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Abstract: In this paper, as the second in our series of papers on differ
ential geometry of microlinear Frolicher spaces, we study differenital fonns. 
The principal result is that the exterior differentiation is uniquely detennined 
geometrically, just as div (ergence) and rot (ation) are uniquely determined 
geometrically or physically in classical vector calculus. This infinitesin1al char
acterization of exterior differentiation has been con1pletely missing in orthodox 
differential geometry. 
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1. Introduction 

Vector analysis is indispensible in studying electromagnetism and fluid me
chanics. The central notions of vector analysis, namely grad, div and rot, were 
introduced infinitesimally as physically and geOlnetrically meaningful opera
tions. Indeed, their physical or geometrical meanings detern1ine grad, div and 
rot uniquely and unequivocally. We know well that the operations grad, div 
and rot are the precursors of the exterior differentiation in the modern theory 
of differential forms. 

In a standard course on the theory of differential forms, the exterior differ
entiation is introduced by decree as a highly formal operation without paying 
little attention to its geometric meaning. Many mathematicians believe naIvely 

Received: June 30, 2010 © 2010 Academic Publications 



86 H. Nishimura 

that the proof of Stokes' theorem is easy or even trivial once the theoreln is 
formulated adequately. We agree completely that its standard proof is very 
easy, not to say that it is trivial, but we must insist that the infinitesimal 
characterization of the exterior differentiation, which lies at the core of Stokes' 
theorem, is not so easy to establish. It is the infinitesimal Stokes' theorem that 
underlies the standard (i.e., local or global) Stokes' theorem. In other words, 
once the infinitesimal Stokes' theorem, which is no other than the infinitesimal 
characterization of the exterior differentiation, is established, the proof of the 
standard Stokes' theorem is highly trivial. This is the whole story of Stokes' 
theorem from a conceptual veiwpoint, and its infinitesimal part, which is es
sential to the whole story, has been completely missing in orthodox differential 
geOlnetry. 

Although nilpotent infinitesilnals are invisible in our standard universe of 
mathematics, Weil functors are still meaningful there. The notion of micro
linearity, which is essential to synthetic differential geOlnetry and is defined 
in another universe of mathelnatics, can be externailized by using Weil func
tors, as we have discussed in [19]. The principal objective in this paper is to 
present the infinitesimal story of Stokes' theorem to orthodox differential ge
onleters without getting involved seriously in synthetic differential geometry at 
all. The reader is strongly recommended to read Nishilnura's [17] as a heuristic 
introduction to the subject discussed here. 

2. Preliminaries 

2.1. Frolicher Spaces 

Frolicher and his followers have vigorously and consistently developed a general 
theory of snl00th spaces, often called Frolicher spaces for his celebrity, which 
were intended to be the underlying set theory for infinite-dimensional differential 
geometry in a sense. A Frolicher space is an underlying set endowed with a 
class of real-valued functions on it (simply called structure functions) and a 
class of mappings from the set R of real numbers to the underlying set (called 
structure curves) subject to the condition that structure curves and structure 
functions should compose so as to yield smooth mappings from R to itself. It is 
required that the class of structure functions and that of structure curves should 
determine each other so that each of the two classes is maximal with respect to 
the other as far as they abide by the above condition. What is most important 
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among many nice properties about the category FS of Frolicher spaces and 
smooth mappings is that it is cartesian closed, while neither the category of 
finite-dimensional smooth manifolds nor that of infinite-dimensional smooth 
manifolds modelled after any infinite-dimensional vector spaces such as Hilbert 
spaces, Banach spaces, Fn§chet spaces or the like is so at all. For a standard 
reference on Frolicher spaces the reader is referred to [6]. 

2.2. Weil Algebras and Infinitesimal Objects 

The notion of a Weil algebra was introduced by Weil himself in [22]. We denote 
by W the category of Weil algebras. Roughly speaking, each Weil algebra 
corresponds to an infinitesilnal object in the shade. By way of exan1ple, the 
Weil algebra R[X]/(X2) (=the quotient ring of the polynOlnial ring R[X-] of an 
indeterminate X Inod ulo the ideal (X2) generated by X2) corresponds to the 
infinitesin1al object of first-order nilpotent infinitesilnals, while the Weil algebra 
R[X]/(X3) corresponds to the infinitesin1al object of second-order nilpotent 
infinitesimals. Although an infinitesin1al object is undoubtedly imaginary in 
the real world, as has harassed both mathematicians and philosophers of the 
17th and the 18th centuries because n1athelnaticians at that tilne preferred 
to talk infinitesimal objects as if they were real entities, each Weil algebra 
yields its corresponding Weil functor on the category of smooth manifolds of 
some kind to itself, which is no doubt a real entity. Intuitively speaking, the 
Weil functor corresponding to a Weil algebra stands for the exponentiation by 
the infinitesimal object corresponding to the Weil algebra at issue. For Weil 
functors on the category of finite-dimensional smooth manifolds, the reader is 
referred to §35 of [10], while the reader can find a readable treatment of Weil 
functors on the category of smooth manifolds modelled on convenient vector 
spaces in §31 of [11]. 

Synthetic differential geometry (usually abbreviated to SDC), which is a 
kind of differential geometry with a cornucopia of nilpotent infinitesimals, was 
forced to invent its models, in which nilpotent infinitesimals were visible. For 
a standard textbook on SDG, the reader is referred to [12], while he or she is 
referred to [9] for the lnodel theory of SDC vigorously constructed by Dubuc [2] 
and others. Although we do not get involved in SDC herein, we will exploit lo
cutions in terms of infinitesimal objects so as to make the paper highly readable. 
Thus we prefer to write WD and liVD2 in place of R[X]/(X2) and R[X]/(X3) 
respectively, where D stands for the infinitesimal object of first-order nilpo
tent infinitesimals, and D2 stands for the infinitesimal object of second-order 



88 

nilpotent infinitesimals. To Newton and Leibniz, D standed for 

{d E R I d2 
= O} 

while D2 standed for 

{d E R I d3 
= O} 

H. Nishimura 

We will write WdED2f-+d2ED in place of the homomorphim of Weil algebras 
R[X]/(X2) ----+ R[X]/(X3) induced by the homOlnorphism X ----+ X2 of the 
polynomial ring R[X] to itself. Such locutions are justifiable, because the cat
egory W of Wei 1 algebras in the real world and the category of infinitesimal 
objects in the shade are dual to each other. To familiarize himself or herself 
with such locutions, the reader is strongly encouraged to read the first two 
chapters of [12], even if he or she is not interested in SDC at all. 

We need to fix notation and terminology for simplicial objects, which form 
an important subclass of infinitesimal objects. Simplicial objects are infinitesi
mal objects of the form 

Dn{p} 

= {( d I, ... , dn) E D71 I di 1 .. . dik = 0 (\I ( iI, ... , i k) E p)} 

where p is a finite set of finite sequences (iI, ... , ik) of natural numbers between 
1 and n, including the endpoints, with i l < ... < ik. If P is mnpty, D71{p} is 
D71 itself. If p consists of all the binary sequences, then Dn{p} represents D( n) 
in the standard tenninology of SDG. Given two silnplicial objects Dm{p} and 
Dn{ q}, we define a simplicial object Dm{p} EB Dn{ q} to be 

Dm+n{p EB q} 

where 

P EB q = P U {(jl + m, ... , j k + m) I (j1, ... , j k) E q} 

U {(i,j + m) 11 ::; i::; m, 1::; j ::; n}. 

Since the operation EB is associative, we can con1bine any finite number of sim
plicial objects by EEl without bothering about how to insert parentheses. Given 
morphisms of simplicial objects <Pi : Dmi{pd ----+ Dm{p} (1 ::; i ::; n), there 
exists a unique morphisln of simplicial objects <P : Dml {PI} EB '" EB Dmn {Pn} ----+ 

Dm{p} whose restriction to Dmi{Pi} coincides with <Pi for each i. We denote 
this <P by <P I EB ... EEl <P n' 
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2.3. Microlinearity 

In [18] we have discussed how to assign, to each pair (X, W) of a Frolicher 
space X and a Weil algebra W) another Frolicher space X 0 W called the 
Weil prolongation of X with respect to W, which is naturally extended to a 
bifunctor FS x W ---+ FS) and then to show that the functor . 0 W : FS ---+ FS 
is product-preserving for any Weil algebra W. Weil prolongations are well
known as Weil functors for finite-dimensional and infinite-din1ensional sn100th 
manifolds in orthodox differential geon1etry, as we have already touched upon 
in the preceding subsection. There is a canonical projection fr0111 X 0 liV to 
X, and we denote the inverse in1age of x under the canonical projection by 
(X 0 W)x for any x EX. 

The central object of study in SDG is microlinear spaces. Although the 
notion of a manifold (=a pasting of copies of a certain linear space) is defined 
on the local level, the notion of microlinearity is defined absolutely on the 
genuinely infinitesimal level. For the historical account of n1icrolinearity, the 
reader is referred to §§2.4 of [12] or Appendix D of [9]. To get an adequately 
restricted cartesian closed subcategory of Frolicher spaces, we have en1ancipated 
microlinearity from within a well-adapted model of SDG to Frolicher spaces in 
the real world in [19]. Recall that a Frolicher space X is called microlinear 
providing that any finite lin1it diagram D in W yields a lill1it diagran1 X 0 D 
in FS, where X 0 D is obtained from D by putting X0 to the left of every 
object and every morphism in D. As we have discussed there, all convenient 
vector spaces are microlinear, so that all Coo-manifolds in the sense of [11] (cf. 
Section 27) are also micro linear. 

We have no reason to hold that all Frolicher spaces credit Weil prolongations 
as exponentiation by infinitesimal objects in the shade. Therefore we need a 
notion which distinguishes Frolicher spaces that do so from those that do not. 
A Frolicher space X is called Weil exponentiable if 

(X 0 (WI 0 00 W2))Y = (X ® l-VI)Y ® W2 (1) 

holds naturally for any Frolicher space Y and any Weil algebras WI and M12 . If 
Y = 1, then (1) degenerates into 

X 0 (WI 0 00 W2) = (X 0 WI) 0 W2 (2) 

If WI = R, then (1) degenerates into 

(X0W2)Y =XY ®W2 (3) 

We have shown in [18] that all convenient vector spaces are Weil exponen
tiable, so that all Coo-manifolds in the sense of [11] (cf. Section 27) are Weil 
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exponentiable. 

We have demonstrated in [19] that all Frolicher spaces that are microlinear 
and Weil exponentiable form a cartesian closed category. In the sequel M is 
assumed to be such a Frolicher space. 

3. Euclidean Vector Spaces 

In this paper we will always mean a preconvenient vector space simply by a 
vector space. We will choose and fix a vector space IE in this sense throughout 
this section. It is evident that 

Lemma 1. The vector space structure of IE naturally gives rise to that of 
IE @ W for any Weil algebra W. 

Proof This follows readily from the bifunctionality of @ and the fact that 
the functor· @ W : FS -7 FS is product-preserving. D 

Lemma 2. The vector space structure of (IE @ W D)O as the tangent space 
discussed in our previous paper coincides with that induced by the vector space 
structure on IE @ W D in the preceding lemma. 

Proof We write + D for the addition in the former vector structure, while 
we write + E for the addition in 18: as well as for the addition in (18: @ W D)O 

induced by that in Lemma 1. Given tl, t2 E (IE @ W D )0, let us consider 

(+lE @ idwD(2») ((idlE @ W(dl,d2)ED(2)~dlED)(tl)' (idlE @ W(dl,d2)ED(2)~d2ED)(t2)) 
I t is easy to see that 

(idlE @ WdED~(d,O)ED(2)) 

((+lE @ idIVD(2») ((idlE @ W(dl,d2)ED(2)~dlED)(tl)' (idlE @ Ul(dl,d2)ED(2)~d2ED)(t2))) 

= (+lE @ idwD(2) ((idlE @ WdED~(d,O)ED(2)) 0 (idlE @ W(dl,d2)ED(2)~dlED)(tl)' 

(idlE @ WdED~(d,O)ED(2)) 0 (idlE @ W(dl,d2)ED(2)~d2ED)(t2)) 

[by the bifunctionality of @] 

= (+lE @ idwD(2»)(tl, (idlE @ WdED~OED)(t2)) 

= tl 

By the same token, it is also easy to see that 

(idlE @ WdED~(O,d)ED(2)) 

((+lE @idwD(2»)((idlE @ W(dl,d2)ED(2)~dlED)(tl)' (idlE @ W(dl,d2)ED(2)~d2ED)(t2))) 
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= t2 

Therefore we have 

tl +D t2 

= (idlE ® W dEDf-t(d,d)ED(2)) 

((+lE ® idwD(2)) ((idlE ® W(d 1 ,d2)ED(2)f-tdlED)(tl), (idlE ® W(d 1 ,d2)ED(2)f-td2ED)(t2))) 

= (+lE ® idvIID (2)) ((idlE ® W dEDf-t(d,d)ED(2)) 0 (idlE ® TiV(dl ,d2)ED(2)f-tdl ED) (tl), 

(idlE ® W dEDf-t(d,d)ED(2)) 0 (idlE ® W(d 1 ,d2)ED(2)f-td2ED) (t2)) 

[by the bifunctionality of ®] 

= tl +lE t2 

o 
It is evident that 

Proposition 3. The following conditions on the vector space JE are equiv
alent: 

1. The canonical mapping ilE : JE x JE ~ JE ® WD induced by the mapping 

(a, b) E lE x lE f-7 (x E JR f-7 a+xb E lE) E JElR 

is bijective; 

2. The Kock-Lawvere axiom holds in the sense that, for any t E (JE ® W D)O, 
there exists a unique a E JE whh 

t = ilE(O, a) 

Definition 4. The vector space lE is called Euclidean providing that one 
of the above equivalent conditions holds. 

Proposition 5. If lE is a Euc1idena vector space, then so is JEx for any 
Frolicher space X. 

Proof. We will check the first condition in Proposition 3. We have 

lEx ® WD 

= (lE ® WD)X 

= (lE x lE)x 

= lEx x lEx 

so that we have the desired conclusion. D 

Corollary 6. The category of Euclidean vector spaces and smooth map
pings is cartesian closed. 
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Proposition 7. lflE is a Euclidena vector space, then so is lE@ W for any 
Weil algebra W. 

Proof. We will check the first condition in Proposition 2. We have 

(lE @ W) @ WD 

=lE@(W@ooWD) 

= lE @ (W D @oo W) 

= (lE @ W D) @ TiV 

= (lE x lE) @ W 

= (lE @ W) x (lE @ W) 

[since the functor . @W is product-preserving] 

so that we have the desired conclusion. o 
Remark 8. Let x E M. Given t E (M@vl'D)x, we note that i(M®wDJx (0, t) 

E (M @ WDh @ WD can be regarded as an elelTIent of (M @ WD) @ WD 
M @ W D2, which is no other than 

(idM @ W(dl,d2)ED 2 f-i- dld2 ED )(t) 

We note in passing that 

Proposition 9. Convenient vector spaces are Euclidean. 

Proof. The reader is referred to §2 of [7]. o 

4. Differential Forms 

Let lE be a Euclidean vector space which is microlinear and Weil exponentiable. 

Definition 10. Given a slTIooth mapping w : M @ W Dn -t lE and a natural 
nun1ber i with 1 :::; i :::; n, we say that w is homogeneous at the i-th position 
providing that we have 

w(a : ,) = aw(,) 
~ 

for any, E M @ W Dn and any a E JR., where a '. , is defined by 
1. 
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with the putative mapping (a:) : D n ~ D n being 
'L Dn 

(d1 , ... ,dnJ E D n 
f---t (dl, ... ,di-l,adi,di+l, ... ,dn) E D n 

93 

Notation 11. Given IE M0WDn and a natural numberi with 1 :::; i :::; n, 
we denote 

by Ilbn-l' 
Notation 12. Given 7] E M 0 VVDn-l and a natural number i with 

1 :::; i :::; n, we denote 

by (M 0 WDn )~. 

Notation 13. The putative mapping ar : D n ~ D n is 

(d1 , ... , dn ) E D n 
f---t (d1 , ... , di,-l, dn , dil ... , dn - 1 ) E D n 

Remark 14. By the natural identification 

M 0lVDn = (M 0 WDn-l) @ WD 

the space (AI{ @ W Dn)~ is a Euclidean vector space. Under the bijective map

ping id M 0 War 1 the spaces (AI{ 0 TIff Dn ) ~ and (1\,;1 0 W Dn )~; can be identified, 
so that the fonner is also a Euclidean vector space for any natural number i 
with 1 :::; i :::; n. Given 11, 12 E M 0 WDn with 

11 Ibn-l = 12 Ibn-l = 7] 

we denote the addition of 11 and 12 in (AI{ 0 W Dn)~ by 11 t 12· 
1, 

Proposition 15. A smooth mapping w : M 0 WDn ~ JE whkh is homo
geneous at the i-th position is linear at the i-th position as well in the sense 
that 

w (-n t ')'2) = Wbl) + W(r2) 

for any 11, 12 E M 0 WDn with 

11 Ibn-l = 12 Ibn-l 
Proof. The reader is referred to Proposit'ion 10 in §1.2 of [12j. o 
Definition 16. A differential n-form w on M with values in lE is a smooth 

mapping 

w : M 0 TIff Dn ~ lE 
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pursuant to the following conditions: 

1. w is n-homogeneous in the sense that it is homogeneous at the i-th position 
for any natural nUlnber i with 1 :::; i :::; n. 

2. w is alternating in the sense that 

welT) = Ea-W(,) 

for any pennutation (5 of I, "'J n, where ra- is defined by 

ra- = (idM ® Wa-Dn)(,) 

with the putative mapping (5Dn : D n 
-t D n being 

(d1, ... ,dn ) E D n 
f---+ (da-(l), ... ,da-(n») E D n 

In case that M is a convenient vector space IF, we have a more traditional 
notion of a differential n-form. 

Definition 17. A differential n-fo7mc W on IF with values in lE is a smooth 
mapping from IF to L~lt (IF; lE), where L~lt (IF; JE) denotes the space of smooth 
mappings frOln the direct product of n copies of IF to lE which are n-linear and 
alternating. 

Proposition 18. In case that M is a convenient vector space IF, we assign, 
to each differential n-fo7mc W on IF with values in lE, the l11apping W : IF® W Dn -t 

JE with 

for any, E IF ® WDn, where 

ilF(-;r(,), e;) = (idlF ® Wq) (,) (1:::; i :::; n) 
The assignment gives a mapping from the totality of differential n-fo7msc on 
IF with values in JE to that of differential n-fo7ms on IF with values in lE. The 
mapping is bijective. 

Proof. The discussion in Proposition 6 of §4.1 in [12J can be refonnulated 
easily for our general and abstract context. We should use Proposition 0.3.9 of 
[16J in place of Proposition 7 in §3.4 of [12J. The details can safely be left to 
the reader, but we note in passing that the inverse assignment of a differential 
n-fo7mc !l. on IF with values in 18: to each differential n-fo7m {} on IF with values 
in JE goes as 

{} (al, ... ,an ) = {}(ilF(x;alJ· .. ,an )) -x 
where ilF (x; a 1, ... , an) E IF ® W Dn is the canonical mapping induced by the 
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mapping 

o 

5. The Exterior Differentiation 

Let us begin this section with two definitions. 

Definition 19. Given, E lE® TiV Dn and a natural nUlnber i with 1 ::; i ::; n, 
we say that it is homogeneous at the i-th position provided that we have 

(dIE 0 W( ",tJ (f) = (alE 0 idwDn)(f) 

for any a E JR., where the putative mapping (a .. ) : Dn 
-t D11 is 

t Dn 

(d1l ... ,dn ) E Dn 
f--+ (d1l ,,,,di - 1, adildi+ll ""dn ) E D11 

and alE on the right-halld side of the equation stands for the Inultiplication by 
the scalar a. We say that J is n-homogeneous provided that it is h01110geneous 
at the i-th position for any natural number i with 1 ::; i ::; n. 

Definition 20. Given a differential n-form w on AI with values in lE alld 
J E M ® WDn, we define 

as the value of the Inapping 

lExlE~lE0WD 

at (0, w(,)) E lE x lE. 

It is easy to see that 

Proposition 21. The above mapping 

J w : M 0 WDn -> lE 0 WDn 

is subject to the following two conditions: 

(4) 

1. The mapping is a diHerential n-form with values in the vector space lE ® 
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2. The values of the mapping are all n-homogeneous. 

ProoL Since the mapping 

idlE 0 W(d}, ... ,dn)EDnl-+dl ... dnED : lE 0 WD -+ lE 0 WDn 

preserves the linear structure, we can see readily that the mapping (4) 'satis
fies the first condition. Since (0, w (,)), regarded as an element of lE 0 W D, 

is l-homogeneous by Lemma 2, and since the following diagram of putative 
mappings 

(d1, ... , dn ) E Dn 
f---t d1 ... dn E D 

D n -+ D 

(n;) D" i i aD 

Dn -+ D 
(d1, ... , dn ) E D n 

f---t d1 ... dn E D 

commutes, we are sure that the mapping (4) satisfies the second condition. This 
completes the proof. 0 

What is really surprising, we have its converse. 

Theorem 22. If a smooth mapping ¢ : M 0 W Dn -+ lE 0 W Dn abides 
by the two conditions in Proposition 21, then there exists a unique diHerential 
n-fonn w with 

¢(,) = lw 
~( 

for any, E M@WDn. 

Proof. The limit diagram of Weil algebras 

w· h 
-+ 

liVmn 

WD -+ WDn --+ WDn-l 

w· :?on 
-+ 

Won 
n-l 

--+ 
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gives rise to the limit diagram of Frolicher spaces 

idjEM0 wDn 0 vVmn 
JE M 0WDn 0 WD --t 

idjEM0 wDn 0 Til/~h 
--t 

idjEM0 wDn 0 Win 
--t 

idjEM0wDn 0 Til/011 
11-1 

because of the microlinearity of IEM 0 i¥D11 , where the putative luappings i j 
D n - l 

--t Dn (1 ~ j ~ n) are 

(d l , "" dn- 1 ) E Dn- 1 ~ (d1 , .'" dj - 1 , 0, dj , "" dn-d E D n 

while the putative mapping O~-l : D n - 1 
--t D n is 

(dI, "" dn- 1 ) E D n- 1 ~ (0, ",,0) E D n 

Since cp, regarded as an element of IEM 0 WDn 0 W Dn (= (IE 0 VVDn )M0WDn), is 
n-homogeneous, it is easy to see that 

(idjEM 0 wDn 0 W i1 )(CP) = ,., = (idjEM 0 wDn 0 W in )(¢) = (idjE M 0 wDn 0 WO~_l)(¢) 

Then the above liluit diagram of Frolicher spaces guarantees that there exists 
a unique 'IjJ E IEM 0 WDn 0 WD with 

¢ = (idjEM0wDn o Til/mn)('IjJ) 

Since IE M 0WDn is Euclidean by Proposition 5 and 'IjJ E (IEM 0WDn 0 WD)O, there 
exists a unique w E IEM 0WDn with 

'IjJ = ilEM0wDn (0, w) 
Then it is easy to see that w is a differential n-form with values in IE such that 

<Ph) = i w 

for any, E M 0 liV Dn, This completes the proof, o 
Definition 23. Given a differential n-form w on M with values in JE, we 
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define a mapping fa
i

. w : M 0 W Dn+l -+ lE 01V Dn+l to be 

idM 0 M1an+1 
z 

(f w) 0 idwD 
-+ (lE 0 WDn) 0 WD ~ lE 0 M1Dn+1 

Theorem 24. Given a differential n-form w on M with values in lE, there 
exists a unique differential (n + I)-form dw on M with values in lE with 

r dw = ~(_l)i+lDo r w (5) 
J, Jail 

for any! E M 0 W Dn+l, where Do fail w denotes the mapping 

r w - (idM0wD n 0 WdEDI-'OED) (r w) 
Jail Jail 

Proof. By Theorem 22 it suffices to verify that the right-hand side of (5) 
abides by the two conditions in Proposition 21, which goes as follows: 

1. We would like to show that Do fail w E IE 0 W Dn+l is (n + 1)-homogeneous 

(1 :S i :S n + 1). Since both fail wand (idM0WD n 0 WdEDI-'OED )(fail w) 
are homogeneous at the j-th component, Do Jail w is homogeneous at the 

j-th component for j =1= i. That Do fail w is homogeneous also at the i-th 
component follows from the fact that IE 0 WDn is Euclidean. 

2. We would like to show that the mapping 

Do fai. W : M 0 WDn+l -+ lE 0 W Dn+l 

is (n + I)-homogeneous (1 :S i :S n + 1). For j < i, it is easy to see that 

(idM 0 Mla~+l) 0 (idM 0 W(a .. ) ) 
J Dn+l 

= ( (idM 0 W (u;) D
n

) 0 idWD) 0 (idM 0 Wa~+l) 
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while, for j > i, it is also easy to see that 

(idM @ Wa~+l) 0 (idM @ VV(a .. ) ) 
J Dn+l 

= ( (dM ® W ("j~,) Dn) ® idW D) 0 (idM ® W8~+1 ) 
Therefore, for j i= i, that 

(Do fai W) 0 (id M ® W(,,;) DnJ 
= (alE ® idwDn+1 ) 0 (Do fai W ) 

follows directly from the assumption that the mapping 

J W : M ® WDn -> lE ® WDn 

is n-homogeneous. It ren1ains to show that 

(Do fai W) 0 (idM ® W(,,;) DnJ 
= (alE ® idwDn+l) 0 (Do fai W ) 

which follows readily from 

(idM @ Wa~+l) 0 (idM @ W(a .. ) ) 
~ Dn+l 

= (idM0WD n @ aD) 0 (idM @ Wa~+l ) 
and the Euclideaness of lE @ W Dn . 

3. Let (J" be a permutation of 1, ... , n + 1. We would like to show that 

(2:)-1)i+1Do fan W) 0 (idM ® W"Dn+l) 
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= Ccr :l::) _l)i+lDo r w (6) 
Jan 

We notice that 
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= (idM 0 W(?") ) 0 (idM 0 Wan+1 ) 
7, Dn a-1(i) 

where Ti is the permutation of 1, ... , n with 

Ti(l) = 0"(1), ... ,Ti(O"-l(i) -1) = 0"(0"-1 (i) -I), 

Ti ( 0" -1 (i)) = 0" ( 0" -1 (i) + 1), ... , Ti ( n) = 0" (n + 1) 

We notice also that 

and 

Therefore (6) follows. 

o 
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