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ON A NEW ALGORITHM FOR INHOMOGENEOUS
DIOPHANTINE APPROXIMATION

By

Shin-ichi YAsutomi

Abstract. The inhomogeneous Diophantine approximation algo-
rithm of Nishioka et al., (X,T3,¢(x),d(x,»)), was shown by
Komatsu to be efficient for inhomogeneous Diophantine approxi-
mation, but lacks a properly founded natural extension and not all
periodic points about the approximation are determined. A new
algorithm, (X, T,a(x),b(x,y)), is proposed in this paper as a
modification of (X, Ty, ¢(x),d(x,y)), and is shown to be efficient
for inhomogeneous Diophantine approximation similar to
(X, Ty, c(x),d(x,y)) but also to have a natural extension, which
allows all periodic points about (X, T, a(x), b(x, y)) to be determined
and gives lim inf,_.o g||gx — f — p| for the periodic points («,f).

1. Introduction

It is well known that connections exist between the continued fractions
algorithm and the minimization of |go — p|, where ¢ is an natural number, p is an
integer, and « is an irrational number. The problem of minimizing |[ge — f — p|,
where f is a real number, is called the inhomogeneous Diophantine approxi-
mation. This problem has been considered by many authors (e.g., [12, 18, 13, 6,
7, 1,2, 3, 4, 8 21, 10, 11, 5, 14, 16, 17], and detailed information can be
obtained by a review of the literature. Many algorithms related to the problem
have been used. For example, Ito and Kasahara [10] defined the following
algorithm, which was implicitly introduced by Morimoto [18]. Let Z = {(x, y)|
0<y<l,—y<x<—y+1}, as shown in Fig. 1.
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Figure 1.1 Figure of Z

Then for (x,y) e Z:

1-y -y ~y
! — 1z / —_ |
o= |2 - |2 ren--12
The algorithm 79 is then defined by the following transformation on Z for
(x,y)eZ

X

Tix9) = (3 -6/ 0 0) - 2).

This algorithm (Z, 7y,4a'(x, »),b'(x, y)) gives the best solution to the inhomo-
geneous Diophantine approximation. Constructing the natural extension of the
algorithm, they determined al} the periodic points about the algorithm. Ito [9} was
the first to subsequently find that a certain natural extension of the Diophantine
algorithm is useful for investigating the algorithm. Komatsu studied the following
algorithm, which was introduced by Nishioka et al. [19]. With X = [0, 1]2, T is
defined as the following transformation on X for (x,y) e X.

Tx3) = (5 - bl ) -2

X

where ¢(x) = |1] and d(x, y) = [£]. Using this algorithm, (X, T3, ¢(x),d(x, y)),
Komatsu {14] obtained lim inf,_ g|lgoe — f — p| in some cases.

In this paper, an algorithm (X,T,a(x),b(x,y)) is introduces as a modifi-
cation of (X, Ty, ¢(x),d(x, y)). The new algorithm also gives the best solution for
the inhomogeneous Diophantine -approximation as does (X, 7T»,c(x),d(x, ¥)).
However, a natural extension is constructed for (X, T, a(x),b(x,y)), which
has not been done for (X,73,¢(x),d(x,y)). Using the natural extension of
(X, T,a(x),b(x,y)), all purely periodic points about the algorithm are deter-
mined, and for the purely periodic point («,f), a relation between
liminf,—c ¢||ge — f — p| and the natural extension of (X,T,a(x),b(x,y)) is
obtained. Although all eventually periodic points have been determined by
Komatsu [15], all purely periodic points have not.
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2. Definition and Some Properties of Algorithm

We denote R, Q and Z the set of all real numbers, the set of all rational
numbers and the set of all integers respectively. For (x,y) € X with x # 0 we
define a(x) by |1] and we define b(x, y) by

1 if y=0,
blx,y) =[] if y>0and [{|> [}
0 if [3] =5 and [{] # %

We define a transformation T  as follows; for (x,y) e X if x > 0, then

o
=
—
¢ fome
—
]
-

1 .
(; —a(x),b(x, y) — 2’);) if b(x, y) >0,
T(x,y)=
(lmauyl—£> if b(x, ») =0,
and if x =0, then T(x, y) = (x, y).
We define a,(x) = a(T"'(x,»)), balx,y) =b(T" ' (x,y)) and (x,, yn) =
T !(x, y). It is not difficult to see that if x ¢ Q, then for any integer n > 0 a,(x)

and b,(x,y) are defined.
Lemma 2.1 follows from the continued fraction theory.

LemMa 2.1. Let (x,y)e X and x ¢ Q. Then, for each integer n >0

-1
(;) QH(X)X_ Pn(X) = (—1)/1/\'1 Xl = m:
(2)

|gn—1 (x)x - Pn-—l(x)| = an+l(X, J’)IQn(x)x - Pn(X, y)] + [an(X, y)x - pn+l(x7 y)l)

(3) lqn(-x)x - pn(x, y)I > ]QH—H (X, y)x - le-l(x: y)l>
@) for any integer j, k with gu(x) << qui1(x,¥), |ga(x)x = palx, y)| <
|Jx = k],
where {p,(x)}_,.,, {a(x)}_, ., are defined by

p-1(x) =1, po(x) =0,

g-1(x) =0, qo(x) =1,
forn>1
Pn{X) = @n(X) pu—1(x) + pn-2(x),

q"(x) = an (X)an;(X) + qn-Z(x)'
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Lemma 2.2, Let (x,y)e X. Then,
1) ay(x) >0 and a,(x) = by(x,y) =0,
) if by(x,y) =0, then byyi(x,y)=1.

Proor. The proof of (1) is easy. Let us prove (2). We suppose that

bu(x,y) =0. Then, we see that va(x,) = B—J and a(x,) <. Since X,y =
L—a(x,) and y,4; =4 -2, we have X, > yor1. Thus, we obtain

Xn Xn Xp 2

b(xn+1:yn+l) =1 O

Let (x,y) € X and x ¢ Q. Let us define integers A,(x, y), B,(x, y) as follows:

0 if b(x,y) >0, bi(x,y) if b(x,y) >0
A = = ’
() {~1 if b(x,y)=0.  D'%Y) {o if b(x, ) =0,
For n>1

A (X y): {An—l(x7y)+bn(xay)pn—l<x) if b()‘zy)>0>

e Ay (Xa y) - pn—2(x) if b(x, Y) =0,

Bu1(%, p) + bal(x, y)gn-1(x) if b(x, y) >0,

Bu(x,y) = :
) {Bn_1<x,y> ) if b(x, ) =0,

We remark that {B,(x,)},—;,  and {A4,(x,»)},.,,  are not increasing
sequences generally as n — oo.

Lemma 2.3, Let (x,y) e X and x ¢ Q. Then, for any n>0
y= Bn(x: Y)X—Arr(X,y)+(‘1)"yn+1x1 crr Xy (1)

Proor. We prove the lemma by the induction on n. Let n= 1. First,
let by(x,y) > 0. Then, we see y; =bi(x,y) —%. Therefore, we have y; =
b1(x, y)x1 — yax1 = Bi(x, y)x — A1(x, y) — y2x1. Next, let b;(x,y) = 0. Then, we
see yp = j—l - —f—ll Therefore, we have y; = 1 — yox; = Bi(x, y)x — 41(x, y) — y2x1.
Hence, (1) holds for n = 1. Secondly, we suppose that (1) holds for n = k, that is,
y = Be(x, »)x — Ag(x, ) + (1) yarxy - xp. Let bypi(x, ») > 0. Then, we
have yii2 = bryi(x,y) — 5=, which implies yis1 = b1 (X, ¥)Xks1 — Xea1 Ves2-
Therefore, using xjy -+ Xpy) = (——l)k(qu — Pk), We see

y= Bk(x) y)x - Ak(x7 y) + ('—l)kyk'!-]'xl v Xk
= Bi(x, ¥)x — A%, ¥) + (= 1) ¥ by (6, y)x1 - e (= 1) ppsaxs - xe,

= Br1 (%, y)x — A (%, ) + (=1 yiaxr -+ xi.
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1 sl SCI S _
T T e which implies yp

1= Xee1 pes2. Using xp -+ xq = (=1)7 (geoyx — pey), we have

Let bryi(x,y)=0. Then, we have yr=

y = Be(x, p)x — Ar(x, ) + (=)  yrsrxr - Xz,
= Bi(x, y)x — Ax(x, ») + (—l)k)q S Xy + (-1)k+1yk+2x1 Xkl
= Br1 (X, ¥)x — Apr(x, ¥) + (—1)"'+1yk+2x1 e Xl

Therefore, (1) holds for n =k + 1. Thus, we have Lemma. O
Lemma 2.4. Let (x,y) e X and x ¢ Q. Then, lim (B,(x, y)x — A, (x, p)) = y.
n—0o0

Proor. By Lemma 2.3 |y — B,(x, y)x + Au(x, ¥)| = Yur1X1 - - - Xy. By Lemma
2.1 we have xy---x, = |guo1X — pny] < ql Thus, we have Lemma. |

We define ¥ = {(x,y) eR*|x¢ Q and y # mx+n for any m,neZ}.

Lemma 2.5 Let (x,p),(z,w)eX and x,z¢Q. If ay(x)=ay(z) and
bu(x, y) = by(z,w), for any integer n >0, then (x,y) = (z,w).

Proor. By continued fraction theory we obtain x = z. From Lemma 2.4 we
have y = w. O

LemMa 2.6.  Ler (x,y) € X NY. Then, if by(x, y) = 0 for some integer n > 0,
then there exists an integer k >0 such that by (x,y) > 0.

Proor. We suppose that there exists an integer m such that for any & > 0
bmiak(x, ¥) = 0. Then, from Lemma 2.2 we have by, .ox+1(x, y) = 1 for any k& > 0.
Let (u,v) = T"™ '(x, y). Then, by (u,v) = 0 and byy;(u,v) = 1 for any k > 0. We
see easily that b,(u, 1) = b,(u,v) for any integer n > 1. From Lemma 2.5 we have
v=1. Then, we see (x,y)¢ V. But it is a contradiction. Therefore, we have
Lemma. ]

Lemma 2.7. Let (x,y)e XNY. Then, if a,(x) = by(x,y) for some integer
n >0, then there exists an integer k > n such that ay(x) # bi(x, y).

Proor. We suppose that there exists an integer m such that for any
k>m ap(x) = bi(x,y). Let (w,v) = T" }(x,y). It is not difficult to see that
bj(u,1 —u) = bj(u,v) for any integer j > 1. From Lemma 2.5 we have v =1 —u.
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Then, by using the equation (u,v) = 7™ !(x, y) we see easily (x, y) ¢ . But it is
a contradiction. Therefore, we have Lemma. O

Lemma 2.8. Let (x,y) € X and x ¢ Q. We suppose that there exist integers e,
S such that y=ex+ f. If e >0, then there exists an integer n >0 such that
ya=0.If e <0, then there exists an integer n >0 such that y, =1 — x,,.

Proor. Let e> 0. Since 0 <ex+ f <1, we see that —e< /<0 for e >0
and f=0,1 for e =0 respectively. If b;(x, y) >0, then we have

r=tiss) 2= o (- ) - ) + b ) - e

o
= —fxy — fa,(x) + by(x, y)
2

If bi(x, y) =0, then we have y, =1-2=(1-f)(L-a(x))+ (1 - Nai(x)—e.
Therefore, by the induction for each integer n > 0 there exists integers r, and s,
such that y, =r.x, +5,, 1, =0 and r, > 1,y for r, > 0. We see also that if
rp > 0 and b;(x,y) > 0, then r, > r,y. Since from Lemma 2.2 we see b,(x, y) > 0

for infinitely many n, there exists a integer m > 0 such that r, = 0. Therefore,

— €.

Ym=0o0r y,=1 1If y, =1, then we have y,,; = 0. Thus, we have Lemma.

Let ¢ < 0. Since 0 <ex+ f <1, we see that 0 < f < |e|]. We suppose that
bi(x,y) > 0. Then, we have y, = —fx; — fa;(x) + b1(x, y) — e. We see easily that
if f=—e=1, then we have —fa;(x) +bi(x,y) —e=1and if f = —e> 1, then
we have —fa;(x) + bi(x,y) —e < f. Next, we suppose that b;(x, y) = 0. Since
the fact that f =1 implies bi(x,y) >0, we see f > 1. Then, y, = (1 - f)-
(L —a;(x)) + (1 = fai(x) — e. Therefore, by the induction we see that for each
integer n > 0 there exists integers r, and s, such that y, = r,x, + s,, ¥, <0 and
[Fal = |Faa1]. We see also that if |r,| = |rs1] and |1, > | > 1, then |rypq] > [Fag2l.
Therefore, there exists an integer m > 0 such that r, = —1 and s, = 1. O

LemMa 2.9, Let (x,y)e X, x¢Q and (x,y) ¢ Y. Then, following (1) or (2)
holds:

(1) there exists integer m > 0 such that for any integer k >0 b,,0¢(x, y) =0,

(2) there exists integer m > 0 such that for any integer n > m a,(x) = by(x, ).

Proor. From Lemma 2.8 there exists an integer m such that y, =0 or
Ym =1—x,. We suppose y, =0. Then, we see that for each integer k>0
bmi1426(x, ) = 0. Next, we suppose V, =1 —x,,. Then, we see that for each
integer n > m a,(x) = b,(x, y). O
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Lemma 2.10.  Let {an},; 5 and {by},_ ... be integral sequences such that

for any integer n >0

1. a,>0 and a, > b, >0,

2.0 b, =0, then b, =1,

3. if b, =0, then there exists an integer k >0 such that b, > 0,

4. if a, = by, then there exists an integer k > 0 such that a,.r # buir.
Then, there exists (x,y) € X NY such that a, = a,(x) and b, = b,(x, y).

.

Proor. We define A, , for integers m and n with m >0 and m>n >0 as
follows:

{(x,y)e[(),l}zi,—ni—l <x<il(n- 1)x£y.<_nx} if n>1,
Tn,n =
{(x,y)e{O,l]z';‘ﬁ strin,yme} if m>n and n=0.
T 5
i 1,0 /
Tﬂl“l(unnvni)
7T3, > : /
3, 2,2

.

g

)
R 1,1 E‘\(am’aﬁm )
/ 9,1 //‘>-<\ Tayt by
A f
/1
1

11
4 3

o

N

3

>

Figure 2.1 Figure 2.2

We define transformation T, on R? for integers a, b with a >0 and
a>b=>0 as follows:

X

(l—a,l—3> if b=0.
X X X

Similarly, we define transformation F, ;) on R? for integers a, b with @ > 0 and
azbz>=0 as follows:

(La,b—Z) ifh>0,
X

T([I,b)(x> y) =
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l _—
( b y) if 5> 0,
XxX+a x+a
Flap(x,y) =

( 1,1—4LJ if b=0.
X+ a xX+a

We can easily check Figpy 0 T p) = T(a5y © Fla,p) = identity map.

We define ¥ = {(x, y) € X| y < x}. Then, we see that if b > 0, then 7, =
F(u’b)(X> and F(a,b) : X — 7, is bijective and if b = 0, then Ta b = F(n_b)(Y) and
Flupy Y — map is bijective. Noting that Fi, y)(X) = Y, we see that if b, > 0,
then Fiu ) Fla,i,b,1)F(an,5,)X 15 included in X and it become a quadrangle

with inner points. Similarly, we get that if b, = 0, then Fi, 5,) - Fla,_,. 5, 1) Flan ) ¥
is included in X and it become a triangle with inner points. If b, > 0, let (u,,v,)
be an inner point in Fi, p) - Fra,_, 5,-)Flan,60) X - If by = 0, let (4,,v,) be an inner
point in Fg, 5y -+ Fa,_ b,1) Flan, by Y- It is not difficult to see that ay(u,) = a; and
by(ttn, vy) = by for k=1,2,...,n. Since X is compact, there exist an increasing
integral sequence {»;} and () € X such that (u,,v,) — (,f) as i — . Let
(en, B,) = T" (). By continued fraction theory ax(a) = @, for any integer
k > 0. We suppose that there exists an integer m > 0 such that b,,(a, ) # b,. Let
m' > 0 be an integer such that b, («,f) # b,,. And for any 0 < k < m’ by(o,f) =
br. Then, we have T~ (uy,, vn,) — (0, B,y) as i — co. On the other hand, we
see that for large i T"’/‘l(un,.,v,,,.) €7, 5, Lherefore, (o,f, ) is in the
boundary set of n, , 5 ,. Therefore, we see easily that b(ctw,f,, )0 = B, and
b(ctyr, Bry) # 0 (see Figure 2.2). Further more, if d(oy, f8,,) < a(otm:,Bp), then
we have b(ayy,f,)+ 1 =by and if b(oy, B, ) = alom,p, ), then we have
by = 0. First, we suppose that b(cy:,f,,) + 1= by Since T" N u,,v,) —
(0t byt s Yot ), We Obtain T (14, v,,) — (ctpr41, 1) as i — co. Then, we have
bpir =0. By the induction we see bprp14; =0 for any even j>0 and
byiy14; =1 for any odd j> 0. But it contradicts the condition of {b,},_; 5 -
Secondly, we suppose that b, = 0. Since T ’”'"l(un[, Up,) = (Ot G Ot) @S | — 0,
we see that T (y,, vn,) — (41, %nip1) and bpryy = 1. Then, we see easily that
T+ (4, 05,) — (oi42,0) as i — co. By the induction we see that byio4; = 1
for any even j >0 and b4z, =0 for any odd j> 0. But it contradicts the
condition of {b,,}n=1)2,m. Therefore, b,{a,f) = b, for any integer n > 0. From
Lemma 2.9 we see (a,f) € ¥. Thus, we have Lemma. O

LemMa 2.11. Let (x,y)e X and x ¢ Q. Then,
) By(x,y) =0 for any n>0 and A,(x,y) >0 for any n> 1,
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2) lim sup B,(x,y) = o0 and lim sup A,(x, y) = o,
— 00 n—o0

3) ifn(x, y)e ¥, then lim By(x,y) = oo and lingo Ay(x, y) = 0.
H—00 n—

ProOF OF (1). We suppose that B,(x, y) < 0 for some integer n > 0. Without
loss of generality we suppose that B;(x,y) >0 for any integer 0 < j<n.
Bi(x,y) = 0 implies n > 1. From the fact that B,_;(x, y) = 0 and B,(x, y) < 0 we
see b,(x,y) =0. Then, we have B,(x,y) = By—1(x, ¥) — gn—2(x). By Lemma 2.2
we have b,_i(x,y)>0. If n—1>1, then we have B, ;(x,y) — ¢gsa(X) =
Bya2(x, y) + (bu-1(x, y) = )gn—2(x) = 0. But it is a contradiction. If n—1=1,
then we have B,_i(x, y) — gn-2(x) = b1(x,y) — 1 = 0. But it is a contradiction.
Similarly, we see A4,(x,y) =0 for any n > 1.

ProoF OF (2). First, we are proving that B,.a2(x, y) = B,(x, y) for any n > 1
and equation holds iff b,41(x,¥) =1 and bup2(x,¥)=0. I byp(x,») >0
and b,42(x, ¥) > 0, then the proof is easy. We suppose that b,.(x, y) =0 and
bpya2(x,y) = 1. Then, we have By11(x,y) = Bu(x,») — qu=1(x) and Bys(x, y) =
Bui1(x,9) + bpy2(x, ¥)gui1 (x, y). Therefore, we have B,i2(x, y) > Bu(x, p). Next,
we suppose that b, (x, ¥) >0 and b,42(x, y) = 0. Then, we have B, (x,y) =
Ba(x, ¥) + bpr1(x, ¥)gn(x) and B,i2(x, ¥) = But1(x, ) — ga(x). Therefore, we see
Bui2(x,y) = Bu(x, ¥) = (bpr1(x, y) = 1)gn(x), which implies that B,ia(x,y) =
B,(x,y) and the equation holds iff b,4i(x,y)=1. Therefore, we see that
lim o Ban(x, ¥) < oo iff there exists some integer m > 0 such that for any n > m
ba(x,y) =0 and by,1(x,y) = 1. We suppose that for some integer m > 0 for
any n > m by,(x, y) = 0 and by, (x, y) = 1. Then, we obtain lim,_e Bas1(x, y)
= o0. Thus we have the proof of (2).

Proor oF (3). From the proof of (2) we see that lim,_ B2, (x,y) < oo iff
there exists some integer m > 0 such that for any n>m by,(x,y)=1 and
ban-1(x, y) = 0. By Lemma 2.6 we see that lim,_q Ba,(x, y) = co. Similarly, we
have lim, .o Bany1(x,y) = co. Thus, we have lim,, B,(x, y) = co. Similarly,
we have lim,_,o An(x, y) = 0. O

Lemma 2.12. Let (x,y)e XNY. For any integer n=1, |Bu(x,y)x—
An(x,9) — | = |Buya(X, ¥)x — Apa(x, y) — y|. The equation holds if and only if
bn+2(x7 y) =0 and bn+l(x7 y) =1 (B,,(X, y) = Bn+2(x, y))

Proor. First, we suppose that b,.;(x,y) = 1. We also suppose that » is odd.
From Lemma 2.1 and Lemma 2.3, we have

Byi1 (%, y)x = Apy1(x, ¥) < Y < Bup1 (%, )% — Apy1(x, ¥) — (ga(x)x — pa(x))
< Bu(x, y)x — Aq(x, ¥). (2)
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We suppose b,42(x, y) = 0. Then, since Byi2(x, p)x — Apsa(x, p) = Bur1(x, y)x —
Anp1(x, ) = (gn(x)x — pu(x)), by (2) we get p < Buya(x, y)x — Apya(x, y) <
By(x, y)x — An(x, y), which follows the lemma. We remark that B,.(x, y)x—
Ap1(x, ) = (gn(x)x = pa(x)) = B,(x, y)x — An(x, y) if and only if b, (x, y) = 1.
We suppose by.a2(x, ) > 0. Then, from Lemma 2.1 and Lemma 2.3, we have
0 < b2 (%, 7) (Gns1 (X)X — rs1 (1)) < =(gu(x)x = pa(x)). Therefore, we get

B2 (x, )X = Ana (%, ) < Bug1 (%, y)X = Ang1 (X, ) = (ga(x)x — pa(x))
< B,,(x, y)x - A,,(X, y)a

which implies Lemma. We can prove similarly in the case of even n. Next, we
suppose that b,.1(x, y) = 0. Then, from Lemma 2.1 and Lemma 2.3, we have

Brp1(x, p)x = Anp1 (X, ¥) < ¥ < Bug1 (%, ¥)X — A1 (X, ) + (gu-1(X)x — pp1(x))
= B,(x,y)x — An(x, »). (3)

Using bui2(x,y) =1, we get B,ia(x, p)x — Ani2(x, ¥) = Bur1(X, )X — Any1(x, p)
+ (gnr1(x)x — ppr1(x)) < Bu(x, y)x — An(x, y), which implies Lemma. We can
prove similarly in the case of even a. O

LemMa 2.13. Let (x,y) e XNW. If n > 0 is odd, then B,(x, y)x — An(x, y) —
¥ >0 and for any integers m, j with 0 <m < B,(x,y), if mx—j—y >0, then

By(x, y)x — Ap(x,y) — y <mx—j— y.

If n >0 is even, then By,(x,y)x — Au(x,y) — y < 0 and for any integers m, j with
0 <m< Bylx,y), if mx—y—j<O0, then

Bn(xay)x_An(x»y) -y >mx—"y»j'

PrOOF. We are proving the lemma by using the induction on n. Let n = 1.
From Lemma 2.3 we have Bj(x, y)x — A;(x, ) — y = x;y2 > 0. We suppose that
there exist integers m, k with 0 <m < Bj(x, y) such that mx— j— y >0 and
By(x,y)x — A)(x,y) —y=mx—j—y. Let bj(x,y)=0. Then, from the fact
B (x,y) = 0 we have a contradiction. Let b1(x, y) > 0. Then, we have Bi(x, y) =
bi(x,y) and 4;(x,y) =0. We see that mx — y = Bi(x, y)x — y + (m — Bi(x, y))x
= x1y2 + (m — Bi(x, ))x < 0. Therefore, mx — j — y > 0 implies j < 0. On the
other hand, we have B(x,y)x —mx = y+x;y» —mx < 1. By the assumption,
we see 0< Bi(x,y)x—y—(mx—j—y)=Bi(x,y)x—mx+j. On the other
hand, Bj(x,y)x —mx <1 and j <0 implies Bi(x, y)x —mx+ j < 0. This is a
contradiction. Thus we have the proof for n= 1. We suppose that the lemma
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holds for any » with 1 <n <k. Let n=k + 1. We suppose that £+ 1 is odd.
From Lemma 2.3 we have By, (x, y)x — Agy1{x,y) — y > 0. We suppose that
there exist integers m, j with 0 <m < Bryi{x,y) such that By (x, y)x—
Aps1(x, ) —y>mx—j—y>0. We suppose br.i(x,y) > 0. First, we suppose
m = Bi(x,y). Since Byyi(x,y) —m < Bryi(x, ¥) — Bi(x, ¥) = b1 (x, y)g (x) <
grr1(x), from Lemma 2.1 we obtain |(Bisi(x,y) —m)x — App1(x, y) + j| >
[gk(x)x — pr(x)]. On the other hand, by using Lemma 2.3 we have

|(Brs1(x, y) — m)x — Agi1(x, y) + J|
= Biy1 (%, y)x — Agq1(x, y) — y = (mx — j ~ y)
< Bra1 (%, y)x — A1 (x, y) = ¥ < |qr(x)x = pr(x)].

But it is a contradiction. Secondly, we suppose m < Bi(x, y). If m < Br_1(x, »),
using Lemma 2.12 we have a contradiction from the assumption of the in-
duction. Therefore, we have m > By (x, y). We suppose b(x,y) > 0. Since
Bi(x,y) —m < Br(x, y) — Br_1(x, y) = bi(x, p)qk-1(x) < gr(x), from Lemma 2.1
we have |(Bir(x,y) —m)x — Ar(x, y) + j| = |qk-1(x)x — px_1(x)|. On the other
hand, we obtain

[(Bi(x, y) = m)x — Ax(x, y) + J|
=mx —j =y = (Bi(x, y)x — Ak(x,y) — )
< Brr1(x, y)x = Aggi (X, y) = ¥ = (Br(x, y)x — Ak(x, y) — »)
= b1 (%, ¥)qi(x)x — pr(x)].

From Lemma 2.1 we have by (x, )|qx(x)x — pr(x)] < |qi—1(x)x — pr-1(x)]. But
it is a contradiction. Next, we suppose bi(x,y) =0. Then, since Bi_;(x,y) >
Bi(x,y), the fact m > By_i(x,y) contradicts the assumption m < By(x, y).
Secondly, we suppose biii(x,y) =0. If m < Br_i(x, y), then it contradicts the
assumption of the induction. Therefore, we have m > By_i(x, y) by using Lemma
2.12. Since Biyi(x, ) —m < Biy1(x, ) — Br—1(x, y) = (be(x, y) — Dge—1(x) <
gr(x), by using Lemma 2.1 we have |(Brwi(x,y)—m)x— Ar(x,y)+j| =
|gk—1(x)x — pe-1(x)|. On the other hand, we see

|(Ber1(x, p) — m)x — A(x, y) + J|
= By1(x, ¥)x — A1 (x, ) = y — (mx — j = »)
< Bk-i—l(xa y)x_ Ak+](x1 y) ) (Bk(xa _V)X*‘Ak(x, y) - y)

= |qr-1(x)x = pr-1(x)]-
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But it is a contradiction. For even k + | we have a proof similarly. Therefore, we
have the proof for n =k + 1. Thus, we obtain the lemma. O

Lemma 2.14. Let (x,y)e X NY. Let n> 0 be an integer. Then, B,(x,y) <
Gn(X) + Gu-1(x). If balx,y) >0, then By(x,y) = gu-1(x). If ba(x,y) =0, then
By(x,y) < qu-1(x). Furthermore,

nh_{g (Bn(x, ) = Gn-1(x)) = 0.
ba(x,$)>0

Proor. Let n> 0 be an integer. Using the induction on » it is not difficult
to see that B,(x, ) < gn(x) + gu—1(x). We suppose b,(x, y) > 0. Then, we have
Bu(x,y) = gn-1(x) = Buo1 (x, ») + (bu(x, ¥) = 1)gn-1(x) = By-1(x,y).  Therefore,
using Lemma 2.11, we have B,(x, y) — gn-1(x) = 0 and

nll»ngo (Bn(x) y) - qn—l(x)) = 0.
ba(x,7)>0

Let n > 0 be an integer with b,(x, y) = 0. If n =1, then we see easily B,(x, y) <
gn-1(x). Let n>1. Then, we have B,(x,y) = By-1(X,¥) — gu-2(x) < g_1(x).
O

Following Theorem is a analogous to the result by Komatsu [14].

THEOREM 2.15. Let (x,y) e X N'P.

lim inf gllgx — y||
g—r00

= lim inf min{B,(x, )|Bn(x, ¥)x — Au(x, y) — ¥,

n—co
©(Ba(x, ¥) = @u-1 G Ba(x, ¥) = gu-1(x))x — (An(x, ¥) = pa-1(x)) = yI},

where g € Z and for ze R ||z|| = min{|z — m||m € Z} and t(u) = u for u > 0 and
t(u) = 0 for u <0.

Proor. We are proving that for each »n > 1 with b, > 0 if for an integer ¢
By-1(x,y) < g < Bu(x,y), then
qllgx -

> min I{Bj(x’ y)IBJ(X, y)x - Aj(x) y) - yia

J=n,n—

1(Bi(x, y) = -1 (x))(Bj(x, ») = g1 (x))x = (Aj-1(x, ») = pi(x)) = y[}. (4)
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It follows Theorem 2.15. Let n>1 and b,(x,y)>0. Let B,.i(x,y) <
g < By(x,y). We suppose that n is odd. If gx — ¢’ < By (x, y)x — Ay_1(x, y)
for an integer ¢’, then from Lemma 2.3 we have |g(gx—¢q — )| >
|Bu-1(x, ¥)(Bu-1(x, y)x = Ap-1(x,y) = ¥)].  We suppose that B,_i(x, y)x—
Ap—1(x,¥) < gx —q' < By(x,y)x — A,(x, y) for an integer ¢’. From Lemma 2.13,
we have gx—q' < y. Since B,(x, y)x — Au(x, ¥) = (By1 (X, p)x — Ay (x, ¥)) =
bn(x, ¥)(qn-1(x)x — pa-1(x)), there exists an integer j such that 0 < j < b,(x, »)
and

J(Gn-1()x = pno1(x)) < gx = ¢’ — (Ba-1(x, p)x = Api(x, )
< (J 4+ D (gn-1(x)x = pp-1(x)).

Then, we have [(g— Bu-1(x, ) = jgn-1(%))x — ¢ + Azt (X, ) + jpu-1(x)
|gn-1()x = pu—1(x)|. On the other hand, we have |g — By-1(x,») = jgn-1(x)
bn(X, ¥)gn-1(x) < gn(x). Using Lemma 2.1 we have g — B,_i(x, y) — jqu-1(x) =

We see easily that ¢’ — 4,-1(x, ») — jpa—1(x) = 0. Then, we have

<
<

qlgx — q" — y| = (Bu1(x, ¥) + jgn1 ()| (Bu-1(x, ) + Jjgn-1(x))x
— (Ap1(x, ) + jpn-1(x)) = ¥|

> min - {(Bu-i1(x, ») + 1gu1 ())(Bami1 (¥, ¥) + lga-1(x))x
0</<by(x,p)~1

= (An-1(x, ) + Ipu-1(x)) = y[}.
On the other hand, Lemma 2.3 implies
|(Bu-1(x, ») + 1gn-1(x))x = (An-1(x, ¥) + Ipas1 () — ¥l
=y = Bu1(x, ¥)x + Ap-1 (%, ) = U{qn-1(x)x = pp1(x))
for each integer / with 0 </ < b,(x,y) — 1. Since

min {(Bn—l(xa ¥) + lgn-1(x))(y — Buo1(x, y)x + Ap1(x, )
0</<bu(x,y)-1

— 1(gn-1(x)x — Pn—l(x)))}

= om0 (Bt (5,3) + Igaes ()3 = Bact (5, 90+ A (5,)

= 1(gn-1(x)x = pn-1(x))) },

we have



186 Shin-ichi YAsuToMmr

qlgx —q' — y|
> min{Bn-—l(x7 y)*Bn—-l(xy y)x - An-—l(xa }") - y|1
(Bu(x, ¥) = Gn-1())|(Ba(x, ¥) = gn-1())x = (4n(x, ») = pai1(x)) — y|}.

We suppose that B,(x, y)x — Aa(x, y) < gx — ¢’ for an integer ¢’. We consider the
case of b,_i(x,y) > 0. We suppose B,(x, ¥)x — Au(x, ¥) — (gn-2(x)x — pp2(x)) <
gx —gq'. Then, we have y < B, i(x,y)x — An-1(%, ¥) = (qn-2(xX)x — pp-2(x)) <
gx — q'. Therefore, noting B,_;(x, y) — gn—2(x) >0 from Lemma 2.14, we have

qlgx — q' — y| = (Bu-1(X, ) — gu—2(x))
X |(Bae1 (%, ¥) = Gn-2(x))x = (An-1 (%, y) = pn_a(x)) = .

Next, we suppose B,(x,y)x — Ay — (gu—2(x)x — pp—2(x)) > gx — ¢'. Then, we
have 0 < gx —g" = (B,(x, y)x — An(x, y)) < =(gn-2(x)x = pp-2(x)). Noting 0 <
By(x,y) — q < by(x, ¥)qs—1(x), similarly to the previous argument, we see that
there exists an integer ;' such that 0 < j' < b,(x, y) and (B,(x, y)x — A,(x, y)) —
(@ 4) = gua(¥)x — pas(x) + /' (qur (x)x — par(x)). Therefore, we have

qx — q/ = Bn(x> .V)x = An(x,y) = (qn—2(x)x = Pn-2(x)) — jl(‘]n—l(x)x — Pn-1(x)
= Bn—-l(-xa y)x - An—l(xa y) - (Qn—Z(x)x - pn——Z(x))
+ (ba(x) = j)(@n-1 ()X = pu=i (%)) (5)

Using (5) and Bu-1(x, y)x — Au1(x, ¥) = quea(X)x — pu_a(x) > y, we see 0<
By (x, y)x — Ap-1(x, ¥) = (gn-2(x)x = pp-2(x)) — y < gx — q' — y. Therefore,

glax —q' — y| > (Bu-1(x, y) — gn-2(x))
X |Bue1(X, p)x = A1 (X, ) = (gn-2(X)X = pu—2(x)) — y|.

We consider the case of b,-i(x,y) =0. We suppose that B,(x, y)x — A.(x, y) —

(gn-2(x)x = ppa(x)) <gx—¢q'.  Since  Byu(x,y)x ~ An(x, y) — (Bu-1(x, ¥)x —

Ap-1(x,¥)) = gn-1(x)x = py_i(x), we have 0 < y— (By-i(x, y)x A1 (x, ) <
Gn-1(x)x = py—1(x). On the other hand, we obtain gx—¢q'—y>gx—q—
(Bu(x, y)x — An(x,¥)) = —(qn-2(x)Xx = pp—2(x)).  Therefore, glgx—q' — y| >
B, 1(x, p)|Bu-1(x, ¥)x — Au1(x, ) — y|.  Secondly, we suppose B,(x, y)x—
An(x,y) = (qn-2(x)x = pu-2(x)) > gx—¢q".  Then, 0 <gx—q"— (Bulx, y)x—
An(x, ) < —(gn-2(x)x = pu2(x)). Using 0 < B,(x, y) — ¢ < gn-1(x) and Lemma
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2.1, we have a contradiction. Therefore, we have the inequality (4). Thus, we
have Lemma. O

Lemma 2.16. Let (x,y)e XNY. For any integer n >0,
lim inf g¢|jgx — y|| = im inf g|lgx, — yall,
g—vo0 o0
where (Xu, yu).= T" (x, ).

Proor. We are proving that liminf,.s gllgx — y| =liminf,_ -
gllgxa — y2||. It follows the lemma. Let e =liminf,. ¢ljgx— y|| and
S =liminf, o gllgx; — y2||. Then, there exist an increasing positive integral
sequences {pilioya.. and {qil;, . such that f =liminfs_c g;lg x —
2 —p;|- We suppose that b;(x, y) > 0. Then, for k > 0 we have

(5 - ) - (s -2) - 5

q/
= ;C’fi(q/iax (x) + P + b1 (x, y))x1 — 1 — g

Gelgex2 — y2 — ol = @

= (gra1(x) + p + bi(x, ¥)(grai (x) + py + bi(x, ¥))x

q;
x1(gpai(x) + pp + b1(x, )

-1 = ql

1 1
Since Z%—x, as k— o, we see that limy.e ; 9
k

, Xi(gia )+ pptbi ()
Hmg— o #—— =1. Thus, e < f. If by(x,y) =0, we have e < f by the
x| <H| (X)+i+ IEZJ))

same manner. Similarly, we have e > f. Thus, we have the lemma. O

3. Natural Extension

Z. denotes the the set of all positive integers. We define Q;, Q,, Q| and Q;
as follows:

Q ={(x,) €[0,1]’|(x,y) e ¥,y < x},
Q ={(x,) €[0,11°|(x,y) e ¥,y > x},
Q; '—_{(X,y)|(x7y)€‘{‘7y> 17X$“1,y3—x+1}7

Q) ={(x,)|(xye¥0<y<lx<-1}.
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/ o

& o

Figure 3.1

Let Q= {Q, x (QUQ)IU(Q; x Q).

We define a transformation 7 on € as follows: for (x,y,z,w)e Q

7 ) 'L a(x),b(z,w) = %) i b(x, y) >0,
X w) = ’ - -
AR (L—a(x),l =21 g(x),1 - v) if b(x, ) = 0.

We see easily that T is well defined.
Tueorem 3.1. T is bijective.

Proor. We define A,, , for me Z, and ne Z, U {0} with m > n as follows;

{(x,y)eXﬂ‘leir]<x<#,(n—1)x<y<nx} fn=1,
Am,n=
{(x,y)eXﬂ‘I’I ; <x<%,y>mx} if m>n and n=0.

m-+1

Then, we see easily that 7' : A, , — X N'Y is bijective for n >0 and T : A, o —
Q; is bijective. We define A, , for meZ, and neZ, U{0} with m=>n
as follows; if n=1, then we see A, A ={(x,»)eQi|-(m+1)<x<-m,
l <y<—-x—m+2} and if n> 1, then we see A, , = {(x,y) e Q][-(m+1) <
x<-—m-x—m+n<y<-x-—m+n+1} and if n=0, then we see A, , =
{(x,y) e Q| —-(m+1) < x < —m}.

We see that for meZ, and neZ,U{0} with m>n and n#1
(Timm)i€ — 4, ,, is bijective and (T, 1))grug Q1 UQ; — A, is bijective,

where T(,, , is defined in Section 2. On the other hand, we have
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7
3,3 \
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A3, > \
!
AS Agyg AS,I 12,1 Al},l
~ Al,l 7 1 I
3,0 2,0 1,0
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A 4 -3 -2 -1 0
/
U
Az; ¢ 3 2
Figure 3.2
Q= U Am,nXQ-;U U Am,l
(mn)eZyxZy m=nn+#1 meZ,

x (QUQYU | AnoxQp (disjoint)

meZ,

_ U (XN¥)x Al U U (xn®)

(mn)eZixZy mznn#l meZ.,

x A, U ) Qixa,, (disjoint).

meZ,

We see that Ty qAmnxQf— (XN¥)x A is bijective for (m,n)e
Z+ X Z+ with n# 1 and TAm,lx(Q;UQé)Amfl X (Q{ UQ;) — (Xﬂ‘I’) X Azln,] for
meZy is bijective and Ty, xq/Amo X Q) — Q1 X A}, is bijective for me Z,.

Therefore, T is bijective. O
Following Lemma 3.2 is easily proved.

LemMma 3.2. Let K be a real quadratic field over Q. Let (x,y) e K2NX NP,

Then, if (x,y,%,7) € Q, then (T'(x,),T(x,y)) = T(x,y,%,7), where for ze K Z is
the algebraic conjugate of z related to K/Q.

Komatsu [15] determine the all eventually periodic points in (X, T3). Fol-
lowing Lemma is the similar result.
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Lemma 3.3. Let (x,y)e XN, x be a quadratic irrational number and
y € Q(x). Then, (x,y,%,7) is a eventually periodic point related to T, where for
ze Q(x) Z is an algebraic conjugate of z related to Q(x)/Q.

PrOOF. Since y € Q(x), there exist r,,s, € Q such that y, = r, + s,x,. Let d,
be the denominator of r,, s,. By using induction, we see dy = d, for all n. From
the well known fact about continued fraction of quadratic irrational numbers,
there exists an integer m such that {x,, Xm+1,...} is purely periodic. It is known
that X, < —1 for each n > m. We define a constant ¢; by ¢; = min{|%,||n = m}.
Let ¢; = max{a,(x)|n=1,...}. Let r f‘—(—”—tL Then, if n > m and |y,| > r, we
have
lm[<cz+;—i +e2 <y = L.

n

Val =

Paller = 1)
4]

yn{ 7

Therefore, there exists n; such that n; > m and |7,,| < r. On the other hand, if
n>m and |y,| <r, then we have

[Pnril < 2 + < 2r.

We suppose that lim sup,_,.|7s] = 0. Let my =min{k|k > ny, |7x| > 3r}. We
assume |¥,,—7] > r. Then, we have |7,,| < |P,,—1| — 1. Therefore, we have |7,,-1]| >
3r. But it is a contradiction. Next, we assume |J,,-1| < r. Then, by using previous
argument, we have [y,,| < 3r. But it is a contradiction. Thus, there exists ¢ > 0
such that [p,| < ¢ for all n. From the facts that |j;| < ¢ and |y,| < 1 for all n, we
see that there exits ¢3 such that |r,|,|s,| < ¢3 for all n. Using the fact dy = d, for
all n, we see that {y,|n=0,1,...} has finitely many numbers. Thus, (x, y, %, 7) is
a eventually periodic point related to 7. O

LemMa 3.4, Let (x,y)e XNY, x be a quadratic irrational number and
y € Q(x), where for z € Q(x) z is an algebraic conjugate of z related to Q(x)/Q.
Then, there exists an integer n > 0 such that (xu, Yu, %n, Vu) € Q.

ProoF. By Lemma 3.3 {(Xu, ¥x)},—q 1, 1s eventually periodic. Therefore,
there exist integers m;,m, > 0 such that for any n > m) (Xusmyy Yatm) = (Xn; Yn)-
We define mjy as follows. If b, > 0 for any n > m;, then we set m3 = m. If there
exists m’ > m; such that b, (x, y) =0, then we set m3 = m’. If for integers a, b
b>0 and a>b, then it is not difficult to see that T, (c/(Q))) < {(x,y)e
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c(Q)|—a—1<x < —a}, where c/(Q]) is the closure of Q. Therefore, if
bn(x,y) >0 for any n > m,, then we have

T(anl3+m2~|(X)vbmlwnz—l(-xx)’)) U T(a1113 (.X), bm3 (-",,V))n = ’7’
where 7= {(x, y) € cl(Q]) | =amy1m-1(x) = 1 <X < —Gpyim,1(x)}. It is not
difficult to see that for integers a,a’ > 1 T, 1yT(ar,0) ¢/(Q)) < {(x, ) € cl(Q]) |
—a—1<x<—a}. By lemma 2.2 m; > 1 and by, 4m,-1(x, y) # 0. Thus, we have

T gyt (), B my 1 (5,90 L (g (), by (5,01 S 71+
By Bronwell’s fixed point theorem there exists (x/,y’) e {(x,¥) e c/(Q})]
—Gmymy-1(X) = 1 £ X < =@pymy-1(x)} such  that  Tig, (), By gy 1 (00) T
Tty (3, by (2,3 (X5 Y1) = (7, ¥"). we see easily that (x', ') = (Xu;, my ). Therefore,
we have (X, Vi, Xy Vi) € Q. O

Lemma 3.5, Let (x,y)e XNY, x be a quadratic irrational number and
y€Q(x). Let (x,y,%,¥) € Q, where for ze Q(x) Z is an algebraic conjugate of z
related to Q(x)/Q. Then, (x,y,X,7) is a purely periodic point related to T.

Proor. By Lemma 3.3 there exist integers m,m; > 1 such that for any
integer n > m (Xn, Yu) = (Xntmy» Yo, ). Since (xi, y1, X1, 77) € Q, by Lemma 3.2
we have (xu, yn, Xn, 7s) € Q for any integer n > 0. Since T is bijective on Q, for
each integer n > m we have (Xy—1, Yu—1, %=1, n=1) = (Xnstmy—1, Yntm —1> Xntrm—1
Pnim—1). By using the induction we have (xi, y1,X1,77) = (X14mys Yitm > X1imn s
V1am ). Thus, (x, y,%,¥) is a purely periodic point related to T. O

THeOREM 3.6. Let (x,y)e XNY. x is a quadratic irrational number,
yeQ(x) and (x,y,%,7) € Q if and only if (x,y) is a purely periodic point related
to T, where for z € Q(x) Z is an algebraic conjugate of z related 1o Q(x)/Q.

Proor. The necessary condition of the theorem is proved in Lemma 3.5. Let
us prove the sufficient condition. We assume that (x,y) e X N¥ and (x, y) is a
purely periodic point related to T. Then, it is not difficult to see that x is a
quadratic irrational number and y € Q(x). Using Theorem 3.1 and Lemma 3.4,
we see that (x, y,X,¥) € Q. |

Following Lemma 3.7 is a well known result.

Lemma 3.7 (E. Galois). Let 0<x <1 be a quadratic irrational number
and let x have purely periodic continued fraction expansion. Then,
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lim ( ) Xk ;) =0, where for z € Q(x) Z is an algebraic conjugate of z related

n—sco \dr-1(*)

10 Q(x)/Q.

Proor. Let W =[0,1] x (—o00,~1]. We define a transformation p on W as
follows: for (x,y)e W

(% —a(x),1 - a(x)) if x # 0,
(x, ») if x=0.

plx,y) =

We see easily that p is well defined. Since x is reduced, ¥ < —1 (see [20]).
Therefore, (x,%) e W. We see easily that p"(x,%) = (Xpt1, %p11). On the other

hand, for each integer n > 0 (x,,+1, —quffi)) e W. We see for each integer n > 0

p(3m I (s - 2B (3

_ (xn“’ Qn-i-é()))

-1 @)Y _ gn(x) ()
Therefore, we have p” (xz, qo(x)) = (x,,H, PR )> We denote u, = )

for each integer n > 0. Then, we have

| X1 — U < |01 — U]

lxn+2 - un+11 =

[Forrun| = C 7
where C =min{|%j||j=1,2,...}. Therefore, we have |%,;1 —u, < l‘c’,,,_“'] for
each n> 0. Since C > 1, we obtain the lemma. O

LemMA 3.8. Let (x,y)e XNY and let (x,y) be a purely periodic point

: Bu(x,y —
related to T. Then, ;}Lngo (T.—%C_F yn+1) =0.

Proor. We see easily that 7 is naturally extended to Q, = {Q; x
cl(QUQY) U (2 x cl(Q1)). We also denote it 7. For each integer k > 1
denotes — q,:(;g and v denotes 2 ‘_(T(;')) . First, we show that (x3, y2,u;,v1) € Qu
and for n>1 T (xy, yo,u1,01) = (Xut1, Yui1, tn, Un). We suppose bi(x, y) > 0.

Then, we see that _Z;T(j(; —aj(x) and B‘(X) =bi{x,y). Since 0<bi(x,y) <

a(x, y), we have (xz,yz, () B‘(x")e Q# We suppose b;(x, y) = 0. Then, we

qo(x) " qo(x)
see that Bq”:?xy }=0 and y, = m—%. From the f;ict (that a; = |%], we have
x) Bi(x
@ + — % Therefore, we have (xz,yz, f]’(')(x), [‘m(x)y)eQ# Secondly, we

suppose that for an integer k > 0 75 !(xy, yp,u1,01) = (Xks1, Yist, i, 02). Then,
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we have —‘— — g (x) = -—ﬁ;é? +1(x) = w1 We suppose that byy (x, y) > 0.
Then, we have by, i(x,y) — ’—bk+1(x ¥) 4 Bley) o, . Therefore, we have

qx(x)
T ( Xttty Yiew1s Ui, D) = (xk+2:yk+2 Ukt 1, Vk1)- We suppose that by (x, y) =0.

Then, we have 1% =Z&2)—ae1l)  Benley) —p o\ Therefore, we have
Uk Gi(x) i (x)

T(Xkx 1, Piea 1 Yies k) = (Xk42, Pia2> Y41, Vi1). Thus, we have the proof of that for

nz= 1 Tn ](Xz,h, u1,U1) - (xn+lyyn+ ,un,U,,). Since fOl' n= 1 T"‘I(XLJ)Z))TQ_;)_E)
= (xn-i—l,y17+l>x11+1)yn+l)- If bn+l(x) J’) > 0: then we obtain

R v ——
lvn+l“yrz~l-2|: &_yn:_ﬂ = B’“""v:n‘i";&—&ﬂ
Up  Xnptl Up  Xpyl  Xptl Xpgd
< & ier—l — Uy + ‘vn - yn+1l ) (6)
Un l Xn+1 X1

and if b,y1(x,y) =0, then we obtain

1 v, 1 Yntl
S I U
Un  Un  Xpsl Xpg)

< (1+

Since (un,vn) € cI(Q UQY), 3—:‘ <2 for each integer n > 0. From the proof of
Lemma 3.7, (6) and (7) we see that

[Uns1 — Pri2| =

Uy

5)

uﬂ

Xl —

o =Tl (7)
| X 1]

xn+1

X2 ~w| | |v =7
Cn—-l + Cn—l ?

[os1 — P73l < 31— 1)
where C = min{|Xj||j=1,2,...}. Thus, we have the lemma. O

THEOREM 3.9. Let (x,y) €[0,1)* be a periodic point of T. Then,

. . 7 =11 = y
lim QIIqx—yH:mm{ yan_ t0n = DUL- y);n=0,1,2,...},
g—o0 X

— Xn Xn — Xn

where || x|| = min{|m — x|{|m e Z} and t(u) = u for u > 0 and t(u) = oo for u <0.
Proor. From Theorem 2.15 we have
lim inf g|lgx — ||
400
= lim inf min{B,(x, y)|Ba(x, y)x — An(x, ¥) = 3], °(Ba(%, y) = dn-1(x))

X |(Bu(x, ¥) = gu1(x))x = (An(x, ¥) = pa-r(%, ¥)) — ¥I}-
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Using Lemma 2.1 and Lemma 2.3

Bu(x, ¥)|Bu(x, y)x = An(x, ¥) = | = Bu(, ¥) Ynp1X1 -+ X
= By (X, ¥) Ynt1]gn-1(X)X — py_i(x)]
_ Bn(x7 y)yn-l»l )
gn—1 (-x) (M + Xn+l)

(],,4(»\)

If b,y(x,y) >0, we have similarly

(Ba(x, ¥) = gn-1(XD(Ba(x; ¥) = gn1(x))x = (An(x, ) = pn-1(x)) = |

(
( ( y) Qn—l(x)”( ) PYot1Xy o Xy — (Qn——l(x)x_ pn—l(x))[
( ( ) qn—l(x))lqn I(X)X Pn- I( )l [1 - yn-H]
(B,,(X y) Qn~](x))!1 — Vn+l E « 1
Qn——1<x) qf,l_(() + Xt .

From Lemma 2.14 we note that if b,(x,y) >0, B,(x,») — ¢u1(x) <0 and
0 < y,51 < 1. Using Lemma 3.7 and Lemma 3.8, we have Theorem 3.9. O
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