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ON HOPF ALGEBRAS OF DIMENSION p3 

By 

Gaston Andres GARCIA * 

Abstract. We discuss some general resu1ts on finite-dimensional 

Hopf algebras over an algebraically closed field k of characteristic 

zero and then apply them to Hopf algebras H of dimension p3 over 

k. There are 10 cases according to the group-like elements of H and 

H*. We show that in 8 of the 10 cases， it is possible to determine the 

structure of the Hopf algebra.羽W勺ea討ls叩og♂lV刊ea partial claωss幻ification1 
Oぱfthe quas幻it廿n悶angu叫Ila訂rHop〆falg伊eb伽raおs0ぱfdim児en
studying extensions of a group algebra of order p by a Taft algebra 

of dimension p2. In particular・， we prove that every ribbon Hopf 

algebra of dimension p3 over k is either a group algebra or a 

Frobenius-L山 ztigkernel. Finally， using some res山:sfrom [1] and [4] 

on bounds for the dimension of the first term Hl in the coradical 

filtration of H， we give the complete classification of the quasi-

triangular Hopf algebras of dimension 27. 

1. Introduction 

We work over an algebraical1y closed field k of characteristic zero. Let p be 

an odd prime number and let Gp be the cyclic group of p-th roots of unity. We 

denote by T(q)， the Taft algebra of parameter qεGp¥{l }， see Remark l.2 below. 
Hopf algebras of dimension 8 were c1assified by Williams [36]; Masouka [15] and 

Stefan [33] gave later a different proof of this fact. In general， the classification 
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problem of Hopf algebras over k of dimension p3 is still open. However， the 

c1assification is known for semisimple or pointed Hopf algebras. Semisimple 

Hopf algebras of dimension p3 were c1assified by Masuoka [14]; there are p十8

isomorphism types， namely 

(a) Three group algebras of abelian groups. 

(b) Two group algebras of non-abelian groups， and their dl刈s.

(c) p十 1self-dual Hopf algebras which are neither commutative nor co-

commutative. They are extensions of k[Zj(p) x Zj(p)] by k[Zj(p)]. 

Pointed non-semisimple Hopf algebras of dimension p3 were c1assified in 

[3]， [5] and [34]う bydifferent methods. The explicit list is the followi時フ where

q εGp¥{1 }: 
(d) The tensoトproductHopf algebra T(q)③ k[Zj(p)]. 

(e) T(q):= kくθ，xI gxg-I = q11px， gP2 = 1， xP = 0) (qI/p a p-th root of q)フ
with comultiplication L¥(x)ニ x@gP十]② x，L¥(g)=g@g. 

(f) T(q):= kくgぅxI gxg-I = qx， gp2 = 1， xP = 0)， with comultiplication L¥(x) 

=x@g十 l③ x， L¥(g) = g @ g. 

(g) r(q) := kくgぅχIgxg-1二二 qngP22 1?χp = 1 -gP)フ with comultiplication 

L¥(x) = x@  g十 1③ x，企(g)= g @g. 
(h) The Frobenius-Lusztig kernel uq(sI2):= kくg，x， y I gxg-l = q2xぅgyg-l= 
q-2y， gP = 1， xP = 0， yP = 0， xy -yx = g -g-I)， with comultiplication 

L¥(x) = x @ g + 1 @ x， L¥(y) = y @ 1十 g-l@y，企(θ)口 g@g.
(i) The book Hopf algebra h(q，m) :=kくιχ，y I gxg-1 = qx， gyg-I = ql11y， 
gP = 1，xP = O，yP = O，xy-yx = 0)， mεZj(p)¥{O}， with comultiplica畑

tion L¥(x) = x②g十 1@爪 L¥(y)= y @ 1十 glη@y， L¥(θ)ニ g@g.

Furthermore， there are two examples of non-semisimple but also non-pointed 

Hopf algebras of dimension p3， namely 

(j) The dual of the Frobenius-Lusztig kernelぅ uq(sI2)
本

(k) The dual of the case (g)， r(q)へ
There are no isomorphisms between di百erentHopf algebras in the list. 

Moreover， the 日opfalgebras in cases (d)，・・・う (k) are not isomorphic for different 

values of qεGp¥{1}， except for the book algebras， where h(q，l叫 isisomorphic 
to h(qーが)m-1). In particularぅ the Hopf algebra T(q) does not depend， modulo 

lsomo中hisms，upon the choice of the p-th root of q. The Hopf algebra r(q) was 

first considered by Radford (see [3)， [28)). 

We conjecture that any Hopf algebra H of dimension p3 is semisimple or 

pointed or its dual is pointedフ thatis， H is one of the Hopf algebras of the list 
(a)， • • .， (k). 
In this paper we prove this conjecture under additional assumptions. In 
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Theorem 2.1 and Corollary 2.2 we show the simple modules of a crossed product 

of a Taft algebra of dimension p2 and a group algebra of order p are one-

dimensional， that is the dual of the crossed product is pointed. 

ln Section 3 we discuss some general results on finite-dimensional Hopf 

algebras and then apply them to Hopf algebras of dimension p3. There are 

10 cases according to the group-like elements of H and HへWeshow that 
in 8 of the 10 cases， it is possible to determine the structure of the Hopf 

algebra. 

Let us say that a Hopf algebra H of dimension p3 is strange if H is simple as 

a Hopf algebra， not semisimple and if H and H本 a1'enot pointed. It tu1'ns out 

that a Hopf algebra H of dimension p3 is isomorphic to a Hopf algebra of the 

list (a)，.・， (k)， or 

(1) H is strange， G(H)::::: Zj(p) and G(Hつ=1， or 
(II) H is strange， G(H) ::::: Zj(p)， and G(Hワ:::::Zj(p). 
lt is not known whether a strange Hopf algebra exists. 

ln the subsection 3.2， we study non-semisimple Hopf algebras of dimension 

p3 with G(H)::::: G(Hつ:::::Zj(p). The order of the antipode of such a Hopf 
algebra is necessar・ily2p or 4p. lf the order is 2p， then H is a bosonization of the 

group algebra k[G(H)]. ln this case we believe that H is isomorphic to a book 

Hopf algebra h( q) m)， fo1' some q E Gp¥{1}フ andmεZ/(p)¥{O}. lf the order is 

4p， then H satisfies (II)フandall skew primitive elements of 1-1 are trivial， that is， 

contained in k[ G(H)). 

Radford and Schneide1' [30] conjectu1'ed that the square of the antipode of 

any finite-dimensional Hopf algebra must satisfy a certain condition， which they 

called the strong vanishing trace condition. lf H is a finite-dimensional Hopf 

algebra and B is the unique maximal semisimple Hopf subalgebra of H， then it 

follows from the conjecture that the order of the square of the antipode of H 

m ust divide dim H j dim Bヲsee[30， Thm. 6]. ln particular， if the dimension of H 

is p3 and IG(H)I = IG(Hつ1=p or IG(H)I = p and IG(H*)I口 1，then the order 
of the antipode should be 2p. 

It is well-known that the Frobeniusよusztigkernels uq(sI2) and the group 

algebras admit a quasitriangular structure (see e.g. [9， IX. 7}). We prove in 

Section 4 that these two are the only quasitriangular Hopf algebras from the list 

above. We also prove in Theorem 4.9 that there is no quasitriangular Hopf 

algebra of dimension p3 which satisfies condition (1). Namely， if H is a qua-

sitriangular Hopf algebra of dimension p3， then 

(i) H is isomorphic to a group algebra or to uq(sI2)， or 

(ii) H satisfies (II) and the map fR: H町中→H is an isomorphism. 
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Moreover， H and H本 areminimal quasitriangular， 1 =くs，x)， for a必1口l 
p εG(H*)，宇

As a consequence久ラ weshow in Corollary 4.10 t出ha剖tevery ribbon Hopf algebra 

of dimension p3臼seither a group algebra or a Frobeni註1U凶I泊S倫よLus臼ztigkernel. 

Finally， usi時 someresults from [1] and [4] on bounds for the dimension of 

the first term H1 in the coradical filtration of H， we classify quasitriangular Hopf 

algebras of dimension 27. 

1.1. Conventions and Preliminaries. Our references for the theory of Hopf 

algebras are [18]， [9]， [31] and [35]. The antipode of a Hopf algebra H is denoted 

by久 or//H if special emphasis is needed. The Sweedler notation is used for the 

comu1tiplication of H but dropping the summation symbol. The group of group-

like elements of a coalgebra C is denoted by G( C). The modular group-like 

elements 9 E H and αεH本 aredefined by 

Ax=くα，x)Aう forall xεHう and sA =くs，g)人 forall sεHヘ

where A εH is a non-zero left integral and A E H* is a non-zero right integral. 

There is a formula for //4 in terms of αand g: 

ダ4(h)=g(α ー~h ← α-1 )g-1 ， for all h E H， 

where H本 actson H on the left by s ---' h = h(1)s(h(2)) and on the right by 

h"-戸=戸(h(I))h(2)，for al1 sεH* and h E H. Moreover， ifλand A are such that 

く人A)ニ 1，then there are formulas for the trace of any linear endomorphism f 
on H: 

Tr f=くA，//(A(1))f(A(2)))ニくλぅ(//0 f)(A(I))AC2)) 

The formulas above are due to many authors，凶udi時 Radford(see [18]， [23]， 

[31)). Let C be a coalgebra and仏bεG( C). The set of (α，b )-skew primitive 
elements of C is defined by 

Pa，b = {cεCI企(c)ェ α@c十 c@b};

in particular， k(α-b) ~ Pa，b. We say that a skew primitive element c E C is 

trivial if c εk[G(C)]. 

A Hopf algebra H is called simple if it does not contain any proper normal 

Hopf subalgebra in the sense of [18， 3.4.1]; H is cal1ed semisimpleフ respectively

cosemisimple， if it is semisimple as an algebraフrespectivelyif it is cosemisimple as 

a coalgebra. The sum of al1 simple subcoalgebras is called the coradical of H and 

it is denoted by Ho. If all simple subcoalgebras of H are one-dimensional， then 
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H is called pointed and Ho = k[G(H)]. A finite-dimensional Hopf algebra H is 
pointed if and only if all the simple Hヘmodulesare one-dimensiona1. We also 
consider the coradical filtration Ho c H1 c . . " of H (see [18， Chapter 5]， [35， 
Chapter lX]) 

Let H be a finite-dimensional Hopf algebra over k， then the following are 

equivalent (see [11]， [12]， [25， Prop. 2] and [31， Cor. 3.5]): 

(a) H is semisimple， 

(b) H is cosemisimple， 

(c) y2 = id， 
(d) Tr y2手0，

where Tr denote the trace map. 

REMARK 1.1 [37]. If H Is an odd-dimensional 日opfalgebra and y4 = id， 

then H is semisimple. Therefore， if H is a non-semisimple Hopf algebra of odd 

dimension， either G(H) or G(Hワisnon-trivial. 

REMARK 1.2. Let N 二三 2 be an integer and let q E k be a primitive N -th root 

of unity. Recall that the ~ψα1gebra T(q) is the k-algebra presented by gen-

erators 9 and x with relations gN = 1， xN = 0 and gx = qxg; T(q) carries a Hopf 
algebra structure， determined by 

I1g =ヱQ③ g，I1.x = x@ 1十g③ x. 

Then ε(g) =仁ε(x)= 0， 9(g) = g-l， and y(x) = _g-1 X. It is known that T(q) 
is a pointed Hopf algebra， with G(T(q))ニくg)~ Zj(N). The proper Hopf sub-

algebras of T(q) are contained in k(g)う whencethey are semisimple. We also 

have: 

(i) T(q) ~ T(q)ヘ
(ii) T(q) ~ T(イ)if and only if q = q'. 
lt is not di伍c山 tosee that T( q)キcop~ T(qtP ~ T(q-1). 

The s中 areof the antipode of T(q) coincides with the inner automorphism 

induced by g. Therefore， 94 ヲ正 idif N>  2. 

2. Extensions of a Taft AIgebra by the Group Algebra of Order p 

ln the list of Hopf algebras of dimension p3 given above， the cases (d)， (f) 

and (g) are extensions of Taft algebras by the group algebra of order p; that is， 

they fit into an exact sequence of finite-dimensional Hopf algebras 

i → k[Zj(p)]ムH~ T(q)→ l 
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We show that in some sense the converse is also true， that is， if H is an 

extension of a Taft algebra by the group algebra of order p， then H is necessarily 

pointed. 

We recall some definitions and formulas for cleft extensions. For examples 

and a characterization of these extensions see [18， Chapter 7]. 
l 冗

By [32， Thm. 2.4]， every extension → A→ H→ B ---l-1， of finite-

dimensional Hopf algebras is cleft; i. e. there exists a right B-comodule map 

y: B → H， which is convolution invertible and preserve the unit and the counit. 

Using this map， one can construct a weak action of B on A and a convolution 

invertible 2-cocycleσεHom(B@BうA)，that give H the structure of a crossed 

product A #σB of A with B. As vector spaces A #σBニ A@ B. The weak action 

of B on A is defined by 

b . a = y(b(1))αy-l (bρ)) ， 

for all a εA， b εB， and satisfies 

b. (αα') = (b(1) . a)(b(2) . a') and b. 1 =ε(b) 1Aぅ

for alI b εB，民a'E A. The convolution invertible 2-cocycleσis given by 
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for alI b， c εB， and satisfies 

[b(l)・σ(b(1)ぅb(;))]σ(b(2)，b(2)b(;)) =σ(b(1)， b(I))σ(b(2)b(2)' b勺

and σ(b， 1) =σ(l，b) =ε(b)1う

f 0 r all b， b' ， b" E三B.The multiplication on the crossed product A #a B is given by 

(α#b)(c#d) =α(b(l)・c)σ(b(2)，d(l)) #b(3)d(2)ぅ

for all 仏 CεA， b，d εB. The unit in A #σH is 1 # 1. Here we write a#h for a @h 

as an element in A #σB. 

If B = k[r] is a group algebra of a group rフ thenA *σr:=A#σk[r] is 
called the r-crossed product of r over A. Observe that A *σr is a r -graded 
algebra. Moreover， it is easy to see that A *σr is characterized as the r -graded 
algebra which contains an invertible element in each component and whose ト

component is A. In this case， we say that A is the neutral component of A *a r. 

T回 OREM2.1. Let H be a finite-dunensional H opf algebra which fits into an 

extension of the form 
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1→AムH~ k[r]→ 1， 

where r = Zj(p) is the group algebra of order p， A* is pointed and the gro叩 of
group-likes of A * Iω order IG(A*)I三p.Then H* is pointed. 

PROOF. To prove that Hネ ispointed， we show that every simple H“module 

is one-dimensional. To see this it is enough to show that the algebra H jRad H 

is commutative. Indeed， we have that H jRad H is a semisimple algebra. If it is 

commutative， then by the Artin-Wedderburn theorem it follows that every simple 

H jRad H-module， and therefore every simple H -module， is one-dimensional. 

Hence， we prove actually the following. Let H = A *σr be a finite“ 
dimensional r -crossed product with neutral component A and suppose that 

(i) AjRad A ::::: Map(X， k)， and 

(ii) there exists an epimorphismπ :H→ k[r] of r -graded algebras， 

where Map凶(X，k刈k刈Cけ)is the set 0ぱff白un邸ctionson the詑efi白I問1

HjRミadH iおscommutative. 

Let A = AjRad A. X can be naturally identified with the set {6o，. . . ，6m} of 

primitive idempotents of A. 

Since for every 9 εr， the map r(g) : A→ A given by r(g)(α) = 9 . a for all 
a E A is an algebra map， the radical Rad A of A is stable under the weak action 

of r on A and whence (Rad A) *了isa r -graded ideal in Hフwhichis nilpotent 

Therefore we have a quotient algebra H = A * r， which is also a r-crossed 
product. Since char k = 0， H is semisimple， whence H = fl jRad H. Moreover， 

since k[r] is a semisimple algebra， it follows thatπ(Rad H) = 0 andπfactorizes 

through H. Denote by ii : H→ k[r] the map induced by this factorization. 
Let 6 be a primitive idempotent of A. Then for all 9 εに 9.6 is also a 

primitive idempotent of A. Hence， the weak action of r associated to H arises 
from a group homomorphism， say α:r→ Perm(X). Since for all 9 E r and 

AεX， 

元(α(g)(6j)* 1) =元(g・6j* 1) =元((1* g)(6j * 1)(1 * g-I)) =ε(6j)1 = 6i，O， 

it follows that r must fix the unique element δo in X that does not vanish under 

元.Since r = Z j (p) and p does not divide (1 XI -1)!， the homomorphism αmust 
be trivial. This implies that the weak action of r on A is trivial and therefore that 

the r -crossed product H is commutative. 口

COROLLARY 2.2. Let H be a Hopf algebra over k of dimension p3 which is an 

extension of a Taft algebra T( q) by a group α1gebra k[Zj (p)]， thatお，H戸tsinto 

the followingααct sequence of finite-dimensional Hopf algebras: 
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(2) l→ k[Zj(p)] ~ H ~ T(q)→1. 

Then H is pointed. 

PR∞F. If we dualize the sequence (2)， we see that H* is an extension of a 
group algebra of order p by a Taft algebra of order p2， 

1→ T(q) ~ H本乙 k[Zj(p)]→1.

Since the Taft algebra satisfies the hypothesis on A in Theorem 2.1， by 

Theorem 2.1 the simple Hヘmodulesare one-dimensional， which implies that H is 
a pointed Hopf algebra. 口

The following corollary states that if there exist a Hopf algebra H of di回

mension p3 which is not isomorphic to a Hopf algebra of the list (a)，・・・， (k)， 

then H is necessarily strange. 

COROLLARY 2.3. Let H be a non-semisimple Hopf algebra of dimension p3 

such that If and H* are both non-pointed. Then H is simple as a Hopf algebra. 

PROOF. Suppose that H is not simple， then it contains a proper Hopf sub-

algebra K which is normal and non-trivial. Hence， we have an extension of Hopf 

algebras 

(3) i → K~H~D → 1， 

where Dニ Hj K+ H. Then it follows that p3 = dim K dim D， by Nichols-Zoeller， 

and the dimension of K is p or p2. 

If dim Kニ p2，then dim D = p. Moreover， by [37， Thm. 2]， D ~ k[Zj(p)] 

and by [21， Thm. 5.5]フK宮 T(qω)フaTaft alg伊eb伽ra，since H is no∞n凶1
assumption. Hence H is an extension of a group algebra by a Taft algebra and 

by the Corollary 2.2， H* must be pointed， which is a contradiction. 

If dim K = p， applying the same argument to the dual extension of (3) we get 
that H is pointed， which is also a contradiction. 口

3. On Hopf Algebras of Dimension p3 

In this section we first discuss some general results on Hopf algebras of finite 

dimension and then we apply them to Hopf algebras of dimension p3. 

3.1. General results. The order of the antipode plays a very important role 

in the theory of finite-dimensional Hopf algebras. The following linear algebra 

lemma will help us to determine this order in some particular cases. Note that 

part (c) generalizes (b). 
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LEMMA 3.l. (伊ωa吋)[ロ2，Lemrnτηna鴎a2.6， (似i)川)月]Let T be α f仰iρineαrtm仰白d刀w加.刀w加αω仰n叫1毛fo白か討r附
αJ戸7nite-dゐime印ηsiωonαalve氾ectorspace V予:f.0 such 1.巾hαωtTr T = 0 and TP = id. Let 
qεGp¥{l} andたtV (i) be the eige叫肌~e of T of eigenvalue qi， then dim V(i)臼

constω1t; in particular p divides dim V. 

(b) [2， Lemma 2.6， (ii)] If V is a vector space of dimension pαnd TεEnd V 
satisfies T2p工 id，αndTr T = 0， then TP = ::t:id. 
(c) Let n E N and let ωbe a p川hprimitive root of unity in k. If V is αvector 

space of dimension p and T εEnd V satisfies T2pll = id， and Tr T = 0， then there 

exists m， 0::三m 三三 pn-l_ 1 such that TP =二土ω1叩 id.

PROOF. To prove (c) we follow the approach of [2]. The crucial point here is 

that the minimal polynomial over Q of a pn-th root of unity in k is known and 

that V is p・・dimensional.

Since T2p" = id， the eigenvalues of T are of the form (一ltαZωwhere

αε{O， 1} and 0壬i話pn一l.Let Va，i :戸={vεV: T(いUり)= (一_l)aα~じcv1
space of T of eigenvalue (一lり)αωIぺ.Since Tr Tニ 0，we 1 
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pn一l上，P(ω) = 0 and the number of c∞oe伍cient臼sof P di百erentfi仕romzeroおsless 
Oぽre叫q凶 t出ha如np， s如m悶 V:@Gi F43i and dim V zp Moreover?the mmmi 
polynomialφωof ωover Q must divide P， since ωis a root of P. Hence there 

exists Q εZ[X) such that P = Q<l>ω， where Q is the zero polynomial or deg Q豆
pl1-J - 1， since degφω=ψ(pl1)ニ pl1-1(p -1) (where ψis the Euler's function). 

Define V十エ@む1fも，iand V_ = EBむ1~， i ， then it is clear that V = 
V十 EBV_・IfQ is the zero polynomial， then P is also the zero polynomial and 
it follows that dim 九j= dim ~.i， for all 0 :::; i三pl1_ 1. But this implies that 

dim Vートエ dimV _， from which follows that the dimension of V is even， a 

contradiction. 

Therefore we can assume that Q is not the zero polynomial. Suppose that 

Q(X)Z21i!?14xヘwheredm 手ofor some 0豆m三pn-l-1， and recall that 
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¥
1
1
1
1
J
/
 

-mr +
 
X
 

M
ゃ
ん
同

/
i
t
-
-
¥
 

A
 

一
「

4
0

」一、
y
一=

n
y
 

一一

¥
1
1
1
1
1
/
 

nr x
 

，l
『

圃

内

リ

ト

ryム
戸

/Ili--¥ 

¥iz--ノ
X
 
A
 

一
「

d
o

」一、
y
一一一

p
 

/
f
i
l
-
-、
¥

一一x
 

p
 

Since the number of norトzerocoefficients of P is not zero and less or equal 

than p， there exists a unique ムO壬1:::; pl1-1 - 1 such that d， :f. 0 and dj = 0 for 
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all i # 1人， 0 豆i 豆pnトトト叶-一-

all 0 三豆三j 三孟三 p 一1， 0 三孟三 i 三豆三 pn 一1 such that ヲ#丘mη 十jp'〆Fト 1that 

dim vも，m十jpn-1-dimyl，m十jpn-lニ dm， and dim vも，i-dim V1，i = O. 

From these equalities it follows that dim V十一dimVーニ dmP; as 

dim V+十dimV_ = p， one concludes that V+ニ⑦ιi九m十jp"-l口 V or V_ = 
@51h十jpn-l= V， and this implies伽 tTP(v) =土(ωm)Pv=土ω町， for all 

V E V. 口

PROPOSITION 3.2 [2， Prop. 5.1]. Let H beαfinite-dimensional Hopf algebra 

whose antipode !/ has order 2p. Assume also that H contains a cosemisimple Hopf 

subalgebra B such thαt dim H = p dim B. Then B is the corαdical of H. 口

We use Lemma 3.1 (c) to improve a resu1t due to Radford and Schneider 

[29]. As shown in the rema比 below，this result gives an alternative proof of the 

classi註cationof Hopf algebras of dimension p2. 

PROPOSITION 3.3. Let 1-1 be a finite-dimensional non-semisimple Hopf algebra 

which contαinsαcoml仰 tativeHopf sωα1gebra B such that dim H = p dim B. If 
!/4pn = id， for some n E N， then y2p = id， andωnsequently B is the coradical of 

H. 

PROOF. We fol1ow the proof of [29]. By assumption on k， we know that B 

is semisimple， since it is commutative. Let {町}1 5，j 5，5' be the central primitive 

idempotents of B such that 1B =向十・・・ +es. Let "Ij = H，ち thenwe can write 
H=町二l号

CLAIM 1.Tr(Y214)203Vlgj豆s.

It is clear that y2 (あ)s;ふ smce

ダ2(ヰ)= y2(Htヶ)= y2(H)グ2(匂)= y2(H)(匂)s; H，ちニ4・

Let 1う:H→ヰ bethe linear projection given by PAα)=似j， for al1 a E H， 
and r(h) the linear map given by r(h)(x)ニガ1，VxヲhεH.Thellf214・z

!/2 0 Pj = y2 0 r(己j)，since these ma ps coincide on "Ij. Let λεH* be a right 

integral and ̂  E H a left integral such that く人̂ )= 1; then (̂Cl)，!/(̂C2))) are 

dual bases for the Frobenius homomorphism ..1， (see [31]). By Radford's trace 

formula， we get that 



On Hopf algebras of dimension p3 

Tr(ダ21L)=Tr((Y2)or(ち))=く..1，ダ(A(2))[y20 r(ej)](A(I))) 

ヱく).，Y(A(2))y2(A(1)ej)) 

=く..1， Y(A(訂)ダ2(A (1 ))Y~(町))

=くんグ(Y(A(I))A(2))町)=く人町〉くεぅA)=0， 

where the last equality follows from the fact that H is non-semisimple. 

CLAIM 2. dim lj = p， 1 :::; j三S.
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Since for al1 idempotents e εB， e手0，He;さH③B Be， as vector spaces 

over k， we have that dim He = dimB H dim Be. But this dimension is p， since 

dim Be = 1， because B is commutative. 

Let 7j = y211;' 1豆j孟s.By the claims above， it fol1ows tl凶 Tr(月)= 0， 
~2p" = id1j and di~ lj = p， which implies by Lemma 3.1 (c)伽 t77=±4FUPidL3 
where ωj a pll-th root of unity and 0三m豆pl1-1- 1. Since 7j(匂)= y211/り)= 
匂フ itfollows that 111) = 0 andげ=id1j， ¥11孟j手s，that is，グ2PI1j= idlj， for all 
1 :::; j 三三 s. Finally， the proposition fol1ows in view of Proposition 3.2. 臼

REMARK 3.4 [29]. Radford and Schneider proved Proposition 3.3 in the case 

where nニ l問時 Lemma3.1 (b). This result provides an alternative proof of the 

classification of Hopf algebras of dimension p2， which was recentlyfinished by 

Ng [21]. Indeed， if H is semisimple， then by a result of Masuoka [16]， it is iso“ 

morphic to a group algebra of order p2. Now suppose that H is non-semisimple. 

By Remark l.1， G(H) or G(H) * is not trivial and the order of each group is less 

than p2. Assume that G(H) is not trivial. Then dim H = pIG(H)1 and it fol1ows 

from Radf ordラsformula for y4 that y4p = id. Hence， by the proposition above， 

H must be pointed and by [2， Thm. A (ii)] H is isomorphic to a Taft algebra 

Let H be a finite-dimensional Hopf algebra and suppose that G(H) is abelian 

and its order is pll， n ミO. Following the classi 白cation of 主白111討it匂eabeli問angroups民
3 

we say t由ha剖tG(H) iおsof type (ωpll¥うplペ2ヘう . .川う，plん勺Sつ)i江fG(H) ~ Zjパ(p〆II)x...xZj(ωpi.
S仇u申ppos悶e白naddition t出ha試tG(H*つ)iおsalso abel五ianand its order is a power of p. 

We say that the Hopf algebra H is of type (pl¥...，pls;p)I，...，p)t) ifG(H) and 

G(Hつareof type (p I1 ，・・汁pりand(pベ・…，p)t)，respectively. 
If H is a non-semisimple Hopf algebra of dimension p3， then G(H) and 

G(Hつareabelian and their orders are powers of p， by Nichols-Zoeller. Up to 
duality， we have only 10 possible types. Next we prove that it is possible to 

classify all Hopf algebras of 8 of the 10 possible types. 
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THEOREM 3.5. (a) There is no Hopf algebra H of dimension p3 such that H 

or H本 isof one of the following types: 

(1; 1)， (pぅp;1)， (p，p;p)， (p，p;p2)， (p2; 1). 

(伶例b叫)Let H be a n01仔1ト-sel

(仰l円)~σ(H お of t伊yp戸e(ωpう，p列;p，pω)，then H ~ T(q)②k[Zj(p)] 
(2) If H is of type (p2; p)， then H ~ r(q). 

(3) lf H お oftype (p2; p2)， then either H ~ T(q) or H :::::: T(q). 

PROOF. It fol1ows from Masuoka's classification that no semisimple Hopf 

algebra satisfies any of the conditions in (a). Then， if there exists a Hopf algebra 

H which satisfies one of the conditions above， H should be non-semisimple. 

Type (1; 1) is not possible by Remark 1.1. For the other types， we have that 

I G(H) I = p2 and the order of the antipode dividesザフ byRadford's formula 
Hence， by Proposition 3.3， H should be pointed. By inspection， the cases in (a) 

are impossible and in case (1)， H should be isomorphic to T(q) @k[Zj(p)]， in 

case (2)， H should be isomorphic to r(q) and in case (3)， H should be isomorphic 

either to T(q) or T(q). 口

REMARK 3.6. It follows from Theorem 3.5 and Corol1ary 2.3 that a Hopf 

algebra H of dimension p3 is isomorphic to a Hopf algebra of the list (a)，・・・， (k) 

or H satisfies condition (1) or (II)， i.e. H is strange and of type (p; 1) or H is 

strange and of type (p; p). 

From Masuoka's classification it fol1ows that there is no semisimple Hopf 

algebra of dimension p3 of type (p; 1) or (p;p). The Frobenuis-Lusztig kernels 

uq(sh)， qεG[川l}are of type (p; 1) and the book algebras h(qヲm)，qεGp¥{l}， 
mε Zj(p)¥{O} are of type (p; p). These are the only noかsemisimplepointed 

Hopf algebras of type (p; 1) or (p; p) (see [2フ Section6]). 

3ユ Hopfalgebras of type (p; p). 1n order to complete the classification of 
Hopf algebras of dimension p3， we give in this section some resuIts on Hopf 

algebras of type (p; p). 

The fol1owing theorem will be also useful in the quasitriangular case. 

THEOREM 3.7. Let H be a .finite-dimensional non-semisimple Hopf algebra 
such that G(H)臼abelianフ y命=id andくα，x)=lforallxεG(H)， whereαb  

the modular element of H *. Assume further that there exists αsurjective H opf 
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α1gebra mapπ:H→ L， such thatπ(x)口 1for all x εG(H)， where L is a 

semisuηrple Hopfα1gebra such that dim L = dim H /pIG(H)I. Then o1'd g = 4p. 

PROOF. Since H is non-semisimple， the o1'der of the antipode is bigge1' than 

2 and divides 4p， by Radford's formula. Clearly it cannot be p since the order is 

even. Assume that g2p = id. 

Let eo，・・・，esbe the p1'imitive central idempote凶 of k[G(H)]. As in the 

proof of Proposition 3.3， we can w1'ite 1 = eo十 ・十esand hence H = EB/=。ι
where 1; = H，匂.Since G(H) is abelian， it follows that dim k[G(H)]匂=1 for all 

O~j 豆 S， and this implies that dim 1; = dim H /jG(H)j for all 0豆j壬s，since 

dim lj = dim H③k[G(H)J k[G(H)]ej = dimk[G(H)] H dim k[G(H)]ち¥

It was also shown in the proof of Proposition 3.3 that these spaces are invariant 

under the action of g2 and Tr(S2IJJ = O. Let q εGp¥{l}. Since 9クみ = id， 

by Lemma 3.1 (a) follows that ljェ⑤f1二iL3f77foraiiO壬j豆s，where lj，1/l = 
{hε1;:グ2(h)ニ ql11h}，and pdiml;，l11=diml; for all 0ζm豆p-1. In 

pa1'ticula1'， 

dim 10，0 = dim lo/p = dim H/pIG(H)j = dim L， 

and wemdecompose H as H=@fニ。ι11
Since π(x) = 1 fo1' all X E G(H)， it follows thatπ(町)= 0 for all j =1= 0， that 

is lj c; Kerπfo1' all j =1= O. Mo1'eove1'，ん 111c; Kerπfor all m手0，since for all 

h E 10，/11， with m =1= 0， we have that q/11π(h) =π(g2(h)) = g2(π(h)) =π(h)， be-
cause L is semisimple. Therefore EB(川)叫0)1;，/11 c; Ke川 whichimplies that 

(2) KerηEB 1;，111' 
(j，I77) #(0，0) 

since both have the same dimension. 

Let A E H be a non-zero left integral， then A ε10ル lndeed，since 

Hェ@ム。ιthereexist hoうちhsin H 問 chthat A = hoeo十十hses.Hence 
A=くαうeo) A = Aeo = hoeo， since くα，X)= 1 for all x εG(H) and eo = 
市 LXEG(H)X. More附1'， by [25， Prop. 3， (d)]， we know that g2(A)ニ
くα，g-I)A， where g εG(H) is the modula1' element of H. This implies that 

Aε九0ぅ sinceby assumptionくα，g-l)ェ 1and A = hoeoεん.
On the other hand， since H is non-semisimple， we have thatくεlA>= 

くε?π(A)> = 0 and this implies thatπ(A) = 0， sinceπ(A) is a left integral in L and 

L is semisimple. Therefore， A εKe1'ηn 10，0， implying by (2) that A = 0， which is 

a cont1'adiction to our choice of A. 口



272 Gaston Andres GARCIA 

REMARK 3.8. Let H， 10， A and αε G(H*) be as in Theorem 3.7 and let 

eo， ・けもう bethe primitive idempotents of k[G(H)]. Then Aεんifand only if 
く民x)= 1， for all x E G(H). 

PROOF. Suppose that Aε九 Thenthere exists hεH such that A = heo. In 

particular， for al1 X E G(H) we have that Ax =く民x)Aニ heox= heo = A， and 
this implies thatくα，x)= 1， for all x εG(H). 

Converselyフsupposethatくαヲx)ニ 1，for all xε G(H). Since H = Heo十・・・十

Hes， there exist hoぅ・・.，hs E H such that A = hoeo十・・・十九es・Sinceく民eo)= 1， 
it follows that A =く民向)̂ = Aeoニ hoeo，which imp1ies that ε̂ん. ロ

REMARK 3.9. The proof of the theorem above was inspired in some results 

of N g; the spaces ~， m) 0壬j川'1s;; P -1 are the spaces HO~m，i' wニ qε Gp¥{l}， 
defined in [21， Section 3] in the special case where y2p = id. 

COROLLARY 3.10. Let H be αnon-semisimple Hopfα1gebra of dimension p3 

αnd type (p; p). 

(1) Then the order of the antipode臼 2por 4p. 

(2)σくs，x)ごしfor all s εG(H*)， x E G(H)， then the order of the ant伊ode
is 4p. 

PROOF. (1) Since H is non-semisimple， the order of the antipode is bigger 

than 2 and divides 4p， by Radford's formula. Since ord Y is even and p Is odd， it 

Is necessarily 2p or 4p. 

(2) Consider the surjective Hopf algebra map H.!:.:r kG(H*)， defined by 

くπ(h)，s)= <s， h)， for all h E H， s εG(H*). Then η(χ) = 1 for all xε G(H)， 
since by assumption <s， x) = 1， for all s E G(Hキ)， x εG(H). The c1aim f01-
lows directly from Theorem 3.7， since kG(H*) is semisimple， dim kG(Hつ=p=

dim H jpIG(H)1 and !/年=id. ロ

π 
Let H be a Hopf algebra provided with a projection H→ B， which admits 

a section of Hopf algebras B ~ H. Then A = HCOπ is a Hopf algebra in the 
category of Yetter-Drinfel'd modules over B and H is isomorphic to the smash 

product A # B. In this case， following the terminology of Majid， we say that H is 

a bosonization of B. For references on the correspondence between Hopf algebras 

with a projection and Hopf algebras in the category of Yetter-Drinfel'd modules 

see [13]， [27] 
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PROPOSITION 3.11. Let H be a finite-dimensional non-semisimple Hop{ al-

gebra. Assume that G(H) is non-trivωαndαbeli仰 andG(H) ~ G(Hつ.
(1) lf IG(H)I = p， then H 臼 αbosonization01 k[G(H)]ず、andonかifthere 
exist s E G(Hつandx E G(H) such thatくs，x)手l.
(2)σdimHニ pIG(H)I，then H is a bosonization 01 k[G(H)]. 

PROOF. (1) Suppose that H is a bosonization of k[G(H)]. Then there exists 
π 

a Hopf algebra projection H → k[G(H)] which admits a Hopf algebra section 

k[G(H)] -: H， that isπo y = id. Let G = G(H) and denote by G the group of 
characters of G. We identify G with Alg(k[G]， k) = G(k[G]*). Since G #-1， there 
exist x εG， s εG such thatくs，x)手1.Consider the group homomorphism 
G~ G(Hつgivenbyψ(X) = X 0 π，for all XEG. Then so πε G(H*)， y(x)εG 

A 

and くso九y(x))=く戸ヲ冗oy(x)) =くs，x)#-1.
Suppose now that H is not a bosonization of k(G]. We show that for 

a必1狂1s εG(H'ヰ*)，永〈
group algebra in H. Since G(H*) is also non-trivial， we have a surjection 

of Hopf algebras H ~ kG(H*)， given byくπ(h)，s)ニくs，h)， for all h εH， 
p εG(H*). 

CLAIM 1.π(x) = lkG附}， for all x εG. Since G(H*) is abelian， we have that 

kG(H') ~ k[G(H'ついk[G] as Hopf algebras. Moreover， the compositi∞of these 
isomorphisms with πinduce a Hopf algebra surjection H二k[G]. If there exists 
X E G such that n(x)手1kG(H'}，then τ'(x) #-1 and the restrictionて'01of τ， to 
k[G] defines an automorphism of k[G]， since IGI = p， which is a prime number. 
Define now τ:H→ k[G] viaて=(τ，0 1)一 oて， Then T 01 = idk[G] and H is a 

bosonization of k[ G]， which is a contradiction to our assumption. 

Therefore for all s εG(H*)， x εG we have くs，x)=くπ(x)，s)口

く1kG(H*}，s)= 1， which proves (1). 

(2) Consider the Hopf algebra surjection H ~ k[ G] defi.ned in the proof of 
Claim 1. 

CLAIM 2.τ'IG defines a group automorphism of G. Suppose on the contrary， 

thatτ'IG does not define an automorphism of G. Then there exists h εG such that 

h 手1and τ'(11) = 1; in particular， h E HCOτ¥ 
On the other handフ dimHCOτ = p， since dim kG(Hつ=IG(H*)I = IGI， and 
dim H = plGI = dim HCO y' dim kG(H*)， by Nichols之oeller.Since p is a prime 

number， it follows that ord h = p and kく11)= HCOτ¥In particular， one has the 
exact sequence of finite-dimensional Hopf algebras 1 → kくh) ム H~k[G] → 1 ，
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implying as it is we1トknownthat H is semisimp1e， which is a contradiction to our 

assumptlOn. 

Therefore the automorphismτ'1 G defines a Hopf a1gebra automorphism in 

k[G]， and H is a bosonization of k[G]. ロ

RE地 RK3.12. If we examine the Hopf algebras in the list (a)，...， (k) in 
the introduction， we see that the cases (d)フ (e)フ (f)and (i) are also bosoniza-

tions. In the case (d) it is c1ear that the product Hopf algebra is the boson 

za叫叩tionof k[Zj(p)月]and by the propos註“i江ti∞i山01註1above江臼salso a bosoni位za討tionof 
k[Zj(ωωp同)x Zj(ωωp刈)月].The cases (e) and (σf) are bosoniza瓜ぬt討ionsof k[Zj (p2)月]and the 

book algebras h(ωq，川n叫?

book algebras民， Andn印us汰ki詑ewi江ts民chand Schneider proved in [2勾]t白ha抗tthese al抱gebra部S 

are also bosoni詑za剖tiわO∞n邸1路s0ぱfa Taft algebra， i. e. they are isomorphic to a smash 
product R# T(q). Moreover， t出he句ya討lsωop戸ro仰ve吋dt出ha瓜tthe a討19伊eb肱raωsR exha ust the lisおst

Oぱfnonト-seml凶S幻impleHopf alg伊ebrasof order p in the Yet仕te訂r.心rinfel'吋，d category over 

T(ωωqω)ト. 

We now prove that a Hopf algebra H of dimension p3 is a bosonization of 

k[Zj(p)] in the following two cases. Although some properties of H are known， 

we cannot determine. its structure， since the c1assification of Hopf algebras of 

dimension p3 which are bosonizations of k[Zj (p)]， that isフofbraided Hopf alge-

bras of dimension p2 in the category of Yetter個Drinfel'dmodules over k[Zj(p)]， 

is not known. 

COROLLARY 3.13. Let H be a non-semisimple Hopfα1gebrαof dimension p3 

and type (p; p). If y?却と idthen H is a bosonization of k[Zj(p)]. 

PROOF. Follows from Corollary 3.1 0 (2) and Proposition 3.11 (1).口

COROLLARY 3.14. Let H beαHopf algebra of dimension p3 and type (p; p) 

such that H contains a non-trivial skew primitive element. Then H is a bosonization 

of k[Zj(p)]. 

PROOF. Suppose on the contrary that H is not a bosonization of k[Zj(p)]. 

By [1， Prop. 1.8]， H contains a Hopf s山a1gebraB which is isomorphic to a 

Taft algebra of dimension p2. Let x， h E H， be the generators of Bフ suchthat 

1 =1= h εG(H) and x εPl，h・

Consider now the Hopf algebra surjectionπ :H → kG(Hつgivenbyくπ(t)，s)
=くs，t)， for all t εH， s εG(H*). Ifπis not trivial on G(H)， then H is a 
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bosonization of k[Zj(p)]， by Proposition 3.11 (1). Ifπis trivial on G(H)， then 

t E HCOぺforall t εG(H). Since πis a Hopf algebra map and ~(x) ニ X ③ l 十

h@κwe see thatπ(x) is a primitive element in kG(H'). Since G(Hつhasfinite 
order，π(x)口 oand therefore (id ③ π)~(x) = x ③ 1， that is χεHCOπ. Since B 
is generated by x and h εG(H)， we have that B <;; HCOπand hence B = H coぺ
because both have dimension p2. Therefore H 註tsinto the extension of Hopf 

algebras 

i→ BムHムkG(H*)→1.

As G(Hキ)::::=. Zj(p)， Hネ ispointed by Theorem 2.1. Since the on1y non-

semisimple pointed Hopf algebras of dimension p3 of type (p; p) are the book 

algebras， it follows that H本::::=.h(q， -m)， where qεGp¥{lL and mεZj(p)¥{O}. 
Hence H::::=. h( q 1111) and therefore pointed， since for all q E Gp¥{l}， mEZj 

(p) ¥ {O} we have t出ha叫th(ωq， 一m刈)* ::::=. h(ωq う川川11川?
boson出i江za叫叩tionof k[Zj (ωp)]， by Rema訂rk3.12. ロ

Finally we note a very special result on Hopf algebras of dimension p3 

following [20， Prop. 1.3) and Theorem 2.1. 

PROPOSITION 3.15. Let H be a non-semisimple Hopf algebra of dimension p3 

andαssume that H contains a simple subcoalgebra C of dimension4 such thαf 
ダ(C)= C. Then H* is pointed. In particular， H cannot be of type (p; p) 

PROOF. Let B be the algebra generated by C; clearly B is a Hopf subalgebra 

of H and it follows that dim Blp3， by Nichols-Zoeller. Since C <;; B <;; H， B is 

non・semisimpleand n01トpointed.Then necessarily B = H， since by [37， Thm. 2] 

and [21， Thm. 5.5]， the only non-semisimple Hopf algebras whose dimension is a 

power of p with exponent less than 3 are the Taft algebras， which are pointed. 

Hence H is generated as an algebra by a simple coalgebra of dimension 4 which 

is stable by the antipode. By [20， Prop. 1.3]， H fits into an extension 1→ kG → 
H→ A→ 1， where G is a finite group and A * is a pointed non-semisimple Hopf 
algebra. 

Since H is not semisimple， it follows that I G(H) I = 1 and H* is pointed， or 
IG(H)I = p and H is pointed by Theorem 2.1， which is impossible by assumption. 
Moreover， if H* is pointed and of type (p;p)， then H* is isomorphic to book 

algebra h(q川仏 forsome qεGp¥{ l}， m E Z j (p )¥{O}. Hence H is also pointed 

and it cannot contain a simple subcoalgebra of dimension 4. 口
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4. QuasitrianguJar Hopf AIgebras of Dimension p3 

Let H be a finite-dimensional Hopf algebra and let RεH③ H. As usual， we 
use for R the symbolic notation R = R(1)②R(2). Define a linear map fR : H*→ 

H by fR(s) =くs，R(l))R(2)， for sεH*. The pair (H， R) is said to be a qua-

sitria時ularHopf algebra [6] if the following axioms hold: 

(QT.l) ACOP(h)R = RA(h)， VhεH， 

(QT.2) (Li @ id) (R) = R13R23， 

(QT.3) (ε@ id)(R) = 1， 

(QT.4) (id @ A)(R) = R13R12， 

(QT.5) (id②ε)(R) = 1; 

or equivalently ifん:H*仰→ H is a bialgebra map and (QT.l) is satisfied. 
We have used the notation R12 to indicate the element R @ 1εH@3， 

similarly for R13 a凶 R23・Notethat (HCOP，R21) and (HOP，R21) are also qua-
sitriangular， where R21 := R(2)②R(l) 

We refer to a pair (H， R) which satisfies the five axioms above as a 

quasitriangular Hopf algebra or simply saying that H admits a quasitriangular 

structure. See for example [24] for a ful1er discussion and references. 

We define a morphism f : (H， R)→ (H') R') of quasitriangular Hopf alge-
bras over k to be a Hopf algebra map f : H→ H' such that R' = (f @ f)(R). 

Let R = R21・Thereis another Hopf algebra map fi? : H*→HOP， given by 
fi?(s) =く戸，R(2))R(1)，for all sεH¥With the usual identification of vector spaces 

of H and Hぺthemaps fi? and fR are related by the equation fi? = fii. 

REMARK 4.1. Let L and K denote， respectively， the images of fR and fk 

Then L and K are Hopf subalgebras of H of dimension n > 1， unless H is 
cocommutative and R = 1③ 1; this dimension is called the rank of R. By [24， 

Prop. 2]， we have L ~ K*coP. 

Let HR be the Hopf subalgebra of H generated by L and K. If B is a Hopf 

subalgebra of H such that RεB @ B， then HR s; B. Hence， we say that (H， R) is 

a minimal quasitria時 ularHopf algebra if H = HR. It is shown in [24， Thm. 1] 

that HR = LK = KL. If L is semisimple， then K is semisimple and therefore HR 
is semisimple. Minimal quasitriangular Hopf algebras were first introduced and 

studied in [24]. 

We recall some fundamental properties of finite-dimensional quasitriangular 

Hopf algebras (see for example [6]， [18]). First R is invertible with inverse 

R-1 = (ダ③I)(R)= (J @ y-I )(R)， and R = (ダ@Y)(R). Set u =グ(R(2))R(1)， 

then u is also invertible where 
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u-1 = R(2)ダ2(R(I))， 企(u)= (u③ u)(RR)-l = (RR)一l(U@U)，

ε(u) = 1 and //2(h) = uhu-1 = (//(μ))-lh//(U)， forallh εH. 
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Conseque凶 y，u//(u) is a central element of H. Since //2(h) = h， for a11 

h E G(H)， it follows that u commutes with the group-like elements of H. The 

element u εH is ca11ed the Drinfel'd element of H. 

We say that V E H is a ribbon element of (H， R) if the following conditions 

are satisfied: 

(R.l) v2 = u//(u)フ
(R.2) 9'(v) = v， 

(R.3)ε(υ) = 1， 

(R.4) ，1(v) = (RRr1(v③v) and 
(R.5) vh = Inんfora11 h εH 
If H contains a ribbon eleme民 thenthe triple (H， R， v) or simply H is called 

a ribbon Hopf algebra (see [9， XIV.6]， [10]， [26， Section 2.2]). 

The following theorem is due to Natale and it wil1 be crucial to prove some 

results in the case where the dimension of the Hopf algebra is p3. 

THEOREM 4.2 [19， Thm. 2.3]. Let H be a Hopf algebra of dunensIon pq over 

kフwherep and q are odd primes which a1'e not necessa1'ily distinct. Assume that H 

admits a quasit1'iangular structure. Then H is semisimple and isomo1'phic toαgroup 

algebra k[F]， where F 臼 αgroupof o1'der pq. 

REMARK 4.3. The theorem above implies the known fact that the Taft 

algebra T(q) does not admit any q凶 sitriangularstructure if dim T(q) = p2， with 
p odd prime. 

The following result is due to Gelaki. 

T 回 O虹 M 4.4. Let (H， R) b佐eα 斤βnite-di，欄-dimel仰1岱ωsioω01仰1叩αl 句quω itri悶αω仰n勾叩1旬ψg伊ul，αl' Hoψtpf α l匂ge的b白r
wνvi白th αnt~伊pod，佐e ダ over α field k of chω刀cteristicO. 

(a) [7， T凶.3.3] If the D1'infel'd element u of H 仰 asa scalar的仰y
i1'reducible representation of H (e.g. when H* is pointed)， then u = 9'(u) 
αnd in particular //4 = id. 

(b) [8， Thm. 1.3.5] If HR is semisimple， then u = //(u) and //4 = id. 
(c) If H本 ispointed then either H おsemisimple01' dim H is even. 

PROOF. (c) follows from (a) and Remark 1.1. 

We can now prove our first assertion. 

口
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PROPOSITION 4.5. Among the Hopf algebras in the list (拘a)，...リ， (k幻)i的nthe 
i的nt仰rodiぬucυtio肌 O仰nlかythe group αl匂geめbrαSα仰ndthe F丹〉均OωbeJ仰u山uωt“ルs-Lμu凶szt均i句9kern 
where qεGp¥{1}ぅ αdmita qωsitriangular str附貯e

PROOF. lt is well-known that the group algebras and the Frobenius-Lusztig 

kernels are quasitria時凶ar(see [9， IX.7]). We show next that the other Hopf 

algebras in the list cannot admit a quasitriangular structure. 

Let q εGp¥{l}. The Hopf algebras in cases (d)フ (f)and (g) admit no 
quasitriangular structure， since they have a Hopf algebra surjection to the Taft 

algebra T(q) and by Remark 4.3， T(q) is not quasitriangular. (see [3， Section 1]). 

Let H be one of the Hopf algebras T( q)ぅ h(q，m)ぅ mεZj(P)¥{1}， uq(sI2)¥ 

r(q)¥i.e. H is one of the cases (e)， (i)， (j)， (k) of the list. Then H* is pointed and 

H is not semisimple of odd dimension. Hence by Theorem 4.4 (a) and Remark 

1.1， H cannot admit a quasitriangular structure. 

Let G be a finite group. lf H = kG admits a quasitriangular structure， then G 

must be abelian by (QTl)， and H is isomorphic to a group algebra. 

Finall)らthesemisimple Hopf algebras of dimension p3 in (c) are not quasi-

triangular by (17， Thm. 1 J. ロ

REMARK 4.6. The case of T(q) of Proposition 4.5 also follows from [26， 

Section 5]. There， Radford defines Hopf algebras which depends on certain 

parameters. He proved that these algebras admit a quasitriangular structure if and 

only if these parameters satisfy specific relatIons. One can see that the algebras 

are of this type and the relations needed to have a quasitriangular structure do 

not hold. 

In the following， we give a partial description of the quasitriangular Hopf 

algebras of dimension p3. 

Let D(H) be the Driぱel'ddouble of H (see [18] or [24] for its definition and 
properties). We identify D(H) = H*叩@H as vector spaces and for s εH* and 

hεH， the element s @ h εD(H) is denoted by s#h. We may also identify 

D(H)* = H中 @Hヘandfor h E HOp and s εH¥the element h②F εD(H)* is 
denoted by h # s if no confusion arrives. 
For every finite-dimensional ql邸 itriang叫arHopf algebra (H， R)， there is a 

Hopf algebra surjection 

D(H)LH? F(F#h)ニくs，R(I))R(2)h， 

which induces by duality an inclusion of Hopf algebras H*ζD(H) *. Moreover， 
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by [24， Prop. 10] all the group-like elements of D(H)* have the fonl1 x#孔for 

some X E G(H)， sεG(Hつ， and there is a ce山 -alextension of Hopf al伊bras

¥
1ノ

噌

a
a
A
，，s
t

‘、、
l→ k[G(D(H)*)]ムD(H)ムA→ 1， 

where z(χ#戸)= s#x， for all x#戸εG(D(H)*) and A is the Hopf algebra given 
by the quotient D(H) / D(H)k[ G(D(H)ワ]+.
We need the following lemma due to Natale. 

LEMMA 4.7 [19， Lemma 3.2]. Let 1 → AムH.!!:."B→ 1， be an extension 
4βnite-dimensional Hopf algebras. Let also L s;; H beαHopf subalgebra. lf L 
is simple then either L s;; z(A) or L n z(A) = k1. 1n the last case， the restriction 
πIL: L → B is injective. 

LEMMA 4.8. Let H be a quasitriangular Hopf algebra of dimension p3 such 

that the Hopf algebra map fR dφ1ed above is an isomoψhism. Assume further that 
H is simple as a Hopf algebra. Then G(H) hαs order p andくα，g)=仁whereα

and g are the modular elements of H * and Hラ respectively.

PROOF. H cannot be semisimple， since otherwise H would admit a non-

trivial central group-like element by [16， Thm. 1] and this would co山 -adictour 

assumption on the simplicity of H. Moreoverう H cannot be unimodular， since 

otherwise H* would be also unimodular and by Radford's formula， 9'4 = id， 

which implies by Remark 1.1 that H is semisimple. Since fR is an isomor-

phismコH*is also non-semisimple，司mpleas a Hopf algebra and G(H) ~ G(H本). 

He即 e，by Nichols-Zoeller we have to deal only with the cases where IG(H)I = 

IG(Hつ1=p or IG(H)I = IG(H*)I = p2. But the order of G(H) cannot be pベ
since otherwise H would be pointed by Proposition 3.3 and hence isomorphic 

to a FrobenIlルLusztigkernel uq(sI2)， for some q εGp¥{1}， by Proposition 4.5， 

which is a contradictionう sinceIG(叫(sh))1= p. Therefore， the only possibility is 

IG(H)I = IG(H*)Iニ p.
By [8， Cor. 2.10， 1))， we know that fk(α)ニ g-land by [26， Prop. 3]， fkR = 
fk * fR and fkR(α) = 1. This implies that necessarily fR (α)口 gand hence the 
order of g andαmust be equa1. 

Consider now the Hopf algebra sur・jectionF: D(H)→ H and the Hopf 

algebra inclusion F* : H*→ D(H)¥defined above. Since G( Hつ=1=1， we have 
that G = G(D(H)*) =1= 1， and dualizing extension (1)フweget another extension of 

Hopf algebras given by 

(2) l→ A*乙D(H)*ニデ kG→ 1. 



280 Gaston Andres GARCIA 

Define L = F 彩(H つs; D(H つ. Since H 場本臼ssimple as a Hop戸falg伊eb伽ra叱， by 
Lemma 4.7 we have t出ha以tL s; 7πr*唱牢ぺ〈て(A*つ)or L n 7πr'埼吋}
O∞ccωur王フ since otherwise the restriction l*功*つ'IL:L → kG would be i訂m同~司Jecはti討ve久， implying 
t出ha剖tH* is semisimple. Hence L s; n* (Aつ
Then there are sεG(H*)， s =1=εand x εG(H)¥{l} such that xヂsE
G(n*(A*)) s; G. Moreover， since the image of G in D(H) is central and F is a 
Hopf algebra surjection， it follows that F(戸#x)εG(H)n Z(H) and by simplicity 
of H we have that necessarily F(戸#x)= 1. 

Since both modular elements are not trivial， we have that G(H*) =くα>and 

G(H)立くg>and hence IG(D(H))I = p2. Moreover， IG(H*)I = IG(A*)I = p， since 

otherwise I G(Aつ1= IG(D(H)本)1= IG(D(H))I = p2 and this would imply that H 
has a central non-trivial group-like elementフwhichcontradicts our assumption on 

the simplicity of H. Hence the group-like element s#X generates G(n吋Aつ)， and 

pニ αJ，X = 9 1 for some 1 :::;; i， j壬p-1. 1n particular， 

1 = F(αj内 I)=くαi，R(I)>R(2)gI = JR(αi)gi・=JR(α)Jgl = gl gl 

Then we have t出ha瓜tj吉一imod p and 7πrピr"埼吋+

Cor. 2.3.2]， it follows thatくα-1，g>2 = 1， and this implies that 1 =くα一1，g>工

作，g>-I，since IG(H)I = IG(Hつiニ pand p is odd. 口

We prove next one of our main results. 

THEOREM 4.9. Let H be a quasitriangular HopJ algebra oJ dimension p3. 

Then 

(i) H isαgroupαIg訪問。r

(ii) H is isomorphic to uq(sI2)， Jor some qεGp¥{1}， or 

(iii) H is a strange HopJ a匂ebraoJ type (p; p) and the map JR is仰 iso-

morphism. Morωver， H and H* are minimal quasitriangular， 1 =くs，x>，
jor all s εG(H*)， x E G(H)， and ord g = 4p. 

PROOF. 1f H is semisimple， the claim fol1ows by [17， Thm. 1]， since H must 

be isomorphic to a group algebra. 

Assume now that H is non-semisimple and let H R be the minimal quasi-

triangular Hopf subalgebra of H. Recall that HR = KL = LK， where K = 1m JR 

and L = 1m Jft..-By Theorem 4.4 (b) and Remark 1.1， H R is necessarily non-
semisimple. Since the only non-semisimple Hopf algebra whose dimension is a 

power of p with exponent less than 3 are the Taft algebras， by [37， Thm. 2] and 

[21， Thm. 5.5]， and the Taft algebras are not quasitria時ularby Remark 4.3， we 

conclude that dim HR = p3. 
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Therefore the only possible case is when HR = H and (H， R) is a 

minimal ql山 itriangularHopf algebra. Then by [24， Cor. 3]， it follows that 

dim H I (dim K)2; hence the dimension of K can only be p2 or p3. 

Suppose that the dimension of K is p2. Since H is not semisimple， K is 

not semisimple by Remark 4.1. Moreover， by [21， Thm. 5.5] agail1， K must be 

isomorphic to a Taft algebra T( q)フ whereq εGp¥{1}. Since L ~ K本COP，L must 

be also isomorphic to a Taft algebra and by Remark 1.2， L ~ T(q-l). 

It is c1ear that G(K) s; G(H) and G(L) s; G(H)， where the order of G(H) is 

p or p2. Since H is a product of two Taft algebras， we have that f/Ap = id. If the 

order of G(H) is p人thenby Proposition 3.3， H must be pointed. Then， by (3， 
Thm. 0.1] and Proposition 4.5， H is isomorphic to a Frobenius-Lusztig kernel 

uq(slz); but this cannot occur， since IG(uq(sI2))1 = p. 

Therefore IG(H)I = p， and consequently G(H) = G(K) = G(L). Denote by 

g εG(H)， and x εK the generators of K， and g' E G(H) and y εL the generators 

of L; they are subject to similar relations as in Remark 1.2， since both are iso-

morphic to Taft algebras， but for di百erentroots of unity. Moreover， g' must be a 

power of g， since IG(H)I = p. 

Hence H is generated as an algebra by g， x and y， which implies that H is 

pointed by [18， Lemma 5.5.1]. Therefore， by [3， Thm. 0.1] and Proposition 4.5， H 

is isomo印刷cto uq(sI2)， for some q εGp¥{l }. 

Assume now that dim K = p3， then the map fR : H村叩→ H is an isomor-
phism of Hopf algebras. Moreover， H must be non-pointed and hence simple as 

a Hopf algebra by Corollary 2.3， since other・wiseH would be isomorphic to a 

Frobenius-Lusztig kernel 叫(sIz)フ whichis a contradictiol1， since 叫(sI2)本 isnot 

pointed nor q回 sitriang忠ula訂r.Then by Lemma 4.8， we get that IG(H)I = p and 

くα，g)= 1， where αand 9 are the modular elements of H* and H respectively. 

It was shown in the proof of Lemma 4.8 that fR(α) = g; then it follows by 
Remark 1.1， that H and H* are both not unimodular. Henceフ <s，x) = 1， for 
all s εG(H*)， x E G(H)， which implies by Corollary 3.10 (2) that ord g = 4p. 
Therefore， H is a strange Hopf algebra of type (p; p) which satisfies all con-

ditions in (iii). 口

It is wel1-known that the group algebras and the Frobenius幽Lusztigkernels 

are ribbon Hopf algebras (see [9]). Next we prove that there are no other ribbon 

Hopf algebras of dimension p3. 

COROLLARY 4.10. Let H be a ribbon Hopf algebra of dimension p3. Then H 

is a group algebra or H is isomorphic to uq(sI2)， for some qεGp¥{1 }. 
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PROOF. Suppose on the contrary that H is a ribbon Hopf algebra of 

dimension p3 which is not a group algebra and H is not isomorphic to a 

Frobenius-Lu泣 tigkernel. Then by the preceding theoremフ His of type (p; p) and 

ord!f = 4p. But this cannot occur， since by [10， Thm. 2]， the square of the 

antipode must have odd order.口

As another application of Theorem 4.9 we classify司uasitriangularHopf 

algebras of dimension 27 using some results from [1] and [4]. As in [4]フwedenote 

by MC(n， k) the simple matrix coalgebras contained in the coradical. 

Let H be a finite-dimensional Hopf algebra and let Ho be the coradical of 

H. Then we have that Ho ~⑦てEHH" where H， is a simple subcoalgebra of 
dimension d乙d，E Z， and }主 isthe set of isomorphism types of simple left H-
comodules. Define 

HO，d = ffi Hτ 
τεH:dr=d 

For instance HO，1 = k[G(H)] and HO，2 is the sum of all 4-dimensional simple 

s凶coalgebrasof H. By [1， Lemma 2.1 (i)]， the order of G(H) divides the 

dimension of HO.d for all dミ1.

Tf臣OREM4.11. Let H be a quasitriangular H opf α1gebra of dunension 27. 

Then H is a groupα1gebra or H is i・somorphicto uq(sI2)フforsome q E G3 ¥ { 1 }. 

Precisely， H is isomorphic to one and only one Hopf algebra of the following 1ωラ
where qεG3¥{1 }， 
(a) k(Zj (27)] 

(b) k[Zj(9) x Zj(3)J 

(c) k[Z/ (3) x Zj (3) x Zj (3)] 

(d) uq(sI2) := kくgぅ爪yI gxg-1 = q2x， gyg-l ニ q-2 y， g3 = 1， x3 = 0， y3 = 0， 
xy-yxニ 9_ g2). 

PROOF. By Theorem 4.9， we have to show that there is no quasitriangular 

Hopf algebra H of dimension 27 which satisfies (iii). 

Suppose that such a Hopf algebra exists. Since H is not semisimple， H is aIso 

not cosemisimple. Moreover， H has no non-trivial skew primitive elements， by 

Corollary 3.14 and Proposition 3.11 (1). 

Suppose now that 

Ho = k[G(H)J EB MC(nl， k) EB・・ EBMC(n(ぅk)う

where 2 ~三 nl ::; . . . ::; n( 三三 3， since 31 dim HO，dl [or all d 二三 1. Moreover， since H 

is not cosemisimple， we have the fol1owing possibilities for Ho: 
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(1) Ho = k[G(H)] EB MC(3， k)， with dim Ho = 12， 

(2) Ho こ k[G(H)]EB MC(2)k)3， with dim Ho = 15ぅ

(3) Ho = k[G(H)] EB MC(3，k)2， wIth dim Ho = 21， 
(4) Ho = k[G(H)] EB MC(2， k)3 EB MC(3ぅk)，with dim Ho = 24. 
Since all skew primitive elements of H are trivial， by [4， Cor. 4.3] we have 

that 

(3) 27 = dim H > dim 民主 (1十2nl)3十乞F17

Replacing the correspondi時 dimensionsin eql以 ion(3)， it follows that no one of 

the cases (1)，・・・， (4) is possibleフ obtaining in this way a contradiction to our 

assumption. ロ
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