MODELS OF PEANO ARITHMETIC AS MODULES OVER INITIAL SEGMENTS

By

Nobuya Suzuki

Abstract. Let M be a countable non-standard model of first order Peano arithmetic (PA) and I a weakly definable proper initial segment that is closed under addition, multiplication and factorial. We show that there is another model N of PA such that the structure of I-module of M coincides with that of N and the multiplication of M coincides with that of N and the multiplication of M coincides with that of N on I but does not coincide at some $(a,b) \notin I^2$.

1. Introduction and Preliminaries

Let **PA** denote the first order Peano arithmetic formulated in the language $L = \{0, 1, +, \cdot, <\}$. Let L_0 denote the language $\{0, 1, +, <\}$. Some papers, including [3] and [4], dealt with the connection between L_0 -reducts of models of **PA** and their multiplicative structures. Along these lines of research, in [1], Tsuboi and Murakami considered the following question asked by M. Yasumoto.

Let M be a countable non-standard model of **PA**. Does there exist a model N of **PA** such that

- the structure of ordered additive semigroup of M coincides with that of N (i.e. M|L₀ = N|L₀),
- (2) the multiplication of M coincides with that of N on some non-standard initial segment I but does not coincide at some $(a,b) \notin I^2$? (i.e. $\cdot^M | I = \cdot^N | I$ and $\cdot^M \neq \cdot^N$)

In [1], they showed the existence of such N and I in a strong way. They proved that for any (not necessarily countable) non-standard model M of **PA**, there exist a model N of **PA** and an initial segment I that is closed under multiplication of M and N such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 03H15; Secondary 03C62.

Key words and phrases. nonstandard model, countable model, Peano arithmetic, etc.

Received March 28, 2003.

Revised August 30, 2004.

Nobuya Suzuki

- (1) $M|L_0 = N|L_0$,
- $(2) \cdot {}^M|I = \cdot {}^N|I,$
- (3) $a \cdot M a = a \cdot N a$ if and only if $a \in I$ for all $a \in M$.

In this paper, we prove a related result also answering the question above (see Theorem 13). Our result differs from that of [1] in the following points. First of all, we consider an arbitrary initial segment I of M satisfying minor conditions. Our model N coincides with M not only as an ordered abelian group, but also as an *I*-module. (We can treat $M|\{+\}$ as an abelian group by adding negative elements.) These two points strengthen the consequence, but we must weaken the condition 3 as below:

(3') The multiplication of M coincides with that of N on I but does not coincide at some $(a, b) \notin I^2$.

In the paper [4], it is proved that for any countable model of **PA**, the isomorphism type of the additive semigroup determines the isomorphism type of the multiplicative semigroup. If the structure of additive semigroup of M coincides with that of N, the multiplication of M is isomorphic to that of N. So to prove the statement above, we need to construct an *I*-module automorphism on M which does not preserve the multiplication of M (see Lemma 12).

Before going further, we need some preparations. Let M be a model of PA.

DEFINITION 1. Let $I \subset M$. We say that I is weakly definable if there exists an L(M)-formula $\phi(x, y)$ such that

 $I = \{ x \in M : M \models \phi(x, n) \text{ for some } n \in \omega \}.$

In the definition above, we can always assume that the sets defined by $\phi(x,n)$ $(n \in \omega)$ are increasing in *n*, by replacing $\phi(x, y)$ with $\phi'(x, y) = \exists z \leq y \phi(x, z)$ as necessary. We shall thus always assume this hereafter.

For the remainder of this paper, we fix a weakly definable proper initial segment $I \subset M$ that is closed under $* + *, * \cdot *$ and *! where $x! = x \cdot (x - 1) \cdots 1$. For example let α be an element larger than 1 in M. We define the function f(n) by $f(1) = \alpha$ and f(n+1) = f(n)!, which is definable in M. Then

$$I = \{x \in M : x \le f(n) \text{ for some } n \in \omega\}$$

satisfies all the requirements stated above.

We can embed M into the ordered ring $M \cup \{-a : a \in M\}$ which is eqdefinable in M^* . We usually work in this extended structure, which is also de-

20

^{*} We say that a subset A of M^{eq} is eq-definable if it is definable in M^{eq} . Notice that every eq-definable subset of M is definable in M, and characteristics of M is preserved in $M \cup \{-a: a \in M\}$.

noted by M if there is no confusion. Similarly, we identify I with the extended structure $I \cup \{-a : a \in I\}$, which can be considered as an ordered subring of the ordered ring $M (= M \cup -M)$.

For some $a \in I$, we will define a new unary relation symbol D_a and a new unary function symbol f_a interpreted as:

• $x \in D_a$ if x can be divided by a;

• $f_a(x) = a \cdot x$.

Now let the language L_0^I of *I*-modules with ordering denote the set $L_0 \cup \{f_a, D_a : a \in I\}$. We consider M and N (in our theorem) as L_0^I -structures. For simplicity of notation, $f_a(x)$ will be written as ax if there is no confusion. We can naturally consider an *L*-structure M as an L_0^I -structure if $I \subset M$. In other words, we can consider M as an *I*-module with total ordering.

We write $a \sim_I b$ if $D_d(a-b)$ holds for any nonzero $d \in I$. We write $a <_I b$ if a+d < b holds for any $d \in I$. For an element q = d/e (e > 0) of the quotient field Q(I) of I, qx denotes the maximum element $y \in M$ with $ey \le dx$. Let $\bar{q} = \langle q_1, \ldots, q_n \rangle$ be a tuple of elements of Q(I). Let $\bar{v} = \langle v_1, \ldots, v_n \rangle$ be a tuple of elements of M with the same length as \bar{q} . We introduce a notation:

$$\bar{q} * \bar{v} = \sum q_i v_i$$

For an *n*-tuple \bar{a} of M, we define

$$\langle \bar{a} \rangle_I = \{ \bar{q} * \bar{a} + d : \bar{q} \in Q(I), d \in I \}.$$

The quantifier free type $qftp(\bar{a}/A)$ of \bar{a} over A is the set of all quantifier free L(A)-formulas $\phi(\bar{x})$ satisfied by \bar{a} .

2. Main Result

From now on, let M be a countable non-standard model of **PA** and I a weakly definable proper initial segment of M that is closed under +, \cdot and !.

LEMMA 2. Let $a, b \in M$ with $a <_I b$. Then for any $c \in M$, there exist infinitely many $d \in M$ such that $c \sim_I d$ and a < d < b.

PROOF. Let $\phi(x, y, z)$ be the *L*-formula asserting that

 $0 < x \cdot y < z \land \forall w \quad (0 < w \le x \rightarrow y \text{ can be divided by } w).$

Putting e = b - a, we see that $M \models \exists y \phi(s, y, e)$ for all $s \in I$. In fact, since I is closed under \cdot and !, we have $M \models \phi(s, s!, e)$. By overspill, there exists t > I such

that $M \models \exists y \phi(t, y, e)$. Let $u \in M$ be the solution y of $\phi(t, y, e)$, then it follows that $u \sim_I 0$ and $t \cdot u < e$. So there exist infinitely many $m \in M$ such that a < c + mu < b.

LEMMA 3. Let \tilde{a} be an n-tuple of M and $A = \langle \bar{a} \rangle_I$. Then A includes I, and is closed under +, - and multiplication by $d \in Q(I)$.

PROOF. First we claim that

$$\langle \bar{a} \rangle_I = \{ x \in M : dx = \bar{d} * \bar{a} + e, d \neq 0, \bar{d}, e \in I \}.$$

We may assume that the length of \bar{a} equals 1, and put $\bar{a} = a$. Let $x \in \langle a \rangle_I$. Then there exist $p = s/t \in Q(I)$ and $e \in I$ such that x = pa + e. By the definition of pa, there exist $r \in M$ $(0 \le r < t)$ such that sa = t(pa) + r. Since I is an initial segment and $t \in I$, it follows that $r \in I$. So tx = t(pa + e) = t(pa) + te = sa - r + te. Recalling that we have identified I with $I \cup -I$, we can assume that I is closed under -. Since I is closed under +, -, and \cdot , it follows that $-r + te \in I$.

Conversely suppose that tx = sa + e for some t > 0, s and $e \in I$. Then there exists $r \in I$ $(0 \le r < t)$ such that sa = t((s/t)a) + r, so that tx = t((s/t)a) + r + e. Since r + e can be divided by t, there exist $u \in M$ such that r + e = tu. We ramark that (1) I is an initial segment, (2) |u| < |tu| and (3) $tu \in I$. So we have $u \in I$, and x = (s/t)a + u.

We claim that $\langle \bar{a} \rangle_I$ is closed under +, -. It suffices to show for the case of +. Let $x, y \in \langle \bar{a} \rangle_I$. Then

$$dx = \bar{d} * \bar{a} + e,$$
$$d'y = \bar{d}' * \bar{a} + e'$$

for some d, d', \overline{d} , $\overline{d'}$, e and $e' \in I$. By multiplying the above by d' and d respectively, we have

$$d'dx = d'd * \bar{a} + d'e,$$
$$dd'v = d\bar{d}' * \bar{a} + de'.$$

By adding the both sides of equations above, $d'd(x + y) = (d'\tilde{d} + d\tilde{d}') * \bar{a} + (d'e + de')$. So $x + y \in \langle \bar{a} \rangle_I$.

We claim that $\langle \bar{a} \rangle_I$ is closed under multiplication by $s/t \in Q(I)$ (t > 0). Let $x \in \langle \bar{a} \rangle_I$. Then $dx = \bar{d} * \bar{a} + e$ for some d, \bar{d} and $e \in I$. By the definition, there exists $r \in I$ $(0 \le r < t)$ such that sx = t((s/t)x) + r. Then we have

$$dt((s/t)x) = sd * \bar{a} + se - dr$$

and so $(s/t)x \in \langle \bar{a} \rangle_I$.

LEMMA 4. Let \bar{a} be an n-tuple of M. Then $\langle \bar{a} \rangle_I$ coincides with the set of all \bar{a} -definable elements of M using quantifier free L_0^I -formulas.

PROOF. Let x_0 be an element defined by the quantifier free $L_0^I(\bar{a})$ -formula $\phi(x)$. We may assume that $\phi(x)$ is of the form $\bigvee_j \bigwedge_i \phi_{i,j}(x)$ where $\phi_{i,j}(x)$ is an atomic formula or a negation of an atomic formula. A negation of atomic L_0^I -formula is of the form $\neg(t(x) < s(x))$, $\neg(t(x) = s(x))$ or $\neg D_d(t(x))$ where t(x), s(x) are terms. If x_0 satisfies a negation of an atomic L_0^I -formula, then x_0 satisfies some formula of the form t(x) < s(x), t(x) = s(x) or $D_d(t(x) - e)$ for some $e \ (0 < e < d)$. So we may assume that $\phi_{i,j}(x)$ is an atomic formula.

We remark that x_0 is definable by the formula $\bigwedge_i \phi(x)_{i,j}$ for some *j*. So we may assume that $\phi(x)$ is of the form $\bigwedge_i \phi_i(x)$ where $\phi_i(x)$ is an atomic formula.

First, we suppose that there exists *i* such that $\phi_i(x)$ is of the form t(x) = s(x). We remark that $L_0^I(\bar{a})$ -terms t(x) and s(x) are of the form $cx + \bar{d} * \bar{a} + d$ where *c*, *d* and $\bar{d} \in I$. So we have $x_0 \in \langle \bar{a} \rangle_I$.

Next, we suppose that there does not exist *i* such that $\phi_i(x)$ is of the form t(x) = s(x). We remark that an $L_0^I(\bar{a})$ -term is of the form $cx + \bar{d} * \bar{a} + d$ where *c*, *d* and $\bar{d} \in I$. So we may assume that x_0 is defined by some conjunction of atomic formulas as follows:

$$\bigwedge_i (s_i < c_i x < t_i) \land \bigwedge_i (D_{d_i}(e_i x + u_i))$$

where s_i , t_i , and u_i are elements of $\langle \bar{a} \rangle_I$ and c_i $(c_i > 0)$, d_i and e_i are elements of *I*. The first conjunction is equivalent to s < x < t where $s = max_i\{(1/c_i)s_i\}$ and $t = min_i\{(1/c_i)(t_i - 1) + 1\}$. By Lemma 3, it follows that $s, t \in \langle \bar{a} \rangle_I$. Suppose that $s <_I t$. By Lemma 2, there exist infinitely many $d \in M$ such that $x_0 \sim_I d$ and s < d < t. Therefore, there are infinitely many *d* for which the formula $\phi(x)$ holds. This is a contradiction. So we can assume that $s \not<_I t$. Since *I* is an initial segment, there exists $g \in I$ such that $x_0 = s + g$ and we have $x_0 \in \langle \bar{a} \rangle_I$.

Conversely, let $x_0 \in \langle \bar{a} \rangle_I$. We may assume that the length of \bar{a} equals 1, and put $\bar{a} = a$. We put $x_0 = pa + d$, where $p = b/c \in Q(I)$, and $d \in I$. By the definition of pa, there exists $g \in I$ such that $ba = c(x_0 - d) + g$ and $0 \le g < c$. Then the $L_0^I(a)$ -formula ba = c(x - d) + g defines x_0 .

LEMMA 5. Let \bar{a} be an n-tuple of M. Then $\langle \bar{a} \rangle_I$ is weakly definable.

PROOF. Let *I* be weakly definable by the formula $\phi(x, n)$. Let $I_n = \{x \in M : M \models \phi(x, n)\}$, so that $I = \bigcup_{n \in \omega} I_n$. Let $\psi(x, n)$ be the formula asserting that

there exist $d \ (d \neq 0), \ \bar{d}$ and $e \in I_n$ such that $dx = \bar{d} * \bar{a} + e$.

By the claim in the proof of Lemma 3, $\langle \bar{a} \rangle_I$ is weakly definable by the formula $\psi(x, n)$.

LEMMA 6. Let \bar{a} be an n-tuple of M, and let $A = \langle \bar{a} \rangle_I$. Then the L_0^I -quantifier free type p(x) = qftp(b/A) of b over A is determined by the following sets:

- (1) $\{D_d(t(x)): M \models D_d(t(b)), d \in I, t(x) \text{ a term in } L_0^I(A)\},\$
- (2) $\{\neg D_d(t(x)) : M \models \neg D_d(t(b)), d \in I, t(x) \text{ a term in } L_0^I(A)\},\$
- (3) $\{c < x : M \models c < b, c \in A\},\$
- (4) $\{x < c : M \models b < c, c \in A\}.$

PROOF. Let Γ be the union of the four sets above. If $b \in A$, then p(x) is generated by x = b. It is clear that x = b is equivalent to b - 1 < x and x < b + 1, both of which belong to Γ . So we can assume $b \notin A$. Let us consider the formula dx < c in p(x) where $d \in I$ (d > 0) and c is an $L_0^I(A)$ -term. First, suppose that $D_d(c)$ holds. Then we have d((1/d)c) = c, and dx < c is equivalent to x < (1/d)c. The last formula belongs to Γ . Then we assume that a = d((1/d)c) + e for some e such that 0 < e < d. In this case, dx < c is equivalent to x < (1/d)c + 1.

LEMMA 7. Let $\sigma: \bar{a} \to \bar{b}$ be an L_0^I -isomorphism. Then σ can be extended to the L_0^I -isomorphism $\sigma': \langle \bar{a} \rangle_I \to \langle \bar{b} \rangle_I$ such that $\bar{p} * \bar{a} + d \mapsto \bar{p} * \bar{b} + d$, where $\bar{p} \in Q(I)$ and $d \in I$.

PROOF. We may assume that the length of \bar{a} equals 1, and so put $\bar{a} = a$ and $\bar{b} = b$. First we show that σ' preserves addition. Let $x_1 + x_2 = x_3$, with $x_i = p_i a + c_i$, $p_i = d_i/e_i \in Q(I)$, and $c_i \in I$ for i = 1, 2, 3. There exist $g_i \in I$ (i = 1, 2, 3)such that $d_i a = e_i(x_i - c_i) + g_i$ and $0 \le g_i < e_i$. Since $x_i = (d_i a - g_i)/e_i + c_i$, we have

$$\left(\frac{d_1a-g_1}{e_1}+c_1\right)+\left(\frac{d_2a-g_2}{e_2}+c_2\right)=\frac{d_3a-g_3}{e_3}+c_3.$$

By multiplying both sides by $e = e_1 e_2 e_3$, this is equivalent to the quantifier free $L_0^I(a)$ -formula

$$((e_2e_3(d_1a - g_1) + ec_1) + (e_1e_3(d_2a - g_2) + ec_2))$$

= $e_1e_2(d_3a - g_3) + ec_3) \land \bigwedge D_{e_i}(d_ia - g_i).$

Since a and b have the same quantifier free type, the $L_0^I(b)$ -formula obtained by replacing a in the formula above by b also holds. So we have $\sigma(x_1) + \sigma(x_2) = \sigma(x_3)$. Similarly, we can show that σ' is the L_0^I -isomorphism.

24

DEFINITION 8. Let A be a subset of M.

- (1) We say that a pair (A_-, A_+) is a *cut* of A if $A = A_- \cup A_+$ and $A_- < A_+$.
- (2) Let $a \notin A$. We say that a defines the cut (A_-, A_+) if $A_- < a < A_+$.

LEMMA 9. Let \bar{a} and \bar{b} be n-tuples of M. Put $A = \langle \bar{a} \rangle_I$ and $B = \langle \bar{b} \rangle_I$. Let $\sigma : A \to B$ be an L_0^I -isomorphism with $\sigma(\bar{a}) = \bar{b}$. Let a define the cut (A_-, A_+) of A. Then there exists $b \in M$ such that b defines the cut $(\sigma(A_-), \sigma(A_+))$ of B.

PROOF. Let A be weakly definable by the L(M)-formula $\psi(x,n)$. Let $A_n = \{x \in M : M \models \psi(x,n)\}$, so that $A = \bigcup_{n \in \omega} A_n$. Let $c(n) = max\{x \in M : x < a, x \in A_n\}$ and $d(n) = min\{x \in M : x > a, x \in A_n\}$. Then the L(M)-formula c(n) < d(n) holds for every $n \in \omega$. There exist definable functions $\bar{q}(n)$, $\bar{r}(n)$, l(n) and m(n) such that

(1) $c(n) = \bar{q}(n) * \bar{a} + l(n)$ and $d(n) = \bar{r}(n) * \bar{a} + m(n)$,

(2) $\bar{q}(n), \bar{r}(n) \in Q(I)$ and $l(n), m(n) \in I$ for every $n \in \omega$.

We put $c'(n) = \bar{q}(n) * \bar{b} + l(n)$ and $d'(n) = \bar{r}(n) * \bar{b} + m(n)$. Since σ preserves the ordering, the L(M)-formula c'(n) < d'(n) holds for every $n \in \omega$. By overspill, there exists $e > \omega$ such that c'(e) < d'(e). As stated in the introduction, we may assume that the sets A_n $(n \in \omega)$ are increasing in n. Therefore it follows that $\sigma(A_-) < c'(e)$ and $d'(e) < \sigma(A_+)$. So any element b between c'(e) and d'(e) defines the cut $(\sigma(A_-), \sigma(A_+))$ of B.

LEMMA 10. Let \bar{a} be an n-tuple of M and $A = \langle \bar{a} \rangle_I$. Then for all $a \notin A$, there exists $b \in M$ such that a and b define the same cut of A and $a <_I b$.

PROOF. Let *I* be weakly definable by the formula $\phi(x, n)$. Let *A* be weakly definable by the formula $\psi(x, n)$, and let $A_n = \{x \in M : M \models \psi(x, n)\}$. Let d(n) be the maximum element x satisfying $\phi(x, n)$. Let $\theta(n)$ be a formula asserting that

the interval between a and a + d(n) does not intersect the set A_n .

Then $M \models \theta(n)$ for every $n \in \omega$. In fact, if there exist $n \in \omega$ and $x \in A_n$ such that a < x < a + d(n), then 0 < x - a < d(n). Since I is an initial segment, $x - a \in I \subset A$. Since $x \in A$, this is contradictory to $a \notin A$. By overspill, there exits $e > \omega$ such that the interval between a and a + d(e) does not intersect the set A. Since d(e) > I, we have b = a + d(e).

LEMMA 11. Let $A = \langle \bar{a} \rangle_I$ and $B = \langle \bar{b} \rangle_I$. Let σ be an L_0^I -isomorphism from A to B with $\sigma(\bar{a}) = \bar{b}$. Suppose that

Nobuya Suzuki

- (1) $a \sim_I b;$
- (2) a and b define the cut (A_-, A_+) of A and the cut $(\sigma(A_-), \sigma(A_+))$ of B respectively.

Then σ is extended to an L_0^I -isomorphism $\sigma': \langle \bar{a}a \rangle_I \to \langle \bar{b}b \rangle_I$ with $\sigma'(a) = b$.

PROOF. By Lemma 7, it suffices to show that qftp(a/A) = qftp(b/B). By Lemma 6, we consider the following cases:

Case 1. $D_c(\bar{d} * \bar{a} + ea)$ holds where \bar{d} and $e \in I$. Since \bar{a} and \bar{b} have the same quantifier free type over I, $\bar{d} * \bar{a} \sim_I \bar{d} * \bar{b}$. Since $a \sim_I b$, $\bar{d} * \bar{a} + ea \sim_I \bar{d} * \bar{b} + eb$. So $D_c(\bar{d} * \bar{b} + eb)$ holds.

Case 2. $\bar{p} * \bar{a} + d < a$ holds where $\bar{p} \in Q(I)$ and $d \in I$. By the second condition of the lemma, $\sigma(\bar{p} * \bar{a} + d) = \bar{p} * \bar{b} + d < b$ holds.

LEMMA 12. Let M be a countable non-standard model of \mathbf{PA} , and I a weakly definable proper initial segment of M that is closed under +, \cdot and !. Then there is an L_0^I -automorphism σ of M such that $\sigma(c \cdot d) \neq \sigma(c) \cdot \sigma(d)$ for some $(c, d) \notin I^2$.

PROOF. We fix $a \in M$ such that a > I. Then $a^2 \notin A = \langle a \rangle_I$. In fact, if $a^2 \in A$, then there exists a formula $dx^2 + ex + f = 0$ having the solution *a* where d ($d \neq 0$), *e* and $f \in I$. Since a > I, $|da^2 + ea + f| > I$. This is a contradiction.

Let $\sigma_0: A \to A$ be the identity mapping. By Lemmata 10 and 2, there exists $b \neq a^2$ such that a^2 and b define the same cut of A and $a^2 \sim_I b$. By Lemma 11, σ_0 can be extended to an L_0^I -isomorphism $\sigma_1: \langle aa^2 \rangle_I \to \langle ab \rangle_I$. Using Lemmata 9, 10, 2 and 11, σ_1 can be extended to an L_0^I -automorphism σ on M by a back and forth argument. This automorphism does not preserve the multiplication of M. In fact, $\sigma(a^2) = b \neq a^2 = \sigma(a)^2$.

THEOREM 13. Let M be a countable non-standard model of PA, and I a weakly definable proper initial segment of M that is closed under $+, \cdot$ and !. Then there exists a model N of PA such that

- (1) $M|L_0^I = N|L_0^I$.
- (2) $\cdot^{M}|I = \cdot^{N}|I$ and $\cdot^{M} \neq \cdot^{N}$.

PROOF. By Lemma 12, we have a model $N = (M|L_0^I, \cdot^N)$ of **PA** such that $x \cdot^N y = \sigma^{-1}(\sigma(x) \cdot^M \sigma(y))$. In fact, if $\sigma(c \cdot^M d) \neq \sigma(c) \cdot^M \sigma(d)$, then $c \cdot^M d \neq c \cdot^N d$.

26

Acknowledgements

The author would like to thank A. Tsuboi for helpful suggestions. He also wishes to thank the referee for a careful reading of the first version of this paper and a number of corrections.

References

- [1] A. Tsuboi and M. Murakami, Expanding the additive reduct of a model of Peano Arithmetic, preprint.
- [2] R. Kaye, Models of Peano Arithmetic, Clarendon Press, 1991.
- [3] D. Jensen and A. Ehrenfeucht, Some problems in elementary arithmetics, Fundamenta Mathematicae, vol. 92 (1976), 223-245.
- [4] R. Kossak, M. Nadel and J. Schmerl, A note on the multiplicative semigroup of models of PA, J.S.L. vol. 54 No. 3 (1989), 305-318.

Graduate School of Mathmatics University of Tsukuba Ibaraki 305-8571, Japan E-mail address: north90@math.tsukuba.ac.jp, nby-szk@super-r.net