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A RIGIDITY THEOREM FOR HYPERSURFACES WITH
POSITIVE MOBIUS RICCI CURVATURE IN §"*!

By
Zejun Hu* and Haizhong Lif

Abstract. Let M" (n>3) be an immersed hypersurface without
umbilic points in the (1 4 1)-dimensional unit sphere S"*!. Then M™"
is associated with a so-called Mobius form ® and a Mobius metric
g which are invariants of M" under the Mebius transformation
group of S"t!. In this paper, we show that if @ is identically zero
and the Ricci curvature Ric, is pinched: (n— 1)(n —2)/n* < Ric, <
(n? — 2n + 5)(n — 2)/[n*(n — 1)}, then it must be the case that n = 2p
and M" is M&bius equivalent to SP(1/v/2) x SP(1/+/2).

§1. Infroduction

Let x:M™— S™ be an m-dimensional submanifold in the (n+1)-
dimensional unit sphere S§”*! without umbilic point and {e;} be a local
orthonormal basis for the first fundamental form I = dx-dx with dual basis
{6:}. Let I =37, hi0; ®0; ®e, be the second fundamental form and H =
S HYy :# (o hifen the mean curvature vector of x, respectively, where {e,}
is a local orthonormal basis for the normal bundle of x. We define p? =
m/(m —1) - (|II)|* = m|{H||*), where || - || is the norm with respect to the induced
metric dx - dx on M”, then g = p*dx - dx is a Mdbius invariant and is called the
Mébius metric of x : M™ — S™! The normalized scalar curvature of g will be
denoted by R and is called the normalized M&bius scalar curvature. A basic
Mobius invariant of x, the Mobius form ‘D'—‘ZW C!6; ® e, is defined by
(cf. [12])

2000 Mathematics Subject Classification: Primary S3A30; Secondary 53B25.

Key words and phrases: Mobius geometry, Ricci curvature, scalar curvature, Mébius equivalence.
*Partially supported .by grants of NSFC and Outstanding Youth Foundation of Henan, China.
TPartially supported by the Alexander von Humboldt Stiftung and Zhongdian grant of NSFC.
Received April 10, 2003.

Revised June 20, 2004.



30 Zejun Hu and Haizhong Li

(L1) Ct = (H + 3 (hg — H6;)¢;(log p>> ,
J

where {H%} denotes the covariant derivative of the mean curvature vector field
of x in the normal bundle with respect to the basis {e;} and {e,}. We see easily
from the definition that all minimal submanifolds with constant scalar curvature
in S"! will satisfy ® = 0, and further for m = n, all hypersurfaces with constant
mean curvature and constant scalar curvature in S"*! will also satisfy ® = 0. The
Mébius form plays an important role in the Mobius differential geometry. In
a series papers by C. P. Wang, H..Li and F. Wu [8, 9, 12], the authors have
obtained a completely classification for all surfaces in S"*! with ® = 0. For the
general case m > 3, there have achieved interesting results recently (cf. [5, 7, 10]),
but to author’s knowledge, the study for submanifolds with ® =0 is far from
completed.

In this paper, we will restrict to the hypersurface case, i.e. m = n, and prove
the following locally rigidity result.

MaIN THEOREM. Let x:M" — S™! (n>3) be an immersed umbilic free
hypersurface with vanishing Mdbius form. Suppose (M",g) has pinched Ricci
curvature with

(n—1Hn-2)
12

(n*—2n+5)(n-2)
n?(n—1) ’

(1.2) < Ricy <

then Ric, = g#:_z_) with n=2p an even and M" is Mdbius equivalent to the

Einstein hypersurface SP(1/v/2) x SP(1/V/2) of S"\.
Remark 1.1, In fact, we shall prove a more general result in Theorem 4.1.

This paper is organized as follows: Section 2 is devoted to some notations
and preliminaries. In Section 3, we make calculations for a standard example
concerned with the Main Theorem whose proof is given in Section 4. The paper
ends up with an appendix as Section 5, where we prove Lemma 4.1, which is
elementary and is crucial for our proof of the Main Theorem.

Acknowledgements. The authors would like to express their thanks to Pro-
fessor U. Simon for his helps and hospitality during our research stay at TU
Berlin, where this work was carried out.
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§2. Mobius Invariants for Hypersurfaces in S"*!

In this section we define Mdbius invariants and recall structure equations for
hypersurfaces in S"*!. For more detail we refer to [12].
Let L3 be the Lorentz space, i.e., R"™ with inner product <-,-> defined by

(2.1) 6wy = —xowp + X Wi + -+ Xpg2Was2

for x = (xp, X1,...,%n42), W= (Wo,Wi,..., Wps2) € R"™3.
Let x: M" — S"™! < R"? be an immersed hypersurface of S”"*+! without
umbilics. We define the Mobius position vector Y : M" — L™ of x by
n

(22) Y =p(l,%), pP =" () - nH?) >0,

where and in sequel, for simplicity, we write H"*! as H.

Wang [12, Theorem 1.2] proved that g = {(dY,dY) = p’dx - dx is Mé&bius
invariant (cf. also [4, 11, 13]), and hence named g the Mobius metric for x.
Combining this fact and a classical theorem for Mobius equivalence of two
hypersurfaces, we have the following

TueoreM 2.1 ([12]). Two hypersurfaces x, %: M" — S™' without umbilic
points are Mobius equivalent if and only if there exists T in the Lorentz group
O(n+2,1) on L™ such that Y = YT.

Let us denote by A the Laplace operator with respect to g and define
(2.3) N = 1AY ! {AY,AY>Y
) T oon 2n? ’ ’

then we have (cf. [12])
(2.4) (AY,Y>S=—n, (AY,dY)>=0, {(AY,AY>=1+n’R,
(2:5) Y, Y)=0, (N, Y)=1, (N,N)=0,

where R is the normalized scalar curvature of g and is called the normalized
Mobius scalar curvature of x.

Let {Ei,...,E,} be a local orthonormal basis for (M" g) with dual basis
{w1,...,w,} and write ¥; = E;(Y), then from (2.2), (2.4) and (2.5), we have

(2.6) YRY)=<(Y,Ny=0, Y,Y)=06; 1<ij<n



32 Zejun Hu and Haizhong Li1

Let ¥ be the orthogonal complement to the subspace Span{Y,N, Y;,... Y,}
in L""3. Along M we have the following orthogonal decomposition:

(2.7) L™ = Span{Y,N} @ Span{Y1,..., Y,} ® V.

V is called the Mobius normal bundle of x. A local unit vector basis E = E,
for V can be written as (cf. [12])

(28) E = En+} = (H, HX+ e,H_]).

Then {Y,N,Y1,...,Y,, E} forms a moving frame in L"*3 along M".

If not otherwise stated, we will use the following range of indices throughout
this paper: 1 <1, j,k, I, t <n

We can write the structure equations as follows:

(2.9) dy = Z Yiw;,
(2.10) AN =Y Ayw;Yi+ Y CyE,
y ;
(2.11) dy,:—ZAijij—wiN+wa,)’j+ZngjE,
j j i
(2.12) dE == CiwY =Y By Y,
i -

where w;; are the components of the connection form of the Mobius metric
9, A=,  4joi®w;, ®=3",Cw; and B=3}, Bjw; ® w; are called the
Blaschke tensor, the Mobius form and the Mobius second fundamental form of x,
respectively. The relations between @, B, A and the Euclidean invariants of x are
given by (1.1) and (cf. {12])

(2.13) B = p~'(hy — HSy),
(2.14) A = —p~*[Hess;(log p) — e;(log p)e;(log p) — Hhyl

1
— 5072 (IV log pl* — 1+ H?)dy,

where Hess; and V are the Hessian matrix and the gradient with respect to
dx - dx.
The covariant derivative of C;, Ay, By are defined by



A rigidity theorem for hypersurfaces 33

(2.15) > Cijwy=dCi+ Y Gy,
J J
(2.16) S Ao =ddy+ > Agog + Y Ayow,
k k k
(2.17) > " Bjrwr =dBy+ > By + Y By
k k k

The integrability conditions for the structure equations (2.9)—(2.12) are given
by (cf. [12])

(2.18) Ay x — A, = B C; — B Cy,
(2.19) Cij— Cii=Y_(BuAy — BiA),
3
(2.20) Bjj ik — Bix,j = 6;iCx — 0 Cj,
(2.21) Riji = BBy — BBy + 0ucAj + 6 A — oy A — O Air-

Then we have the following identities (cf. [12])
(2.22) Rj=> " Ryj=—Y BuBj+1trAd;+ (n—2)4y,
3 k

_ 2_‘_11—1 . _1 2
(2.23) ZB,,»_O, > (By) =—, trA—Zi:A,»i—E’;(1+nR),

)

where Ry denote the components of the curvature tensor of g. R=
2y 2o Ry is the normalized Mobius scalar curvature of x : M” — S"+1.
The second covariant derivative of Bj are defined by

(2.24) Z B,-j,k;col = dB,‘j,k -+ Z Blj,ka),,- + Z BiLkCO]j + Z B,“] 1O -
] 1 ] 1
By exterior differentiation of {2.17), we have the following Ricci identities
(2.25) Bij i — By = Z ByRii + Z Bii Ry
! !

We get from (2.13) that

(2.26) F=p ' (S—H id)=)_ BjwE,
ij
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where S is the Weingarten operator for x: M" — S™! and we call & the
Mébius shape operator of x. For n > 3, it is easy to find that all coefficients in
(2.9)-(2.12) are determined by {g,} and thus we have

TueoreM 2.2 (see [12], [1]-[3]). Two umbilic free hypersurfaces x: M" —
S™Y and % M" — S™ (n = 3) are Mobius equivalent if and only if there exists
a diffeomorphism o : M" — M" which preserves the Mobius metric and the Mobius
shape operator.

§3. Calculation of Mobius Invariants for x : S?(a) x SP(b) — S%»+!

For the purpose of establishing the Main Theorem, we will consider in this
section the umbilic free hypersurface X : S?(a) x S?(b) — S%*! with a® +b* = 1.

We write R¥? = RP* x R?*!, Let %, : S?(a) — RP*! and %, : SP(b) — RP™!
be the standard embedding of spheres with radius a and b, respectively. Then
X = X| + X, and one of the unit normal vector of X is given by ey, = SJEI —§X. ‘
The induced Euclidean metric of X is given by I = dX, - d%| + d¥%; - d%; and the

second fundamental form of X is II = —dX-deyp, = —2d%| - d% +4d%, - dx,.
Take an orthonormal frame {e;,es,..., ey} with dual frame {6,6,...,65,} such
that dx; = Y % | Oe; and dx, = ijpﬂ O;e;, then we have

2p , bL , a 2p , 2p
(3.1) I=> (6 = ‘EZ(H") +3 >0 =" hy,6;

i=1 i=1 i=p+1 i, j=1
with

b a

(32) h,",':liéij, A]:.“:lp:_a’ }up.;_]:-"———izpzi;.

From (3.2) we see that
22h2

1 & a? — b? 2 (a* + b%)-
3 - N 2 _ NP To)
(3.3) H=o ,§=I hi=———, || iEjZl(hy) -

Note that X :.S7(a) x SP(b) — S?*! is of constant mean curvature and con-
stant length of second fundamental form, and its M&bius form is thus identically
zero. By definition

2p 2 r’ 1
34 2 HIN? - VAR A
(34) p 2p_l(ll 1||° — 2pH?7) 1 a2
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so that the Mobius metric g of X is given by

2
(3.5)  g=p’dx-dx=pd% -d% +pld%y-dFr =G, + G, = Z(wi)z,

i=1

where @; = —=2=—10;. Let us define
2p—lab

V2p — lab -
(36) Ef = ———-%——g——(:‘;, Y, = (0,6,‘), EQP.H - (H, €2p+1 + Hx)

From (2.13), the Mobius second fundamental form is given by

(37) By=bidy, bi—-=by—-Y2P 1 Vap -1

- o ===y
From (2.14) and (3.2)-(3.4), we get
=114 1, 5 50
(38) Aj=ady;, ay=--=a= pr {Zb —i(a — b7,
2p —1 1
Apy) = =ayp = sz [204_§(a2 b2)2}

The Ricci curvature and normalized scalar curvature of g can be calculated,
by (3.7), (3.8) and (2.22)

(3.9  Ru=-=Ry=(2p-(p—1p7

Rp+1,p+l = =Ry = (2p - 1)(19 - l)p-ZaZ) Ry = 0,7+,

p—1
R=— S R, =L~
2p(2p~1)z 2p?

=]

It follows that for n = 2p and if Ric, > (n — 1)(n — 2)/n?, then it must be the
case a*> =b>=1.

ReEMARk 3.1. Our example here is a Mobius isoparametric hypersurface with
two distinct principal curvatures. We note that all Mobius isoparametric hyper-
surface with two distinct principal curvatures have been classified in [7].

§4. Proof of the Main Theorem

Firstly, we state an algebraic lemma, Lemma 4.1, which will play a crucial
role in our proof of the Main Theorem. Because this lemma’s proof is not much
concerned in the theme of this article, we will leave it in section 5 as Appendix.
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Lemma 4.1. For constant X =(n—1)(n—2)/n, n=3, let Xx1,...,%;
V1,..., ¥n € R satisfy

(4.1) Sxi=X, xzC= 91.:1_2;'1;"'2 for all i,
i=1

n n n— l
(4.2) Doyi=0 Y yi=—vr.
i=1 i=1

Then we have

n

2, .4 n—1
(4.3) Z(x,-y,- + y,-) = T [X —nC, +

i=1

3

~ - 2(n— 1)
L I{X_ncn_)_Z(n 1):l_ (n : )
n n n

and the equality sign in (4.3) holds if and only if one of the following two cases

occurs
() n=2piseven and x) ="+ =x,=C,, X =nCy; yi=--- =yl =151
(i) nC, < X <nC, -l—% and n—1 of {x} equal C,, say x3=--=
Xno1=Cp, Xp=X—(n—1)C, and correspondingly yi=---= ¥, =

%[X ~nC, + 2_(1;;}_)]
Now, we shall prove the following more general theorem from which the
Main Theorem is proved immediately.

THEOREM 4.1. Let x:M" — S"™! (n>3) be an immersed umbilic free
hypersurface with vanishing Mdbius form. Suppose the curvature of (M",g) satisfy
Ricy > (n—1)(n—2)/n? and R < (n* —2n+5)(n—2)/[n(n —1))>. Then Ric, =
(n—1)(n—2)/n? n=2p is even and M" is Mobius equivalent to the Einstein
hypersurface SP(1/+/2) x S?(1//2) of S™!.

Proor. To achieve the result expected, we start with calculating the
Laplacian of the norm square of the Mobius second fundamental form.

Let x: M" — S™! be an umbilic free hypersurface with vanishing Mobius
form @ = 0. Since our consideration is of local nature, without loss of generality,
we may assume that M" is simply connected. From (2.19) and (2.20), we see that
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{Bj} is a Codazzi tensor (i.e. Bj = By, ;) and that {4;} and {Bj;} can
diagonalized simultaneously. We choose {Ei,...,E,} such that
(44) A,'j = a,-5,j, Bjj = b,‘é,j, I <i,j<n.
Now we have, by using (2.23), (2.25), (4.4) and the fact Bjx = By,
1 .
7j ik ik
= Z(Bijak)z + Z Bij (Bkk,ij + Z BmkRmijk =+ Z BimRmkjk)
INN i,j,k m m
= (By)®+ Y bibjRyi+ Y bRy
ik ij i
1
= (Biw)’+ 52(17:' — )’ Rigj.
i,k 0
From (2.21)-(2.23) and (4.4), we have
1 1
(4.6) 52(17, —b)*Ryj = zz(bf —b)*(bib; + ai + a;)
ij ij
n=17% n—1 2
- +TZa,- +nZa,'b,-
. (n-17% 2(n-1) n 2 4
= — - trA-}—n_zZ(R,,b,- +57).
From (2.23) and the assumption of the theorem, we have
(4.7) S hi=0 Z[ﬁzﬂ.
. i i ) ,~ f n
(n? —2n+5)(n—2) (n—1)(n-2)
4. i= —_ < ) R',’ =
(4.8) Z:R n(n—1)R D i>C =
Now we can apply Lemma 4.1 to obtain
- n—1 2(n—1)]?
(4.9) ;(R,','b,?' +bH) =~ ym [n(n - 1R —nC, + " J

n

~1 {n(n—1)R—ncn+2("'l)J—2("_1)2.

37

be
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From (4.6), (4.9) and (2.23), we get
1
(4.10) EZ(b,»—bj)zRW
)

s {“"—1[n(n_1)R—nCn+MJz

T n-—2 4n n

m—1)* n

;1(1+n2R)+n;}[n(n-l)R-nC,,+g(—nn——l)]}

n? n
_ -l [n(n — 1)R — nG,] |n(n — 1)R — nC, _4n=2)
T 4(n-2) " " onn—1)
>0,
where the last inequality is implied by (4.8).
From (4.5) and (4.10), we have
(4.11) By, =0, for all ijk,
and
- _ 4(n—2)
(4.12) nn—1)R=nC, or n(n—l)R:nCn—kn(n_l).

Case (I) n(n— )R =nC,.

Since (4.9) and (4.10) now become equality, from the proof of Lemma 4.1 in
section 5, we see that n=2p is even and Ry = =R, = C,, b =--- =b2 =
(n—1)/n%. Without loss of generality, we assume that

n—1 n—1

(4.13) b]———-'~=bp=—"—r, bp+l="':b2p: n

Then we have the following decomposition: TM = V| @ V>, where V; and V> are
the eigenspaces of the Mdbius shape operator & corresponding to eigenvalue
—v/n—1/n and vn— 1/n, respectively.

From (4.11), (4.13), (4.4) and (2.17), we obtain

4.14) 0=

n n n
Biokwi = dBiy + > Bira + Y Brutii
- k=1 —

k=1 k=1

= biwia +bawka = (bl - ba)wim I<i< p,p+ I1<ax< 2p,
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which gives that
(4.15) wip=0, 1<i<p p+1<ag2p,

and thus

2p
Wi Aw;,  dw, = Zwaﬁ/\a)ﬁ, l<i<p,p+l<a<p
Jj=1 = pt-1

?
(4.16) dow; =

Therefore, ¥, and ¥, are integrable and we can write M = M; x M, for
some simply connected manifolds M; and M, with dim M| = dim M, = p.
Moreover, if we define

J4 2p
g1 2260,-2, g2 = Z w;,
=1 a=p+1
then we have
(417) (Mﬂg):(thl)X(M'_’:gz)'
From (4.4), (4.13) and (2.22), we see that
. -1
(418) Ry =---=R,,=C,, or equivalently, a;=---=a, 2%17.

It follows from (2.21), (4.4), (4.13) and (4.18) that

2(n—1 .
(419) Rijk/ 2%(61‘/(5]'[ _51'16]1{); 1 < ly]vk7l < P»
2(n—1)

(4.20)  Rypo =

3 (00y0ps — 0ua0py), P+ 1<0,f,7,0 <2p,
that is, (M),g)) and (M>,g) are space forms with the same constant sectional
curvature 2(n— 1)/n?.

Let %:S7(1/v/2) x §P(1/v/2) — §™! be the hypersurface defined as in
Section 3 with @ = b = 1/+/2. Then by (3.5) the M&bius metric § of ¥ is given by
g =g, + g5, where

112

n—1

n?

n—1

(4.21) G, = d%, - d%, §, = d; - d%,.

Note that d%; - dx; (i = 1,2) have constant sectional curvature 2, from (4.19)—
(4.21) we know that (SP(1/v/2),§,;) and (M;,g;) (i =1,2) are simply connected
spaces with the same constant curvature 2(n — 1)/n*. Hence, we can find local
isometries

o;: (Mi,g;) = (SP(1/V2),g;), i=1,2.
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Then we obtain a diffeomorphism ¢ = (p,,¢,) : M" — SP(1/V/2) x §7(1/v/2)
which preserves the Mobius metric and the Moébius shape operator (cf. (3.7) and
(4.13)).

From Theorem 2.2 we know that x:M”" — S""! is Mobius equivalent to
%:8P(1//2) x §P(1//2) — S™*! which has been considered in Section 3.

Case (IT) n(n — 1)R = nC, + 2=,

Since (4.9) and (4.10) now become equality, from the proof of Lemma 4.1 in
section 5, we should have

2
n(n—l)RSnC,,ﬁ-;,

which implies 4(n — 2)/[n(n — 1)] < 2/n and thus we get n = 3. Apply Lemma 4.1
again we deduce (up to re-arranging the order of the lower index)

1 1
4.22 bi=——, by=—, b3=0;
(4.22) i 7 2= 5 3
2 8
(4.23) R =Rp = 3 Ry = 5

On the other hand, just as deriving (4.15), from (4.11) and (4.22) we can
show that w; =0, 1 <1, j <3, which imply that (M,g) has constant sectional
curvature zero. This is a contradiction to (4.23). Therefore case (II) can not
occur.

We have completed the proof of Theorem 4.1.

REMARK 4.1. We expect that Theorem 4.1 should be true without the upper
bound restriction for R. But our method depends heavily on Lemma 4.1, which is
already the best possible.

§5. Appendix: Proof of Lemma 4.1

If X =nC,, then x; =--- =x,=C,, and by (4.2)

n

51 S it =G Zy,+2y, (1)’ +Zy,

i=1
n 2
> W_}_% (Zy12> _ (i’l ;31)3’
i=1 /

which shows that (4.3) is correct, and it is also easy to see that the equality sign
in (4.3) holds if and only if (i) occurs.
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Hereafter we assume X > nC,. Define a bounded domain Q in R* by

Q={(x,») e R¥ [x=(x1,.-,X0), ¥ = (¥1,..., yn) satisfy (4.1) and (4.2)},

n—1
with boundary 9Q = () Q;, where

i=1
Q; = {(x,y) e Q|exactly i of {xi,...,x,} equal C,}.
Let us consider the function

n

Feey) =S i + 5)

i=1
defined on Q. Since Q is bounded and closed, f(x, y) will attain its minimum at
somewhere on Q. We apply the method of Lagrange’s multiplier for seeking this

minimum.
Consider the following auxiliary function

n

F(x, 9, 1,7) =Z(xiy?+y?)+1;yf+u(;y?—n; 1>+y(;xi—X)

i=1

defined on R*"*3,

If (%, ¥) is a critical point of f(x, y) in the interior of Q, then it must satisfy
the equations
oF  OF OF _ oF

-=-——‘=07

(5.2) T T T T T

OF OF OF
(5.3) —=—=—=
04  ou Oy
From (5.2) and g—)ﬁ = y? +y, we get for each i, y?+y = 0. Furthermore, by
making summation over i and using %i; =0, we obtain at the critical point
n—1 n—1

n? n?

Combining (4.7) with > i, 7, =0 we see that n must be even, say n = 2p,
and up to re-arranging the lower index we have

: 5 = n—1 _ n—1
(55) yl:~~~=yp:—T, yp+]:...: =
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From &&= 2x;y; + 4y} + 24 2uy; and (5.2), (5.5) we have

vn—1 — D — Vi —

56) nzlg 4 1)3” Loaa2n=l o 1<i<p
n n n
vn 4 — 1)vn 2vn—1

(57) 2 (=Dvn=l , 2Vr=l o pil<i<n

n3 n

Summing up (5.6) and (5.7), and using Qo% =0, we get

(5-8)
2vn -1 Z ,+—(E~———1)————+2\/n— lu=0, thus pg=-— X Z(n;—l).
nooi n? n n
Combining (5.6)-(5.8), we obtain
_)-C] :...2_)_5!):1:—-{—2\/”’:1—_],
(5.9) -y
Fprl = T X =y TS

where %; > C, implies that the parameter A satisfies

2vn— 1(X - nC,) 2\/;1— X —nG,)

n? n2

(5.10)

We have proved the following

Cram 1. f(x, y) has critical points in the interior of Q if and only if n = 2p
is even. In the case n = 2p, the critical points (X, y), which depends on A, is given
by (5.5) and (5.9) (up to re-arranging the lower index). It is easy to see that

_ _1)2
rEp ="+ 00

)

n3

and it is in fact a local minimum of f(x,y) on Q.

Our next purpose is to find out the minimum of f(x,y) on 0Q. We first
prove the following

CLamM 2. On Q,_,, it holds
n—1

(5.11) f(x,») > —%[X—nC,,%—z(nn— 1)]2+";1 [X—(n— G,

with the equality sign attainable if and only if X <nC,+2. If it is the case, then
Lemma 4.1(ii) occurs.
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Proor oF Cram 2. Without loss of generality, we assume that on Q,_,
(5.12) Xy = - =xu-1 = C,, x,,-——X—(n—-l)C,,>C,,.
By use of (4.2), we have

n—1
(5.13) =G, Zy, —(=DCIy+> v+

=1
n—1 n—
z(z) [rra?
i=]

2
"l -+ =)

P

n?

n—1 n—1 2
1
4 2
(5.14) yi= p—] (E y,-) .

From (5.13), we find that

n—1 * _ 2
(5.15) fny) = [Eyl; _nznl (X_nc,,+3(”’n_1))}

2
n~l[X_nCn+2(n 1)} +n_1{X—(n—l) :
4n n

n

n—1
n

2
> l[X—nC,,-l-z(n I)J +2 1[X——(n—1) ;
4n n n

This proves (5.11). The equality sign in (5.11) holds if and only if

(5.16) Zy, (Z y,) and Zy, = [X - nC, 2(nn— 1)]

are satisfied. Moreover, from (5.15) one see that (5.16) is possible if and only if

- 2(n — -1 2
n-1 [X—nCnJr (n 1)] < " , lLe. X <nC,+-.
2n n n n
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If it is the case, then the equality sign in (5.11) holds if

1 2(n - 1
y?z--:yﬁ_l:%[X*nCnJr—(—;—l].

This proves Claim 2.

Cram 3. For each g€{2,3,...,n— 1}, it holds on Q,_,

(5.17) f(x,y) > —%{X-nc,,ﬁ(";”rﬁ;l {X—(n—-l)C,,—%n;l}

Proor OoF CLamM 3. For given g € {2,3,...,n— 1}, we consider the function
f(x,y) being defined on Q,_,. Without loss of generality, we assume

(5.18) Xpr1=-=%=C; x>C, 1<i<q.
By use of (4.2), we have
q n n
(519) S =D xyP+C D yi+ > ¥
i=] i=1

i=q+1

q _ q q n
=Y+l -G Y Y o
=1 i=1 i=1

i=g+1

n

2 2
+- yi |l + Yi

q n—1 9
=Y %yl +——Co= G >y}
i=1

2
~ 20 =] <% 2 n ol
[C”+n(n~q)},;y’+Q(n—q)(;yi>’

with equality sign holds if and only if y?=...= yéb and ygﬂ =...=y2
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Denote Q =37, 7, then 0 < Q < =L If 0 =0, the following discussion
is trivially hold, so we will assume Q > 0. We shall find the minimum of the
function g(x, y) = Y1 | x;y? for x = (x1,...,%,) and y = (y1,...,y,) subjecting

to the constraint
q

q
(5200 > x=X-(n-q)Cy, > y¥=0 x>GC,l<i<q
i=1

i=1

Define
q q q )
(5.21) Gloy,Aw) =Y xiyi +4) xituy v
i=1 i=1 i=1

Let (X, p) be a critical point of g(x, y) under condition (5.20), then we have
at (X, )

oG _, .
. — = ) = <1<
(5.22) o, Ji+4i=0, 1<i<y,
0
(5.23) 5}6_ =2%y;+2up; =0, 1<i<gq.
From (5.22) and (5.23), we obtain j? = ... = )75 =Q/gand X = =X, =

[X — (n—¢)C,]/q. This gives

g()_c:)_)) =

= 1o

q
> w= X - (1= 0G0
=1

It is easy to check that g(%, 7) is in fact the absolute minimum of g(x, y)
under the condition (5.20). Therefore, from (5.19) and the above fact we obtain
that

520 s = e ol [ fa = e gt
“wale s (=g o)
— C"*rff(;—l)qz) o {X‘”C"‘%T
e e
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with equality sign attainable if and only if

0< 24 g91:~1—>£+nc,,~x < ""1,
2n | n(n—gq) n
or equivalently
nC,,—z(n-l) ngnC,,JrM—z(n_ 1)(].
n n(n—q)

A direct calculation shows that

n-—1 n-1?% n—g
(5.25) - C"+n2(n—q)‘ Ing

2’

{X_nc" n(n—q)

— 2n — 112 _ _
> 1[X—nC,ﬁ— (n I)] —|-n I[X—(n—l)Cn—kn ! ,
4n n n

with equality sign holds if and only if g = 1.
Now, Claim 3 follows from (5.24) and (5.25).

Finally, a direct calculation will verify the following, which shows that
f(x,y) on Q will not achieve its minimum in the interior of Q in case X > nC,.

CLAIM 4.

n—1 (n—1)>
(5.26) p X+ 3

-1
4dn

2
2(n l)} L I[X—(n—l)C,,—{—n 1 )
n n n

with equality sign holds if and only if X = nC,.
We have completed the proof of Lemma 4.1 by Claim 1~Claim 4.
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