem 3.8.7): Ait inclusion K c L ef AS D-medule algebras with

KD = LD is a finitely generated (see Definitien 3.8.6) PV extensioit iff L/K is a ]x}miKital

splitting a}gebxa for some K#D-xitedule V ef finite K-free raitk, say n; this xiteaits that

dirr}LD ilomK#D(V] L) = n and L is "minimal" with this property (see Prepositien 3.8.3).

7ensor Eg2Livalenee (Theorem 3.8.13): If this is the case, the sygitxnetric tenser categery

MfiH. ef imite-dimensional right cemedules ever the asseciated Hepf algebra H ¥(er equiv-

alently that category RepG(L/K) ef finite-diinensional linear represeittatieits of G(L/K))

is equivalent to the abelian, rigid tensor full subcategery {{V}} "generated" by Y, iit the

tensor category (K#DM, XK, K) of K#D-modules; cf. [21, Theorex)] 2.33].

UnigzLe Existenee (Theorem 3.8.11): Suppose that KD is ait algebraically closed field.

For every K#D-module V of finite K-free r&Ak, there is a uitique (up to isomorphism)

minirrtal splitting algebra L/K which is a (finitely geiterated) PV extensien.

  One cannot overestimate the influence of the articie [27] by Takeuchi oit this articge ef

eurs. Especially the main theorems above except the third are very paralleko resuks iit

[27], includiitg their preefs. A C-ferential field is equivalent to a moduie fiegd ever the

tenser bialgebra T(C+). We remark that even if K,L are fieEds, the fust twe theorems

above do not i]nply the correspending results iit [27] siRce the itetion ef C-fereittial fields

is mere general than D--medule fields in the sense ef ours. The last oite enly geiteralizes

[27, Theorems 4.5, 4.6] in which T(C+) is suppesed te be ef BirkheffLWitt type.

  The last sectieit (Sectioit 3.9) treats the solvability theory fer giouvilliait exteitsioRs.

The notion of lieuvillian extenslens ef differeittia} fields first appeared iit the Kelchin's

historical werk on the Picard-Vk¥)ssiet theory [12], to make clear the idea ef iiitear differeit-

tial equatiens being "solvable by quadratures" which was used by Picard and Vk¥)ssiet itet

being stated clearly. An exteflsion ef differential fields (ef zero characteristic) is called

iiouvilliait iff it coittains no new constants and it is obtained by iterating integrations, ex-

ponentiations, aitd algebraic exteitsions. It was shown that a Picard-Vessiot exteitsion of

27



differential fields is liouvillian iff the connected compeneitt of its differeittiag Galois greup

is solvabie. By the Lie-Kelchin triangularizatioit theorem aitd others [12, Ch. I], we cait

characterize several types of lieuvi}lian extensions in iitatrix theeretical way. Fer exait}ple,

a liouvillian extensioit is obtained only by iterating integratioits iff its differeittial Galeis

greup is unipetent. Fer the case of ait arbitrary chaTacteristic, Okugawa [18] stkxdied the

Picard-Vkessiet theery for fields with higher derivatioRs of infiRite leitgth, and ebtaiited

similar results oit liouvillian extensiens.

  Lieuvillian extensiens ef difference fields were first studied by Fraitke [8]. In the context

ef [20], }Iendriks and SiRger [le] studied en lieuvillian selutioits of difference equations

with ratienal fuitctien coefficients. They defined the notieit of "Liouvilliait seqaxences"

and showed that a linear difference equatieit cait be solved iR terxits ef srgch seqrgeff}ces iff

the difference Galeis group is selvable. ¥(Moreover, they gave ait algerithixx to fiitd such

liouvilliait seiutions, using the PetkevSek7s algerithm [19].¥)

  Iit the iast section, we define the notion of lieuvillian extensions ef AS D--gx}odule

algebras and preve a solvabiiity theorem in the uitified ceittext.

  When we study liouvillian extensions with afiine group schemes, we wili ]neet the fo}-

lewiitg difi}culty: the Lie-Kolchin triaitgularization thesrem cait itot be extended geiterally

to affine greup schemes (see [29, Ch. 10]). Cert&inly there are gaps between the trian-

gulability and the coitnected solvability, even if the base field is algebraically clesed. So

we need some intermediate notions and have te study hew they are re}ated each other.

IR Sectioit 3.9.1, we define "lieuvilliaR greup schemes" so that it is suitable for liouvil-

lian extensiens defined later, and study how streitg the definition is. AR algebraic affitite

group scheE[ke G over a field k is called k-?liozLviglian (cf. [13, p. 374]) iff there exists a

nermal chain ef closed subgroup schemes G == Go > Gi > ･･･ > G, == {1} s"ch that

each Gi-i/Gi (i -- 1,...,r) is at least one ef the follewing types: fiitite etale, a clesed

subgroup scheme of G., or a closed subgroup scheme ef G.. When k is algebraically

closed, G is lieuvillian iff the cennected ce]nponent GO is solvable (PropositioR 3.9.5).

But in general it dees net holds; we shew this fact by examples. }Fbr cenitected aiiEiite

group schemes, we will see the cendition te be liouviilian is preperly stroitger thaR the

solvability but weaker than the triangulability.

  Let L ¥) K be an inclusieR of AS D-]nodu}e algebras. For finitely xitany elements

cXi,･･･,xn E L7 let K<xi,･･.,xn> deitete the smallest AS D-meduRe subalgebra in L
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including both K and xi,...,x.. L/K is called G.-prinzitive extension ¥(resp,, G.-

primitive extension) iff there is ait x G L such that a(x) E K for &ll d E D+ = Kers

¥(resp., x is a non-zere diviser of L ¥(which is necessarily iitvertible¥) aitd a¥(x¥)x-i E K

fer all d G D¥) and L : K<x>. We say that L/K is a fcnite etale extension iff L is a

separable K-algebra in the sense ef [7], i.e. L is a pxejective L XK L-medule. Theit we

define liouviZlian extension as such a finitely generated extension L/K that LD : KD

ard there exists a sequence Gf AS D-module a}gebras K = Lo c Li c ･t･ c Lr == L

such that each Li/Li-i (i = 1, . . . ,r) is at least ene of the fellowiitg types: G.-prixititive

exteitsion, G.-primitive extension, or finite etale extensien. As the last one of the Knain

theorems, we will show the foIRowing:

Solvability (Theorem 3.9.17): Let L/K be a finitely generated PV exteRsieit. Theit the

following are equivalent:

   (a) L/K is a lieuviliian exteitsion.

   (b) There exists a Iieuvillian extensien F/K such that L c F.

   (c) G(L/K) is lieuvilliait.

When k is algebraically closed, these are equivaient te:

   (d) G(L/K)O is seivable.

  Mereever we wiil characterize ten types ef lieuvMian extensions just beiitg cempatible

with [12, S24-27]; see Definitien 3.9.15, Corellary 3.9.19 aitd its foIlowing paragraph.

Cexkve]bltioKks. Througheut this part, we always work over ait arbitrarigy fixed field R.

All vector spaces, algebras and cealgebras are defined at least ever R. All algebras are

asseciative and have the identity elexnent. All medules ever ait algebra are uRitag, left

modules unless otherwise stated. All separable aigebras are taken iit the sense of [7]; see

agso [29, Ch. 6].

  The netatien HomR (resp. EndR) with a ring 71 always denotes the set of al} C71-

linear maps (resp. R-iinear endemerphisms), but the uRaderned Hom may iitdicate group

hoiitexnorphisms or homomerphisms ef group schemes. Algebra (resp. coalgebra) gnaps

are always dentoed by Alg (resp. Cealg). The netatien Aut iitdicates autemorphisrrts

in some sense; for exainple, AutD,K-alg meaits D-linear and K-algebra aute][torphisxits.

Augt in the beld style indicates an associated group functor as iit [29, (7.6)]. Coa}gebra

structures are denoted by (A,E). If we need to specify a coaegebra (or a cering) C, the

notatien (Ac,6c) is alse used. Fbr a cealgebra C, C+ denetes Kere. The antipode of a
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Hopf aigebra is denoted by S. We use the sigma notation ¥(see [23, Sl.2, pp. 10-11] or l16,

gl.4, pp. 6-7]¥):

                        A(c) == :c(i) Xe(2) etc.

                               (c)

When (M, A) is a right (resp. Ieft) C-comodule, A(m) (m G M) is denoted by the siggn&

itotation

   A(m) =: 2m(o) x m(i) E M xR C (resp. A(m) = 2m(-i) x 7n(o) G C XR M).

          (m) (m)  By "a symmetric teRser category (ut, X, I)" we mean that (ut,X) is a syinmetric teitsey

¥(er moneidal¥) category [16, gle.4, p. 199] with a fixed uitit ebject l. We can define

algebras, coalgebras, etc., in (S?!, X, I) naturally by coxnxx}utative diagrams. For aR algebra

A in (ut, cs}, I), eeft A-it todu}es (resp. right A-medules, resp. (A, A)-bixnedules) in (ut, X, I)

can alse be defined and the category of them is deiteted by A2e (resp. S2eA, resp. AS2tA).

For a ring R, RM (resp. MR) denotes the categery of left (resp. xight) R-modules. }Fbr

a coalgebra C, MC (resp. CM) denotes the category ef right (resp. geft) C-cemedules.

Moreever, further netatieits, siach as AMH, AHM, etc,, which indicate categories of regative

Hopf modules are used as in [16, S8.5].

          3.1. BASIC NOTIONS AND RESULTS ON D--MODULE ALGEBRAS

  Let D be a cecommutative bialgebra. An algebra A is called a D-modzLle algebra ¥(see

[23, S7.2, p. 153] or [16, g4.1]¥) ff A is a D-module and the action of D measures A te A.

The last condition Kneans that

                    pA : A - HomR(D, A), a H [d F--> dal

is an algebra Knap, where HemR(D,A) is considered as an algebra with the conve}utiek

product (see [23, pp.69-70] or i16, gl.4]); or in ether words, using the sigma itotation,

                   d(ab) == 2(d(i)a)(d(2)b), d(1) -6(d)1

                          (d)

held for all d G D and a, b E 24. Throughout this part, we assugne D-medule algebras are

cemmutative unless otherwise stated. Nete that the algebra HomR(D, A) is coK] ltxnutative

in our situatien, and it has a D-module algebra structure giveit by

(3.4) (dq)(c) =q(cd) (e,dE D, qE HemR(D,A))･
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One sees pA is an injective D-module algebra xnap. Fer a D-Knodule algebra A, the smash

pTod2Lct /S#D means the algebra which is A opR D with the semi-direct product:

                       (a#c) (b#d) - 2 a(c(i)b)#c(2)d

                                    (c)

¥(see [23, pp. 155-156] or [16, S4.1]¥). For A#D-modules VW E A#DM, we h&ve an

A#D-xnodule structure on V XA W given by

       (a#d) (v cD zv) =a2 d(i)vX d(2)w (a E A, dE D, v E S!3 zu G W).

                      (d)

Thus we have an abe}ian symmetric tenser categery [6, Defipttion 1.15] (A#DM, C8}A, A)

with the canonical syKnmetry Y & W - W XA V, v C8} zv H w X v. For a D-medule V,

                  VD := {v EVI dv =E(d)v for all dE D}

is called the eonstants (or the D-invariants) ef V. Especially AD becomes aR algebra.

We see HexnA#D(A, V) => VD, g " q(1) is ait AD-module isoll}orphism and in particular

EndA#D(/S) c)t AD as a}gebras. The fuitcter (-)D : A#DM --> ADM is an exact fuitctor

since A is a projective A#D-meduie (indeed, A#D t AO(AXRD+) as A#Dxitodules via

a#d H (as(d),aX (d-s(d)))). Let B be a D-nltodule algebra inc}udiitg A as a D-module

subalgebra, V ait A#D-medule, and W & B#D-module. If D is a Hepf algebra with the

antipode S, then HomA(V W) has a B#D-medule structure given by the D-coitjugatioit:

¥(3.5¥) ¥(¥(b#d¥)so¥)¥(v¥)=:b2d¥(i¥)¥(go¥(S¥(a¥(2¥)¥)v¥) ¥(vGV¥)
                              (d)

for b E B, d E D, aRdg E EEomA(Vl W); see [27, Propesitien 1.8]. We see Elox]tA(Vl W)D =

HemA#D(VW). Especiagly HomA is an internal ffom [6, p. Ie9] of (A#DM,XA,241) in

such a case.

  The follewing preposition, like ehe Schur's lexi¥)yita, is very impertaitt:

Propesitioxk 3,a,X, Let ?t be an abelian category. An object X in 2e is sinmple 2¥)Cf

   (a) the endomomphism wing E :== Endut(X) is a division wing, and

   (b) for every object Y in ut, the evagzeation map

                        ev : Homut(X,Y) XE X ----> Y

      is injeetive.
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Proof It sufices to show that the propositioit holds for every small abelian fulg subcat-

egery of ut containing X as ait object. By the theyd-Mitchel} embedding theoregit ¥(see

I9]¥), we may assume ut = RM for a ring 71.

  ("Ig' part.) Let Y be an IEe-subnztodule of X. Since HexnR(X,Y) is a right ideal ef

E= EndR(X), Hoin2(X, Y) equals O or E7 by (a). If HexnR(X, Y) = E, we have Y =X

since X f)t E XE X - Y is injective. If }IomR(X,Y) = O, then E - }IemR(X, X/Y) is

injective. Since all E-]nodules are fat, we have that X ft EXEX - EffomR(X, X/Y) XE

X - X/Y is injective and hence Y =: O.

  ("Only ig' part.) (a) Fer O 74 f E E], gm(f) is a non--zere 71-subixtodxkle ef X and heRce

Iin(f) == X, Ker(f) = O. Thus f is invertibie.

  (b) Since X is simple, each O l f G HomR(X, Y) is injective aitd hence IKn(f) is simple.

It suffices te preve that the sxix]k Z);･,.,iIm(ft) c Y is direct if A,...,A are E--liiteargy

independent in E{e]nR(X,Y). To prove this, we shall use iitductieit on r. When r = 1,

the assertioR is clear. Whenr> 1, suppose that the assertieit is true for {fi,･･･,fr-i}･

Seeking a centradictien, assume Ixn(A) n :,Z=-l Im(ft) l e. Since Im(n) is siinple, we

have Ixn(A) c e;.=-lIm(ft). Then there exist gi E E] (i = 1,...,T- 1) such that the

diagram
              r-1
Ixn(m-II'IE!IE19kCIUSiOn({iDIm(A)-IZ!'9j99!l9gOJeCtiOngm(A)

              i=1
f'

ceitztKitutes fer i = 1, . . . ,r - 1 since A : X . Im(A) is invertible. Theit fi == fi o qi +

･･･ +A-ioqr-i. This centradicts that A,...,A are E--linearly indeperdeitt. O

Remark 3.1.2. I heard the above propositioit frem Prefesser A. Masuoka. Though it

seems well-knewn, an exp]icit citatioit was net found as far as I searched. It is said that

Prefesser Masueka knew this by a comment froxn Professor T. Brezinski on [15, Theerem

1.1 and the Theerem en p. 232]; see the proof of [2, Proposition 3.1].

[Defigkitgoxk 3,g.3. A D--meduie algebra A is called si7?zple iff it is siiM¥)ple in A#DM, i,e.

/g has no Reit-trivial D-stable ideal.

  The next corollary follows immediately frexn Propositein 3.1.1.

Cewollaxy 3,1.4. A D-module algtebra A is sMpZe 2ff

   (a) AD is afield, and
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   (b) for every A#D-moditle Y, the mop

                          YD xAD A -> X y oj} a .-> ay

                      ¥(or 24XAD YD -> Y; axyHay?

      zs z7opectzve.

Proof Recall that EitdA#D(A) )t 24D and }IomA#D(A,Y) fy YD. [E'he evaluation map is

identified with the map in (b) above. P
  Let A be a D-medule algebra and pA : A --> HomR(D,24) the asseciated algebra

xnap. Then HomR(D,A) has two kind ef Antodu}e structures: /g XR HoxxkR(D,/g) -->

EffomR(D,24), given by (I) a cg} q " pA(a) *q = q* pA(a), and (II) axq F- aq =

[d H aq(d)]. The structure giveit by (II) can be censidered threugh the fo11ewiitg algebra

isemerphism:

                      a : A -=> Hoax)R (D, .ZS)D, a H aeD,

which has the inverse given by q F--> g(1). Here we are taking the D-medule structure oit

HomR(D,A) in the sense of (3.4). As in I27, Corellary 1.4], the next lexitma follews from

Corellary 3.1.4.

Le]mma 3,g,5. ijA is simple, then the following mop:

          6 : A oj}AD /k - ElomR(D, /k), aXbH pA(b) * (aED) == apA(b)

is a two-sZded /g-linear aeft throiLgh a, right through pA? injection.

Proof. Censider Y == HomR(D, 24) as an A#D-Knedule by the A-medule structure giveR

by (I) and by the D-module structure in the sense of of (3.4):

               (a#d)q == pA(a) * (dso) (a E A, dE D, qE Y).

This is weel-defined:

             (a'#d')((a#d)go)) - pA(a') * 2(d(i)pA(a)) * (d12)dgo)

                                     (dt)
          =: pA(a') * 2pA(d(i)a) * (a(2)dgo) == 2pA(a'(dli)a)) * (d12)dso)

                    (dt) (dt)
          - ((a'#d')(a#d))q.

rTheit6is injective sinceAc¥)t YD threugh ff. []
  This lemma has an applicatieit when one needs te think of the 2igD-}inear depeitdeitce of

elements in A. Takeuchi generalized the Wronskian (and Caseratiait) criterion as fo1}ews:
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Prepositioxk 3.X.6, d27, Propesitioit 1.5]? Let K be a D-modzLle fiegd. [ZZ}ben ai, . . . , an E

K are KD-linearly independent 7ff there exist hi, . . . , h. E D szech that det(hi(aj))i"･ S O･

Proof We include the proef for convenience.

  ("IP part.) If £,"･=, c,･aj =O (ci,..., che E KD), then E,n･.., cjhi(a,･) = O for i -- 1,...,n.

Since the matrix (hi(a7-))i"･ js invertible, we have ci = ･ ･ ･ = cn = O.

  ("Only if' part.) Put W = KDai + ･ ･ ･ + KDa., an n-din)ensioital KD-vector subspace

ef K. Coitsider the K-linear iRjectien

              6 : K XKD W - HomR(D, K) N HegnK(K XR D, K)

which is restricted by the map 6 in Lemma 3.1.5. Let {a.}.EA be ait R-basis of D aitd

dX be the dual ef d. in HemR(D,K). Theit HexnK(K XR D,K) = II..A KdX as a K-

vecter space. Notice that pA(a) = X..A(daa)dX (a G K)･ Siitce pA(ai),･･･,pA(an) are

K-linearly independent and since K is a field, we obtain a K-basis vi, . . . , vn of KXKD W

such that

                   6(vi) = h¥+ 2 ci,adX

                                dg;Ah,

                   5(v2) - hg+ E c2,.dX
                                     aEA
                                   daShl,h2

                   5(vn) = hnV+ 2 cn,adX
                                         orGA
                                       dafhl,･･･,hn

for some n elements hi,...,h. E {a.}.EA by sweeping-out. Censider the transpesed

K--linear map of 6:

        or : K QR D - HemK(K XKD W K), aXd F-> [b op w H ab(dw)].

Let v¥,...,v.V be the dual basis of vi,...,v.. Then we have t(or(hi),...,or(hn)) =

T`(viV, . . . , v.V) with a strictly lower triangular matrix T E GL.(K). Thus or(hD, . . . ,7(hn)

form a K-basis for HomK(K XKD W, K) c>i HomKD(W K). The K-isemerphism

                 Kn -Z> HomKD(WK) -Z> Kn
                (ci)i H SI cior(hi) F--> (Sl cihi(aj)>

                           i=1 Xi=1 /2'
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is precisely the right multiplicatieit of matrix (hi(a,･))i,,･. It fo11ows that the matrix has

Remark 3.1.7. Iit the above proef, we see that Keror is a left ideal of K#D. IfD == R[0]

with ene primitive 0, then Ker or is generated by a monic differential eperator ef order

n. Thus we can take hi = 1, h2 = 0,...,h. = 0n-i in such a case. Nainely we have the

Wronskiait criterion in the usual sense. Similarly we alse have the erdiitary Caseratian

criterion for difference fields.

        3.2. [firENSOR EQUIVALENCES ASSOCIATED [EiO HOPF SUBALGEBRAS

  In what fo}lews we assull}e that D is a cecommutative Hepf algebra, Let C be a ffepf

subalgebra ef D. A coalgebra in the tenser categery (DM, XR, R) is called a D-mod2Lle

coalgebra. D is a D-module coalgebra, and D :== D/DC+ is its quotient. The R-abeliait

categery BM of left (D,D)-ffepf modules is defined as fo11ews (see I26, pp. 454-455] Dr

[16, g8.5].¥):

Objects. An object ef BM is a left D-module which is alse a Reft D-comoduge with a

structure AM, say, such that

          AM(dm) =A(d)AM(m) == 22d(i)m(-i) xd(2)m(o) EDXRM

                                (d) (m)

for all dE D and 7n E M.

Morphisms. Morphisms ef BM are D-module and D-comedule maps.

  Giveit ebjects M, N in BM, Iet MUDN denete the ceteitser prodRxct; this is by defiiti-

tien the equalizer of the two D-celinear maps

                           MXN=DXMQN

giveit by the structure maps of M, N, er in other words,

MODN =: g2 xz (g) yz 2 IE) (xi)e) x (xi)(e) x yi =: 22(yi)(mo x xi x (yi)(o) }

         Ki i(xi) i(y) ,S/This is a D-submodule of MxN, and is further ait ebject in BM. We see Chat BM =

¥(BM,DD,D¥) is a syxnmetric tensor category. Indeed, the asseciativity ¥(MllDN¥)ODL - t>
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MOD(NDDL) and the symmetry MDDN =" NDDM are iitduced by those ef (DM, XR)

natural}y. We have isemorphisms

                  MaDD => M, 2mi x ai F--> :mi6(ai),

                                 zz
                  DurDM - :> M, 2ai x mi F---> ]E)6(ai)mi,

                                 zz
whese inverses are ebtaiited by AM. Thus D is a uitit ebject.

  for an object V in cM, define

                            e(V) -D Xc V

This is naturally an object in BM. We thus have an R-linear fuitctor

                             e: cM . BM.

Proposgtgog} 3.2,g, e is an eguivalence of symmetric tensor eategories.

Proof By [26, Theorem 2 and 4], ep is a categoyy equivaience; its quasi-inverse N F--> W(N)

is given by

             w(N)=CODN == {nGNI AN(n) = 1opn in DXN},

where AN : N . DXN is the structure map en N. It is easy to see that

               w(M)xW(N)->W(MObN), mXn->mXn,
               R--->W(D), lHl

are isomerphisms in cM. We see that the isomorphisms, as teitser structures, ]nake W

an equivalence ef syxx¥)gnetric tensor categories. D
  Let Di denete the irreducib}e cex]tponent iit D centaining 1; this is the laxgest irre-

ducible Hopf subalgebra. If the characteristic chR of R is zere, theit Di = U(g), the

universal envelope of the Lie algebra g = P(D) of all primitives in D; see [23, Ch. XIII]

er [16, g5.6]. Let G == G(D) deitote the group ef all greuplikes in D.

  Iit what follows we suppose:

Assumptiegk 3.2.2. D is pointed, so that

                             D=Di#RG,

the smash product with respect to the coitjugate actieit by G eit Di; see [23, Theorem

8.1.5] or [16, Corollary 5.6.4].

36



  In the following, we take as C a Hepf subalgebra of the form

                         C :D¥(GD :== Di#RG,,

where Gi c G is a subgroup offinite index. The equivalence @ wi}I be denoted by

(3.6) ¢.,:.(.,)M -N> BM,
if one needs te specify Gi.

  The vector space R(G/Gi) freely spanited by the set G/Gi ef }eft cosets is a quetient

left D-xnodule cealgebra of D along the Knap D : Di#RG -> R¥(G/GD which is giveR by

the ceuitit s : Di - R and the matural projectioit G -> G/Gi. Since the map indutces an

isomerphism D :> R(G/Gi), left D-cemedules are identified with (G/Gi)-graded vector

spaces: for N E DM,

              N== (D AJb (Aib ={nENIAN(n)-sXn}).
                  sEG/Gi

An ebject in BM is a left D-module N = ¥({D,.G/G, Nb which satisfy that gAlb C AII7s

¥(g E G, s E G/Gi¥). If M = G}¥),,a/G, Mls is another object iit BM, then

                        MMDN- e uaXM.
                                 sEG/Gi

We have D = e,.G/G, gD(Gi)･

Notatiok 3.2.3. Here and in what foilews, g E G/Gi means that g Iies in a fixed system

of those represeittatives in G for the left cosets G/Gi which iitclude the neutral eleitkeitt

1 in G.

  The neutrag compenent Ni :W(N) in N is aD(Gi)-submodule. We have the ldenti-

fication

                          ¢(Ni)- e gXNi.
                                 gEG/Gi
Here D acts en the right-hand side so that if d E Di,

                     d(g op n) =gx (g-idg)n (n E Ni),

and if hc G,

                       h(g X n) = g' X tn (n E Ni),

where g' is a representative and t G Gi such that hg = g't. E[ence, by Prepositioit 3.2.1,

we have an isomorphism @(Ni) = egEG/G,g& Ni £t> N iit BM, giveit by gXn F> gn.
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  An algebra A in (BM, DD,b) is precisely si2ch a D-medule algebra that is the direct

product fi,,G/G, A, of Di-module algebras A, (s G G/Gi), satisfyiRg g.4, c .zg,, (g E G).

It is identified with tp(24i) = (iDgGG/G, gX /Si, which is endowed with the compoitent-wise

preduct. We observe that eg = g X 1 E e(Ai) are erthogonal ceittral idempeteitts.

  Let A = op(/ai) be as above. AR Ai-module V in D(G,)M is precisely a medu}e ever

the algebra Ai#D(Gi) of sxnash preduct: A,(D(G,)M) = A,#D(G,)M. @(V) is naturally

an A-medule in DD- M; this is in particular an A#D-medule.

Propositiorrx 3.2,4, Let Ai be a D(Gi)-modzLle aggebra and 24 = ep(/ki). The junetor

                         ¢ : Ai#D(G,)M ---> A#DM

is an eqzeivalence ofR-abelian eategories.

Proof By Proposition 3.2.1, it suffices to prove that the categery A(BM) ef /i-xitedixles

in BM is isoxnorphic to A(DM) = A#DM. Given N iit A#DM, define Nl; = egN (eg =:

g CD 1 E A == ¢(Ai), g E G/Gi). Then N == (iD,,./., Aib so that N is in A(BM). This

gives the desired isemerphism. D
  This prepositien can be extended as foliews:

PropositioKk 3.2.5, LetA= op(Ai) be as above. [Zlhe functor

                ¢ : (A, (D(G,)M)A,, XA,, Ai) ----> (A(BM)A, XA, .4)

is a tensor eglLivagenee.

Proof For VW G A,(D(G,)M)A,, we easily see

             <P(V) xA O(W) cy 2 gx (V xA, W) - <P(V cDA, W)

                           gEG/Gi

  We see that the functor O preserves constaitts and simple Knoduie algebras:

Leg)ema 3e2e6e (i) Let V be a D(Gi)-modzele. CZ-lhen an isomomphism V"(Gi) -:> e(Y)D

is given by v " 2gEG/Gi 9XV'

  (ii) LetAi be a commutative D(GD-module algebra. 772en Ai is a simple D(G2)-modzLle

algebra 2ff op(Ai) is a si77zple D-modzLge algebra.

Proof (i) If 2ggXvg E ¢(V)D, one sees first vi G VC, and theit vg == vi for all g E G/Gi,

  (ii) This directly fo11ows from Propesition 3.2.4. 0
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                 3.3. ARTINIAN SIMPLE D--MODULE ALGEBRAS

  Let D = Di#RG be a cocemmutative peinted Hepf algebra as in the previous section.

In what foilews we further assume:

Assuxxxptioxa 3,3,1, The irreducible Hopf algebra Di is ef BirkheffWitt type.

  This means that every primitive element ef D lies in a divided power sequence of

infinite length; ait infiRite sequence {1 == do,di,...,a.,...} in Di is called a divided

powerseg2Lence ifA(d.) = XI=e diXd.-i (see [23, p. 268]). This assuittptioit is necessarily

satisfied if ch R = e (for each primitive 0 E P(D), {1, 0, 02/2, . . . , 0n/n!, . . . } is a divided

pewer sequence ef infinite length¥). If ch R = p > O, this is equivalent te the Verschiebuitg

map Di --> Ri/P x Di being surjective; see Ill]. The assuitztptioit is also equivalent te

saying that D is smeeth as a cecommutative cealgebra.

  Moreever this implies that, for a commutative algebra A, the A-algebra HomR(Di, A)

with the convolution product is the projective limit of power series A-algebras ¥(see [23, p.

278]). Thus, if A is a demaiit (resp. reduced), then ffexnR(Di,A) is also a demaiit (resp.

reduced). Furthermore, HomR(D,/g) is isomerphic te the direct preduct of A-algebras

isemorphic to HomR(Di,A) indexed by G:

        HemR(D,A) => HomR(RG,HemR(D!,A)) -:> "HemR(Di,/1)

                                                  gEG
                 q H [g F-> [dHq(dg)]] " ([d"q(dg)]),.

Hence, if A is reduced, then HemR(D, 24) is alse redriced. (These facts iKnplies that Di

and D are convoiutienally reduced in the sense ef I28, DefiRitieit 5.2].¥)

  As in [27, p. 505], we have the following:

Lemma 3.3,2, LetA be a D-module algebra and pA : A ----> HomR(D,A) the algebra map

associated with the structure on A.

  (i) If J c /1 is an ideal, then pAi(ffemR(D,J)) is a D-stable ideal, which is 7nax-

i77zal among D-stable ideals incgiLded in J. Therefore J is a D-stable ideal 7ff J =:

pAi(ffeinR(D, J))-

  (ii) 1[fl c A is a D-stable ideal, then also the radical VT Zs a D-stable ideal.

  (iii) ijP c A is aprime ideal, then (pk)-i(HeinR(Di,P)) is apntme Di-stable ideal.

ffere pk : A ---> HemR(Di,A) is the algebra nz(mp associated with the Di-modzege algebra

strzLcture on A.

Proof (i) This is easily seen.
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  (ii) Since the algebra HomR(D,A/V7) fit HexnR(D,A)/HexitR(D, vi7) is redxgced, we

have HomR(D, V'7) is a radical ideaE ef HomR(D, A). E{ence its pull-back pZi(}IexnR(D, V:Z))

is also a radical ideal. By part (i), it includes l. On the ether hand, pAi(HemR(D, Vt]Z))

is included in v/T. Therefere pAi(HomR(D, VC7)) = v/7.

  (iii) Since ffomR(Di,A/P) .N HomR(Di,A)/HomR(Di, P) is a domaiit, ffemR(Di, P)

is a prime ideal. Thus its pull--back (pk)-i(KomR(Di,P)) is also pri]ne. D

  Let K be a D-module algebra and st(K) the set of al} minimal prime ideals iit K. TheR

G acts on st(K). Let Gg(K) denote the normal subgroup ceitsisting ef those eleg]teitts iit

G which stabilize every P G st(K).

Prgpositgon 3,3.3, Smppose that K is noetherian as a ring and simple as a D-modzLle

algebra. Then 9(K) is a finite set.

  (i) The aetion of G on st(K) is transitive, so that the subgrozmps Gp of stabilizers of

P G st(K) are conjiLgate to each other.

  (ii) Every P E st(K) is Di-stable, so that K/P is a D(Gp)-modzLle ao77zain. This is

simple as a D(Gst(K))-modzele algebra.

  (iii) Let P E st(K), and set Ki = K/P. Then ive have a natzLral isomomphism of

D-modiLle algebras,

                              K = epG.(Ki).

Proof (ii) Let p : K ---> HemR(Di, K) be the a]gebra xxtap asseciated with the Di-medule

algebra structure oit K. PzEt P' = pmi(HomR(Di,P)). By Len)ina 3.3.2 (iii), P' is a

Di-stable prixne ideal included in P. Then we have P = P' by the minimality gf P.

Heitce P is Di-stable. (This a}se fo11ows frexn [28, Theorem 5.9 (2)].)

  Let P c J S; K be a D(Gst(K))-stable ideal. Theit, fi,.G/G.(.) gJ is D-stable, aitd

hence is zere. Since P is prime, there exists g such that gJ c P, and so P c J c g-iP.

By the xninixnality ef g-iP, we have P = J (= g-iP). Thus K/P is a si][Eple D(Gst(K))-

module aigebra.

  (i) Let PG st(K). We see

¥(3.7¥) Agp- AQ== O,
                           gEG (?ES)(K)

sincethe intersectioits are both D-stable. The first equality ix]tplies {gP I g E G} : st(K);

this preves (i).
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  (iii) By (i), g F---> gP gives a bijection G/Gp -:> 9(K). If Q and Q' lit 9(K) are distiitct,

theit (Q S) Q + Q' = K, by (X). This together with (3.7) proves that the itat"ral itmap

gives an isomerphism,

                      K-`> ll K/Q- " K/gP.

                           (?Est(K) gEG/Gp
Obvieusly, eG.(Ki) is isomorphic te the last direct predrtct. O

  Ibr a commutative ring K in general, we say that K is totag iff every moit-zero divisor

in K is invertible.

CorglSary 3,3.4. Let K be a noetherian simple D-modzLle algebra as above. Then the

following are egzeivalent.

   (a) K is totals

   (b) K is artinian as a ringf

   (c) The Kr2sll ainzension Kdim(K) = O, or in other words 9(K) egzeals the set of all

      maximal ideals in K.

  .Zf these conditions are satisfied, every K#D-modiLge is fo"ee as a K-mod2Lle.

Proof Each cenditien is equivaleittto that for any/some P E 9(K), K/P is a field. The

last assertion hoEds true by part (iii) of the last prepesitieit and by Prepesitleit 3.2.4. n

Defiz}itfioxbl 3.3.5, A D-medule algebra K is said to be AS iff itis artiniait aitd siinple.

By the corellary above, this is equivaient to that K is tetal, neetherian and simple.

  For later use we prove soxne results. The fo11ewing lemma is a particular case of [28,

Theorem 3.4].

Lemxka 3,3.6, Let A be a D-mod2Lle algebra, and let T c A be a G-stabge multmplicative

siLbset. The D-modiLle aZgebra str2LctiLre on A ean be iLnigzLely extended to the loealization

T-iA ofA by T. (Di may not be of Birkhoff- wrtt tyz)e.?

Proof Let p : A - EEemR(D,A) c HomR(D,T-i/(l) be the algebra map asseciated

with the D-module algebra structure on 241. R)r each t E T, we see p(t)(g) = g(t) are

invertible in TmiA for all g E G. Hence p(t) (t G T) is invertible in ffeg)kR(D,T-i/a)

by [23, Corollary 9.2.4]. This implies that p is wniquely exteitded to an algebra map

P : T-iA - Hom(D,T-'A) se that fi(1/t) *p(t) == 6 (t E T); c£ the preef ef [27,

Propesition 1.9]. We have thus obtained the measuriitg actien

                d(a/t)-P(a/t)(d) (dED, aGA tET)
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by D en T-iA. It rei]tains te preve that this makes T-iA a D-gnodule. We have eniy to

see that

                   ed(1/t) = e(d(1/t)) (c, d G D, t E T).

This hoids, since the twe rr}aps D X D --> T-iA, given by eX d e--> ed(1/t) and cX d H

c(d(1/t)) coincide, beiitg the convolutieit--inverse of c X d " cdt,

  For ceitvenience, we describe hew to exteRd the actieit ef D explicitiy. Let t E T. The

actioit of D en 1/t is giveR by:

g(1/t) - 1/g(t) (9GG)7
d(1/t) .. E(td¥) - dt -ti(a)t+ il,72(d(,)t-s(d(,))t)(d(,)t-6(d(,))t)

                             (d)
            1          - iT, 2(d(i)t - 6(d(i) )t) (d(2)t - E(d(2) )t) (a(3)t - s(cl(3))t) + ･ ･ ･ (d E Di).

               (d)

We observe that the right haitd side ef d(1/t) (d E Di) iit the equation is a finite suit lt by

the coradical fikration; see the proef ef [23, Lemxx}a 9.2.3] or I16, Lemma 5.2.10]. D

Lemma 3,3,7. Let L be an AS D-modzble algebra, and let K c L be a D-modiLle szLbal-

gebra. IfK is total, then K is AS.

Proof Given an element x 74 e in L = [{p.st(L) L/P, define the suppert ef x by

(3.8) supp(x)-{PE st (L) lx¢ P}.
ORe sees that x is a iten-zero divisor iff supp(x) = st(L).

  Cheese an ele]neitt x l O iit K with xninimal support. Then for g E G, the supperts

supp(x) and supp(gx) are either equal or disjeint, according te x(gx) being iton-zero or

zero. By Propositioit 3.3.3 (i), we have these elements x,gix, . . . ,g,x in K with disjoint

supperts, whese suxxlt is a non-zere diviser. Let y be the inverse of the suffit; this is

indeed in K, since K is total. We see that e : = xy is a (primitive) idempeteitt iit K

with supp(e) =: supp(x). By the minimality of the support, each moit-zere element iit eK

has supp(c) as its support, and hence has ait inverse in eK, just as x above. We have

K= fi;･=i gieK, the direct product ef the fields gieK; this proves the Iemma. U

Cero]gayy 3,3,8, LetA be a D-modzele szLbalgebra in an AS D-nzodzLle algebra L.

  (i) Every non-zero divisorx in 24 has fugl siLpport: supp(x) == st(L) (see (9.8??.

  (ii) LetK = (9(/S) denote the total gzLotient ring ofA; this is realized in L by (i). Then

K is an AS D-modiLle szebalgebra of L.
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Proof Let T be the set of all noit-zero divisers in A. Then, K =: T-i/S.

  (i) Choese an x E [Z" such that supp(x) is iimiitiEnal iit {supp(t) l t G T}. If supp(x) i7C

st(L), then there is a g G G such that supp(gx) A supp(x) = O, which implies x(gx) == O,

a contradictien.

  (ii) Let pL : L --> Herrk(D,L) be the algebra map associated to the D-rr}odule algebra

structure oit L. It restricts to p : A - Hent(D,A) associated te A. If t E T, pL(1/t) is

the inverse of p(t) in Hom(D,L), and hence is contained in Hexn(D,T-iA) by the proef

ef Lemxna 3.3.6. This ixnplies that K ( : TmiA) is a D-module subalgebra of L. K is AS

             3.4. THE SWEEDLER'S CORRESPONDENCE THEeREM

  Let K c A be an inciusio]t of D-module algebras. Then /1 QK A has a coalgebra

structure in the syxr}metric teitsor category (A(DM)A, XA, A) giveit by

        A : AXK /g - (A xK 24) (s}A (A xK A), axb -> (a x 1) x (1 cs} b),

        s:AopKA.A, aopbF--->ab.

In particular i4kXKA is an 24-eoring (er a coalgebra in (AMA,XA, A)); see [24]. The itext

theorem is an analegy of the Sweedler's correspondence theerem [24, Theereiit 2.1] eit AS

D-module algebras, which play a key role te obtain the Galois correspendeitce later.

rlEiheorem 3,4.g, LetK c L be an inclzesion ofASD-moaule algebras. Let eL/K be the

set of aZZ D-stable coideals of L XK L and AL/K the set of agl intermediate AS D-modzele

aZgebras of L/K.

  (i) FbrM E AL/K, ioe have J(M := Ker(L XKL --"> LXM L) E CL/K.

  (ii) l7br J E eL/K, let T : L CDK L -->> L XK L/J be the canonical sunjection. [Z7hen

MJ := {a G L l an(1 X 1) = r(1 X 1)a} G v4L/K.

  (iii) The correspondence

                            eL/K e AL/K

                              J- MJ

                             .7ha -- M
is bop'ective.

Proof (i) Both L XK L and L XM L are cealgebras in (L(DM)L,XL,L) aitd ebviotasly

L XK L ->> L XM L is a D-linear L-coring map. Heitce its keritel j[M is a D-stable coideal

of L xK L.
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  (ii) We easily see that MJ is a subalgebra ef L which centains K. Fer any d E D aitd

a G MJ, we have d(a)7r(1 X 1) == d(a7r(1 CD 1)) = a(T(1 X 1)a) = r(1 X 1)d(a). Thus MJ is

a D-module subalgebra of L. Let t be a non-zero divisor in MJ. By Corollary 3.3.8 (i), t

is invertible in L. We see tNiT(1 x 1) : t-i7r(1 x 1)tt-' = t-'tT(1 x 1)t-i : T(1 (g) 1)t-i

and hence trmi E MJ. This implies that MJ is tetal. Therefere MJ is ait iitterffnediate AS

D-medule algebra of L/K by LerrErrta 3.3.7.

  (iii) Take aR M E AL/K. For all aE M, we have aop 1-1Xa ( ,7h`f. Theit M C MJ..

By the definition of MJ., oite sees MJ. oj)M MJ. cv MJ. XM M･ Siitce MJM is ait

M#D-module, it is a free M-module (see Cerellary 3.3.4). Heitce MJ. = M.

  Conversely, take JE eL/K. Let e: LXM, L -LXK L/J, axbH an(1 Q 1)b, which

is a surjective D-linear L-coring map. Then we have .]ha, c J by chasiitg the fo11owiRg

comittutative diagram:

        O- j(zt4J -LCDKL- LXM,L .O (exact)
                                         tc

        O - J - L cDKL . L C8}K L/f - O (exact).
If we preve that C is injective, theit J = ,.7ha, foIIows.

  For a fixed PG st(MJ), put M' = MLT/P ( : WG.(MJ)), L' = L/PL (= WG.(L)), and

C == WG. (L XK L/J) = (L XK L/J)ei = ei(L XK L/J)ei (where ei E MJ is the primitive

idempetent such that M' = MJeD. Then C is a coalgebra iit (Lt(D(G.)M)u,XL,,L') by

Coreliary 3.2.5. k sufiices te prove that C' = i[#]G. (C) : L' XMt L' - C is injective.

  Regarding C merely as an L'-cering, let ut be the category of right C-comedules iit

¥(LtMLt, C8}Lt,L'¥). r]rheit S2t is an abeliaR category since C is a left free LLxneduie. L' has

a natural C-comodule structure given by

           A : L' ---> L' xu C fit C, a y--÷ 7F(1 X 1)a (= ei7r(1 C8} 1)eia).

We see Endut(L') :> M', f " f(1) is an algebra isomorphisiit. (f E EitdLt(L') is a C-

coir}odule map iff f(1)T(1 X 1) = T(1 X 1)f(1).) On the other hand, }{eK)kut(L',C) -:> L',

f F--> (s o f)(1) is ait M'--module isomorphism whose iitverse is giveit by a H [b H

a7r(1 X 1)b]. Indeed, for f E Hemut(L', C),

       (E o f)(1)7r(1 X 1)b== (e o f)(1)A(b) = (6 o f)(1)2b(o) X b(i)

                                             (b)
    = 2(6 o f)(bo) x b(i) - ((E ci} id) o (f cg) id))(A(b)) - (s x id) (Ac(f(b))) -= f(b).

       (b)
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We will shew that L' is simple in 2t, coitcluding that C' is injective by Prepositien 3.1.1.

Every signple subobject ef L' is ef the form eL', where e is an idempeteitt of L'. Since A

is D(Gp)--linear, we see that g(eL') is also a sixxltple ebject fer each g E G. Each g(eL')

ceincides or trivially intersects with eL' since g(eL') n eL' is alse a right C-comedule. It

fo11ows from Propesitien 3.3.3 (i) that L' is semisimple in ut. But the endomorphism xing

Endut(L') fii M' is a field. This ixnplies that L' is a simple object iit X. O

Example 3.4.2. Let R = @ and D = @IT,T-i], the ring oflinear differeitce operaters. rTake

cy = {(i+2Vg)"} G 8c as in Introductieit. Then @ = @(1, 1) C L == @(VS, cy) × @(VZi, ce)

¥(where T¥(1,O¥) : ¥(e,1¥),T¥(e,1¥) = ¥(1,O¥), LD = @¥(v/li¥) =: @¥(fiv/li;¥)¥(1, 1¥)¥) is ait inclusieit of AS

D-xnodule algebras. Write ei == (1,O),e2 = (O,1) E L. Then AL/mp and eL/mp cerrespoitd

as the foIIowing:

ALap eL/Q

L Spai)LL{5X1-1CD5,eiXe2,e2Xei,ceX1-1Xc¥}
@(vlg;7c¥) SpanLL{Vgx1-1x5,dvx1-1xcy}

@(5)×Q(viiii) SPanLL{elXe2,e2Xel,5x1-1x5}
@(CY) SpaitLL{cyX1-1Xcy}

@(5) SPanLL{5X1-1op5}
@×@ SpanLL{elXe2,e2Xel}

@ e

We will see that L/@ is net a Picard-Vlessiet exteitsion bnt L/@(VZi) is.

       3.5. GALelS CORRESPONDENCE FOR PICARD--VESSIOT EXTENSIeNS

  Let K c A be an inclusion of D-medule algebras. Theit A opK /k has an algebra

structure itaturally and becexx}e a D-module algebra since D is cocemmutative. Th{xs

¥(A xK A¥)D is a KD-subalgebra ef A XK A.

DefinitiekR 3.5,1. Let K c L be ait inclusien of AS D-x[todule aggebras. We say that

L/K is a Picard- I/i2ssiot, er PVI extension if the fo11owing conditioits are satisfied:

   (a) KD = LD; this will be deneted by k.

   (b) There exists a D-xnodule subalgebra A c L includiitg K, such that the total

      quetient ring ([?(A) ef /k equals L, and the k-subalgebra H := (2zgXK/g)D generates

      the le ft (er equivalent ly right) A-module A XK A: A ･ H = A XK A (or H ･ A ==

      .zS op. A¥).

Prepesgtfigxit 3.5,2, Let L/K be aPV extension ofASD-modzele algebras and take A,H

as in the eondition ¥(b? above.
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  (i) Theprodzect map pa : AXk ff --> AXKA, pa(aXh) = a･h is aD-linear isomomphism.

  (ii) The A-eowing strzLctzere maps A,s of A XK A induce k-algebra maps AH : H -

HXic H, 6H : H . k. Then (H, AH,sH) beeomes a eomm2stative ffopf algebra over k.

The antapode is indzeced fro77z the twist map tw : A XK 24 ---> A XK A, aX b F--> bX a.

  (iii) The k-algebra map e : A -> AXkH, e(a) == pa-i(IXa) makes A a ntght ff-comodzLle.

A/K is necessawily a right H-Galois extension [16, Sect. 8.1] in the sense that

               Ae : AxK 24 --> A cs}k H, Ae(a x b) = ae(b)

is an isomorphism. A ffopf algebra structzcre on H with this puroperty is zLnigzLe.

  (iv) Szech an algebra A that satistZes the condition (b? above is zLnigue.

Proof (i) By Corollary 3,1,4, the Ratural ]nap L Xk (L opK /S)D - L XK /a is iitjective.

Since the map pa is its restrictieit, it is injective. On the other hand, pa is sRxrjective by the

conditien (b). Note that this can be uniquely exteitded to ait iseKnorphism L Xk H - :>

Lx.A.
 (ii) Siitce A" = k by the coRdition (a), 6 maps ff into k. The twefo}ds ef pa:

          q:AxkHxkH rgtid AxKAxk ff 2Et!f&XY>pa AxKAxKA

is a D-linear isomorphism. This induces an algebra isox]torphisin qi := idXrdHQkH :

ffXkH )> (AopKAXKA)D. Similarly the threefo}ds of ptnduces an algebra isomorphis]n

q2 : HopkHXkff => (/1XKAxKAopKA)D. Since A : AxK24 --> (AxK/i)opA(A(s}K/g) cy

A XK 24 XK A gnaps H into (A xK A XK A)D, a k-algebra xnap AH : H - H xk ff is

ix}duced by AH == giioAIH. VVke see

       q2o(AHXidH)oAH=(AcDid)oqioAH=(AxidA)oAIN,
       q2 o (idH XAH) o AH = (id XA) o qi o AH = (idA cDA) o AIH.

Theit we have (AHXid)oAH = (id oj)AH)oAH by the coassociativity ofA. The ceunitary

preperty is easily seen. Therefore (ff,AN,Eff) is a cemmutative bia}gebra. Since D is

cecommutative, tw maps H into ff. Put S = tw IH. For 2v == £i(ai C8} aE･) X (bt･ C8} bi) E

HXk ff, we see

         qi (w) - 2 ai x at･ be･ x bi, 7n((id xS) (w)) - 2 ai bi (s} al･ bt･

                iiwhere m denotes the gnultiplication of H. Thus, fer h == E¥)i ai X bi E ff,

      7n((id xS) (All (h))) = "z((id xS) (qii(2 ai x 1 x bi))) - 2 ai bi x 1.

                                 ii
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This implies id*S=mo (idXS) oAH : zLE where ze : k ----> H is the uptt xnap of H. We

have S* id == zLE similarly. Therefore S is the antipede ef ff.

  (iii) Wle see

      (q o (e x id) o e) (a) == 1 x 1 xa - (A o pa o 0) (a) = (q o (id XAH) o e) (a)

for all a E A. 'T hus we have (e X id) oe = (id XAH) o 0. 0n the ot her hand,

                        (id xsH) oe == Eo /L oe =: id .

Therefore (A,e) is an H--coinedule. The map Ae, being pa-i, is ait ise]nerphism. Since

this interprets e into the matural right /1XK A-centodule structure A - /gXA (/kXKA) cx

A XK A, a H 1 CD a on A, we see the described uniqueness of the strExcture on H.

  (iv) This foliows in the saxne way as [27, Lemma 2.5]. We include the preof for coitve--

nieitce. If A,B satisfy the cendition (b), then also AB satisfy it. Thus we xitay assume

/S C B. Put ffL4 == (/g CDK A)D, UB == (B CDK B)D, the correspondiitg Hopf algebras.

Then HA is a Hopf subalgebra ef HB. Hence ffB/HA is a faithfully flat extensieit ¥(see

[25, Theorem 3.1] er [29, Ch. 14]). The extensioit (L XK B)/(L XK A) is identified with

¥(L Xk HB¥)/¥(L Xk HA¥) through the paisomorphism. It follews that B/A is a faithfuely

fiat extension siitce L is a free K-xnodu}e. Hence aA == aB nA for alg a E A since the

caitonical ntap /g/a/k ----> B XA (A/aA) : B/aB is injective. Fex aity b G B, there exists

a non-zero diviser a E /S such that ab E /k. Since ab E aB n /g = aA and siitce a is a

iton-zero divisor, bG 24 follows. Therefore we have 24 == B. []

DefiNiition 3,5.3, A (resp., H) is called the princapal algebra (resp., the Hopf algebra)

for L/K. To indicate these we say that (L/K, A,U) is a PV extensien. The asseciated

aflftne greup schexne G(L/K) : = SpecH is called the PY gromp sehenze for L/K.

Thegrem 3.5,4. Let L/K be a PY extension of AS D-7nod2sle algebras with the ffopf

algebra ff. Let AL/K be the set of intermediate AS D-modzLle algebras of L/K and 7"tZH

the set of all ffopf ideals ofH. Then AL/K and 7tZk correspond bop'ectively as foZgows:

           .ZtL/K ---> 7"tlZit, M H H A Ker(L XK L . L XM L),

           '7-tZIEi - AL/K, ZH {x E L l `x x1 - 1 (g) x E l･ (L (g)K L)}.

  This theore]n is ebtaiited as the compesite of 1-1 correspondences giveit by Theorem

3.4.1 aitd the next preposition. for a comrrtutative a}gebra A ¥(resp. a D-xRodule aggebra

B), let Z(A) (resp. Zb(B)) denete the set ef all ideals ef A (resp. D-sCable ideals ef B).

Proposgtgoxa 3,5,5, Let (L/K,A,H) be aPV extension.
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  (i) Z(ff) and Zb(L XK L) corTespond bopeetively as follows:

               Z(H)--->Zlp(L(2).L), IHZ･(LXKL),

               ID (L XK L) -> Z(ff), 1 --> 1 fi H.

  (ii) Under the correspondence, J is a D-stable coideal 2ffI is a Hopf ideal.

Proof This follows iR the same way as [27, Proposition 2.6]. We include the preof for

convenlence.

  (i) Since L is the tetal quotient ring of A, we have Zb(L XK L) C ID(/k Ci}K 24).

Furtherxnore, Zb(L CDK A) nZb(/S XK L) = Zb(L XK L) in Zb (A XK A). Considering the

ptsomorphism, we claim the map

      Z(H) ---> Zb (A xk H) -or> Zb (A XK A), I H A Xk l H Z ･ (A X. A)

is injective with the intage Zb(L Xk H) f t Zb(L XK /g). The injectivity is clear. Since

AXkl = (Lopkl)A(24XkH), the image is coittained in Zb (LXkU). Theit it suMces te preve

that every D-stable idea} ef Lc8}kff is written as LCDkI by sexite l G Z(H). Let g C LXkff

be a D-stable ideal and take the canonicaa map q : H => (L xic ff)D --> ((L cg}k ff)/g)D.

Put I = Kerq == gn ff, an ideal of H. Since LXk ((L Xk H)/g)D - (L Xk ff)/g is

injective (Corellary 3.1.4), we have g = L Xk I by chasiitg the fo11owing diagram:

      O . LxkI .LxkH pt'X9 Lcs}k((L xk H)/g)D - o
                                       i

      O- g -->LxkH- (L&H)/g -e.
Then the claim is proved. By symmetry, we see the iinage efZ(U) ---> Zb(A (8}KA) is also

equal te Zb(AXKL). It follews Zb(LXKA) = ZZD(2`SXKL) = Zb(LXKL) iit ZD(AXKA),

proving (i).

 (ii) By the similar discussion to (i), we have that Z(ff (8}k H) and Zb(L XK L XK L)

correspond bijectively. If l e J in (i), then l C8}k H e J XK L and ff Xk I <--> L (El}K 1･

Therefore, AH(I) c IXk H+HXk f iff AJ c JXK L+L XK 1. 0n the ether haitd,

Ker((LXKL)(El)L(LXKL) - (L(E9KL/J)XL(LcDKL/J)) - JC8}L(LXKL)+(LXKL)XLJ =

JXKL+LXK J helds siitce J, LXKL, and JcDKL/J are free L-modu}es. It foliews that

I is a biideal of H iff J is a D-stable coideag ef L QK L. It is kitowit that every biideal of

a cemmutative Hopf algebra over a fiegd is a Hopf ideal (see [17, Theorei)t 1 (iv)]). M

Example 3.5.6. In Example 3.4.2, if we put K = @(Vlii), theit L/K is a PV extensieit.

The principal algebra aitd the Hepf algebra are given by A == K[cy, cymi] × K[cy, a-i] and
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H = K[gi, g2] with greupiikes gi = aX cv-i,

eL/K, 7"tZk correspond as fo11ows:

g2 = (el - e2) X (el - e2). In this case, vZSL/K,

AL/K eL/K nzH
L SpaitLL{elXe2,e2Xel,&x1-1xa} ff+:<gi-1,g2-g>

K(cv) SpanLL{cyX1-1Xor} <gi-1>

KxK SpanLL{elC8}e2,e2Cg}el} <g2-1>

K e e

Propositio][e 3.5,7. Let (L/KA,H) be aPVextension. Szmppose AL/K D M e l E 7-glZti

in Theorene 3.5.4.

 (i) (L/M, AM, H/I) is a PV extension.

 (ii) ACOH/f = {a G A 1 e(a) -ax1 GAxk I} == 24AM, and the pa-isomomphism

A Xk H => A XK A ind2Lces an isomo7zphism A cs}k ffCOH/i => A xK (A n M).

 (iii) M is the total gzeotient ntng ofAAM.

Proof. (i) We have an isemorphism L Xk ff/l -Lfly L XM AM by considering the fo11owing

diagram:

      O- LXkl -Lxk ff - Lxk H/l ---> O
              tpa tpa tp
      O . I･ (L xK /k) . LXK /a - LXM .ZSM - O.
Restrict the diagram as

    e - AM xkl -------> AM xk ff . AM xk H/l . O

             tpa tpa tpt
    O . f･ (AM x. A) - AM xKA --- AM x. AM ------> O.
Since AMXKA == (AMXKK)･ff, we have AMXMAM = AM･(AMxMAM)D threugh

the surjection AM XK A ---> AM XM AM. On the other hand, ptnduces an isomerphism

H/f )> (AM XM AM)" ef Hopf algebras.

 (ii) This follows by coitsidering the next diagra]n:

        O AxK (AnM) AxKA AxK AM xM AM
                ti
        o AxK /ICO H/i A¥([DKA /1 ¥(2}KAxic H/I

                ti
        o Axk HcoH/f Axic ff AXkHXk ff/Z.
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 (iii) Let Mt be the tetag quetient ring ef AfiM realized iR L. Theit M' is ait inter] [tediate

AS D-medule algebra ef L/K which is included in M by Corollary 3.3.8. Let Z' be the

Hopf ideal of H corresponding to M'. Since M' AA ¥) M fi A, we have ffcoH/i' ¥) ffcoH/i

by part (ii). Define the maps & : H - H CDk H/I' aitd 62 : ff - UXk ff/l giveR by

h H 2(h) h(i) Xh(2) -hX1. Theit we have a surjectien Im 62 -> Im&. Since this induces

a surjection (ff/I)+ --->> (H/I')+, we have a Hopf algebra surjectioit H/l -->> ff/I'. Th"s

l' ¥)L which implies M'¥)M. U
 Let H be a commutative Hepf algebra ever k. k is knowit that nerxital Hepf ideals l

of ff aitd Hopf subalgebras Hi c ff correspend bijectively by Hi =: ffcoH/i = coH/fu

aitd I == Hffi+ (see I25]). Let (VIA) be a right H-cemedule iR general. If we put

VL = Am'(V xk Hi) (=: VCOH/i), theit we have A(VL) ( Vl Xk ffi. IRdeed, write A(v) =

Zi vi X hi E V Cg¥)k Hi for v G VL, where hi are k-linearly independent. Theit

    22(v,)(,) x (v,)(,) x h, - 22 v, (2} (h,)(,) Q (h,)(,) G Y xic ffi xk Hi･

     i(vi) i(hi)
This impiies vi E VL. As in [27, Theerem 2.9], we have the fo11ewing propositioit.

Prgpesitioit 3.5,8. Let (L/K A, ff) be a PV extension and ffi c H a Uopf siLbalgebra.

PiLtl == HHi+ and Ai = e-i(A Xk Hi) == ACOH/i. Let Li be the total g2Lotient ring of Ai

so that Li is an intermediate AS D-modzele algebra of L/K.

 (i) (L!/K Ai, Hi) is a PV extension.

 (ii) l is the ffopf ideal ofH which corresponds to Li.

 (iii) ffi H Li gives a 1-1 correspondenee between the ffopf sQzbalgebras ef H and the

inter7?zediate AS D-module algebras which are PV extensions over K.

Proof (i) Since e(Ai) c Ai Xk Hi, we have pa(Ai Xk Hi) ) Ai XK Ai. Censider AXK A

as a right H-co]nodule by the structure xnap idXO. Then the iRclusion H c--> AXK A is

an H-comeduge map; recall that, for h = 2i ai XK bi E ff = (A XK /g)D,

             A(h) =2ai xK pa-i(i xK bi) = 2ai xK e(bi)･

                    ii
Thus ffi c AxKendi(.zg xk Hi) = .4 xK Ai. Also we have Hi = S(ffi) c tw(24 XK Ai) =

Ai XK A. Hence Hi c Ai XK Ai and so pa(Ai Xk Hi) c Ai xK Ai. This ixitplies that

pa : Axkff :> AXKA induces a D-linear isexnorphisgxt 24iXkHi :> Ai XK/ki. Therefore

Hi =: (Ai xK /ki)D and Ai XK A2 == Ai ･ ffi･

 (ii) This follews from Propositieit 3.5.7.
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  (iii) Let Li be an intermediate AS D-xnodule algebra of L/K such that (Li/K, Ai, HD

is a PV exteitsien. Since x4 XK A == A･ ff and /ki XK Ai = Ai ･ Hi, we have .gaiA XK

AiA : AiA･ ffiff. This impiies that AiA is the principal aggebra for L/K and hence

AiA = A by Propesitien 3.5.2 (iv). Thus Ai c A and Hi c ff, a Hopf sixbalgebra.

Since the pa-isemorphisxxk A2 Xk ffi ¥)t> Ai XK Ai induces a left A-module isoKnorphisx[t

AXk Hi - :> AXK Ai, we have Ai =: e-'(A xk HD. This preves (iii). a

  Finally in this sectien, we prove two important properties oit priitcipal aigebras which

are used laCer.

Prepositgon 3,5,9, Let (L/K, A, ff) be a PV extension.

  (i) A is simple as a D-mod2tle algebra.

  (ii) A eontains allprimitive iaempotents in L.

Proof (i) The fo11owing preef is essentially the same as that ef [27, Theorem 2.11].

  Let e 74 I c A be a D-stable ideal. Since L XK Z G Zb(L XK /g), there exists ait

ideal g E Z(H) such that L XK I == g･ (L XK A) by the proof ef Prepesition 3.5.5 (i).

But IL = L since L is simple and hence L XK IL = L CDK L. [rhis imp}ies thatthe

D-stable ideal of L XK L which corresponds to g is L xK L. ']rhus g = ff. rl"herefore

LXK l=H･ (L XK A) =LXK A, concluding I= A.

  (ii) Since L is a iocaiization of A, we have 9(L) c 9(A) via P -> PnA. We see

24 C ff.ee(,) A/P fi A. It remains to prove that if P 74 Q in 9(L), theit the sum

J := P fi /1 + (? nA equals A. If J Si A en the centrary, one sees fig.G/G.(.) 9f iS a

D-stable ideai iit A, and hence is zere by part (i). Since PnA is prime, there exists g

such that gJ c Pn /S, aRd so PAA c J c g-iPn /g. By the mmi]nality of gntiPA A,

we have PnA=J (== g-iPnA). Similarly we have 1 == Q fi A, and so P == q. O

              3.6, "IE"RANSLATIeN INTO AFFINE GROUP SCHEMES

  Fer an inclusion of D-xnodule algebras K c A, iet AutD,Km.ig(/k) denote the group ef

D-linear K-algebra autemerphisms ef A. Let AergtD,K-.lg(A) deitete the asseciated group

fuitctor over k = KD; it associates to each commutative k--algebra T the automerphisitt

group AutD,Kx, T-alg(/SXkT), where T is considered as a D-Knodule algebra by the trivial

actien dt =: 6(cl)t (d G D, t E T). As in [27, Appendix], we have the following:

Theorem 3,6,g. Let (L/KA,H) be a PV extension and G(L/K) = Specff the PV

grozLp scheme. Then the linear representation ip : G(L/K) - Gk(A) awising from the
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H-comod2Lle strzectzLre e : A - AXk H gives an isomomphism G(L/K) -[X> AelitD,K-alg(A)

of afiZne k-gromp schemes. in particular, G(L/K)(k) at AutD,K-alg(A) = AuEtD,K-alg(L)･

Proof Let T be a comxnutative k-algebra. For cy E G(L/K)(T) == Algk(ff,T), ipT(cy) is

given by

            ipT(or) : A xk T -Z> A xk T, a c8} t D 2a(o) Xa(a(i) )t.

                                         (a)
We easily see ipT(dv) E AutD,Kop,T-.lg(.!a Xk T). We will ceitstruct the iitverse th :

AtEtD,Km.lg(A) - G(L/K). Fer an element 6 E AutD,Kx, T-.lg(.Ak Xk T), let A5 de-

note the left A-1inear extensien ef 61A : A ---> AXic T, Consider the D-Iinear A-algebra

map
                     Ax,H -LL> Ax. .4 -tE66S Ax, T.

We see this maps the constants H inte T. Theit we have a k-algebra iitap ipT(6) :=

¥(A6opa¥)D E AIgk¥(H,T¥) : G¥(L/K¥)¥(T¥) so that ¥(idAXVT¥(6¥)¥)oe == 61A. This gives a

homomorphism th : AgitD,Km.lg(A) -> G(L/K). Indeed, for 6, or E AutD,Kxk T-alg(24 (8}k

T¥),

(or o6)(a op 1) - :7(a(o) X 1)thT(5)(a(i)) - E) a(o) X zbT(ty)(a(o)VT(5)(a(2)) (a E A)･

             (a) (a)
Oite easily sees ipT o thT == id. For dv G G(L/K)(T), we see AipT(cy) = (s Cl) cy)o (id{DO)

where 6 : AXKA - /k, the counit, aitd hence AipT(cy)IH = (sH x cif) oAH = or. rSrhis

ir¥(}plies thToipT =id. []
  Theerem 3.5,4 and Propesition 3.5.7, 3.5.8 caR be traitsgated as fo11ows.

Theorem 3.6.2. Let L/K be a PV extension of AS D-modzLle algebras.

  (i) lf M is an intermediate AS D-modzele algebra of L/K, then L/M is also a PY

extension and the PVgroiLp scheme G(L/M) is identijZed with a closed siLbgromp seheme of

G(L/K). Then intermediate ASD-7nod2Lle algebras ofL/K and closed siLbgromp sehemes

of G(L/K) eorrespond bijectively by M H G(L/M).

  (ii) Under the correspondence above, M/K is a PV extension lff G(L/K) > G(L/M).

if this is the ease, we have an isomomphism G(M/K) c t G(L/K)/G(L/M) of affZne gro?mp

schemes.

                    3.7. COPYING AND INTERLACING

 In this section, we investigate how PV extensiens change through the functer ep and W

described in Section 3.2.
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 First we easily see the following:

Lemma 3,7.a, Let Gi c G be a subgromp of finite index. Wwite @ == eG,. Let Ki C Li

be an inclzLsion of AS D(GD-modzLle algebras. CZ-hen (LYKi,Ai,H) is a PY extension

di (O(Li)/¢(Ki),@(Ai),H) is a PV extension of AS D-modzLle algebras.

Proof This follews by Propesitioit 3.2.5 and Lexnxna 3.2.6. []

Remark 3.7.2. Let K c L be an inclusion of AS D-xnodule algebras. Choese p G st(K),

and let Pi,...,R be ale these elements in 9(L) that lie ever p. Define Ki == K/ge,

Li : L/pL =: K･,.,L/l}. Then we have an inclusieit Kz c Li ef AS D(Gp)-module

algebras such that the induced inclusioit ¢G, (Ki) c eG, (LD is identified with K c L.

We can thus reduce to the case where K is a field, especially to discuss PV extensieits by

Lemma 3.7.1.

Example 3.7.3. Let Gi c G be a normal subgroup ef finke index. Let K be a D-N}odule

fie}d. Regardiitg this as a D(Gi)-]nodule algebra, define L = eG,(K). We then have the

inclusion

               KgL== e gxK xH2gxg-ix
                       gEG/G2 g
of AS D-module algebras. If KD(Gi) =: KD, then KD =: LD (==: k) by Leinifka 3.2.6 (i).

Moreover, (L/KL,H) is a PV extensieit with H == k(G/GD*, the dual ef the group

algebra k(G/Gi), In fact, we see that the elemeitts

               eg :- 2 (h CD 1) XK (hg X 1) (g E G/Gi)

                   heG/Gi
in L XK L are D-invariant, and behave as the dual basis in H of the group elegitents g

¥(E G/Gi¥) in k¥(G/Gi¥). Thus, A¥(e,¥) == :he,h-iXeh, s¥(e,¥) = ii,,, S¥(e,¥) = e,-i. The

ff-cemedule structure e : L - L Xk H is given by

                   e(h x x) = 2(hg-i x gx) xk e,,

                            g
as is seeit frein fo11owing cexnputation in L XK L:

1XK(hxx) - 2(fcs}f-ihx)xK(hx1) - 2(hg-ixgx)xK(hx1) == E)(hg-ixgx)･e,.

Propositioxg 3.7,4. Let (L/KA, H) be aPYextension ofASD-modzLle algebras. enoose

arbitrarily PE9(L), and write O === eG.. Letp =PnK (kE st(K)?. Define

                K, = K/p, A, = A/P fi A, L, = L/P.
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Then,

  (i) A. cv ep(A,).

  (ii) ¢(KD is ident21fied with the K-s2Lbaggebra rt ofL whieh is spanned overK by the

pntmitive idempotents in L.

  (iii) (Li/Ki,Ai,H == H/I) is a PV extension of D(Gp)-mod2Lle fields, where l =

HA Ker(L XK L . L XR L)y of [2e, Cerollary 1.16].

  (iv) The szLbalgebra ofH

             B= {h E ff l A(h) ff hx1 mod Hxk I} (= HCO ff)

is a separable k-algebra. We have a rtght H-eolinear B-algebra isomo7Iphism U cv BXicH.

  (v) ij Gp is nor7nal in Gp, then B c H is a Hopf szLbalgebra which is isomomphic to

k(Gp/Gp)", and we have an extension

                          k(Gp/Gp)* " H ->> H

of Hopf algebras,' of [20, Cerollary 1.17].

Proof of Proposition 9. 7.4 k?, aof, kii?. (i) This foIIews frem PrepositioR 3.5.9.

  (ii) This is easy te see.

  (iii) By Propesition 3.5.7 (i), we have a PV extensien

                   (L/k, AU) - (¢(Li)/e(Ki), ep(/gi), a)･

part (M) now foilows by Lemma 3.7.1. ll
  for the remaining (iv), (v) we preve:

Lesuaxxka 3,7,5, Let Gi c G be a szLbgroup offinite index. ewite op = eG,. LetK C /!

be an inclzesion of D--modztle algebras. Recall that K can be eonsidered as a D-7nodule

subalgebra of ¢(K) by K " op(K), x e--> :,EG/G, g X g-'X･

  (i) We have an isomo7phism of D-modzLle algebras over ¢(K),

                          AXK¢(K) -tr ¢(A),

given by a XK (g X x) HgX (g-ia)x ts E G/GO.

  (ii) We have an isomomphis7?z ofKD-algebras,

                         AD(Gi) .Z, (A x. ¢(K))D,

given by a F--> Z)g.G/G, ga XK (g X 1)･

  (iii) SzLppose e(K) c A, so that A= op(Ai), where Ai is aD(Gi)-moazele algebra. Let

N c G denote the largest normal szebgrozLp inecessarily of finite indedy that is inelzeded
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in Gi. Define F = A?(N); this is Gi-stable. enoose a system of representatives gi, . ･ ･ ,gt

(e G? for the double cosets GAG/Gi. Then,

                              t
                     AD(Gi) =, 2(2 g) (g) Fgt: 'Sigt,

                             i=! gEOi
where Oi denotes the orbit eontaining the coset giGi in the levfZ Gi-set G/Gi, and Si C Gi

denotes the szebgromp of stabiZizers of giGi.

Proof (i) It is easily seen that the map is Di-linear. IFbr h G G aitd g E G/Gi, take

g' E G/Gi, t E Gi such that hg = g't. We see that the given map is D-Einear by the

computatlon

h(a XK (g Xx)) = (ha) XK (g' Xt`c) F--> g' x (g'-iha)tx = g' x (tg-'a)tx =: h(gx (g-ia)x).

The inverse O(A) -AXK ¢(K) is given by gXa F--> (ga) XK (g X 1) (g E G/Gi).

  (ii) This fellews frein (i) and Lemma 3.2.6 (i).

  (iii) Precisely N is the kernel of the natural group herr}ei)torphisgn G - S(G/GD,

where S(G/Gi) is the permutation group of G/Gi. Hence the index [G : N] is fiitite. Wk)

see

                  /gD(Gi) .,, (/gD(N))Gi ,,. ( e gxF)Gi.

                                    gGG/Gi
An element £gEG/G, gCDag (ag E F) is Gi-invariaitt iff £g.o, gXag is so for each 1 s{ i :E{ t.

Fix a ceset giGi, and suppose that

                       9i,S2gi,･･･,slgi (sj･ E GI)

represent the Gi-erbit Oi. Then, 2},,.isjgi X aj (si = 1, aj G F) is Gi-invariaitt iff

$¥(giXaD = sjgiXa3 for every s E Gi, where sgiGi = sjgiGi, or s; is E Si. ¥([rhe "if' part

of this is shown as follews: fer each s G Gi, write ssjbgiGi == s.,(o･)giGi (2' = 1, . ･ ･ , g) where

a, is a permutatiex) ef {1, . . . ,g}. Then we have s(Z)S･=i sjgi X aj) = XS･=i ssj (gi X ai) :

:S..i Sa.(2')gi X aa,(2') = ES･..i s3gi X aj'･ In additioit, this cendition ixitplies ai : ･ ･ ･ = ai

since sj' (gi X ai) = sjgi op ai.) This is further equivalent to that ai = ･e･ == ai E FgT: 'Si9i,

smce we cempute

                     s(gi X ai) == sjgi x (g,: isJ 'sgi)ai.

                                                                 o

Proof of Proposition 3. 7.4 koj, ¥(ioj. By Remark 3.7.2 we ll}ay suppese Chat K is a field,

and so p= e, Gp = G.
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  (iv) By Preposition 3.5.7 (ii), we see that

                      .4 XkB[:Ax. 1? =Ax. O(K)

and se

¥(3.9¥) B=¥(A ¥(g>K O¥(K¥)¥)D.
By applying Lemma 3.7.5 to the present situatioit especiaNy wheit Gi == Gp, it foNows

that

                                   t
¥(3.10¥) ¥(A xK e¥(K¥)¥)D rw 2¥(2 g¥) ¥(g¥) .Fgz: iSigi,

                                  i==1 gEOi

where F = A9(N) with N = Gst(L); see Prepesition 3.3.3. Since (L?(N))G/N = k with G/N

finite, L9(N)/k is a finite Galeis extension of fields. Therefore F and heitce f7gt: iSigz now

are finite separable field exteitsioits over k. By (3.9), (3.10), B is a separable k-algebra.

  Recall that A has the natural, right R-comodu}e k-algebra strixcture A kt AXRA tl

A Xk H; in fact, A is also a left H-comodule k-algebra. We see that the map

(3.11) o: ¢(A, (2}. A,)= .4. <[il)R /1 - /S. XK .t4.

giveit by gX (a XK b) " (gXa) CDK (gXb) (g c G/Gp) is a D-liitear, two--sided H-celiitear

k-algebra splitting of AXK A - 24 XR /S. The induced oD : U ---> ff is a twe-sided

H-colinear k-algebra splitting of H --> ff. It folRows by [16, Theorem 7.2.2] that

¥(3.12¥) Bxke-H, bxx"ba"¥(x¥)
gives a right ff-colinear B-algebra iso]norphisin.

  (v) If Gp is normal in G, then Gp == N, and hence F =k in (3.10). We then

see B = (¢(K) CDK ¢(K))D. By Example 3.7.3, B c ff is a Hopf subalgebra which is

isomerphic to k(G/Gp)*. The isemorphism given in (3.12) iRduces the described extensieit

'[M]heerexer} 3.7.6, LetK c L be an incgzesion ofASD-77zodzLle algebras. Choose arbitrawily

P G st (L), and let p = P n K (E 9(K)?. Then L/K is a PV exte nsion of

   (a) Gp is normal in Gp, and

   (b) the incl?Lsion Ki := K/p c Li := L/P ofD(Gp)--modzLle fcelds is a PYextension.

The eonverse holds trzLe of the fcegd KD C= LD? of D-invariants is separably closed.
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Proof This follows by slightly medifying the last preof, as follows, We may suppose that

K is a field.

  Suppose that (Li/Ki,24i,H) is a PV extension. Defiite /k : e(Ai) with @ == @G..

Recall from Propesitieit 3.7.4 that if L/K is PV, the priitcipal aggebra gnust be A. As

was seen in the last proof, A XK A is a right H-comoduie k-algebra and the map a giveit

in (3.11) induces an fi-colinear k-algebra map oD : ft ---> (/g (s}K /g)D. Agaiit by [16,

Theorem 7.2.2], we have a D--linear and H-colinear isemerphisit}

                        AX. ep(K) x,Hc Aci}.A

ef algebras over A XK ¢(K); see (3.12). It follews that L/K is a PV exteitsioit iff the

itatural injectien

¥(3.13¥) Axk ¥(A xK O¥(K¥)¥)D ---> AxK e¥(K¥)

is surjective. If Gp is normal in G, then this is surjective since by Example 3.7.3, AXk

(@(K) XK ¢(K))D ----> A QK op(K) is already surjective.

  To preve the cenverse, we may suppese (b) by Prepesition 3.7.4 (iii), and that the inap

giveit in (3.13) is an isomorphism by the argument abeve. It foliows that

¥(3.14¥) diink¥(/g xK op¥(K¥)¥)D - [G: Gp].

If k is separably ciosed, then F = k in (3.10). The equatieit (3.14) implies that (t =)

IGpXG/Gpl :[G:Gp], or Gp is normal in G, U
  The first half of the theorein above seeifts new even in the staitdard PV theery for diC

ference equatiens; especially this theorem together with Theorem 3.8.7 ¥(and [20, Theerenk

3.1]¥) impiies that the conjecture in [20, Ch. 3] is true. As will be seeit from the fo11ewing,

the second haif does net necessarily hold true unless k is separably ceesed.

Ehra7mple 3.7.7. Let N c Gi c G be as in Lemma 3.7.5. Suppose that K is a D-it}odule

field such that KD(Gi) = KD (=: k). Let L = opG,(K). One sees fre]n the argyti]lteitt for

¥(3.14¥) that L/K is a PV extensien iff

                         dimk(L x. L)D = [G : G,].

The left-hand side equals

                              t
¥(3.15¥) 2dimk Fgz-iSigt
                             i== 1
with the motation in Lemina 3.7.5, including F == KD(N).
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 Suppose that N is trivial, and K/k is a Galois exteitsioit with Gi : Gal(K/k). If Gi c

G has a splittiitg 7r : G -> Gi ehreugh which G acts on K, theR L/K is a PV extensioit

since oRe sees that the quantity (3.15) equals £!･.,,[Gi : Si] = E)g･,,., lOd = IG : Gi]. NMD

have a non-trivial example of such PV extensieit, for which G = D. is the dihedrag greup

of erder 2n ¥) 6 and Gi is a cyclic subgroup of erder 2.

 For example, let G == D3 = {1,a,a2,T,aT,a2T} (o3 = 1, T2 = 1, oT = Ta2), Gi ==

{1,T} c G, and D = QG. Put k = @, K = @(v=lir), and consider Gi == Gai(K/k).

Then G acts oit K se that oa == a for all a E K. Take the system of representatives

{1, q ff2} for G/Gi and let L = ¢G, (K) =: 1 X K + o x K + ff2 X K. Theit L/K is a PV

extension of AS D-meduie algebras with the Hepf algebra

           ff : @Izl, 22, z3]/<zl + z2 - 1, z22 - z2, z32 + z2, z2z3 - 23>

where 6(zi) = 6ii (i = 1, 2, 3) and

                             11              A¥(xD = xiXxl+iZ2XZ2+EZ3XZ37

                                     11              A(Z2) =: Zl X Z2 + Z2 X (Zl +iZ2) - iZ3 X Z37

                             11              A(Z3) = Zi X 23 - iZ2 X X3 + X3 X (Zi - iZ2)･

Iitdeed, the Hepf algebra isomorphism H -:> (L XK L)D is given by

   xi H (1 X 1) XK (1 X 1) + (a CD i) XK (a X 1) + (ff2 x 1) xK (a2 x 1),

   z2 H (1X1)XK(aX1+o2X1)+(ax1)xK(1x1+o2x1)
          + (o2 Q 1) xK (1 x1+aX 1),

   z3 H -vi :T(1 x 1) xK (a x1- ff2 x 1) + VTi(a x 1) xK (1 x1- ff2 x 1)

          - vrri(ff2 Q 1) x. (1 X 1 - ff X 1).

The PV group scheme G(L/K) = SpecH is a twisted forin of Z/3Z (see [29, (6.4)]):

      @(vCi[) xQ ff :> @(V=ll) x @(vTi) × Q(.i rr) or @(vi=1[) (z/3z)*

               Zi F-÷ (1, O, O)

      g(z2 + vCliz3) H (O, 1, O)

     S(z2-Ax3) H (O,O,1).
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                       3.8. SPLIrTTING ALGEBRAS

  Let K be an AS D-medule aigebra and V a K#D-medule, The raRk rkK(V) of the

free K-medule V will be called the K-raitk; see Corollayy 3.3.4.

Deimitio]e 3.8,a, Let K c L be an inclusion of AS D-Knodule algebras and V a K#D-

module. We say that V splits in L/K, or L/K is a splitting algebra for V iff there is

an L#D-linear injectien L XK V g LA inte some power LA of L. K<V> denotes the

smallest AS D-module subalgebra ef L including K and f(V) for all f E gloll}K#D(Vl L).

If L = K<V> and V splits in L/K, we say L/K is a Mnimal splitting algebra for Y.

  Simi!arly to [27, Proposition 3.1], we have the fol}ewing:

Prspositioxt 3.8.2, LetK c L be an inclzesion ofASD-modzLle algebras and V a K#D-

modzele.

  (i) ifV spgits in L/K, everz/ K#D-szLbmodzele ofV splits in L/K.

  (ii) ifV sptits in L/K, it splits in K<V>/K.

  (iii) V splits in L/K ej()C the canonical L-mod2tZe map

¥(3.16¥) LxLD ffemK#D¥(V L¥) --> HexnK¥(V L¥),

has a dense images in other words, the dzeag L-modzele map

¥(3.17¥) L XK V- EIoxnLD ¥(HomK#D ¥(V L¥), L¥), aXvH [f N af ¥(v¥)]

is injective.

PToof (i) Since all K#D-medules are free K-medules, this fellews iffnmediately by the

definition.

  (ii) If V splits in L/K, then the image of L XK V - LA is in K<Y>A by the deimitien.

Thus V splits in K<V>/K.

  (iii) Recall that HomK(VL) has ait L#D-module structure by D-coitjugatioit (3.5)

and the xnap (3.16) is necessarily injective by Corellary 3.1.4.

  ("If' part.) SiRce LD is a field, HeKnK#D(Vl L) is a free LD-module. By taking a diaal

basis, we can identify EEemLD(E{emK#D(Vl L),L) with seme pewer LA of L. [Theit the

injective L-modu}e ]nap L XK V - EEomLD(HemK#D(E/3 L),L) :> LA cait be cemsidered

as an injective L#D-medule map.

  ("Only if' part.) By the definition, there is an L#D-linear injectien q : LXKY - LA

fer some pewer LA. Let {ft}iEA c HomK#D(Vl L) be the farr}ily ef K#D-meduie maps

induced by so(l (8) v) = (A(v))iffA (v E V). rTake aR arbitTary ele]x)e]it zu = Ej aj X vj (E
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L oj}K V. If the image of w by the map (3.17) is O, then we have Xj ath(vj) = O for all

iEAand so q(zv)=O (o zv=O). Thus the map (3.17) is iitjective. []

Prspositisn 3,8.3, LetK c L be an inclusion ofASD-mod2LZe algebras and V a K#D-

modzLle with finite K-rank rkK(V) =r < cx). Then

¥(3.18¥) dimLD HomK#D¥(VI L¥) :E{r
and the following are egztivalent:

   (a) V splits in L/Ky

   (b) L XLD HomK#D(VL) ij ffoxnK(S4 L)y

   (c) dimLD HomK#D(V L) = rs

   (d) There is an isomor:ehismLXK V -Z> Y as L#D-moazLless

   (e) L&D (L xK V)D -Z> LxK V;

   (f) dimLD (L xK V)D : r;

   (g) There is an injeetive L#D-7?zoel2Lle mop L XK V - L" for some integer n.

Proof rThe inequality (3.18) fo11ows since L CDLD }IexnK#D(VIL) - HemK(Y,L) is an

iitjective L#D-medule map whose cekemel is a free L--rrkodule with finite rank. Theit ((a)

o (b) <=> (c) <> (d)) fo}lows from (the proef of) Propesition 3.8.2 (iii). The eqvEivaleitce

between (d), (e), (f) is easily seeR. ((d) => (g) => (a)) is trivial. O

LemN K}a 3.8.4, Let K c L be an inclzesion of AS D-7noazele algebras, V a K#D-medzsle,

and W a K#D-s2Lbmodule ofV with finite K-rank. I[fV splits in L/K, then the restntc--

tion res. : HomK#D(S!1 L) --> HemK#D(W, L) is su73ective.

Proof Consider the following L#D-medule map:

           p : L XLD HomK#D(V L) -> llomK(W L), aX f H aflw.

Notice that Imq is a direct suxitmand of HemK(W L) as ait L-]noduie. The traitspesed

L-linear map of g is given by

               L xK W c--t, .L xK V ----> HomLD(}IomK#D(Vl L), L),

which is injective by Proposition 3.8.2 (iii). rirhus q is surjective. Since the fuitcter (-)D

is exact, we have that soD :res. is surjective. []

  We see that the functor ¢ preserves splitting algebras:
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Lemma 3.8.5. Let Gi c G, Ki c Li be as in Lemma 3.7.f. Wnte ep : @G,. Then,

Li/Ki is a (minimaip spZitting algebra for a Ki#D(Gi)-modzgle VL, ejfiC@(Li)/O(Ki) is a

¥(mininzaip splitting algebTa for the e¥(Ki¥)#D-7nodzele @¥(Vi¥).

Proof This easily follows from Proposition 3.2.4 if ene notices that

                        ¢(K,<va>) - ep(Ki)<¢(M)>

to see the equivalence eit minimality. n
  Let K c L be an inclusioft of AS D-medule algebras. Fer fiititely maRy eleitziteitts

zei, ･ ･ ･ , zLm in L, let K<zei, . . . , iLm> denote the smallest AS D-] r}oduie subalgebra in L

including K aitd zLi, ･ ･ ･ , zLm･

Defik}itaoRR 3.8,6. L/K is said te be finitelgy generated iff L is ef the form K<zei, . . . , zL.>.

This is equivalent te that Li/Ki is finitely generated, where K2 = K/PnK, Li = L/P

for an arbitrarily chesen P E st(L).

'IEihe6rem 3,8,7. Let K c L be as above. Smppose KD = LD. Then the following are

equivalent:

   (a) L/K is a finitely generated PV extension;

   (b) L/K is a Mnimal splatting algebra for a cyclic K#D-modzLle offinite K-ranky

   (c) L/K is a minMal splitting algebra for a K#D-module of finite K-ranky

   (d) L = K<xij>, where X = (xij)i,j is a GL.-primitive in Kolehin's sense [13]: X G

      GL.(L), and for everz/ d G D, (dX)X-i E M},(K) with dX = (dxij)i,j.

Proof We write k= KD (= LD).

  (a) => (b). By Lemmas 3.7.1 and 3.8.5, we iitay assume Chat K is a field. Suppese

that (L/K, A, ff) is a finitely generated PV exteitsioit. By Prepositioit 3.7.4, we have a

finitely generated PV extensien (Li/K,Ai,H) ef Knodule fields ever C := D(Cp) with

P E st (L), such that L = ¢(Li), 241 = ¢(/gi)･

  There exist those fiRitely xnany elements zLi, . . . , zL. in A which spait an ff-subco]nodule

over k, and satisfy L =: K<zei,...,ze.>; see [29, (3.3)] aRd [27, p. 501] (but, we do

net suppese here the k-linear independence ef these elexnents¥). Set an elemeRt zg =

¥(zei, . . . , zLm¥) in AM, and let V = ¥(K#D¥)zg, the cyclic K#D-submodule generated by ze.

Since L XK A t>t L Xk H, we see that L/K is a minimag splitting algebra fer AM, and

hence for V.
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  It remains te preve that the K-dimension dirrltK(Y) is finite. It sEkffices te prove that

the natural image V(P), say, ef V under the projectioit AM - AP has a finite K-

dimension, since V is naturaliy embedded into [EpEs)(L) V(P). Let gi, . . . , g$ be a systexit

ef representatives ef the right cesets GpXG. Then we have

                                 s
                            v -= 2(K#C)g,･es.

                                i= :1
Fix an i E {1, . . . , s}, and iet w = (wi, . . . , w.) E /1? deitete the natural ix) tage ef gi?£. k

sufi}ces te prove that W := (K#C)zy has a fiitite K-dimeitsioit. By renumbering we have

a k-basis, wi,..., zu. (T S m), of the k-subspace in Ai spaitned by zvi,..., zv.. There is a

rank r matrix T with entries in k, such that w = Qy'T with w' = (wi,...,wr). It suffices

te prove that W' := (K#C)w' has a finite K-dimeitsioit, since Wi t W xgnder the right

multiplication by T.

  Notice that for any g E G, gzei,...,gze. span aR H-subco]nodule in 24 siitce the co-

module structure ittap e : A-AXic H is D-linear. It theit foilows that wi,.,.,wr form

a k-basis ef an H-subcomedule in Ai. By applying Propositieit 3.1.6 for wi, ･ ･ ･ , wr E Li,

there exist r elements hz, . . . , h, E C such that (hi(wj))i,-s ait iRvertible x] tatrix. We cl&im

that (ew')(hi(wj)),:,j E Kr for a}I c E C. If it fo11ews, then Wt = Khi(w')+･ ･ ･+Kh,(zer')

and hence we have dimK W' < oo, as desired.

  Let ei : Ai . Ai Xk H be the cexxltedule structure ]]itap associated to the PV exteitsieit

Li/K. Write

                         r
                 el(zvj)=2w, opk z,]･ (z,j E ff, 2' =l,･･･,r)･

                        s=1
By applying pa-isomorphiszn Ai Xk H -:" Ai XK Ai in each side, we have

                             r
(3.19) lxK wj -- 2(zu, c8)K 1)z,j in Ai XK Ai･

                            s= 1
Hence
                            r
               1 cDK hi (wj) : 2(hi (w,) XK 1) zsj (i, 2' = 1, ･ ･ ･ , r),

                           s=1
i.e. 1 XK (hi(w,･))i,,･ = ((hi(wj))i,,` XK 1)Z with Z =: (zi,･)i,,･. Since (hi(w,･))i,,･ js invertibge,

we have

            Z = ((hi(wj)),:,j ([8}K 1)(1 XK (hi(wj))i,j) G GL,(Li XK Li)･

On the other hand, recalling (3.19) we have

                         1 XK (ew') = ((ew') opK 1)Z
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fer all c E C. Thus, by multiplying 1 XK (hi(wj)),:,j = Z-i((hi(zvj)),:,j XK 1) freKn the

left,

 1 XK (ew')(hi(w,･)),i,,l - ((ew') (El}K 1)ZZ-i((hi(zv,)),:,j XK 1) - (c?st')(hi(zuj)),:,;･ XK 1

for all c E C. This implies the claim above.

  (b) => (c). This is trivial.

  (c) => (d). Suppose that L/K is a minima} splitting algebra for Y with fiitite K--free

basis vi, . . . , v.. By Prepositioit 3.8.3 (c), we have a k--basis A, . . . ,h iit fferr)K#D(V L).

Define

(3.20) X= (xi,･ )i,,･ = (.fli (vi))i,,･, 'v =`(vi,..･, v.)t

TheR we have X G GL.(L) since there is ait L-module isomerphism

               Ln cy L xK V -X> Hemk(I{Eoll}K#D(Vl L),L) ct Ln

which is precisely the muEtiplicatien ef X (see the proof of Propositien 3.8.2, 3.8.3). If

we write avi = £℃=iq,(d)v, (ci,(d) G K) for d E D, theit we have axij -- .fli(dvi) =

2?.,i eis(d)h(vs) : X?..i qs(d)xsj. This impiies that X is GL.-prixx}itive sajtch that

¥(3.21¥) ¥(dX¥)X-iv-dv ¥(dED¥),
i.e. (dX)X-i = (cij (d))i,j G M},(K). By the definitien, we have L == K<V> = K<`z]ij>.

  (d) > (a). rlThis is shewn by modifying [27, Exaxnple 2,5c] as foElews.

  Put Y == (yij)i,j -- X-i and A = K[xij, yij]. First we shall shew that A is a D-giteduie

subalgebra of L. Define ip E }IemR(D, M},(K)) by ipd == d(X)X-' == d(X)Y (d E D).

Since ip,-' = Xg(Y) = g(g-i(X)X-i) E GL.(K) for aii g E G, ip is ceitvelutioit-invertible

in HomR(D,M},(K)) by [23, Corol}ary 9.2.4]. We see that the V E ffeinR(D,M},(L))

given by thd == Xd(Y), is the inverse of ip, and se V E HexitR(D,M},(K)). This implies

that A is a D-xnodule subalgebra ef L. Since Q(A), the tetal quotient ring ef A, is ait

AS D-moduie subalgebra ef L coRtainiitg K and xii, . . . ,x.. (recalE Cerellary 3.3.8), we

have Q(A) = K<xij> =: L.

  Put

Z == (Y xK 1)(1 xK X), Z-i - (1 xK Y)(X xK 1) G GL.(/g xK A).
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For all dE D7

         d(Z) =: E) (d( ,) (Y) cD. 1)(1 XK d(2) (X))

               (d)
             = 2(Ythd(,) xK 1)(1 XK ipd(,)X)

               (d)
             : 2(Y xK 1)(thd,,, xK 1)(1 XK ipd,,,)(1 XK X)

               (d)
             = 2(Y c8)K 1)(Vd,,, opK 1)(¢d,,, XK 1)(1 XK X)

               (d)
             : 2(Y cDK 1)(Vd(,)ipd(,) XK 1)(1 XK X)

               (d)
             - s(d)Z.
Thus Z has entries in H := (A xK A)D. Sixnilarly we have that the entries iit Z-i are

alse in ff and hence Z E GLn(H). Then,

       1 XKX= (X xK 1)Z, 1 xK Y= Z-Z(Y xK 1) G GL.(A ･ H).

This implies AxKA : A ･ ff. Therefore (L/K,A,H) is a PV extension.

Remark 3.8.8. Keep the notation just as above.

 (i) Wlrite Z : (zij), Z-i = (wij), Then AXKA =:
k[zi2t, det(xi3･)-i] = k[xio･, wi3･]. Taking pa,e as iit Prepesition 3.5.2, we see

    e(x) ,,, pa-i(1 xK X) = pti((X xK 1)Z) == pa-' (£.,(xis XK 1)Zs2

        = (llS. I,Xi$ `g'k Zsj),,j = (X Xk 1)(1 <s)k Z).

This is often written like

¥(3.22¥) e¥(X¥) :X Xk Z.
It fo11ews that the Hopf algebra structure of H is given by

            A(Z) =ZX, Z, s(Z) - I, S(Z) == Z-i,

here l deitotes the identity matrix; see [29, (3.2), Corollary].

surjectton,

            k[GLn] =:k[[Z"hj,det(CZ-hj)-'] -m>> H, [Z-Lj " 2ij,

which gives a closed embedding G(L/K) ---> GL. of affine k-greup scherr}es.

A[zi2･ , det (2i,･ )-'] and ff

)z,O

o

We have a Hepf algebra
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  (ii) Suppese that D = R[T,T-i], the group algebra ef the free abelian group of rank 1,

aRd K is a fieid; K is then an iRversive difference field. A difference systexi¥) Ty = By with

B G GL.(K) arises uniquely from a K#D-module ef K-di]neitsieit n, tegether with its

K-basis. We see froxn (3.21) that the X in (3.20) is a fuitdamental matrix l20, Defiititioit

1.4] for the difference system arising frem the V and the y above, aitd se that A is the

Picard-Vkgssiot riitg [20, Definitien 1.5] for the system. It will follew frexfi Theoren}s 3.8.7,

3.8.11 that if k (= KD) is algebraically closed, a Picard-Vessiet ring for any differeitce

system as abeve uniquely exists, and is given by such an A as abeve.

Ceroll]ayy 3.8,9. Let (L/KA,H) be a PV extension of AS D-nzodzele aZgebras. The

following aTe egiLivalent:

   (a) L/K is finitely generated;

   (b) L is the total q2Lotient wing of a finitely generated K-szebalgebra in L;

   (c) A is finitegy generated as a K-algebra;

   (d) H is finitely generated as a k-algebra.

Proof ((a) => (c) > (b) => (a)) and ((a) => (d)) follew by the preef ef Theorem 3.8.7. If

ff is a finitely generated k-aigebra, then we have an asceitding chain ceitditieit for Hepf

ideals of H. Hence we have aR ascending chain cenditioit fer iittermediate AS D-inodule

algebras of L/K, which implies (a). U
Cgroggary 3.8.ag. Let K c L be an incg2Lsion ofASD-nzodzgle aggebras szLeh that KD =

LD =: k. Then L/K is a PY extension 2ff it is a mini7nal splitting algebra for szcch a

K#D-modzLle V that is a direeted zenion, V = UA VX, of K#D-szeb77zoa?Lles VX of finite

K-rank.

Proof This follews in the same way as [27, Corellary 3.5]. We include the preof for

cenvenlence.

  ("0nly if' part.) Let (L/K, A, ff) be a PV exteitsioit. Theft H is a directed uptoit of

ffopf subalgebras which are fiititely generated k-algebras (see [29, (3.3)]). It foI}ews by

Propesitien 3.5.8 and Corollary 3.8.9 that L is a dlrected uitioit, say L = UA LA, of AS

D-module subalgebras which are finitely generated PV exteitsions over K. By Theerexn

3.8.7, each LA/K is a minimal sp}itting algebra for a K#D-x¥)kedule VX of imite K-rank.

Then L/K is a minirr}al splitting algebra for the direct skxm V == OA VX･

  ("Ig' part.) Suppese that L/K is a minimal splitting algebra for a K#D-module

V = UA VX, a directed union ef K#D-medules VX ef fuite K--rank. Siitce every VX splits
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in L/K, each LA :=: K<VX> is a xninimal splitting algebra for VX aitd is a finitely geiterated

PV extension over K by Theorem 3.8.7. By Lexnma 3.8.4, the uitien UA L"s a directed

uition ef AS D-module subalgebras of L. r]rhus UA LA is ait AS D-]nodule subalgebra of

L by Lemma 3,3.7. For every f E HonztK#D(V L), we have f(V) = UA f(va) C UA LAt

EIence L = K<V> =: UA LA. Let AA (resp. HX) be the principal algebra (resp. the Effopf

algebra) for LA/K. Then one sees that (L/K, UA AA,UA Hx) is a PV extensieit. []

Theore]Ka 3.8.11, Let K be an AS D-modiLle algebra szLeh that the field KD of D-

invariants is algebraically closed. Let V be a K#D-modzLge offinite K-rank. [ZZhen there

entsts an AS D-module algebra L ineluding K s2Lch that KD = LD, and L/K is a inec-

essarily finitely generate¥(V minimal spgitting algebra for Y. SzLch an algebra is zcnigzee mp

to D-linear isomomphism of K-aggebras.

  rlb prove this, we need the fo11owing:

Lemma 3.8.X2, LetK be an ASD-modzele algebra. LetA be a simple D-nzodzege algebra,

and let L = (?(t4) be the total qiLotient ring of A; by Lemma ge.9.6, L is ?Lnig2segy a D-

77zodzele algebrkz. ]f /g is finitely generated as a K-algebra, then LD/KD is an algebraie

extension of fields.

Proof We fellow Levelt [14, Appendix] for this preof. If x E LD, theit (A : x) = {a E

Al ax e /S} is a D-stable ideal. Since this centains a itoR-zeyo divisor, we have that

¥(:4 : x¥) = A, and se .4D =: LD.

  If A is finitely geiterated, theit itis noetherian. By Prepositien 3.3.3, we may suppose

that K is a fieid (and A is a doynain). If P c A is a maximal ideal, then the field AD is

inciuded iR the field A/P, which is algebraic ever K. rTherefore if x E /kD, i¢ is aEgebraic

over K. Let q(T) = T" + ciTn-i + ･ ･ ･ + c. denote the rr}inlmal pogynexitial ef x over K.

Since for any d G D, e(d)Tn + (dei)Tn-i + ･ ･ ･+ dc. has x as a reot, each ci E KD by the

minimality of g(T). Thusxis algebraic ever KD. M

Proof of Theorem 9.8. 11. Existence; this is proved by i¥) todifyiRg the proefof [27, Theerem

4.5], as feelows. Let vi,...,v, be a K-basis for V. Fer aE D, write

                                   r
                             dvi = E) ci,(d)v,

                                  s=1
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with ci,(d) E K. Define a D-xnodule algebra structure oit K[Xij], the polynomial K-

algebra iit r2 indeterminates, by

                               r
                      d(Xij) == 2 Gs (d)Xs3 (d E D)･

                              s==1
Since det(ci2･(g)) is invertible iit K for each g E G, the D-x)Eodule algebra structure ef

KIXij] is uniquely extended te F = KIXij,det(Xij)-'] by Leingna 3.3.6. Let l be a

maximal D--stable ideal of F, aRd put A == F/I. Siitce K is sixxtple, In K = O. Heitce A

is a itoetherian simp}e D-module algebra including K. Let L be the tetal quotient'ring

ef A; this is an AS D-medule aigebra by Prepositien 3.3.3 and Lei[tgita 3.3.6. By Lemma

3.8.12, we have LD = KD. Let xij denote the image ef Xij iit /S, aitd deime K-liRear maps

f) : V.L (]' -- 1,...,r) by fl?･(vi) == xij. r]]heit these ix)aps are in ffoyitK#D(VL), and

are linearly indepeitdeRt ever LD, since (xij)i,j E GL.(L). Therefore, L/K is a miitirnal

splittiitg algebra for V by Lemma 3.8.3 (c).

  Unigzeeness; also this proof is essentially the same as the proof giveit iit l27, Theorexn

4.6]. Let Li/K and L2/K are twe ininimal splitting aigebra for V such that L? = L9 =

KD == k. By Theerem 3.8.7, Li/K and L2/K are finitely generated PV exteitsieits.

Let Ai be the principal algebra for Li/K (i = 1,2) respectively. Put /k = /gi XK /a2

and let l be a Kxtaximal D-stable ideal of A. We see Ai,A2 are itoetheriait sixitple D-

medule algebras which are finitely generated K-algebras by the proof of Theore][k 3.8.7

¥(d¥) s> ¥(a¥), and by Prepositien 3.5.9 ¥(i¥). Thus Ai nZ = O ¥(i -- 1,2¥) and hence Ai,u4t2

are ideittified with D-module subalgebras of A/I. Let L be the total quotient ring of

A/l. By Le]¥(}][ka 3.3.6 and Propesition 3.3.3, L is an AS D-xitoduie algebra since A/f

is a noetherian simple D-module algebra. Furthergnore, since A/I is a finitely geRerated

K-algebra, we have LD = KD = k by Lemma 3.8.12. Let xi : Li c- L (i == 1,2)

deitote the induced inclusions of D-medule algebras ever K. The iRjective k-liitear maps

HomK#D(Vl Li) ---> HomK#D(Vl L) (i = 1,2) are precisely isomorphisms by Prepesitieit

3.8.3. r]Therefore f(V) c xi(LDfix2(L2) for all f E }IemK#D(Si3 L). Since Li are generated

over K by the image of all f E E[orr}K#D(V Li), we have xi(Li) == x2(L2) == K<Y> iit L･

Thus we have x2-io xi : Li X L2, a D--module algebra iseiitorphisxit over K. O

  Let K be an AS D-medule a}gebra. We have the KD-abeliait syxnmetric tenser categery

¥(K#DM, XK, K¥). Let V be an object in K#DM ef fiitite K-rank. Theit the K-liitear daxag

V* := HomK(V K) is a dual object uitder the D-conjugatioit; see (3.5). ThRxs the tensor

full subcategory K#DMfi. coRsisting ef the finite K-rank objects is rigid. Let {{V}}
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denote the abeliait, rigid tenser full subcategory of K#DM generated by V, that is, the

smallest full subcategery centaining V that is closed uitder subquotients, finite direct

sums, tensor preducts and duals. Thus an object in {{V}} is precisely a subq"etient of

some finite direct sum Wl O ･ ･ ･ O va, where each pm is the teitsor predixct ef some ceptes

of V V'; see [21, Theereiit 2.33] a}so fer comparing with the fellowiitg.

Theorem 3.8.a3, Let (L/K, A, H) be a fcnitegy generated PY extension of AS D-nzod2Lle

algebras. By Theore7n 3.8.Z we have szech a K#D-modiLle Y offinite K-rank for zvhich

L/K is a minimal splitting algebra.

  (i) Let W G {{V}}. Regard the A XK W as a right H-co77zodzele with the strzLetzLre

indzeeed by A. Then (AXK W)D is an H-subcomodzLle Mth k-dimension rkK(W).

  (ii) W H (/S xK W)D gives a k-linear equivalence

                              {{V}} R` Mfi"n

of symmetrie tensor categontes, where Mfiff. = (MfiH.,Xk,k) denotes the n'gid symmetntc

tensor categorzl offinite-dimensional right H-comodiLles; notice that this is isomorphie to

the category RepG(L/K) of the same kind, consisting offinite-dimensional linear represen-

tations of the PVgromp seheme G(L/K) = SpecH.

Proof Put Dk = DXRk, a cocoinmutative Hepf algebra over k, and ceitsider Dk as a right

H-coKnodule algebra with the trivial structure map d y--> dX 1. Regard naturally A as an

algebra in the symmetric tensor category (D,MH,Xk, k) ef right (H, D2P)-ffepf modules

¥(see l16, S8.5]¥); its objects are Dk-medules N which has a Dk-liitear, right H-cemoduge

structure pN : N - N opk ff. We then have the syKnxnetric teitser category A(D,MH)

of A--modules in D,MH, which is deneted by (A#DMff,XA,A); this is k-abelian. Defiite

k-liitear functors

                         Mrr?91r.#.MHill3t.#.M

                             at1 n2
by

               ei (U) = A Xk U; H coacts cediagonally,

               :-,(N) = ND,

               e2 (N) = NCO" (== {n GNl pN (n) =n Xk 1}),

               :'2(W) = AXK W; H ceacts on A.

We see that 0i aitd :'2 are symmetric tensor functers with the obvious teitser structures.

Mereover by [22], e2 aad :'2 are quasi-inverses ef each other, siitce A/K is ff-Galois
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by Preposition 3.5.2 (iii). Since 24D = k, :'i o ei is isemerphic te the identity fuitctor.

Suppese N E A#DMH. Siitce A is simple by Corellary 3.5.9 (i), we see froll} Cerellary

3.1.4 that the merphism in A#DMH

                      tw : ei o :-i(N) =Axk ND -N

is an injectien. Let A/' denete the full subcategery of A#DMH ceitsistiitg of those N for

which paN is an isemerphism. Since each ei(U) is in Al', ei gives ait equivalence

                                MHfsyV.

Necessarily, .IV' is closed uitder tenser preducts, aitd this is an equivaleitce ef symmetric

tenser categerles.

  Since /S XK V N A" (n = rkK(V)) in A#DM, :'2(V) = /S XK V G N. We see that ei

is exact, aitd YV is closed under subquetieitts. Therefore for (ii), it szkffices te prove that

                        i(>>' := :-, o :-,(V) = (A opK V)D

generates MfiH.. Let vi,...,v. be a K-free basis ef V, and define X, ew as in (3.20). We

see from (3.21) that the entries in dr := X-i ci}K ?7 (G (A XK V)") are D-iitvariant, and

hence ferm a k-basis in V. By (3.22), the H-comedule structeire pv : Y - V Xk U on V

is given by

                            pv (t･ij) = t･af xk tz-i,

where t denotes the traitspese ef xnatrices. This means that the ceefficient k-space of Y

is the subcoalgebra in H spanned by the entries wi-n tZ-i. Siitce wij together with the

entries S(wi,･) iit Z generate the k-algebra H (see the proof of Theorem 3.8.7 (d) } (a)),

V generates MK; see [29, Theerem 3.5]. This proves part (ii).

  gf W E {{Xi}}, then :-2(W) E A!', and se

                 dimk(A xK W)D == rkA(A XK W) = rkK(W).

This preves part (i). []
                       3.9. LIOUVILLIAN EXTENSIONS

  Finally we define the aotioit of Iiouvillian extensions &itd shew the solvability theereffit.

As is described in Introduction, we sheuld define liozLvillian grozLp sehe7nes and study hew

streng the definitien is.
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3.9.1. LiouvmaXak greup schemes,

Definitigxx 3,9,U, Let G be ait aigebraic affine group scheme over a field k.

  (1) We say G is lk-?laouvilZian (c£ [13, p. 374]) iff there exists a normal chain of clesed

subgroup schemes

¥(3.23¥) G=Ge>Gi>'''>Gr :{1}
such that each Gi-i/Gi (i = 1, . . . , r) is at least ene ef the fo11ewiRg types: fiitite etale, a

ciosed subgroup schexne of G., er a closed subgroup schexne of G.. Iit this case, we call

¥(3.23¥) a liouvillian normal ehain ¥(LNC¥).

  (2) In (3.23), if each Gi-i/Gi is merely a closed subgroup scheme ef G. er a closed

subgroup schexne of G., then we call it a restwicted lioiLvillian nomaal chain (RLNC).

  We use the following abbreviatien of some types oit greup schen}es which arise as

facter greup schexnes iit an LNC: we say G is of G.--tzLpe (resp., G.-type) iff it is a clesed

subgroup scheme of G. (resp., G.), aRd a grovEp scheme of RL-tzlpe (resp., L-tmpe) Kneans

that it is of G.-type er G.--type (resp., RL-type er finite etale).

Lem]:eea 3.9.2, (1) ij G is lioiLvillian fresp., has an kLNC?, then eve7'z/ closed szebgrozrp

scheme of G is IZozeviZlian ¥(lresp., has an RLNC?. Especially G is liozevillian opC the con-

nected component GO is liouvillian.

  (2) LetH be a normal closed szLbgroiLp seheme ofG. Then G is liozLvillian fresp., has

an RLNC? lff both H and G/ff are liozevillian ¥(?esp., have an RLN¥(?17.

  (3) .Z)gG is connected liozewillian, then G is solvable.

Proof First we take an LNC (resp., an RLNC): G == Go > Gi > ･･･ > G, = {1} ineach

proef of (1), "enly if' part ef (2), and (3).

  (1) Let H be a closed subgreup schegne ef G and put Hi := wa fi Gi (i = O, . . . , r). Then

we have ffo == ff and Hi = ffi-inGi = Ker(ua-i ----> Gi-i/Gi) for i = 1, . . . ,r. It follews

that Hi-i > Hi and Hi-i/Hi is a closed subgroup scheme ef Gi-i/Gi for i = 1,...,r.

Therefore ee =: Me D> wai > ･･･ > ff, = {1} is aR LNC (resp., ait RLNC).

  (2) ("Only iP part.) ff is liouvillian (resp., has an RLNC) by (1). Put Fi := Gi/HnGi

¥(i = O, . . . ,r¥). Since each k[Fi-i/Fi] is a Nopf subaigebra ef k[Gi-i/Gi], each Fi-i/Fi is

of L-type (resp., RL-type) for i= 1,...,r. Then G/ff =: Fo > S]i > ･･･ > F, = {1} is

an LNC (resp., an RLNC).

  ("If' part.) Let G/H = Fo E> Fi > ･･･ > F. : {1} be an LNC (resp., ait RLNC) and

(O) = lo C Ii c ･･･ c I, the cerresponding sequence of Hopf ideals of k[G/wa]. If we
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put II･ := k[G]･li (i = O,...,r), theit each ag becoxnes a Hopf ideal ef k[G]. Let Gi be

the closed subgroup scheme of G which correspends to ag. Then we have a itormal chaiit

G = Go > Gi > ･･･ > H such that Gi-i/Gi rv R-i/Fi (i = 1,...,r). Therefore G is

liouvillian (resp., has an RLNC).

  (3) We use induction en the least length r ef LNC. The case r = O is clear. Let r > O.

Since G is cennected, G/Gi is aise cennected. TheR G/Gi is of RL-type aitd hence

abeliait. Therefere 9G (see [29, (10.1)]) is a ceititected clesed subgrevap schexne ef Gi.

By (1) and its preef, 9G is connected lieuvillian and has an LNC with leitgth S r - 1.

Then 9G is solvable by inductive assumptien, concluding the proof. n

  The converse ef (3) above does not hold in general; see the fo}lowing exaKnple:

Example 3.9.3. (1) A nontrivial anisetropic torus 'T is connected solvable bait itet liokivil-

iian since both Hom([g]', G.) and Hom(T, G.) are trivial.

  (2) Let k be the prirree field of ch(k) = 2 and H =: k[x]/<x4 + x2 + x> with x primitive.

Then ff is a coxnxnutative ffopf algebra and G = Specff is abelian, fiitite etale, aitd

uitipotent. The Cartier dual G" is finite connected ef multiplicative type and then solv-

able. Since H* does net have aity nontrivial grouplike, Hont(G*, G.) is trivial. Therefore

G* is net lieuvMian.

Propositio]bl 3.9.4. Let G be a eonneeted algebraic ¥(of7Zne grozLp seheme over a field k.

Then G is lio2Lvillian bjCr G has an RLNC.

1'roof rThe "if' part is clear. Fer the "only if' part, we zise inductioR en the least leitgth r

ef LNC G = Go > Gi >･･･> G, = {1}. The case r=O is clear. Let r>e and assuine

G2 has an RLNC. By the argument in the pyeof ef Lemma 3.9.2 (3), we have G > G2

and G/G2 is abelian. Thus the proof cait be reduced to the case that G is connected

abelian by Lemma 3.9.2 (2).

  Let G be coitnected abelian and put H = k[G]. Let HU (= Hi) be the irredxgcible

compenent of H which contains 1 aitd Hg = ff/HH.+. Then we have the exact sequeitce

¥(3.24¥) H. "H ->> Hg.
Let k denote the algebraic closure ef k. It is knewn that H. Xk k is also the irreducible

component of H Xk k centaining 1. The exact sequence (3.24) splits ever k (the Jexdait

decomposition ef Gk [29, (9.5)]), and G, := Specff, is conitected of multiplicative type

since (G,)k is connected diagonalizable. Put G. := Specff. (= G/G,); this is unipetent

We see G. has an RLNC whose all facter greup schemes are ef G.-type ¥(see [29, Ch. 16,
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Ex. 5]¥). Then it suflices to shew that G, has ait RLNC. Let [g] be a xitaxixital torus ef G,.

T includes no nontrivial aRisetrepic subtorus since it is EieuvilliaR. Heitce, by [29, (7.4)],

we see 'Ig¥) is a split torus and has an RLNC. Put ff = G,/'Ig]; this is imite ceititected,

liouvi}lian, aitd of multiplicative type. Let ff > wai > ･･･ > H. == {1} be ait LNC. W)

see H/Hi is of G.-type. Since ff is finite coitnected, k[H] is a loca} algebra of fiitite

dimension. Then its quotient k[EEi] is also a local algebra ef finite dirrkeitsien and hence

ffi is cennected. By inductive assuinption, ffi has an RLNC. Therefore ff aftse has an

RLNC, concluding the proo£ O
]Pyopositio]e 3.9,5. Let k be an algebraicallgy elosed field and G an algebraie afiine gro?op

seheme over k. Then G is lio%villian 2ff GO is solvable.

Proof In fact we have proved the "only if' part in Lemma 3.9.2 evex ait arbitxary field.

Fer the "if' part, we use induction eit the least m such that 9MGO =: {1}. The case

m = O is clear. Let m > e and assume that 9GO has ait RLNC. By LenLma 3.9.2 (2), it

sufiices to show that GO/9GO has an RLNC. Thus the preof can be reduced to the case

that G is (cennected) abelian.

  Let G be abeliait and take the Jordan decempositieit G == G, × G.. G. has an RLNC.

Since k is algebraicalgy closed, G, is diagoitalizable and hence has an RLNC. Therefore

  We observe that the triangulability is certaiitly strenger than the cenditioit te have ait

RLNC, even if k is algebraically closed. For exaxnple, the group scheme in [29, Ch. 10,

Ex. 3] has an RLNC but nottriangulable.

  It is knewn that G is unipoteitt iff G has an RLNC whese all factor greijgp schemes are

ef G.-type. We say that G is G.-eomposite iff G has an RLNC whose all factor groEkp

schexites are ef G.-type. When G corresponds to the affine aggebraic group G(k) (iit the

sense of [29, (4.5)]), G is G.-composite iff G(k) is solvable and "quasicempact" in the

Kogchin's terxitinolegy, which implies that each element of G(k) is diagonalizable [12, g6,

Theorent 2]. In general it is difficult to characterize the conditien te be G.-compesite.

As seen above, net all group schexnes ef xnultiplicative type are G.-ceKnpesite. On the

other hand, non-diagonalizable group schemes can be G.-ceK]tposite; see the fo11ewing

example.

Example 3.9.6. Let k be the prime fiegd with ch(k) =p > e and take the coinKnutative

Hopf algebra ff = k[x, y]/<xP -x, yP -x-y> with x, y primitive. ORe sees G = SpecH is
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abeliait, finite etale, and unipeteitt. ffence the Cartier duai G* is ef multlpiicative type

and connected. We have the RLNC of G:

                     kIx]/<xP - x> " H ->> k[y]/<yP - y>.

By dualizing this we see that G* is G.-composite:

                           k[pap] <e H* <--< k[pap].

The grouplikes of H* is given by

      Cealgk(k,H*) cy Algle(ff,k) = {(a,b) E k2 laP -a :O, bP -a-b == O}.

Thus we have G* is net diageitalizable since p2 = dimk H* lp = #Aggk(ff,k).

3.9.2. Fgx}ite etaie exSeitsiosits. gn what follews, we always assixme that L/K is ait

extension of AS D-moduie aigebras such that LD = KD =: k.

Defi]aitieit 3.9.7, We say that L/K is a finite etale extension iff L is a separable K-

algebra in the sense of [7], i.e. L is a prejective L XK L-medule.

  For a commutative K-algebra A, let To(A) denote the unien ef all separable K-

subaggebras. If we take a Knaxixnal ideal P of L and put L' = L/P and K' = K/PnK,

then the fellowing are equivalent:

    tw L/K is a finite etale extensien.

    tw L is a finitely generated K-algebra and 7ro(L) == L.

    tw L'/K' is a finite separable field extensien.

Take a maximal ideal p ef K. We say a finite etale extensieit L/K is eopted ¥(resp.,

anticopied) iff L' = K' (resp., pL is a maximal ideal ef L); this ceRditioit is indepeitdeitt

ef the choice of P (resp., p).

Le]er}m[ka 3,9,8. Let (L/K,A,H) be a PV extension. CZ-7Len (To(A)/KTo(24),7ro(ff)) is

aZso a PV extension and hence To(A) is the intermediate AS D-77zodzLle algebra which

corresponds to G(L/K)O. Especially L/K is a fiMte etale extension 2ff G(L/K) is finite

etale.

Proof The ptsomerphism AXk H ¥)> AXK A restricts to the algebra isoKnerphism

To(A) Xk To(H) - :- ro(A) XK ro(/S). Hence e-i(24k Xk 7To(ff)) = To(A); this impkies that

¥(7re¥(A¥)/K, 7ro¥(A¥),Te¥(H¥)¥) is a PV extensioit by Proposition 3.5,8. D

Lemma 3,9.9. Let (L/KA,ff) be a fcnitely generated PV extension. [Z-7ben To(A) is

maximal among those separable K-szebaggebras of L which are D-77zod2Lge s2Lbalgebras.

73



Proof Let M be a separable K-subalgebra ef L which is & D-medule subalgebra. TheR

M is ait imer]¥(}ediate AS D-module algebra of L/K, Let I be the Hopf ideal of ff which

correspends to M. By Preposition 3.5.7 (ii), we have ACOH/i = AfiM c 7ro(A) aitd heitce

ffCO H/i c Te (H). This implies JcH･ ro (H)+ and so MC re(A). U

DefinitioKk 3,9.aO, Let {9 be a finite greup and put ff = (k{q)". Consider Dk = D cDRk

as a right H-comedule algebra with the trivial structure map d D dX 1. We say L/K is

a E4primitive extension iff

   (i) L is an algebra in the syii)x) tetric tensor categery (D,Mff, Xk, k), aitd

   (ii) L/K is a right H-Galeis extensieit.

Here D,MH denotes the category of right (H,DZP)-Hepf meduges as in the proef of

Theerem 3.8.13.

  We easily see that L/K is a e4-primitive exteitsien iff (L/K L, (k9()*) is a PV exteitsion.

If L/K is an anticepied 29Lprimitive exteRsion, theit L'/K' is a Galois extensieit of fields

in ordinary sense such that Gag(L'/K') == EZ Conversely, wheit L/K is a imite Galois

exteitsion of fields, L/K is Gal(L/K)-primitive iff every elemeitt of Gal(L/K) is D-1inear.

3.9.3. G.-primitive exSeitsiosRs axd G.-prigxkgtgve exeegksioxks,

Defig}itgoxe 3,9,Xl, (1) An x E L is calied G.-pntmitive ever K iff a(x) E K fer all

cl G D+. Iit this case, we say that K<x>/K is a G.-pnt77zitive extension.

  (2) An x G L is calied G.-pwimitive over K iff x is a iton-zere diviser ef L and

d(x)x-i G K for all d G D. In this case, we say that K<x>/K is a G.-pri7?zitive extension.

  As in [27, (2.5a), (2.5b)], we have the fo11ewing lemmas:

Nemma 3.9,12. (1) LetK<x>/K be a G.-pntmitive extension. PiLtA :K[x] andg ==

1XKx-x(8}K1 G (AXK A)D. Then (K<x>/K A,k[l]) is aPV extension with g pwi77zitive

and the PVgromp scheme G(K<x>/K) of Ga-tzLpe･

  (2) Let K<x> /K be a G. -p rMitive exte nsion. Pzet A = K [x, x-i] and g : v-i xK x E

¥(A XK 2zg¥)D. Then ¥(K<x>/K /S,k[g,g-i]¥) is a PY extension with g grozLplike and the PY

gromp scheme G(K<x>/K) of G.-tzmoe.

Proof (1) x is G.-primitive iff there exists a q E Heit tR(D, K) such that a(x) = e(d)x+

q(d) for all cl E D. Then

                      X ur ( ts .I1 ) E GL2 (K<x>)
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is GL2--prixnitive over K, In fact,

                 dX=(81dd) ,(Oa))X (dED)

Recalling the proef of Theorein 3.8.7 (d) > (a), we see

              z= (x-i (g)K i)(i (g>K x) : ( i IZ- i iM+ii ) ,

which concludes the proef.

  (2) This is equivaleitt to saying that x is GL2-primitive ever K. D

ecexRitma 3,9.X3, (1) ijl E (L QK L)D ana ofg is primitive in the L-coring LXK L, then

there exists an cc E L szech that l == 1 XK x -xXK 1 and x is G.-pri77zitive over K.

  (2) ifg e (L XK L)D and ofg is grozeplike in L c8}K L, then there exists a non-xero

divisor x E L szLch that g = x-i XKx and x is G.-priMtive over K.

Proof (1) Primitive elements in the L-cering L XK L are preeisely 1-cocycles in the

Amitsur cemplex:

  o ---> L -fE9', L (g>KL -f2i'-> L QK L opKL -i2'2-> ･･･ ,

  6o (x) = 1 xK x - x XK 1,

  6i(2xi (gK yi) = 2i <g)K xi <s)K yi - :xi (is}K i <g)K yi + 2xi cEi)K yi <2)K i, ･･･,

whose n-th cohomology is ffn(L/K, G.). But ffi(L/K G.) = O siRce L/K is a faithfulgy

fiat extensien (see [29, Ch. 17, Ex. 10]). Then g G Ker6i = Im5o and heitce there exists

serrLe x E L such that l = 1 XKx-xXK 1. Since dZ = s(d)l for all d E D, we have

¥(dx¥) QK 1 = 1 XK ¥(dx¥) fer all dE D+. This implies dx E K for agl dE D'.

  (2) Grouplike elements in L cDK L are preciseiy 1--cocycies iR the ceKnplex:

 {1} ----N> G.(L) -S29'-> G.(L xK L) -S2i'-> G.(L xK L xK L) -f2Z'-> ･ ･ e ,

 6o (x) = (1 XK x) (x xK 1)-i = xmi xK x,

 6i(2xi xK yi) = (2i xK xi xK yi)(2xi xK i xK yi)-i(2xi (g)K yi xK i), ･･･,

wbose n-th cohemolegy is H"(L/K, G.). But Hi(L/K G.) = Pic(L/K) c Pic(K) :

{1} since K is a finite product of fields. Then g E Ker 6i = Im 6o and hence there exists

some x G G.(L) such that g = xmi XK x. Since dg = E(d)g, we have

            1 X. dx = d(1 xK x) == d((x x. 1)g) = d(x)x-i x. x

for all d E D. By multiplying 1 opK x-i, we have 1 xK a(x)x-i = d(x)xmi XK 1 for ali

dG D, which ixnplies a(x)x-' GK for all dE D. D
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PropGsitioyg 3,9.X4. L/K is a G.-primitive besp., G.-primitive? extension lffL/K is

a PV extension and G(L/K) is of G.-ten)e (lresp, G.-type?.

Proof ("Only if' part,) This has been proved in Leitkxita 3.9.12.

  ("If' part.) Let k[l] (resp,, k[g,gi]) be the Effopf algebra for L/K. By Lemyita 3.9.13,

there exists the correspending x E L. rThen K<x> is aniRterit tediate AS D--xitodule aigebra

of L/K such that K<x>/K is a PV exteitsion. Since the Hopf algebras ef K<x>/K and

L/K coincide, we haveL-- K<x>. U
3.9.4. The segvabigity theerem,

DefinitioNa 3,9.15. Let F/K be a finitely generated extensioit of AS D-module algebras.

We call F/K a liozLvillian extension iff FD = KD = k and there exists a sequeitce of AS

D-xnedule algebras

(3.25) K-E)cFic･･･ca :F
such that each .Z L/4-i (i = 1,...,r) is at least eite of the fsllewiitg types: G.-primitive

extensien, G.-primitive extensien, er finite etale extensien. Iit this case, the sequence

¥(3.25¥) is called lioiLvilgian chain. Moreever, F/K is called a liozevillian extension of type

ij? (2' = 1, . . . , 10) iff F/K has a lioaJtvillian chain (3.25) such that each exteitsieit 4/4mi

¥(i = 1,...,r¥) is

   (1) Ga-primitive, G.--primitive, or finite etale,

   (2) G.-primitive er G.--primitive,

   (3) G.--primitive er finite etale,

   (4) G.-primitive er finite etale,

   (5) G.--primitive er gtprimitive for a finite solvable group EZ

   (6) G.-primitive,

   (7) G.-prixnitive,

   (8) finite etale,

   (9) 2f-primitive for a finite solvable group 9f;

  (lo) nivial (i.e. .Fh = Ei-i)7

respectively. ffere we are taking prierity of the cempatibility with P2, g24]. We ebserve

an anticopied grpri]nitive exteRsion fer a finite segvable greup Yis ideittified with a Galois

extension by radicals and is also a lieuvillian extensien of type (6).

  To shew the sogvability theorem, we Reed the foglowing Iemxna (cf. [12, g21]).
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Me]Mxma 3.9.a6. Let L/K be a finitely generated PV extension and F an AS D-modiLle

algebra inclzLding L s?Lch that FD = KD = k. 7tLke one t G F. Then L<t>/K<t> is a

finitely generated PY extension and G(L<t>/K<t>) c>t G(L/K<t> fi L).

Proof By Theorem 3.8.7, there exists a GL.-prinmitive X = (xij) E GL.(L) over K

such that L == K<xi,･>. SiRce L<t> r= K<t,xi,･>, we have that L<t>/K<t> is a finitely

geiterated PV exteitsieit. Write M = K<t> fi L, Z = (X-i XM 1)(1 XM X) = (2ij),

and Z-i = (wij). Then ff = k[xij,wij] becemes the Hepf algebra for L/M. Similarly

by writing Z' =: (X-i xK<t> 1)(1 cDK<t> X) = (z6･j), aRd (Z')-i = (w6･j), we obtain the

}IIopf aigebra H' = k[2Eo･, zvto･] for L<t>/K<t>. It foliews that there exists a surjective Hepf

algebra map q : H ->> H', xij H zt･j. This ix)tpgies that G(L<t>/K<t>) is a cgesed subgroup

schell]e of G(L/M). Let l = Kerg be the correspoitding Hepf ideai.

  q is the restriction (to H) ef the natural map Q : L XM L - L<t> XK<t> L<t>. Since the

ceideal Z ･ (L XM L) ef L XM L, which cerrespends te l, is included iit Ker¢, we have

{a E Ll a(8}Ml-IXMa E l･(LCDML)} c {a G Ll aXMI-IXMa G Ker l} = LfiK<t> = M.

This imp}ies that the iittermediate AS D-medule algebra ef L/M which correspends te f

'Ig7keoveffit 3.9.g7, Let L/K be a finitely generated PV extension. Then the following are

egzsivagent:

   (a) L/K is a giozevillian extension.

  (b) [Z-here exists a liozLvillian extension F/K szech that L c F.

   (c) G(L/K) is liozLvillian.

When k is aggebraically elosed, these are egzLivalent to:

   (d) G(L/K)O is solvable.

Proof ((a) s> (b)) This is clear.

  ((b) => (c)) Take a lioxtvillian chain ef F/K:

                       K- E] c Et c･･･ca- F.

We use indvtctieR eit r. rThe case r = O is obvieus. Let r > O. Since there are finite

ti,...,t, E F such that Fi =: K<ti,.,.,t,>, we have that L<ti,,..,t,>/Fi is a fipitegy

generated PV extensien and G(L<ti,...,t,>/Ei) cv G(L/Fi n L) by Lerr)xna 3.9.16. By

the iitductive assu](}ptieit, G(L/Fi n L) is gieuvilliait.
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  Let A be the principal algebra for L/K, If Ei/K is a finite etale extension, then

Fi nL C 7ro(A) by Lemma 3,9.9, Hence we have G(L/Fi nL) D G(L/7ro(/l)) =: G(L/K)O

¥(Lemma 3,9,8¥), Thus, G¥(L/Fl nL¥)O = G}¥(L/K¥)O and hence ¥(c¥) holds by Lemma 3.9.2

¥(i¥).

  If Et/K is a G.-primitive extension, then there exists a G.-primitive x E A such that

Fi = K<x¥), Write Li = Fi nL. One sees that Li/K is alse a G.-primitive extension

¥(see [27, ¥(2.9a¥)]¥). Let Ai be the principal algebra for Li/K, By applying Lemma 3.9,8

to Li/K, we have

            G(L/K) > G(L/To(Ai)) > G(L/Li))

            G(L/K)/G(L/To(Ai)) == G(To(Ai)/K) : finite etale,

            G(L/ro(Ai))/G(L/Li) == G(Li/7ro(Ai)) =- G(Li/K)O.

Therefore G(L/K) is liouvillian.

  If .FU/K is a G.-primitive extension, then there exists a G.-primitive x G Fi such that

FU =: K<x>. Write Li =: Fl nL, One sees that Li/K is also a G.-primitive extension

¥(see [27, ¥(2,9b¥)]¥). Then we obtain ¥(c¥) in the same way to the above.

  ((c) => (a)) Let G(L/K) = Go > Gi > ･･･ > G, =: {1} be an LNC and Li (i == O,,,.,T)

the intermediate AS D-module algebra which corresponds to Gi. Then by Lemma 3,9.8

and by Proposition 3.9.l4, K == Lo c Li c ･･e c L, = L is a liouvillian chain. M

  By Proposition 3,9.4, we have the following.

Coxoigary 3.9.18, Let L/K be a finitely generated PV extension with the principal al-

gebra A. ijL/K is a liouvillian extension, then there exists a liouvillian chain

                 K= Lo C To(A) =: Li C L2 C,,,C Lr =:L

siLch that each Li/Li-i a = 2,,,,,r? is G.-primitive or G.-primitive extension.

Coro]1ary 3,9,19, LetL/K be afinitely generated PV extension. Then L/K is anclnded

in? a laozLvillian extension of type ij? ij =: 1,,･,,10? lff

  (1) G(L/K) is liouvillian,

  (2) G(L/K) has an RLNC,

  (3) G(L/K)O is G.-composite,

  (4) G(L/K)O is zLnipotent,

  (5) roG(L/K) is finite eonstant and solvable, and G(L/K)O is 7Lnipotent,

  (6) G(L/K) is G.-deomposite,

  (7) G(L/K) is zLnipotent,
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   (8) G(L/K) is finite etaZe,

   (9) G(L/K) is fcnite constant and solvabZe,

  (10) G(L/K) is imvial,

respectiveZy.

  This corollary can become more explicit when K is a perfect field and k is algebraically

closed. In such a case, if (L/K, A, H) is a finitely generated PV extension, then A XK A

is reduced (see [29, Ch. 6, Ex. 2]), and so H is reduced, Thus G(L/K) corresponds to

the affine algebraic group G(L/K)(k) = AutD,K-.lg(L) in the sense of [29, (4,5)], There

we can do the fo11owing replacement on the condition about G(L/K):

   (1) G(L/K)O is solvable (o G(L/K)O is triangulable),

   (2) G(L/K) is solvable,

   (3) G(L/K)O is diagonalizable,

   (4) G(L/K)O is unipotent,

   (5) G(L/K) is solvable and G(L/K)O is unipotent,

   (6) G(L/K)(k) is solvable and quasicompact (in the Kolchin's sense),

   (7) G(L/K) is unipotent,

   (8) G(L/K) is finite constant,

   (9) G(L/K) is finite constant and solvable,

  (10) G(L/K) is trivial.
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