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Abstract

Individually and overall optimal routing problems are considered for networks with nodes inter-
connected by a generally configured manner and with multiple classes of users. The two problems
are formulated along with the discussions on mutual equivalence between both problems, on the
existence and uniqueness of solutions, and on the relation between the formulations with path and
link flow patterns. We show that a link-traffic loop-free property holds within each class for both
individually and overall optimal routing in a wide range of networks, and show the condition that
characterizes the category of networks for which the property holds.
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1 Introduction

We have two typical approaches for optimal routing in networks. (1) One arises in a context of minimiz-
ing the overall cost (overall mean delay) of all users (e.g., packets) from its arrival (origin) node of each
user to its destination node through a number of links over the entire network. The optimal routing policy
with this framework is called the overall optimal routing policy. (2) A second approach is a distributed
one in which one seeks for a set of routing strategies for all users such that no user can decrease its cost
(expected delay) by deviating from its strategy unilaterally. This could be viewed as a result of leaving
each user the decision on which path to route. This approach is called the individually optimal routing
or selfish routing [19, 20]. The situation where each user has unilaterally minimized its cost is called a
Wardrop equilibrium [17, 22] or a Nash equilibrium where no user has any incentive to make a unilateral
decision to change its route.

In computer and communication networks, most work has focused on overall optimal routing (e.g.,
[2, 7, 8]). For networks in general, however, minimizing the cost of each user from its arrival (ori-
gin) node to its destination node is a major concern of the user. Thus, individually optimal routing
has attracted increasing attention of researchers and practitioners also in computer and communication
networks, and some research results have been obtained on it [1, 3, 16, 19, 20].

In most studies on optimal routing problems for communication networks in the literature (e.g.,
[2, 7, 8, 9, 3, 16]), the link cost is modeled as a simple function dependent only on the link flow itself.
We call it the traditional link-cost model. In this paper, however, the cost on a link of a network is
modeled by a function of the flows of all links of the entire network. We call it a general link-cost model.
For example, we can consider a wireless communication network, where, when a link connecting two
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nodes has more flow and, thus, uses more power, links neighboring the link may have less capacity. This
paper studies both the individually and overall optimal routing problems in general link-cost models of
generally configured networks with multiple classes of users. We call a network with multi-class users
a multi-class network. We note, however, that, in these optimization problems, the cost to be optimized
depends only on the link flow pattern while the instrument (the set of decision variables) is the path flow
pattern.

In this paper, we discuss individually and overall optimal routing problems on which Dafermos has
obtained some basic results [6, 4, 5]. Our treatment is, however, more general than hers in the following
points: (1) Our model allows each user of a class to enter any origin and leave any destination both
available to the class with/without fixing the arrival rate at each origin and the departure rate at each
destination. (2) The link-traffic loop-free property is discussed. (3) The relation between the case where
the instrument is the path flow pattern and the case where it is the link flow pattern is discussed. In
particular, we note that, by definition, a path flow pattern determines a unique link flow pattern whereas
it may not be sure whether for a link flow pattern there exists a path flow pattern that induces it, i.e.,
whether a given link flow pattern is realizable.

We confirm that, for the individually optimal routing problem under our assumptions, there is an
overall optimal routing problem associated to it, and that both have the same solution. We discuss the
existence and uniqueness of the solutions to the overall and individually optimal routing. Furthermore,
we show that the link-traffic loop-free property holds for each class, for the individually and overall
optimal routing in general link-cost models of multi-class networks. We pay much attention to the
relation between the cases where the sets of the control variables are, respectively, the path and link
flow patterns. We show the condition that characterizes the category of networks where the link-traffic
loop-free property holds for each class. Some examples are discussed. In contrast, note that, even
in the networks where the link-traffic loop-free property holds for each class in overall and individually
optimal routing, it does not always hold in noncooperative optimal routing by a finite (but plural) number
of decision makers, where the decision makers strive to optimize unilaterally the cost of the users under
its control. Such counter-examples are given in [12, 13] (with the definition of class in those papers
changed to be the same as the one in this paper). Note, in passing, that overall optimal routing may have
only one decision maker and that individually optimal routing has infinitely many infinitesimal decision
makers.

The rest of this paper is organized as follows. In the next section, we provide the problem formu-
lation. The relation between the individually and overall optimal routing for multi-class networks is
provided in Subsection 2.3. Subsection 2.4 discusses the existence and uniqueness of individually and
overall optimal routing for multi-class networks. Section 3 discusses the link-traffic loop-free property
for the individually and overall optimal routing for multi-class networks. Some examples are shown in
Section 4. Section 5 concludes the paper.

2 Problem Formulation and Solutions

Consider a network consisting of n nodes numbered, 1, 2, . . . , n, interconnected in an arbitrary fashion by
links. N and L, respectively, denote the sets of nodes and links. There are multi-class users in the network.
C denotes the set of user classes. Each class may have a distinct set of links available to the class. We
assume that users do not change their classes during their trips from origins and destinations. We call
links available to class-k users ‘class-k links.’ Lk denotes the set of ‘class-k links.’ Then, L = ∪k∈CLk. By
a path for a class, say class k, connecting an ordered pair ω = (o, d), we mean a sequence of class-k links
(v1, v2), (v2, v3), . . . , (vn′−1, vn′) that any class-k user can pass through where v1, v2, . . . , vn′ are distinct
nodes, v1 = o, and vn′ = d. Then, the path is denoted by (o, v2, . . . , vn′−1, d). We call node o an origin,
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the node d a destination and the pair ω = (o, d) an origin-destination pair (or o-d pair for abbreviation).
Each class may have a distinct set of origins and of destinations.

If vi is the same as node v j for some i and j such that j < i, we say that the path has a loop or cycle.
We note, however, that in the optimal solutions such a loop within a path never exists. Therefore, a link
appears in a path for a class at most once. On the other hand, although each path has no loop, the network
may have a loop as to link flows as discussed in Section 3. We have the following assumptions.

A1 (1) If there exists a possible series of link connections for a class between an o-d pair, there must
exist a path for the class between the o-d pair. (2) If there exists a path for a class between an o-d
pair, all possible series of link connections for the class between the o-d pair are also paths of the
class between the o-d pair.

A2 The rates of arrivals at each origin and of departures at each destination are given for each class.

Remark 1 As seen later in Sections 3 and 4, Assumption A1 presents the condition that characterizes
the category of networks that have the link-traffic loop-free property within each class for overall and
individually optimal routing. Even under the assumptions A1 and A2, we can model the situation where
there are particular combinations of origins and destinations such that users arriving at an origin should
depart the network only from the destination corresponding to the origin.

In Assumption A2, it may look unnatural that the rate of the departure at each destination is given
even though each user can leave the network at any available destination. We see below, however, that
the assumption A2 is most general. Consider a network, namedM, where each class-k user can leave
the network at any available destination without fixing the class-k departure rate at each destination. We
imagine another network, namedM′, where one class-k ‘final’ destination is added to the networkM
and that each of the class-k destinations inM is connected to the class-k final destination via a class-k
zero-cost link in the networkM′ for every class k. (Later in this section, we will describe zero-cost links
along with the definition of link-cost functions, Gk

i j.) Then, the imagined networkM′ can be regarded
as the one with multiple-origins and one common destination for class k as shown in Section 4.1.1 and
satisfies Assumptions A1 and A2. The optimal solutions of the networksM andM′ should be identical.

In a similar way, we can consider a network where each class-k user can enter the network at any
origin without fixing the class-k arrival rate at each origin but with the departure rate at each class-k
destination being fixed. We can also consider a network where each class-k user can enter at any origin
and leave from any destination without fixing the arrival and departure rates at any origin and destination
for class k and with fixing the total arrival and departure rates for the class k, respectively. The former
network is equivalent to the network where one ‘initial’ origin is added and connected to each origin via
a zero-cost link for class-k. The latter network is equivalent to the network where one initial origin and
one final destination are added for class-k.

We therefore see that the assumption A2 is most general and covers all three kinds of networks each
of which is equivalent to the corresponding one of the three networks mentioned above, respectively. �

For simplicity, we assume that a node cannot be both an origin and a destination at the same time
for the same class. The sets of all origin and destination nodes for class k are denoted by Ok and Dk,
respectively. The sets of all possible paths which originate from an o ∈ Ok and which are destined for
a d ∈ Dk, for class k, are denoted by Pk

o− and Pk
−d, respectively. The set of all paths in the network

for class k is denoted by Pk, each element of which must appear in a Pk
o− and in a Pk

−d, i.e., Pk =

∪o∈OkPk
o− = ∪d∈DkPk

−d). For every origin o ∈ Ok and for every destination d ∈ Dk, respectively, let rk
o−

and rk
−d (k ∈ C) be the nonnegative external class-k user traffic demands that originates at node o for all

destinations d ∈ Dk, and that is destined for node d from all origins o ∈ Ok.
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For a path p ∈ Pk
o−, yk

p denotes the part of rk
o− which flows through path p. Similarly for a path

p ∈ P−d. yk
p is called the class-k path flow through the path p. We have the following relations.∑

p∈Pk
o−

yk
p = rk

o−, o ∈ Ok, (1)

∑
p∈Pk

−d

yk
p = rk

−d, d ∈ Dk, (2)

yk
p ≥ 0, p ∈ Pk, k ∈ C. (3)

Naturally,
∑

o∈Ok rk
o− =

∑
d∈Dk rk

−d. Denote the path flow pattern by y = [yk], where yk = [yk
p]. By a

feasible path flow pattern, we mean y which satisfies relations (1), (2), and (3). Denote by FS y the set
of feasible path flow patterns. Clearly, FS y is convex, closed, and bounded.

Denote by xk
i j the class-k user flow rate, also called the class-k flow, through link (i, j). Let x = [xk]

where xk = [xk
i j]. Furthermore, let x = [xi j] where xi j = [xk

i j]. We call x the link flow pattern. Since a
link appears in a path at most once, a class-k link flow is expressed by class-k path flows as follows.

xk
i j =
∑
p∈Pk

δ
p
i jy

k
p, (i, j) ∈ Lk, k ∈ C, (4)

where

δ
p
i j =

{
1, if link (i, j) is contained in path p,
0, otherwise.

If link (i, j) is included in path p, we also express it as (i, j) ∈ p. From (4), we notice that a path flow
pattern y induces a unique link flow pattern x, while it is possible that more than one path flow pattern
y induces the same link flow pattern x. Moreover, for given x, it may not be sure whether there exists a
path flow pattern y that induces x.

Let Gk
i j be the class-k link cost of sending a class-k user from node i to node j through link (i, j).

Gk
i j is a function of all link flows x. We assume that, for most of the link costs, Gk

i j(x) is a positive and
differentiable function that is convex in x and, in particular, that Gk

i j(x) is strictly convex in xk
i j. We also

consider the possible existence of zero-cost links the flows of which do not influence other link costs,
that is, for some i′, j′, k′, Gk′

i′ j′(x) = 0 for all x, and xk′
i′ j′ does not affect any other Gk

i j. xs denotes the
vector that consists of the elements xk

i j such that each corresponding Gk
i j(x) is strictly convex in xk

i j, and
x−s denotes the vector that consists of the elements xk′

i′ j′ each of which is the flow through the class-k′

zero-cost link (i′, j′).
Dk

p(x) denotes the class-k cost of a path p. Then,

Dk
p(x) =

∑
(i, j)∈Lk

δ
p
i jG

k
i j(x), p ∈ Pk, k ∈ C. (5)

2.1 Overall Optimal Routing for Multi-Class Networks

By using (4) and (5), the overall cost of users over all classes is expressed as

D(x) =
1
R

∑
k∈C

∑
p∈Pk

yk
pDk

p(x) =
1
R

∑
k∈C

∑
(i, j)∈Lk

xk
i jG

k
i j(x),
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where R =
∑

k∈C
∑

o∈Ok rk
o− =

∑
k∈C
∑

d∈Dk rk
−d.

Thus, considering (4), the overall optimal routing problem is expressed as follows.

min
y

D(x(y)) subject to y ∈ FS y. (6)

We have assumed that Gk
i j(x) is convex in x and, in particular, strictly convex in xk

i j, for all i, ( j , i), k.
We also assume that D(x) is convex in x and strictly convex in xs. Then, we see that D(x) is convex in y,
which can be easily shown as follows: Indeed, the relation (4) can be regarded as a linear transformation:
y→ x and we denote this by x = x(y). Then, αD(x(y1))+ (1−α)D(x(y2)) ≥ D(αx(y1)+ (1−α)x(y2)) =
D(x(αy1 + (1 − α)y2)), where the inequality follows from the convexity of D(·) and the equality follows
from the transformation linearity. Thus, we see that D(x(y)) is convex in y.

Define gi j(x) as follows.

gk
i j(x) = R

∂

∂xk
i j

D(x). (7)

Consider the following Lagrangian function:

L(y,φ) = RD(x) +
∑
k∈C

[∑
o∈Ok

φk
o−(rk

o− −
∑

p∈Pk
o−

yk
p) +

∑
d∈Dk

φk
−d(rk

−d −
∑

p∈Pk
−d

yk
p)
]
,

where φk
o− and φk

−d are Lagrange multipliers. Then, the path flow pattern y that satisfies the following
relation derived from the Kuhn-Tucker condition is a solution for overall optimal routing if such a flow
pattern y exists, ∑

(i, j)∈p

gk
i j(x) = βk

o,d, for yp > 0,∑
(i, j)∈p

gk
i j(x) ≥ βk

o,d, for yp = 0, (8)

p ∈ Pk, o ∈ Ok, d ∈ Dk, k ∈ C, y ∈ FS y,

where βk
o,d = φ

k
o− + φ

k
−d. We recall that Pk = ∪o∈OkPk

o− = ∪d∈DkPk
−d).

2.2 Individually Optimal Routing for Multi-Class Networks

Informally, we define the individually optimal routing to be such that each individual user routes itself so
as to minimize its own cost from the arrival at its origin node to the departure from its destination node,
given the expected link cost of each link. In the equilibrium that the routing policy results in, every user
of all classes may feel that its own cost is minimized and has no incentive to make a unilateral decision
to change its route. In other words, the link flow pattern x of individually optimal routing is a Wardrop
equilibrium [22]. or a Nash equilibrium point in the sense of noncooperative game [15]. Thus, we define
the equilibrium condition of the individually optimal routing as follows.

Definition I: A path flow pattern y is said to satisfy the equilibrium condition of the individually optimal
routing if and only if the following relation holds.

Dk
p(x) =

∑
(i, j)∈p

Gk
i j(x) = Ak

o,d, for yp > 0,

Dk
p(x) =

∑
(i, j)∈p

Gk
i j(x) ≥ Ak

o,d, for yp = 0, (9)

p ∈ Pk, o ∈ Ok, d ∈ Dk, k ∈ C, y ∈ FS y.
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We recall that Pk = ∪o∈OkPk
o− = ∪d∈DkPk

−d). We call the path flow pattern y the solution of the
individually optimal routing if it satisfies the above equilibrium condition. It is a Wardrop equilibrium
[22].

Remark 2 The above definition I and the assumptions A1 and A2 imply the situation where it only holds
that, for each combination of the origin and the destination, the paths used have equal costs that are not
less than those of the unused paths. But, this situation may not reflect the freedom of each user of a class
to choose one destination among those available to the class. In order that truly individual decisions may
be realized, we may use the framework mentioned in the last paragraph of Remark 1. �

2.3 Relation between Individually and Overall Optimal Routing for Multi-Class Net-
works

We construct a new overall cost function D̂(x) for the same network as that of (6), such that

Gk
i j(x) = R

∂D̂(x)
∂xk

i j

, (i, j) ∈ Lk, k ∈ C. (10)

According to the line of research by Dafermos, et al. [4, 5, 17], we consider whether and under what
condition such a function D̂(x) exists. Since link-cost function Gk

i j(x) ((i, j) ∈ Lk, k ∈ C) is differentiable,
∂Gk

i j/∂x
k′
lm ((i, j) ∈ Lk, (l,m) ∈ Lk′ , k, k′ ∈ C) exists. Then, we assume that the matrix of partial derivatives

of link-cost functions, Λ(x) =
[∂Gk

i j

∂xk′
lm

]
, is symmetric (i.e.,

∂Gk
i j

∂xk′
lm

=
∂Gk′

lm

∂xk
i j

for all (i, j) ∈ Lk, (l,m) ∈

Lk′ , k, k′ ∈ C). Moreover, we consider a submatrix, Λs(x), of Λ(x) that contains the ((i jk), (i′ j′k′))-th
elements such that both xk

i j and xk′
i′ j′ are in xs. We note that the elements of Λ(x) that are not in Λs(x)

are all zero. We assume that Λs(x) is positive definite. Then, D̂(x) is strictly convex in xs, Λ(x) is semi-
positive definite, and D̂(x) is convex in x. In the traditional link-cost models, Λ(x) is also symmetric and
semi-positive-definite (see, e.g., [1, 19]). Denote by (x−(i jk), x′ki j ) the vector with the component xk

i j of x
replaced by x′ki j . If Λ(x) is symmetric, the following satisfies (10).

D̂(x) =
1

R
∑

k∈C |Lk|

{∑
k∈C

∑
(i, j)∈Lk

∫ xk
i j

0
Gk

i j(x−(i jk), x′ki j )dx′ki j

}
. (11)

We define

Ĝk
i j(x) =

1
xk

i j
∑

k∈C |Lk|

∫ xk
i j

0
Gk

i j((x−(i jk), x′ki j ))dx′ki j , (i, j) ∈ Lk, k ∈ C. (12)

Then, we regard Ĝk
i j as a new class-k link cost on link (i, j). Thus,

D̂(x) =
1
R

∑
k∈C

∑
(i, j)∈Lk

xk
i jĜ

k
i j(x).

We recall that, for xk′
i′ j′ ∈ x−s, Ĝk′

i′ j′ = 0 and xk′
i′ j′ would not influence other Ĝk

i j (i′ , i or j′ , j). Thus, we
have the following overall optimization problem, considering (4).

min
y

D̂(x(y)) subject to (4) and y ∈ FS y. (13)
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We call the overall optimization problem (13) an associate problem to the individually optimal rout-
ing problem. We note that it is another overall optimal routing problem. Consider the following La-
grangian function:

L̂(y,φ) = RD̂(x) +
∑
k∈C

[∑
o∈Ok

φ̂k
o−(rk

o− −
∑

p∈Pk
o−

yk
p) +

∑
d∈Dk

φ̂k
−d(rk

−d −
∑

p∈Pk
−d

yk
p)
]
,

where φ̂k
o− and φ̂k

−d are Lagrange multipliers. Then, the path flow pattern y that satisfies the following re-
lation derived from the Kuhn-Tucker condition as to the above Lagrangian function is an overall optimal
solution to the associate problem if such a flow pattern y exists.∑

(i, j)∈p

Gk
i j(x) = Ak

o,d, for yp > 0,∑
(i, j)∈p

Gk
i j(x) ≥ Ak

o,d, for yp = 0, (14)

p ∈ Pk, o ∈ Ok, d ∈ Dk, k ∈ C, y ∈ FS y,

where Ak
o,d = φ̂

k
o− + φ̂

k
−d. We see that the above is equivalent to the condition (9) describing the solution

of the corresponding individually optimal routing problem. Then, we have the following lemma.

Lemma 1 A path flow pattern y is a solution to associate problem (13) if and only if it satisfies the
equilibrium condition (9).

On the other hand, if we regard gk
i j(x) as a new class-k link cost on link (i, j), then we have the

equilibrium condition (8) of individual optimization that is an associate condition to the overall optimal
routing problem for multi-class networks with Gk

i j(x) being the class-k cost on link (i, j).

Corollary 1 A path flow pattern y satisfies the associate condition (8) if and only if it is a solution to the
overall optimization problem (6).

2.4 Existence and Uniqueness

In this section, we study the existence and uniqueness of the solutions to individually and overall optimal
routing problems for multi-class networks. We first discuss the existence and uniqueness of the solutions
to the overall optimal routing problem. Then, by noting that the individually optimal routing problem
can be transformed into its associate overall optimal routing problem (13), we investigate the existence
and uniqueness of the solution to the associate problem (13) and, then, to the individually optimal routing
problem (9).

Denote the set of feasible link flow patterns by FS x. That is,

FS x = {x | There exists y such that x and y satisfy (4) and y ∈ FS y}.

Clearly, the set {(x, y) | (x, y) satisfies (4) and y ∈ FS y} is convex, closed, and bounded, Then, by noting
that the orthogonal projection of a convex set onto a subspace is another convex set (see, e.g., [18]), the
set FS x is convex in x and a closed and bounded hyperplane (see, e.g., [18]). Note that D(x) in (6) is
continuous in x and, thus, in y, and that the feasible set FS y is closed and bounded. Then, there exists a
solution of path flow patterns y to (6), according to the Weierstrass theorem (e.g., [10, 11]). Since D(x)
is continuous and convex in x and strictly convex in xs, we have the following.
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Theorem 1 For the overall optimal routing problem for multi-class networks (6), an optimal path flow
pattern y exists and, in particular, the resulting xs is unique.

The uniqueness of xs is shown by contradiction as follows. Suppose that xs is not unique and that
both x1 = (x1

s , x1
−s) and x2 = (x2

s , x2
−s) give the minimum Dmin of D(x), for x1

s , x2
s . Then, from the

convexity of the feasible region of x, αx1 + (1 − α)x2, for some α (0 < α < 1), is also in the feasible
region, and

D(αx1 + (1 − α)x2) = D(αx1
s + (1 − α)x2

s , αx1
−s + (1 − α)x2

−s)

< αD(x1
s , αx1

−s + (1 − α)x2
−s) + (1 − α)D(x2

s , αx1
−s + (1 − α)x2

−s)

= αDmin + (1 − α)Dmin = Dmin,

where the inequality follows from the strict convexity of D(x) in xs and the second-last equality follows
from the meaning of x−s. The above relation contradicts the assumption that Dmin is the minimum of
D(x), and we see that the x that minimizes D(x) has a unique xs.

For the individually optimal routing problem, we note that D̂(x) in (13) is continuous in x and, thus,
in y, and that FS y is closed and bounded. Then, similarly as above, there exists a solution of y to (13)
according to the Weierstrass theorem (e.g., [10, 11]). With Lemma 1 and by noting that D̂(x) is convex
in x and strictly convex in xs, we have the existence and uniqueness of a solution to individually optimal
routing as follows.

Theorem 2 For the individually optimal routing problem, there exists a solution y to (13) and thus that
satisfies (9), and, in particular, the resulting xs is unique.

For the overall (respectively, individually) optimal routing problem, consider the following optimiza-
tion problem that involves only the link flow pattern x and does not involve the path flow pattern y (with
D(x) to be replaced by D̂(x) for the individually optimal routing problem).

min
x

D(x) subject to x ∈ FS x. (15)

Similarly as above, we see that there exists a solution of x to (15) (respectively, to the problem with D(x)
being replaced by D̂(x)), according to the Weierstrass theorem (e.g., [10, 11]). The optimization problem
(15) (respectively, the one with D(x) being replaced by D̂(x)) is another nonlinear convex optimization
problem, but, clearly, (15) (respectively, the one with D(x) being replaced by D̂(x)) gives the solution x
that is the same as the link flow pattern x that the solutions y to (6) (respectively, (13), thus (9)) result in.

3 Link-Traffic Loop-Free Property

In this section, we show a property that holds for the individually/overall optimal routing for multi-class
networks, called the link-traffic loop-free property. The link-traffic loop-free property is such that there
exists no loop that consists of a sequence of links (v1, v2), (v2, v3), . . . , (vn′−1, vn′) where v1, v2, . . . , vn′

are distinct nodes while v1 = vn′ such that class-k link flow xk
v1,v2
> 0, xk

v2,v3
> 0, xk

vn′−1,vn′
> 0 (k ∈ C)

(Figure 1). Although it is evident that no path has a loop, it is not clear whether there exists no loop for
link flows of each class. For example, if Assumption A1 does not hold, as shown by the example given
later, there may exist loops for link flows in the network.

From relations (1), (2), and (4), we have the following flow-balance relation.

rk
i− (if i ∈ Ok) +

∑
l∈Vk

i

xk
li = rk

−i (if i ∈ Dk) +
∑
l∈Vk

i

xk
il, i = 1, 2, . . . , n − 1, k ∈ C, (16)

8



i j
xk

i j

Figure 1: Link-traffic loop-free property in individually/overall optimal routing

where Vk
i is the set of immediately neighboring nodes of node i for class k, i.e., Vk

i = { j|(i, j) ∈
Lk, or ( j, i) ∈ Lk}. The constraint with respect to i = n can be derived by summing up both sides
of the above constraints for i = 1, 2, . . . , n − 1. Define FS I as follows:

FS I = {x | x satisfies (16) and x ≥ 0}.

Note that the set of FS I is convex, closed, and bounded. Note, furthermore, that FS I includes but may
not be identical to FS x.

We have the associate problem for the individually optimal routing (and the overall optimal routing
problem) with the following new constraint (with D̂(x) and Ĝk

i j(x), respectively, to be replaced by D(x)
and Gk

i j(x) for the overall optimal routing problem).

min
x

D̂(x) subject to x ∈ FS I. (17)

The necessary and sufficient condition that a solution to the above individually/overall-optimal rout-
ing problem satisfies is given as follows.

Lemma 2 The link flow pattern x is an optimal solution to the individually (and overall) optimal routing
problem with constraint x ∈ FS I (17) if and only if x satisfies the following set of relations (with Gk

i j(x)
to be replaced by gk

i j(x) for the overall optimal routing problem).

αk
i −Gk

i j(x) = αk
j, for xk

i j > 0, (i, j) ∈ Lk, k ∈ C, (18)

αk
i −Gk

i j(x) ≤ αk
j, for xk

i j = 0, (i, j) ∈ Lk, k ∈ C, (19)

subject to x ∈ FS I, where αk
i (i ∈ N, k ∈ C) are Lagrange multipliers.

PROOF: We show the case of individual optimization. The case of overall optimization is shown in a
similar way. To obtain an optimal solution to problem (17), we form the Lagrangian function as follows,

H(x,α) = RD̂(x) +
∑
k∈C

n−1∑
i=1

αk
i
[
rk

i−(if i ∈ Ok) +
∑
l∈Vi

xk
li − rk

−i (if i ∈ Dk) −
∑
l∈Vi

xk
il
]
, (20)

where αk
i are Lagrange multipliers.

Since function D̂(x) is continuous and convex in x (and strictly convex in xs) and FS I is convex,
closed, and bounded, there exists a solution (that has a unique xs) to problem (17) similarly as Theorem

9



2. Thus, the link flow pattern x that satisfies the following Kuhn-Tucker condition is an optimal solution
(that has a unique xs) to problem (17) (see, e.g., [10]).

∂H
∂xk

i j

= Gk
i j(x) + αk

j − αk
i ≥ 0,

xk
i j
∂H
∂xk

i j

= xk
i j(G

k
i j(x) + αk

j − αk
i ) = 0,

xk
i j ≥ 0, (i, j) ∈ Lk, k ∈ C,

rk
i− (if i ∈ Ok) +

∑
l∈Vi

xk
li = rk

−i (if i ∈ Dk) +
∑
l∈Vi

xk
il, i = 1, 2, . . . , n − 1, k ∈ C.

Rearranging the above relations, we have,

αk
i −Gk

i j(x) = αk
j, for xk

i j > 0,

αk
i −Gk

i j(x) ≤ αk
j, for xk

i j = 0,

(i, j) ∈ Lk, k ∈ C, x ∈ FS I.

The above set of relations is equivalent to the set of relations (18), (19) and x ∈ FS I, and it is the
necessary and sufficient condition for a link flow pattern x to be a solution to the individually optimal
routing problem (17). �

With Lemma 2, we proceed to have the link-traffic loop-free property in the individually/overall
optimal routing for problem (17).

Lemma 3 The class-k link traffic in a solution to the individually (and overall) optimal routing problem
with constraint x ∈ FS I (17) is loop free for all k ∈ C. That is, there exists no class-k link traffic such
that xk

v1v2
> 0, xk

v2v3
> 0, . . . , xk

vm−1vm
> 0, xk

vmv1
> 0 (for all k ∈ C), where v1, v2, . . . , vm are distinct nodes

in the solution to the individually (and overall) optimal routing problem and where at least one of the
links involved is not a zero-cost link.

PROOF: We show the case of individual optimization. It is proved by contradiction. Assume that there
exists class-k link traffic in the solution to individually optimal routing problem (17) for multi-class users
such as xk

v1v2
> 0, xk

v2v3
> 0, . . . xk

vm−1vm
> 0, xk

vmv1
> 0 (k ∈ C), where v1, v2, . . . , vm are distinct nodes.

According to Lemma 2, in the solution, we have

αk
v1
−Gk

v1v2
(x) = αk

v2
,

... (21)

αk
vm
−Gk

vmv1
(x) = αk

v1
.

Then, we have

Gk
v1v2

(x) +Gk
v2v3

(x) + · · · +Gk
vmv1

(x) = 0, (22)

which contradicts the fact that Gk
i j(x) > 0 if xk

i j > 0 for at least one of (non-zero-cost) links involved.
The case of overall optimization is shown in a similar way as above by replacing Gk

i j(x) by gk
i j(x). �

Since the constraint x ∈ FS I of the optimization problems may be weaker than the set of constraints
x ∈ FS x, there may be the possibility that a link flow solution x (x ∈ FS I) may not be realized by any
path flow pattern. In the following, however, we confirm that there exists a path flow pattern y that results
in any loop-free link-flow pattern x such that x ∈ FS I.

10



node i

ika

node j

origin

o

xk
i j

yk
o... i

yk
o... i j

Figure 2: Assigning flows to paths on the basis of link flows

Proposition 1 There exists a path flow pattern y satisfying the constraint y ∈ FS y that results in a link-
traffic loop-free flow pattern x satisfying the constraint x ∈ FS I. That is, for networks with a link-traffic
loop-free flow pattern, FS I = FS x.

PROOF: Consider an arbitrary loop-free link-flow pattern x that satisfies the constraint x ∈ FS I. We
show how to make a path flow pattern y (∈ FS y) that results in the loop-free link-flow pattern x (∈ FS I).

We consider the following for each class. Consider a path (o, v1, v2, . . . , vi, vi+1, . . . , d) where o is an
origin node, d is a destination node, and v1, v2, . . . , vi, vi+1, . . . are called ‘intermediate nodes.’ Then, we
call the sequence (o, v1, v2, . . . , vi) an intermediate path at node vi of path (o, v1, v2, . . . , vi, vi+1, . . . , d).
Naturally, there may be multiple intermediate paths at each node including those coming from different
origins. Furthermore, we also say that the sequence (o, v1, v2, . . . , vi) is the intermediate path at node vi

that is included in the intermediate path (o, v1, v2, . . . , vi, . . . , v j) longer than it, for i < j and v j , d.
We can assign a path flow pattern y such that the constraint x ∈ FS I is satisfied, as follows. We note

that the flow through each intermediate path must be the sum of the flows of the paths that go though the
intermediate path for each class. The allotment of the flow to an intermediate path of node vi+1 is done by
splitting the flow to the intermediate paths of node vi, in a way proportional to the link flow xk

vi,vi+1
on the

link (vi, vi+1), say, for class k (in the case where node vi is neither an origin nor a destination for the class,
and other cases are also treated in a formal manner below). In that sense, we obtain a proportionally fair
allotment.

More precisely, given a link-traffic loop-free flow pattern, the path flow pattern for class k, k ∈ C, can
be obtained as follows: Since the used links has the loop-free property, a ‘partial order’ relation among
class-k nodes holds, that is, from the origins down to the destinations. Therefore, there must exist at least
one origin that receives no class-k flows from any nodes but only sends class-k flows to other nodes. We
call it a pure origin for class k. Similarly, there must exist at least one destination that sends no class-k
flows to any nodes but only receives class-k flows from other nodes. We call it a pure destination for
class k. Denote by ika the set of nodes that may receive class-k flow directly from node i (Fig. 2).

(i) The case where node i is a pure origin o. A node j directly connected to a pure origin o ( j ∈ ok
a)

has the class-k link flow xk
o j. There must be only one class-k intermediate path from the origin at a node

j ∈ ok
a, that passes through one class-k link to the node j from the origin, and, thus, the allotment of

class-k flow to the class-k intermediate path is straightforward. Clearly, this allotment is relevant to (4)
and (1) but does not violate them since x ∈ FS I must hold.

(ii) The case where node i is neither an origin nor a destination: Each of the class-k intermediate paths at

11



node j, j ∈ ika, that go through node i, will be allotted the ratio
xk

i j∑
l∈ika xk

il

of the flow of the corresponding

class-k intermediate path at node i. For example, if the class-k intermediate path (o, . . . , i) included in a
class-k intermediate path (o, . . . , i, j) has the flow yk

o... i, the class-k intermediate path (o, . . . , i, j) is to be
allotted the flow

yk
o... i j = yk

o... i

xk
i j∑

l∈ika xk
il

.

Clearly, this allotment is relevant to (4) and (1) but does not violate them since x ∈ FS I must hold.

(iii) The case where the node i is not a pure origin but an origin that has the external arrival rate rk
i−: Each

of the class-k intermediate paths at node j, j ∈ ika, that go through node i, will be allotted the ratio∑
l∈ika xk

il − rk
i−∑

l∈ika xk
il

xk
i j∑

l∈ika xk
il

of the flow of the corresponding class-k intermediate path at node i. In addition, a new set of intermediate
paths starting at node i is added to the group of node- j intermediate paths, and each is allotted the flow

rk
i−

xk
i j∑

l∈ika xk
il

. Clearly, this allotment is relevant to (4) and (1) but does not violate them since x ∈ FS I

must hold.

(iv) The case where the node i is not a pure destination but a destination that has the departure rate rk
−i:

Each of the class-k intermediate paths at node j, j ∈ ika, that go through node i, will be allotted the ratio∑
l∈ika xk

il∑
l∈ika xk

il + rk
−i

xk
i j∑

l∈ika xk
il

of the flow of the corresponding class-k intermediate path at node i. In addition, we have a set of complete

paths ending at node i, and each is allotted the ratio
rk
−i∑

l∈ika xk
il + rk

−i

of the flow of the corresponding

intermediate path of node i. Clearly, this allotment is relevant to (4) and (2) but does not violate them
since x ∈ FS I must hold.

(v) The case where node i is a pure destination for class k. All the class-k paths that reach this node
terminate at this node, and no further path-flow allotment for class k is needed anymore. Clearly, we see
that, at this node, class-k path flow allotment so far is relevant to (4) and (2) but does not violate them
since x ∈ FS I must hold.

We therefore see that, at every step of the above five allotments in cases (i), (ii), (iii), (iv), and (v), the set
of constraints (4) and y ∈ FS y is satisfied.

Therefore, for an arbitrary x (∈ FS I) with the loop-free property, starting from nodes that directly
receives class-k flows only from origins that receive no class-k flows from other nodes, we can proceed
the steps of allotting the amount of class-k flows to intermediate paths, and finally we can complete the
assignment y of class-k path flows, for all k ∈ C, that result in the above-mentioned x (∈ FS I).

We note that the above obtained y satisfies both the constraints (4) and y ∈ FS y and, thus, that the
above mentioned x satisfies the constraint x ∈ FS x.

Since FS I includes FS x, then, for networks with a link-traffic loop-free flow pattern, FS I = FS x. �

From the above Proposition 1 and Lemma 3, we can confirm the following.
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xk
i j > 0

xk
ji = 0

i j

Figure 3: One-way traffic property in individually and overall optimal routing

Lemma 4 For the solution x with the link-traffic loop-free property for the individually/overall optimal
routing with constraint x ∈ FS I (17) there exists a y that satisfies both the set of constraints (4) and
y ∈ FS y, i.e., FS I = FS x.

We, therefore, see that the solution x with the link-traffic loop-free property for the individually/overall
optimal routing with constraint x ∈ FS I (17) is also the solution for the individually (and overall) optimal
routing problem (6,13,17), since its solution exists as discussed in Section 2.4.

Then, we have the following theorem.

Theorem 3 (Link-traffic loop-free property) The class-k link traffic in a solution to the individually
(and overall) optimal routing problem (6,13,17) for a multi-class network is loop free for all k ∈ C. That
is, there exists no class-k link traffic such that xk

v1v2
> 0, xk

v2v3
> 0, . . . , xk

vm−1vm
> 0, xk

vmv1
> 0 (for all

k ∈ C), where v1, v2, . . . , vm are distinct nodes in the solution to the individually (and overall) optimal
routing problem and where at least one of the links involved is not a zero-cost link.

Now consider the case where two nodes are connected by two links. We have following result.

Corollary 2 (One-way traffic property) For any optimal solution x to an individually/overall optimal
routing problem (6,13,17) for multi-class networks, the following relations hold true,

xk
i j = 0, if xk

ji > 0, (23)

where either (i, j) or ( j, i) is not a zero-cost link for class k, for (i, j), ( j, i) ∈ Lk, k ∈ C.

PROOF: It is a direct result from Theorem 3. �

The property shown in the corollary 2 is called the one-way traffic property for the individually/overall
optimal routing in multi-class networks. The physical meaning is clear. It shows that the traffic from the
node i to node j, xk

i j, and the user flow rate from the node j to node i, xk
ji cannot be positive both at the

same time as shown in Figure 3.

4 Examples

4.1 The Cases where Assumption A1 and A2 hold naturally

As to many networks, we can naturally assume the assumption A1. As we noted before, however,
Assumption A2 looks somewhat awkward. In the following two cases, however, the assumption A2
holds naturally.

13
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Figure 4: A network with one common destination and multiple origins
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Figure 5: A network with one common origin and multiple destinations

4.1.1 Multi-class routing in networks with a common destination

Consider the individually/overall optimal routing problem for a multi-class network with one common
destination and multiple origins for a class (we call it the problem with a common destination for the
sake of brevity). as shown in Figure 4. Note that the problems of load balancing in distributed computer
systems [14, 21] are equivalent to the routing problems in the networks with one common destination
and multiple origins. Clearly, the assumption A2 holds naturally for the networks. The two link-traffic
loop-free properties, Theorem 3 and Corollary 2 shown in the above section hold for the networks under
individually and overall optimal routing.

In contrast, consider a case of noncooperative optimal routing with a finite (but plural) number of
players for this model, i.e., users are divided into groups each of which is controlled by a decision maker
that strives to optimize unilaterally the cost for its group only. Link-traffic loops have been found in the
above-mentioned load-balancing problems (shown in [12, 13] if the definition of class given in those
papers is changed to be the same as the one given in this paper).

4.1.2 Multi-class routing in networks with a common origin

We proceed to consider another network where there are multiple destinations but only one common
origin (we call it the network with a common origin for the sake of brevity) as shown in Figure 5. The
two link-traffic loop-free properties, Theorem 3 and Corollary 2 shown in the above section hold for the
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x23 = y1234 = r14/2 > 0

x32 = y1324 = r14/2 > 0

r14r14 1

2

3

4

Figure 6: A network with one origin and one destination that satisfies Assumption A1(1) but does not
satisfy A1(2)

networks for individually and overall optimal routing. Clearly, the assumption A2 holds naturally for the
networks also.

4.2 Examples where Assumption A1 Does Not Hold

In this section, we examine two examples wherein either (1) or (2) in the assumption A1 is violated
whereas the assumption A2 holds. We see that in both examples the link-traffic loop-free property does
not hold. Therefore, we see that Assumption A1 is the condition that characterizes the category of
networks for which the link-traffic loop-free property holds in individually and overall optimal routing
in multi-class networks.

4.2.1 An example where (1) holds but (2) does not hold in the assumption A1

Consider a single-class network consisting of four nodes 1, 2, 3, and 4 (|C| = 1) and a single pair
of origin 1 and destination 4, shown in Figure 6. Nodes 2 and 3 are connected by links (2,3) and
(3,2). We consider the case where we have only two paths (1,2,3,4) and (1,3,2,4) connecting the O-D
pair (1,4), but (1,2,4) and (1,3,4) are not paths connecting the O-D pair (1,4), which violates (2) in the
assumption A1. We assume that the cost of each link depends only on the flow of the link and that
G12(x) = G13(x), G23(x) = G32(x) > 0, and G24(x) = G34(x) where x denotes the flow through each
link. Let the arrival rate at the origin be r14 > 0. Then, the optimal path flows of the two paths are
identical, and x23 = y1234 = r14/2 = y1324 = x32 > 0, which means that the network has a link-traffic
loop. On the other hand, if (2) in the assumption A1 is to hold, then paths (1,2,4) and (1,3,4) need to be
additionally available. Then, in optimal routing, only paths (1,2,4) and (1,3,4) are used, and the network
has no link-traffic loop.

4.2.2 An example where (2) holds but (1) does not hold in the assumption A1

Consider a single-class network consisting of four nodes 1, 2, 3, and 4 (|C| = 1) shown in Figure 7.
We consider the case where we have two distinct O-D pairs 1-3 and 4-2. That is, (1,2,3) and (4,3,2)
are only paths. On the other hand, there exists no path connecting each of O-D pairs 1-2 and 4-3,
respectively, even though O-D pairs 1-2 and 4-3 have links (1,2) and (4,3) connecting the origin and the
destination, which violates (1) in the assumption A1. Let the arrival rates at origins be such that r13 > 0
and r42 > 0. Thus, there are two origin nodes (i.e., nodes 1 and 4) and two destination nodes (i.e., nodes
3 and 2) in the network. It is clear that we have only one solution such that x23 = y123 = r12 > 0 and
x32 = y432 = r42 > 0, which is the optimal solution to individually/overall optimal routing problem under
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x23 = y123 = r13 > 0

x32 = y432 = r42 > 0

r42r13 1 2

r42

r13

3 4

Figure 7: A network with two origins and two destinations that satisfies Assumption A1(2) but does not
satisfy A1(1)

the set of constraints (4) and y ∈ FS y. In this example, it is clear that we have a link-traffic loop, i.e.,
x23 > 0 and x32 > 0. On the other hand, if (1) in the assumption A1 holds, both of (1,2) and (4,3) can
be paths, and the solution under the constraint x ∈ FS x is such that x23 = r13 − r42 ≥ 0 and x32 = 0
if r13 ≥ r42 (under Assumption A2), which shows the freedom of link-traffic loops that holds under
Assumption A1.

5 Conclusion

In this paper, we have studied both individually and overall optimal routing problems for multi-class
networks with generalized link-cost functions and network configurations. We have seen that there is
an associate overall optimal routing problem to each individually optimal routing problem for multi-
class networks with the same solution under some condition. We have discussed the existence and
uniqueness of the solutions to overall and individually optimal routing. Furthermore, we have shown that
the link-traffic loop-free property holds for the individually and overall optimal routing in a wide range
of networks. While doing so, we have discussed the relation between the formulations with path and link
flow patterns. We have shown the condition that characterizes the category of multi-class networks that
have the link-traffic loop-free property for overall and individually optimal routing.
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