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MODELS OF PEANO ARITHMETIC AS MODULES OVER
INITIAL SEGMENTS

By

Nobuya Suzukt

Abstract. Let M be a countable non-standard model of first order
Peano arithmetic (PA) and I a weakly definable proper initial seg-
ment that is closed under addition, multiplication and factorial. We
show that there is another model N of PA such that the structure
of I-module of M coincides with that of N and the multiplication
of M coincides with that of N on I but does not coincide at some
(a,b) ¢ I

1. Introduction and Preliminaries

Let PA denote the first order Peano arithmetic formulated in the language
L={0,1,+,-,<}. Let Ly denote the language {0, 1, +, <}. Some papers, including
(3] and [4], dealt with the connection between Lg-reducts of models of PA and
their multiplicative structures. Along these lines of research, in [1], Tsuboi and
Murakami considered the following question asked by M. Yasumoto.

Let M be a countable non-standard model of PA. Does there exist a model
N of PA such that

(1) the structure of ordered additive semigroup of M coincides with that of

N (1e M!Lo = NIL()),
(2) the multiplication of M coincides with that of N on some non-standard
initial segment 7 but does not coincide at some (a,5) ¢ I*? (i.e. - M|I = -N|I
and -M # .M
In [1], they showed the existence of such NV and I in a strong way. They proved
that for any (not necessarily countable) non-standard model M of PA, there exist
a model N of PA and an mitial segment 7 that is closed under multiplication of
M and N such that

2000 Mathematics Subject Classification. Primary 03H1S; Secondary 03C62.

Key words and phrases. nonstandard model, countable model, Peano arithmetic, etc.
Received March 28, 2003.

Revised August 30, 2004.



20 Nobuya Suzuki

(1) M|Lo = N|Lq,

2) M7= M,

(3 aMa=a-Naif and only if ae! for all ae M.

In this paper, we prove a related result also answering the question above
(see Theorem 13). Our result differs from that of [1] in the following points.
First of all, we consider an arbitrary initial segment I of M satisfying minor
conditions. Our model N coincides with M not only as an ordered abelian group,
but also as an /-module. (We can treat M|{+} as an abelian group by adding
negative elements.) These two points strengthen the consequence, but we must
weaken the condition 3 as below:

(3’) The multiplication of M coincides with that of N on [ but does not

coincide at some (a,b) ¢ I°.

In the paper [4], it is proved that for any countable model of PA, the
isomorphism type of the additive semigroup determines the isomorphism type of
the multiplicative semigroup. If the structure of additive semigroup of M co-
incides with that of N, the multiplication of M is isomorphic to that of N. So
to prove the statement above, we need to construct an /-module automorphism
on M which does not preserve the multiplication of M (see Lemma 12).

Before going further, we need some preparations. Let M be a model of PA.

DeriniTION 1. Let I « M. We say that I is weakly definable if there exists
an L(M)-formula ¢(x, y) such that

I={xeM: M ¢(x,n) for some new}.

In the definition above, we can always assume that the sets defined by
#(x,n) (new) are increasing in n, by replacing ¢(x,y) with ¢'(x,y) =3z <
y#(x,z) as necessary. We shall thus always assume this hereafter.

For the remainder of this paper, we fix a weakly definable proper initial
segment ] < M that is closed under % + %, * - x and *! where x! = x-(x—1)---1.
For example let « be an element larger than 1 in M. We define the function f(n)
by f(1)=o and f(rn+1) = f(n)l, which is definable in M. Then

I={xeM:x< f(n) for some new}

satisfies all the requirements stated above.
We can embed M into the ordered ring MU{—a:ae M} which is eg-
definable in M*. We usually work in this extended structure, which is also de-

*We say that a subset 4 of M“ is eg-definable if it is definable in M 9. Notice that every eg-definable
subset of M is definable in M, and characteristics of M is preserved in MU{~a:ae M}.
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noted by M if there is no confusion. Similarly, we identify I with the extended
structure /U {—a: a eI}, which can be considered as an ordered subring of the
ordered ring M (= MU-M).

For some a eI, we will define a new unary relation symbol D, and a new
unary function symbol f, interpreted as:

* xe D, if x can be divided by a;

c falx)=a-x.

Now let the language L{ of I-modules with ordering denote the set LoU
{fuo,Da:aeI}. We consider M and N (in our theorem) as L{-structures. For
simplicity of notation, f,(x) will be written as ax if there is no confusion. We can
naturally consider an L-structure M as an L}-structure if 7 = M. In other words,
we can consider M as an I-module with total ordering.

We write a ~; b if Dy(a — b) holds for any nonzero d € I. We write a <; b
if a+d < b holds for any d € I. For an element g = d/e (e > 0) of the quotient
field Q(I) of I, gx denotes the maximum element y e M with ey < dx. Let
gd=14q1,..-,qny be a tuple of elements of Q(I). Let & = (vy,...,v,) be a tuple of
elements of M with the same length as . We introduce a notation:

gxb= Z qiv;.
For an n-tuple @ of M, we define
(ay; ={Gxa+d:qeQU),del}.
The quantifier free type gftp(a/A4) of @ over A is the set of all quantifier free
L(A)-formulas ¢(x) satisfied by a.
2. Main Result
From now on, let M be a countable non-standard model of PA and I a

weakly definable proper initial segment of M that is closed under +, - and !

LemMa 2. Let a,be M with a <; b. Then for any c € M, there exist infinitely
many d € M such that ¢ ~;d and a <d < b.
Proor. Let ¢(x,y,z) be the L-formula asserting that
0<x-y<zaVw (0<w<x— y can be divided by w).

Putting e = b — a, we see that M | 3yd(s, y,e) for all sel. In fact, since I is
closed under - and !, we have M = ¢(s,s!,e). By overspill, there exists ¢ > I such
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that M [ 3yé(t, y,e). Let ue M be the solution y of ¢(z, y,e), then it fol-
lows that u# ~;0 and 7-u < e. So there exist infinitely many m e M such that
a<c+mu<b. U

LemMma 3. Let a be an n-tuple of M and A = {ay;. Then A includes I, and is
closed under +, — and multiplication by d e Q(I).

Proor. First we claim that
@y;={xeM:dc=dxa+ed+#0,decl}.

We may assume that the length of 4 equals 1, and put d=a. Let x e {a);.
Then there exist p =s/te Q(I) and e el such that x = pa+e. By the defini-
tion of pa, there exist re M (0 <r < ¢) such that sa = t(pa) +r. Since I is an
initial segement and 7 I, it follows that re I. So tx = t(pa+e) = t(pa) + te =
sa — r + te. Recalling that we have identified I with /U —1I, we can assume that /
is closed under —. Since I is closed under +, —, and -, it follows that —r +te e I.

Conversely suppose that tx = sa + e for some ¢ > 0, s and e € I. Then there
exists re I (0 <r < 1) such that sa = #((s/t)a) +r, so that tx = t((s/t)a) +r+e.
Since r + e can be divided by ¢, there exist u € M such that r + e = tu. We ramark
that (1) I is an initial segment, (2) |u| < |tu| and (3) fuc . So we have u € I, and

x = (s/ta+u.
We claim that (@), is closed under +, —. It suffices to show for the case of
+. Let x,y e {a);. Then
dx=dx*a+e,
dy=d xa+e

for some d, d’, d, d’, e and e’ € I. By multiplying the above by 4’ and d
respectively, we have
ddx=d'd«a+d'e,

dd'y = dd' « a+ de'.

By adding the both sides of equations above, d'd(x + y) = (d'd +dd’)*a+
(d'e+de’). So x+ yelay,.

We claim that {@); is closed under multiplication by s/re Q(I) (¢ > 0). Let
x €<a@);. Then dx =dxa+e for some d, d and e e I. By the definition, there
exists re ! (0 <r <) such that sx = t((s/t)x) +r. Then we have

dt((s/O)x) = sd * @+ se — dr,
and so (s/t)x € {@)y.
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Lemma 4. Let @ be an n-tuple of M. Then {a); coincides with the set of all
a-definable elements of M using quantifier free Li-formulas.

Proor. Let xo be an element defined by the quantifier free L} (a)-formula
#(x). We may assume that ¢(x) is of the form \/, /\; #: j(x) where @, ;(x) is an
atomic formula or a negation of an atomic formula. A negation of atomic L]-
formula is of the form —(#(x) < s(x)), —(¢t(x) = s(x)) or —Dy(¢(x)) where #(x),
s(x) are terms. If x( satisfies a negation of an atomic L{-formula, then xo satis-
fies some formula of the form #(x) < s(x), #(x) = s(x) or Dy(¢(x) — e) for some
e (0 <e<d). So we may assume that ¢, ;(x) is an atomic formula.

We remark that xo is definable by the formula A\, ¢(x); ; for some j. So we
may assume that ¢(x) is of the form /\,¢,(x) where ¢;(x) is an atomic formula.

First, we suppose that there exists 7 such that ¢;(x) is of the form #(x) = s(x).
We remark that L} (@)-terms ¢(x) and s(x) are of the form cx + d * @+ d where c,
d and del. So we have xg e {a@);.

Next, we suppose that there does not exist / such that ¢,(x) is of the form
#(x) = s(x). We remark that an L}(a)-term is of the form cx + d * @ + d where c,
d and d e I. So we may assume that xo is defined by some conjunction of atomic
formulas as follows:

N (si < eix < t;) A N (Dg,(eix + u;))

! 11

where s;, #;, and u; are elements of <{a@); and ¢; (¢; > 0), d; and e; are elements
of I. The first conjunction is equivalent to s < x < ¢t where s = max;{(1/¢;)s;}
and ¢t = mim;{(1/¢;)(t; — 1) + 1}. By Lemma 3, it follows that s, ¢ € {a@),. Suppose
that s <; . By Lemma 2, there exist infinitely many d € M such that xy ~;d
and s < d < t. Therefore, there are infinitely many d for which the formula ¢(x)
holds. This is a contradiction. So we can assume that s <, ¢. Since 7 is an initial
segment, there exists g € I such that xo = s+ g and we have xp € {a);.
Conversely, let x¢ € <@);. We may assume that the length of a equals 1, and
put @ =a. We put xo = pa+d, where p=>b/ce Q(I), and d e I. By the defi-
nition of pa, there exists g € I such that ba = c(xy — d) +g and 0 < g < ¢. Then
the L}(a)-formula ba = c¢(x — d) + g defines xo. O

Lemma 5. Let a be an n-tuple of M. Then {ay; is weakly definable.

Proor. Let I be weakly definable by the formula ¢(x,n). Let I, = {xe M :
M | $(x,n)}, so that =1, _ 1. Let ¥(x,n) be the formula asserting that

there exist d (d #0),d and ee I, such that dx=dxa+e.
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By the claim in the proof of Lemma 3, (@), is weakly definable by the formula

W(x,n).

LEMMA 6. Let a be an n-tuple of M, and let A = {a);. Then the L{-quantifier
free type p(x) = qftp(b/A) of b over A is determined by the following sets:

(1) {Da(t(x)) : M |= Da(2(b)),d € I,¢(x) a term in L{(A)},

(2) {~Da(t(x)) : M |= Dy (1(b)),d € I,1(x) a term in L{(A)},

(3) {c<x:MEc<b,ce A},

(4) {x<c:MEb<cceAd}

Proor. Let T be the union of the four sets above. If be 4, then p(x)
is generated by x =b. It is clear that x =5 is equivalent to »—1 < x and
x < b+ 1, both of which belong to I'. So we can assume b ¢ 4. Let us consider
the formula dx < ¢ in p(x) where d e (d >0) and c is an L](A)-term. First,
suppose that Dy(c) holds. Then we have d((1/d)c) =c¢, and dx < ¢ is equiv-
alent to x < (1/d)c. The last formula belongs to I'. Then we assume that
a=d((1/d)c)+e for some e such that 0 <e <d. In this case, dx <c¢ is
equivalent to x < (1/d)c+ 1. O

LeMMA 7. Leto:a— b be an Li-isomorphism. Then o can be extended to the
Li-isomorphism o' : {@); — {bY; such that p+a+dw pxb+d, where pe Q(I)
and del.

Proor. We may assume that the length of @ equals 1, and so put a=a
and b = b. First we show that ¢’ preserves addition. Let x| + x; = x3, with x; =
pia+ci, pi=dife;e QI), and ¢; eI for i=1,2,3. There exist g;e I (i=1,2,3)
such that dia = e;(x; — ¢;) + g; and 0 < g; < e;. Since x; = (dia — g)/e; + ci;, we

have
dia — dra — dza —
(—L——@Hl) + <——~2a gz+cz):—-—3a B
4] (] €3

By multiplying both sides by e = ejees, this is equivalent to the quantifier free
L{(a)-formula

((e2e3(dia — g1) + ect) + (ere3(daa — g2) + ec2)
= e1ez(dsa — g3) +ec3) A \ D, (dia — g;).
Since a and b have the same quantifier free type, the L] (b)-formula obtained by

replacing a in the formula above by b also holds. So we have a(x) 4 o(x3) =
o(x3). Similarly, we can show that ¢’ is the L}-isomorphism. O
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DEerFINITION 8. Let A be a subset of M.
(1) We say that a pair (4-,4,)isacurof Aif A=4A_UA; and A_ < 4,.
(2) Let a¢ A. We say that a defines the cut (4.,4;) if A_ <a< A4,.

LEMMA 9. Let @ and b be n-tuples of M. Put A ={ay; and B = (b),. Let
o: A~ B be an Li-isomorphism with 6(G) = b. Let a define the cut (A_,A4.) of
A. Then there exists be M such that b defines the cut (o(A.),0(Ay)) of B.

Proor. Let A be weakly definable by the L(M)-formula (x,n). Let
Ay={xeM:MEy(x,n)}, so that A=) _ A, Let c(n)=max{xe M :
x<a,x€A,} and d(n) =min{xe M :x >a,x€ A,}. Then the L(M)-formula
c(n) < d(n) holds for every n e w. There exist definable functions g(r), #(n), I(n)
and m(n) such that

(1) ¢(n) =gn)*a+I(n) and d(n) = F(n) * a+ m(n),

(2) g(n),7(n) e Q(I) and I(n),m(n) eI for every ne w.

We put ¢'(n) = g(n) b+ 1(n) and d’ ( ) = #(n) * b+ m(n). Since o preserves the
ordering, the L(M)-formula ¢’(n) < d’'(n) holds for every new. By overspill,
there exists e > w such that ¢/(¢) < d’ ( e). As stated in the introduction, we may
assume that the sets 4, (n€w) are increasing in n. Therefore it follows that
ag(A_) < c'(e) and d’(e) < a(A.). So any element b between c’(e) and d’(e)
defines the cut (6(A4-),0(4,)) of B. O

LemMAa 10. Let a be an n-tuple of M and A = {(a);. Then for all a ¢ A, there
exists be M such that a and b define the same cut of A and a <;b.

Proor. Let 7 be weakly definable by the formula ¢(x,n). Let 4 be weakly
definable by the formula ¥(x,n), and let 4, = {xe M : M E y/(x,n)}. Let d(n)
be the maximum element x satisfying ¢(x,n). Let 6(n) be a formula asserting that

the interval between a and a + d(n) does not intersect the set A,,.

Then M k= 0(n) for every new. In fact, if there exist n e w and x € 4, such
that a<x <a-+d(n), then 0 < x—a <d(n). Since I is an initial segment,
x—ael c A. Since x € A4, this is contradictory to a ¢ A. By overspill, there exits
e > o such that the interval between a and a + d(e) does not intersect the set 4.
Since d(e) > I, we have b =a+d(e). O

Lemma 11. Let A = {(ay; and B = (b);. Let ¢ be an L}-isomorphism from A
to B with o(a@) = b. Suppose that
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(1) a~y b;
(2) @ and b define the cut (A-,A.) of A and the cut (0(A-),0(A)) of B
respectively.
Then o is extended to an L}-isomorphism o' : {aay; — {(bb)y; with o'(a) = b.

Proor. By Lemma 7, it suffices to show that qftp(a/A4) = qftp(b/B). By
Lemma 6, we consider the following cases:

Case 1. D.(d * @+ ea) holds where d and e € I. Since @ and b have the same
quantifier free type over I, d ¥ @ ~;d * b. Since a ~yb, d * @+ ea ~;d x b + eb. So
D.(d * b+ eb) holds.

Case 2. pxa+d < a holds where pe Q(I) and d € I. By the second con-
dition of the lemma, o(p*a+d) = p*b+d < b holds. O

LemMa 12. Let M be a countable non-standard model of PA, and I a
weakly definable proper initial segment of M that is closed under +, - and . Then
there is an L}-automorphism o of M such that o(c-d) # o(c) - a(d) for some
(c.d) ¢ 1.

Proor. We fix ae M such that a>J. Then a*¢ A= <a)d,;. In fact, if
a® € A, then there exists a formula dx? + ex + f = 0 having the solution @ where
d (d+#0), e and fel. Since a> I, |da®> +ea+ f| > I. This is a contradiction.

Let g5 : A — A be the identity mapping. By Lemmata 10 and 2, there exists
b # a* such that a®> and b define the same cut of 4 and a? ~; b. By Lemma 11, o
can be extended to an L-isomorphism o, : {aa’); — (ab),. Using Lemmata 9,
10, 2 and 11, oy can be extended to an L!-automorphism ¢ on M by a back and
forth argument. This automorphism does not preserve the multiplication of M. In
fact, o(a?) = b # a® = o(a)>. a

THeOREM 13. Let M be a countable non-standard model of PA, and I a
weakly definable proper initial segment of M that is closed under +, - and . Then
there exists a model N of PA such that

(1) ML} = N|L{.

2) -M|I=-NI and M # .V,

Proor. By Lemma 12, we have a model N = (M|L{,-¥) of PA such
that x-Vy=0"Yo(x) Ma(y). In fact, if o(c-Md)#a(c) Ma(d), then
cMd#cVd. O
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