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FINITE JET DETERMINA TION FOR 
BIHOLO九10RPHIS九1SOF REAL酬 ANALYTIC

HYPERSURFACES IN CN 

By 

Gabriela PUTINAR 

Abstract. We prove that for real-analytic hypersurfaces M in CN， 

finite jet determination for biholomorphisms of M holds under 

minimal assumptions on the geometry of M， in both the infinite type 

and in the長nitetype cases. 1n the finite type case， we extend from 

N = 2 to arbitrary N a resu1t of Ebenfelt， Lamel and Zaitsev on 2-jet 

determination of such biholomorphisms. 

1. lntroduction 

The question of finite determination of (1ocal) CR automorphisms of generic 

real submanifolds in CN by their jets of a sufficiently high order has been studied 

under various assumptions on the geometry of the manifold (see for instance [1]， 

[2]， [7]， [9] and the references there). 

For M a CR submanifold in CN with pεM， let Aut(Mヲp)denote the 

stability group of M at p， i.e. the group of al1 germs of biholomorphisms 

H:CN
→ cN such that H(M) c M and H(p) = p. Such biholomorphisms are 

in particular CR automorphisms and we shall call them “automorphisms" of M 

for short. (In the case of real-analytic hypersurfaces that are essential1y-finite， 
Aut(Mぅp)coincides with the group of CR automorphisms of M that fix p; 

[1 J.) 

A reference result ([1]) is that finite detem1ination holds (at the generic point) 

for automorphisms of real-analytic generic submanifolds that are holomorphically 

non-degenerate and of finite type at some point. 
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Furtherヲ aswas shown in [3]フ holomorphicnon-degeneracy is a necessary 

condition for finite determination of automorphisms to hold， even if the manifold 

and the biholomorphisms are assumed to be real-analytic or formal. 

On the other hand， the condition of釦1Itetype is by no means a necessary 

condition in generaI; in the infinite-type case， it is still possible to describe non-

degeneracy conditions for the CR geometry of real hypersurfaces in CN under 

which typical results hold (such as e.g. the Schwarz principle; or fi出 edeter-

mination by jets of maps that extend holomorphically to one side). Such con-

ditions are: weakly essential， II泊nitetype ∞n-degenera teラ etc. (see [8]， [12]， 

[10]) 

From this perspective， it was proved in [9] that for N = 2， i.e. for (real耐

analytic) 3-manifolds in C2， Levi non-flatness is a necessary and S1A:がcient

condition for finite determination of CR automorphisms to hold. 1n order to 

elimina te the白litetype assumption， the authors prove first that finite deter-

mination holds along the かSegreset (which is the set on which finite type no 

longer holds). This is combi田 dwith the method of complete singular systems 

developed in [7]， [8J， by which one obtains also finite determination of auto蜘

morphisms in the characteristic direction (transversal to the O-Segre set) 

1n this paper we extend these finite determination results for 3-manifolds in 

c2， to the case of automorphisms of (real-analytic) hypersurfaces in CN
. 1n the 

11由 lIte-typeca民 weassume that a certain fi泊tenessassumption holds (F.A. for 

short， see Section 3); for 3-叩.

e岱ss印entialand with Levi nonト-fl自a抗tness;for N ~注三 2 i江tneither imp凶li詑esnor is implied by 

weakly-essential， while it still allows for arbitrarily large infinite type. We show 

(as a consequence to Proposition 1， Section 2) that F.A. is invariant under any 

change of normal coordinates. 1n the infinite-type ca民 ourmain 問山 (Theorem

2， Section 5) states thatフ underthese assumptions， there exists a su自cientlylarge 

k such that finIte determination by ιjets at p holds for all automorphisms that 

fix p. 

Our proofs are paral1el to those of [9]. 1n fact， in the characteriはicdirection 

we use the above-mentioned method of complete singular systems in its initial 

setting， that of weakly-essential hypersurfaces in CN
. The only technical di伍-

culties in the infinite type case in CN are related to the註nitedetermination along 

the O-Segre set (T 
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the corresponding Weierstrass polynomial， and that the latter must have degree 

one. From this， finite determination along the ふSegreset is straightforward. 

ln the case of hypersurfaces of斤nitetype， a remarkable result proved in [9] is 

that if M c C2 is a real-analytic real hypersurface of finite type at p Eλ1， then 

the elements in Aut( M， p) are determined by their jets of length two. 

To extend this result to higher dimensions， we make certain assumptions 

on the geometry of the hypersurface， that are stronger versions of the condition 

F.A. mentioned above and therefore imply holomorphic non凶 degeneracy;these 

assumptions are minimalフ insome sense (see Example， Section 7). Also， for 

M c C2 (a real hypersurface) these conditions reduce to assuming finite type 

only. With these assumptio民 andusing computations as in [9] and [4] for 

points outside the 0・Segreset， we prove (Theorem 4， Section 7) 2予tdetenlli-

nation for Aut(M， p)， where M is a real-analytic hypersurface of arbitrary 

dimension. 

The main technical result in the finite type case is a resu1t on determination 

by one-jets of sections in analytic sets， provided that the initial homogeneous 

polynomials of the sections satisfy a certain generic condition (Theorem 3， 

Section 6). 

AcknowIedgment. The author would like to thank P. Ebenfelt for stimulating 

discussions on the subject. 

NOTATIONS. Besides the standard notation for partial derivatives using 

multi-indices in Nぺweshal1 use the fol1owing notation. 

F or an arbitrary integer ミ:1， we define the sets A， = {1ぅ・・・ ，n}'，A=  

U，> I Al. We write Ikl = 1 if k E A，. 
We can then write partial derivatives of a function f of n vari氾ablesZ1わ，...，Zら11

usmg s印ubs詑cn中pt臼s，such that for a (mu1ti)ーindexkニ (k]γ ・.) k1) E A，) fzk denotes 

the partial derivative a1f / aZkl・・・ aZkl・

lf 1 = 1， it is convenient to use instead the notation hk' k = 1ぅ・・・ ，n，for the 
first-order partial derivatives of f. 

For a complex function f， the function f is defined by f(z) := f("2). 

We denote by in(f) the initial homogeneous polynomial of the Taylor 

expansion at 0 of f. 

F 01" f ~ 0， the degree of this polynomial is by definition the order v(f) 

of f. 

The notations o(zk) (resp. O(zk)) are reserved for quantities of order > k， 

(resp. = k.) 
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As usual， by JO(F) we denote the jet of length 1 at the point 0 of the (vector) 

function F. 

By C{Z1，・，zn} we denote the ring of convergent series at 0 in Cn. 

2. Invariants and ldentities in Normal Coordinates 

This section is parallel with the computations in [9] in the i凶 nitetype case 

and extends the invariants defined there from n = 1 to arbitrary nミ1.

Let M c Cn十1be a real“analytic hypersurface with pεM. We shall choose 

nom凶 coordinates(z， w)εCn 
X C for M at p; i.e. (z， w) vanish at p and M is 

written (in complex form) near p = 0 as 

M: w = Q(z，z，時)， 、‘tJノ
4
E
E且

J
'
E
E

、、

where Q(z，Xぅτisa holomorphic function in a neighborhood of 0 in Cn x 

Cn 
X C， satisfying 

Q(z，Oぅτ)三 Q(O，xぅτ)三 τ. (2) 

Recall [1] that a holomorphic function Q defines a real-analytic hyperslぱace

if and only if it satisfies the rea1ity condition 

Q(z，xぅQ(x，z，て))去で. (3) 

Furtherフ letus define for kεAラ μεN，the analytic function 

qkp(X) := QzkTII(O，X， 0) (4) 

Note that the normality of the coordinates implies 

qkp(O) = 0 for all kεA. (5) 

Using the functions qkp， we define a set of invariants for M as follows. First， 

let us define 

mo := min{m E Z十|ヨhεA，μεN，such that m = Ikl十 μぅqkμ(X)手O}. (6) 

We shall assume in what follows that the set defining mo is non帽 emptyラ i.e.that 

mo is finite. This is equivalent to assuming that M is not Levi-flat at p. 

In order to define the other invariantsフ weconsider as in [9] the order -< on 

pairs (α，m) E N2 defined by (α，m) -< (b，n) iff， either a十 m< b + n or， if a十 ln= 

b + 11， then m < 11. 
For multi-indices (k， /1)εA x N this induces a partial order (denoted still -<) 

defined by (k， /1) -< (mぅν)i百 (Ikl，/1) -< (1m!， ν) . 

Note that the set of multi-indices (k， f1) in A x N that are minimal with 
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respect to -<， and are such that qkf1手0，is a subset ofAx {μ。}， with the notation 

A = Avo， for a unique μo and for Vo = mo -μ0・

Let us next define Y = YM(O) to be the ideal generated by the set 

(qkμ。)kE八ν0'

in the ri時 C{X} = C{Xl' ・ .汁うd必心Xιんn}
羽w弓it出hthese defiI出1註it討ions民， we have the flおollowing

(7) 

PROPOSITION 1. For M c C叶 Ia non-Levi升αtreal-analytic hypersUlfaceαnd 

pε M， the integers mo，μ。(thereforealso )10)αre invariant under changes of normal 

coordinates on C川 that斤xp. 

The ideal YM(O) transforms under a change of normal coordinates given by 

(z'， w') = H(z， w)， with H = (F， G) by 

YM(O)ニ F(X，O)ソん(0)， (8) 

with * denoting pull鵬 backof.ルnctions.

Before entering the proof of Proposition 1， let us consider another reaト

analytic hypersurface M' in C/1十1，with p' E M'， and defining equation given by a 

holomorphic function Q' (z'， Xペザ insome normal coordinates (z'， w') on Cn十

and let H = (F， G)， where Fニ (F1，・，FIl)， be an arbitrary biholomorphism that 

takes (M， p) to (M'， p'). The condition that H(M) c M' becomes the following 

(main) identity: 

G(z， Q(zぅX，τ))三 Q'(F(z，Q(z，Xぅτ))ぅF(X，τ)ぅδ(Xぅτ))， (9) 

for (ムX，τ)ε CI1
X CI1 

X C in a neighborhood of O. 

We shall use this identity repeatedly together wIth the chaIn rule for derかか

tives zkτJl at (z，τ) = 0 in order to obtain several other identities in X. 

Firstう notetha t by setting X = τニ 0，we obtain 

G(z，O)呈 O. 、、，E

，，，
ハ
υ

唱

l
i

〆
'
j

，、、

Since H is a biholomorphism， from (10) it also follows that Jacz(F)(O) =1= 0 

and GIV(O)手O.

By differe出 ati時 wIthrespect to τat τ= 0 In (9) and using normality of the 

coordinates， we obtain (at z = 0) the following expression for G1ν(X，O): 

δ11'(ι0)三 Gw(O)-Lj:1 Q;j (0， F(X， 0)， 0) 幻(0). (11) 

1n particular if mo z 2， we see that G1ベXぅ0)三 Gw(O). 
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If in (9) we take the partial derivative at (z，τ) = 0 relative to zkr，u， for some 

kεA，μεN， and if 1 = /k/， we obtain the following identity in x: 

G内 JJ1(O)十Gw(O)qkt，(x)十甲(x)==δw(x， 0)μ. ) ~I:I_I q;u(F(X， 0)) . Pjk十'l"(χ)ぅム-'lil='-1 JP ，-¥̂' -j j - j 

( 12) 

where for k， j E A" Pjk is defined by 

Pjk = Pjdx) = rr~=1 (々::，(0)十 Ff(仰いO，x，O)) (13) 

and 'l' (resp. 'l") is a surn of terms each of which has a factor qmv (resp. q~J ， 

with (mうν)-< (k， J1). 

Note that for moミ2，P is in fact independent of the variable x. In this case， 

by definition， P is the l-th tensor power of the matrix F二(0)，(w.r.t. lexicographic 

order for indices in A，)， and therefore is non-si時 ular，for every H. For mo = 1， 

we see in the same way that P(O) is ∞n-sl時 ular，therefore also that P(X) is non-

singular at every sufficiently srnall X. 

Let us write 

qC(X):1ZiMqLi(F(X30))Pjk(X) (14) 

for part of the expression appearing in the right hand term of (12). Note that if 

H is the identity， then qH三 q仁

We can rewrite definition (14) in rnatrix form as 

qH (x)呈 P(x) T . q' (F (x， 0) )， ( 15) 

where 

qH = (q{!;JkE八ザ q' ニ (q~，u )kE^"O ( 16) 

are column vectors in Cn+1 (and in (15) we omitted writing the dependence in μ) 

With the above computations， we are now ready to prove Proposition 1. 

PROOF. Let M' = M as sets (and also p = p')， but with coordinates (z'， w') 

and corresponding functions q~p(X') for M'， and Iet H be the biholomo叩hisrn

H:Cn十i
→ C川 takingM to M' and p to p'， that changes the coordinates on 

cll十
1from (z，川 to(z'，ν) . 
Let f1o， vo， .-" be the corresponding invariants for M'. In the identUy (12) at 

rεAvj and μふtheremainders 'l' and 'l" are identically O. Since by the same 
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identity (at X = 0)， we have G
7兆Jι並iνU札，人~ソj人守守

factor) a vector丘Ia討l叫 1叫 i江tyof the fonn q = qH， wIth notations as in (16) above. 

Since as we have seen， P is nonsingular， from q' l= 0 it fol1ows that q手O.

In the same identity (12) at an arbitrary multi-index (m'， .u') preceding 

(ぷμb)in the order -<(， we see that the right-hand term is zero， therefore 

qk'p'(X)三 O.
Together， these two facts show that mo =叫 andμ。=μふthereforeVo =νj. 

From the relation q ニ qH， we also have .J' c F(X， 0)ソ'.Fina託11うら reverting (いz，w 

with (ヤz'，w') (伊orusing the f;おacはtt出ha剖tP is non-singular) we see t出ha侃tt出hiおsin即1詑c1usioniおS 

in fact an equality. ロ

Using the above proof， we can now write the identity (12) for an arbitrary 

HεAut(M，O) and fixed nonnal coordinates (z，刈 ina simplified form. F or 

匙εAvo，we have Gzkll'IIO (0) = 0 and 'P(X) == 0， 'P' (X)三 O.Further， using (11) 

if mo ;:::: 2 and the fact that if 1110 = 1， we must haveμ。ニ0，we get that 

Gw(Xρ) /10三 GII'(O)μoin both cases mo = 1 and mo三2.Therefore (12) becomes 

qk/1o (X) 芸 q~o(X) . GlI'(O)μペ ( 17) 

for arbitrary kεAvo， or in vectorial notation， 

q(X)三 qH(X) . Gバ0)向一 ( 18) 

Let us continue to derive some further identities from (9). 

By differe凶 ati勾 (9)with respect to z叫内十kat (z，τ)ニ 0，where Iml =νo and 

kミ 1，we obtain叫 悶tionsfor Fwk (Xぅ0)and GlI'k (X， 0) in tenns of lower order 

derivatives. Preciselyフ wehave 

Gzm川11'〆，/附1

詰 乞:l5ι匂4〆jq4ヰιo(刈川(XωXρ).Fぺ(;ふμ，kパ収品kパ収品(伐仏Xι川?川刈0的) διιWバv(ωXι川7ρ0)/1μ0

+ 'P2 (X， F(x， 0)， );+1 F， (Fwr(X， O))r~k-l' (GlVs (X， 0))厄 k+l)' (19) 

where the functions守J(X，A)and 'P2(X，X'，Al，A2，A3) are polynornials in A 

and A1 1 A2l A3 respectively， with holornorphic coe伍cientsin X， x'. Moreover， if 

1110斗， the tenn Gll'k+1 (X， 0) does not appear in '1'2， because in this case ro = 0， 

i.e. we di百erentiate(9) once in z and k tirnes inτ. Note also that applying (19) at 

X = 0 shows that its first tenn Gzmu附 k(0) depends on the (k十 1)予tof H only 

Thus the identity (19) is an equation for (the vector) Fll'k (Xρ) in tenns of 

lower order such derivatives for F and of order at rnost k十 1for G if mo ;:::: 2 and 

at rnost k if mo = 1. 
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Further， we can obtain an expression for Gws (xぅ0)in terms of lower such 

derivatives by di百erentiati時 themain identity (repeatedly) in τat (z，τ) = O. 

Name1y， we have， for every s ミ2:

Gws(O)三 Lj:1Q;j (0， F(ι0)ρ) 凡(0)十 Gws(x，O)

十 ε;lzloxjQ;(OY(X30)?O)FLJX30)FJ(0)+V3ぅ(却)

where 

¥f3 = ¥f3 (F(X ぅ 0) ぅ (FWi(O))i~s_I' (Fwr(X， O))r出 -2'(GlV j(X ， O))j~s_I)' (21) 

is such that ¥f3(X'うAl，A2，A3)is a polynomial in AI， A2， A3 with holomorphic 

coe伍cientsin x'. For moミ23theQ;j(01(LO)ρ) terms are三 0，so there is no 

term involving F ws-I・Combiningthe two equations (19) and (20)， we see that in 

both cases mo = 1 and mo三2it is possible to obtain an equation for FII'* (x， 0) 

in terms of lower such derivatives which depends on it+1 (H)， and similarly for 

Gws(xρ)， for every k， sミ1.(For s = 1， the identity (11) gives such an expression 

for G.) 

3. Jet Determination along the O-Segre Set 

In this section we shall use the identities obtained in Section 2 to prove finite 

determination along the O-Segre set {( ムO)lz ε Cn
} for germs 0ぱfa制u凶tωomor中p悼h凶1甘山llsrr臼S

at 0 of a r児ea討iト司analy戸tichypersurf:白ac∞eMcCn叫1叶十Iby their j片et臼sa剖t0 of a s叩u伍Cl臼er凶1抗tl訪y f 

high order. 

With the notations of Section 2， we make the foIlowing .finiteness assumption 
(F.A. at 0): 

rk(8
んqkμ。(X))lkl=川 =I，....n= n， (22) 

which means that at the generic point X near 0フ themaximal rank n is attained. 

Note that from relation (18) of Section 2， it follows that F.A. is invariant under 

normal changes of coordinates at O. 

As an aside， let us note that condition F .A. is implied， using e.g. Theorem 

5.1.37 of [1]， by the following condition on the ideal su(O) of C{X} defined by 

(7) in Section 2: 

codim su(O) := dimc C{X}/sM(O) <∞ぅ (23) 

By Proposition 1， condition (23) is also invariant under changes of normal 

coordinates forλ1 at O. 
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Also， it is obvious that for n = 1， condition F.A. is equivalent with Levi non-

jlatness. 

Our main technical result is the following extension from n = 1 to arbitrary 

nミ 1of Theorem 3.1 in [9] (which assumes Levi non-fiatness) 

Tl五OREM1. Let M c Cn+ 1 be a real-ω1αlytic h)伊ersuゆceand let (z， w) be 

normal coordinates at p = 0 E M. Assume thαt theβniteness condition FA. holds 

for M at p. Then for every integer k 二三 0， there exists a sufficiently large integer 

lニ l(k)such that戸reveryαutomorphisl1'z H of(M，p)， the derivative Hwk(Z，O) is 

determined by J6(H). 

For given M and normal coordinates (z， w)εCIl十
1at p， let us fix an 1てjetof 

an automorphism H of (M， 0)， where 1 is large enough (to be determined). Let us 

call this the “data" of our problem. From the above theorem it follows also that 

a11 derivatives H川市川)are determined from the data only， with 1 = l(m， k); in 

particular this shows that for given k， there exists a sufficiently large 1 = l(k) such 

that the jet J~(H) of H along the O-Segre set is determined by Jo(H)， i.e. by the 

data only. 

For the proof of Theorem 1， we shall need the following two lemmas. 

LEMMA 1. Let P(X， ()ε C{x }[(]， where (x， ()εCIl 
X C， be ω1 irredωble 

Weierstrass polynomial. 1f there exists a holomorphic rootφェ①(x)of P for X in 

a neighborhood of 0 εCぺthendeg( P) = 1 

PROOF. Let W be the germ of subvariety of Cn+1 consisting of the zeros of 

P and letπ: CIl+1
→ CIl denote the projection on the first coordinates. The map 

①= (id，争):(C'¥O)→ (Wぅ0)is such that 77:1 W 0争=id. Let i: W → CIl十
1de自

note the inc1usion. Since πoio φ=  id， do(i 0 φ) is injective， therefore the set X = 

φ(C勺 is(the germ of) a complex manifold at O. Using X c W， dim(X) = 
dim( W) = n and W irreducible， we obtain (e.g. [13]， ch. 3， Prop. 7) that W = X 

(as germs at 0). Further， since πIWo φ=idヲ a凶 W is a manifoldう wesee that 

πI W is a submersion on a neighborhood of O. Its fibres above a sufficiently 

small neighborhood of 0 must have the same cardinality， which must be one 

(the cardinality of the fibre above 0). But for points where the discriminant 

Dis(P) =J= 0ラ (anopen set since P is irreducible)， this cardinality eql凶 sdeg(P)， 

therefore deg(P) = 1.口

We shall use Lemma 1 to prove the following 
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LEMMA 2. Let P(Xぅ()be a Weierstrass polynomial with (x，のεCJJ
X C 

Then there exists仰 integer1 (depending on P only) such that e附 ygerm of a 

holomorphic root of P is determined by its l-jet at O. 

PROOF. Let P(X， ()ニ((-al (X))k， . . . . . (( -am(x))k"， . R(X，のbe the de-

composition of P into irreducible degree one factors， where句(x)are distinct 

holomorphic functions near 0 E CJJ， and R has only irreducible factors of higher 

degree. If mと2，choose 1 large enough such that jo(as) =1= io(at) for s 手 t，

3ぅtニ lぅ・・・ぅm.If m = 1， one may choose any 1 ミO.

Let φ， ¥}' be holomorphic roots near 0 of P having the same 1づetat 0 and 

let φニ (id，φ)，¥}' = (idう¥}'). 

Since φ(resp. ¥}') maps Cn to irreducible varieties， it follows that①， ¥}' are 

each roots of some irreducible factors of P; by Lemma 1， these factors are of 

degree one， therefore φ= as and ¥}' = at for some t， sε{1，・・・ 1吋.By the choice 

of 1 we must have sニ人 thereforeφ=  ¥}'. 口

We are now ready to prove Theorem 1. 

PROOF. We use induction on k. For k = 0， we want to show that H(z， 0) is 

determined by the data 0均.By (10)， we need only prove this for F(ι0) instω. 

By (18)， (= F(X， 0) is a simultaneous root of the holomorphic functions of 211 

variables 

q(x) -P(χ) T q( ()・ Gw(O)内一 (24) 

in the matricial notation of (15) and (16)フ withμ=μQ' Note that by the finiteness 

assumption F.A. and because the matrix P is non-si時 ular，the ideal in C{ (} 

generated by the restrictions of the above functions to some generic Xo near 0 has 

finite codimension. We may thereby apply a theorem (see e.g. Theorem 5.3.9 of 

[1]) which reduces simultaneous zeros to a normal form， to obtain 11 Weie凶 rass

polynomials 1う(xゐ)ε C{x-Xo}[ら]， such thatら=FJ (x， 0) satisfies 1う(x，ら)== 0， 

fo1' j = 1ぃ・け11and X near Xo・Mo1'eove1'， the polynomials Pj may be chosen to 

depend on the data only. This 1'educes the question of白nitedetermination along 

the O-th Seg1'e set to the case of F J (x， 0)， fo1' eve1'y fixed j. By Lemma 2 for the 

polynomial Pj and fo1' 1 =んsu出cientlyla1'ge， we obtain that F J (x， 0) is de-

termined ([01' X in an open setフ therefo1'eby the identity p1'inciple， eve1'ywhere) 

f1'om the data only， which p1'oves the case k = O. 

F 01' the inductive step k -1→k， where k ~ 1， we shall use the identities 

(19) and (20) which together show that the map (=((1，・・・?ふ)， defined by 



Finite jet determination for biholomorphisms 157 

ら=P~，k(X ， O) ， ) = 1ぃ・ス， is a話multaneousroot of a set of equations of the 

form 

ε;:igゐq~o(X)も==~klio (χ) ， (25) 

for every主εAI'O' where ~kJ10(X) depe凶 son );+1 (H) and on the lower order 

derivatives (FlI'r(X， 0))，くkand (Gws (Xぅ0))sくわ therefore by induction on the data 

only. 

From condition F.A.， it fol1ows that there exists a subset B c Avo consisting 

of n multi-indices such that det( oXjqι。(X))mεB，j=l，...，11手O.This implies that for 

X outside a proper complex subvariety， we may use Cramer's rule to solve the 

linear system corresponding to (25)， where the set A is replaced by B and where 

X lS a parameter. 

We obtain that (for X generic， therefore by the identity principle for a11 X near 

0)， F~， k(X ， O) is determined from the data (with jet-length = max(lo，k + 1))， for 

every ) = 1γ ・・ぅ凡 By induction usi時 theidentity (20)， it follows that the same is 

true for Gμ(xρ) therefore for Hμ(X，O)フ thusproving the inductive step and the 

theorem. ロ

4. Relation between F.A. and other Finiteness Assumptions 

In this Section we compare the finiteness assumption F .A. and the invariants 

mo，μ。(definedin Sections 2 and 3) with various other finiteness conditions and 

invariants. We show that (in terms of a real-valued defining functionφfor M in 

normal coordinates near 0) if 

①τμ(ムx，O)三 ofor a11μ<μoぅ (26) 

then F.A. impliesμ。」凶凶en-nondegenerate (as defined in [8])， at Xo in the 0-

Segre set， generic near 0; from this it follows [10]， [8]， that we also have in the 

complement of a reaトanalyticsubvariety of the O-Segre setフ μo-infinitetype 2; 

recall tha t we are assuming μo finite (Section 2). These remarks will be needed in 

Section 5 for the proof of Theorem 2. 

Further， it is proved in [10] that the subset of the 。幽Segreset consisting of 

weakly essential points is open; and also that if M is weakly essential then M is 

essential1y finite at a11 points in the complement of the かthSegre set， therefore 

finitely non-degenerate at the generic point on M. 

Let us briefty recall the definitions at this point. In terms of a real-valued 

defining function 
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M:1mw=φ(z， z， Re w)う

satisfying the normality conditions 

φ(2，0， s)三 φ(0，z， s) == 0う

(27) 

(28) 

and with w = s十 it，the m-infinite type of M along s = 0 is the smallest integer 

s.t φs'" (zぅXぅ0)手O.1n fact， for infinite type one assumes mミ 1，since m = 0 

corresponds to finite type hypersurfaces. 

Fuひlr巾tl出he白r，if M is of mη1-lTI凶1

eωωssel仰n削1fiωαalり)a抗t0， if the ideal generated by the collection (φZ k sm (0， x， 0) ) kε八 isof 

finIte codimension in C{x}. 

Besides， M is said to be of m-infinite type rミ2if there exist multi-indices k， 1 

satisfying Ikl + 111 = r and φzkx'γ11 (0) =1-0， and if r is minimal with this property 

Also， M is said to be m-infinite l-nondegenerate at 0 if 

det(8Xj
φ

zks"， (O))j=l，...，n，kEB =1-0， (29) 

for some subset B of the set of multi-i凶 icesk such that Ikl豆 l

1t is known that the above integers m and r for hypersurfaces of infinite type 

are invariant under change of normaI coordinates ([7]， [12]). 

Because the (complexification of the real) defining function φa出sin (ρ27η) and 

the c∞orrespon叫 ng(complex) defining function Q considered in Sections 2 and 3 

are related by 

Q(z，x，τ)一τ-2iφ(z，x， (Q(zぅx，τ)+τ)/2)== 0う (30) 

it follows by the normality of the coordinates and the chain rule that (up to n01ト

zero constant factors) 

Qzkrμ。(O，xぅ0)三 φZkSllO(0， x， 0)， (31 ) 

for all multi-indices k εAvo・

Therefore in the definitions of the invariants of Section 2 we may replace Q 

with φ. 1n particular it is clear from the definitions that F.A. implies that at the 

generic point near 0 in the 0・Segreset， we have m-infinite type for some m :::;;μo 

and that if we assume (26)フ i.e.thatμ。=m， then F.A. implies μo-infinite n-non-

degenerate at the generic point as above， which in tum implies holomorphically 

n01吋 egenerateat some point， therefore everywhere in a neighborhood of O. (Of 

course， that F.A. implies holomorphic-nondegeneracy can be checked directly， 

cf. [1 J.) 
Before ending this section， let us illustrate with some examples. 
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EXAMPLE 1. For n = 1， condition F.A. coincides with weakly essential and 

with Levi non-flatness. But for 11 ~ 2 there exist weakly essential hypersurfaces 

that do not satisfy F.A. 

For instance， let the (real， as in (27)) deおlingfunction for M c C3 be given 

by 

φ(z，X，τ)三てμ(z(x(÷zfxf)，

for some integers k， l注 2.Then M is weakly essential1y finite with m =μand if 

k手人 M does not satisfy F.A. at O. 

EXAMPLE 2. To show that F.A. does not imply weakly-essential in general， 

let us fix integers 1 ~ s <ヘ O~μ。 < l1'10， and let M c C3 be the hypersurface 

defined (in real form) by 

①(z，X，で)三 τμ。((ZlXl)FF10一向十 (Z2X2)FY70一向)十 τμ。-S(ZlXl)町一向γ

Then μ0， mo are the invariants of Section 2 and F.A. holds， but M is not weakly国

essential. 

EXAMPLE 3. It is easy to construct examples of families of hypersurfaces that 

satisfy F.A. and a1'e also m-weakly-essential; in fact， fo1' every fixed m and every 

ideal of finite codimension s c C{X} that is generated by monomials of the same 

degree， there exists a continuous family of hypersurfaces M such that s = sM(O) 

and m=μ0・

Namely， if (ゆ;);=1.....，.is a set of linear1y independent monomial generato1's of 

s， such a family is given by hypersurfaces M defined (in 1'eal form) by 

φ(z， X， r)主 τmL:=l Cjrt;(z)ぷ(X)ヲ

with (C;)i=l，...，，. arbitrary real nor日 eroconstants 

5. Finite Determination of Automorphisms 

1n this section we prove a theorem on finite determination of automorphisms 

at a point p of a real-analytic hypersurface M by their k聞jetsat p for some 

su伍cientlylarge k. We shall use Theorem 1 together with the results in [7] and [8] 

on singular complete systems in the characteristic direction， and shall assume that 

M is μ。司infinitetype and satisfies F.A. at p， (in particular it is holomorphicallうん

nondegenerate). Our main result in the infinite-type case is the fol1owing 
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Tf也OREM2. Let M c Cn十
1be a real-analytic hypersuゆcewhich isμo引φ1Ite

type αnd satisfies F A.αt pEM. 

Then there exists a sufficiently large integer k = kM(p) such that every 

aωomorphism 01 (M， p)お determinedby its k-jet at p. 

The proof fol1ows close1y that of Theorem 1.1 in [9]， but we in即ch凶 eit for 

completeness. 

PROOF. Let us fix批判etat p (with k to be determined) of an auto-

morphism H1 
Sl凶 thatH1 (p) = p， and let H2 be a variab1e automorphism 

having the same k-jet at p. 

Since， by the remarks in the beginning of Section 4， F.A. together with (26) 

implies that there is an integer 1 such that M is I-non-degenerateμo-infinite type 2 

at the generic point on the O-th Segre set， and since by Theorem 1， the k'-jet at p 

determines the k-jet a10ng the O-Segre set if k' is large enough， we may assume， 

by replacing p with the generic point and k' with k， that M is l-nondegenerate 

μo-infinite type 2 at p. 

At p， for any fixed normal coordinates (z， w)， let us write in real coo1'dinates， 

w=s十 it，x = z εR2n， and let (x， s) be the parameter on M. 

Then for the CR di百eomorphismsh 1 = HIレi= 1，2， (we may omit the 

superscripts and write h to refer to both h 1 and h2 in the sequel) we may apply 

Theorem 2.1 of [8] from which it follows that a certain map Uh (that will be 

described below) satisfies one and the same (for i = 1う2)real-analytic singular 

O.D.E. in the variable s and pa1'ameter x. 

The construction for Uh is as follows. By Theorem 2.1 of [8] we have first， for 

h = (/，g)， with f = (f¥ ..，fつinthe real coordinates above， that 9 satisfies a 

singular O.D.E. 

sm8sg = Vjz・gl11+ r， (32) 

whe1'e山 isa C∞ function (since M is type 2 at p) and r is a 1'emainder 

depending (rea1-analytically) on sl118sf. Next， if we form Uh = (8xh，sm8sf， Vh)， 

then by the same theorem， all the derivatives of Uh of order 21 + 1 depend real国

ana1ytiωly on (and the記 foreare determined by) its derivatives of order云 21

From this it fol1ows， using (32)， that the map Uh立 ((Uh，m)o::;; Iml ::;;21' h)似 isfiesa 

rea1-ana1ytic equation of the form Sm8sUh=R(Uh，S). 

Next， fo1' the function Uh =【Jh(X，s)三 Uh(x，s)-Uh(X，O)ラ asimilar equation 

holds (by Theorem 1) and we may apply Theorem 5.l on si時 ularO.D.E.s with a 

parameter from [9]， since the initial condition Uh(X，O)三 ois satisfied. It follows 
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that there exists a su缶cientlyhigh order k' such that， for every fixed value of the 

parameter x， the solution [h (x， .) is uniquely determined from its k' -jet at 0， 

which (as we shall see) is the same for both hl and h2• Once we know this latter 

factフ ourtheorem follows， since h is a component of the map Uh・(Notealso that 

the same k' can be used for a11 H1， H2 since we may reduce this question to the 

case of identity and H = H2 
0 (H1 rl

.) 

Thus it only remains to check that dsr Uhi(X， 0) is the same for i = 1ヲ2，and 

for a11 r豆 k'.By Theorem 上forfixed kl， the jet j;lll along the O-Segre set 

iおsdetermined from jl芯JH ， i江fkおss印u岨I伍除脳cienむ叩n凶1

t出ha抗ta討longs = 0， the kl-jet of H determines the k'-jet of Uh. This is possible 

with kl = k'十 21十 1，since by definition Uh depends on the derivatives of 

order孟 21十 1of h. (1t also depends on Vh which by the eqωtion (32) for g， is 

uniquely determined by s'句sh，therefore its derivatives of order S;; 21 that appear 

in Uh are reduced to the above dependence of order 21十1.)口

6. One-jet Determination for Sections in Analytic Sets 

1n sections 2 and 3 we have encountered analytic sets Z of the form 

Z = {(x， ()ε cn 
X Cn I q(α)(() = q(ぺx)，αε A}. (33) 

where the q(rf.)'s are analytic and 0 at the origin， and the indexing set A is finite. 

Namely， if the l-jet at 0 of a biholomOI予hismH = (F， G)ε Aut(M， p) 

coincides with that of the identity map， then condition (18) on the (vector) 

functions q is a set of equations defining a set Z as above. 

Recall that in the proof of Theorem 1フ assumingF.A.， we used precisely such 

equations in order to determine (ニ F(X，O)，and therefore H along the かSegre

set， from the jet of H of a sufficiently high length. 

In the釦1Itetype case (Section 7) wh閃 twosets of the form above appear， 

the following theorem wi1l be used to prove 2-jet sufficiency for elements in 

Aut(Mぅp)ラ underassumptions on the non-vanishing of corresponding Jacobians 

along the diagonal n-plane in Cll 
X Cn

. 

T田 OREM3. Let q(α) : Cn 
X Cn

→ C be germs of analytic functions such that 

q(rf.) (0ぅ0)= 0，干4舵 reαε A，with A a戸niteset. Let p: Cn 
X Cn

→ Cn be the 

projection on the 戸rstfactor and let the αnalytic set Z = {(xペ)ε Cn
X Cn I 

q(rf.)(x， ()ニ Oぅαε A}be such that Z ;2π， where πdenotes a non-vertical 1叩 lanein 

CIl 
X Cn

. 

Assume that there exists B c A， IBI = n， such that 
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Jac((in( q(a)) )aEB Iπ~O (34) 

Then every analytic section φ 的 Z (i.e.φ: Cn
→ Z such that p 0 φ= id) for 

which the ta仰 entspace九(や)=叱 mustcoincide with the section σ: Cn
→ πsuch 

that p 0 σ= id. 

REMARKS. 1) The above theorem is in the spirit of Lemma 13.2 of [5]. In 

addition， the condition on the initial homogeneous polynomials of the defining 

functions (q(al)αallows for on什etdetermination of sections of Z. 

2) Theorem 3 may be regarded as a version of the implicit function theorem. 

For n = 1， taking πto be the X-axis， we are given a function q(X， () which is 

zero along the X-axis and is such that o(in(q))jo((X，O)手ofor X =f. 0， although 

possibly o(in(q)) j o((O， 0) = O. Then by Theorem 3，φ(x)三 (x，O)is the only 

section in the zero set of q which is tangent to the x-axis at O. 

3) The non-vanishing assumption (34) in Theorem 3 cannot be replaced by 

the weaker assumption Jac((q(al)αEBln ~ 0， for some B c A， IBI = n. 

F or example， let n =上先口{(= O} and let q(X， () == ((( -X2). Then 

oqjo((x，O)三 -x2~ 0， while o(in(q))jo((Xρ)三 0，and the conclusion of The-

orem 3 does not hold， since the zero set of q has two distinct sections 

φ1 (x)三 (x，O)and φ2(X)三 (x，x2)which are tangent to πat O. 

PR∞F. By a linear change of coordinates on Cn 
X CI1 (note that this does 

not a百ectcondition (34))， we may assume thatπ= {(ニ O}.For everyαεA we 
may assume v( q{αl) ?: 1. Since Z ;2π， we may write 

q(a) (μ)芸乞=1らぐ(x，()， (35) 

where the functionぐisanalytic in all its variables and by the Taylor form山

is related to the (-derivative of q(a) by 

ぐ(x，O)三句作)j問(x，O) (36) 

If the section φin Z is defined by φ= (id， ()， with (=ぐ(x)，then 

EJLJ(X)ぐ(x，((x))三 0， (37) 

for everyαε A. 

Let us denote ~ := det(d/)αεB，j=I，...，n' a function of the variables (x， (). The 

rest of the proof will consist in proving that， for a section <D as in the statement 

of the theorem， i.e. such that its component ( satisfies ((x) = o(X)， ，1(X， ((x)) ~ 0; 
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frorn this it wi1l follow that for ftxed x generic， the hornogeneous linear systern 

(37) has the unique solution ら(x)== 0， j = 1，・・・?叱 i.e. the uniqueness assertion 

of the theorern. 

Frorn the relation (36) obtained above， we have 

企(X，O)三 det(ぐ(x，0) )O:E B，j=I，...，n三 Jacc(q(O:))(x，0)0:εB' (38) 

and because by assurnption J，αcc(in( q(O:)))o:εB(X，O)手0，.1(X，O) has finite order 

equal with 

mo:zzeB(u(q(α) )一 1) (39) 

ln particular企(xぅ0)手oand therefore .1(X，のis also non-zero and of a 

possibly srnaller order， say mh. 

On the other hand， by the construction of il(X，のusingthe finite di汀erences

ぐ ofthe q(江)'s， its order isミmo・ Thereforemh = mo， so that 

v(.1(x， ()) = v(il(X， 0)) (40) 

Let now ( = ((x) be the second component of a section φas in the statement 

of the Theorem. We claim that il(X， ((x)) t O. lndeed， by (40) we can write 

.1(x， ()三 ε;=H1片山 (41 ) 

where for every m，ムηisa (possibly zero) homogeneous polynomial of degree m 

in the variables (xぅ()and ム110(Xヲ0)手O.

Since ((x) = o(X)フ itfollows from (41) that 

企(x，((x)) ==ム川x，((x)) + o(mo)去丸10(Xぅ0)+ o(mo) t 0， (42) 

which is what was left to prove. 口

The following elementary lemma describing the (non-)vanishing of the 

Jacobian of homogeneous polynomials will be used in Section 7. 

Let us first make some notations. For fixed mミ 1，let N = Cι;-ibe the 

dimension of the space of homogeneous polynomials in C[ZI， • . . ，Zn] of degree m. 

lf glぃ・・ ，gnεC[ZI' ・，211]， n 2: 2， are homogeneous polynomials of the same 

degree m ミ仁 givenby助(Z)=εiαI=m匂ro:ZO:， j = 1，.・・，n，let C = (ちな)1αl=m，lsjsl1 

be their co究所cientmαtrix， an n x N -matrix with constant coefficients. 

We consider also the n x N-matrix with coefficients in C[ZIぃ・.，Znl given by 

W = (Wjo:)， where 
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WjlX = Wjα(Z)三 α).Zぺ (43) 

for 1 S; j壬叱 α=(α1，..・ ?αn)εNnsuch that IαI=m. 

LEMMA 3. a) Let g]，・ ，gnE C[z]γ. . ，zn)， nミ2，be homogeneoω poly-

nomials of the same degree m 二三 1， with coefficient matrix C. 

Then Jac(g]，.・・ ，gn)=1= 0件 det(C.WT
)手O.

For n = 2， these conditions are further equivalent with rk C = 2. 
b) Let P1ぅ・ ，Pn E C[z]， ・・ ，Zn]be non-co凡5・tanthomogeneous polynomials of 

αrbi・tarydegrees. Then .ltαc(P]，...，Pn)手O件 thepo加omials町:ニpjにj=1，・・・ぅ n

for some (αny) integers 1']， ・・・ ，1'11 such that g]，・・・ ，gnhave the same degree， are 
such thαt their coそがcientmatrix satisfies the condition at a). 

For n = 2， Jac(p]， P2)三 oifω1d onかifP] and P2 sati.砂 αpolynomial

relation of the form 

p;2 = K. pi¥ (44) 

for some integers 1'1，1'2εN and non-zero constant K εC  

REMARK. If n 二三 3， condition rk C = n does not imply the non-vanishing of 

the Jacobian， i.e. linear independence (of homogeneous polynomials of the same 

degree) does 110t imp1y functiona1 independence. An examp1e of this is given by 

the polynomia1s gl = ZT， g2之 Ziand g3 = (ZI + Z2)2 in C[Z]， Z2， Z3]. 

YkUU1-':' a/ ，')'iI1ce 

grad(gJ(z)三(川ε|αI=mCjrJ.αlの
we have 

Jac(g]，... ，gll) = (Z]" 'ZII)一]det(2'::.=IrJ.I=mCj 

from which the assertion for general n follows. The assertion for n = 2 follows 

from this by direct computation with C or by the following argument. Assume 

Jac(g]， g2)三 o.Then the rank of the Jacobi matrix is one (since the gi are non-

constant)， a凶 bythe constant rank theore眠 thereexists (local1y) an analytic 

function o : C → C such that g2(Z) =ゆ(g1(z))， for Z near some generic zOεC2. 

Deshomogenizing， we have one-variable polynomials G]， G2 such that Gi 0 π=gi， 

i = 1，2， with冗:C2
→ P 1 (C) the canonical projection. Compari時 degreesin the 
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corresponding identi ty G2 (z) =ゆ(G1(z)) between one-variable functions， we see 

that (1ocally)ゆ(z)= cz， for some non必 roconstant c and the assertion follows. 

b) This follows from a) usin 

JGC(p;!?・-JF)=(rlp;i-1)・・・ (rydf-l)-Jac(1313・ ，Pn). ロ

7. Sufficiency of 2-jets in the Finite Type Case 

ln this section we shall assume that the real-analytic hypersurface M c C川-1

is of角iteり伊eat the point P = O. ln this case one can derive [9] more in-

formation from the defining function Qフ usingcomputations with 

Q勺(z，x，Q(x，z，O))，j=l，.・・ 3凡

besides the computations with Qzk (0， x， 0) that were used in the infinite type case. 

From this and the results of Section 6 on analytic sections， we prove 

(Theorem 4) that the elements of Aut(M， p) are determined by their 2-jets at 

九 undersome generic assumptions on M. By Lemma 3， these a部ss叩umptions

(conditions i) and ii) of Theorem 4引)are slig凶i

actually its corresponding veぽersionin the fi出 etype ca詑);theぱ'oretl町 imply

holomorphic non制 degeneracy，and even for n = 1 they do not imply finite non-

degeneracy. Moreoverフ inthe case n = 2， an example below [9] (of a白山:elynon-

degenerate hypersurface that does not satisfy i)) shows that these assumptions are 

minimal， while if n = 1， our問 sultextends Theorem 4.1 of [9]， which shows that 

finite type implies 2-jet determination for elements in Aut(M， p). 

As in Section 2， let M be given in normal coordinates at 0 by (1). We define 

([9]) the invariant so (which is finite i百 M is of finIte type at 0) by 

soニ min{bεNIlIQ戸(0，x， 0) 1= O} (47) 

As a side note， so is only slightly related to the invariants of Section 2. 

Namely， if so <∞then mo <∞and in fact mo豆so，and it is easy to see that 

equality does not hold in general. lf mo <∞and μ。=0， then mo = so， therefore 

finite type holds， but conversely finite type does not imply μ。=0.
For this section， it is convenient to use the functions r(b) (X)， for s E N'¥ 

defined by expanding Q at τ= 0 W.r.t the variables z: 

Q(z，x，O)芸 2二日n川 X)Zb (48) 

These are related with the functions de会nedin Section 1， by r(b)(x) = qk(b)O(X)/b!， 

where k(b) denotes the index in ^ that defines the same derivative as b E NI1
. 
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For j = 1，.・・，n，and zOεcn， we denote by 

円=可。¥x)言 2JibizpoBJ町ZO)x
b

ぅ (49) 

a homogeneous polynomial of degree so in (x 1，・・.，Xn) 

丁目OREM4. Let M c CI1+I， n ミ 1，be a rωl皿αnalytichypersuゆcewhich is of 

戸附etype αt a point p = 0 E M and let (z， w)εCI1+1 be normal coordinates for M 

at O. 

Assume that 

i) there exists B c {Ibl = so}， IBI =民 suchthat 

Jαc(in(r(b) )bεB)手0 (50) 

and 

ii) for zO small， generic in Cぺ

hc(PizO)? ，pf))#0 (51 ) 

Then e白ω1υM附)沼erηyelement的nAt叫，[{川tベ(M，p刈)お d佐似et的e臼ern刈

REMARK. By a proof similar to that of Proposition 1， (using derivatives in 

Zb only， where b εNI1， Ibl = so)， it follows that so is invariant under change of 

nonnal coordinates at 0 and that the functions (rb(X)lbl=so) transfonn formally as 

(18) where we set μ。=O. 

From this (using the transfonnation law for the Jacobian under change of 

coordinates)， it is easy to see that condition i) of Theorem 4 is invariant under 

change of nonnal coordinates. 

Further， condition ii) is also invariant. lndeedラ ifz' = F(zぅw)，w' = G(z， w)， 

where H = (F， G)ε Aut(Mρ) defines a normal change of coordinates at 0， 

taking first-order derivatives in z in the main identity (9) atτ = Q(Xぅz，O)フ and

using the reality condition (3)， we obtain， as in the proof below (and without 

assuming jJ(H) = jJ(id))， relation (55) for (ご F(X，Q(X， zO， 0))， which by for-

mula (63) gives the following transfonnation law for the polynomials (乃)]5:，j5:，/P

assuming they are all not identically zero: 

(Pf)(x)??pjf)(x)) 

三 G¥ν(zo，0) -1 lacz F(zo， 0) T . (P; (F(代 0))(()ぅ・・ ，p:
1
(F(ZO，0))(())， (52) 

where (= F(X， Q(X，zO，O)) ranges over a neighborhood of 0ε Cn， since for 

zO = 0， (= F(X， 0) is an automorphism. 
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It foIlows that 

joc(pjzO) ， ?py)) 手 Oφ Jac(p~(F(ZO ， O)) うヲ pfF(只 0))) i= 0 (53) 

and from this， the invariance of condition ii)， since Z，O = F(z(¥0) is generic near 

O εC/1. 

PROOF. First， note that it su飴cesto prove tha t if H εAut(M，O) is such that 

jJ(H)ニ jJ(id)then H = id. (Indeed， if Hl， H2 are such that jJ(Hd = jJ(H2)' 
then JJ(H2 0 HJ

1
) = jJ(id) and the general case follows.) 

With the functions (r(b))¥b¥=ん (resp.(Pj)j;=l，...，n)' we shall associate (as in 

Section 6) analytic sets Z (resp. y(zO)) as follows. 

Let 

Z = {(X，OεCIl 
X C/1 I r(b)(x) = r(b)(O， Ibl = so}. (54) 

Note that (by identities (15) and (18) of Section 2 with Vo replaced by so 

and μo with 0)， the set Z is a set of equations that are necessarily satisfied by 

( = F(X，O) for all eleme凶 H= (F， G)εA叫M，O)for which jJH = jJ (id). 

Next， we define the set 

Y(ZO)工 {(x，OεCIl x CIlI graιQ(ZO，xぅQ(x，ZO，O))

-G1
中。ヲO)-lM(zod)T.gmdzQ(F(zO?0)J?C(Cぅ

F(zO，0)， 0)) = O}ぅ (55)

for small， generic zO. Here gradz is a column vector， while M = M(zO，X) denotes 
an n x n matrix with C-valued entries Mkj defined by 

M匂ニ M匂(x)三月(ZO，0)十 F作。ρ) 仏(ZO，x，Q(X，久0)). (56) 

The set y(zO) is a set of equations satisfied by ((x)三 F(X，Q(Xぅ
ZO，0)) 

Indeed， by taking derivatives W.r.t勺 atτ= Q(X， zO， 0) in (9) one sees that 

(x， ((x))εY(ZO) 

From assumption i) it follows that condition (34) of Theorem 3 is fulfilled 

for Z alo碍 thediagonal n-planeπ ロ {(x，x)I xεCIl}， while obvio凶 yZ depends 

on the トdataonly. Therefore the map X→ ((x) = F(X， 0) is l-deteffi1ined， i.e. 

F(Xぅ0)三 X・

From this it follows also that the set y(ZO) depends on the 2-data of the 

problem only. To see this， by construction， y(zO) depends on (parameters) 

GII'(六0)，Fz~(zO ， 0) and Fl~(ZO ヲ 0) ， 1豆k壬n.Of these， the first two parameters 

are obviously those of the identity. Indeed since F(z， 0) is l-determined， so are its 
z-derivatives; by formula (11)， Gl¥'(z，O) is also l-deteffi1Ined 



168 Gabriela PUTINAR 

Further， to show that Fw(zO， 0) is 2-determined， let us replace the variable 

zO with X and let us re-inspect the main identity (9) and-at stage (1)-its 

derivatives with respect to z of order so. 

1f in the latter-at stage (II)-we take one fu泊 erderivative with民 spectto 

T， and apply this at (z，τ) = 0， we get terms involving Flγ(x，O) as fol1ows 

At stage (1)， the LHT and the RHT consist of main terms with factors z回

derivatives of Q of order so， and remammg terms. 

1n the LHT， at stage (II)， the τ-derivatives of the main terms give the 2予t

dependence， while some of the remainder terms may have non開zeroて-derivative

(e.g. if mo < so，μ。=1). But， if at stage (1) a term contains a product of lower 

z-derivatives of Q， this will vanish at stage (II)， by the Leibniz rule and the 

minimality of so・Thusthe only surviving terms are those that at stage (1) do not 

contain products of z-derivatives of Q， but (by the chain rule applied to (9)) these 

can only contain faωrs of the form GlI'k山 withk豆 1(and some b) which as we 

have noted above are l-determined. 

1n the RHT， at stage (II)， the main terms produce the 2予tdependence and 

the faωrs for Fl~ (x， 0)， which coincide with those of (19) taking formal1yμ0=0 

For the remainder terms， the x-derivatives are zero by the minimality of so; the 

z-and respectively T-derivatives that survive depend on the 1-jet of H. 

1n total， (FI~ (x， 0)) 1 :s;k:S;n is determined by the Cramer formula in terms of the 

2-dataフ if

rk(oゐr(b)(x) )lbl=so， 1 :S;j:s;nニ n， (57) 

i.e. (substituting back X with zO)， F;バZO，O)is 2-determined if for zO generic the 

coeffici凶 matrixof the polynomials P)ZU)， j = 1， . • • ，n， is of maximal rank. This 

clearly holds by either one of the assumptions i) or ii). 

Let us check next that assumption ii) implies that condition (34) of Theorem 

3 holds also for the set y(zO) along the diagonal ルplanein Cn x Cn
. Differ-

entiati時 thereality condition (3) for Q at T = 0 with respect to Zj， we haveラ for

b εN" 

Q勾(z，xぅQ(x，z，O))== -Qr(z，XぅQ(xヲz，0)) . Qz/X，ム0). (58) 

From (48)， we have 

r(b)(x) == Q♂(O，xぅO)jb!， (59) 

therefore 

y(b)(Z) == Qxb(O，z，O)jb! (60) 
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and 

。ろ，r(b)(Z)== aろ・Qxb(0， z， O)jb! (61 ) 

The latter implies 

Cιιろ勺r(仇Xι，zム川，0刈0的)三 ε b ε削 Cιι勺引xb川b

(62) 

COl11帥b凶i芯m出m叫m叫n時l唱gwith (見)and using Qτ(O，x，O)三 1，we obtain， since by ii)行ZO)手O

for zO generic， 

かlX(仏)(ZO，x，Q(ι川 ))=-Zwoozy町内xb== _PyO)(X). (63) 

Using this identity， assumption ii) becomes 

Jac(inx(Qり(zO?X?C(x，zRO))))lgjgn#O? (64) 

for zO genericフ whichIs condition (34) for the set y(zO) relative to the diagonal 

n-plane. 

We may therefore apply Theorem 3， from which it follows that the map 

X → ((x) = F(x， Q(X， zO， 0)) is 2-determined 

We next show that， for fix.ed generic points zO and XOεCぺsettingτ0_ 

Q(XO， zO， 0)， the equation 

τ= Q(X，ム0) (65) 

has a solution z 1ニジ(xパ)near zO， for (xぅτ)E Cn X C near (XO，τ0). 
For this， by the finite type assumption we may choose j， 1 三三 j:::; n， and zO， 

XO generic such that 

C与(XO，ZO，O)手O. (66) 

With τo defined as above， by condition (66)， we may use the il11plicit func欄

tion theorem to solve the equationて=Q(X， (可，z')，O)for勾2Zj(x，τ，z')εC 

(where z'εCn-I
) such that可(XOパ07Z川口 zJ.Then the solution zI is defined by 

ZI (x，τ)三 (η(x，T， ZIO)， ZIO) for (x， T) near (X
O，τ0). 

孔10reover， since zI is near zO， which is generic， we have 

JGC(PY11jfl))#0. 

Finally， this imp1ies 2・.determinationfor elements in Aut(M， 0). Indeed， by ii) 

with respect to zI = zI (x，τ)， the map X → F(x， Q(X， zl (xぅτ)ぅ0))is 2-determined， 
i.e吋 by(65)う F(X，τ)is determined for (ぁτ)in an open set in Cn x C. By the 
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identity principleう thisdetermines F. Sin叫 均)using (9) at τ= 0 and the solution 

ZI(XIτ) of equation (65)， we have thatδis 2-determined， therefore H itself is 

2-determined. 口

In the case n = 2 we obtain the following corolIary. 

COROLLARY. Let M c C3 be a real-ωwlytic hypersUlプaceof finite type at 

p=OεM. 

Assume that for some 1仰 lti-indicesb1， b2ε N2 of length so， in(r(b1
)) αnd 

in(r(b2)) are not的 thepolynomial relation (44). Then the elements in Aut(M， p) 

are determined by their 2てjetsat p. 

PROOF. By Lemma 3， for n = 2 the assumption of the corollary is equivalent 

with condition i) of Theorem 4， which also implies ]，αc(r(bl人r(b2))手 O.From this 

it follows that condition ii) holds. Indeed by Lemma 3 we need only check that 

the coe伍cientmatrix of (Pl， P2) has rank 2. By (49)， two columns of this matrix 

ha ve determina以 =Jac(r(bJ)グ(b2))(Z(O))，which is non-zero for z(O) generic 口

τhe following example shows that even if the hypersurface M is finitely non-

degenerate at p， therefore finite determination by jets for elements in Aut( M， p) 

holds， one cannot obtain a universal bound for the length of jets. 

EXAMPLE ([9]). Let 1ミ2be an arbitrary integer， and let M， be the real-

analytic hypersurface in C3 defined， in coordinates (ZI，Z2， w) on C3， by 

M[ = {1m w = IzIl2
十 Re(z;Z2)}ぅ (67) 

which is 2-non-degenerate (therefore of finite type) at O. 
Then for aεC， the map H，α: C3

→ C3 given by 

Ha(ZI' Z2， w)三 (ZI)Z2 + iaz;， w) (68) 

induces an element in Az川M，O)such that JJ-1 (H，α) = JJ-I (id)， but Ha 手idfor 

α=Je O. 

Note that the assumption of Corollary 2 is not satisfied for this example， 

Indeed， Q(zぅXぅ0)三 2iz1Xl十 i(Z{X2十xiZ2)， soニ 1and r(1，O) (X)三 2iXbr(O， 1) (X)三

ixi， are in the polynomial relation (44). In partic由民 this example. shows that the 

assumptions of the corollary are minimal. 
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