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Chapter 0

Introduction.

In the study of non-commutative ring theory, there are a number of important examples of rings
consisting of certain matrices over commutative rings. In this dissertation, we study tiled orders
over a discrete valuation ring and Frobenius full matrix algebras with structure systems over a field,
which we consider as two kinds of such important examples of non-commutative ring theory.

It is well-known that the ring of all algebraic integers in an algebraic number field is a Dedekind
domain, that is, a Noetherian integral domain such that all ideals of it are invertible (or projective).
Let R be a Dedekind domain with a quotient field K. As a generalization of that fact, the mazimal
R-orderin a finite dimensional separable K-algebra A is investigated, that is, the ring A of all R-
integral elements in A, which is a Noetherian R-order in A having global dimension gl.dim A = 1,
that is, every one-sided ideal is projective (see [2]). While a commutative integral domain R is a
Dedekind domain if and only if gl.dim R = 1, in the non-commutative situation, however, there are
non-maximal R-orders I' in A having gl.dimI' = 1, which are called hereditary orders studied by
Harada [10]. (See [15] for related facts.)

In [4], answering a question of Kaplansky, for each positive integer n, Fields found an example
of orders of global dimension n in a matrix ring over the quotient field of a discrete valuation ring.
The study of such examples of orders of finite global dimension was taken over by Tarsy [20], [21],
and in [20], he called such matrix orders tiled orders. (See Jategaonkar [12], [13], Roggenkamp
[16], [17], Wiedemann and Roggenkamp [22], de la Pefia and A. Raggi-Cardenas [3], Kirkman
and Kuzmanovich [14], Fujita [5], Rump [19], Jansen and Odenthal [11], Fujita [6] and Fujita and
Oshima [8] for subsequent study on tiled orders of finite global dimension. )

Let D be a discrete valuation ring with a unique maximal ideal 7D and a quotient filed K. Let

n > 2 be an integer, and let {\;; | 1 < 4,57 < n} be a set of n X n integers satisfying
Aii =0, and A+ /\kj > )\ij

for all 4,7,k (1 <4,j,k <n). Then A = (7% D) is a semiperfect, Noetherian D-subalgebra of the
full n X n matrix algebra M, (K). We call such A a tiled D-order in M, (K). Since any semiperfect
ring is Morita equivalent to a basic one, we always assume that a tiled D-order is basic, which is

equivalent to the condition A;; + Aj; > 0 for all 4,5 (1 <¢,5 < n) with ¢ # j.



Following Fujita [6], we recall some facts on tiled orders of finite global dimension. In his study
of global dimension of orders [20], Tarsy posed four conjectures. Three of them were solved soon
by Tarsy [21] and Jategaonkar [12], [13], and it was remained open for about twenty years that if
A is a D-order of finite global dimension in M, (K), then gl.dim A < n — 1, which was the Tarsy’s
conjecture. It was proved by Jategaonkar [12] that for a fixed integer n > 2, there are, up to
conjugate, only finitely many tiled D-orders of finite global dimension in M, (K), so that there is a
upper bound of finite global dimension, but it is not known what is the maximum. As a strategy to
prove Tarsy’s conjecture for tiled D-orders, Jategaonkar conjectured that if A is a tiled D-order of
finite global dimension, there exists a primitive idempotent e € A such that eA(1 —e€) or (1 —e)Ae
is (1 —e)A(1 — e)-projective. In some special cases, both conjectures were settled by some authors.
However, Kirkman and Kuzmanovich [14] found a counterexample to Jategaonkar’s conjecture. A
counterexample to Tarsy’s conjecture was also found by Fujita [5], by providing a tiled D-order
in M, (K) of global dimension n for all n > 6. It had been expected to find tiled D-orders with
finite global dimension larger than n. In [19], Rump found a tiled D-order in Mg(K) of global
dimension 9. In [11], Jansen and Odenthal found a series of tiled D-orders having global dimension
2N — 8 in My (K), for every even integer N > 8. Both examples were modifications of Fujita’s
counterexample to Tarsy’s conjecture, and their computations of the global dimension were too
complicated. In [6], Fujita improved their examples and the computation by using neat primitive
idempotents (see [1] for neat idempotents), and he posed a question “Does any tiled D-order of
finite global dimension have a neat primitive idempotent?”, which can be considered as an improved
version of Jategaonkar’s conjecture disproved by Kirkman and Kuzmanovich.

Recently, in [8], Fujita and Oshima found a counterexample to the above question. Namely,
for an arbitrary prime p, they constructed a tiled D-order A in M, (K) such that gl.dim A = 5 if
characteristic char F' # p and gl.dim A = oo if char F = p, where F = D/nD and n = 4p + 5.
Moreover, they proved that if char F' # p, then A has no neat primitive idempotent. In order to
compute the global dimension of A, they used the theory of Rump [19], where the computation is
reduced to the case of a formal power series ring D = F[[t]] and executed in the category of finite
dimensional -representations over F' where () is the o-poset determined by the exponent matrix
of A. Since their computation is executed via the category of §)-representations, it was not known
what is an actual minimal projective resolution of the Jacobson radical of A.

In Chapter 1 of this dissertation, we construct certain exact sequences of modules by using
finite submodules of a given module, and as an application of such an exact sequence, we compute
directly a minimal projective resolution of the Jacobson radical of the tiled D-order A given by
Fujita and Oshima.

In Chapter 2, we study Frobenius full matrix algebras with structure systems. The class of
Gorenstein D-orders is important and studied by some authors. (See [18] and its references.) In
the study of D-orders, it is standard to reduce homological properties of D-orders A to those of
the factor F-algebras A/mA. For example, Gorenstein D-orders can be reduced to quasi-Frobenius
F-algebras. As another example, we recall a theorem of Jategaonkar. It is proved in [12] that there

are, up to conjugate, only finitely many tiled D-orders in M, (K) having finite global dimension for



a fixed integer n > 2. The key idea of its proof comes from a fact concerning the structure of the
factor F-algebras A/wA of a tiled D-order A. However, the study of such factor algebras is very
limited, while its importance is well-recognized by many authors. (See [9] for related informations.)
In [7], Fujita introduced A-full matrix algebras over a field F' to provide a framework for such
factor algebras A/mA of tiled D-orders A.
Let F be a field and n > 2 an integer. Let A = (A41,...,A,) be an n-tuple of n X n matrices
Ap = (agf)) € M, (F) (1 <k < n) satisfying the following three conditions.

(A1) agf)agg) = aglk)ag) for all 1<14,7,k,1<mn.
(A2) ag;) = ag) =1 forall 1<4,j,k<n.
(A3) agc) =0 whenever ¢ #k, 1 <i,k < n.

Let A = ®1<ij<n Fu;; be an F-vector space with a basis {u;; | 1 < ¢,7 < n}, and define the

multiplication in A by
(k) : _
Uil = ay wij i k=1
! 0 otherwise.

Then A is an associative, connected basic F-algebra, which is called a full matric F-algebra with a

structure system A or an A-full matriz F-algebra.

Let A = (7Y D) be a basic tiled D-order in M, (K), and define

a(k) _ 1 if Mg+ )\kj = \ij
0 if X+ Akj > Ay

for all 1 < 4,5,k < n. Then A = (A44,...,A,) where A} = (agf)) € M,(F) (1 <k<mn)isa
structure system and the A-full matrix F-algebra A = ®1§i,j§n Fu;j is isomorphic to the factor
F-algebra A/mA.

If A is a Gorenstein tiled D-order, then it is well-known that A/7A is a Frobenius A-full matrix
F-algebra. In Section 2.1, we study the converse problem of that fact and prove the following
theorem for A-full matrix algebras with (0,1)-structure systems A, that is, every entry of A is 0 or
1.

THEOREM. (1) For every integer integer 2 < n <7, every Frobenius full n xn matriz F -algebra
has corresponding Gorenstein tiled D-orders.
(2) For every integer n > 8, there is a Frobenius full n x n matriz F-algebra having no

corresponding Gorenstein tiled D-orders.

The results of Section 2.1 are obtained by joint work with H. Fujita.

In Section 2.2, we study A-full matrix algebras whose structure systems A are not necessarily
(0,1)-structure systems. Since we are able to treat the class of full matrix algebras with structure
systems by elementary algebraic geometry technique, we introduce minor degenerations of the full
matrix algebras. It turns out that, for a suitable choice of structure matrix ¢ = [q(l), . ,q(”)], the

algebra M} (F) is a degeneration of the full matrix algebra M, (F). So, we can consider the class of



full matrix algebras with structure systems as a subclass of minor degenerations of the full matrix
algebra M, (F'), that is, basic minor degenerations of M, (F) are full matrix algebras with structure
systems. In this section, among other things, we characterize Frobenius, basic minor degenerations

of M, (F') and we give the following example.

EXAMPLE. Assume that F is an infinite field. For each m > 4, there is a one-parameter
F-algebraic family {C,},cp~ of basic Frobenius F-algebras of the form C, = MY (F) such that
o =(1,2,...,n) is the Nakayama permutation of C;, and C,, 2 C,, if p # v and p # v 1

The results of Section 2.2 are obtained by joint work with H. Fujita and D. Simson.
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Chapter 1

An elementary exact sequence of
modules with an application to tiled

orders.

Let R be a ring with an identity, and let M be a right R-module. For R-submodules X,Y of M,

there is an elementary short exact sequence
0—XNY -LXaY -5X+Y —0

where n(t) = (¢t,—t) for t € X NY and p(z,y) =z +y for (z,y) € X &Y. In this chapter, we
extend the elementary short exact sequence to the case of more than two R-submodules of a given
right R-module, and as an application, we compute a minimal projective resolution of Jacobson
radical of a tiled order given by Fujita and Oshima [5], which provides a tiled order of finite global

dimension without neat primitive idempotent, see [1], [4] for neat primitive idempotents, [3], [4],
[6], [7], [8], [10], [13] for global dimension of tiled orders, and e.g. [11], [12], [14] ,[15] for further

facts on tiled orders.

1.1 An elementary exact sequence of modules.

In [6], Jansen and Odenthal found a series of tiled orders having large global dimension. In order
to compute global dimension of their tiled orders, they used a short exact sequence constructed

with three irreducible lattices. We begin by clarifying the short exact sequence used in [6].

ProrosiTiON 1.1.1. Let X,Y,Z be R-submodules of a right R-module M. Let
XnZ)e¥nX)oZnY) b Xevyez 5 X+Y+2Z—0
be a sequence of R-modules and R-homomorphisms defined by
p(x,y,2z) =x+y+z, (o, Yo, 20) = (zo — Yo, Yo — 20, 20 — o)

for all (z,y,z) e X ®Y & Z and (x0,90,20) € (X NZ)d (Y NX)B(ZNY). Then



(1) Keryy 2XNYNZ, Imy C Kerp and ¢ is surjective.

(2)  The following are equivalent.

(a) Imy =Kerp
(b) X+Y)NZCcX+(YNnZ)
(¢c) For any (z,y,z) € Ker g, there exists g € X N Z such that zg —xz €Y.

(3) If two of X,Y,Z are comparable by the relation of inclusion, then Imvy = Ker ¢.

(4) Suppose that XNYNZ =Y NZ. ThenImyp = (XNZ)®d (Y NX). If the equivalent conditions

of (2) hold, then there is a short exact sequence

0—(XNZ)a(YNX) —XaYaZ-S5X+Y+Z—0.

Proof. (1) Straightforward.

(2) (a)=(b) Take an arbitrary ¢ +y = z € (X +Y)NZ where z € X,y € Y,z € Z.
Then (z,y,—z) € Kerp. Hence (z,y,—2) = (2o — Yo, Yo — 20, 20 — xo) for some (g, o, 20) €
(XNZ)e(¥YNX)®(ZNY). Thenz=xz9—20 € X + (Y N Z).

(b)=(c) Let (z,y,2) € Kerp. Then z = -z —y € (X +Y)NZ C X +(Y N Z). Hence
z= —xg—+ zp for some xyg € X and z e Y NZ. Hence xy —x =29+ y+z=y+2z9 €Y.

(c)=(a) Take an arbitrary (z,y,z) € Ker ¢. Then we have 29 € XNZ such that xgo—x € Y. Put
yo=x9—x and zg =yo—y. Thenyy=axp—x e YNX and zp = yo—y = yo+x+z=x9+2z € ZNY.
Hence (z,y, z) = ¥(xg, Yo, 20) € Im .

3) X CY,then (X +Y)NZ=YNZCX+XNZ) Y CX,then (X+Y)NZ =
XNZCX+(YNZ). IfX CZ, then ( X+Y)NZ =X+ (Y NZ) by the modular law. If Z C X,
then (X +Y)NZCZCX+(YNZ) Y CZ then (X+Y)NZCX+Y=X+(YNZ).If
ZCY,then (X+Y)NZCZCX+ (Y N2Z).

(4) Since XNY NZ =2ZNY, we can define an R-isomorphism

0:(XnZ)ys Y NnX)a(ZnY)->(XnZ)a (Y NX)d(ZNY)

by 6(z,y,z) = (x — z,y — z,2) for all (z,y,z) € (X NZ)d (Y NX)d(ZNY). Then we have a

commutative diagram with exact rows

0 — XNYNnZ 25 (XnZ)a (¥ NX)®(ZNY)

| ls

0 —— XNYNZ —— (XnZ)e (¥ nX)®(ZNY)



where 7(t) = (¢,t,t) and i(t) = (0,0,¢) for allt € X NY N Z. Hence we have
Im =2 Coker n 2 Coker i 2 (X NZ)®d (Y NX).

O

In what follows, D is a discrete valuation ring with a unique maximal ideal 7D and a quotient
field K.

Let n > 2 be an integer, and let {)\;; | 1 < i,j < n} be a set of n? integers satisfying \;; =
0, Aik+tAgj = Ajj foralll < 4,5,k <n. Then A = (73 D) is a semiperfect Noetherian D-subalgebra
of the full n x n matrix algebra M, (K), and A is a D-order in M, (K), see [9]. Following [7] and
[13], we call such a D-order A a tiled D-orderin M, (K), see also Chapter 13 of [11]. We note that
A is basic if and only if A;; + A;; > 0 forall 1 <4,57 <n with 7 # j.

Let V= K" = (K,...,K) be a simple right M,,(K)-module. Let ay,...,a, be integers satisfy-
ing a;+ Ajj > aj foralll1 <i,j <n. Then L = (z'D,...,7* D) is a right A-submodule of V. We
call L an irreducible right A-lattice in V, see [10] and [15].

The following fact is well known, see Lemmas 1.9, 1.10 of [6].

COROLLARY 1.1.2. Let A = (73 D) be a basic tiled D-order in M,(K), and let X,Y,Z be
wrreducible right A-lattices in V. = K™. Then the following statements hold.

(1) There is an exact sequence
0-XNYNZhXnZ)e¥nX)eZnY) b XeveZ 5 X+Y+2Z -0

of right A-lattices.

(2) Suppose that XNY NZ =Y NZ. Then there is a short exact sequence
0—-(XnZ)e(YnNnX)-XaY®Z->X+Y+Z -0

of right A-lattices.

Proof. (1) By Proposition 1.1.1 (1), it is sufficient to show that Imv¢ = Kery. Put X =
(X1,...,. X)), Y=M,...,Y,), Z=(Z1,...,Z,) where X;,Y;, Z; (1 < j <n) are nonzero ideals
of D. Let (x,y,z) € Kery, and let 2 = (z;),y = (yj),z = (z;) where z; € X;,y; € Y},2; € Z;
for j = 1,...,n. Then z; +y; + z; = 0, for each 1 < j < n. Since D is a discrete valuation
ring, X;,Y;,Z; can be linearly ordered by inclusion, for each 1 < j < n. Hence by (3) and (2) in
Proposition 1.1.1, we can find zg = (zo;) € X N Z such that 2o — 2 € Y. Hence it follows from
Proposition 1.1.1 (2) that Im ¢ = Ker ¢.

(2) This follows from (1) and Proposition 1.1.1 (4). O

10



LeEMMA 1.1.3. Let X,Y,Z be nonzero ideals of a principal ideal domain. Then (X +Y)NZ C
X+ n2Zz).

Proof. Since each nonzero ideal of a principal ideal domain is generated by a product of prime
elements, it is sufficient to show that max{min{«, 3},7} > min{a,max{3,v}}, for any integers

a,B,7v > 0. If a < 3 < v, then max{min{«a,8},v} = v > @ = min{a, max{5,v}}. Similarly, we

can check the remaining cases. O

REMARK 1.1.4. (1) The converse of Proposition 1.1.1 (3) does not hold in general. By Lemma
1.1.3 , we can find such examples among ideals of principal ideal domains. In fact, for example, let
R = Z be the ring of integers, and let X = 27, Y = 3Z, Z = 57Z. Then (2Z + 3Z) N 5Z = 57 C
7. =27+ (37Z.N 57), but any two of 27Z, 37, 57 are not comparable by the relation of inclusion.

(2) The sequence of Proposition 1.1.1 is not exact in general. In fact, let R = Z[t] be the
polynomial ring over Z in the indeterminate ¢, and let X = 2R, ¥ = tR, Z = (2 +t)R. Then
(X4+Y)NZg X4+ (Y NZ), because 2+t ¢ X + (Y NZ).

Next, we explore analogous elementary exact sequences constructed by using more than three

submodules of a given module.

ProprosITION 1.1.5. Let R be an arbitrary ring and let X1,..., X, = Xg be R-submodules of a
right R-module M, where m > 3. Let

é(XiﬂXzel) <, éXi = iXiHO
=1 =1 =1

be a sequence of R-modules and R-homomorphisms defined by
m
D1, Ym) = U1 = Y25 ooy Ymod — Yy Ym — Y1) And 9(T1,. ., Tm) = DT
=1

for (y1,...,ym) € P ((XiN X;_1) and (z1,...,2m) € P~ X;. Then
(1) Kery 2N, X;, Imy C Kery and ¢ is surjective.
(2) For any fized 1 < a < m, the following two statements are equivalent.

(a) Imvy =Kergp
(b) For any (x;) € Ker p, there exists y € X, N X, 1 such that y — (xg + -+ @) € X1

for allt (a <t < a+m — 3) where the indices are counted in modulo m.

(3) Suppose that there exist 1 < a,b < m such that X, C X; C X} for all1 <i < m. Then the

following two statements are equivalent.

(a) Imy =Kergp

11



(b) Xq CXg11 C--CXp1CXpandX, CXy 1C--+C Xpy1 CXyp, where the indices

are counted in modulo m.

Proof. (1) Straightforward.

(2) We can assume that a = 1 by shifting the indices.

(a)=(b) Let (z;) € Kerp. Since Kery = Imv¢, &; = y; — yi+1 (1 < i < m), for some
(yi) € B (X; N X;_1), where ymi1 :=y1. Put y : =31 € X1 N X,,. Then, fort=1,...,m -2,

t
y—(@+-+a) = yi— > (¥ —vit1)
=1
= Y1 € Xep1 N Xy C Xy

(b)=(a) Let (x;) € Ker ¢. Then, by (a), there exists y € X1NX,, such that y— (z1+---+x;) €
X1, for 1 <t <m-—-2. Put yy :=yand y; ;= y— (x1 + -+ x;_1), for 2 < i < m. Then
yu=y=y—(r1+-+2p) =yYn—Tm,andfor2 <i<m,y; =y —(x1+---+2i_1) = Yic1 —Ti_1.
Hence ; = y;—y;+1, for 1 < ¢ < m, where Y1 = y1. Since y; € X1NX,, and Y1 = yr— 21 € Xpq1
for1<t<m—2,theny; € X;NX;_1forl <i:<m—1,and ¢4 = Ym—-1— Tm—_1 € Ximm_1 N Xy,
because ¥y, = y1 + m € Xin. Hence (x;) = ¢ (y;) € Im .

(3) Without loss of generality, we can assume that a = 1.

(=) Let 2 <r < b and take an arbitrary * € X,. Then, for 1 < i < m, we set

—x ifi=r
T; = z ifi=b

0 otherwise.

Then (z;) € Ker ¢. It follows from (2) that there exists y € X3 N X,,, such that y +z =y — (21 +
oo+ @,) € X,11. Hence z € X, 41, because y € X7 C X, 11 and we get X, C X, ;. Therefore
XiCXoC- CXp_1 CXp.

Let b < s < m and take an arbitrary x € X;. Then for 1 <7 < m, set

z ifi=s
T; = —x ifi=0b

0 otherwise.

Then (z;) € Ker ¢. It follows from (2) that there exists y € X; N X, such that y + = =y + (2, +
et ag)=y—(x14+ -+ @s—1) € Xs—1. Hence X, C X1 forall b < s < m.

(<) Let (z;) € Kerp. Thenputy:=a; € X; = X1NX,,. H1<t<b, theny—(z1+--+z;) =
—(xo+--+a) € Xy CXpy1. b <t <m—2,theny—(z1+--+x¢) = y+(xm~+---+x111) € Xpy1.
Hence it follows from (2) that Ker ¢ = Im 1. O

REMARK 1.1.6. We notice that the sequence of Proposition 1.1.5 is not always exact, even if

X1,Xo,...,X,, can be linearly ordered by inclusion. In fact, for example, consider the submodules
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X, =42 C X3 =27 C Xo = X4 =Z of M = 7Z. Then it follows from Proposition 1.1.5 (3) that

the sequence
4

4 4
@(XimXi—l) -, @Xi e ZXZ'—W)

=1 =1 =1
is not exact. However, if we change the indices of Xy and X3, then Xy =47 C Xo = 2Z C X3 =

X4 = 7 and the sequence is exact.
The following is a generalization of Corollary 1.1.2.

COROLLARY 1.1.7. Let A = (7%D) be a basic tiled D-order in M,(K), and let
Ly = (L11,--.,L1n)y. .-y Ly = (Lip1,-- -y Linn) = Lo be irreducible right A-lattices in V = K™,
where m > 3. For each 1 < j < n, let aj,b; be integers in {1,...,m} such that Ly, ; C Ly C Ly, ;
for all1 <t <m. Let

é(LimLi—l) -, énaLi L iLi_)O
=1 =1 =1

be a sequence of A-lattices and A-homomorphisms defined by
m
YY1, Ym) = W1 = Y25 Ymot = YmoYm — Y1) and 9(T1,. ., Tm) = Y T
i=1

for (y1,...,ym) € B (LiNL;i1) and (z1,...,2m) € Di- Li-
(1) The following statements are equivalent.

(a) Imvy = Ker .

(b) Foreachl1l <j<m, L;; CLit1; for alli € {1,...,m} with a; < i < b;( mod m) and
Li; CLi1j foralli€ {1,...,m} with a;j > ¢ > b; (mod m).

(2) Suppose that the equivalent conditions of (1) hold. Then there is an exact sequence

m m m m
0—>mLi—>®(LiﬁLi,1) i) @Li AN ZLZ‘—>0
i=1 i=1 i=1 i=1
of right A-lattices. In particular, if (\"; Li = Liyy—1N Ly, then there is a short exact sequence
m—1 m m
0 — @(Li NLi_1) — @Li — ZL,- —0
=1 =1 =1
of right A-lattices.

Proof. Apply Proposition 1.1.5 and the arguments used in the proof of Corollary 1.1.2. [

REMARK 1.1.8. The condition (b) always holds, if m = 3.
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1.2 An application to tiled orders.

As an application of our elementary exact sequence, we compute a minimal projective resolution
of the Jacobson radical of a tiled D-order given by Fujita and Oshima [5].

We use the following notations. Let
A = (7" D)

be a basic tiled D-order in M, (K), and let J(A) be the Jacobson radical of A. For each 1 < i < mn,
let e; € M,,(K) be the matrix whose (¢,%)-entry is 1 and the other entries are 0. For each 1 <i < n,
let P; be the irreducible right A-lattice

P, = (1D, ..., ntn D)

in V = K", and let
Ji = P J(A) ~e; J(A)

be the radical of P; ~ e;A for 1 < ¢ < n. Moreover we put
S; = P/ J;

for each 1 < ¢ < n. Then P; (1 < i < n) are the indecomposable projective right A-modules, and
S; (1 < ¢ <n) are the simple right A-modules.

EXAMPLE 1.2.1. We compute minimal projective resolutions of J; (1 < i < 13) of the following
basic (0,1)-tiled D-order A in My3(K) where @ = 7D, see [15] and Chapter 13 of [11].

(D # DD« x DD D DD D)
=~ D - D D D D w ~ D D D D
@ = D  w D D D D D D D D
®* w D m = = m w D w D =«
®* w - ®« D ®m = = w w D w®™ D
®* w w w ™ D ® = w D D w =«
A=l « « « = D nm = = w D D
®r #«  ® w ® w D w w D D =«
®* w w w ™ ® ®w ® D D w® w®™ D
T * * * ®w® ™ w® ®D ™ 7T 7w
*T * w ®# ™ ®w ® ® ®w ® D ®w w
T w w ®* ® ® ® ® ® ® ® D =™
\1r7r7r7r7r7r7r1r7r7r7r7rD/

Let F := D/m be the residue field, and let A be the F-algebra A/Mjs(x). It follows from [2]
that the link graph of A is obtained from the Gabriel quiver Q(A) of A by adding the arrows from
non-domains in Q(A) to non-ranges in Q(A) to the set of allows of Q(A). Note that Q(A) is the

following quiver
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10 11 12 13
We check that

(1) If charF # 2, then gl.dim A = 5 and A has no neat primitive idempotent.
(2) If charF = 2, then gl.dim A = co.
Step 1. Since Jy/J1J(A) = Sy & S5 @ Ss & Sy, then J; has the projective cover
©0:Py® Ps® Ps® Py —» Jy, (x4,x5,x8,%9) — T4 + T5 + T + T9.

Note also that the modules Py, Pg, Ps, Py satisfy the condition (b) of Corollary 1.1.7 in that order.
Moreover, note that PN Py = P19, PsNPy = P13, PsNPg = P11, PyNPs; = P13 and PANPsNPsNPy =
J10. Hence, by Corollary 1.1.7, we have the exact sequence

0—>Jmﬂ)Pm@Plz@Pn@Pls£P4®P8€BP5€BP92>J1—>0.

¥
Note that Pig ® P @ P;; @ Pi3 — Im) is a projective cover, because Imn C (Pyg ® P11 & P2 @
Pi13)J(A). Similarly, we get the following exact sequences

0>Jyoy—>Po®PoPPi1®P3s—>P &P P,dP;— Jy —0,

0= Jiw—=PoDP11DOPia® P13~ PsDPR®PrdPy— J3— 0.

Step 2. Note that J; (4 < i <9) have the following projective covers
0— Jio— Pio® P12 — Jg — 0,
0— Jyp— P11 ® Pz — J; — 0,
0— Jyg— Piog® P11 — Jg— 0,
0— Jip— Pi2o® P13 — Jr — 0,
0— Jyg— Pi1® Py — Jg — 0,

0— Jig— Pig® Pig — Jg— 0.
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Step 3. Note that X := (D,D,,D) = JlO == Jll == J]_z == J13 and X/XJ(A) = S]_EBSQ@S?,.

Hence by Corollary 1.1.2, we get the following exact sequence
0> PNPNP L (PINP) @ (PnP)e (PsnP) S P aP@P; L X —o.
If we put Y := Ker f, then we get two short exact sequences
0—>Y—>PlEBPgEBP3i>X—>O,
0P NPNP L (PnP)e(PnP)e(PsnP) LY —o0.
Note that projective covers of P N P3, Po N Py, and P3N P, are given by
0—>Jyog—-PFPdPy—P NP —0,
0—>Jog—PL®&P;— P,NP —0,
0—Jyog— PP, — P3NP, — 0.
Hence (P1 N Ps) @ (P2 N Py) & (P3N P2) has the projective cover
0= Jio®Jio® Jio = P 5 (PNP;) @ (PN P) @ (P3N Py) — 0,
where P := P, & P; & P; & P; & Ps & Py. Note that
Imh C[(PLNP;) B (PN Py) @ (P3N P2)]J(A).
Hence, the projective cover of Y has the form
0—272—P Bog, Y — 0,
where
Z = Kerfog

= {(z4,25,%¢,27,28,29) € P | x4 + x5 = ¥ + 27 = x5 + 9 }.

Step 4. Note that
Pyo+ P2 =Jy C Py, P+ Pi3=Js5C P,
P+ P11y =Jg CPs, P2+ Pi3=J;C Py,
Py + Pio=Jg C Py, Pig+ Pi3=Jyg CPs.

Hence, we obtain a A-homomorphism « : Pig & P11 @ P12 & P13 — Z defined by

(101 0)
10 01 01 10
11 1 1 0 0 11
[0 —
12 0 0 1 1 T12
13 01 1 0 13
\1 00 1)
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CLaiMm 1. Ifchar F # 2 then « ts an isomorphism.

Proof. First note that 2 € D \ 7D and 2 is invertible in D, because char F' # 2.
Let (219,711, %12,213) € Kera. Then we have 2x19 = z19 + 12 + 19 + 11 = 0, and similarly
211 =0, 2212 =0, 2213 = 0. Hence (219, 211, %12,213) = (0,0,0,0), so that « is a monomorphism.

Let (x4, x5, %6, 27,28,29) € Z. Since x4 + o5 = xg + 7 = xg + Tg, We put

2.1’10 = T4+ Tg—T§g = T9g— 5+ Tg = X4+ T9— L7,
2r11 = xzt@g—T9 = Tg— Tyt T = Tzt Ty TT,
2r12 = Tyt @®7T—T9 = TZ—T5+TT = T4+ TZ— Ts,
2x13 = x5t ax7r—xr8g = x9— x4+ xT7 = X5+ T9g— Tg.

Further, we put x; = (x;1,...,%;13) € P; (4 < i <9). Then, for each 1 < 7 < 13 with j # 10, we
have x4;+x6;—8; = T9;—%5;+T6; = Taj+T9;—x7; € TD. Hence x19 € Pio. Similarly, we can check
that x11 € Pi1,x12 € Pi2,213 € P13. Hence a is an epimorphism, because a(z19,z11,%12,%13) =

(.’1}4,ZE5,CEG,CE7,288,289). U

CrLaM 2. Ifchar F # 2, then gl.dim A = 5 and A has no neat primitive idempotent.

Proof. Tt follows from Steps 3, 4 and Claim 1 that J; (10 < k < 13) has the following minimal
projective resolution
13 9 3
O—)@PZ—)@PZ—)@R—)J]C—)O
i=10 i=4 i=1
Note that every P; (1 < i < 13) appears in the above resolution, and that minimal projective
resolutions of Ji (1 < k < 9) are given by connecting the above resolution to the sequences of Steps
1 and 2. Hence gl.dim A = sup{pdJ; | 1 <¢ <13} +1 =5, and it follows from Proposition 1 of [4]
that every e; (1 < i < 13) is not neat. O

Step 5. Note that for any 19 = (210,1,...,%10,13) € Ji0 C Pio, ®10; € 7D for each 1 < j < 13.
Hence we get a A-homomorphism g : Jig — Z defined by

B(z10) = (z10,0,710,0,210,0).
CLAIM 3. If char F = 2 then (3 is a split monomorphism.

Proof. For any (w4, x5, xe,x7,28,29) € Z, put y := x4 + x5 = wg + 7 = s + @9 and z =
x4 —T6+xs=—x5+T7+ 23 =24 +27 — 9. Put y = (y1,...,913) and z = (z1,...,213). Then for
each 1 < j <13 with 5 # 12, Zj = T4 — Tgj + T8 = —x5; + Tyj + Tgj = T4 + X7j — X95 € mD. If
J =12, then z13 = z4,12 — 6,12 + T8,12 = 2¥12 — 5,12 — T6,12 — T9,12 € TD because 2 € 7D. Hence
we get a A-homomorphism 3’ : Z — Jyg defined by

/Bl(x47$57$67$77$87 379) = x4 — Te + Ts.

Since we can check that 3’ o 3 = idy,,, then 8 is a split monomorphism. ]
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CLAIM 4. If char F = 2, then gl.dim A = oo.

Proof. It follows from Step 3 that there exist a long exact sequence

9 3
0—>Z—>@PZ-—>®PZ-—>JN—>O.
i=4 =1
It follows from Claim 3 that Z ~ J19 @ W, for some right A-lattice W. Therefore pd J19 = oo and
gl.dim A = oc. O

REMARK 1.2.2. Extending the (0,1)-tiled D-order A in M;3(K) of Example 1.2.1, for each
n > 14, one can construct a basic (0,1)-tiled D-order A, in M, (K) such that gl.dimA = 5 if
char F' # 2 and that gl.dim A = oo if char F' = 2. In fact, for example, let A4, be the F-algebra
whose quiver Q(A,) is obtained by adding arrows n — n —1 — --- — 13 to the quiver Q(A)
of the F-algebra A = A/M;j3(w), and let A, be the (0,1)-tiled D-order in M,(K) such that
A, = A, /M, (=). Then one can conclude that gl.dim A,, = 5 if char F' # 2 and that gl.dim A,, = oo
if char F = 2 as in Example 1.2.1.
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Chapter 2

Frobenius full matrix algebras with

structure systems.

In this chapter, we study Frobenius full matrix algebras with structure systems. In [7], Fujita
introduced A-full matrix algebras over a field F' to provide a framework for factor algebras A/7A
of tiled D-orders A.

Let A = (7% D) be a basic tiled D-order in M, (K), and define

(k) 1 if A+ Akj = /\ij
0 if A+ )\kj > Aij

for all 1 < 4,5,k < n. Then A = (A41,...,A,) where Ay = (agf)) € M,(F) (1 <k<mn)isa
structure system and the A-full matrix F-algebra A = @1@-7]491 Fu;; is isomorphic to the factor
F-algebra A/mA. Moreover, if A is a Gorenstein tiled D-order, then it is well-known that A/7A is
a Frobenius A-full matrix F-algebra.

In Section 2.1, we study the converse problem of that fact and prove the following theorem for

A-full matrix algebras with (0, 1)-structure systems A, that is, every entry of A is 0 or 1.

THEOREM. (1) For every integer integer 2 < n < 7, every Frobenius full n xn matriz F-algebra
has corresponding Gorenstein tiled D-orders.
(2) For every integer n > 8, there is a Frobenius full n X n matriz F-algebra having no

corresponding Gorenstein tiled D-orders.

The results of Section 2.1 are obtained by joint work with H. Fujita.

In Section 2.2, we study A-full matrix algebras whose structure systems A are not necessarily
(0,1)-structure systems. Since we are able to treat the class of full matrix algebras with structure
systems by elementary algebraic geometry technique, we introduce minor degenerations of the full
matrix algebras. It turns out that, for a suitable choice of structure matrix ¢ = [q(l), ... ,q(n)], the
algebra M} (F) is a degeneration of the full matrix algebra M, (F). So, we can consider the class of
full matrix algebras with structure systems as a subclass of minor degenerations of the full matrix

algebra M, (F'), that is, basic minor degenerations of M, (F) are full matrix algebras with structure
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systems. In this section, among other things, we characterize Frobenius, basic minor degenerations
of M, (F') and we give the following example.

EXAMPLE. Assume that F is an infinite field. For each n > 4, there is a one-parameter
F-algebraic family {C,},cp+ of basic Frobenius F-algebras of the form C, = M (F) such that
o=(1,2,...,n) is the Nakayama permutation of C;, and C,, 2 C,, if p # v and p # v,

The results of Section 2.2 are obtained by joint work with H. Fujita and D. Simson.

2.1 Gorenstein tiled orders and Frobenius full matrix algebras.

Let D be a discrete valuation ring with a unique maximal ideal 7D, and let A be a D-order in
a semisimple algebra. It is standard to reduce homological properties of A to those of the factor
algebra A/mA and such factor algebras are deserving of further study. (See [14].)

Let n be an integer with n > 2. An n X n A-full matrix algebra over a field K is an n x n
dimensional K-vector space with multiplication defined by a structure system A, that is, an n-
tuple of n X n matrices with certain properties. A prototype of A-full matrix algebras is the class
of factor algebras A/mwA of tiled D-orders A. Studying representation matrices of certain modules
over A-full matrix algebras, Frobenius A-full matrix algebras are characterized by the shape of their
structure systems A. For a Gorenstein tiled D-order A, the factor algebra A/7A is a Frobenius
A-full matrix algebra. For n < 5, a list of Frobenius A-full matrix algebras is obtained, and they
have corresponding Gorenstein tiled D-orders, which can be found in Examples of Roggenkamp,
Kirichenko, Khibina and Zhuravlev [26]. (See Fujita [7].)

In this section, we study minimal Frobenius structure systems and show that for every integer
n > 8, there exist Frobenius A-full matrix algebras which have no corresponding Gorenstein tiled
D-orders. Moreover for n < 7, we give some Gorenstein tiled D-orders and verify that their factor
algebras provide a list of all Frobenius A-full matrix algebras, up to isomorphism.

In Subsection 2.1.1, we first recall the definition of full matrix algebras with structure systems
and a characterization of Frobenius full matrix algebras (Proposition 2.1.1). Let o be a permutation
of the set {1,...,n} such that (i) # ¢ for all i = 1,...,n, and let T be the set of all triples
(i,k,7) of integers 1 < i,k,j < n. Then o defines a bijection ¢ : T — T, (i, k,j) — (k,7,0(i)).
Structure systems of Frobenius full matrix algebras are determined by some ¢-invariant subsets of
T. Considering 4-tuples of ¢-orbits, we formulate a procedure to check what y-invariant subsets
define structure systems of Frobenius full matrix algebras (Proposition 2.1.6). In Subsection 2.1.2,
we clarify @-orbits of T precisely for a cyclic permutation ¢ = (1 2 --- n). In Subsection 2.1.3,
we introduce minimal Frobenius structure systems and determine what ¢-invariant subsets define
minimal Frobenius structure systems for a cyclic permutation ¢ = (1 2 --- n), using the results
obtained in Subsection 2.1.1 and 2.1.2 (Theorem 2.1.15). In Subsection 2.1.4, we show that for every
integer n > 8, there exist Frobenius n x n full matrix algebras having no corresponding Gorenstein
tiled orders (Theorem 2.1.19). Our examples of such Frobenius full matrix algebras are defined
by some minimal Frobenius structure systems. In Subsection 2.1.5, we study some Frobenius full

matrix algebras having non-cyclic Nakayama permutations. For n = 6,7, in Subsection 2.1.6, we
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show that every Frobenius n x n A-full matrix algebra A has a Gorenstein tiled D-order A such
that A/mA = A. (For 2 < n <5, see Fujita [7].)

2.1.1 Preliminaries.

Let K be a field and n an integer with n > 2. Let A = (A4,..., 4,) be an n-tuple of n X n matrices
A = (al(;c)) € M, (K) (1 < k < n) satisfying the following three conditions.

(A1) agf)agg) = aglk)ag) for all ¢,7,k,l € {1,...,n},

(A2) ag;) = agll:) =1 forall4,j,k € {1,...,n}, and

(A3) a{¥) =0 forall i,k € {1,...,n} such that i # k.

Let A = @1<i,j<n Ku;i; be a K-vector space with basis {u;; | 1 < i,j < n}. Then we define
multiplication of A by using A, that is,

k). 3 k=
Uik UL ::{ @y wij A k=1

0 otherwise.

Then A is an associative, basic K-algebra. We call A an n x n A-full matriz algebra with structure
system A. We note that each indecomposable projective right A-module and each indecomposable
injective right A-module can be represented by some matrices made of a structure system A. (See
Propositions 2.2 and 2.3 of [7].)

(k)

In what follows, we assume that a;;’ =0orl forall 1 <i,k,7 <n.

PROPOSITION 2.1.1. Let A be an n xn A-full matriz algebra. Then the following are equivalent.

(1) A is a Frobenius algebra.

(2) There exists a permutation o of the set {1,...,n} such that o(i) # 1 for alli € {1,...,n}
and that ag:gi) =1 foralli,k € {1,...,n}.

In this case, o is the Nakayama permutation of A. Furthermore, for alli,j, k € {1,...,n} al? =

agv_{')(z.) holds, and az(;.c) = 0 holds whenever j = o(k) or k= o(i).

Proof. This follows from Lemma 4.2 and the proof of Lemma 4.5 of [7]. O

We utilize Proposition 2.1.1 for finding structure systems A of Frobenius A-full matrix algebras.
In the rest of this section, we formulate some notations which will be used throughout the paper.

Let n be an integer with n > 2, and let T" be the set of triples (¢, k, 7) of integers 1, k, j such that
1 <1i,k,j < n. Let 0 be a permutation of the set {1,...,n} such that o(i) #iforalli=1,...,n.
Then o defines a bijection ¢, : T — T, (i,k,j) — (k,j,0(i)). We decompose T into ¢, -orbits
{Tw}w, that is, Ty = {¢’(i,k,j) € T | t € Z} for some (i,k,j) € T and T is a disjoint union of
{Tw}a- When the permutation o is fixed or clear in the context, we sometimes omit the subscript

o of ¢,, e.g., we will use @-orbit instead of p,-orbit.
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LeEMMA 2.1.2. The set T is a disjoint union of the following three p-invariant subsets
I = U{T, | (i,i,7) € Ty for some 1<1i,j <n}

Z U{Ty | (i,k,7) € T for some 1< i,k <n withi# k}
X WTa | Ta ¢ I,T, ¢ Z}.

Moreover, the following equations hold.
I = {(i,k,j)eT |i=k, orj=k, orj=o0(i)}

Z {(i,k,7) €T | i = j,i # k, or for distinct i,k,j, j=o0(k) or k =0(i)}
X {(i,k,7) €T | i,k,j are distinct, j # o(i), j # o(k), k# o(i)}.

Proof. Let T, be a @-orbit containing (7,7,j) for some 1 < i,7 < n. Any element of T, is one

of the following

(0*(0),0'(2),0" (1)), (0'(0),0'(§), 0" (@), or (¢'(j),0" " (0),0" ()

for some ¢ > 0. Since o(k) # k for all k = 1,...,n, T, does not contain (¢',%’,7') for any
1 <4, k' <nwith i # k'. Therefore INZ = 0. Since X is the complement of TU Z, T is a disjoint
union of y-invariant subsets I, Z, X.

The remaining part is left to the reader as an exercise. O
PROPOSITION 2.1.3. Let A = (Aq,...,4A,) = (ag.e)) be a structure system of a Frobenius A-full
matriz algebra with Nakayama permutation o. Then there exists a p-invariant subsetY of X such
that
(@:{]_#(LhﬂEIUY

0 otherwise.

Proof. It follows from (A2), (A3) and Proposition 2.1.1 that ag-e) = 1 for all (i,k,j) € I and
that ag?) =0 for all (i,k,7) € Z. Let Y be the union of ¢-orbits T, contained in X such that Ty,
Z(;.c) = 1. Since agf) = a;{')(i) for all (¢,k,j) € T by Proposition 2.1.1,
Y is the desired subset of X. O

has an element (i,k,j) with a

PROPOSITION 2.1.4. Let 0 be a permutation of the set {1,...,n} such that o(i) # i for all

i=1,...,n. LetY be a p-invariant subset of X, and let A = (A1,...,A,) be an n-tuple of n x n
matrices Aj, = (az(;c)) e M, (K) (k=1,...,n) defined by

wm_{l if (i,k,j)eIUY

0 otherwise.

Then A is a structure system of a Frobenius full matriz algebra with Nakayama permutation o if

and only if A satisfies (Al).
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Proof. First note that ag?) = ag')(i) for any (i,k,7) € T, because YV is p-invariant. For all
i,k € {1,...,n}, since (k,k,5),(i,k,k) € I, all) = aly) = 1, so that (A2) holds. For all i,k €
{1,...,n} with i # k, since (i, k,7) € Z, agf) =0, so that (A3) holds. For all i,k € {1,...,n}, since
(i,k,0()) € I, al(izi) = 1. Therefore, Proposition 2.1.1 completes the proof. O

When we check (A1) for A of Proposition 2.1.4, we need to consider 4-tuples of integers. Let
F be the set of 4-tuples (i,k, j,1) of integers i,k,j,I such that 1 < i,k,j,] < n. Let o be a given
permutation of the set {1,...,n} such that o(¢) #iforalli =1,...,n. Let F be the set of 4-tuples

(T s Ty y T s Ty ) of p-01bits Ty, Toy, Ty s Ty of T. Then we have the following two bijections
v:F = F, (i,kj,0) — (k,j,1,0())
b:F — F, (TalaTazaTagaTa4)H(Ta4>Ta37Ta17Taz)

and a map
q) : F - ‘7:7 (Z’k7])l) = (Tal)TOL27TL13)Ta4)
where Ty, Toy s Toy, T, are defined by (i,k,7) € Ta,, (¢,7,1) € Ta,, (i,k,1) € Tu,, (k,j,1) € Ta,.
LEMMA 2.1.5. It holds that ® o1 = 6§ o ® and 6* = id.

Proof. Take an arbitrary (i,k,7,l) € F, and let ®(i,k,7,]) = (Tay,Tays Tas» T, )- Then we have
(k,1,0(2)) = (i, k,1) € Ty, (k,g,0(2) = ¢(i,k,j) € T,,, and (J,L,a(d) = »(1,5,0) € T,,. Hence

®o ¢(27 kaja l) = @(k,], l: 0-(7’)) = (Ta47Ta37Ta1,Ta2)~
Therefore ® 04 = o &. It is immediate to check that * = id. [

PROPOSITION 2.1.6. Let Y be a p-tnvariant subset of X, and let A be an n-tuple of n x n
matrices defined as in Proposition 2.1.4. Let () : {Ta}ta — K be a map defined by

0 otherwise.

) ::{ 1 i T, CIUY

Then the following are equivalent.
(1) A is a structure system of a Frobenius full matriz algebra.
(2) For any (Tay, Toss Tas, Ta,) € Im®, (Ta,)(Tay) = (Tas)(Tay) holds.

(k) _ ()
ij = Pko(i)
ProProsITION 2.1.7. For any (Ta,, Tuy; Tas,Ta,) € In®, the following statements hold.

(1) Toy,To, CI & Tu,,Ta, CI.

(2) If To, CI and T, C X, then Ty, = Tn, and To, C I, or else Ty, =T, and T, C I.

Proof. Since a for all (i,k,j) € T, this follows from Proposition 2.1.4. ]
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Proof. Let (Toy,TaysTas, Tay) = ®(i, k, j,1) for some (i,k,j,1) € F.

(1) Suppose that T,,,T,, C I. Then (i,k,5),(4,5,]) € I. Since (i,k,j) € I, we have i = k,
or k = j, or j = o(i) by Lemma 2.1.2. Similarly, we have i = j, or j = [, or | = o(i). By the
assumption of o, we can exclude the case that j = o(¢) and i = j. In the remaining eight cases, i.e.,
it =k and ¢ = j, etc., one can check that (i, k,1), (k,7,]) € I by Lemma 2.1.2. Hence T,,,T,, C I.
We can show the converse implication using Lemma 2.1.5.

(2) Since To, C I and T,, C X, (¢,k,5) € I and (¢,5,1) € X. Since (¢,7,]) € X, we have
j # o(i) by Lemma 2.1.2. Therefore, since (i,k,j) € I, we have i = k or else k = j. In the case of
i =k, (i,4,0) = (i, k,1) € Tn, and (¢, 5,1) = (k, j,1) € Ty, so that T,,, C I and T,,, = T,,. Similarly,
in the case of k = j, we have T,, =T,, and T,,, C I. O

As an application of Proposition 2.1.7 (1), we have the following corollary, which is shown in
Theorem 4.4 of [7].

COROLLARY 2.1.8. Let o be an arbitrary permutation of the set {1,2,...,n} such that o(i) # i
for all i = 1,...,n. Then there exists a Frobenius n X n full matriz algebra with Nakayama

permutation o.

Proof. Let Y be empty, and let A be an n-tuple of n X n matrices as defined in Proposition
2.1.4. Then it follows from Proposition 2.1.7 (1) that A is a structure system of a Frobenius full

matrix algebra. O

REMARK 2.1.9. Let A = ®1§i,j§n Ku;; be a full matrix algebra with a structure system A =
(A1,...,A;) where Ay = (ag-e)) (1 < k < n), and let p be a permutation of the set {1,...,n}.
Then, let B = (By,...,B,) be an n-tuple of n X n matrices By = (bgf)) (1 < k < n) defined by
bgf) = aﬁ)lzgi()j) for all (i,k,j) € T. It is obvious that B satisfies (A1), (A2) and (A3). Let B =
®1§i,j§n Kwv;; be a B-full matrix algebra. Then there is a K-algebra isomorphism f : A — B, u;; —
Vp—1(5)p-1(j)- We denote B by A,. Let 0,7 be permutations such that their cycle decompositions

logp. If A is a Frobenius

have the same orders. Then there exists a permutation p such that 7 = p~
A-full matrix algebra with Nakayama permutation o, then it follows from Proposition 2.1.1 that
A, is a Frobenius full matrix algebra with Nakayama permutation 7. Therefore we can classify
Frobenius full matrix algebras according to cycle decompositions of Nakayama permutations with
a fixed numbering. Thus, for n = 4,5, Example 4.7 of [7] provides a list of all Frobenius A-full

matrix algebras up to isomorphism.

2.1.2 y-orbits for a cyclic permutation.

In this section, we clarify (p-orbits of the set T for a cyclic permutation o = (1 2 --- n).

LEMMA 2.1.10. Let T, be a p-orbit of T. Then the number |T,| of elements in T, is 3n or n.
More precisely, the following statements hold.

(1) If |T,| is divisible by 3, then |T,| = 3n.

(2) If |Ta| is not divisible by 3, then |Ty| = n.
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Proof. Take an element (i,k,j) € T,. Since ¢3"(i,k,j) = (o"(i),0™(k),o™(5)) = (i,k,j),
|Tw| < 3n. Let s be the smallest positive integer satisfying ©*(i,k,7) = (¢, k,7). Then |T,| = s and
s|3n.

(1) Suppose that s = 3t for some integer ¢ > 1. Then

©*(i,k,§) = (0"(i), 0" (k), 0" (7)) = (i, k, 7).

! = ¢ (the identity permutation), so that n|t and hence

Hence o'(i) = i. Since o = (12 --- n), o
s =3n.

(2) Suppose that s = 3t + 1 for some integer ¢ > 1. Then
@ (isk, 5) = (0*(k),0*(5), 0T ()) = (K, ).

Hence i = ot(k) = 0%(j) = o3t1(i) = 0°(i), so that n|s. Since s|3n and s Z 0 (mod 3), we
conclude that s = n.

In the case of s = 3t + 2 for some integer ¢ > 1, we can show that s = n in a similar way. [

LEMMA 2.1.11. Every -orbit has elements (1, k1, j1), (i2,1,j2), (i3, k3, 1) for some kq, j1,1i2, j2,i3, ks €
{1,2,...,n}.

Proof. Take an element (i,k,j) in a @-orbit T,. Since ¢3(i,k,j) = (0(i),o(k),0(j)) and
o= (12 - n), T, contains @** (i k j) = (1,ky,71) for some 1 < ki,j; < n. Similarly,
(iz,l,jz), (i3,k3,1) € T, for some 1 < 19, j2,13, k3 < n. ]

PROPOSITION 2.1.12. T has a ¢-orbit T,, with |T,| = n if and only if n is not divisible by 3. In

this case, T has a unique @-orbit having n elements, which is contained in X.

Proof. ‘Only if’ part follows from Lemma 2.1.10 (1). Suppose that n = 3t + 1 for some ¢ > 1.
Let Ty, be the ¢-orbit containing (1,2¢+2,¢+2). Then one can check that |T,| = n. Conversely, let
T be a @-orbit with |T3| = n. It follows from Lemma 2.1.11 that T contains an element (1,k, j)
for some k, j. Since (1,k,5) = ¢"(1,k,5) = (¢'(k),o'(j),0t1(1)), we have j = t+2 and k = 2t +2.
Therefore Ty = Ty, which is a unique @-orbit of T' having n elements. Since (1,2t +2,t+2) € X,
T, C X.

In the case of n = 3t + 2 for some ¢ > 1, one can similarly show that the ¢-orbit containing

(1,t 42,2t + 3) is a unique g-orbit having n elements, which is contained in X. O

ProposITION 2.1.13. The following statements hold.

(1) I hasn —1 @-orbits.

(2) Z has n — 2 @-orbits.

(3) Letn =0 (mod 3). Then T has n?/3 p-orbits and X has (n — 3)%/3 p-orbits.

(4) Letn # 0 (mod 3). Then T has (n®> —1)/3 + 1 p-orbits and X has (n —2)(n —4)/3 +1
p-orbits.
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Proof. (1) Let T, be a p-orbit contained in I. Then, by Lemma 2.1.11, (1,1,%) € T, for some
1 < i < n. Suppose that (1,1,5) € T, for some j # i. Then (1,1,5) = ¢*(1,1,4) for some s > 1.
Considering the three cases of s =0,1,2 (mod 3), one can show that {i,j} = {1,2}. Therefore T,
corresponds to a unique integer ¢ with 2 < ¢ < n. Hence I has n — 1 @-orbits.

(2) Let T, be a @-orbit contained in Z. Then, by Lemma 2.1.11, (1,k,1) € T, for some
2 < k < n. Suppose that (1,l,1) € T, for some | # k. Then one can similarly show that
{k,1} = {2,n}. Therefore T, corresponds to a unique integer k with 3 < k < n. Hence Z has n—2
p-orbits.

(3) It follows from Lemma 2.1.10 and Proposition 2.1.12 that every -orbit of T' has 3n elements.
Since |T'| = n3, T has n?/3 @-orbits. Since X is the complement of TU Z in T, X has (n — 3)%/3
@-orbits by (1) and (2).

(4) This can be shown as in (3). O

PROPOSITION 2.1.14. Let T,, be a @-orbit of T. For eachr =1,...,n, put T\ = {(i,k,7) €
T | k =r}. Then the following statements hold.
(1) Suppose that |T,| = 3n. Then |Ty)| =3 for eachr=1,...,n. If (i,1,j) € Ty, then

T = {(5,1,5), (67771 (1),1,07972(0)), (¢77(j), 1,071 (1)) }.
(2) If |To| =n, then |T,§T)| =1 for eachr =1,...,n.

Proof. Note that there is a bijection Ty) — TS), (i,7,7) — 2t 5) = (67" (5), 1,0 "TL(H)).
Hence we have |TCE¢T)| = |TCS1)| for each »r = 1,...,n. Therefore for each r =1,...,n, [T,| = n|Tc(,T)|,
so that |T,§T)| =3 (or 1) if |To| = 3n (or n).

Suppose that |T,,| = 3n and (¢,1,7) € T,. Note that Tél) contains (7,1, 7),

903(n—j+1)—|—1(i’17j) = (679%(1),1,06777%(4)) and
903(n7i+1)71(i71’j) _ (o.*i(j),l,o*z#l(l)).

It is sufficient to show that the above three elements are distinct. Assume that
(i,1,5) = (e (1),1,07772(d)).

Then one can show that 3(j—1) = 1 (mod n). Hence n is not divisible by 3. Assume that n = 3t+1
for some integer ¢ > 1. Then we have j = 2t + 2 and ¢ = t + 1. Hence, as shown in the proof of
Proposition 2.1.12, T, is the ¢-orbit having n elements, which contradicts to |T,| = 3n. In the case
of n = 3t + 2, we get to a contradiction, in a similar way. Hence (i,1,5) # (¢ 7711(1),1,07712(3)).

We can show the remaining cases in a similar way. This completes the proof. [

2.1.3 Minimal Frobenius structure systems.

Let A be a Frobenius A-full matrix algebra with Nakayama permutation o. Then it follows from
Proposition 2.1.3 that the structure system A is determined by a ¢, -invariant subset ¥ of X. We

call A a minimal Frobenius structure system if Y is minimal among non-empty @ -invariant subsets
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of X which define Frobenius full matrix algebras with Nakayama permutation o. In this section,

we prove the following theorem.

THEOREM 2.1.15. Letn be an integer withn > 4, andletoc = (12 --- n) be a cyclic permutation.
Then the following statements hold.

(1) Letn be even. Then the p-invariant subsets defining minimal Frobenius structure systems
are just w-orbits contained in X .

(2) Letn be odd and n = 2s + 1 for some s. Then the p-invariant subsets defining minimal
Frobenius structure systems are just -orbits Xg contained in X such that Xg does not contain any

element of the form (s + 1,1,k) for any k with k Z s> + 1 (mod n).

We note that in the case of n = 2,3, structure systems of Frobenius full matrix algebras are
unique. (See Corollary 4.3 and Remark 4.6 of [7].)

In the rest of this section, we assume that o = (12 --- n).

LEMMA 2.1.16. For any @-orbit Xg C X, the following are equivalent.

(1) (Xg,X3,Tay,Ta,) € Im® for some @-orbits To,, T, -

(2) There exist integers s,k such that n = 2s +1 and (s +1,1,k) € Xg.
In this case, (s +1,0°(k),1,k) = (X3,X3,Tay,Ta,) and Ty, =To, C X.

Proof. (1) = (2) Suppose that (Xg, Xg,Ta,,Ta,) = ®(¢, %, j,1) for some (i, k, j,I) € F. Using
Lemma 2.1.5 as Lemma 2.1.11, we can assume that ¢ = 1. Then (1,k,5),(1,7,1) € X3. Hence using
Proposition 2.1.14, we can show that (1,7,1) is one of

(L,k,7), (1,07¥1(5),07%4(2)), or (1,077%1(2),077*2(k)).

Since k # j and k # 1, we conclude that (1,5,1) = (1,07711(2),077%2(k)). Hence we have
27 = 3 (mod n). Hence n is odd. Put n = 25 + 1 for some integer s > 1. Then we have j = s + 2.
Hence (s +1,1,k) = ¢ *(1,k,s + 2) € Xp.

(2) = (1) Note that

(s+1,0°(k),1) = 9> (s +1,1,k) € Xp.

Hence
B(s+1,0°(k),1,k) = (Xﬁ,Xﬁ,Ta3,Ta4)

for some @-orbits T,,,T,, of T
In this case, note that (s +1,0°(k), k) € Ty, and (0°(k),1,k) € T,,. Since

‘1035+1(0-3(k)7 Lk) = (s+1,0°(k), k),

we have T, = T,,,. Using Lemma 2.1.2 and n = 2s+1, one can check that (s+1,1,k) € X implies
(0°(k),1,k) € X. Hence T, =To, C X. O
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LeEMMA 2.1.17. For any ¢-orbit Xg C X, the following are equivalent.
(1) (Xﬂ,Xﬂ,Xﬁ,Xﬂ) € Im®.
(2) There exist integers s,k such thatn =2s+1, (s+1,1,k) € X3 and that k = s> + 1 (mod

Proof. (1) = (2) It follows from Lemma 2.1.16 that there exist integers s, k such that n = 2s+1,
(s +1,1,k) € Xg and that (¢°(k),1,k) € X3. Since k # 1 and k # o(s + 1), using Proposition
2.1.14, we conclude that

(0*(k),1,k) = (c *T1(1),1,0 7% (s + 2)).

Hence we have 2k = s + 3 (mod n). Since 2(s +1) =1 (mod n), we obtain k = s> + 1 (mod n).
(2) = (1) Since k = s> +1 (mod n), 2k = s + 3 (mod n). Hence

(0°(k),1,k) = (0 *1(1),1,0 ¥ (s +2)) = p* " FIII(s 11,1, k) € X,
This completes the proof. O

Proof of Theorem 2.1.15. (1) Let n be even, and let Xg be a ¢-orbit contained in X. For
Y = Xz, we put A an n-tuple of n X n matrices defined as in Proposition 2.1.4. Since each
nonempty @-invariant subset of X contains a g-orbit, it is sufficient to show that A is a structure
system of a Frobenius full matrix algebra. Let (Ty,, Ty, Tas, Ta,) be an element in Im® such that
(Toy)(Ta,) = 1. In the case of Ty, , Ty, C I, it follows from Proposition 2.1.7 (1) that Ty, ,To, C I,
so that (T, )(Ta,) = 1. In the case of T,,, C I and T,, = Xg, it follows from Proposition 2.1.7
(2) that one of T,,,Tq, is contained in I and the other one is equal to Xg, so that (Ta,)(Ta,) =
1. It follows from Lemma 2.1.16 that Im® does not contain (Xg,Xg,Ts,To) for any ¢-orbits
To, Ty of T. Therefore, using Lemma 2.1.5, we can show that for any (Ta,,Ta,,TassTa,) € Im®,
(Toy)(Ta,) = (Tway ) (Ta, ) holds. Hence by Proposition 2.1.6, A is a structure system of a Frobenius
full matrix algebra.

(2) Let n be odd and n = 2s + 1 for some s. Let Xz be a ¢-orbit contained in X such that
Xg does not contain any element of the form (s + 1,1,k) for any k with k& # s* + 1 (mod n).
Then, using Lemma 2.1.17, as in the proof of (1), we can show that Xz corresponds to a minimal
Frobenius structure system.

Conversely, let Y be a y-invariant subset of X corresponding to a minimal Frobenius structure
system. Assume that Y contains a @-orbit Xg such that (s+1,1,k) € Xg for some k with k # s2+1
(mod n). Then it follows from Lemma 2.1.16 that

®(s+1,0°(k),1,k) = (X5, X5, Xg, X3)
for some -orbit Xz C X. Since (Xg)(X3) = (X3/)(Xga), we have Xz C Y. Note that
(s + 1,07 ¥1(1),1) = L3251 1 6%(k), k) € Xa.
Hence

®(s+1,0 FTH1),1,k) = (X5, X3, Tug» Tag)
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for some @-orbits Ty, , To, of T'. Since (Xg/)(Xg) = (T, )(Ts,), using Lemma 2.1.5 and Proposition
2.1.7 (2), we obtain Ty,, T, C X. Then (s + 1,0 *T1(1),1) € T,,. Since k # 1 and k # s +1
(mod n), using Proposition 2.1.14, we can show that T,, does not contain any element of the form
(s +1,1,1) for any I. Hence T,, corresponds to a minimal Frobenius structure system as shown

above. This contradicts to that Y is minimal. This completes the proof. O

The following example illustrates Theorem 2.1.15 and gives all y-orbits which define minimal

Frobenius structure systems for n = 5,6,7.

ExAMPLE 2.1.18. (1) Let n = 5. As given in Example 4.7 (3) of [7], X has two g-orbits X
and Xs. Then
XM ={(2,1,4),(3,1,5),(2,1,5)} and X ={(4,1,3)}.

(See Propositions 2.1.12, 2.1.13 and 2.1.14, too.) Since 5 =2 -2+ 1 = 22 + 1, both of X; and X,
define minimal Frobenius structure systems.

(2) Let n = 6. Then X has three p-orbits, all of which define minimal Frobenius structure
systems. (See §2.1.6 (1).)

(3) Let n=7. Then X has 6 ¢-orbits X; (1 < i < 6) such that

xW = {(4,1,3),(6,1,3),(6,1,5)}
xM = {(2,1,5),(3,1,7),(4,1,6)}
x5 = {(2,1,6),(4,1,7),6,1,5)}
xV = {(5,1,3),(5,1,4),(6,1,4)}
xM = {(2,1,4),2,1,7),(5,1,7)}
XM = {3,1,6))

Since 7 = 2-3+ 1 and 32 +1 = 3 (mod 7), there are minimal Frobenius structure systems
corresponding to X1, X4, X5, X¢, but not to X, Xs.

2.1.4 Gorenstein tiled orders.

Let D be a commutative discrete valuation domain with a unique maximal ideal #D. Let n > 2 be

an integer. Let {);; | 1 < ¢, < n} be the set of non-negative integers satisfying
/\ik+)‘kj2/\ij; Ai;=0 and /\ij+/\ji>0 ifi #£ 3

for all 1 < 4,5,k < n. Then A = ()i D) is a D-subalgebra of M, (D). We call A an n x n tiled
D-order. (See e.g. Jategaonkar [7], Reiner [25], Simson [28].)

For a tiled D-order A = (7% D), let A = (Ay1,...,A,) be an n-tuple of n x n matrices Aj =
(all) € M, (K) defined by

a.. =
K 0 otherwise.

(k) {1 if )\ik+>\kj:)\ij
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Then A/7A is isomorphic to an A-full matrix algebra. (See Example 3.2 of [7].)

A tiled D-order A is Gorenstein if Homp (A, D) is projective as a right (or left) A-module. It
is known that A is a Gorenstein tiled D-order if and only if there exists a permutation ¢ such that
o(i) #iforalli=1,...,n and that

Aik + Ako (i) = Aio(4)

for all 1 < i,k < n. (See Theorem 1.4 of [26].) It is also known that A is Gorenstein if and only if
A/wA is Frobenius. (Note that, in our context, this follows from Proposition 2.1.1.)

In this section, we prove the following theorem.

THEOREM 2.1.19. For every integer n > 8, there exists a Frobenius n X n full matriz algebra

which has no corresponding Gorenstein tiled orders.

We begin by studying the following system of linear equations with unknowns {z;; | 1 <¢,j <

T =
(%) r1;=0
Tik + Tho(i) — Tio(s) = 0

where 7,7,k € {1,...,n}.

LEMMA 2.1.20. Assume thato = (12 --- n), and let {X;; | 1 <i,j < n} be a solution of the
system of linear equations (x). Put a; := X\;1 (2 < i< n). Then the following equations hold.

(1) X\i2=0 foralli=1,...,n.

(2) a; =Xt = Aijit1 = Aziq1 foralli=2,... ,n—1.

(3) g = kiz(akl —a;_p) for all i,k with3 <k <i<n.
B
(4) Api= Z(ai_l —ap_y)ta;_py1 forallik with3<k<k+1<i<n.
(5) an_; :l:(11i+2 for all i = 0,1,...,["771] —1.
Conwversely, for given as,...,a,n where m = [5], we obtain a solution {\;;} of (x) using the

equations (1)-(5).

Proof. (1) Since A;j =0 forall j =1,...,n and 2 = (1), we have Ajp = A;; + Ao = A2 =0
forall:=1,...,n.

(2) Since Ai1 = X1 + Ao(i) = Aio(i), We have A\jp = Aj;1q for all ¢ = 2,...,n — 1. Hence,
moreover by (1), Aj;11 = X2+ Agip1 = Agqg foralli=2,...,n—1.

(3) Note that ap—1 = Ap_1p = Ap—1; + ik and a;_1 = Ai_1; = A\j_14—1 + Ap—1,;. Hence
Aik = @p—1 — @;-1 + Aj—1kp—1. Since A\;_py33 = az — a;_p4+2, we obtain the desired equations by
induction.

(4) Since Ap; = aj—1 — Ai_1,k, we obtain the desired equations using (3).
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(5) Since o(n) = 1, A\y1 = Aug + Ay for all £ = 1,...,n. Hence by (1) we have a, =
An1 = A21 = ag, and hence A\, = a2 — ay for all k = 3,...,n — 1. On the other hand, by (3),
we have A\, = E;:lz(ak—l — an_g) for all k = 3,...,n — 1. Therefore, when k& = 3, we have

as —asz = Ap3 = as —a,_1, so that ag3 = a,,_;. We obtain the remaining equations by induction. [

LEMMA 2.1.21. Assume that c = (12 --- n), and let {\;; | 1 < 4,5 < n} be a solution of (x).
Then the following equations hold.

(1) A1+ /\1]‘ — )\ij = )‘j,a(i) for alll1 < 1,7 <n.

(2) Xij =X osripy foralll <i,j <n.

(3) i + Akj — Aij = Apj + )‘ja'(i) — /\ka(i) foralll1 <,5,k <mn.

(4) For any @-orbit T, if (i,1,7),(¢,1,5') € Ta, then Ajo(i) = Ajia(it)-

PTOOf. (1) Since >‘ij+)\jcr(i) = )‘ia'(i) and /\Z‘l—l—)\lg(i) = )\ia(i), we have )\i1+)\1j _)\ij = )\@'1—)\@']' =
Ajali):
(2) One can check the equation using Lemma 2.1.20.
(3) This follows from )\ij + /\ja(i) = )‘ia(i) = A\ip + /\kg(i).

(4) This follows from (3) and (1). O

The following example illustrates the equations of Lemmas 2.1.20 and 2.1.21.

EXAMPLE 2.1.22. When n = 8, the matrix (A;;) of the solution of (%) is given by

(0000 000 0)
a 0 a b ¢ d c b
b 00 b r» s s r
c 00z 0 ¢ s t s
d 0y vy 0 d s s
c 0 z w z O T
b 00y w w y 0 b
\a 0 z v 2z y = O)
where x :=a—-b, y:=a—¢, z:=a—d, wi=a+b—-—c—d, r:=b+c—a, s:=c+d—a,and

t:=2c+d—>b—a.

Proof of Theorem 2.1.19. Assume that o = (12 --- n), and let X3 be a @-orbit containing (2,1,5).
Then it follows from Proposition 2.1.14 that

X[(gl) = {(271)5)7 (n - 3,1,'” - 1)’ (37 17n)}

Since n > 8, it follows from Theorem 2.1.15 that X3 defines a minimal Frobenius structure system
A as in Proposition 2.1.4. Suppose that there exists a Gorenstein tiled D-order A = (7)ii D)
corresponding to A. Then by Lemma 1.1 of [7], we may assume that {};; | 1 < 4,5 < n}isa
solution of (*). Since ag? = 1, it follows from Lemma 2.1.21 (1) that As3 = A5 52y = 0. Hence
it follows from Lemma 2.1.21 (2) that As4 = 0. Therefore it follows from Lemma 2.1.21 (1) that

ag? =1, so that (3,1,5) € X3, a contradiction. This completes the proof. O
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REMARK 2.1.23. (1) We can find Gorenstein tiled D-orders A = (7} D) by solving some linear
inequalities in integers. For example, by Example 2.1.22, a set of integers a, b, ¢, d satisfying some
inequalities a > b > 0,a > ¢ > 0,a > d > 0,b+ ¢ > ¢+ d, etc., defines a Gorenstein tiled D-order
A(a,b,c,d). Note that the factor algebras A(a,b,c,d)/mA(a,b,c,d) essentially depend on a,b,c,d
and provide some Frobenius full matrix algebras. While we have shown in Theorem 2.1.19 that
some Frobenius full matrix algebras do not have corresponding Gorenstein tiled orders, we can
classify Gorenstein tiled orders (or e.g. the above a,b,c,d), using the classification of Frobenius full
matrix algebras.

(2) Note that if (A;;) defines a Gorenstein tiled D-order A then for each integer t > 1, (¢ - A;j)
defines a Gorenstein tiled D-order A; such that A/7A = A;/mwAs. Hence if a Frobenius full matrix
algebra has a corresponding Gorenstein tiled order, it has infinitely many corresponding Gorenstein
tiled orders. The following example shows that the infinite series {A; | ¢ > 1} is not necessarily

unique for a Frobenius full matrix algebra.

ExXAMPLE 2.1.24. Let A, I' be Gorenstein tiled D-orders defined by the following exponent

matrices

0 0 0O 0 0 0 O
3 0 3 2 5 0 5 3
2 0 0 2 ’ 300 3
3 010 5 0 2 0
Then note that A/7A = T'/xT" and that {A; | ¢ > 1} and {T'; | £ > 1} are disjoint infinite series.

We end this section with the following example. (A similar example can be found in Shiba [27].)

EXAMPLE 2.1.25. Let o be a permutation of the set {1,...,n} such that o(i) # ¢ for all
t=1,...,n, and let A be a Frobenius structure system defined by the empty ¢-invariant subset of
X. (See Corollary 2.1.8.) Let A = (7% D) be an n x n tiled D-order defined by

0 if i=jy

1 otherwise .

Then A/mA is isomorphic to a Frobenius A-full matrix algebra.

2.1.5 Non-cyclic Nakayama permutation.

In this section, we study Frobenius full matrix algebras which are constructed from couples of
Frobenius full matrix algebras.
Let n = p + q with integers p,q > 2, and let B and C be Frobenius full matrix algebras of size

p X p and ¢ X g, and having Nakayama permutations 7 and p, respectively. Let ¢ be a permutation

of the set {1,...,n} defined by

. 7(1) if 1<:<p
(i) := : . :
p+p(i—p) if p+1<i<n.
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Let B = (bgf)) and C = (cgf)) be structure systems of B and C, respectively. Then we put
A= (A44,...,A,) an n-tuple of n X n matrices Ay = (ag-e)) € M, (K) (1 <k < n) defined by

(k) e
bz%_ ) 1f (l,k,]) € T(p)
S0 ) iy i (R 5) € T(g)
N 1 if (i,k,5) €I —(T(p)VT(q))
0 otherwise
where
T(p) = {(i,k,j) €T |1<4,5,k<p}
T(g) = {(,k,j) €T |p+1<14,5,k<n}.

PROPOSITION 2.1.26. A is a structure system of a Frobenius n x n full matriz algebra with

Nakayama permutation o.

Proof. Note that T'(p),T(q) are p-invariant subsets of T', so that ag-e) = ag,)(i) for all (i,k,j) € T.

Hence there is a p-invariant subset ¥ of X such that Y C T'(p) U T'(q) and

E 0 otherwise.

(k) {1 if (i,k,j) €EIVUY
a.- - =

Let (Twy Ty, Tas, Tw,) be an arbitrary element of Im® such that (T, )(Ta,) = 1. If one of T, and
T,, is contained in I, then by Proposition 2.1.7, we have (T4, )(Ta,) = 1. Suppose that T, , Tn, Z I.
Then one can check that Ty, ,Tw, CY NT(p) (or else Ty, , T, CY NT(g)). Hence by Proposition
21.7, To,, To, CY NT(p) (or else T,,,To, CY NT(g)). Since B and C are structure systems, we
have (Ty,)(Tw,) = 1. Hence Lemma 2.1.5 and Proposition 2.1.6 complete the proof. O

We denote the above Frobenius A-full matrix algebra by (B,C). The following theorem is a

particular case where we can prove a converse of Proposition 2.1.26.

THEOREM 2.1.27. Let A be a Frobenius A-full matriz algebra with Nakayama permutation o.
Suppose that o is decomposed into two cycles (1---p)(p+1---n), where n = p+ q and (p,q) =
1. Then A = (B,C) for some Frobenius full matriz algebras B and C with cyclic Nakayama
permutations (1---p) and (1---q), respectively.

In order to prove Theorem 2.1.27, we need the following three lemmas.

LEMMA 2.1.28. Let A = (A4,...,4,) = (a%c)) be a structure system of a full matriz algebra.
Then the following statements holds.
(1) agf)agi) =0 whenever j # k.

(2) For any m > 1, ag;:;’)ag;) e ag;") =0 whenever x,, # xp.

35



Proof. (1) It follows from (A1) and (A3) that aEJ)a(i) = a(k)asgk) = 0 whenever j # k.
(2) We prove by induction on m. When m = 1, this follows from (1). Assume that m > 2. By
(A1) for (i, 2 _1,%m, o), we have

(zo) (Zm-1) (zm) _ (@0) (m—1) (fvm)
aiml e aimm aizo - aiml T aia?o Em 1To°

Hence if 2,,,_1 = o, a?,ffn )1:80 = 0 by (A3), while if z,,_1 # zo, a2 . glEm-1) — by induction

1T 1T9

hypothesis. This completes the proof. ]

In the rest of this section, let A = (Ay,...,4,) = (ag;ﬂ)) be a structure system of a Frobenius
full matrix algebra A with Nakayama permutation c = (1---p)(p+1---n), where n = p + ¢ and

(pa‘Z) =1

LEMMA 2.1.29. The following statements hold.
(1) f1<i<p, p+1<kj<n, thenal} =adl

o (k
o(j
(2) If1<k,j<p, p+1<i<n, thena(J) a(g((J))).

Proof. Since (p,q) = 1, ps + qt = 1 for some integers s,t. Assume that 1 < ¢ < p and
p+1<k,j<n. Then o?(i) =1i,0"*(k) = k and 0?*(j) = j. Hence by Proposition 2.1.1, we have

W) R ek (Pt (R) (P (k) (o(k)

ii = Po(i)a(j) T Pors(i)ore(j) T Yors(j) T Fiorstar(j) T %io(j) -

This completes the proof of (1). (2) is similar to (1). O

)

LEMMA 2.1.30. The following statements hold.
(1) If1<i<p, p+1<kj<n and(i,k,j) €I, then afy =0.
(2) If1<k,j<p, p+1<i<n and(i,k,j) &I, thena() 0.

Proof. Assume that 1 < ¢ < pand p+1 < k,57 < n. Then it follows from Lemma 2.1.29
(1) that (i,k,7) and (¢,0"(k),0"(j)) are in the same @-orbit for all integers r. Put xg := k and
x1:=j. Since p+1 < k,j <n, z; = 0" (xg) for some 1. Put 2 = 6" (x1). Then (i,zg,21) and
(i,21,®2) are in the same -orbit. Iterating the argument to (i,x1,22), we have integers s,t such

that 0 < s < t < g and x5, = 2. Since (i,24—1,2¢) € I, 4—1 7# x;. Hence by Lemma 2.1.28, we have

gl g(Eapr) (1)

Ws+1 WLs42 1Tt
Since (i, %5, ®s41),---,(i,24—1,2¢) are in the same @-orbit, we have agwsil = .. EZ U — =0, so
(k) _
that a;;” = 0. This completes the proof of (1). (2) is similar to (1). O

Proof of Theorem 2.1.27. Let B = (By,...,B}) be a p-tuple of p x p matrices B, = (bgj)) (1<
k < p) defined by bgf) = agf) for all (i,k,7) € T'(p). Then B is a structure system of a Frobenius

p X p full matrix algebra B with Nakayama permutation (1 2 --- p). Similarly, using agf)

where
(i,k,j) € T(q), we have a Frobenius ¢ x ¢ C-full matrix algebra C with Nakayama permutation
(L2 --- q). It follows from Lemma 2.1.30 that ag-c) = 0 for all (i,k,7) € T — (I UT(p)UT(q)),
because the remaining four cases are obtained by applying ¢ to the cases of (1) and (2) of Lemma

2.1.30. Hence we have A = (B,C). This completes the proof. O
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2.1.6 The case of n =6,7.

Let K be a field and D a discrete valuation ring with a unique maximal ideal wD such that
D/nD = K. For n = 6,7, we can verify that every Frobenius n x n A-full matrix algebra A has a
Gorenstein tiled D-order A such that A/mA = A. In this section, we execute its verification. Our
strategy is as follows.

Let o be a given permutation of the set {1,...,n} such that o(:) # i for all i =1,...,n. Find
out all p-orbits X1,...,X,, contained in X. Suppose that A = (A41,...,A,) is a structure system
such that Ap = (al(;c)) € M,(K) (1<k<mn)and

1 if (k5 €l
o ={ 0 if (i,kj) ez
z, if (i,k,j) e X, (1<r<m).

Deduce some relations of z1,...,x,, from (A1)-(A3). Using the relations, find all candidates of
(z1,...,2m). Eliminate any candidate if its structure system is, up to permutation, equal to a
structure system obtained by one of the remaining candidates. (Note that at this stage, we have
not checked yet whether each candidate determines a structure system.) For each candidate, find a
Gorenstein tiled D-order A such that A/7A has a structure system A determined by the candidate.

We may assume that @, 7# 0 for some r (1 < r < m) by Corollary 2.1.8 and Example 2.1.25. It
is sufficient to consider the following eight cases by Remark 2.1.9. In what follows, we abbreviate
a tiled D-order A = (7}iiD) as A = ()\;).

(1) Let n=6 and 0 = (1 23 4 5 6). Then X has the following three y-orbits.

X1 = {¢'(4,1,3)|0<t <17}
Xy = {@t(2,1,5)|0§tS17}
X3 = {¢'(2,1,4)]0<t <17}

Since (2,4,1) € X; and (2,1,4) € X3, for (2,1,4,1), we have x3z; = agl)a(ﬁ) = a%)a(ﬁ) = 0. Simi-
larly, for (2,1,5,1), we have zox1 = a(215)ag“? = agll)ag‘? = 0. Hence (1,0,0),(0,1,0),(0,0,1),(0,1,1)
are the candidates of (1, x2,x3). We have no candidates to eliminate. The following four Gorenstein
tiled D-orders have the factor algebras isomorphic to Frobenius A-full matrix algebras determined

by (wla L2, :113) = (17 0, 0)7 (07 L, 0)7 (07 0, 1)7 (07 1, 1)7 respectively.

(00000 0) (00000 0)
2 02111 2021 2 1
100100 100111
101010 2010 2 1
101101 10000 1
\201110) \201010)
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(00000 0) (00000 0)
2. 0221 2 101111
2 00 211 100111
100011 100011
2 01 10 2 100001
\2 0010 0) \1 0000 0)

Therefore there are five Frobenius A-full matrix algebras of this type, all of which have correspond-

ing Gorenstein tiled orders.

(2) Let n=6 and 0 = (1 2 3 4)(5 6). Then X has the following five ¢-orbits.

X, = {¢'(2,1,4)|0<t<3} Xo = {p%2,1,5)|0<t <11}
X; = {¢'(2,1,6) |0<t <11} Xy = {¢!(3,1,5) |0<t<11}
Xs = {¥'(3,1,6) |0 <t <11}

Since (3,1,5),(1,3,5) € X4 and (3,1,6),(1,3,6) € X5, for (1,3,1,5), we have z3 = a(l?ag? =
a(l?i) (115) = 0 and for (1,3,1,6), we have 22 = a(l?é) (316) = a(ll) (1? = 0, so that x4 = x5 = 0. Since
(2,6,4) € X5 and (1,6,4) € X5, for (2,1,6,4), we have zzrs = a%)a(zi) = a(24)a(4) = z1z5 = 0,

because 5 = 0. Hence we have the following five candidates.
($1, L2, 583) = (1a 070)7 (Oa 1, 0)7 (07 0, 1)9 (17 1, 0)9 (1a 0, 1)

We can eliminate (0,0,1) and (1,0,1). In fact, one can check that A-full matrix algebras determined
by (0,1,0) and (0,0,1) are isomorphic by permutation p = (5 6), and that A-full matrix algebras
determined by (1,1,0) and (1,0,1) are isomorphic by permutation p = (5 6). The following
three Gorenstein tiled D-orders correspond to Frobenius A-full matrix algebras determined by
(1,0,0),(0,1,0),(1,1,0), respectively.

(00000 0) (00000 0) (00000 0)
40 4 43 3 40 4 2 41 4 0 4 443
400 42 2 200 2 1 4 00 4 2 2
400011 402030 400020
30120 3 100101 2 00 2 0 2
\3 0123 0) \ 403 140) \ 4022 40)

Therefore there are four Frobenius A-full matrix algebras of this type, all of which have correspond-

ing Gorenstein tiled orders.

(3) Let n=6 and 0 = (1 2 3)(4 5 6). Then X has the following six ¢-orbits.

X1 = {$'(4,1,3)|0<t<8} X, = {¢(5,1,3)|0<t<8}
X3 = {¢'(6,1,3)|0<t <8} Xy = {¢'(4,1,6)|0<t<8}
Xs = {¢'(5,1,4)|0<t <8} X¢ = {¢'(6,1,5)]0<t<8}.

38



For (4,1,6,3), 2% = ag) (13) = a%)ag) = x2, so that ; = z4. For (5,1,4,3), 23 = a(513)ag3) =
a&)aé?)) = z2, so that x5 = z5. For (6,1,5,3), 25 = ag,))a(l? = ag?ag? = x2, so that x3 = z¢. For
(4,1,3,2), we have zyxy = ag?ag) = (1) (1:;) = 0, because (4,1,2) € Z. For (5,1,3,2), we have
ToTg = a(53) (Z) = a(l)a(l?’) 0, because (5,1,2) € Z. For (6,1,3,2), we have zzz; = ag?’)aé‘? =

aélz)a(lz) = 0, because (6,1,2) € Z. Hence we have the following three candidates.
(.Il, L2, $3) = (17 0, 0)7 (Oa 1, 0)7 (07 0, 1)

We can eliminate (0,1,0) and (0,0,1). The following Gorenstein tiled D-order corresponds to a
Frobenius A-full matrix algebra determined by (1,0,0).

(00000 0)
2 0211 2
200101
101011
2 01 10 2
\1 0010 0)

Therefore there are two Frobenius A-full matrix algebras of this type, all of which have correspond-

ing Gorenstein tiled orders.

(4) Let n =6 and 0 = (1 2)(3 4)(5 6). Then X has eight ¢-orbits.

X1 = {¢'(3,1,5) | 0<¢t <5} X, = {¢%3,1,6)|0<t<5}
X3 = {¢'(4,1,5) | 0<t <5} X, = {o'(4,1,6) |0<¢t<5)
Xs = {¢'(5,1,8) |0<t <5} Xe = {¢'(5,1,4)|0<t <5}
X7 = {¢'(6,1,3) |0 <t <5} Xs = {¢%(6,1,4)|0<t<5}

We have the following relations.

rixeg = x1x7 = v =0 Toxy = xoxg = xoxg = 0
L3Ly — 3L7 — 3Ly — 0 LAy — T4lg — TY4X7 = 0
There are 34 candidates of (z1,...,xs). After elimination, we have the following nine candidates.

(1,0,0,0,0,0,0,0) (1,1,0,0,0,0,0,0) (1,0,1,0,0,0,0,0)
(1,0,0,1,0,0,0,0) (1,0,0,0,1,0,0,0) (1,1,1,0,0,0,0,0)
(1,1,0,1,0,0,0,0) (1,0,1,1,0,0,0,0) (1,1,1,1,0,0,0,0)

The following nine Gorenstein tiled D-orders correspond to Frobenius A-full matrix algebras de-

termined by the above candidates, respectively.

[o000000) (oo0o0000) (000000}
6 0 3 3 4 2 50 4 1 2 3 503 2 4 1
300 3 31 10011 002 21
30302 2 404023 303031
2 0100 2 30200 0000 1
\ 40124 0) \2 010 20) \ 4021 40)
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(000000 (000000 (000000
502 3 3 2 302 121 302121
300 3 3 1 100110 100111
202 01 2 202 011 202 0 2 1
20100 2 101001 10000 1
\300230 \201120 \201020)
(00000 0) (00000 0) (00000 0)
503 2 2 3 502 3 3 2 201111
200 2 2 2 300 3 3 2 100111
30302 3 2020 2 2 101011
30100 3 200 00 2 10000 1
\200020/ \300130/ \100010/

Therefore there are 10 Frobenius A-full matrix algebras of this type, all of which have corresponding

Gorenstein tiled orders.

(5) Let n=7and 0 =(123456 7). Then X has the following six ¢-orbits.

X1 = {¢'(4,1,3) |0 <t <20} X, = {¢%(2,1,5)|0<t<20}
X; = {¢'(2,1,6) | 0 <t <20} Xy = {¥'(5,1,3) | 0 <t <20}
X5 = {¢'(2,1,4) |0 <t <20} X¢ = {¢'(3,1,6) |0< ¢t <6}

We have the following relations.
L2 = T3, L2&L3 = TpLe, T1L2 = T1T5 = L2Lg = T4T5 = 0
Hence we have the following eight candidates of (z1,...,xg).

(1,0,0,0,0,0) (0,0,0,1,0,0) (1,0,0,1,0,0) (0,0,0,0,1,0)
(07070717170) (07070707071) (17070707071) (07171707171)

The following Gorenstein tiled D-orders correspond to Frobenius A-full matrix algebras determined

by the above candidates, respectively.

[0 00 0O0O00O (000000 0)
5052 3 32 4043223
2 002010 3003101
3030311 2 010200
3022030 2 022021
2. 02120 2 3023203
\5 03 223 0) \4012210)
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(0000000\ (000000 0)
2 021111 303322 3
1001000 3003 21 2
1010100 2 000 2 1 1
1011010 2 0110 2 2
1011101 301210 3
2 011110) 3001100
000000 0) 00000O0O0O
2 02211 2 40 42 3 3 2
2 002 101 2 002 1 2 1
1000100 30203 2 2
1011011 30110 31
2 01210 2 201010 2
2 001100 4021120
000000 0) 00000000
3031221 1011111
1001010 1001111
2 020 2 11 1000111
20110 20 1000011
1010101 100000 1
\3021120) \1 00000 0)

Therefore there are nine Frobenius A-full matrix algebras of this type, all of which have correspond-

ing Gorenstein tiled orders.

(6) Let n=7and 0 = (123 45)(6 7). Then X has the following five p-orbits.

X1 = {¢'(2,1,4) |0t <14} Xo = {p'(4,1,3) |0<t< 4}
X3 = {¢'(2,1,6) |0 <t <29} Xs = {¢'(3,1,6) | 0<t< 29}

We have relations 3 = x4 = x5 = 0 by Theorem 2.1.27 and 122 = 0. Hence we have two candidates
(z1, 2,23, 24,25) = (1,0,0,0,0),(0,1,0,0,0). The following Gorenstein tiled D-orders correspond
to Frobenius A-full matrix algebras determined by (1,0,0,0,0),(0,1,0,0,0), respectively.

(0000000\ (0000000\
505 5 5 4 4 10 0 10 5 5 6 6
50055 3 3 00 50 2 2
50005 2 2 05 05 3 3
50000 1 1 100 5 50 4 4
401 230 4 6 0 4 3 2 0 6
\4 01234 0) \ 6 0 4 326 0)
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Therefore there are three Frobenius A-full matrix algebras of this type, all of which have corre-

sponding Gorenstein tiled orders.
(7)Let n=7and 0 = (123 4)(56 7). Then X has the following four ¢-orbits.
X, = {¢%2,1,4) |0<t <3} Xo = {¢%2,1,5) | 0<t <35}
Xy = {¢'(3,1,5) |0 <t <35} Xy = {¢'(5,1,7) [0 <t <35}
We have relations 2o = x3 = 24 = 0 by Theorem 2.1.27. Hence we have a candidate (z1,x2,x3,24) =

(1,0,0,0). The following Gorenstein tiled D-order corresponds to a Frobenius A-full matrix algebra
determined by (1,0,0,0).

(000000 0)
8 088 6 6 6
8 00 8 4 4 4
80002 22
6 0 2 40 6 3
6 02 430 6
\6 0 2 463 0)

Therefore there are two Frobenius A-full matrix algebras of this type, all of which have correspond-

ing Gorenstein tiled orders.

(8) Let n=7and o0 = (12 3)(4 5)(6 7). Then X has the following six y-orbits

X1 = {¥'(2,1,4) |0t <17} Xo = {¢'(2,1,6)|0<t <17}
X3 = {¢'(4,1,6) [0 <t <17} X, = {¢'(4,1,7)]0<t <17}
X5 = {¢"(6,1,4) |0t <17} X¢ = {o(6,1,5)|0<¢t<17}.

We have the following relations.
x% = :c% = T3x5 = X3Lg = T4y = xgxg = 0
Hence we have the following six candidates of (x3, x4, x5, x¢).
(1,0,0,0), (1,1,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1)

The latter four candidates can be eliminated. The following two Gorenstein tiled D-orders have the

factor algebras isomorphic to Frobenius A-full matrix algebras determined by (1,0,0,0),(1,1,0,0),

respectively.
(0000000\ (0000000\
30322 2 2 30322 22
3001111 3001111
20102 21 2010 2 2 2
201201 2 20120 2 2
201100 2 201000 2
\2 010120/ \2010020)

Therefore there are three Frobenius A-full matrix algebras of this type, all of which have corre-

sponding Gorenstein tiled orders.

42



2.2 Minor degenerations of the full matrix algebra

Let n > 2 be an integer, D a discrete valuation ring and K a field. A structure system is an n-tuple
of n X n matrices over K with certain properties. A full matrix algebra with a strucure system is
an n’-dimensional K-vector space with an associative multiplication defined by a structure system.
In [7] and [8], we mainly studied full matrix algebras with (0,1)-structure systems, that is, their
components are 0 or 1, just as structure systems of factor algebras A/7A of tiled D-orders A, and
we are interested in Frobenius full matrix algebras and showed that the class of Frobenius full
matrix algebras is a strictly larger class than that of the factor algebras of Gorenstein tiled orders.
Then one may ask, as a next step, whether there are full matrix algebras which are not isomorphic
to ones with (0,1)-structure systems at all. This is one of the motivations for our study. In this
section, we provide such examples in Subsection 2.2.3 and 2.2.4.

The other motivation for our study is the fact that we are able to treat the class of full matrix
algebras with structure systems by an elementary algebraic geometry technique and study them in
a deformation theory context [13]. It turns out that, for suitable choice of structure matrix ¢, the
algebra M} (K) is a degeneration of the full matrix algebra M, (K), see [12] and Subsection 2.2.1.
So, in this section, we consider the class of full matrix algebras with structure systems as a subclass
of minor degenerations of the full matrix algebra M, (K), see Subsection 2.2.1 for definition. We
would like to note here that we are also followinig an old idea of the skew matrix ring construction
by Kupisch in [19] and [20], see also Oshiro and Rim [22].

There is also anothier motivation coming from the fact proved in [30] that, given a prime p > 2
and an algebraically closed field K of characteristic zero, any Hopf K-algebra of dimension p? is
semisimple or is isomorphic to the Taft Hopf algebra. In connection with this result and the facts
that Hopf algebras are Frobenius algebras and the Taft Hopf algebra is a Nakayama algebra, the
existence of a Hopf algebra structure on a Frobenius algebra of the form MZ(K) ( of dimension
n2 1), seems to be a natural problem to solve. We do not solve it here, but we shall study it in
a subsequent paper. Here we only describe Nakayama algebras (Subsection 2.2.2) and Frobenius
algebras (Subsection 2.2.4) of the form M (K) for a class of matrices q.

Subsection 2.2.1 contains basic definitons, examples and properties of minor g-degenerations
M3 (K) of the full matrix K-algebra M, (K). In particular, we give a criterion for the existence of
a K-algebra isomorphism M} (K) ~ M%I (K) in terms of an action

% : Gp(K) x ST,,(K) — ST, (K)

of an algebraic group G, (K) = 7, X S, (containing the symmetric group S,, and the torus 7;, ) on
the algebraic K-variety ST, (K) C M, «,
see (2.7), and (2.8) . The algebras M (K) and their modules are investigated by means of the
properties of ¢ and by applying quivers with relations. In case the algebra is basic, the Gabriel
quiver of M (K) is described.

A complete clasification, up to isomorphism, of basic algebras MZ(K) in case n = 2 and n = 3
is given in Subsection 2.2.3. The matrices ¢ = [¢(M]---|¢(™)] in ST,(K) such that ME(K) is a

2(K) of the minor constant matrices ¢ = [q(1)| ‘e |q(”)],
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Nakayama algebra are described in Subsection 2.2.2, where also (0, 1)-limits of algebras M} (K) are
studied.

Conditions for the matrices ¢ = [¢()]---|¢™] in ST,(K) to be 4, = M%(K) a Frobenius
algebra are given in Subsection 2.2.4, by extending some of the Fujita’s results in [7, Section 4]. All
matrices ¢ such that A, is a Frobenius algebra and the cube J(A4,)* of the Jacobson radical J(A,)
of A, = M} (K) is zero are described in Theorem 2.2.26. In case K is an infinite field, for each
n > 4, we construct a one-parameter K-algebraic family {C,},ck~ of basic pairwise non-isomorphic
Frobenius K-algebras of the form C,, = M (K).

Finally, we show that if A, = Mi(K) is a Frobenius algebra such that J(A4,)® = 0, then the

representation type of A, is completely determined as follows:

(i) Aq is representation-finite if and only if n = 3,

(ii) Ag is tame representation-finite [28, Section 14.4] if and only if n = 4, and
(iii) Ag is representation-wild [28, Section 14.4] if and only if n > 5,

where we assume in (ii) and in (iii) that the field K is algebraically closed.

Throughout this section K is a field and R is a ring with an identity element. We denote by
J(R) the Jacobson radical of R, and by mod(R) the category of finitely generated right R-modules.
Given n > 1, we denote by M,,(R) the full matrix R-algebra consisting of all square n x n matrices
with coefficients in R and by e;; the matrix unit in M, (K) with 1 on the (7, 7)- entry, and zero

elsewhere. We denote by ey,...,e, the standard matrix idempotents ey, ..., emm of Ag = M, (R).

2.2.1 Minor constant structure matrices and minor degenerations of M, (R).

Throughout, we fix an integer n > 2. We suppose that K is an arbitrary field and R is a ring with
an identity element. We recall that, given a finite dimensional K-algebra A and a complete set
e1,...,e, of pairwise orthogonal primitive idempotents of A, we define the Cartan matriz of A to
be the matrix C4 = [¢;;] € M,(Z), where ¢;; = dimg e;Aej. The algebra A is said to be basic if
e;A # e;Afor i # j, and A is said to be connected if A is not a direct product of two K-algebras
(see [1] and [2]).

Following Fujita [7], we introduce the following definition.

DEFINITION 2.2.1. Assume that » > 2. A minor constant structure matrix of size n x n?, with

coefficients in a ring R, is the n-block matrix

1 2 n
0 =gl |ai}”] (2.1)
(r)
ij
satisfying the following two conditions

where ¢V = [qg.l)], g™ =[] € M,(R) are n x n square matrices with coefficients in R

(C1) qg) =1 and qx) =1, for all j,» € {1,...,n}.

(C2) qET)qg) = qg)q,(,j), for all ¢,j,7,s € {1,...,n}.
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We call g basic if, in addition, the following condition is satisfied
(C3) q]T) =0,forr=1,...,nand all j € {1,...,n} such that j # r,

The minor constant structure matrix g is called (0,1)-matrix, if each entry qg;) is either 0 or

1. Throughout this section, a minor constant structure matrix will be called a structure matrix of
M, (R), in short. We denote by

ST.(R) C M, (R) (2.2)

the set of all minor constant structure matrices ¢ of size n x n?, with coefficients in a ring R.

LEMMA 2.2.2. (a) Letn > 2 and let ¢ = [ql(]l)|ql(]2)| |qz(]n)] be a matriz of the form (2.1) satis-
fying the condition (C1). Then the equality q}])qz(s) = qz(s)q,(,]s in (C2) holds, if r =i, orr = j,
j=t,j=s,orr=sandi,j,r,s € {1,...,n}.

(b) Assume that ¢ = [qz(;)|ql(]2)| oo |ql(]n)] is a structure matriz (2.1) in ST, (R).

(b1) ¢\7 =g\, for all j,r € {1,...,n}.

(b2) qgj) = qgs)q£s) = qij)qﬂ , for any triple of elements j,r,s € {1,...,n}.

(b3) If qx # 0 and qss # 0, then qgs) = qjj £ 0.

(¢) Ifn > 3 and the matric q = [ql] |q ||qz(:)] is basic then, for anyi,j,r» € {1,...,n} q” q”,.) =
0ifj#r, and ¢2q\) =0 if i # j.

Proof. (a) Let r = i. Then (C1) yields q£ ) = =1, q,(,s) =1 and we get qgj)qz(s) = ‘17(‘]) = q7(’]5) =
(r) (G) _ (7) (i) (r) () _ (r) ()

ars @rs = q;. qrs - 7 = j or j = s, the equality 4 q;) = q;. qr5 follows in a similar way.

(b) (bl) Apply (C2) with ¢ = j, s = r and then use (C1).
(b2) By (C2), we have q;])qgi) = qﬁs)q( 7. Since q(]) =1, the first equality holds. The second

one follows in a similar way.

(b3) By (C2), we have qg)qg;) = qg)qgs) Smce q 75 0 then, according to (bl), the number
() ;

gs)) is non-zero and the equation yields q ;A 0.

(c) By applying (C2) with s = r we get qlgj)ql(i) = ql(r)q,(’z,) = 0, because j # r implies qg) =0, by
(C3). The equality qﬁj-)qg;) = 0 follows in a similar way.
[

Now we introduce the minor g-degeneration MZ(R) of the algebra M, (R).

DEFINITION 2.2.3. Let n > 2 be an integer and let ¢ = [¢(Y)]...|¢(™] be a minor constant
structure matrix (2.1) in ST, (R) with coefficients in th center of a ring R. By a g-degeneration
MZ (R) of the full matrix R-algebra M, (R) is defined to be the R-module M, (R) equipped with
the g-multiplication

q : Mp(R) @ Mp(R) —— M, (R)
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that associates to any pair of matrices \' = [A};], \" = [A]}] € M, (R) the matrix

A g A" =[Ng;], where \;; = Z)\w 2 I (2.3)

3_]7

for i,j € {1,...,n}. Throughout, we simply write A’\" instead of X' -4 A".

A straightforward computation shows that MZ(R) is a ring and the identity matrix F =
diag(1,...,1) of M,,(R) is the identity of Mj (R).

By a minor degeneration of the full matrix ring M, (R) we mean a g-degeneration ring MZ(R),
where n > 2 and ¢ is a structure matrix (2.1) in ST, (R).

Elementary properties of the K-algebra M (K) are collected in Theorem 2.2.5 below. In par-
ticular, it follows that M7 (K) is a non-semisimple basic K-algebra, if ¢ is basic, n > 2, and K is a
field.

We remark that if ¢ = [¢(1)]...|¢(")] is the matrix (2.1) with qz(;) =1foralli,j,s € {1,...,n},
then the conditions (C1) and (C2) are satisfied, but the condition (C3) is not. In this case, we have
MZ(R) = M, (R), because the formula (2.3) defines the usual matrix multiplication on M, (R).

It turns out that, under a suitable choice of g, the algebra M (K) is a degeneration of M, (K)
in the sense of [13], if K is a field, see Example 2.2.4 and 2.2.8. We recall from [13] and [11]
that given two K-algebras A; and Ay (with an underlying K-space K™) defined by the constant
structure matrices g1 and po, respectively, g1 and po are viewed as elements of the algebraic variety
Alg(K™) of associative unitary K-algebra structures on the vector space K™. The general linear
group GI(K™) acts on Alg(K™) by the transport of structures, see also [18, p. 225]. An algebra
A; is said to be a deformation of the algebra Ao (or that Ay is a degeneration of the algebra A7),
if po lies in the closure of the GI(K™)-orbit of p; in Alg(K™), see [11], [12] and [18]. We note
that the set ST,(K) C M, y,2(K) of minor structure matrices (2.1) of size n x n? is an algebraic

K-variety. Moreover, there is a variety embedding

ST, (K) C Alg(K™) = Alg(M,(K)) (2.4)

defined by attaching to any minor constant structure matrix g the matrix of constants of the
multiplication ¢ : M3 (K)® M} (K) — MZ(K) in the matrix unit basis, see (2.5) below. It is clear
that ST, (K) is a locally closed subset of Alg(K™).

In this subsection we study the basic K-algebras M3 (K) and their modules by means of quivers
with relations. We recall that, given a quiver @ = (Qo, @1), by an oriented paths in Q starting

from the vertex ¢ = ¢y and ending at the vertex j = 7, we mean a formal composition
_ o BB )
BiBo-fBm = (i0 B0 B 284

of arrows (1,...,8m. We denote by K Q the path K-algebra, that is, the K-algebra generated by
all oriented paths in Q, see [1, Chapter II], [2], [28, Chapter 14] and [32].

Now we illustrate the notion of a minor degeneration algebra by the following example.
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EXAMPLE 2.2.4. Assume that n = 2 and R is a ring with identity. It follows from Lemma
2.2.2(b) and the conditions (C1) and (C2) in Definition 2.2.1 that ¢ = [¢V]¢(?] is a structure

1 1]p 1 M (2.
- , where pp = ¢,/ = q;7’ is

matrix (2.1) in ST2(R) if and only if g has the form ¢(p) = [ L1

1 1
1 0

Assume that K is a field, g(u) is the structure matrix presented above with 4 € K, and let
A(p) = Mg(”)(K). We claim that:

1 1

a scalar in R. The matrix ¢ = q(0) = [ o1 ] is a unique basic structure matrix in STo(R).

e The K-algebra A(p) is semisimple and A(pu) = A(1) = M(K) if and only if x4 # 0.
e For each p € K, A(p) is a degeneration of the full matrix algebra A(1) = My (K).
e A(0) is a non-semisimple self-injective Nakayama K-algebra of finite representation type.

e The algebra A(0) admits a Hopf algebra structure (by [30]). If char K # 2, then the Hopf
algebra A(0) is isomorphic to the Sweedler Hopf algebra, see [21, p. 8].

The first statement and the second one are easily verified. To see the third one we note that, by
the multiplication rule (2.3), the Jacobson radical J(A) of the K-algebra A = A(0) has the form

0 K
J(A) = x ol= Kejs ® Key;. Note also that J(A4)?2 =0 and soc A4 = J(A). Hence we easily

conclude that there is a K-algebra isomorphism
A=A(0)=2KQ/I,
where @ is the quiver

B21
and I = (B120321, B21312) is the two-sided ideal of the path K-algebra K Q of Q generated by two zero

relations (12021 and P21312 (see [1], [28, Chapter 14]). The K-algebra isomorphism A(0) = KQ/I
is given by the formulae e; — e1, ex = €2, €13 — (12 and ez — B2, where 1 and e2 are the
primitive idempotents of the path algebra K@ defined by the stationary paths at the vertices 1
and 2. Hence easily follows that A is a non-semisimple self-injective Nakayama K-algebra of finite

representation type.
We extend [7, 1.2(1)-1.3] as follows.

THEOREM 2.2.5. Assume that K is a field, n > 2 is an integer, g = [q(1)| e |q(”)] s a minor
constant structure matriz (2.1) in ST, (K), and let A, = M} (K).

(a) Ag is an associative K -algebra such that

(s) _
2 €5 ors=1
€is€tj = G ci T ’ (2.5)
0 for s #£ t,
and eje;; = e;; = egjej, for all i,5,s,t € {1,...,,n}, where e;; is the (i, j)-matriz unit.
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(b)

(b)

The standard matriz idempotents e; = eq1,...,e, = €nyn of the algebra M, (K) are pairwise
orthogonal primitive idempotents of the algebra Aqy. Moreover, there is a right ideal decompo-
sition A = e1Aq @ ... ® e, Ay, there are K-algebra isomorphisms Ends(ejAq) = e;Aqe; = K,
fori=1,...,n, and an isomorphism Homy (ejAq,e;4,) = e;Age; = Keyj of K-vector spaces,
for i # j. Moreover, there is an isomorphism e;A; = e; Ay of right ideals if and only +f

q%) = ¢ #0.

The algebra Aq is basic if and only if the matriz q is basic.
If A, is basic then

(i) Ag is connected, the ideal J of Ay consisting of all matrices X = [X;;] with A1 = ... =
Ann = 0 is the Jacobson radical J(Ay) of Aq, and J(Ay)" =0,
(i) the group GI(Ag) of units of Ay consists of all matrices A = [A;;] € M, (K) with Aqq - ... -
Ann # 07
(ili) every non-zero two-sided tdeal of Ay ts generated by a finite subset of the set {e;;; i,j =

1,...,n} of the matriz units e;; of Ay, and

(iv) the global dimension of the algebra A4 is infinite.

Proof. (a) The definition of the multiplication -4 (2.3) in A, = M{(K) yields the formula (2.5).
Hence, in view of (C1), we get the equalities e;e;; = €;; = e;5e;. It follows that the matrix of
constants of M} (K) in the matrix units basis {e;;};; is obtained from ¢ = [d,...,¢™] by
completing it with zeros at the remaining entries, see [23]. Moreover, the multiplication rule
(2.3) yields

(eisesjlejr = qg;)eijejt = q§f)q§f)ea, and

€is (eSjejt) = eiS(qg)est) = qg:)qgg)eit'
Hence we easily conclude that the multiplication -4 in A; = M%(K) defined by (2.3) is associa-
tive if and only the condition (C2) is satisfied, see [23, Section 1.5]. It follows that A, = M%(K)
is an associative K-algebra, the identity matrix F = diag(1,...,1) of M, (K) is the identity of

A, and the equalities (2.5) hold.

Given a matrix A\ = [A\yy] € 4, = M} (K) and p < n, we have A = Y X;je;; and, according

4]
to (2.5), we get epde, = ep(d Aijeijlep = )\ppq},g)qg)ep = Appep, because qz(f};) = 1. It follows

i,
that the map eple, — A,, defines a K-algebra isomorphism ep,Age, = K. The K-algebra
isomorphism Endy, (epAq) = epAge, is given by f — f(ep). The vector space isomorphisms
Homy, (ejAq,e;44) = e;Age; = Key; follow in a similar way.
To prove the remaining part of (b), assume that q%) # 0, where ¢ # j. By Lemma 2.2.2

(a), qyj) = qg) # 0. Consider the Aj-module homomorphisms e;A; «— e;A, defined as

the left hand side multiplication by e;; and by e;;, respectively. Since ej;e;;e; = equ) and

48



(d)

(%)

€;jejie; = einj' then the right ideals e;A4 and e; A4 of A, are isomorphic. Conversely, assume

that there exists an isomorphism A : e;4;, — e;Ag, and let h(e;) = eja, where a = ) A e,
8,7

and A, € K. Then 0 # h(e;;) = h(eses;) = h(e;)es; = ejae;; = Ajiejies; = ej/\jiq;?. In a view
of Lemma 2.2.2 (a), this yields q%) = ql(ij) £ 0.

Assume that A, is basic and suppose, to the contrary, that ¢ is not basic, that is, qx) # 0, for
some 7 and j # r. Then n > 2 and by Lemma 2.2.2 (a), qg? = qg) # 0. It follows from (c)
that the right ideals e; Ay and ej A, of A4 are isomorphic; contrary to the assumption that A,

is basic.

Conversely, assume that ¢ is basic. By (b), there is a right ideal decomposition 4; = e; A, ®
... ® ey Ay and the vector space Homy,(ejAq,e;4,) is non-zero, for all i,5 € {1,...,,n}. It
follows that A, is connected. Moreover, a simple calculation shows that J is a two-sided ideal

of A, such that J» =0 and A,/J =2 K x ... x K. Hence we conclude that J = J(A4) and the

algebra Ay is basic.

Assume that ¢ is basic. The statement (i) is proved above. To prove (ii), assume that A =

[Aij] € ML(K). First we show that
A is invertible in A, if and only if A1 ...+ App # 0.

To prove the sufficiency, assume that A1;-...- Ay, 7 0 and consider the diagonal matrix dy :=
diag(A11, X225 .+ -5 Ann) € ME(K) with the coefficients A\11, A22, ..., Ann on the main diagonal.
Now we view the matrix dy! -, A = diag(A;1-1,Agg', - -, Appt) g A in the form dy ' g A = E — ),

R 1% 1)

where A € J(4,), see (i). It follows that A" = 0 and therefore
GG (E+XA+ X2+ 3 )= (BN (E+ A+ X2+ 4" =P,
This shows that A is invertible in A, and the matrix
A h=dy g (BE+ A+ X2+ 42

is the inverse of A in A;,. Conversely, assume that X is invertible in A, and assume, to the
contrary, that A1 - ... - Ay, = 0; say A;; = 0. It follows from (i) that A has the form A =
A2zes + -+ - + Annen + A, where A € J(Aq) and A" = 0. If 4 is an inverse of \ in Ag then

E:A'q,u = ()‘2262+"'+)‘nnen+5‘)'qﬂ
= )\2262'q/~’/+"'+)\nnen‘qﬂ“"}\'q/f«:022€2+"‘+cnnen+)\’)

where ¢c22,...,¢pn € K and X € J(A4,). It follows that the coeflicient at the (1,1)-entry of the

matrix cazes + -+ - + cpnen + X is zero, and we get a contradiction. This finishies the proof of

(ii).
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(iii) Assume that 2 is a non-zero two-sided ideal of A,. If A = [A;;] is a non-zero matrix in

2, with A;; € K, then A = > \;;e;;. It follows that, given 7 and j such that A;; # 0, the
ij
element e;Ae; = A;je;; belongs to 2 and, consequently, the matrix unit e;; belongs to I,

because A;; # 0. Hence (iii) follows.

(iv) Since, by (b), e;Age; = Keyj, for all 4,5 € {1,...,n}, then C4, has the form

On the other hand, it is well-known that the determinat of the Cartan matrix of any
K-algebra R is 1 or —1, if R is basic of finite global dimension, see [1, Chapter I]. Then

(iv) follows and the proof of the theorem is complete.

O

COROLLARY 2.2.6. If K is a field and g = [¢V]...|¢™)] € STL(K) is a structure matriz. There
is a K -algebra isomorphism M (K) = M, (K) if and only if qg) £ 0, q:(,j,,) Z£0,..., q,(jl) #£0.

Proof. Let A, = ML(K). We recall from Lemma 2.2.2 (b) that q](;) = qg), for all j,r €

{1,...,n}. Hence, in view of Theorem 2.2.5 (b), there are isomorphisms e A, = ... = e, A, of
right ideals of A, if and only if qg;) #0, q%) #0,..., qq(lln) # 0. Since Ende; A4 = K, the corollary
follows. O

DEFINITION 2.2.7. (a) Given a matrix A = [Ayg] € M,(R) and a permutation o € S, of the
set {1,...,n} we denote by o x A = [A7 ] the matrix in M, (R) with A7, = A,-1(p)0-1(q)-

(b) Given a minor constant structure matrix ¢ = [¢(V]...|¢(™] and ¢ € S,, we set 0 x ¢ =
[0 % ¢ "W)] . |o % ¢@ ()], We also define the transpose of q to be the n-block matrix
g"= q=]| q(1)| oo q(”)], where ¢l = [q(j)]t" is the transpose of ¢\/), for j =1,...,n.

It is clear that the map (o,q) — o * ¢ defines an action
x 1Sy X STp(K) — ST, (K) (2.6)

of the symmetric group S, on the K-variety ST, (K) of all minor constant structure matrices ¢
(2.1) of size n x n%. The subsets consisting of all basic matrices and of all basic (0, 1)-matrices are

S, -invariant.

EXAMPLE 2.2.8. A simple calculation shows that, in case n = 3, every matrix ¢ = [¢(1|¢(?|¢(®)]
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in ST3(K) has one of the following three forms, up to the Ss-action,

111 A1 €81 [ 111 A12 001
=] 1\p 111 5%1 , @2= | 1Ap 111 001 |,
1w V1A5 111 | 1v0 210 111
[ 111 [ 111 01A 001
gs= | 10 ] 101 111 701 |,
| 100 | 10 010 111

where A, i, v,€, 7 € K; and we assume that pv # 0 in the matrices ¢; and go. Note that g2 = ¢1]¢=o
and g3 = ga2|yx—o- It follows Corollary 2.2.6 that, if A{ # 0 then A; = MZ'(K) is isomorphic to
M., (K), because (q1)22 =A#0and (q1)33 = ¢ # 0. Note also Ay = M’ (K) is Morita equivalent
to the algebra A(0) = Mq( )(K) of Example 2.2.4. Indeed, by Theorem 2.2.5 (b) there is an
isomorphism e1As = e A1, because (q2)11 = (q2)g12) = A # 0. Moreover, the right ideals ey A5 and

e3As are not isomorphic, because (q2)33 =0.
The following simple result is very useful.

LEMMA 2.2.9. Letn > 2 and let ¢ = [¢V)]. .. |¢(™)] be a basic structure matriz (2.1) in ST,(K),
with coefficients in a ring R. Let Mi(R) be the q-degeneration of M, (R).

(a) The transpose ¢" = q= [ ¢W|...| ¢] of q is a basic structure matriz in ST, (K) and the
K -linear map M} (R) — M%tr(R), defined by X\ — X", is an R-algebra anti-isomorphism, that
is, it defines an R-algebra isomorphism (M} (R))°P = M%”(R).

(b) Ifo € S, is a permutation of the set {1,...,n} then o *xq = [0 * q("(l))| e o q("("))] 5 a
basic structure matriz in ST,(K) and the map A — o * X defines the R-algebra isomorphism

MZ(R) = M7 ™(R) such that e;j — e, for alli and j.

a(j)

Proof. The proof of (a) and (b) is straightforward, and is left to the reader. O

Now we extend the action * : S;, X ST, (K) — ST, (K) of the symmetric group .S,, to an action

of the following semidirect product algebraic group

Gu(K) =T, % Sa (2.7)

containing S,,, where 7, x S, =7, x S, is the Cartesian product,
Tp ={T = [tij] € Mp(K); t11 = ... =tp, = Landt;; # 0,for all 4, 5}

is viewed as a group with the coordinate-wise multiplication [t;;]-[t};] = [ti;t;;] and the multiplication
in G, (K) is defined by the formula (T,0)-(T",0') = (T-(0*T"), o0'), for T,T' € 7, and 0,0’ € S,,.
It is clear that 7, is isomorphic to the (n? — n)-dimensional K-torus T,2_,,(K) = K* x K* x

. X K* (the product of n? — n copies of the multiplicative group K* = K \ {0} of K). We define

an action

4 : Gp(K) x ST,(K) —> ST,(K) (2.8)
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by the formula (T,0)*q = [ ¢V)]...| ¢™], where T = [t;;] € T,,, 0 € Sy, and ¢(") = [qz] ] € M, (K)

is defined by ql(]) = q(a_l((;))_lm t_ltz]tm ,for 4, j,r € {1,...,n}.
The following result shows that the G, (K)-orbits class1fy the isomorhism classes of the basic

algebras M (K) of dimension n2.

THEOREM 2.2.10. Assume that K 1s a field and that n > 2 is an integer.

(a) The map (2.8) is an action of the algebraic group G,(K) (2.7) on the algebraic K -variety
ST.(K) of minor structure matrices g = [¢V]...|¢"™] (2.1). The subvariety of ST,(K) con-
sisting of the basic matrices is G, (K)-invariant.

(b) Given two basic structure matrices ¢ = [¢V)|...|¢"™] and ¢’ = [¢'MV)]...|¢"™] in STL(K), the

following statements are equivalent.
(bl) The K -algebras M (K) and MZ (K) are isomorphic.

(b2) The matrices q and q' belong to the same G, (K)-orbit.

(b3) There exist a permutation o : {1,...,n} — {1,...,n} and a square matriz T = [t;;] €
M, (K) such that

® t11:...:tnn:1,
o t;; #0, foralli,j €{1,...,n}, and
o -q'g;) rj = qc(:z(;))(‘ “tij, for alli,r,j € {1,...,n}.

Proof. (a) The proof is straightforward and we leave it to the reader.

(b) A simple calculation shows that ¢’ belongs to the G,, (K )-orbit of g if and only if there exist
a permutation ¢ € S, and a matrix T = [t;;] € M,(K) such that the conditions stated in (b3) are
satisfied. Consequently, the statements (b2) and (b3) are equivalent.

(b3)=(b1) Suppose that T' = [t;;] € M, (K) and o € S,, are such that the conditions stated
in (b3) are satisfied. Then the map e,(;),(;) — tijes; defines a K-algebra isomorphism M7 (K) =
MY (K).

(b1)=(b3) Assume that there is an K-algebra isomorphism h : Mi(K) — M%I(K). The ele-
ments h(ey),...,h(e,) are primitive orthogonal idempotents of MZ (R) such that 1 = h(e;)+...+
h(en). By [5, Theorem 3.4.1], there exist a permutationo : {1,...,n} — {1,...,n} and an invertible
element B € MZ (K) such that e; = B-h(ey(;
exists a K-algebra isomorphism A’ : M (K) — MY (K) such that e; = h'(ey(1)),- -, en = B (ex(n))-
Since h'(es(i)o(j)) = P'(es(i) - €a(i)o(j) * €a(j)) = € - R (es(i)o(j)) - €j, then there exists a non-
zero element t;; € K* such that h'(e,;)0(j)) = tijei, for 4,5 € {1,...,n}. Tt is clear that

))-B_l, for j =1,...,n. Hence we conclude that there

t11 = ... = tyn = 1. Moreover, the equality h'(e,(;)o(r)  €o(r) o(j)) = M (€o(i)o(r)) - I’ (€a(r)o(j)) yields
q[(;zg()r)(].)tij = tirq'g)trj, for all i,7,j € {1,...,n}. Consequently, the matrlx T = [t] E M, (K)
satisfies the conditions stated in (b3) and (T, 0) is an element of the group G, (K). This completes
the proof. ]

As an immediate consequence of Theorem 2.2.10 we get the following isomorphism criterion.
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COROLLARY 2.2.11. Let K be a field, n > 2, and let ¢ = [¢(V]...|¢™)], ¢ = [¢D|...|¢™)] be
basic structure (0,1)-matrices (2.1) in ST, (K). The K -algebras M} (K) and MY (K) are isomorphic

if and only if ¢ and ¢’ are in the same S, -orbit, that is, there exist a permutation o : {1,...,n} —
{1,...,n} such that q((;g;()r)(j) = q’g;), for alli,r,j € {1,...,n}.

Proof. In this case the matrix T' = [t;;] € 7,,(K) required in Theorem 2.2.10 (b) has t;; = 1, for
all 7 and j. [

Following P. Gabriel [10], we associate to any basic and connected finite dimensional K-algebra

A, with a complete set of primitive orthogonal idempotents {ej,ez,...,e,}, the Gabriel quiver
Q(A) = (Q(A)g, Q(A)1) as follows. The set Q(A)g = {1,2,...,n} is the set of points of Q(A),
its elements are in bijective correspondence with the idempotents ey, es,...,e,. Given two points

i,7 € Q(A)g, the arrows 3 : ¢ — 7 in Q(A); are in bijective correspondence with the vectors in a
basis of the K-vector space e;[J(A)/J(A)?]e;, see [1, Chapter II].

COROLLARY 2.2.12. Let n > 2 and let ¢ = [¢(V]...|¢\™] be a basic minor constant structure
matriz (2.1) in ST,(K). Let Ay = Mi(K) be the g-degeneration K -algebra of M, (K) and let
Q(Ay) = (Q(Ag)o, Q(Ag)1) be the Gabriel quiver of A. Then the following statements hold.

(a) Q(Ag)o={1,...,n}.

(b) Given i,j € Q(Ag)o, there exists an arrow i — j in Q(Ag)1 if and only if i # j and qg) =0,
for all v & {i,5}. In this case, there is a unique arrow [B3;; : ¢ — j that corresponds to the coset

€ij € ei[J(Aq)/T(Ay)?le; of the matriz unit e;;.
(c) The quiver Q(A,) is connected and has no loops.

Proof. (a) It follows from Theorem 2.2.5 that the algebra A, = Mi(K) is basic and 4,/ J(4,) =
Key @ ... ® Ke,. The points of the quiver Q(A4,4) correspond to the primitive idempotents

€1,...,e, of A  and (a) follows.

(b) It follows from Theorem 2.2.5 that, given two primitive idempotents e; and e;, we have
Homy, (ejAq,e;44) = K, ifi = j, and Homy (e;Aq,e;44) = e;Age; = e; K, if i # j. Hence we
get e;J(Aq)e; = 0, that is, the quiver Q(A,) has no loops. If i # j, we get e;J(Aq)e; = e;; K and
therefore e;J(A,)%e; = e;J(A)e; if and only if there is an s € {1,...,n}\ {i,j} such that e;; =
pe;segj, for some non-zero p € K. Since eje,; = ql(;)eij, then 0 # €;; € ei[J(Aq)/J(Aq)z]ej if
and only if ql(;) =0, for all s ¢ {7,7}. Hence (b) follows.

(c) By Theorem 2.2.5 (e), the algebra A, is connected. Hence we conclude that the quiver Q(A,)
is connected (see [1, Corollary II.3.4]). Since, by (C3), ;;)

j € {1,...,n} such that j # r then, according to (b), the quiver Q(A4) has no loops.

This finishes the proof. [

=0, for r = 1,...,n and all
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Now assume that A = MZ(K) is a minor degeneration of the algebra M, (K), where ¢ =
[¢™]...|¢"™)]. Let I be a non-empty subset of {1,...,n}. Assume that s = |I| is the cardinality of
I and I = {iy,...,is}. Define g; to be the s-block matrix

ar =g .. 1a] (2.9)

obtained from ¢ by the restriction to I, that is, each matrix q}is) € M,(K) is obtained from
q*) € M, (K) by deleting the j-th row and the j-th column, for all j & I. It is clear that g7 is a

basic structure matrix of size s X s2. We set
A =MI(K).
Let ey = ), ej = e;; +...+e;,, where are the standard primitive idempotents of A. Then ey is an

jel
idempotent of A = M} (K) and there is a K-algebra isomorphism

€]A6]:€]M%(K)612M31(K) :A[ (2.10)

given by associating to any matrix ejAe; € efM7(K)es the restriction of A = [A;;] € MZ(K) to
I={i1,...,i).
Now we define three additive K-linear covariant functors

mod MY (K) —22— mod M (K) (2.11)
I
by the formulae res;(—) = (—)er, Tr(—) = — ®c 4e; €14, Li(—) = Hom,, 4.,(Aer,—), where

A=MiK). If f : X — X' is a homomorphism of A-modules, we define a homomorphism of
M (K)-modules resy(f) : res;(X) — resy(X') by the formula xey — f(z)er, that is, resr(f) is
the restriction of f to the subspace Xe; of X, see [1, Section 1.6] and [28, Section 17.5].

The following result is very useful in applications.

THEOREM 2.2.13. Suppose that A = ML(K) and Af = MY (K) are as above. Then there is a
K -algebra isomorphism Ap = ey Aey described above and the functors Tr, Ly (2.11) associated to I

satisfy the following conditions.

(a) Tt and Ly are full and faithful K -linear functors such that res; o Tp =2 id = resy o Ly, the
functor Ly vs right adjoint to resy and T1 is left adjoint to resy.

(b) The restriction functor resr is exact, Tt is right exact and Ly is left ezact.

(c) The functors Tt and Ly preserve indecomposability, T1 carries projectives to projectives and

Ly carries injectives to injectives.

(d) An A-module X s in the category ImTr if and only if there is an ezact sequence
Py LN Py — X — 0, where Py and Py are direct sums of summands of efA = e;; A @
...D eisA.
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Proof. Apply [1, Theorem 1.6.8] and [28, Section 17.5], and the arguments used there. The
details are left to the reader. O

COROLLARY 2.2.14. Suppose that A= M3 (K) and Af = M¥(K) are as above.

(a) If A is representation-finite, then Ay is also representation-finite.

(b) If K = K and A is representation-tame, then Ar is also representation-tame [28, Section
14.4], [33, Chapter XIX].

(c) If K = K and Aj is representation-wild, then A is representation-wild [28, Section 14.2],
[33, Chapter XIX].

Proof. (a) Assume that A is representation-finite and consider the fully faithful functor 77 :
mod A7 — mod A, see (2.11) and Theorem 2.2.13. Since T carries indecomposable Ar-modules
to indecomposable indecomposable A-modules, and nonisomorphic Ar-modules to nonisomorphic
Ar-modules, then (a) follows.

(b) Assume that the field K is algebraically closed and A that is representation-tame. Fix a
dimension d € N and consider the functors 77 and res; presented in (2.11).

First we show that, given a module X in mod Aj with dimg X = d, the K-dimension of
the A-module T7(X) is not geater than d = d - p;, where p;y = max{dimg e;4; i € I}. To
see this we note that the Aj-projective cover of X has the form @(e;A;)% — X — 0, where
d; = dimg (top X)e; < d. By Theorem 2.2.13, the functor 17 iszfil;g,ht exact and there is an A-
module isomorphism T7(e; A7) £ e;A, for all ¢ € I. It follows that T induces an epimorphism

P(e;A)% —s Tr(X) — 0 of right A-modules. Hence we get
el

dimg Tr(X) < dimg @) (e;4)% <D (d; - dimg e;4) < (O di) -pr < d-pr =d,
el el el
and our claim follows.

Since the algebra A is representation-tame then, given the K-dimension d = d - py, there exist

a non-zero polynomial h € K[t] and a family of K-linear functors
() @s NW, ... (=) ®s N : ind(mod §) ———— mod 4

where S = K[t,h 1], N® . N are S-A-bimodules satisfying the following two conditions:
(TO) The left S-modules gN(), ... ¢ N() are finitely generated and free.
(T1) All but finitely many indecomposable modules in mod A of K-dimension < d are isomor-
phic to modules in Im (=) ®s N(D U ... UIm (=) ®5 N7, see [28, Section 14.4] and [33, Chapter

XIX].
Here ind(mod S) is the category of indecomposable S-modules of finite dimension. Consider the
restricted S-Ar-bimodules resIN(l) = N(l)el, cee resIN(’") = N(T)eI. It is clear that the S-module

res;f N is finitely generated and free, for each j, because the functor res; is exact. Now, if X
is an indecomposable a module in mod Aj with dimg X = d then, according to Theorem 2.2.13

and our claim above, the A-module T7(X) is indecomposable and dimg T7(X) < d. Tt follows that
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there exists an S-module N in ind(mod §) such that T;(X) = N ®@s N = N @5 NUe;, for some

j < r. In view of Theorem 2.2.13 (a), we get A;-module isomorphisms
X 2 resy(T1(X)) = res;(N ®s Ny = (N @5 N)e; 2 N @g (N)er = N ®@g resf N,

This shows that the algebra Ay is representation-tame.

(c) Assume that the field K is algebraically closed and that the algebra Aj is representation-
wild. By the tame-wild dichotomy [4], [28, Theorem 14.14],[33] A is not representation-tame. It
follows from (b), that the algebra A is not representation-tame. Hence, A is representation-wild,
by the tame-wild dichotomy. [

COROLLARY 2.2.15. Assume that K is a field, ¢ = [¢\V]...|¢"™] is a minor constant matriz
in ST, (K) and let I = {i1,...,is} be a mazimal subset of {1,...,n} such that q;;) = 0, whenever
7,7 € I and j # r. Then the minor constant matriz q; in ST,(K) is basic, the K -algebra M (K)
is basic and is Morita equivalent to the algebra M} (K).

Proof. Let A = MZL(K) and suppose that I = {iy,...,is} satisfies the maximality conditions.
It follows that the constant matrix ¢y is basic and, in view of Theorem 2.2.5, the K-algebra A
is basic and e;A # e, A, for all j,7 € I such that j # r. By the maximality of I, given r ¢ I
there exists 7 € I such that qg-;) # 0. Since q;;) = qg), by Lemma 2.2.2, then e, A = ¢;A, see
Theorem 2.2.5. Consequently, for each » € {1,...,n} there is i, € I such that e, A = e;, A and
the modules e;, A, ...,e; A are pairwise non-isomorphic. In view of Theorem 2.2.13 (d), it follows
that the functor 77 : Mod M¥ (K) — Mod M} (K) is dense. Since, according to Theorem 2.2.13
(a), the functor 77 is fully faithful then it is an equivalence of categories. This shows that the

K-algebras M/ (K) and M?(K) are Morita equivalent. O

2.2.2 (0,1)-limits and Nakayama algebras.

Throughout this subsection the following definition is of importance.

DEFINITION 2.2.16. Let A, = M} (K) be a minor degeneration algebra of M, (K) with a struc-
ture matrix ¢ = [¢(V]...|¢(™)], where ¢(*) = [qz(;)]

(a) We define a (0,1)-limit of q to be the structure (0,1)-matrix g = [g("]...[g(™], where the
matrix g(®) = [QS;)] is defined by the formulae

. s)
—(s) _ 1 lfQi' 7507
% _{ 0 g™ —0o

q; =Y

(b) The algebra A, = Az = MZ(K) is called the (0,1)-limit of A, = ML(K).

We recall that a finite dimensional K-algebra A is a Frobenius algebra if there exists a K-linear
map ¢ : A — K such that Kery does not contain non-zero right (or left) ideals of A, see [37]. It

is clear that a basic K-algebra A is Frobenius if and only if A is self-injective, see [35].
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PROPOSITION 2.2.17. Assume that K is a field, Ay = MZ%(K) is a basic minor degeneration of
M, (K) and A, = MZ(K) is the (0,1)-limit of Ag.

(a) A wvector K-subspace A of M, (K) is a two-sided ideal of Ag if and only if A is a two-sided
ideal of Ay. In particular, J(A)* = J(A,)*, for each s > 1.

(b) The Gabriel quivers of A, and A, coincide.

(c) Assume that the field K is algebraically closed and {Ag, }ucx s an algebraic family [18]
of minor degenerations Ay, = My (K) of M, (K) such that Ay, = Ay and almost all algebras A,,
are isomorphic. If the algebra Zq is representation-finite ( resp. representation-tame ) then Ay, is

representation-finite (resp. representation-tame), for almost all structure matrices q,,.

Proof. (a) Let 2 be a non-zero vector K-subspace of M, (K). Suppose that 2 is a two-sided
ideal of A,4. It follows from Theorem 2.9(e) that 2 is generated by a finite set of the matrix units
e;; of A,. We show that 2 is a two-sided ideal of A,. Denote by ' and -” the multiplication in A,
and in Zq, respectively.

Since the matrix units form a K-basis of Zq, it is sufficient to show that ey " e;; € A and
€ z e;p € AU, for any e;; € % and any ey, e,p € Zq. Recall that e, - ejj = 0, for t # ¢, and

e;j " exp =0, for j # r. Therefore, we can assume that t = ¢ and j = r. In this case, we get

e e —gPe,, =4 @i i g #0,
TR T Lo g =0

Assume that qi? # 0, that is, qﬁ? = 1. Then qg? # 0 and the element e,; -/ e;; = qi?esj belongs
to 2, because X is a two-sided ideal of A4. It follows that e;; = ey M e;; € 2. Similarly, we show
that e;; " ejp, € A. Consequently, U is a two-sided ideal of Zq. The same type of arguments shows
that 2 is a two-sided ideal of A, if 2 is a two-sided ideal of Zq. This finishes the proof of the first
statement in (a). The second one follows from the first one by applying it to 2 = J(A4,)°.

(b) Since J(A,) = J(A,) and J(4,)? = J(A4,)?, then
eilJ(Aq)/ T (Aq)’lej = eilT(4q)/ T (4g)*e;,

for all 7, j, and hence Q(4,) = Q(4,).

(c) Since, according to [11], the algebras of finite representation type define an open subset in
Alg(K“Z), then almost all algebras A,, are of finite representation type if so is Zq = A, see also
[18, Chapter III]. Further, according to Geiss [12], the tameness of A, = A,, implies the tameness

of A,,, for almost all structure matrices g,. Hence (c) follows and the proof is complete. ]

We recall that a finite dimensional K-algebra A is said to be a Nakayama algebra, if for every
primitive idempotent e € A, the left ideal Ae has a unique composition series and the right ideal
eA has a unique composition series.

Now we describe the minor degenerations of M,,(K) that are Nakayama algebras.

THEOREM 2.2.18. Assume thatn > 2 and ¢ = [¢(V|...|¢™)] is a basic structure matriz ( 2.1)
of size n x n%. Let ¢ = [¢M]...|g\™)] be the (0,1)-limit of q, let A, = MYK) and A, = M (K).

The following four conditions are equivalent.

57



(a) Agq ts a self-injective Nakayama K -algebra.
)

(

b) A4 is a Nakayama K -algebra.
(c) There exist a K -algebra isomorphism A, = A, and a permutation

o:{1,...,n} — {1,...,n} such that the matriz o+ q = | §(1)|...| ﬁ(”)] has the form

[ 1 1 Lo 101 0 0 ... 0 0 17

1 0 ... 0 0 1 0 ... 0 0 1
(")
o*q= q

1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 0 1

11 1 11 1 1]

-
!
[0 0 000 1 1 1 1 17
1 0 000 1 1 11 1
11 000 1 1 1 11
101 1 0 1 1 11 1
~r) _
g =1 1 111 1 1 1 1 —r
10 0 0 0
11 0 0 0
1 0
i 1 1 o0 |

(d) There exist K -algebra isomorphisms A, & A, =& KQ/I, where KQ is the path K -algebra

of the quiver

1 A 9 P &471 -3
Q: Br Bn—3
n ﬁn—l n— 1 /611.—2 n — 2
and I = (wy,...,w,) 1s the two-sided ideal of KQ generated by n zero relations wi,...,wy,

where wj = ;841 ... BuP1...0Bj—1, for j =1,...,n (see [1], [28, Chapter 14]).
If any of the conditions (a)-(d) holds then soc(A,) = J(A)" ™! and A, = ML(K) is of finite

representation type.

Proof. The implication (a)=-(b) is obvious.
(b)=(c) Assume that A4, = M (K) is a Nakayama algebra. Since A, is connected, then the
Gabriel quiver Q(A,) of Ay is either an oriented cycle or Q(A,) is of the form

(*) J1——J2 — ... — Jn,
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and has no oriented cycle, see [2] and [1, Chapter 5]. Since, according to Theorem 2.2.5 (c), there is
a non-zero Ag-module homomorphism e; A, — e;jAg, for all 4,5 € {1,...,n}, then the second form
(*) of Q(Ag) is excluded. Consequently, there is a permutation o of the set {1,...,n} such that
the Gabriel quiver of the algebra M *?(K) is the cycle Q presented in (d). By Corollary 2.2.12,
this implies that (o * q("_l(T)))jo =0,forallr=1,...,n and j # 7.

It follows from [1, Proposition IV.3.8] that A, & My™(K) = KQ/R¢), for some s > 2, where
Ro = (B1,...,0n) is the two-sided ideal of the path K-algebra K Q of Q generated by the arrows
Bis---,By. Since dimg A, = n?, it follows that s = n. Similarly, there is a K-algebra isomorphism
Zq = MZ*E(K) = KQ/R’é. Hence we easily conclude that the matrix o * ¢ has the form required
in (c).

(c)=>(d) Assume that A, = A, and o is a permutation of the set {1,...,n} such that the matrix
oxg=[g"|...| g™] has the form shown in (c).

By Lemma 2.2.9, there is a K-algebra isomorphism M (K) = M3*(K). On the other hand, by
Corollary 2.2.12, the Gabriel quiver of the algebra M3 (K) is the quiver Q shown in (c). Now we
define a K-linear map

o MII(K) — KOQJI
as follows. First we note that, by the form of o x g, each matrix units e;; of Mg*q(K ) is the
composition of some of the matrix units e;2,...,€, 1n,€,1. Consider the correspondences e; — 17;,
én1 > Bp and ejji1 — B, for j =1,...,n—1, where 7; is the stationary path at j. It is easy to see
that the correspondences extend to the K-algebra homomorphism ¢ : Mg*q(K) — KQ/I. Since
I =(wi,...,wy), then ¢ is surjective and dimg K Q/I = dimg Mg*q(K) = n2. It then follows that
© is bijective.

The implication (d)=-(a) and the final statement of the corollary are well-known facts and can

be found in [1, Chapter 5]. This finishes the proof. O

2.2.3 Basic minor degenerations of small dimensions.

In this subsection we study in details basic minor degenerations 4, = M} (K) of M, (K) for n = 3,
and some examples of such algebras for n = 4, and n = 6, by means of their bound quiver
presentations of the form A, = K Q/Q, where Q is the Gabriel quiver of A4, and Q is an admissible
ideal of the path K-algebra KQ of Q. We recall that, up to Ss-action, the constant matrices
g = [¢")¢?|¢®)] in ST3(K) are described in Example 2.2.8.

THEOREM 2.2.19. Assume that n = 3 and let Ay = M{(K) be a basic minor degeneration of
Ms(K). _

(a) The K-algebra A, = Mi(K) is isomorphic to its (0,1)-limit A, = Mi(K).

(b) Any basic minor degeneration A, = Mi(K) of M3(K) is isomorphic to one of the five basic

minor degeneration K -algebras

Aq1 = Mgl(K), qu = Mgz(K)’ Aqa = Mgs(K% Aq4 = Mg4(K)7 Aqs = Mgs(K)
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defined by the following structure (0,1)-matrices in ST3(K)

111 010 001 111 010 001 111 011 o001
= 100 111 001 , g = 101 111 o001 , ¢ = 100 111 00l ,
100 010 111 100 010 111 110 o010 111

111 010 001 111 010 011
ga= 101 111 001 , g = 101 111 001
110 o010 111 100 110 111

(c) The algebras Ay, , Ag,, Aqy, Aq, and Ay, are pairwise non-isomorphic, self-dual, and spe-
cial biserial. The algebra Ay is self-injective, but the algebras Ay, Ag,, Agy, Ag, are not. The
algebra Ay, is tame of infinite representation type, and the algebras Ay, , Ag,, Aq,, Ags are of finite

representation type, see [34], compare with [29]. There exist K -algebra isomorphisms

W ra) B 7
(c1) Ag, =2 KQYW/QY, where () . 1 2 3
1821 [B /332
31

2 2 ﬂ31 ﬁ32 ﬁlz
(c2) Aq, = Kol )/Q( ), where Q@ . 3 ——— 1 —/———= 2
513 /821

and the ideal Q?) is generated by the zero relations B21B12, Bi2Be1, B13Bs1, B31513, B31P12, Ba2Po1,
B13332-

(c4) Aq, = KQ(4)/Q(4), where Q) . 3 —/—/————— 11—/ 2
and the ideal QW s generated by the zero relations (81612, B12021, B13B31, B31013-

Bs2
(c5) Agy = KQ(E’)/Q(E’), where Q%) . 3 Prs 1 P 2

and the ideal Q) is generated by the zero relations (321313032, 813032021, B32021513-
Proof. (a) Let A, be the (0,1)-limit of A;. We define a K-linear map ¢ : 4, — A, by setting

(k) o (k) .
. eij, if g0 # 0, for k#1,73,
oles) ——{ G " 4 ’

€ij otherwise,

for distinct 7,5 € {1,2,3}, and we set ¢(e;) = e;; for ¢ = 1,2,3. Denote by -’ and - the multipli-

cation in Ay and in Ag4, respectively.
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To show that ¢ : Zq — Agis a K-algebra isomorphism, it is sufficient to prove that ¢(e;r-"e,;) =

o(eir) ' ¢lerj), for all 4,7, 5.
First, we consider the case when ¢,7,5 € {1,2,3} are pairwise different and qg) # 0. It follows

from Lemma 2.2.2 that qu) = qg) =0, so that ¢(e;r) = e; and ¢(e,;) = e,;. Hence

pleir " erj) = pless) = q§}”eij = eir ' erj = pleir) ' plerj),

and we are done. The proof in remaining cases is analogous and it is left to the reader.

(b) In view of (a), Theorem 2.2.10 and Corollary 2.2.11, it is sufficient to classify the Ss-orbits
of all basic structure (0,1)-matrices in ST3(K) with respect to the action of the symmetric group
S3 defined in Definition 2.2.7.

(1 (3 (2) (1) (3)

Note that, by Lemma 2.2.2 (c), the product of any successive pair of qzé v 415 31 5 Q39 5 Q19 >

2 1
qgs)a q£3)

is zero. Hence we conclude that here are precisely five S3-orbits of basic (0,1)-matrices
in ST3(K) and they are represented by the five constant matrices ¢1, g2, ¢3, g4, g5 listed in (b). The
remaining statement in (b) easily follows from the quiver descrition of the algebras Ag,, Ag,, Aqg,,
Ag, and Ay given in (c). On the other hand, this also follows from Theorem 2.2.26 proved in the
next subsection.

(c) Since the constant matrices ¢, 42,43, 4, g5 belongs to different Sz-orbits then, according to
Corollary 2.2.11, the algebras A, , Ag,, Ay, Ag, and Ay, are pairwise non-isomorphic.

Note also that, in the notation of Definition 2.2.7, we have ¢!" = g1, (2,3)*%¢}" = g2, (1,3)%¢§" = g3,
gy = qa and (1,3) * ¢&" = ¢5. It follows from Lemma 2.2.9 (a) that A¥ & A,, for s =1,...,5, that
is, the algebras Agq,, Ag,, Ag,, Ag, and Ag, are self-dual.

By Corollary 2.2.12, the Gabriel quivers of the algebras Aq,..., As are just the quivers listed
in (c1)—(c5). It is easy to check that, for each s € {1,2,3,4,5}, the correspondences ¢; — e; and
Bij + e;; define a K-algebra surjection KQ(S)/Q(S) — Ay, , where ¢; is the primitive idempotent
of the path algebra K Q(*) defined by the stationary path at the vertex j, for every j € Qgs). Since
dimg KQ(S)/Q(S) = dimg Ag, = 9, the surjection is an isomorphism of K-algebras.

It follows from the shape of Q(*) and Q) that KQ(S)/Q(S) = A, is a special biserial algebra,
that is,

(a) any vertex of 00 is a starting point of at most two arrows and is an end point of at most
two arrows.

(b) given an arrow 8 : i — j in Q(*) there is at most one arrow « : s — i and at most one arrow
v:j —rin Q) such that a8 g Q) and By & Q) see [34].

We recall that any special biserial algebra is representation-tame, see [3, 5.2]. Note that for
s =1, there is a cyclic walk

13,5 B g B, g Po1 g Bua g iz g

of the quiver @) and according to the finite representation type criterion in [34], the algebra Ag,
is of infinite representation type. Similarly, by looking at the walks of each of the quivers Q(2),
0B, 9@ 9B): and by applying the finite representation type criterion in [34], we conclude that
the algebra A, is of finite representation type, for s = 2,3,4,5. This finishes the proof. O
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It follows from Theorem 2.2.19, that for n = 3, each basic minor degeneration A, = Mj(K) of
M3 (K) is special biserial and A, is isomorphic to its (0,1)-limit algebra Az. We show below and
in Subsection 2.2.4 that this facts do not hold, for each n > 4.

EXAMPLE 2.2.20. Assume that n = 4 and A, = M{(K) is a basic minor degeneration of My(K)

given by the following structure matrix

1111 0110 0010 0011

. 1001 1111 0011 0001
9= 1000 1100 1111 1001
1100 0100 0110 1111

€ ST4(K)

One can show that A, is isomorphic to the bound quiver K-algebra K Q/Q (see [1]), where Q is

the quiver

Q: Ba||7e 72| | B2

73

Bs
and  is the two-sided ideal of the path K-algebra K Q of Q generated by the following relations:

o B3;v; and v;3;, for j =1,2,3,4,

® 16203, if the arrows 41, 62, 63 form a path of length 3,

o (182 — vav3, B233 — Y174,
® y2v1 — B304, v3v2 — BaBi.

It follows that A, = K Q/Q is a special biserial algebra and hence it is representation-tame, see [3,
5.2]. Note that there is a cyclic walk

61 53

—— 44— A

1 3 2,02 1

of the quiver Q and, according to the finite representation type criterion in [34], the algebra A, is
of infinite representation type. Since (2,3) * ¢'" = ¢ then, by Lemma 2.2.9, Ag¥ = A, and therefore
the algebra A, is self-dual. Note also that J(4,)® = 0 and soc 4, = J(4,)? = Keiz + Kesy +
Kesy + Keys.

EXAMPLE 2.2.21. Assume that n = 4 and B, = MI(K) is a basic minor degeneration of My(K)

given by the following structure matrix

1111 0110 0010 0011

o 1001 1111 1011 0001
7= 1101 0100 1111 0001
1100 0100 1110 1111

€ ST4(K),
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see [7, (2.4)]. One can show that By is isomorphic to the bound quiver K-algebra K Q/Q (see [1]),

where Q is the quiver

1 B12 9
Q: Pus P B23
31
L d

and Q is the two-sided ideal of the path K-algebra K Q of Q generated by the following relations:

o (3120523 = B140a3,
o (12623831, B31812023, F23031512, B43B31514, B14343031-

It follows that J(B,)* = 0 and J(B,)® = Keau® Kess = K (3233313140 K Ba3331812. Since B31812 # 0
and (331814 # 0, then the algebra By is not special biserial. Note also that By is a self-dual algebra,

because (1,3) * ¢/ = g and Lemma 2.2.9 yields ng = By.

The algebra B, is not self-injective and the injective dimension inj.dimB, of B, equals one.
Indeed, there are isomorphisms ey By ~ D(Bye3), eaBg ~ D(Byey), e4Bg ~ D(Bges) and that there
is non-split exact sequence 0 — e3 By — eaB;®es By — D(Bge1) — 0, where D(—) = Hompg(—, K).
Hence we get inj.dimB,; = 1. Note also that the algebra B, is isomorphic to the quotient algebra
A/mA of the tiled R-order

303 3
303 o
= lill~ ol =y
3 3 &

R R

where R = K|[[t]] the power series K-algebra and w = t - K[[t]]. We can easily compute that
gl.dimA = 2. Hence we get inj.dimB, = inj.dimA — 1 = 1, see [24, Theorem 2.10]. Finally, we show
that By is representation-finite.

To prove this, we denote by R = KA the path algebra of the Dynkin subquiver

B23
2

of type D4 of @. Denote by 0 : R — R the K-algebra automorphism of R given by the permutation

1 2 3 4
o= L4 3 9 of the vertices of A. Let ,D(R)g be the vector space D(R) = Hompg (R, K)

is viewed as an R-R-bimodule, with the left R-module structure induced by th automorphism
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o : R — R. It follows [31, Corollary 4 and Remark 2] that the trivial extension C = R X,
D(R) is non-symmetric selfinjective K-algebra of finite representation type. Omne can show that
dimgC = 18 and, by applying [31, Theorem 2 and Proposition 1], the number of pairwise non-
isomorphic indecomposable C-modules equals 24. The Gabriel quiver of C coincides with the
quiver @ of the algebra B, of dimension 16 and there is K-algebra surjection ¢ : C — B, with
Kere = socI(1) @ socI(3), where I(1) = D(Bge1) and I(3) = D(Bges) are the indecomposable
injective C-modules at the vertices ¢ and 3 of Q. It follows that the algebra B, is representation-
finite. One can show, as in [31, Example 2 and 3], that the Auslander-Reiten quiver I'(modBj,) of
B, has a shape of a Md6bius band consisting of 22 indecomposable modules, see also [31, Remark
2].

EXAMPLE 2.2.22. Assume that n = 6 and consider the one-parameter family of basic minor
degeneration K-algebras Ay, = M#*(K), where p € K and
111111 010000 011000 010100 011110 011101
100000 111111 001000 000100 001110 001101
o 100111 010111 111111 000100 000110 000101
Qu = 101011 011011 001000 111111 001010 001001
100000 010000 111000 110100 111111 000001
100010 010010 111010 110110 000010 111111
Note that, If K is infinite, then the family {A,},cx\ (0,1} is infinite, because 4, = A, if and
only u ==, for p,v € K \ {0,1} (apply Theorem 2.2.10). One can show that each of the algebra
A, is representation-wild and not self-injective (the right ideals e;A, and e5A, are not injective,
by [7, Proposition 2.3] and [9, Lemma 2.3]).

We show in Subsection 2.2.4 that the set of the isomorphism classes of self-injective algebras
A, = Mi(K) is infinite, for each n > 4.

2.2.4 Frobenius basic minor degenerations of M, (K)

In this subsection we study basic minor g-degenerations of M, (K) that are Frobenius K-algebras,
where K is a field. We start by a description of the socle soc A4 of such an algebra A = M} (K). In
particular we show that A = M} (K) is a Frobenius K-algebra if and only if its (0, 1)-limit algebra
A = M{(K) is a Frobenius K-algebra.

PROPOSITION 2.2.23. Assume that n > 2, q is a basic structure matriz (2.1) in ST, (K) and
g is the (0,1)-limit of q. Let A = M%(K) and A = MI(K) be the corresponding basic minor
degenerations of M,(K), and let eq,...,e, be the standard primitive matriz idempotents of A and
A.

(a) Given j € {1,...,}, a right ideal S of A is simple if and only if S has the form S =e;, K,

where e;5 15 a matriz unit such that s # j and q;.i) =0, for all v # s.
(b) Given j € {1,...,}, soc(ejA) = ) e;s K, where
seU;

U; = {s; q;:)ZO, for allr # s} ={s; s# j and e;s - J(A) =0, } C{1,...,n}.
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(c) If S and S’ are two different simple submodules of e; A, then S 2 S'.
(d) The socle soc(A4) of the right A-module A is a two-sided ideal of A of the form

soc(Aq) = {z € J(A); ¢ J(A) =0} =) e.K,
seU;

that is, the sum runs through all pairs (j,s) € {1,...,n} x U; such that j # s.
(e) soc(Aa) = soc(A7) and soc(ejA) = soc(e;A), for all j € {1,...,n}

Proof. Since q is a basic matrix then, according to Theorem 2.2.5 (d), the algebra A = M#(K)
is basic and the projective right ideals e1 4, ...,e, A of A are pairwise non-isomorphic.
(a) Assume that S C e;A is a simple right ideal of A. Then S # 0 and S contains a non-
n

zero elelment s = ¢; - deirdir = ). ejrAjr, where A;, € K and some Aj; is non-zero. It follows
3 r=1

that s - e; = €55 befongs to S, and therefore S = e;5sA. The module S is simple if and only
(s)

ji ejr = 0, for all r # s, because
J(A) = )" e, K, by Theorem 2.2.5. Hence S = ¢, K ~ e, A/w,J(A) and (a) follows.

s#r
The statement (b) is a consequence of (a).

if S J(A) = 0, or equivalently, if and only if e;; -q €5, = ¢

(c) Assume that S = e;,K and S’ = e;¢ K are two different simple submodules of e; A and
assume, to the contrary, that there is an R-module isomorphism ¢ : § — S’. It follows that
0 # p(ejs) = @lejs g €s) = p(€js) -g €s = Aejgr -g €5, for some A € K \ {0}. Hence in a view of (2.5)
we get s = s’ and S = S', a contradiction.

(d) Since soc(A4) = soc(e1A) @ --- @ soc(ep, A) then (b) yields soc(A44) = > ej, K, that is,
seU;
soc(A4) is spanned by all matrix units ej, € J(A) such that j # s and ej, ¢ J(A) = 0. Hence (d)

follows.
(e) By Theorem 2.2.5, J(A) = J(A). Then (e) immediately follows from (b) and (d); and the

proof is complete. [

REMARK 2.2.24. Assume that A = MA(K) is basic. Let m > 1 be such that J(4)™ = 0
and J(A)™ ! # 0. It is clear that J(4)™ 1 C soc(44), however the equality does not hold
in general. For this consider the algebra A = A, = M*(K) of Theorem 2.2.19 (c4). In this
case m = 3, J(A)? = e3oK + ea3K, soc(Ay) = J(A)? + e3K + e;nK # J(A)?. Note also that
soc(4A) = J(A)? + e31K + €21 K # J(A)? and hence soc(4A4) # soc(4,4).

We recall that a basic finite dimensional K-algebra A, with a complete set of primitive orthog-
onal idempotents {e1,e2,...,e,}, is a Frobenius algebra if and only if each projective module e; A
has a simple socle and soc(e;A) 2 soc(e;A), for all ¢ # j. In this case, there is a permutation o of
the set {1,...,n}, called the Nakayama permutation, such that soc(e;A) = top(e,(;)4), see [5]. If
A is a Frobenius algebra then (see [37, Theorem 2.4.3] and [35])

soc(4A) = soc(Ay) :=soc(A).
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Now, following Fujita [7, Lemma 4.2], we give neccessary and sufficient conditions for a basic
minor structure matrix g in ST,(K) to be the K-algebra M%(K) Frobenius. In paritcular, we

remove the assumption on (0, 1)-matrices made in [7, Lemma 4.2].

THEOREM 2.2.25. Assume thatn > 2, q is a basic structure matriz (2.1) in ST, (K) and g is the
(0,1)-limit of q. Let A= M3 (K) and A = Mé (K) be the corresponding basic minor degenerations of
M, (K), and let e1,. .., e, be the standard primitive matriz idempotents of A and A. The following
seven conditions are equivalent.

(a) A is a Frobenius K -algebra.

(a') A is a Frobenius K -algebra.

(b) For each j € {1,...,n}, dimg soc(ejA) =1, and the right simple ideals

soc(e1A),...,soc(e,A) of A are pairwise non-isomorphic.
(c) dimg soc(Aq) = n, and the right ideals e1(socAy),... e (socAy) of A are pairwise non-
tsomorphic.

(d) The block matriz q € ST, (K) satisfies the following two conditions:

(d1) For every j € {1,...,n} there exists a unique s # j such that q;, =0,
for all v # s.

(d2) Given i,j,s € {1,...,n} such thati+# j and s & {i,j}, there exists an
r € {1,...,n} such that r # s and qgj) #0 or q;:) #0.

(e) There exists a permutation o of the set {1,...,n} such that o(j) # j, for allj =1,...,n,
and the block matriz q € ST,,(K) satisfies the following condition :

(el) Given s,j € {1,...,n}, the equality q;i) = 0 holds for all v # s if and only
if s=o0(j).
(f) There ezxists a permutation o of the set {1,...,n} such that o(j) # j, for all j =1,...,n,
and the block matriz q € ST, (K) satisfies the following condition :

(f1) qj(.‘;)(j) # 0, for any j,r € {1,...,n}.
In this case o is the Nakayama permutation of A and soc(ejA) = Kej,(j)-

If A is a Frobenius algebra and o : {1,...,n} — {1,...,n} is an in (f) then:

(i) the Frobenius structure of A =M} (K) is given by the K -linear map ¢ : A, — K defined by

the formula { 1 if () — 0, for allr # s
qu ’ ’

0 otherwise.

1/1(6]'5) =

(ii) any indecomposable module M in mod A is projective, or M -4 soc(A) =0, that is, M is a
module over the quotient algebra A/soc(A).

Proof. Since q is a basic matrix then the algebra A = MY (K) is basic, by Theorem 2.2.5 (c).
Hence the projective right ideals e; A4, ..., e, A of A are pairwise non-isomorphic,

It follows from [5] that A = MZ(K) is a Frobenius algebra if and only if each projective module
e;A has a simple socle and soc(e;A) 2 soc(e;A), for ¢ # j. Since simple A-modules are one-

dimensional and ej(soc A) = soc(e;A), then the conditions (a), (b) and (c) are equivalent.
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Now we prove that the conditions (b) and (d) are equivalent. We recall from Proposition 2.2.23,
that the module S; = soc(e;A) is simple if and only if there exists a unique s such that s # j,
S; = e;sK, and ej; -q J(A) = 0 and S; ~ e;/e;J(A). Since J(A) = > e, K, then the equality

s#r
ejs 'g J(A) = 0 holds if and only if q](i) =0, for all » # s, that is, if (d1) holds.

Assume that (d1) holds and S; = e;;K, S; = e;, /X are two simple right submodules of A, where

s # j and u # i. Then ej; -g esr = 0 and e;y -q €y = 0, for all r # s and 7' # u, or equivalently,

q§r) =0 and q(u)

0, for all » # s and v’ # u. Hence we easily conclude that the right simple ideals
soc(e1A), ... ,soc(enA) of A are pairwise non-isomorphic if and only if the condition (d2) holds.

Since, obviously, the conditions (d) and (e) are equivalent then the conditions (a), (b), (¢), (d),
and (e) are equivalent. Note that o is the Nakayama permutation of A.

The conditions (a) and (a') are equivalent, because (d) holds for ¢ if and only if (d) holds for g.

Now we prove the implication (f)=-(e) by showing that the condition (fl) implies (el). To
see it, we note that, if the condition (f1) holds and s,j € {1,...,n}, are such that the equality
qg-i) = 0 holds for all » # s then s = o(j). Conversely, if s = o(j) then Lemma 2.2.2 (c) yields
q(r)( )qﬁzm) = 0, for all » # s = o(j). Hence by (f1), we have q( @) — 0, for all r # s and
je{l,...,n}.

It remains to prove the implication (e)=-(f) holds. Assume that A = M{(K) is a Frobenius
algebra with Nakayama permutation o. It follows that, for each j € {1,...,n}, there is an isomor-
phism e;A >~ D(Ae,(;)). Since the representation matrix (see [7]) of the right ideal of ¢;A4 with
respect to K- basis {€j1,...,ejn} of ;A is the matrix (q;:))ﬁs then, according to [9, Lemma 2.3
(i1)], we have q ) # 0, for all r € {1,...,n}, and (f) follows.

To finish the proof, assume that A = M} (K) is a Frobenius algebra and let o : {1,...,n} —
{1,...,n} be as in (f). For the proof of the statement (i), it is enough to show that Kery does
not contain a non-zero right ideal of A. Assume, to the contrary, that Kery contains a non-zero

right ideal a4, where a = 377,

r,s € {1,...,n}. It follows that

a;je;; and a;; € K. Since a is non-zero then a,, # 0, for some

Y(a- q€ Zazsezs q Csa(r) ) = Zazsqw T)¢(eia(i)> = arsqq(j,)(r) #0,
i=1
and we get a contradiction a -y e,,(,) € aA C Keryp. By Proposition 2.2.23, the socle soc(4) is
spanned by all e;; such that i # j and e;; - J(R) = 0, that is, e;; g €5 = ¢®e;, =0, for all r # s.
If I is a non-zero right ideal of A then I contains some e;; with the above property, and therefore
Y (e;s) =1, that is, Ker does not contain I.

Now we prove (ii) by applying the arguments given in [15]. Assume that M is an indecomposable
module in mod A such that M -, soc(A) # 0. Let S be a simple submodule of M -, soc(A) and
let P = E(S) be the injective envelope of S. Since A is Frobenius then P is indecomposable
projective. By the injectivity of P, there is f € Homyu (M, P) such that the restriction of f to S
is the embedding S — P. We recall that P has a unique maximal submodule rad P = P -, J(A).
Note that Im f is not contained in rad P, because the inclusions § C P, S C M -, soc(A) and
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Im f C rad P imply 0 # f(S) C f(M -4soc(A)) = f(M) -qgsoc(A) C P-4 J(A) -4 soc(A) = 0;
and we get a contradiction. It follows that Im f 4+ rad P = P, and the Nakayama lemma yields
Im f = P. By the projectivity of P, the homomorphism f is bijective, because M is indecomposable.
Consequently, the module M is projective. This finishes the proof of the theorem. O

Now we give simple description of all basic minor structure matrices g in ST, (K) such that
the K-algebra A, = M}(K) Frobenius and J(4,)* = 0. To formulate it we associate to a given a

permutation o of the set {1,...,n}, where n > 3, the block matrix

a(o0) = [a(0)V] ... la(o)™] (2.12)

defined in [7, Lemma 4.4] by the formulae

(7.)_{ 1 ifre{i,j}, or j=o(d),

0 otherwise.

for all i¢,7,» € {1,...,n}. It is easy to check that the block matrix ¢(o) is a basic structure
(0,1)-matrix in ST, (K), see [7, Theorem 4.4] and [8, Corollary 1.8].

THEOREM 2.2.26. Assume thatn > 2, q is a basic structure matriz (2.1) in ST, (K) and q is the
(0,1)-limit of q. Let A= M2(K) and A = M(K) be the corresponding basic minor degenerations
of M,(K), and let e1,...,e, be the standard primitive matriz idempotents of A and of A. The
following conditions are equivalent.

(a) A is a Frobenius K -algebra and J(A)3 = 0.

(a') A is a Frobenius K -algebra and J(A)® = 0.

(b) FEither n =2 and A = Mi(K) is the Nakayama algebra A(0) of Ezample 2.2.4, or n > 3

and A is a Frobenius K -algebra such that J(A)? = soc(A).

(c) Either n =2 and q = q(0) = [ 1 (1) (1) 1
the set {1,...,n} such that o(j) # j, for allj =1,...,n, and the block matriz ¢ € ST, (K) satisfies
the following condition:

@) #0  ifand only if 1€ {i,j} or j=o(i).

, orn > 3 and there exists a permutation o of

(d) Either n =2 and ¢ = q(0) = i ; 2 1

the set {1,...,n} such that o(j) # j, for all j = 1,...,n and the (0,1)-limit § € ST, (K) of the
block matriz q has the form q = q(o) (2.12).
In this case o is the Nakayama permutation of A and of A. Moreover, A/J(A)?> = A/J(A)2.

, orn > 3 and there exists a permutation o of

Proof. Since q is a basic matrix and n > 2 then the algebra A = M}, (K) is basic, non-semisimple,
and the projective right ideals e1 A,...,e, A of A are pairwise non-isomorphic by Theorem 2.2.5
(d).

(a)=>(b) Assume that J(A)% = 0 and that the algebra A = M{(K) is Frobenius. It follows from
Proposition 2.2.23 that, for each j € {1,...,n}, the simple module S; = soc(e;A) has the form
Sj = ejq(j)K, where o € S, is the Nakayama permutation of A. Note that if e;,(;) € J(A4) \ J(A)?

68



then, by the description of the simple ideals given in Proposition 2.2.23, e;A = ¢; K + e;,(;K is
of dimension two. It follows that n = dimg e;A = 2. Consequently, if J(A)?2 = 0 then n = 2 and
A = A(0) is the Nakayama algebra of Example 2.2.4. Moreover, if n > 3 then J(4)? # 0 and
€jo(j) € J(A)?, for every j. It follows that soc(A) = soc(e;A) @ ... P soc(enA) C J(A)?%. Since
J(A)3 =0, then soc(4) D J(A)? and we get the equality soc(A) = J(4)2.

(b)=(a) If n = 2 and A = A(0) is the Nakayama algebra of Example 2.2.4, then A is a
non-semisimple Frobenius algebra such that J(4)?2 = 0. If n > 3 and J(A)? = soc(A4) then
J(A)? = J(A)soc(A) =0, and (a) follows.

1 1|0 1
1 0|1 1

Assume that n > 3, J(4)? = soc(A4) and that the algebra A = M (K) is Frobenius. Take
for 0 € S, the Nakayama permutation of A. It follows from Proposition 2.2.23 that, for each
j € {1,...,n}, the simple submodule S; = soc(e;A) of e;A has the form S; = e;,(;) K, where
€jo(j) € ejJ(A)2. Since J(A)® = 0 then the condition (d1) of Proposition 2.2.23 (with s = o(j)),
together with the condition (d2), implies the condition required in (c¢) for n > 3.

The implication (c)=>(d) easily follows from the definition of the (0,1)-limit g of ¢ and of the

(b)=(c) In case n = 2, the matrix ¢ has the form ¢ = ¢(0) = [

] , see Example 2.2.4.

block matrix ¢(o) associated to o.

(d)=(a)Ifn=2and ¢ = [ 1 ; (1] 1 ] , then A = M{(K) is the Nakayama algebra of Example
2.2.4. Hence A is a Frobenius algebra such that J(4)% = 0.

Assume that n > 3 and there exists a permutation o € S, such that § = ¢(o) and o(j) # j, for
all j =1,...,n. Let A= MZ(K) be the (0,1)-limit of A.

It is clear that, for each j € {1,...,n}, the module S; = soc(e;A) = e

jo(j)K is simple and
S; = S; if and only if j = i. It follows that A is a Frobenius algebra and, according to Theorem

2.2.25, the algebra A is Frobenius. Since n > 3 and qys) =0 if and only if r ¢ {s,5} and s # o(j),
then J(4)2 = ejo(j)K and J(A)3 = J(A)% = 0, see Proposition 2.2.17. Hence (a) follows.
i=1

Since the conditions (a) and (a') are equivalent, by Theorem 2.2.25 and Proposition 2.2.17, then
the proof is complete. O

Following Gabriel [10] we associate to a basic algebra A = e; A® ... D e, A the separated quiver
Q°(A) = (Q*%*(A)o, Q°(A4)1) of A with the set of points Q°(A)g = {1,...,n,1’,...,n’'}. There is an
arrow ﬂij 14— j' in Q°(A); if and only if there is an arrow (3;; : ¢ — j in the quiver Q(A) of A, see
Corollary 2.2.12.

COROLLARY 2.2.27. Assume that n > 3, q is a basic structure matriz (2.1) in ST, (K) such that
A, = ME(K) is a Frobenius algebra and J(A)* = 0.

(a) The algebra Ay is of finite representation type if and only if n = 3.

(b) Assume that the field K is algebraically closed. Then Ag is tame of infinite representation
type if and only if n = 4.

(c) Ifn >5 and the field K is algebraically closed then the algebra A4 is of wild representation
type.
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Proof. Since Aq is a Frobenius algebra and J(A)3 = 0 then, according to Theorem 2.2.26, either
n =2 and A, is the Nakayama algebra of Example 2.2.4, or n > 3 and soc(4,) = J(44)%. Assume
that n > 3. By Theorem 2.2.25, any indecomposable non-projective Ag-module is a module over the
quotient algebra B, = A,/J(A,)?. It follows that A, is representation-finite (resp. representation-
tame) if and only if so is By.

Since J(B,)? = 0, then by Gabriel [10], B, is representation-finite if and only if the separated
quiver Q°(By) is a disjoint union of Dynkin quivers, and By is representation-tame if and only if the
separated quiver Q°(By) is a disjoint union of Dynkin quivers and Euclidean quivers. Moreover,
B, is representation-infinite if and only if Q°(A,) contains a subquiver isomorphic to an Euclidean
quiver.

It follows from Theorem 2.2.19 that in case n = 3, up to isomorphism, the only Frobenius algebra
Ay is the Nakayama algebra Ay, of Theorem 2.2.19. Obviously, A, is of finite representation type.

Assume that n > 4. Since A, is a Frobenius algebra then A, = M{(K) is also a Frobenius
algebra and, according to Theorem 2.2.26, the (0,1)-limit g of ¢ has the form § = ¢(o), where
o € S, is the Nakayama permutation of A,. It follows from Corollary 2.2.12 and Theorem 2.2.26
(c) that there is an arrow ¢ — j in Q(A,) if and only if ¢ # j and j # o(7).

Now assume that n = 4. By the observation made above and the definition of the separated
quiver Q°(4,) = Q*(4,), we conclude that Q*(A,) is the Euclidean quiver

1 a3(1) a?(1) o(1)

(1) o1y p (1)

of type A7 It follows that the algebra A, is of infinite representation type, and Aq is tame if K is
algebraically closed.

Finally assume that n > 5. It is easy to see that Q*(A,) contains a wild subquiver of the form

(1) o?(1) a*(1)
0.4(1)[ 1,
It follows that A4 is representation-wild, and the proof is complete. ]

THEOREM 2.2.28. Assume that K is a field and n > 4. Given p € K* = K \ {0}, we define the
matric q, = [qﬁl)| e |q,(Ln)] of the form (2.1) in ST, (K) by the formulae
p o oifr=1,1=2,5=3,
(@) =4 1 i (i,r,5) # (2,1,3) and r € {i,j}, or j=i+1( modulon )

0 otherwise,
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for alli,j,r € {1,...,n}.

(a) For each p € K*, g, is a basic matriz in ST,(K) such that Cy, = My (K) is a basic
Frobenius K -algebra with J(C,)* = 0 and with the Nakayama permutation o = (1,2,...,n).

(b) If u,v € K* are such that p # v and p # v—1, then C,2C,.

(c) If the field K is algebraically closed and n = 4, each of the algebras C,, is tame of infinite
representation type.

(d) If the field K is algebraically closed and n > 5, each of the algebras C,, is of wild represen-
tation type.

Proof. (a) Fix n > 4 and set qg) = (q#)g), for simplicity of the notation. It is clear that the

matrix g, = [ql(tl |... |q,(Ln)] satisfies the conditions (C1) and (C3) of Definition 2.2.1. To prove that g,
satisfies the condition (C2), we denote by Z the set of all triples (¢,7,5) such that 1 <i,r,7 < n, and
r € {i,7} or j = i+1 modulo n. First we recall from [8, Proposition 1.7 (1)] that (z r ,7),(i,7,8) €T
if and only if (i,r,s), (r,7,s) € Z. It follows that q( ") (] # 0 if and only if q( qrs # 0, whenever

2]

1 <4,7,7,s < n. The verification of (C2) splits into several cases.
1° Assume that (i,r,7,5) = (2,1,3,s) and q(?)qg) # 0. Then (2,3,s) € Z. It follows that s =3

ij
and we get q%)qgg) =p= qé?qg)

2° Assume that (i,7,7,s) = (2,7,1,3) and qz] qz.9 # 0. Then (2,7,1) € Z and therefore r =1
(r) (1) _ (r) (1)

or r = 2. In either case we have g5, ¢y5’ = p = q23 qr3

3° Assume that (¢,7,7,s) = (2,1,7,3) and q” qw # 0. Then (1, 7,3) € Z and therefore j =1 or

j = 2. In either case we have qg])qég) =pu= qg3)q§]3)

4° Assume that (i,7,j,5) = (¢,2,1,3) and q” ql(j) # 0. Then (¢,2,3) € Z and therefore ¢ = 2.

2 1 2
Then we get qél)qé3) =p= qgg)qgg)-

5° Assume that (2,1,3) & {(¢,7,7),(4,4,9),(3,7,8),(r,7,8),(i,7,5)} and q”)ql(g) # 0. Then
aa? =1= (g0,

This shows that the matrix ¢, = [q£1)| . |q£n)] satisfies the conditions (C2) and, consequently,
gy is a basic matrix in ST, (K). By Theorem 2.2.26, the minor g,-deformation C,, = My (K) is a
basic Frobenius K-algebra with Nakayama permutation o = (1,2,...,n).

(b) Assume that p,v € K* are such that p # v and p # l/* Without loss of generality, we
may suppose that v # 1. For simplicity of the notation, we set ql (qﬂ)Z; and pgj) (q,,)g;o)‘

Suppose, to the contrary, that there is a K-algebra isomorphism C, = C,. By Theorem
2.2.10, the matrices g, and g, belong to the same G, (K)-orbit, that is, there exist a permutation
7:{1,...,n} — {1,...,n} and a square matrix T' = [t;;] € M, (K) such that

oty =...=ty, =1,

ot;; #0,forall¢,j € {1,...,n}, and

° tirpz(;)trj = qi{gl)(j)tij’ for all ¢,r,5 € {1,...,n}.

We set dz(;) = qg_?gz_)(j), for short, and let ¢ = (1,2,...,n) be the cyclic permutation of
{1,2,...,n}. Then

T 0?@) (e () YT (2@) (o)
H(dw(z) tio(i)) (Pig()  tio—1(i)te—1(i)o(i)) —H(Pw(i) tig2(i)to2 (i) o() (A () tio(i))
=1

i=1
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and hence we get
n

- o2(i " o~ 1(; - o2(i o133
Hdz(a'(g))) : [{pga(i)( )= 1:[11’50(5))) ’ Hdga(i)( )

i=1 =1
Since n > 4 and ¢ = (1,2,...,n), then pgig)) =1forall : =1,...,n. Hence, in view of the
equality v = [] pgz;)(i)), we get
i=1
TT 40260 T gl 26
(*) v Hdia(i) = Hdia(i) '

=1 =1

Since tiTpE:r)(i)tT #(i) 7 0 then dg?(i) = qs_zg;z_)( (i) € {1, n}, for 1 <r < n. Note that u # 1, because
the equality 4 = 1 yields ¥ = 1, contrary to our assumption » # 1. Further, note that there is
at most one ¢ € {1,...,n} such that u = dgc;z(g)) = dgi';;)(i)). On the other hand, since n > 4 and
o = (1,2,...,n), there is no such an i such that u = difé;)) = dgf,;)(i))- Then v # 1 and the
equality yield v =1 or g = v, contrary to the assumption that p # v and p # v 1.

Since the statements (c) and (d) follow from Corollary 2.2.27, the proof of the theorem is

complete. ]

COROLLARY 2.2.29. Assume that K is an infinite field. Then for each n > 4 there is a one-
parameter K -algebraic family {C,}uckx+ of basic Frobenius K -algebras of the form C, = M#(K)
such that 0 = (1,2,...,n) is the Nakayama permutation of C, and C, 2 C,, if p # v and p # v L

Proof. Apply Theorem 2.2.28. ]
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