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EXTENDING POINTWISE BOUNDED EQUICONTINUOUS 
COLLECTIONS OF FUNCTIONS 

By 

Kaori Y AMAZAKI 

Abstract. We prove that for a subspace A of a space X， the 

fol1owing statements are equivalent: (1) for any Frechet space Y， 

every pointwise bounded equico凶 nuoussubset of C(A， Y) can be 

extended to a poi出wisebounded eql山ontinuoussubset of C(X， Y); 

(2) every poi凶wisebounded e司uicontinuoussubset of C(A) can be 

extended to a pointwise bounded equicontinuous subset of C(X); (3) 

for any Fred則 spaceY， every function f E C (A， Y) can be ex tended 

to a function g εC(X， Y). This theorem and other results obtained 

in this paper generalize several known theorems due to Flood， Frantz 

and Heath-Lutzer-Zenor， etc. 

1. Introduction and Preliminaries 

Al1 spaces are assumed to be T1畑 spaces.For short， we call a topological 

vector space a TV叩 αce，and a locally convex TV-space an LCTV叩 ace(see [2]， 

[12]). In a TV叩 ace，0 stands for its origin. For topological spaces X and Y， 

C(X， Y) denotes the set of a11 continuous functions from X into Y. In particular， 

the set of a11 continuous reaトvalued(resp. co凶 nuousbounded real-valued) 

functions is denoted by C(X) (resp. C*(X)). Let X be a space， Y a TV-space and 

ff = {五 :αεQ}c C(X， Y). For a point x εX， ff is said to be equicontinuous 

at x if for every neighborhood V of 0 in Y， there exists a neighborhood 0 of x 

in X such that fa(Y)ーん(x)εVfor every Y εo and everyαεQ. The collec聞

tion ff is said to be equicontinuous if ff is equicontinuous at every point xεX. 

The col1ection ff is said to be pointwise bounded if for every x E X and every 

neighborhood V of 0 in Y， there exists ex > 0 such that r . fa(x) E V for every r 

with 11'1 < ex and every αεQ. The col1ection ff is said to be pointwise totally 

bounded if for every x εX and every neighborhood V of 0 in Y， there exists a 
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白白ιr凶1

po仇1I凶ltwis詑etotal1y bounded subset !F of C(X， Y) i臼spo白1I出ltwiおsebounded， and the 

converse holds when Y = R. Let X be a space， A a subspace of X and Y a 

space. For !F(= {ん:αε f2})c C(A， Y) and r:# c C(X， Y)， we say that !F is 

extended to r:# (orヲ isan extension of !F) ifヲisexpressed as {g司 :αε f2}and 

go:lA =ん forevery αε f2. 

The problem “When can a pointwise bounded equicontinuous subset of 

C(AぅY)be extended to the one of C(X， Y)?" was studied by M. Frantz [8]， 

which was motivated by the Dugundji extension theorem [5]. 

TI並OREM1.1 (Frantz [8]). For a meかためlespace X， a closed sub司paceA 01 

X and a metrizable LCTV-宅paceY， every pointwise bounded equicontinuous subset 

01 C(A， Y) cαn be extended to an equicontinuous subset 01 C(Xぅ Y).

It was shown in [8] that the equicontinuous subset {ん :nεN}of C( {O， 1})， 

defined by In(O) = 0， andん(1)ニ nfor every n εN， admits no equicontinuous 

extension over C([Oぅ1]).Thus， the pointwise boundedness can not be dropped in 

the above theorem. 

In this paper， we study the above problem from the following points of view. 

In Section 2， we show that Theorem 1.1 remains true if‘metrizable space' is 

weakened to 'decreasing (G) space' in the sense of Col1ins-Roscoe [4] (Theorem 

2.1). Stares [18] proved that the Dugundji extension theorem also holds for 

decreasing (G) spaces. Our result is alo時 thisdirection. 

In Section 3， we prove the equivalence stated in the abstract (Theorem 3.1). 

This generalizes some known results due to Flood [7] and Heath-Lutzer-Zenor 

[10]， and establishes some incomplete results due to Alo [1] and Gutev [9] (see 

Section 3 for details). In particular， Lemma 3.5， which is a key lemma to prove 

Theorem 3.1， shows that for a P-embedded subspace A of a space X and a 

Frechet space Y， every poinwise bounded equicontinuous subset !F of C(A， Y) 

has an extender which well behaves like Dugundji's one in [5]. Some appμlication 

charaω矧ct防e町n凶Zl1時1屯gc∞01恥lecti討10∞nw仇is臼er∞lormτ官羽nalit守yare also given (Corollaries 3.7 and 3.9列) 

In the final part of this section， we show that every (not necessarily pointwise 

bounded) equicontinuous subset of C(X， Y) can be extended to an equi-

co凶 nuoussubset of C(yX， Y)， where X is a Tychono百 spaceand yX is its 

Dieudom詑 completion(Theorem 3.11). The result slightly improves the one of 

Sanchis [15]. 

Let us recall some definitions. A Frechet space is a completely metrizable 

LCTV-space. Note that every Banach space is a Frechet space. 
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Let X be a topological space and Y a TV時 space.Let CJ be a collection of 

subsets of X which is closed under finite unions. For B εCJ， a neighborhood V of 

o in Y and f εC(X， Y)， define N(f， B， V) = {gεC(X， Y) : f(x) -g(x)εV for 

every x εB}. The collection {N(f， B， V) : B εf1J， V is a neighborhood of 0 in 

Y} can be taken as a neighborhood base of f and the topology is cal1ed as 

the topology of uniform convergence if f1J = {X}， the compact-open topology 

if f1J = {K c X: K is compact}， and the topology of pointwise conω'gence if 

f1J = {F c X: F is finite}. For a metric LCTV叩 ace(Y， p)， denote the open 

8-ball and the closed 8-bal1 by B(O;ε) and .8(0;ε)， respectively; that is， 

B(O;ε) = {yεY : p(O， y) <ε} and .8(0;ε) = {yεY:ρ(0， y)壬ε}.For a metric 

LCTV叩 ace(Y，p)，ε> 0， B εCJ and f E C(X， Y)， N(f，B，e) denotes N(f，Bう

B(O;ε)) . 

The symbols Ck(X， Y)， Ck(X) or Ck'(X) stand for C(X， Y)， C(X) or C*(X) 

with the compact-open topology. Similarly， the symbols Cp(X， Y)， Cp(X) or 

C;(X) stand for C(X， Y)， C(X) or C本(X)with the topology of pointwise 

con vergence. 

A space X is said to be a ιspace if for every S c X， the set S is closed in 

X provided that the intersection of S with any compact subspace Z of X is closed 

in Z. 

Let X be a space and A a subspace of X. For a collectionプVof subsets of 

X， 11/ ̂ A stands for {WnA : W Eγ}. A subspace A is said to be C (resp. Cつ-
embedded in X if every real-valued (resp. bounded real-valued) co凶則ous

function on A can be continuously extended over X. A subspace A is said to be 

pi' -embedded in X if for every nom叫 opencover 命 ofA with 10/11 :::; )ら there

exists a normal open cover "f/ of X such that "f/ ̂  A refines似 Asubspace A is 

said to be P-embedded in X if A is pY -embedded in X for every y. It is known 

that A is P司 embeddedin X if and only if every continuous function from A into 

any Banach space Y can be extended to a continuous one over X [2]. Moreover， 

it is known that 'Banach space' in the above can be replaced by ‘Frechet space' 

(悶 [2]).A subspace A is said to be 附 ll-embeddedin X if every zero-set of X 

disjoint from A can be completely separated from A in X (see [2]， [11]). We use 

the followi時 factswithout references; (i) A is pNO-embedded in X if and only if A 

is C-embedded in X; (u) A is C-embedded in X if and only if A is Cヘer巾 edded

and well-embedded in X; (iii) X is collectionwise normal if and only if every 

closed subspace A of X Is P-embedded in X. For these results， see [2]， [11] and 

[13]. 

Other terminology and basic facts are referred to [2]， [6]， [11]， [12] and 

(13]. 
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2. A Generalization of Theorem 1.1 to Decreasing (G) Spaces X 

Let X be a metrizable space， A a closed subspace of X and Y an LCTV-

space. Let T": C(A， Y)→ C(X， Y) be Dugundji's extender constructed in the 

proof of [5， Theorem 4.1]. Theorem 1.1 actually shows t出ha剖tfor a po仇m郎twi臼se

bounded equ山I丘ic∞ontinuousSl伽 e坑t{λβ( .αε.Q} of C(A， Y)， the extended collection 

{T"町(五んμ，): α ε .Q} iおsalso e叫抑q叩uic

A s叩pa仰C閃eXiおss凶ai込dtωo be d，依ec仰r陀eαωsi附n仰9(何例G町)i江ft由he悦r民eexists a collection { γ (x) : 

X E X}， whereγ(x) is a collection of制 sof the formγ(x) = {W(n， x) : nεN} 

such that (i) W(n十 1，x) c W(n， x) c X for all x and n and (ii) for every x εX 

and every open neighborhood U of x， there exists an open neighborhood V(xぅU)
of x such that for every y E V(xぅ U)there is n with x εW(n， y) c U ([4]). Note 

that every stratifiable space ([3]) is decreasing (G)， and every decreasing (G) space 

is hereditarily paracompact. 

Extending Theorem l.1， we have the following: 

THEOREM 2.1. For a decreasing (G) space X， a closed sωspace A of X and 

an LCTV叩 ace Y， every pointwise bounded (resp. pointwise totally bounded) 

equicontinuous subset of C(A， Y) can be extended to a pointl'l'ise bounded (resp. 

pointwise totαfかbounded)equicontinuoω subset of C(Xう Y).

PROOF. The proof is based on Stares [18]. Let X be a decreasing (G) space， 

A a non掴emptyclosed subspace of X and Y an LCTV -space. We will actually 

show in the following that for every pointwise bounded (resp. po仇II凶ltwis詑etωotal担ly

bounded) eql山1丘lC∞ont討inu∞1沿ouss鉛ub切se抗t{λん， .αεn} of C(A， Y)， the collection {(t(五βμ，): 

αε.Q} iおspoαm凶twi臼sebounded (ヤre凶sp.po白in凶twi臼setotal立lybounded) equ山山ic∞O凶郎ou

where争:C(A， Y)→ C(Xヲ Y)is Dugundji's extender constructed by Stares in 

[18] 

Let {γ(x) : x εX}， whereγ(x) = {W(n， x) : n E N}， be a collection sat-

isfying (i) and (ii) in the definition of a decreasing (G) space. Let 

B= {xε X-A :x εV(a， U) for some αε A and some open subset U 

of X with a E U}. 

孔1oreover，for every x E B， let 

Cj}x = {V(a， U) : x εV(a， U)， aεA， and U is open in X}， and 

m(x) = max{nεN:a εW(nス)c U for some V(α， U)εg}Jx}， 
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the well-definedness of m(x) is due to [18]. Since X -A is paracompact， there 

exists a locally finite open cover qi of X -A 凶 chthat qi refines {V(x， X -A) : 

X E X -A}. Let {p u : U ε叫 bea locally血lItepartition of unity on X -A 

subordinated to O/i. For every U εqi， fix XuεX -A so as to satisfy Pr/ ((0，1]) c 

V(xu， X -A). Fix α。εA arbitrarily. For every U ε弘 takeauεA and a 

neighborhood Ou of au in X as follows: 

If Xu手B，set au = ao and Ou = X. 

If XuεB， select au E A and a neighborhood Ou of au in X such that 

auεW(m(xu)， xu) c Ou and XuεV(αu，Ou). 
Let {ん :αεQ}be a pointwise bounded equicontinuous subset of C(A， Y). 

Define functIons 9rt. : X → Y，αEQ， by 

jん(x) if x εA 
grt.(x) = ¥ 

l L-UEfJl'PU(X)ん(αu) otherwise. 

Then， {grt.:αεQ} is the required extension of {ん :αεQ}.

To prove {grt. :αεQ} is equico凶 nuOl民 letx εX and W be a neighborhood 

of 0 in Y. We may assume W is convex. 

Case 1. x E A. Let 0 be a neighborhood of x in X satisfying that 

Ja(y)εβ(x) + W for every yεo  n A and every αεQ. Then， we sl叫 1show 

that 仇 (y)εgrt.(x)十 W for every y εV(x， V(x， 0)) and every αεQ. Fix y E 

V(x， V(xぅ0))and αE Q. Since V(x， V(民 0))c 0， we may assume y E V(x， 

V(x， 0)) -A. Then， by the similar way to [18]， auεo  holds for every U E o/i 

with yεpi/((O，I]). Hence， it fol1ows that glX(y) -glX(x) =乞UEfJl'pu(y)・

(んいu)-β(x) )ε W， the last inclusion is due to the convexity of W. Hence， 

glX(y)εglX(x) + W holds for every y εV(x， V(x，O)) and every αEQ. 

Case 2. x E X -A. There exist a neighborhood 01 of x in X -A and 

註nitelymany elements Uj，・・・う Unε噴 suchthat 01 n U =必 for every U ε 

省一 {U1γ ・・ ，Un}. Since {flX:αεQ} is pointwise bounded， there exists ex > 0 

such that r. Ja(auJεW for every r with Irl < ex， every αεQ and every i = 

1，・・・ ，n. Then， there exists a neighborhood O2 of x in X A such that 

IpuJy) -pui(x)1 < ex/n for every y E O2 and every i = 1，・・・ぅ凡 Let y ε01 n02 

and αεQ. Then， glX(y) -grt.(X) = (l/n) L-7=1 n . (PUi(y) -PU;(X)) . frt.(au} Then， 
we have n. (PUi(y) -PUi(X))・ん(au;)εW for every i =仁 川. Since W is 

convex， it follows that glX(Y) -glX(X)εW. 

日e民民 thesecomplete the proof t出ha剖t{匂g担 :αεQ}i臼se叫qu山I託lC∞OI出 nuou

To see {gα:αεQ} is poi凶wisebounded， let X εX. We may assume x ε 

X -A. Let W be a neighborhood of 0 in Y. We may assume W is convex. Since 

o/i Is point-finite， there exist finite elements Ulぅ・・・ ，Un E o/i such that X 手U for 
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every U ε省 一 {U1 ， • . . ， Un}. Since {ん :αεn}is pointwise bounded， there exists 

ex > 0 such that r.ん(αUi)εW for every r with Irl < ex，. every αεn and every 

iニ 1，・・・，n. For every r with Irl < ex and every αE  n， we have r. ga(x)ニ

ε;=1，.・ ，11puJx) . (r.β(auJ)εW， the last inclusion is due to the convexity of W. 

Hence {ga:αεn} is pointwise bounded. 

The case of pointwise total boundedness is left to the reader. This completes 

the proof.ロ

COROLLARY 2.2. Por αstratifiable space X， a closed sub宅paceA 01 Xαnd 

an LCTV叩 αCαeY， eωv附J

equiたcontinuoussubset 01 C(Aム，Y)cαn be extended to αpoi的ntwis町ebounded (resp 

pointwise totalかbounded)equicontinuoω subset 01 C(Xラ Y).

N ote that， on Theorem 2.1， the assumption of being decreasing (G) can not 

be weakened to being hereditarily paracompact. F or exampleフ letX be the 

Michael line [6， 5.1.32] and A the set of all rationals. For a (complete) LCTV-

space Y = Ck(P)， where P is the set of all irrationals and a continuous func-

tion 1: A → Y defined by I(x)(y) = lj(x -y)， X E A and y E P， 1 can not be 
extended over X (see Sennott [16]). 

3. Extending Pointwise Bounded Equicontinuous ColIections of Functions 

with Values in Fl壬chetSpaces 

In this section， we describe subspaces which admit extending pointwise 

bounded equicontinuous collections of functions with values in Frechet spaces. 

The main result is the following Theorem 3.1. The equivaler悶 (2)仲 (3)was 

announced without proofs by Alo [1]， but later this was withdrawn under a 

review of Sennott [17]. Assuming that X is a Tychonoff space， (2)件 (3)was 

proved by Flood [7， Theorem 5.9.2] by categorical methods， and it seems to be 

essential to assume being Tychono百 spaces in his proof. The equivalence 

(3)特 (4)was first stated by Gutev [9]， with incomplete proof， for Banach 

spaces Y. 

THEOREM 3.1. Let X beα司paceand A a sub宅pace01 X Then， the lollowing 

stαtementsαre equivalent: 

(1) lor any Prechet space Y， every pointwise bounded equicontinuous subset 01 
C(A， Y) cω1 be extended to a pointw臼ebounded equicontinuous subset 01 C(X， Y); 

(2) every pointwise bounded equicontinuous subset 01 C(A) can be extended to 
a pointwise bounded equicontinuoω subset 01 C(X); 
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(σ向3勾)A i臼sp-臼幼edd必edi的nX (t仇hαω おs，j戸orαn仰YFJ升'rech仇ets伊pαceY， eωverηYJuncωtμio仰n 1 

f εC(μA，Yη) cα仰nb舵eextended tωo a j戸u町F

(帥4引)lorα仰n仰YFi升're仕cf恥rets平pαceY， e白ωverηypoi.加nt川t仰1刊wνli山setωotωαlめJらybωol仰，(ndl必ede句quωi比conti仰 ous

subset 01 C(A， Y) cαω仰nbe extended tωO αpoi削 W川iお臥Sす兇etotαally bounded eq附 O削削ou

S1μι仇bι仇s陀則:et01 C(X う Y). 

For the proof， we prepare some lemmas. For a subspace S of a space X， Intx S 

stands for the interior of S in X. 

LEMMA 3.2. Let X be a space， Y a TV叩 aceω'ld {!C~ :αεQ}α subset 01 

C(X， Y). For eveりJneighborhood V 01 0 in Y and every x E X， defin 

OX( V) = Intx(什{la-
1
(ん(x)+ V) :αεQ})ぅ

and put (!) v = {o.，-(V) : xεX}. Then， the lollowing hold. 

(1) {ん :αεQ}is equicontinuousグandonlyグ(!)vis an叩encover 01 X lor 

eveηJ neighborhood V 01 0的 y.
(2)σVω'ld W αre neighborhoods 01 0 in Y sati，めJingthat W 十 W cV

and W is symmetricぅ thenSt(x， (!)w)( = U{ 0 E (!)w : x εO}) c Ox(V) lor eω'y 

XEX. 

The proof of Lemma 3.2 is straightforward. By this lemma， we immediately have 

the following: 

LEMMA 3.3. Let X beαspαceαnd Y a TV叩 αce.Let {ん:αEQ} be αn 

equicontinuous subset 01 C(X， Y)， and V a neighborhood 01 0 in Y Then， the 

collectionσv dφned as in Lemmα3.2 is a normal open covel・01X. 

The proof of the following lemma is easy and omitted. 

LEMMA 3.4. Let X be αspaceαnd A a well-embedded subspace 01 X Assume 

that F臼theintersection-01 a zero田 setαnda cozero“set 01 X， and F is disjoint Irom 

A. Then， there exists a cozero-set U 01 X such that F c U c X -A. 

τhe following lemma is essential for the proof， and seems to be interesting 

in itself. For a space X， a subspace A of X and g; c C(A， Y)， a map ①: 

F → C(X， Y) is said to be an extender ifφ(f) I A = 1 for every 1 εg; 
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LEMMA 3.5. Let X be a space， A a P-embedded subspace of X aηd Ya 

Frechet宅pace.Let g; = {!a :αE Q} be a pointwise bounded equicontinuoω subset 

of C(A， Y). Then， there exists仰 extender①:g; → C(X， Y) sati.めJingthαf 

(i)φ(ん)(X) is contained的 theclosed convex hull ofん(A)for everyαEQ; 

(ii)φ(g;) is pointwise bounded equiconti削 ous;

(iii)φ is continuous when C(Aう Y)and C(X， Y) carry either one of the 

compact-open topology， the topology of pointwise convergence and the topology of 

uniform convergence， where g; has the sub宅pacetopology of C(A， Y). 

Jf， in addition， g; is pointwise totalかbounded，thenφ(g;)臼 αlsopo的twise

totally bounded. 

PROOF OF LEMMA 3.5. Let X be a space， A a P-embedded subspace of X 

and (Y，p) a Frechet space， where p is an invariant metric on Y (see [12]). 

Let g; = {ん :αEQ} be a pointwise bounded equicontinuous subset of C(A， Y). 

F or every n E N， there exists a convex symmetric neighborhood Sn of 0 in Y such 

that Sn十 Snc B(O; 1/211). For every n εN and every αε A， define Oa(Sn) = 

IntA(ハ{fa-l(ん(α)十 SI1):αεn}) like in Lemma 3.2. 

First， we shall define a sequence {行:n E N} of locally finite cozero-set 

covers of X， for some index set Bう suchthat 

( i) 行 Is expressed as 1/，1 = {V(sぃ...，sII): (sl'"・うん)ε B
ll

};

(ii)行 Â refines {Oα(SII) :αε A}; 

(iii)U{Y(A，JJM):ん4ε B}= V(戸1，...，sn)for al1 (孔・ 3ん)εBf1;

(iv) If V(sI，...，sII)手仏 thenV(sI，...，sn) n A =f. o. 
Let B be any 凶 nite set with IBIミ12XIand fix it. From Lemma 3.3， 

{Oα(Si) :αE A} is a normal open cover of A for every εN. Since A is P-

embedded in X， for everyεN， there exists a locally finite cozero-set cover 

{的 :sεBi} of X such that {的 :sEBi}八 A refines {Oα(S;) :目 A}.We may 

assume B = Bi for every i εN， because we can regard Bi as a subset of B and set 

的=必 fors εB -Bi. Since the first step constructing 1~ can be similar1y 

proved if we put門)= X in the following proof， we only show the general step. 

Assume that "f/ì，・・・ 7 ず~ have been constructed so as to satisfy the conditions 

from (i) to (iv) above. Let (sI'・・・ ，sn)εBI1be fixed， Put B(sJ， ι)  = {sεB: 

V(戸1>品川町ηA=f.必}.By Lemma 3.4， there exists a cozero倒 D(s"...，sn)of X 

such that 

V(sI>...，sn) -U{ Ws : sεB(st ，...，sn)} C D(s"...，sn) c X -A 

In case B(sf ，...，sn)手仏 p戸lCはku叩pand fix a s(仇sIい，ド...，snιn)汗εB(s"ドい.リ…‘日.，s"ιん"山g
F εB， 
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r V(sI ，...，s，J n (杯争UD(sI，...，sII)) if s =戸(sI，...，s，，)

V(sI，...，sn，s) = ) V(sI，...，sn) n Ws if sεB(s"...，sn)一叫ん ，slI)}
l0 ~ß 手 B(ßI ，...， ßII) ・

1n case B(ん ，s，，)=必， define V(sI，...，s"，s) =必 fora11 s εB. 

Then， {V(sl ，...，sII，sII十1):(s11...，sn，sn十1)E B
n十

l}is the required 行+1.

Second， we show that there exists a locally finite partition of unity r!Jn = 

{P(sI，...，sII) : (sl" .. ，sn)εB
n
} on X for each nεN such that PuJl，...，sn) ((0， 1]) = 

V(sI，...，sII) and 乞sEBP(sl，...，s"，s)(X)= P(sI ，...，s，，) (X) for X E X. 

1ndeed， assume that r!Jn is constructed. Let (slγ..  ，sn)εBIl be fixed. 

Since {V(sI，...，sn，s) : s εB} is a locally finite cozero-set cover of V(sI，...，s，，)' there 

exists a locally finite partition of unity {q(sい み，s): s E B} on ~門(伊仇仇ßlんlい)...， ßnι，) such 

t出h凶矧a抗tqり叫{J弘jliい，"')品s，ιん"附'"，s)ド'

and s εB， define 

P(sI，...，sn，s)(X) = ~ ~(ßI ，...， ßnl(X) . q(sJ，...，sn，s)(X) わ εV仇 ，s，，)， 
I ""'"，"'n" l 0 otherwise 

for every X E X. Then， one can show that the function P(戸1，...，sn，s): X → [0，1] 

is continuous and r!Jn+1 = {p(ん ，sn，sn+l) : (s1'・・ .，sn，sn十1)ε B
n十l}is now the 

required partition of unity. 

Third， we shall construct an extension of fr:;. over X for every αεn. 1f 

V(戸I，...，sII)手広 pickup an element a(sI，...，s，，)εV(sI ，...，sn) n A and fix it. For every 

n εN and every αεn， define a continuous function g; : X → y by g~I(X) = 

玄(んみ)EBnP(sl ，...，sn) (x) . fr:;.(α(sI ，...，sn)) for every X εX. Then， for every n E N， 

every αεn and every X εA， note that: 

1f P(sI，...，sn)(X) > 0， then jレ(X)-fr:;.(a(sl，...，s，，))εSn + Sn. (1) 

1ndeed， if P(sl，...，s，，) (x) > 0， then x， a(sI'み)ε Oa(Sn) for some a εA. So， (1) 

holds. Henceフ by(1) and the convexity of Sn十 Snぅ wehave 

ん(X)-g;(x)εSn十 Snc B(O; 1/2n). (2) 

Let (sl'・・・ ，sn)E B
n and s εB. Since a(sI，...，s，，) and a(sI，...，sn，s) is contained in 

V(sI"'"此)n A， it follows that叫ん，...，sn)'a(sI ，...，sn，s)εOa(Sn) for some a εA. So， we 

have 

!a (a(sI ，...，s，，))ーん(α(sJ，...，sn，s))E Sn + Sn. (3) 

Hence， for every nεN， every αεQ and every X E X， by (3) and the convexity of 

Sn + Sn， we have 

g;(X) -g;+1 (x)εSn + Sn c B(O; 1/211). (4) 



206 Kaori Y AMAZAKI 

By (2)， (4) and the fact that p is invariant， we have 

バfa(x)，g;(x)) <去forevery 山ぅ ev町 αεnand every x E A， (5) 

p(ぱ(x)， g;+ 1 (x) )くよ forevery n εNぅ everyαεn and every x E X. (6) rx'--j'Va '-'jj -2n 

Hence， by (5)， (6) and the completeness of Y， the function 仇 :X→ Ydefined by 

仇 (x)= limn→∞ g;(x)ラ αεnand x εX， is continuous and an extension of frx 

Define an extender φ:Y → C(X， Y) byφ(ん)=仇 forevery αεn. Clearlyフ

仇 (X)=φ(ん)(X)is contained in the closed convex hull of frx(A) for every αεn. 

In particular， it follows from (6) and the inva 

ga(χ)ε g;(x)十長(0;1/2n-l) (7) 

for every n εN， every x εX and every αεn. 

Fourth， we shall prove {grx:αεn} is pointwise bounded equicontinuous 

To do this， fix x εX. Let W be a neighborhood of 0 in Y. Let V be a convex 

and circled neighborhood of 0 in Y with V十 V十 Vc W， and mεN with 

13(0; 1/2m-1) c V. Since {V(s，.，...sm): (s1' ・・うん)ε BI11} is locally finite， there 

exist a neighborhood 0 of x in X and a non-empty finite subset A of BI11 such 

that 0パV(ん .sm) = 0 for every (s1' ・ぅsm)εBm-A. Since {ん :αεn}is 

pointwise bounded， there exists ex > 0 such that 

r. frx(α(s"...，sm))εV (8) 

for every r with Irlくん， every αεn and every (s 1 ，・・ • ，sm)εA. Hence， r. g~n (x) 

=乞(s，....，s，山 P̂(s"..，.s"，)(X) . (rん(a(sl，...，sm)))'From (8) and the convexity of V， 
we have 

r. g;:(x)εv. (9) 

Let r with Irl < ex八 1and αE n. Then， by (7)， (9) and being circled of V， we 

have that r. grx(x) E r . (g:; (x) + 13(0; 1/2111
-
1)) c V十 Vc W. This completes the 

proof that {仇 :αεn}is pointwise bounded. 

On the other hand， since P(sl，.."sm) is continuous， there exists a neighborhood 

0' of x in X such that 

Ip(s， ，...，sm) ( 、、iノハυ
噌

E
E
A

J
'
a
t
‘、

for every y E 0' and every (sI"" ，sm)εA， where IAI denotes the cardinality of 
A. Fix yεon 0' and αE n. Then， it follows that 
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g:l(y) _ g:l (x) 

zii 〉JlAj(PMi ん，)(y)-P(ん ，sm)(x)) λ(α(ん ，s"，))) IAI ¥ム」 l
¥(sI'…，sm)ε八 /

Hence， by (8)， (10) and the convexity of V， we have 

g:l(y) _ g:l(X)εy 、、a
，，〆

1
1
 

噌

'-A
f's
‘、

Moreover， by (7) and (11)， we have that 

ga(Y) -ga(x) E .8(0; 1/2111-1)十 V+ .8(0; 1/2m-l) c V + V十 VcW. 

This completes the proof that {ga :αεQ} is equicontinuous at x 

Fifth， to prove φis continuous with respect to the compact-open topology 

and the topology of pointwise convergence， it su伍cesto show the case of the 

topology of pointwise convergence. For， the topology of pointwise convergence 

coincides with the compact-open topology on g; and φ(g;). Since the proof is 

not dif五cu1t， we left it to the reader. 

Finally， assume that {ん :αεQ}is pointwise totally bounded. Let X E X be 

fixed and W a neighborhood of 0 in Y. Moreover， let V， m and A be as in the 

first part of the proof of the pointwise bounded田 ssof {ga :αεQ}. For every 

(sl"" ，sm)εA， let N(s"...，s"，) be a finite Sl郎 etof Y such that {ん(α(sI，...，s"，)): 

αεQ} cN(ん ，sml十 V.Let 

N' = ~ L P(sI，...，sm)(X) . y(sI，...，s"，) : Y(sI，...，s"，)εN(ん ，s"，)， (sl"'"ん)E A ~ 
l (sI，...，s"，)ε八 j

Then， N' Is finite. For αεQ， we can express !a(α(sI，...，sm))ニ yら1，...，sm)十 uら1，...，sm)'

where Y'(sI，...，s"，)εN(sI，...，sm) and uゐl' ゐ)ε V.Then， we ha ve 

ば(X)εN'十 v. (12) 

Hence， by (7) and (12)， 

ga(X) ε g~n(X) + .8(0; 1/211川
)c N' + V + V c N' + W 

for every αεQ. Hence， we have {ga(X):αεQ} cN'十 W. It shows that 

{ga:αE  Q} is pointwise totally bounded. This completes the proof.口

We now sketch the outline of an a1temative proof of Lemma 3.5 using a 

Dugundji extender instead of normal covers， which was suggested by the referee 

of the長rstversion of this paper. 
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OUTLINE OF THE PROOF OF LEMMA 3.5 (ALTERNATIVE). Let X be a space， A a 

P-embedded subspace of X and (Y，p) a Frechet space， where p is an invariant 

metric on Y (see [12]). Let ff = {ん :αε .o}be a pointwise bounded equi-

continuous subset of C(A， Y). First consider a pseudo-metric dff' on A defined by 

dff'(x， x') = sUPaen(ρ(ん(x)，ん(x'))八 1)，x，x'EA. 

CLA1M 1. dff is continuous. 

This fol1ows from the equicontinuity of ff. 

By the assumption， dff' can be extended to a continuous pseudo-metric d on 

X. For x， x' E X， define an equivalence relation xRx' by d(x， x')ェ O.Let Xjd 

be the set of all the equivalence c1asses de五nedby R. For c1asses [x]， [x'] E 

Xjdフ defined*([斗，[x']) = d(χ，x'). Then， d* defines a metric on X j d. Define 

q:X → X jd by q(x) = [x]. Then， q: X → (X jd， d*) is a continuous map onto 

the metric space (X j d， dネ). 

Let Ad = q(A) c X j d. For every [x]εAd， choose αxε A satisfying that 

[x] = [ax]. For every αε .0， define a function fa* : Ad → Y by fa* ([x]) =五(ax).

Consider the map 'PJ : ff → C(Ad， Y) defined by 'Pl (β)=fc/，αεQ. Then we 

easily have the following: 

CLA1M 2. For everyε> 0 with ε< 1， every 仏 a'E A and every αεQ， 

d*([a]ぅ[a'])<ε斗 ρ(万([α])，fa*([a'])) <ε. 

For later use， we now consider the followi時 conditions(i)j， (ii)jフ (iii)jand 

(iv)j on a map 'Pj : ff;' → C(為，Y) ， 名~ c C(J(j， Y) and spacesλj and L号， where 

j = 1，2，3，4. 

(i)j 叫(f)(号 iscontained in the c10sed convex hull of f(J(j) for every 

f ε巧;
(ii)j民(巧 ispointwise bounded equicontinuous; 

(iii)j 'Pj is continuous when C(J(j， Y) and C(毛ぅ Y)carry either one of the 

compact-open topologyフ thetopology of pointwise convergence and the topology 

of uniform convergence， where ffj has the Sl伽 pacetopology of C(J(j， Y); 

(iv)j If， in addition，巧 ispointwise totally bounded， then 'Pj (名 isalso 

pointwise totally bounded. 

By Claim 2 and the formula p(frJ. (α)，Ja(a')) = p(万([a])，fa* (附))(α，a' E A)， 
we can show that the map 'Pr : ff → C(Adぅ Y)，putting ffr = ff， Xr = A and 

21 = Ad， satisfies the conditions (i h， (ii)l， (iii) 1 and (iv) 1・
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Claim 2 shows that f(J.* : Ad → Y is uniformly continuous for every αεn. 

Since Y is complete， it follows from [6， Theorem 4.3.17] that五tcan be extended 

to a uniformly co山山ousfunction丘:AdXjd→ Y for every αεQ 

Now we have the following Claim 3 by Claim 2. 

CLAIM 3. F or every ε> 0 with ε< 1， every [x]， [x']εAdX jd and every a E n， 

dキ((x]ヲ(x'])<εキ p(f(J.*(凶)ぅ庁([x']))<ε. 

Consider a map 'P2 :甲1(9')→ C(AdXjd， Y) defined by 'P2 (万)=んヘ αεn.

Then， we can show that the map 'P2， putting 9'2 = 'Pl (9')， x:あ2= Ad and 

Z石2=AdX刷/μd
フ S則a瓜ぬt註isfie郎st批heconditions (山i)弘h，(似i註ih，(州ii記尚11めi)2a組nd引(i怜V吋山h.In耐1

because of its c∞on凶S坑tr悶uctio∞n.The statements (iih and (iiih seem to be well-known 

and it is not di出cu1tto prove， and (ivh is also easy. 

Let 'P3 : C(石Xjdぅ Y)→ C(Xj d， Y) be Dugundji's extender. Then， we have 

that the map 'P3， putting 9'3 = C(AdXjd， Y)， X3 = AdXjd and 23 = Xjd， satisfies 

the conditions (ih， (iih， (似i討副iihand (h竹v市f

(似iihand (iv吋h.Other・conditionsare obtained from the construction of Dugundji's 

extender [5]. 

Finally consider a map 'P4 : C(X jd， Y)→ C(X， Y) defined by 'P4(f) = f 0 q. 

Then， the map 'P4， putting 9'4 = C(X jd， Y)， X4 = X jd and 24 = X， satisfies the 

conditions (i)4フ (ii)4，(iii)4 and (iV)4・

Now， define a mapφ:9' → C(X， Y) by φ=守40'P3 0 'P2 0 'P 1• Observe 

thatφis an extender. By using (i)j， (iiL (iii)j and (iv)j (j =之上・・・，4)，φsatisfies

the required conditions (i)， (ii)， (iii) and the additional condition in Lemma 3.5. 

This completes the proof.口

For collections ulf and y of subsets of a space X， y is said to be a pαrtial 

re.finement of ulf if every element V of "1/ is contained in some element U of ulf. 

LEMMA 3.6. Let {ん:αεn}be a pointwise bounded equicontinωus subset 

of C(X). Then， there exists a a-discrete cozeroへsetcollection y of X such that y 

臼 apartial re.finement of {fa-I ((0， +∞)) :日 n}and U y = U{fa-I((Oぅ+∞)): 

αεn}. 

PROOF. Denote {β:αεn} by仏 :α<y} with some ordinal y. For every 

nεN and every α< y， put 

U(J.n = f(J.-l((3jn，十∞))-( sup fs I ([1jn，十∞)) 
¥pくα /
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Since sUPs<叫ん iscontinuous， U!y'
n is a cozero-set of X for every n εN and every 

α< y. Fix n E N. To prove {U::α< y} is discrete in X， let X εX. Since 

{ん :α<y} is equicontinuous， there exists a neighborhood 0 of x in X such that 

i五(x)ーん(Y)I< l/n for every y εo and every α< y. Assume that 0 n 可I手仏

onu;手必 ands <α. Let αε0日U!y'

nand b E on U;. Thenフ itfollows from 

b εり that3/n < fs(b). Moreover， it follows from aε可 thatfs(α) < l/n 

Hence， we have 2/n < Ifs(a) -fs(b)1豆|ん(α)-fs(x) I十 Ifs(x)-fs(b) I < l/n十

l/n = 2/n， a contradiction. Hence， {匂 α<y} is discrete. 

1t is c1ear that U;1 c f!y'-l ((0，∞)) for every α< y and every n E N. We also 

have that U{f!y'-l ((0，十∞)):α < y} = U{U!y'
n

:α< y，nεN}. This completes the 

proof.口

PROOF OF THEOREM 3.1. ( 1 )キ (2):Obvious. 

(2)キ (3):Let o/l be a normal open cover of A. There exists a locally finite 

partition of unity {ん :αEn} on A subordinated to似 Since{ん :αεn}is 

pointwise bounded equicontinuous， there exists a pointwise bounded equト

continuous subset {g!y' :αεn} of C(X) such that g!Y.IA = f!Y. for every αεn. By 

Lemma 3.6， there exists a σ-discrete cozero-set collection "1/' of X such that "1/' is 

a partial refinement of {g;1 ((0， +∞)) :αεn} and 

Aニ U{f!y'-I(ゅう 1]):αE Q} c U{g~l ((0， +∞)) :αEn} = U"I/'. 

Since A is C欄embeddedin X， there exists a cozero司 set W of X such that 

(U "1/') U W = X and W n A =必 Hence，"1/' U {W} is a normal open cover of X 

a凶 ('rU{W})八 A refines O/l， this proves that A is P四 embeddedin X. 

(3) =* (1) and (3)吟 (4):These follow from Lemma 3.5. 

(4)吟 (3):Obvious. This completes the proof. ロ

COROLLARY 3.7. A space X is collectionwise normal if and only if for any 
c/osed subspace A of X， every po的twisebounded equicontinuoω subset of C*(A) 

can be extended to a pointwise bounded equicontinuoω subset of C*(X). 

PROOF. To prove the “if" part， assume that for any c10sed subspace A of X， 

every pointwise bounded equicontinωus subset of C*(A) can be extended to a 

pointwise bounded equicontinuous subset of C*(X). Since every c10sed subspace 

of X is Cヘembeddedin X， it follows that X is normal. A similar proof to that of 

“(2)斗 (3)円 ofTheorem 3.1 shows that A is P-embedded in X for every c10sed 

subspace A of X. Hence， X is collectionwise normal. 
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To prove the “only if" part， use (i) and (ii) in Lemma 3.5. This completes the 

proof.口

By using the Ascoli's technique (see [14])， we have the following: 

THEOREM 3.8. Let X bωeα ‘伊ψαCαeαω仰ndA αS訓lμlbs平:pacαe~ザfX As幻Sl問JlσJl1〆ne

H仇αu凶sd，めOイ k叩 α町ce出es.Then， the lollowing stαtements are equivalent: 

(1) every conψact subspαce ff 01 Ck(A) c仰 beextended to a conψact 

sub宅paceq; 01 Ck(X); 

(問2勾)j戸orαn仰YFi丹'rechets伊pαCαeY， e引ωv附)

extended to a compαct sωspace q; 01 Ck(X， Y); 

(3) A is P-embedded in X. 

PROOF. (1)キ (3):Assume (1). By Theorem 3.l， it su鉛cesto show that 

every pointwise bounded equicontinuous subset of C(A) can be extended to a 

pointwise bounded equicontinuous subset of C(X). To prove this， 1et .? be a 

pointwise bounded equicontinuo凶 subsetof C(A). Since .~CdA) is compact 

subspace of CdA)， by the assumption， this can be extended to a compact 

subspace q; of Ck(X). Since X is Hausdorff k，タ ispointwise bounded equi-

continuous. Hence， {匂gε タ:gl凶Aεff}iおsa叫lsωop卯0111凶twi悶S臼eb加ound白ede叫qu山lCωO凶 nuou

Soう (3)holds. 

(3) =} (2): Use (iii) in Lemma 3.5. 

(2)斗 (1):Obvious. This completes the proof.口

COROLLARY 3.9. For α Hα lωtβsd，ぬ01グ11グfkι"イ叩spα CαeX， X 臼 Cωolleωct仰Iμio仰yη1刊M仰川l机W川川4ψ川1Ji仰i
only (グfj戸orαn砂yclosed s訓1μ-lbs平pαCαeA 01 X， every compact subspace ff 01 C:(A) can be 

extended to a compact sωそpαceq; 01 C:(X). 

PROOF. Let X be a Hausdor百k-space.To prove the “if" partフ thesimi1ar 

proof of Theorem 3.8 works by app1ying Corollary 3.7. 

To prove the "0向 if"part， use (i) and (ii) in Lemma 3.5. This completes the 

proof.口

In particular， from Corollary 3.9， we have the following: 

THEOREM 3.10 (Heath心Itzer-Zenor[10]). Let X be a Hausdorff ι宅pace.

Assume that lor every closed subspace A 01 X， there exists a continuous extender 

e : C:(A)→ C:(X). Then， X is collectionwise normαl 
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Finally， we give an application of Lemma 3.3. A Dieudonne complete space 

is a space having a complete uniformity. For a Tychonoff space X， yX is the 

Die吋 on前 completionof X (see [6]). We have: 

TI琵OREM3.11. Let X be a Tychonoff伊αceand Ya Dieudonne complete TV-

space. Then， every equicontinuoωsubset {ん :αεQ}ザ C(X， Y) can be extended 

to an equico凶 nuoωsubset{gα:αεQ} of C(yX， Y). 1f in addition {ん:αεQ}is 

assumed to be pointwise bounded (resp. pointwise totally bounded)， then {gα:αεQ} 

is also pointwise bounded (re伊 .po卯 wisetotally bounded). 

Theorem 3.l1 slightly improves the theorem of Sanchis [15] that: Let X be 

a Tychonoff space and Y a Dieudonne complete TV-space. Then， every pointwise 

totally bounded equicontinuous subset of C(五 Y)can be extended to a pointwise 

totally bounded equicontinuous subset of C(yX， Y). 

PROOF OF THEOREM 3.11. Let {β:αεQ} be an equicontinuous subset of 

C(Xう Y). First， notice that for everyαεQ， !a can be extended to some 

gαε C(yX， Y). We shall prove that the collection {gcx:αεQ} is the required 

one. F or every neighborhood V of 0 in Y and every x εX， let Ox(V) = 

Intx(ハ{f;l(fcx(x) + V) :αεQ}) like as in Lemma 3.2. By Lemma 3.3， {Ox(V) : 

X E X} is a normal open cover of X. Hence， there exists a normal open cover 

ottv of yX such that ottv八 Xre長田s{Ox(V):xεX}. We may assume that ottv = 

{Ux(V) : x εX} and Ux(V) n X c Ox( V) for every x εX. 

CLAIM. gcx(U三(V))c fcx(x) + V for every αεQ and every xε X. 

The proof of Claim is straightforward. 

To prove {g世 :αεQ}is equicontinuo民 letx εyX and W a neighborhood 

of 0 in Y. Take a symmetric neighborhood V of 0 in Y with V十 Vc W. Since 

ott v is an open cover of y X， there exists Xoε X such that x ε仏、(V).For every 

y εUxo (V) and every αE Q， it follows from Claim that 

9α(x) -gcx(Y)ε(ん(xo)+ V) -(ん(xo)+ V) = V + V c W. 

Hence， {匂gα : α ε Q} i臼seq 以 on凶凶tinuou

Assume further t出ha剖t{五βαεQ}iおspoir飢1抗twis記ebounded. Let x E y X and W a 

neighborhood of 0 in Y. Let V be a circled neighborhood of 0 in Y with 

V + V c W. Since ott v is an open cover of y X， there exists Xoε X such that 

x εUxo (V). From Claim， we have gcx(x)εん(xo)十 V for every αεQ. Since 
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{!cx(xo) :αεn} is bounded， there exists e > 0 such that r. {ん(xo):αεn} c v 
for every rεR with Irl < e. Hence， for every rεR with Irl < e ̂  1， we have 

r. {gcx(x) :αεn} c r. {jム(x)十 V:αεn}c v+ v c W. 

This shows that {gcx :αεn} is pointwise bounded. 

The case of the pointwise total boundedness is left to the reader. This 

completes the proof.口
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