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A COMPLETE SEQUENCE OF ORTHOGONAL SUBSETS
IN HM(R") AND A NUMERICAL APPROXIMATION
FOR BOUNDARY VALUE PROBLEMS

By

Reiko SAKAMOTO

Introduction

Let us consider the boundary value problem of partial differential equations
on a domain Q in R™

(P) {Au:f in Q

Bu=0 ondQ (j=1,...,u),

subject to the following two conditions:

(1) the energy estimate holds for the adjoint problem in H*(Q),

(2) there exists a continuous map from H™(Q) to HY(R").

In our previous work ([1]), we have discussed the existence of weak
solutions in L?(Q) and its approximations using a basis S of H(Q). The
problem we address in this paper is the construction of this set S. When Q is
bounded, we take a > 0 large enough so that Q € Q; = (—an,an)". Then, since
S = {explio.- x/a) o€ Z"} (Z ={0,+1,+2,...}) is a basis of HM(Q,), S|y is a
basis of HM(Q), under the condion (2) (see [1]).

Therefore, our main concern is the case where Q is unbounded. This is easily
reduced to the case where Q = R". In fact, by virtue of the assumption (2), if S'is a
basis of HM(R"), S|, is a basis of H™(Q). As a preliminary to the construction
of S, we introduce the notion of a complete sequence of orthogonal subsets in §0.
We then construct complete sequences of orthogonal subsets {®y |k e Z"}
(NeN) in L*(R") and {¢y,|lkeZ"} (NeN) in H¥(R") in §1 and §2,
respectively. Our ultimate aim (Theorems 3.1 and 3.2) will be proved in §3.

§0. A Complete Sequence of Orthogonal Subsets in a Hilbert Space

Let H be a Hilbert space. Let {Sy} (N € V) be a sequence of subsets in H.
Let us say that {Sy} (N e N) is a sequence of orthogonal subsets in H, if
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Sy = {¢N,j (] = 1725"'>}> ¢N,j # 0, (¢N,j’¢N,k)H =0 (J # k>7

where (,), denotes the inner product of H. Let us say that {Sy} (N eN) isa
complete sequence of orthogonal subsets in H, if there exists a series {fy} for any
f € H such that

InelSy>, fv—f inH,

where {S) denotes the set of linear combinations of finite elements of S.
From the definition, we have

Lemma 0.1.  Let {Sy} (N e N) be a complete sequence of orthogonal subsets
in H, then {\J;_, S;> is dense in H.

Lemma 0.2. Let {Snv} (N € N) be a sequence of orthogonal subsets in H. Set

Fy =3 " Mow I b )ubw.s

for f € H. Then {Sy} (N € N) is a complete sequence of orthogonal subsets in H,
iff it holds

Fy— f i H (N — o).

Proor. Let {Sy} (N € N) be a complete sequence of orthogonal subsets in
H, then there exists {fy} for f € H such that
nelSyy, fw—f in H.

From the definition of Fl, it holds

WEn ~ Sy s v = g
which means

Fy—f in H (N — o).

Conversely, let

Fy =" low 5 (v )udn.s

satisfy
Fy—f in H (N — ).
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From the definition of Fy, we can define

ZK(N) lén j” (fsén 1)H¢N,, e {Sny

such that

o = Ewlly <277,

Therefore, we have

Jnel{Sy>

and

Iy =Sl S v = Enllg +11Ey = flly = 0. O

When {Sy} (N =1,2,...) is a complete sequence of orthogonal subsets in
H, we say that {Fy} (N =1,2,...) is a sequence of quasi-Fourier series of f € H,
corresponding to {Sy} (N =1,2,...), where

Fy = Z;Z, ”¢N,j“—2(f; On, by, )

Let Vy be a closed subspace in H with basis Sy, then Fy is the orthogonal
projection of f on Vy.
From the definition, we have

Lemma 0.3. Let {Sn} (N € N) be a complete sequence of orthogonal subsets
in H. Then any infinite subsequence {Sy(;} (4 € N), satisfying N(1) < N(2) <
is a complete sequence of orthogonal subsets in H.

§1. A Complete Sequence of Orthogonal Subsets in L%(R")
1.1. {®y,} in L?(R") Let ye C®(R) satisfy

(L (i< 1/2)
”(’)‘{o (1 > 1),

and set y,(x) = y(x;/4) -+ y(x,/A4) for AeN. Set

fa(x) = y,(x)f (x)
for f e L*(R"), then we have
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fie L2 (R"YNLYR"), f1— f in L*(R") (4 — o).
Let

£(&) = ij (x)e 4 d

be the Fourier transform of f,, then we have
J1€ LR")NB(R"),
where
Z(R")={f e C®(R")|0,f(x) is bounded in R" for any v}.

Moreover, for Be N, we have

(271)_"J fa(&e™ e de — f4(x) (B— o0) in L*(R") (Qp=(-B,B)").

Qp
Set
gan(&) = f4(k/N) if &eQuy,

where Qy , = (ki/N, (ki +1)/N) x - x (k,/N, (k, + 1)/N). Since

SupéeQN‘klgA,N(é) - fA(f)l = SqueQN,kEfAA(k/N) - fA(f)‘
< (1/N) supe (126, f4(E)] + -+ + 106, L4 (D),
we have
gan(&) = [4(&) (N — o0) (uniformly in R").
Hence we have
(Zn)_"J gan(&)e™* dcﬂ(zn)”"J Ffo(E)e™* dé (N — ) in L*(R").

QB QB

From the definition of g4 n(&), we have

gA’N(é)eix.é dc= Z—NBékl,-”,kn<NB ﬂ(k/N)(zn)""J et dé.

Qv «

) |

Qp

Set

Oy x(x) = 2r)™" L ™ de,
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then we have

o | gan(@ertae =S L kMO () € Su,

where Sy = {Oy |k e Z"}.
By the way, we have

Oy i (x) = 2n)" L e~ dé

— (zﬂ)—rleikx/NJ ei,\‘f dé
Q.o

= (ZﬁN)"’eik‘x/NJ e™ de,
Q10

J e ge = e"(’“‘*""*'“’)()cl—1 sin xp) -+~ (%! sin x,),
Q0
(DN, On,r) =0 (k#7),
[9n 0l = Q)N nall? = @) | de = @)
Qp k
Hence we have

Lemma 1.1. (1) Set

Oy il) = r)" | e e,

Qp
then
Oy 1 (x) = (27N) "™V s(x/(2N)),
where
s(x) = et (o sin ) - (! sin x,),
and

O k(x) = N0y 1 (x/N), @y x(x) = @y o(x)e™*, @) o(x) = 2r) "s(x/2),
(@i, @r,r) =0 (K #7), || Dyill> = (22N)™".

(2) Set Sy ={®Pn|keZ"}, then {Sy} (N e N) is a complete sequence of
orthogonal subsets in L*(R").
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Here we have from Lemma 0.2

THEOREM 1.1. Set

Fy(x) = (27N)"> ([, ®ni)®Pri(x) (NeN)
for feL*(R"), then it holds

Fy — f in L*(R™).

¢{Fn(x)} (N e N) is a sequence of quasi-Fourier series in L?(R"), corresponding
to {SN} (NEN)>>
Let us consider

Fn(x) =3 0wkl 2 P i) @i (%),
more precisely. Setting

an i = |On il 7, Do),

we have

FN(X) = ZkeZ” aN)k(DN,k(x).

We remark that

an i = {<2n)"" jﬂ dé}—l {(2n>‘" JQ () d:}
- {JQ d:}-1 {L 7@ dé}

is the integral-mean value of f (&) in Qp x. Moreover, we have

Ey(&) =ane (EeQup), Fn(x)=(m™" Jﬁme"«% de.

THEOREM 1.2. Set

F(x) = (2nN)"y " (/. @x )@ i(x) (NeN),

ay = { L d«:}wl {jﬂ 7 df}



A complete sequence of orthogonal subsets in H*(R") 221
for feL*(R"). Then

Fy(x)=>" . ani®ni(x), Fy(&)=anvi ((eQni),
and

Fy(x) — f(x) in L*(R").
{Fn(&) is a step-function approximation of £y

1.2. Analogy to trigonometrical series
(1) When the support of f(x)e L?>(R") is contained in (—7,7)", we have

16 = e Y, { [ £ et i L2 ()
(2) When the support of f(x) € L?>(R") is contained in (—N=, Nn)", we have
= (2nN)™" Zkez,,{Jf(y)e“i"'k/N dy}eix'k/N in L*((~N=n,Nn)").

In other words,
{When the support of f(x)e L?(R") is contained in (—Nm, N7)",

x) = ZkeZ" e xe™*N in L*((—~Nm,Nz)") (Fourier series)

where

en g = (2zN)™" J f(y)ekIN dy (Fourier coefficient))

(3) In our case, the sequence of quasi-Fourier series of f(x)e L?(R") is
written as

Fy(x) = 27N)"> " (f, On 1)@y (%)

— (27N) Zkeznj (ZaN) e kN 5(y ] (AN))} dy
x {(2nN)"e™* N s(x/(2N))}
= @aN) " Y [ SO dy

x {e"Vs(x/(2N))} in L*(R"),
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where we remark
s(x/(2N)) =1 (N — oo) (uniformly in a compact set).

In other words,
{Let f(x)e L*(R"), then we have

Fn() = ), g enide™s(x/@N))} in L2(R")
(analogue of Fourier series),
Fy — f in L*(R™)

where

e i = (2uN)™" J SN VS 2N))} dy

(analogue of Fourier coefficient)

(4) Especially when the support of f(x)e L?>(R") is contained in (—Nz, Nn)",
since

ek = (2N)™" j ST V(5] @N))} dy

(:analogue of Fourier coefficient of f),

= (22N j{f(y)s(y/<2N)>}efy~k/A' dy

(:Fourier coefficient of {f(x)s(x/(2N))}),
we have from (2)
D g nke™ N = f()s(x/2N)) in L}(~N7,Nn)").
Since
Fy(x) =, eni{e™ Ns(x/(2N))}

_ ik /N
= {37, o ewae™ ¥ sz 2m)
in L2(R"), we have

Fy(x) = f(x)s(x/(2N))s(x/(2N)) in L*((~Nm, Nm)").
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Let fy(x) be a periodic function with period 2N in each variable x; satisfying

Jn(x) = f(x)s(x/(2N)) in (~Nm,Nn)",
then we have
fN(x) = ZkEZ" CN’keix'k/N in R"
and
Fy(x) = fy(x)s(x/(2N)) in R".

Hence we have

THEOREM 1.3. Suppose that the support of f(x) e L*(R") is contained in
(=Nm,Nz)". Let fy(x) be a periodic function with period 2N in each variable x;

satisfying
fn(x) = f(x)s(x/2N)) in (=Nm,Nm)",
then we have

Fy(x) = fy(x)s(x/(2N)) in R".
§2. Complete Sequences of Orthogonal Subsets in H*(R")

2.1. {®y,} in HM(R") In general, in the same way as in §l,
{Sy} (N e N) is a complete sequence of orthogonal subsets in H*(R"), where
Sy ={®y|keZ"}. In fact, for f € HM(R"), setting

Ja(x) = 74(x) (%),
we have
foe HMRMOLAR™, fy— f in HY(R") (4 — o).
Then we have
(16 + 10" /s € LR N B(R")

and
(2m)™" JQ fa(©)e™¢ dé — f4(x) in HY(R") (B — o0).

Setting
QA,N(@ = fA(k/N) if £ EQN,Im
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we have
COM PPNGESEED DU L]
B =T "
and

en” |

. gan(&)e~t dE — (27z)_"J Fi(&)e™ ¢ dé (N — o) in HM(R").

Qp

Therefore, {Sy} (N eN) is a complete sequence of orthogonal subsets in
HMY(R"). Moreover, since

aV(DN7k<X) — (27!)-—)1J (ié)veix»é dé,

Qn i
we have
Dl = (2m) " jQ Lug(&) dé
— QnN)™ jﬂ (& + K)/N) dé
= )" [ 5 )R (Gt ) V) e
= (2nN)"Py(1/N,k/N),
where

Lu(@) =) "

and Py (Xo, X1,...,X,) is a polynomial with respect to (Xo, X1,...,X,) of order
2M.
Here we have

Lemma 2.1
(1) It holds
@ws @, )y =0 (k#0), [ @nillhy = @rN) " Py (1/N,k/N).
(2) Sn ={DPni|keZ"} (N e N) isacomplete sequence of orthogonal subsets
in HY(R").

Therefore we have from Lemma 2.1 and Lemma 0.2
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THeoreM 2.1, Set

Fy(x) =Y 1On il (F, §r k) Pk (x) (N € N)

for [ e HY(R"), then
Fy— f in HY(R").

{Fn(x)} (NeN) is a sequence of quasi-Fourier series in H™(R"), corre-
sponding to {Sy} (N e N)»
Let us consider

Fn(x) =", o 1®n k37 (f Ow,ie) e P i (%),
more precisely. Setting

an i = O ill7 (f Pw k) a»

we have

FN(X) = ZkeZ" aN,kCDN,k(x).

We remark that

-1
aN,k={<zn>-"JQ L () a’f} {(m‘"jg FE)Lu(@) dé}

-1
- { J Lys(€) dé} {J FE)La(€) d«:}
Qv ok Qp k

is the weighted-integral-mean value of f (&) in Qu . Moreover, we have

Ev(@ =avs (i), Fux) = 0" [Ful@)e™ de

Hence we have
THEOREM 2.2. Set

Fu(x) =" 0 ll3f (f, B i) y @ i(x) (N € N),

-1
anx = { L’ Lu(®) dé} {L ALy dé}
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for fe HY(R"). Then
Fy(x) =, . ans®@uni(x), Fn(&)=ayi (EeQni),

and
Fy(x) = f(x) in HY(R").

Fy(&) is a step-function approximation of Vi)

22, {fyi(x)} in HM(R") Set

P k(%) = Ly 2Oy, (x)
= (27)™" J "Ly (6)717 de,
Qi

then we have

Lemma 2.2. It holds

@viodtn =0 (k#7), “¢N,k“12w = (2zN)™".

THEOREM 2.3. Set

Fu(x)=QaN)" Y~ (frdy)ubyi(x) (NeN)
Jor fe HY(R"), then
Fn— f in HY(R") (N — o).

Proor. Since f e HY(R"), we have Li/’f e L*(R"). Therefore, we have
from Theorem 1.1

Gy (x) = (22N)" ", (LS, @y ) @n i (x) € LX(R"),

|Gy = LISl =0 (N — o).
Set
Fn(x) = L;}*Gy(x) e HM(R"),

then
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Fn(x) = @aN)" S, (L f, @) Ly " O ()

= (2zN)" Zkezn (2051 P,k (X)

and
%% = fllae = 1L (Fn - Il =0 (N—= o). O

Set sy = {@y 1(x)|ke Z"}, then, {sy} (N €N) is a complete sequence of
orthogonal subsets in H¥(R"), from Lemma 0.2. In other words, {#y(x)} (N € N)
in Theorem 2.3 is a sequence of quasi-Fourier series of f in HM(R"), corre-
sponding to {sy} (N e N).

THEOREM 2.4. Set

Fu(x) = @N)" S, (f by dubv i) (NeN)

for fe HY(R"), then Fy(x) — f(x) in HM(R") (N — o). Moreover, set

-1
e fl o] e

o (: integral-mean of (L\F)(&) in Qu 1),
t

X)= D vy (x), Fn(E) = by aLu(€)T? (€€ Qu).
{Fn(&) is a waved-step-function approximation of f(¢)Y

ProoF. Since

by = 2nN)"(f, d5 1)

- N"{ J FE L&) dé}
Qn k

QNk Q}»A
{ d«:} { (Ly ' )(€) dé }
Qy & QNk

i

Lu(&)'? d:}

i
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we have
Fy(x) = @aN)" > (b )b (%)
= e by (%)
=007 b | L@
that is, |

FN(E) = bualu(©)™? ((eQup). O
§3. A Sequence of Orthogonal Bases

3.1. A sequence of orthogonal bases in L*(R") In §1, we considered a
complete sequence of orthogonal subsets {Sy} (N eN) in L?(R"), where

Sy = {Qw,k|
ke Z"}. Here, for simplicity, we consider a sub-sequence of {Sy}:

{Snw}, N(@A)=2* (LeN).

From Lemma 0.3, {Syn} (A€ ) is also a complete sequence of orthogonal
subsets in LZ?(R"). Let us construct a sequence of orthogonal bases {Z;} (e N)
in LZ(R") satisfying SN(A) < 2.

First, we define fundamental functions. Set

1 (0<r<)
al1) = {0 (otherwise)’
o () = ot — k),
o (1) = e (271) = a(2/t — k) = (27 (1 — 277K)).
Set
A = {O(,H,j’k(l‘)]j: 0, I,z,...,kEZ}
for Ae N, then {4;) is dense in L*(R). Set
1 (0<r<1/2)
BlH)=<-1 (1/2<t<]),
0  (otherwise)
Bi(2) = Bt = k),
Bialt) = B2
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and
BX_{aik( kEZ) ﬂi-{-]k() (j:O,l,?_,..A,keZ)},

then B; is an orthogonal subset in L?(R). Moreover, since
%+1,2(2) = (1/2)a5,1 (1) + (1/2)B; 1 (1),
%+1,26+1(1) = (1/2)05.4(1) = (1/2)8; 4 (1),

we have (4;> = (B,), therefore, (B, is dense in L*(R). Hence B, is an
orthogonal basis in L%(R). Set

J={-1,0,1,2,.. .},
By, -1,x(8) = ik (1),
ﬁA)jk() ﬂA+jk([> (j:071:27“')3

then
{ﬁ(ﬂ)Jk() (jed,keZ)}.
Now, define
¥, = @, Gt G100 (€)
=By ik (él)mﬁm’jmk"(é,,) for jeJ" and ke Z".
Remarking
P01k (€) = o gy (E)) o p, () = Dy a(E),

we have

Lemma 3.1.

(1) Ser

={¥YwxX) 1= Ut jo,- s Ju) €I k= (ki ko, ..., ky) € Z"),

then X, is an orthogonal basis in L*(R™).
(2) It holds

P, (=1 k (¥) = Oy (%), (¥, o1, -1y il = 2N(A) 2

Hence we have

flx) = Zjeﬂ,kezn ¥ .2 P i) Pk (x)  in LR
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for f € L*(R"). On the other hand, Fy(;(x) in Theorem 1.1 is written as

Fypy(x) = 2nN(4)) Zkezn ), (=1, -,k (X)-

Here we have

THeOREM 3.1.  Let
fx) = Zje,nykezn I 172 ) Py () in L (R™)

be the Fourier series for f € L*(R"), corresponding to the orthogonal basis Z;.
Then its sub-series

Fuiay Zkezn 10y, =0 k2 P 1= 10, i, (=1 - 1), ()

satisfies
I1Engy = [l =0 (A— o0).

A sequence of orthogonal bases in H*(R") 1In §2, we considered a complete
sequence of orthogonal subsets {sy} (N eN) in HM(R"), where sy = {¢y ;|
ke Z"}. Here, we consider sub-sequence of {sy}:

{svw} N(@)=2" (AeN).

From Lemma 0.3, {sy(,} (A€ N) is also a complete sequence of orthogonal
subsets in H*(R"). Let us construct a sequence of orthogonal bases {¢;} (1€ N)
in HM(R") satisfying sy(; < 6. Set

Vi@ = P (E) L (),
then

Yo, (<1, -1y, k(E) = an i (&) - oty g (Ea)Lag (€)1

= Oy k(L (&) = dy iy £ (8)-

Hence we have

LEMMA 3.2.
(1) Ser

o) = {lp(i),j‘k('x) I.]: (jlvjz)""jﬂ) e"n7k: (klykza'--vkn) ezn})

then &; is an orthogonal basis in HM(R™).
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(2) It holds

...........

Hence we have

f(x)= Z'E‘Inykezn W(A),j,k”;;(ﬂ Yy gkdaVy, e (x)  in HY(R")

]

for f e H™(R"). On the other hand, %y(;(x) in Theorem 2.3 is written as
Fnpy(x) = 2aN(A)" Zkez,,(f, bna), k) s, (X)

-2
= Zkez,, 10, (<1 =1k llar (P W (=1 =1k )W), (=1 =1, ()

Here we have

THEOREM 3.2. Let

flx) = Zjejn’kezn Wy, el (s Wiy ) iy, () in HY(R")

be the Fourier series for f e HM(R"), corresponding to the orthogonal basis o;.
Then its sub-series

satisfies

I Fnwy = flly =0 (A— ).
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