MODELS OF PEANO ARITHMETIC AS MODULES OVER INITIAL SEGMENTS

By
Nobuya Suzuki

Abstract

Let M be a countable non-standard model of first order Peano arithmetic (PA) and I a weakly definable proper initial segment that is closed under addition, multiplication and factorial. We show that there is another model N of PA such that the structure of I-module of M coincides with that of N and the multiplication of M coincides with that of N on I but does not coincide at some $(a, b) \notin I^{2}$.

1. Introduction and Preliminaries

Let PA denote the first order Peano arithmetic formulated in the language $L=\{0,1,+, \cdot,<\}$. Let L_{0} denote the language $\{0,1,+,<\}$. Some papers, including [3] and [4], dealt with the connection between L_{0}-reducts of models of PA and their multiplicative structures. Along these lines of research, in [1], Tsuboi and Murakami considered the following question asked by M. Yasumoto.

Let M be a countable non-standard model of PA. Does there exist a model N of PA such that
(1) the structure of ordered additive semigroup of M coincides with that of N (i.e. $\left.M\left|L_{0}=N\right| L_{0}\right)$,
(2) the multiplication of M coincides with that of N on some non-standard initial segment I but does not coincide at some $(a, b) \notin I^{2}$? (i.e. ${ }^{M}\left|I={ }^{N}\right| I$ and ${ }^{M} \neq{ }^{N}$)
In [1], they showed the existence of such N and I in a strong way. They proved that for any (not necessarily countable) non-standard model M of PA, there exist a model N of PA and an initial segment I that is closed under multiplication of M and N such that
(1) $M\left|L_{0}=N\right| L_{0}$,
(2) $\cdot{ }^{M}\left|I={ }^{N}\right| I$,
(3) $a \cdot{ }^{M} a=a \cdot{ }^{N} a$ if and only if $a \in I$ for all $a \in M$.

In this paper, we prove a related result also answering the question above (see Theorem 13). Our result differs from that of [1] in the following points. First of all, we consider an arbitrary initial segment I of M satisfying minor conditions. Our model N coincides with M not only as an ordered abelian group, but also as an I-module. (We can treat $M \mid\{+\}$ as an abelian group by adding negative elements.) These two points strengthen the consequence, but we must weaken the condition 3 as below:
(3') The multiplication of M coincides with that of N on I but does not coincide at some $(a, b) \notin I^{2}$.
In the paper [4], it is proved that for any countable model of PA, the isomorphism type of the additive semigroup determines the isomorphism type of the multiplicative semigroup. If the structure of additive semigroup of M coincides with that of N, the multiplication of M is isomorphic to that of N. So to prove the statement above, we need to construct an I-module automorphism on M which does not preserve the multiplication of M (see Lemma 12).

Before going further, we need some preparations. Let M be a model of PA.

Defintion 1. Let $I \subset M$. We say that I is weakly definable if there exists an $L(M)$-formula $\phi(x, y)$ such that

$$
I=\{x \in M: M \models \phi(x, n) \text { for some } n \in \omega\} .
$$

In the definition above, we can always assume that the sets defined by $\phi(x, n)(n \in \omega)$ are increasing in n, by replacing $\phi(x, y)$ with $\phi^{\prime}(x, y)=\exists z \leq$ $y \phi(x, z)$ as necessary. We shall thus always assume this hereafter.

For the remainder of this paper, we fix a weakly definable proper initial segment $I \subset M$ that is closed under $*+*, * \cdot *$ and $*!$ where $x!=x \cdot(x-1) \cdots 1$. For example let α be an element larger than 1 in M. We define the function $f(n)$ by $f(1)=\alpha$ and $f(n+1)=f(n)$!, which is definable in M. Then

$$
I=\{x \in M: x \leq f(n) \text { for some } n \in \omega\}
$$

satisfies all the requirements stated above.
We can embed M into the ordered ring $M \cup\{-a: a \in M\}$ which is eqdefinable in M^{*}. We usually work in this extended structure, which is also de-

[^0]noted by M if there is no confusion. Similarly, we identify I with the extended structure $I \cup\{-a: a \in I\}$, which can be considered as an ordered subring of the ordered ring $M(=M \cup-M)$.

For some $a \in I$, we will define a new unary relation symbol D_{a} and a new unary function symbol f_{a} interpreted as:

- $x \in D_{a}$ if x can be divided by a;
- $f_{a}(x)=a \cdot x$.

Now let the language L_{0}^{I} of I-modules with ordering denote the set $L_{0} \cup$ $\left\{f_{a}, D_{a}: a \in I\right\}$. We consider M and N (in our theorem) as L_{0}^{I}-structures. For simplicity of notation, $f_{a}(x)$ will be written as $a x$ if there is no confusion. We can naturally consider an L-structure M as an L_{0}^{I}-structure if $I \subset M$. In other words, we can consider M as an I-module with total ordering.

We write $a \sim_{I} b$ if $D_{d}(a-b)$ holds for any nonzero $d \in I$. We write $a<_{1} b$ if $a+d<b$ holds for any $d \in I$. For an element $q=d / e(e>0)$ of the quotient field $Q(I)$ of $I, q x$ denotes the maximum element $y \in M$ with $e y \leq d x$. Let $\bar{q}=\left\langle q_{1}, \ldots, q_{n}\right\rangle$ be a tuple of elements of $Q(I)$. Let $\bar{v}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ be a tuple of elements of M with the same length as \bar{q}. We introduce a notation:

$$
\bar{q} * \bar{v}=\sum q_{i} v_{i} .
$$

For an n-tuple \bar{a} of M, we define

$$
\langle\bar{a}\rangle_{I}=\{\bar{q} * \bar{a}+d: \bar{q} \in Q(I), d \in I\} .
$$

The quantifier free type $\mathrm{qftp}(\bar{a} / A)$ of \bar{a} over A is the set of all quantifier free $L(A)$-formulas $\phi(\bar{x})$ satisfied by \bar{a}.

2. Main Result

From now on, let M be a countable non-standard model of PA and I a weakly definable proper initial segment of M that is closed under,$+ \cdot$ and !.

Lemma 2. Let $a, b \in M$ with $a<_{I} b$. Then for any $c \in M$, there exist infinitely many $d \in M$ such that $c \sim_{I} d$ and $a<d<b$.

Proof. Let $\phi(x, y, z)$ be the L-formula asserting that

$$
0<x \cdot y<z \wedge \forall w \quad(0<w \leq x \rightarrow y \text { can be divided by } w) .
$$

Putting $e=b-a$, we see that $M \models \exists y \phi(s, y, e)$ for all $s \in I$. In fact, since I is closed under • and !, we have $M \models \phi(s, s!, e)$. By overspill, there exists $t>I$ such
that $M \models \exists y \phi(t, y, e)$. Let $u \in M$ be the solution y of $\phi(t, y, e)$, then it follows that $u \sim_{I} 0$ and $t \cdot u<e$. So there exist infinitely many $m \in M$ such that $a<c+m u<b$.

Lemma 3. Let \bar{a} be an n-tuple of M and $A=\langle\bar{a}\rangle_{I}$. Then A includes I, and is closed under,+- and multiplication by $d \in Q(I)$.

Proof. First we claim that

$$
\langle\bar{a}\rangle_{I}=\{x \in M: d x=\bar{d} * \bar{a}+e, d \neq 0, \bar{d}, e \in I\} .
$$

We may assume that the length of \bar{a} equals 1 , and put $\bar{a}=a$. Let $x \in\langle a\rangle_{I}$. Then there exist $p=s / t \in Q(I)$ and $e \in I$ such that $x=p a+e$. By the definition of $p a$, there exist $r \in M(0 \leq r<t)$ such that $s a=t(p a)+r$. Since I is an initial segement and $t \in I$, it follows that $r \in I$. So $t x=t(p a+e)=t(p a)+t e=$ $s a-r+t e$. Recalling that we have identified I with $I \cup-I$, we can assume that I is closed under -. Since I is closed under,+- , and \cdot, it follows that $-r+t e \in I$.

Conversely suppose that $t x=s a+e$ for some $t>0, s$ and $e \in I$. Then there exists $r \in I(0 \leq r<t)$ such that $s a=t((s / t) a)+r$, so that $t x=t((s / t) a)+r+e$. Since $r+e$ can be divided by t, there exist $u \in M$ such that $r+e=t u$. We ramark that (1) I is an initial segment, (2) $|u|<|t u|$ and (3) $t u \in I$. So we have $u \in I$, and $x=(s / t) a+u$.

We claim that $\langle\bar{a}\rangle_{I}$ is closed under + , -. It suffices to show for the case of + . Let $x, y \in\langle\bar{a}\rangle_{I}$. Then

$$
\begin{aligned}
d x & =\bar{d} * \bar{a}+e \\
d^{\prime} y & =\bar{d}^{\prime} * \bar{a}+e^{\prime}
\end{aligned}
$$

for some $d, d^{\prime}, \bar{d}, \bar{d}^{\prime}, e$ and $e^{\prime} \in I$. By multiplying the above by d^{\prime} and d respectively, we have

$$
\begin{aligned}
& d^{\prime} d x=d^{\prime} \bar{d} * \bar{a}+d^{\prime} e \\
& d d^{\prime} y=d \bar{d}^{\prime} * \bar{a}+d e^{\prime}
\end{aligned}
$$

By adding the both sides of equations above, $d^{\prime} d(x+y)=\left(d^{\prime} \bar{d}+d \bar{d}^{\prime}\right) * \bar{a}+$ $\left(d^{\prime} e+d e^{\prime}\right)$. So $x+y \in\langle\bar{a}\rangle_{I}$.

We claim that $\langle\bar{a}\rangle_{I}$ is closed under multiplication by $s / t \in Q(I)(t>0)$. Let $x \in\langle\bar{a}\rangle_{I}$. Then $d x=\bar{d} * \bar{a}+e$ for some d, \bar{d} and $e \in I$. By the definition, there exists $r \in I(0 \leq r<t)$ such that $s x=t((s / t) x)+r$. Then we have

$$
d t((s / t) x)=s \bar{d} * \bar{a}+s e-d r
$$

and so $(s / t) x \in\langle\bar{a}\rangle_{I}$.

Lemma 4. Let \bar{a} be an n-tuple of M. Then $\langle\bar{a}\rangle_{I}$ coincides with the set of all \bar{a}-definable elements of M using quantifier free L_{0}^{I}-formulas.

Proof. Let x_{0} be an element defined by the quantifier free $L_{0}^{I}(\bar{a})$-formula $\phi(x)$. We may assume that $\phi(x)$ is of the form $\bigvee_{j} \bigwedge_{i} \phi_{i, j}(x)$ where $\phi_{i, j}(x)$ is an atomic formula or a negation of an atomic formula. A negation of atomic L_{0}^{I} formula is of the form $\neg(t(x)<s(x)), \neg(t(x)=s(x))$ or $\neg D_{d}(t(x))$ where $t(x)$, $s(x)$ are terms. If x_{0} satisfies a negation of an atomic L_{0}^{I}-formula, then x_{0} satisfies some formula of the form $t(x)<s(x), t(x)=s(x)$ or $D_{d}(t(x)-e)$ for some $e(0<e<d)$. So we may assume that $\phi_{i, j}(x)$ is an atomic formula.

We remark that x_{0} is definable by the formula $\bigwedge_{i} \phi(x)_{i, j}$ for some j. So we may assume that $\phi(x)$ is of the form $\bigwedge_{i} \phi_{i}(x)$ where $\phi_{i}(x)$ is an atomic formula.

First, we suppose that there exists i such that $\phi_{i}(x)$ is of the form $t(x)=s(x)$. We remark that $L_{0}^{I}(\bar{a})$-terms $t(x)$ and $s(x)$ are of the form $c x+\bar{d} * \bar{a}+d$ where c, d and $\bar{d} \in I$. So we have $x_{0} \in\langle\bar{a}\rangle_{I}$.

Next, we suppose that there does not exist i such that $\phi_{i}(x)$ is of the form $t(x)=s(x)$. We remark that an $L_{0}^{I}(\bar{a})$-term is of the form $c x+\bar{d} * \bar{a}+d$ where c, d and $\bar{d} \in I$. So we may assume that x_{0} is defined by some conjunction of atomic formulas as follows:

$$
\bigwedge_{i}\left(s_{i}<c_{i} x<t_{i}\right) \wedge \bigwedge_{i}\left(D_{d_{i}}\left(e_{i} x+u_{i}\right)\right)
$$

where s_{i}, t_{i}, and u_{i} are elements of $\langle\bar{a}\rangle_{I}$ and $c_{i}\left(c_{i}>0\right), d_{i}$ and e_{i} are elements of I. The first conjunction is equivalent to $s<x<t$ where $s=\max _{i}\left\{\left(1 / c_{i}\right) s_{i}\right\}$ and $t=\min _{i}\left\{\left(1 / c_{i}\right)\left(t_{i}-1\right)+1\right\}$. By Lemma 3, it follows that $s, t \in\langle\bar{a}\rangle_{I}$. Suppose that $s<_{I} t$. By Lemma 2, there exist infinitely many $d \in M$ such that $x_{0} \sim_{I} d$ and $s<d<t$. Therefore, there are infinitely many d for which the formula $\phi(x)$ holds. This is a contradiction. So we can assume that $s \not{ }_{I} t$. Since I is an initial segment, there exists $g \in I$ such that $x_{0}=s+g$ and we have $x_{0} \in\langle\bar{a}\rangle_{I}$.

Conversely, let $x_{0} \in\langle\bar{a}\rangle_{I}$. We may assume that the length of \bar{a} equals 1 , and put $\bar{a}=a$. We put $x_{0}=p a+d$, where $p=b / c \in Q(I)$, and $d \in I$. By the definition of $p a$, there exists $g \in I$ such that $b a=c\left(x_{0}-d\right)+g$ and $0 \leq g<c$. Then the $L_{0}^{I}(a)$-formula $b a=c(x-d)+g$ defines x_{0}.

Lemma 5. Let \bar{a} be an n-tuple of M. Then $\langle\bar{a}\rangle_{I}$ is weakly definable.
Proof. Let I be weakly definable by the formula $\phi(x, n)$. Let $I_{n}=\{x \in M$: $M \models \phi(x, n)\}$, so that $I=\bigcup_{n \in \omega} I_{n}$. Let $\psi(x, n)$ be the formula asserting that there exist $d(d \neq 0), \bar{d}$ and $e \in I_{n}$ such that $d x=\bar{d} * \bar{a}+e$.

By the claim in the proof of Lemma 3, $\langle\bar{a}\rangle_{I}$ is weakly definable by the formula $\psi(x, n)$.

Lemma 6. Let \bar{a} be an n-tuple of M, and let $A=\langle\bar{a}\rangle_{I}$. Then the L_{0}^{I}-quantifier free type $p(x)=\mathrm{qftp}(b / A)$ of b over A is determined by the following sets:
(1) $\left\{D_{d}(t(x)): M \models D_{d}(t(b)), d \in I, t(x)\right.$ a term in $\left.L_{0}^{I}(A)\right\}$,
(2) $\left\{\neg D_{d}(t(x)): M \vDash \neg D_{d}(t(b)), d \in I, t(x)\right.$ a term in $\left.L_{0}^{I}(A)\right\}$,
(3) $\{c<x: M \vDash c<b, c \in A\}$,
(4) $\{x<c: M \models b<c, c \in A\}$.

Proof. Let Γ be the union of the four sets above. If $b \in A$, then $p(x)$ is generated by $x=b$. It is clear that $x=b$ is equivalent to $b-1<x$ and $x<b+1$, both of which belong to Γ. So we can assume $b \notin A$. Let us consider the formula $d x<c$ in $p(x)$ where $d \in I(d>0)$ and c is an $L_{0}^{I}(A)$-term. First, suppose that $D_{d}(c)$ holds. Then we have $d((1 / d) c)=c$, and $d x<c$ is equivalent to $x<(1 / d) c$. The last formula belongs to Γ. Then we assume that $a=d((1 / d) c)+e$ for some e such that $0<e<d$. In this case, $d x<c$ is equivalent to $x<(1 / d) c+1$.

Lemma 7. Let $\sigma: \bar{a} \rightarrow \bar{b}$ be an L_{0}^{I}-isomorphism. Then σ can be extended to the L_{0}^{I}-isomorphism $\sigma^{\prime}:\langle\bar{a}\rangle_{I} \rightarrow\langle\bar{b}\rangle_{I}$ such that $\bar{p} * \bar{a}+d \mapsto \bar{p} * \bar{b}+d$, where $\bar{p} \in Q(I)$ and $d \in I$.

Proof. We may assume that the length of \bar{a} equals 1 , and so put $\bar{a}=a$ and $\bar{b}=b$. First we show that σ^{\prime} preserves addition. Let $x_{1}+x_{2}=x_{3}$, with $x_{i}=$ $p_{i} a+c_{i}, p_{i}=d_{i} / e_{i} \in Q(I)$, and $c_{i} \in I$ for $i=1,2,3$. There exist $g_{i} \in I \quad(i=1,2,3)$ such that $d_{i} a=e_{i}\left(x_{i}-c_{i}\right)+g_{i}$ and $0 \leq g_{i}<e_{i}$. Since $x_{i}=\left(d_{i} a-g_{i}\right) / e_{i}+c_{i}$, we have

$$
\left(\frac{d_{1} a-g_{1}}{e_{1}}+c_{1}\right)+\left(\frac{d_{2} a-g_{2}}{e_{2}}+c_{2}\right)=\frac{d_{3} a-g_{3}}{e_{3}}+c_{3}
$$

By multiplying both sides by $e=e_{1} e_{2} e_{3}$, this is equivalent to the quantifier free $L_{0}^{I}(a)$-formula

$$
\begin{aligned}
& \left(\left(e_{2} e_{3}\left(d_{1} a-g_{1}\right)+e c_{1}\right)+\left(e_{1} e_{3}\left(d_{2} a-g_{2}\right)+e c_{2}\right)\right. \\
& \left.\quad=e_{1} e_{2}\left(d_{3} a-g_{3}\right)+e c_{3}\right) \wedge \bigwedge_{i} D_{e_{i}}\left(d_{i} a-g_{i}\right)
\end{aligned}
$$

Since a and b have the same quantifier free type, the $L_{0}^{I}(b)$-formula obtained by replacing a in the formula above by b also holds. So we have $\sigma\left(x_{1}\right)+\sigma\left(x_{2}\right)=$ $\sigma\left(x_{3}\right)$. Similarly, we can show that σ^{\prime} is the L_{0}^{I}-isomorphism.

Definition 8. Let A be a subset of M.
(1) We say that a pair $\left(A_{-}, A_{+}\right)$is a cut of A if $A=A_{-} \cup A_{+}$and $A_{-}<A_{+}$.
(2) Let $a \notin A$. We say that a defines the cut $\left(A_{-}, A_{+}\right)$if $A_{-}<a<A_{+}$.

Lemma 9. Let \bar{a} and \bar{b} be n-tuples of M. Put $A=\langle\bar{a}\rangle_{I}$ and $B=\langle\bar{b}\rangle_{I}$. Let $\sigma: A \rightarrow B$ be an L_{0}^{I}-isomorphism with $\sigma(\bar{a})=\bar{b}$. Let a define the cut $\left(A_{-}, A_{+}\right)$of A. Then there exists $b \in M$ such that b defines the cut $\left(\sigma\left(A_{-}\right), \sigma\left(A_{+}\right)\right)$of B.

Proof. Let A be weakly definable by the $L(M)$-formula $\psi(x, n)$. Let $A_{n}=\{x \in M: M \models \psi(x, n)\}$, so that $A=\bigcup_{n \in \omega} A_{n}$. Let $c(n)=\max \{x \in M$: $\left.x<a, x \in A_{n}\right\}$ and $d(n)=\min \left\{x \in M: x>a, x \in A_{n}\right\}$. Then the $L(M)$-formula $c(n)<d(n)$ holds for every $n \in \omega$. There exist definable functions $\bar{q}(n), \bar{r}(n), l(n)$ and $m(n)$ such that
(1) $c(n)=\bar{q}(n) * \bar{a}+l(n)$ and $d(n)=\bar{r}(n) * \bar{a}+m(n)$,
(2) $\bar{q}(n), \bar{r}(n) \in Q(I)$ and $l(n), m(n) \in I$ for every $n \in \omega$.

We put $c^{\prime}(n)=\bar{q}(n) * \bar{b}+l(n)$ and $d^{\prime}(n)=\bar{r}(n) * \bar{b}+m(n)$. Since σ preserves the ordering, the $L(M)$-formula $c^{\prime}(n)<d^{\prime}(n)$ holds for every $n \in \omega$. By overspill, there exists $e>\omega$ such that $c^{\prime}(e)<d^{\prime}(e)$. As stated in the introduction, we may assume that the sets $A_{n}(n \in \omega)$ are increasing in n. Therefore it follows that $\sigma\left(A_{-}\right)<c^{\prime}(e)$ and $d^{\prime}(e)<\sigma\left(A_{+}\right)$. So any element b between $c^{\prime}(e)$ and $d^{\prime}(e)$ defines the cut $\left(\sigma\left(A_{-}\right), \sigma\left(A_{+}\right)\right)$of B.

Lemma 10. Let \bar{a} be an n-tuple of M and $A=\langle\bar{a}\rangle_{I}$. Then for all $a \notin A$, there exists $b \in M$ such that a and b define the same cut of A and $a<_{I} b$.

Proof. Let I be weakly definable by the formula $\phi(x, n)$. Let A be weakly definable by the formula $\psi(x, n)$, and let $A_{n}=\{x \in M: M \vDash \psi(x, n)\}$. Let $d(n)$ be the maximum element x satisfying $\phi(x, n)$. Let $\theta(n)$ be a formula asserting that
the interval between a and $a+d(n)$ does not intersect the set A_{n}.
Then $M \models \theta(n)$ for every $n \in \omega$. In fact, if there exist $n \in \omega$ and $x \in A_{n}$ such that $a<x<a+d(n)$, then $0<x-a<d(n)$. Since I is an initial segment, $x-a \in I \subset A$. Since $x \in A$, this is contradictory to $a \notin A$. By overspill, there exits $e>\omega$ such that the interval between a and $a+d(e)$ does not intersect the set A. Since $d(e)>I$, we have $b=a+d(e)$.

Lemma 11. Let $A=\langle\bar{a}\rangle_{I}$ and $B=\langle\bar{b}\rangle_{I}$. Let σ be an L_{0}^{I}-isomorphism from A to B with $\sigma(\bar{a})=\bar{b}$. Suppose that
(1) $a \sim_{I} b$;
(2) a and b define the cut $\left(A_{-}, A_{+}\right)$of A and the cut $\left(\sigma\left(A_{-}\right), \sigma\left(A_{+}\right)\right)$of B respectively.
Then σ is extended to an L_{0}^{I}-isomorphism $\sigma^{\prime}:\langle\bar{a} a\rangle_{I} \rightarrow\langle\bar{b} b\rangle_{I}$ with $\sigma^{\prime}(a)=b$.

Proof. By Lemma 7, it suffices to show that $\operatorname{qftp}(a / A)=\operatorname{qftp}(b / B)$. By Lemma 6, we consider the following cases:

Case 1. $D_{c}(\bar{d} * \bar{a}+e a)$ holds where \bar{d} and $e \in I$. Since \bar{a} and \bar{b} have the same quantifier free type over $I, \bar{d} * \bar{a} \sim_{I} \bar{d} * \bar{b}$. Since $a \sim_{I} b, \bar{d} * \bar{a}+e a \sim_{I} \bar{d} * \bar{b}+e b$. So $D_{c}(\bar{d} * \bar{b}+e b)$ holds.

Case 2. $\bar{p} * \bar{a}+d<a$ holds where $\bar{p} \in Q(I)$ and $d \in I$. By the second condition of the lemma, $\sigma(\bar{p} * \bar{a}+d)=\bar{p} * \bar{b}+d<b$ holds.

Lemma 12. Let M be a countable non-standard model of PA, and I a weakly definable proper initial segment of M that is closed under,$+ \cdot$ and !. Then there is an L_{0}^{I}-automorphism σ of M such that $\sigma(c \cdot d) \neq \sigma(c) \cdot \sigma(d)$ for some $(c, d) \notin I^{2}$.

Proof. We fix $a \in M$ such that $a\rangle I$. Then $a^{2} \notin A=\langle a\rangle_{I}$. In fact, if $a^{2} \in A$, then there exists a formula $d x^{2}+e x+f=0$ having the solution a where $d(d \neq 0), e$ and $f \in I$. Since $a>I,\left|d a^{2}+e a+f\right|>I$. This is a contradiction.

Let $\sigma_{0}: A \rightarrow A$ be the identity mapping. By Lemmata 10 and 2 , there exists $b \neq a^{2}$ such that a^{2} and b define the same cut of A and $a^{2} \sim_{I} b$. By Lemma 11, σ_{0} can be extended to an L_{0}^{I}-isomorphism $\sigma_{1}:\left\langle a a^{2}\right\rangle_{I} \rightarrow\langle a b\rangle_{I}$. Using Lemmata 9, 10,2 and $11, \sigma_{1}$ can be extended to an L_{0}^{I}-automorphism σ on M by a back and forth argument. This automorphism does not preserve the multiplication of M. In fact, $\sigma\left(a^{2}\right)=b \neq a^{2}=\sigma(a)^{2}$.

Theorem 13. Let M be a countable non-standard model of PA, and I a weakly definable proper initial segment of M that is closed under,$+ \cdot$ and $!$. Then there exists a model N of $\mathbf{P A}$ such that
(1) $M\left|L_{0}^{I}=N\right| L_{0}^{I}$.
(2) $\cdot{ }^{M}\left|I={ }^{N}\right| I$ and $\cdot{ }^{M} \neq{ }^{N}$.

Proof. By Lemma 12, we have a model $N=\left(M \mid L_{0}^{I},{ }^{N}\right)$ of PA such that $x \cdot{ }^{N} y=\sigma^{-1}\left(\sigma(x) \cdot{ }^{M} \sigma(y)\right)$. In fact, if $\sigma\left(c \cdot{ }^{M} d\right) \neq \sigma(c) \cdot{ }^{M} \sigma(d)$, then $c \cdot{ }^{M} d \neq c \cdot{ }^{N} d$.

Acknowledgements

The author would like to thank A. Tsuboi for helpful suggestions. He also wishes to thank the referee for a careful reading of the first version of this paper and a number of corrections.

References

[1] A. Tsuboi and M. Murakami, Expanding the additive reduct of a model of Peano Arithmetic, preprint.
[2] R. Kaye, Models of Peano Arithmetic, Clarendon Press, 1991.
[3] D. Jensen and A. Ehrenfeucht, Some problems in elementary arithmetics, Fundamenta Mathematicae, vol. 92 (1976), 223-245.
[4] R. Kossak, M. Nadel and J. Schmerl, A note on the multiplicative semigroup of models of PA, J.S.L. vol. 54 No. 3 (1989), 305-318.

Graduate School of Mathmatics
University of Tsukuba
Ibaraki 305-8571, Japan
E-mail address: north90@math.tsukuba.ac.jp, nby-szk@super-r.net

[^0]: *We say that a subset A of $M^{e q}$ is $e q$-definable if it is definable in $M^{e q}$. Notice that every $e q$-definable subset of M is definable in M, and characteristics of M is preserved in $M \cup\{-a: a \in M\}$.

