
A Simplicial Branch-and-Bound Algorithm Conscious of

Special Structures in Concave Minimization Problems

Takahito Kuno∗and Hidetoshi Nagai†

Graduate School of System and Information Engineering

University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

July 2005

Abstract

In this paper, we develop a simplicial branch-and-bound algorithm for gener-

ating globally optimal solutions to concave minimization problems with low rank

nonconvex structures. We propose to remove all additional constraints imposed

on the usual linear programming relaxed problem. Therefore, in each bounding

operation, we solve a linear programming problem whose constraints are exactly

the same as the target problem. Although the lower bound worsens as a natu-

ral consequence, we offset this weakness by using an inexpensive bound tightening

procedure based on Lagrangian relaxation. After giving a proof of the convergence,

we report a numerical comparison with existing algorithms.

Key words: Global optimization, concave minimization, low-rank nonconvexity,

branch-and-bound algorithm, Lagrangian relaxation.

1 Introduction

In this paper, we develop a branch-and-bound algorithm to globally solve a class of con-

cave minimization problems, to which many of low rank nonconvex structured problems

reduce. Let us consider a concave function F defined on IRn and suppose the noncon-

vexity rank [9] is r << n − r, or the linearity [17] is n − r >> r. It is known [9]

that F (Dxx + Dyy) is affine for some orthogonal matrix D = [Dx,Dy] ∈ IRn×n with

Dx ∈ IRn×r when the value of each component of x is fixed. The matrix D is referred

to as a certificate for the nonconvexity rank of F . If we try to minimize such a kind of

concave functions, we can move the affine part of the objective function into the set of

constraints by means of an auxiliary variable. The resulting problem has a characteristic

structure that the variables involved in the objective function are a small fraction of the

∗The author was partially supported by the Grand-in-Aid for Scientific Research (C) 17560050 from

the Japan Society for the Promotion of Sciences. E-mail: takahito@cs.tsukuba.ac.jp
†E-mail: nagai@syou.cs.tsukuba.ac.jp

1

whole variables, e.g., in the case associated with the above F , we have a total of n + 1

variables but r + 1 among them in the objective function. Although it might not be

easy to identify D in general, there are a number of cases with obvious certificates. A

typical example is the production-transportation problem [12, 14, 20, 21]. This is a class

of minimum concave-cost flow problems and minimizes the sum of concave production

and linear transportation costs on a bipartite network (see Example 3.1 in Section 3).

Even if the objective function is not concave, we can reduce the problem to our

intended class in some cases. Let us consider the linear multiplicative programming

problem [8, 10, 13, 18]: ∣∣∣∣∣∣∣

minimize
r∏

i=1

(aT

i y + ai0)

subject to By = b, y ≥ 0,

(1.1)

where aT

i y+ai0 ≥ 0 for any feasible solution y ∈ IRn−r. Although the objective function

of (1.1) is not concave but pseudoconcave [2]. we can reduce it to a concave minimization

problem by introducing a vector x = (x1, . . . , xr)
T of auxiliary variables:

∣∣∣∣∣∣∣∣∣∣

minimize
r∑

i=1

log(xi)

subject to xi − aT

i y = ai0, i = 1, . . . , r

By = b, (x,y) ≥ 0.

(1.2)

In general, the number r of affine functions in the objective function of (1.1) is assumed

to be far less than the dimensionality n − r of y. Therefore, the variables involved in

the objective function of (1.2) are again a small portion of the whole variables.

If the objective function is separable into a sum of univariate functions like (1.2),

problems of our class can be solved rather efficiently using the rectangular branch-

and-bound algorithm [4, 10, 12]. To deal with a wider range of problems, we do not

assume the separability throughout this paper. We then tailor the simplicial branch-and-

bound algorithm [5] to suit the class and to facilitate application of some procedures for

improving the efficiency. In Section 2, after giving the problem settings, we will review

the basic workings of the standard simplicial branch-and-bound algorithm. In Section

3, we will explore some difficulties in the implementation of existing bound procedures

and propose to simplify the linear programming relaxation to be solved at each iteration.

This simplification still guarantees the convergence property but deteriorates the quality

of the lower bound on the optimal value. To prevent rapid growth of the branching tree,

we will develop an additional bounding procedure based on Lagrangian relaxation in

Section 4. Lastly, we will close the paper with a report of computational comparison

among the proposed algorithm and two existing ones in Section 5.

2 Problem settings and the simplicial algorithm

Let f be a continuously differentiable concave function defined on an open convex set in

a subspace IRr of IRn (r ≤ n). The problem we consider in this paper is of minimizing

2

the function f over a polyhedron in IRn:
∣∣∣∣∣

minimize z = f(x)

subject to Ax + By = b, (x,y) ≥ 0,
(2.1)

where A ∈ IRm×r, B ∈ IRm×(n−r) and b ∈ IRm. Let us denote the polyhedron and its

projection onto the subspace IRr, respectively, by

W = {(x,y) ∈ IRn | Ax + By = b, (x,y) ≥ 0}

X = {x ∈ IRr | ∃y, (x,y) ∈ W}.

Using these notations, (2.1) can be embedded in IRr:

P

∣∣∣∣∣
minimize z = f(x)

subject to x ∈ X,

which we refer to as the master problem. We assume that W is nonempty and bounded.

The same is then true for the projection X; and so we have

v = max{eTx | x ∈ X},

where e ∈ IRr is the all-ones vector. We also assume the domain of f large enough to

include an r-simplex

∆1 = {x ∈ IRr | eTx ≤ v, x ≥ 0}.

Unless the objective function f is separable, the simplicial branch-and-bound algo-

rithm [4, 11] is a standard method for locating a globally optimal solution of (2.1), or

equivalently of P. In this algorithm, while subdividing ∆1 ⊃ X into smaller simplices

∆i, i ∈ L, such that
⋃

i∈L

∆i = ∆1, int(∆p) ∩ int(∆q) = ∅ if p 6= q,

we solve subproblems of the master problem P one after another. The feasible set of

each subproblem is restricted by ∆i; and we need to solve the following with ∆ = ∆i

for every i ∈ L:

P(∆)

∣∣∣∣∣
minimize z = f(x)

subject to x ∈ X ∩ ∆.

This problem belongs to the same class of concave minimization problems as P and

cannot be solved directly. Therefore, subproblems are recursively processed according

to three basic steps:

Let L := {1} and k := 1. Repeat Steps 1–3 until L = ∅.

Step 1 (subproblem selection). Take an appropriate index ik out of L and

let ∆ := ∆ik .

Step 2 (bounding operation). Compute a lower bound zk on the optimal

value z(∆) of P(∆). If f(x∗) ≤ zk for the best feasible solution x∗ to P

obtained so far, discard ∆ from further consideration.

Step 3 (branching operation). Otherwise, divide the simplex ∆ into two

subsimplices ∆2k, ∆2k+1 and add their indices to L. Let k := k + 1.

3

If X ∩∆ = ∅, then z(∆) is thought of as +∞. When L eventually becomes empty in

this process, we see that the current incumbent x∗ is an optimal solution to the master

problem P. However, the set would not be empty in general, and the algorithm generates

an infinite sequence of simplices {∆k` | ` = 1, 2, . . .} such that

∆k1 ⊃ ∆k2 ⊃ · · · , X ∩

(
∞⋂

`=1

∆k`

)
6= ∅. (2.2)

To guarantee the finiteness of the algorithm, we have to introduce a tolerance ε > 0 to

the backtracking criterion f(x∗) ≤ zk of Step 2 as follows:

f(x∗) − zk ≤ ε, or f(x∗) − zk ≤ ε|f(x∗)|, (2.3)

and besides subdivide ∆1 in an exhaustive manner that makes ∩∞
`=1∆

k` a singleton. The

simplest exhaustive subdivision rule is bisection. We may select the longest edge of ∆

and divide it at a fixed ratio of α ∈ (0, 1/2]. In fact, this can be done easily if ∆ is given

as the convex hull ∆ = conv({v1, . . . ,vr+1}) of its r + 1 vertices v1, . . . ,vr+1. Suppose

vp–vq is the longest edge of ∆. Letting v = (1 − α)vp + αvq, then we have

∆2k = conv ({vj | j 6= p} ∪ {v}) , ∆2k+1 = conv ({vj | j 6= q} ∪ {v}) .

Note that the initial simplex ∆1 has vertices 0, ve1, . . . , ver, where ej ∈ IRr is the jth

unit vector. Thus, starting from ∆1 = conv({0, ve1, . . . , ver}), we can generate ∆i for

all i ∈ L in a well-defined way. If the bisection rule is adopted and ε > 0, we can obtain

an approximate optimal solution to P after a finite number of steps, using either of the

usual selection rules at Step 1:

Depth first. The set L is maintained as a list of stack. An index ik is taken from the

top of L; and 2k, 2k + 1 are put back to the top at Step 3.

Best bound. The set L is maintained as a list of priority queue. An index ik of least zk

is taken out of L.

The most time-consuming step in the simplicial branch-and-bound algorithm is the

bounding operation of Step 2. In the next section, we will discuss troublesome issues

with Step 2 faced by existing algorithms and their resolution in treating our target

problem (2.1)

3 Linear programming relaxations

At Step 2 of the usual simplicial branch-and-bound algorithm, we replace the objective

function of P(∆) by its convex envelope g on ∆ and solve a relaxed problem:

Q(∆)

∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X ∩ ∆.

4

The convex envelope g is an affine function which agrees with f at the r + 1 vertices of

∆. Since ∆ is given by the vertices, we can easily determine the value of g at any point

x ∈ ∆ if x is given as a convex combination of vj, j = 1, . . . , r + 1:

x =
r+1∑

j=1

ζjvj,
r+1∑

j=1

ζj = 1, ζ = (ζ1, . . . , ζr+1)
T ≥ 0. (3.1)

By the concavity of f , we have

g(x) =
r+1∑

j=1

ζjf(vj) ≤ f(x), ∀x ∈ ∆. (3.2)

Substituting (3.1) into Q(∆), we have an equivalent linear programming problem of n+1

variables: ∣∣∣∣∣∣∣∣

minimize w = fTζ

subject to AVζ + By = b

eTζ = 1, (ζ,y) ≥ 0,

(3.3)

where

f = [f(v1), . . . , f(vr+1)]
T, V = [v1, . . . ,vr+1]. (3.4)

Obviously, (3.3) has an optimal solution (ζ◦,y◦) if and only if X ∩ ∆ 6= ∅. Since the

inequality in (3.2) holds, we can set the lower bound zk to

w◦ =

{
fTζ◦ if X ∩ ∆ 6= ∅

+∞ otherwise.

When X∩∆ 6= ∅, we also have a feasible solution x◦ to the subproblem P(∆), and hence

to the master problem P, by letting x◦ = Vζ◦. We can therefore update the incumbent

x∗ with x◦ if necessary.

The troublesome issues are

(a) each (3.3) associated with Q(∆) has a different set of constraints, and

(b) no (3.3) inherits the structure of the target problem (2.1).

Despite the vast number of (3.3)’s we have to solve before convergence, the solutions to

previous ones are of little use in solving the current one, because they might be neither

feasible nor dual feasible, due to (a). Moreover, even if the target problem (2.1) has some

favorable structure, like network flow, (b) prevents us from applying efficient algorithms

to (3.3). These issues, however, have been resolved partly in [11], as will be seen below.

3.1 Modified relaxation proposed in [11]

In [11], Kuno and Nagai have relaxed the constraint x ∈ ∆ of Q(∆) into a bounding

constraint s ≤ x ≤ t. Component of the vectors s, t ∈ IRr are defined as

si = min{vij | j = 1, . . . , r + 1}

ti = max{vij | j = 1, . . . , r + 1}

}
i = 1, . . . , r,

5

where vij denotes the ith component of vj. Let

Γ(∆) = {x ∈ IRr | s ≤ x ≤ t}.

Then their alternative to Q(∆) is written as follows:

Q(∆)

∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X ∩ Γ(∆).

They have also proposed to abandon the variable transformation (3.1). Instead, the

convex envelope g(x) = cTx + cr+1 is identified by solving a system of linear equations:

cTvj + cr+1 = f(vj), j = 1, . . . , r + 1, (3.5)

and Q(∆) is solved as a linear programming problem:

∣∣∣∣∣
minimize w = cTx

subject to Ax + By = b, s ≤ x ≤ t, y ≥ 0,
(3.6)

where

[cT, cr+1] = fT
[

V

eT

]−1

. (3.7)

If X ∩ Γ(∆) 6= ∅, then (3.6) has an optimal solution (x,y). The lower bound zk can be

set to

w =

{
cTx + cr+1 if X ∩ Γ(∆) 6= ∅

+∞ otherwise,

because w ≤ w◦ holds by the inclusion relation between the feasible sets of Q(∆) and

Q(∆).

Except for the bounding constraint s ≤ x ≤ t, each (3.6) associated with Q(∆) shares

constraints. We can solve the current (3.6) using an optimal solution to the preceding

one as the initial solution. Since the solution violates only the bounding constraint at

worst, it regains the feasibility and optimality in a very few pivoting operations of the

dual and primal simplex algorithms. Also, if (2.1) has some favorable structures, (3.6)

inherits them. Unfortunately, however, it is not that (3.6) inherits the structure of the

original low-rank nonconvex problem behind the target (2.1).

Example 3.1 Let us consider the production-transportation problem mentioned in

Section 1: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

i∈M

∑

j∈N

aijyij + f(x)

subject to
∑

j∈N

yij = xi, i ∈ M

∑

i∈M

yij = bj, j ∈ N

(x,y) ≥ 0,

(3.8)

where M = {1, . . . , r}, N = {r + 1, . . . , m}, x = (xi | i ∈ M) and y = (yij | i ∈ M, j ∈

N). We assume that the production cost f is a nonlinear and concave function on the

6

feasible set, and that the unit transportation cost aij is nonnegative for each i ∈ M

and j ∈ N . If the amount of production xi is constant for each i ∈ M , then (3.8) is

an ordinary Hitchcock problem and can be solved in polynomial time using a special-

purpose algorithm for network flow (see e.g., [1]). Introducing an additional variable

ξ ≥ 0, we have the same form as (2.1):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z = ξ + f(x)

subject to ξ −
∑

i∈M

∑

j∈N

aijyij = 0

xi −
∑

j∈N

yij = 0, i ∈ M

∑

i∈M

yij = bj, j ∈ N

(ξ,x,y) ≥ 0.

(3.9)

The linear programming representation of Q(∆) associated with (3.9) is then as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = c0ξ + cTx

subject to ξ −
∑

i∈M

∑

j∈N

aijyij = 0

xi −
∑

j∈N

yij = 0, i ∈ M

∑

i∈M

yij = bj, j ∈ N

s0 ≤ ξ ≤ t0, s ≤ x ≤ t, y ≥ 0.

(3.10)

This is not a Hitchcock problem any longer, nor even a network flow problem. To solve

(3.10), we have to use a general-purpose algorithm.

In addition to this, we have another difficulty with this modification. To obtain the

objective function of (3.6), we need to solve the linear system (3.5) for [cT, cr+1]. If we

adopt the depth-first rule at Step 1, it can be done in O(r) almost always, as shown in

[11]. However, its solution becomes numerically unstable as ∆ grows smaller, and might

fail to be computed in the worst case, due to rounding errors.

3.2 New relaxation resolving all difficulties

Both difficulties involved in the above modification can be swept away using two kinds

of relaxation in combination.

Let us denote by φ(∆) the diameter of ∆, e.g.,

φ(∆) = min{‖vp − vq‖ | p = 1, . . . , r; q = p + 1, . . . , r + 1}, (3.11)

and assume that (3.5) can be solved with sufficient precision if φ(∆) ≥ δ for some number

δ > 0. While φ(∆) ≥ δ, we drop the bounding constraint x ∈ Γ(∆) from Q(∆) and

solve

Q̃g(∆)

∣∣∣∣∣
minimize w = g(x)

subject to x ∈ X.

7

If φ(∆) becomes smaller than δ, we further replace the objective function g by a simpler

underestimating function of f . For this purpose, we first compute the gradient vector

d = ∇f(u) of f at the centroid u =
∑r+1

j=1 vj/(r + 1) of ∆. Let

dr+1 = min{f(vj) − dTvj | j = 1, . . . , r + 1}, (3.12)

and let

h(x) = dTx + dr+1.

From (3.12) and the concavity of f , we see that

h(x) ≤ f(x), ∀x ∈ ∆, (3.13)

where the equality holds at some vj fixing dr+1. We then solve the following:

Q̃h(∆)

∣∣∣∣∣
minimize w = h(x)

subject to x ∈ X.

The problem to be solved depends on the size of ∆; but in any case it is equivalent

to a linear programming problem of the same form:
∣∣∣∣∣

minimize w = θTx

subject to Ax + By = b, (x,y) ≥ 0,
(3.14)

where

[θT, θr+1] =

{
[cT, cr+1] if φ(∆) ≥ δ

[dT, dr+1] otherwise.

Since X is nonempty, (3.14) has an optimal solution (x̃, ỹ) and we have the following

lower bound on the value of P(∆):

w̃ = θTx̃ + θr+1.

Proposition 3.1 Among the values w̃, w, w◦ and z(∆) exist relationships:

w̃ ≤ w ≤ w◦ ≤ z(∆). (3.15)

Proof: Let us show the first inequality. If [θT, θr+1] = [cT, cr+1], then it follows from the

inclusion relation between the feasible sets X of Q̃g(∆) and X ∩ Γ(∆) of Q(∆). Recall

that the objective function g of both problems is a convex envelope of f , i.e., a maximal

convex function underestimating f on ∆. Therefore, we have

h(x) ≤ g(x), ∀x ∈ ∆,

which proves the case where [θT, θr+1] = [dT, dr+1].

We see from this proposition that w̃ can serve as zk at Step 2, though inferior to

w◦ and w. Problem (3.14) yielding w̃, however, has the redeeming feature that the

constraints are exactly the same as those of (2.1). Whichever of Q̃g(∆) and Q̃h(∆)

we need to solve, we can use an optimal solution to the preceding (3.14) as the initial

feasible basic solution and start the primal simplex algorithm immediately. The most

important thing is that (3.14) inherits not only the structure of (2.1) but also that of

the original problem behind it.

8

Example 3.2 Again, consider the problem (3.9) which is reduced from the production-

transportation problem (3.8). Associated with (3.9), we have the following linear pro-

gramming representation of Q̃g(∆) and Q̃h(∆):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = θ0ξ + θTx

subject to ξ −
∑

i∈M

∑

j∈N

aijyij = 0

xi −
∑

j∈N

yij = 0, i ∈ M

∑

i∈M

yij = bj, j ∈ N

(ξ,x,y) ≥ 0.

(3.16)

If we substitute the first constraint into the objective function and eliminate ξ, then

(3.16) reduces to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize w = θ0

∑

i∈M

∑

j∈N

aijyij + θTx

subject to
∑

j∈N

yij = xi, i ∈ M

∑

i∈M

yij = bj, j ∈ N

(x,y) ≥ 0,

(3.17)

which is a transshipment problem, a generalization of the Hitchcock problem, and can be

solved efficiently using the network simplex algorithm or an appropriate polynomial-time

algorithm for network flow (see [1] for details).

Example 3.3 Let us consider a more general example:
∣∣∣∣∣

minimize z = F (x,y)

subject to Ax + By = b, (x,y) ≥ 0,
(3.18)

where F is a concave function of nonconvexity rank r < n. Since the objective function

can be written as

F (Dxx + Dyy) = f(x) + aTy + a0

for some a0 ∈ IR, a ∈ IRn−r and a certificate D = [Dx,Dy] ∈ IRn×n with Dx ∈ IRn×r [9],

problem (3.18) is equivalent to
∣∣∣∣∣∣∣∣∣∣

minimize z = ξ + f(x)

subject to ξ − aTy = a0

[A,B]Dxx + [A,B]Dyy = b

Dxx ≥ 0, Dyy ≥ 0.

(3.19)

Note that we can rearrange the constants into the form of (2.1) using appropriate trans-

formations. The linear programming representation of Q̃g(∆) and Q̃h(∆) associated

with (3.19) is then as follows:
∣∣∣∣∣∣∣∣∣∣

minimize w = θ0ξ + θTx

subject to ξ − aTy = a0

[A,B]Dxx + [A,B]Dyy = b

Dxx ≥ 0, Dyy ≥ 0.

9

This problem is equivalent to the following with the same set of constraints as (3.18):
∣∣∣∣∣∣∣∣

minimize w = (θT, θ0a
T)D−1

[
x

y

]

subject to Ax + By = b, (x,y) ≥ 0.

(3.20)

4 Revised simplicial algorithm

The use of Q̃g(∆) and Q̃h(∆) in combination has yet another advantage over the ex-

isting linear programming relaxations, other than those we have seen in the preceding

section. In Q(∆), the constraint associated with ∆ is left as x ∈ Γ(∆) to guarantee the

convergence of the algorithm. Although neither Q̃g(∆) nor Q̃h(∆) has such an addi-

tional constraint, the objective function of Q̃h(∆) dominating the convergence behavior

enables us to prove it without any extra effort. On the other hand, however, both Q̃g(∆)

and Q̃h(∆) have the obvious drawback that their value w̃ is inferior to w◦ and w as the

lower bound zk on the value of P(∆). Before proceeding to the convergence analysis, let

us discuss a procedure, based on Lagrangian relaxation, for tightening w̃. In [11], it has

been reported that a similar procedure works well for tightening w.

4.1 Lagrangian relaxation for tightening w̃

For the lower bound w̃, let

G = {x ∈ IRr | θTx ≥ w̃ − θr+1},

where [θT, θr+1] = [cT, cr+1] if w̃ is yielded by Q̃g(∆); otherwise, [θT, θr+1] = [dT, dr+1].

Since X ∩ ∆ is a subset of G, no feasible solution to the subproblem P(∆) is lost if we

add x ∈ G as a constraint. The resulting problem is then equivalent to
∣∣∣∣∣∣∣∣

minimize z = f(x)

subject to Ax + By = b, (x,y) ≥ 0

x ∈ ∆, θTx ≥ w̃ − θr+1.

(4.1)

Introducing a Lagrangian multiplier λ ∈ IRm for the constraint Ax + By = b, we have

a problem:

L(∆; λ)

∣∣∣∣∣
minimize w = f(x) − λT(Ax + By − b)

subject to x ∈ ∆, y ≥ 0, θTx ≥ w̃ − θr+1,

by noting x ≥ 0 for any x ∈ ∆. If θTvj < w̃−θr+1 for each vertex vj of ∆, then L(∆; λ)

is infeasible. In that case, the hyperplane ∂G = {x ∈ IRr | θTx = w̃ − θr+1} separates

∆ from X; and we can discard ∆ because it can never contain an optimal solution to

the master problem P. In the rest of this subsection, we assume

∃j ∈ {1, . . . , r + 1}, θTvj ≥ w̃ − θr+1. (4.2)

10

Let (x(λ),y(λ)) be an optimal solution to L(∆; λ) and let

w(λ) = f(x(λ)) − λT(Ax(λ) + By(λ) − b).

Then w(λ) is a lower bound on z(∆) for any λ, as is well known (see e.g. [15]). The

question lies in how we should fix the value of λ in L(∆; λ) inexpensively so that w(λ) >

w̃ holds. To answer this, let λ be constant and consider a linear programming problem:
∣∣∣∣∣

minimize w = (θT − λTA)x − λTBy + λTb

subject to (x,y) ≥ 0,
(4.3)

which is obtained from L(∆; λ) by dropping x ∈ ∆, θTx ≥ w̃ − θr+1, and by replacing

f with its underestimating function g or h. If θT − λTA ≥ 0 and λTB ≤ 0, then (4.3)

has a trivial optimal value λTb. These conditions simultaneously ensure the feasibility

of the dual problem of (4.3):
∣∣∣∣∣∣∣∣

maximize w = bTλ

subject to ATλ ≤ θ

BTλ ≤ 0.

(4.4)

If we think of λ as a vector of variables, (4.4) is the dual problem of the linear program-

ming problem (3.14) introduced in the previous section. In other words, the value of

λ maximizing the optimal value of (4.3) is given by an optimal solution λ̃ to the dual

problem of Q̃g(∆) or Q̃h(∆). Our answer to the question is a simple one of fixing λ = λ̃

even in L(∆; λ).

Note that the dual optimal solution λ̃ is yielded as a byproduct in solving the primal

problem (3.14). Moreover, we see from the constraints of (4.4) that y(λ̃) = 0 because

the coefficient of y in the objective function of L(∆; λ̃) must be a nonnegative vector.

Therefore, deleting y from L(∆; λ̃), we may solve the following to obtain w(λ̃):
∣∣∣∣∣∣

minimize w = f(x) − λ̃
T

(Ax − b)

subject to x ∈ ∆, θTx ≥ w̃ − θr+1.
(4.5)

Proposition 4.1 Among the values w(λ̃), w̃ and z(∆) exist relationships:

w̃ ≤ w(λ̃) ≤ z(∆), (4.6)

where the first inequality holds strictly if x(λ̃) 6∈ {v1, . . . ,vr+1} and f is strictly concave

on ∆.

Proof: Let wj denote the objective function value of (4.5) at each vertex vj of ∆. Since

g is a convex envelope of f on ∆ and λ̃ satisfies the constraints of (4.4), we have

wj = f(vj) − λ̃
T

(Avj − b) = g(vj) − λ̃
T

(Avj − b)

≥ θTvj + θr+1 − λ̃
T

(Avj − b)

= (θT − λ̃
T

A)vj + λ̃
T

b + θr+1

≥ λ̃
T

b + θr+1 = w̃.

11

This, together with the concavity of f , implies that the objective function value of (4.5)

at any point in ∆ is bounded from below by w̃. Therefore, for x(λ̃) ∈ ∆, we have

w̃ ≤ f(x(λ̃)) − λ̃
T

(Ax(λ̃) − b) = w(λ̃),

by noting y(λ̃) = 0. Suppose that x(λ̃) 6∈ {v1, . . . ,vr+1}. Since x(λ̃) lies on some

vertex of ∆ ∩ ∂G, there are some vertices vp, vq of ∆ and µ ∈ (0, 1) such that x(λ̃) =

(1 − µ)vp + µvq. If f is strictly concave, we have w(λ̃) > (1 − µ)wp + µwq ≥ w̃.

Remark that w(λ̃) can be superior even to w◦ yielded by the usual relaxation Q(∆)

because Q(∆) shares the objective function with Q̃g(∆) and hence w◦ might coincide

with w̃ when x̃ ∈ ∆ and φ(∆) ≥ δ. We should also remark that w(λ̃) can be computed

in time polynomial in r if the value of f is given by oracle, though L(∆; λ̃) is a concave

minimization problem. Since the objective function of (4.5) is concave, x(λ̃) is assumed

to be a vertex of ∆ ∩ G. The number of its vertices is, however, O(r2) at most. We

need only to check the objective function value at the intersection of ∂G with each edge

vp–vq of ∆ such that vp ∈ int(G) and vq 6∈ G, as well as at each vj ∈ G.

Example 4.4 Let us continue Examples 3.1 and 3.2. If we solve (3.17) as the relaxed

problem Q̃g(∆) or Q̃h(∆) of (3.9), we cannot directly obtain the value λ̃0 of the dual

variable corresponding to the first constraint of (3.9). However, it is an easy exercise in

linear programming to show that λ̃0 = θ0 holds. Thus, L(∆; λ̃) for (3.9) is as follows:

∣∣∣∣∣∣∣

minimize w = (1 − θ0)ξ + f(x) −
∑

i∈M

λ̃ixi +
∑

j∈N

λ̃jbj

subject to (ξ,x) ∈ ∆, θ0ξ + θTx ≥ w̃ − θr+1.

Similarly, we can obtain L(∆; λ̃) for (3.19) from (3.20) in Example 3.3 without any

difficulty.

4.2 Algorithm description and convergence properties

Let us summarize the discussion so far. Recall the three basic steps of the simplicial

branch-and-bound algorithm given in Section 2. Step 2 of the bounding operation we

propose is implemented for given ε ≥ 0 and δ > 0 in two stages:

Step 2.1. If φ(∆) ≥ δ, then solve Q̃g(∆). Otherwise, solve Q̃h(∆). Let

zk := w̃. If f(x∗) − zk ≤ ε for the incumbent x∗, then discard ∆.

Step 2.2. If f(x∗) − zk > ε, then solve L(∆; λ̃) and let zk := w(λ̃). If

f(x∗) − zk ≤ ε, then discard ∆.

We may of course replace the backtracking criterion by f(x∗) − zk ≤ ε|f(x∗)|, as in

(2.3). The following is the detailed description of our simplicial algorithm for solving

the master problem P:

12

algorithm REVISED SBB

begin

compute v := max{eTx | x ∈ X} and let ∆1 := conv({0, ve1, . . . , ver});

L := {1}; z∗ := +∞; k := 1;

while L 6= ∅ do begin

select ik ∈ L and let L := L \ {ik}; ∆ := ∆ik ; /∗ Step 1 ∗/

let v1, . . . ,vr+1 denote the vertices of ∆;

φ(∆) := min{‖vp − vq‖ | p = 1, . . . , r; q = p + 1, . . . , r + 1}; /∗ Step 2.1 ∗/

if φ(∆) ≥ δ then begin

V := [v1, . . . ,vr+1]; W := [V T, e]T; /∗ Q̃g(∆) ∗/

[θT, θr+1] := [f(v1), . . . , f(vr+1)]W
−1

end

else begin

u :=
∑r+1

j=1 vj/(r + 1); d := ∇f(u); /∗ Q̃h(∆) ∗/

dr+1 := min{f(vj) − dTvj | j = 1, . . . , r + 1}; [θT, θr+1] := [dT, dr+1]

end;

solve (3.14) of minimizing θTx + θr+1 on X to compute xk := x̃ and zk := w̃;

if f(xk) < z∗ then update z∗ := f(xk) and x∗ := xk;

if z∗ − zk > ε then begin /∗ Step 2.2 ∗/

if θTvj ≥ w̃ − θr+1 for some j ∈ {1, . . . , r + 1} then begin

define (4.5) for a dual optimal solution λ̃ to (3.14); /∗ L(∆; λ̃) ∗/

solve (4.5) and update zk := w(λ̃);

if z∗ − zk > ε then begin /∗ Step 3 ∗/

select the longest edge vp–vq of ∆;

let v := (1 − α)vp + αvq for a fixed α ∈ (0, 1/2];

∆2k := conv({vj | j 6= p} ∪ {v}); ∆2k+1 := conv({vj | j 6= q} ∪ {v});

L := L ∪ {2k, 2k + 1}

end

end

end;

k := k + 1

end

end;

To analyze the convergence properties, we will first see how algorithm REVISED SBB

behaves if it does not terminate. In that case, an infinite sequence of nested simplices is

generated as in (2.2); and it shrinks to a single point because ∆ is subdivided according

to the bisection rule. Moreover, we can show the following:

Lemma 4.2 Suppose that algorithm REVISED SBB generates an infinite sequence

of simplices {∆k` | ` = 1, 2, . . . } such that

∆k1 ⊃ ∆k2 ⊃ · · · , X ∩

(
∞⋂

`=1

∆k`

)
6= ∅.

13

Then we have

lim
`→∞

(f(xk`) − zk`) = 0. (4.7)

Proof: For each ` = 1, 2, . . ., we can assume without loss of generality that φ(∆k`) < δ

and

f(xk`) > zk` ≥ hk`(xk`) = (dk`)Txk` + dk`

r+1, (4.8)

where hk` represents the objective function of Q̃h(∆
k`). Let uk` denote the centroid of

∆k` and vk` the vertex defining dk`

r+1 via (3.12). Then we have

dk` = ∇f(uk`), dk`

r+1 = f(vk`) − (∇f(uk`))Tvk`.

Also let {v′} =
⋂

∞

`=1 ∆k`. Then uk` → v′ and vk` → v′ as ` → ∞, because uk` and vk`

are points of ∆k`. Since f is assumed to be continuously differentiable, as ` → ∞ we

have

dk` → ∇f(v′), d
k`

r+1 → f(v′) − (∇f(v′))Tv′.

Also, by taking a subsequence if necessary, we have xk` → x′ for some x′ ∈ X as ` → ∞,

because xk`’s are generated in the compact set X. Therefore, as ` → ∞ we have

hk`(xk`) → (∇f(v′))T(x′ − v′) + f(v′) ≥ f(x′),

by noting the concavity of f . This, together with (4.8), implies (4.7).

The convergence of algorithm REVISED SBB follows from this lemma.

Theorem 4.3 Suppose ε = 0. If algorithm REVISED SBB terminates in finite time,

x∗ is a globally optimal solution to the master problem P. Even if not, every accumulation

point of the sequence {xk | k = 1, 2, . . . } generated with the best-bound selection rule

is a globally optimal solution to P.

Proof: If the algorithm terminates, the assertion is obvious. Assume that it does not

terminate and generates an infinite sequence of nested simplices {∆k` | ` = 1, 2, . . . }.

Since the best-bound rule is adopted, we have

zk` ≤ zi ≤ z(∆i), ∀i ∈ L

at the k`th iteration. Note that z(∆1) is the optimal value of the master problem P and

besides equals min{z(∆i) | i ∈ L}. Therefore, we have

zk` ≤ z(∆1) ≤ f(xk`), ` = 1, 2,

However, we see from Lemma 4.2 that f(xk`) − zk` → 0 as ` → ∞. This implies that

f(xk`) → z(∆1) as ` → ∞.

Corollary 4.4 When ε > 0, algorithm REVISED SBB with either of the selection

rules, depth first or best bound, terminates after a finite number of iterations and yields

a feasible solution x∗ to the master problem P such that

f(x∗) ≤ f(x) + ε, ∀x ∈ X. (4.9)

14

Proof: If the algorithm does not terminate, it generates an infinite sequence of nested

simplices {∆k` | ` = 1, 2, . . . } such that

f(xk`) − zk` ≥ f(x∗) − zk` > ε > 0, ` = 1, 2,

However, f(xk`) − zk` → 0 as ` → ∞, which contradicts the backtracking criterion.

If we adopt the other backtracking criterion f(x∗) − zk ≤ ε|f(x∗)|, then (4.9) is

replaced by

f(x∗) ≤ f(x) + ε|f(x∗)|, ∀x ∈ X,

but the corollary can be proved in the same way.

5 Numerical experiment

In this section, we present numerical results of having compared computer codes of

REVISED SBB and two existing algorithms, the one proposed in [11] and the standard

simplicial branch-and-bound algorithm (see e.g., [7, 6, 19]). We refer to those codes

here, as revsbb, sbb 1 and sbb 2, respectively. The test problem we solved is a concave

quadratic minimization problem of the form:
∣∣∣∣∣

minimize z = −(1/2)xTCTCx − σdTy

subject to A′x + B′y ≤ b′, (x,y) ≥ 0,
(5.1)

where A′ ∈ IRm′×r′

, B′ ∈ IRm′×(n′−r′), b′ ∈ IRm′

, d ∈ IRn′−r′

, C ∈ IRr′×r′

and σ is

a positive weight. Along the lines of the experiment in [11], we generated C = [cij]

so as to have two nonzero entries in each row, i.e., cr′1, cr′r′, cii and ci,i+1 for i =

1, . . . , r′− 1, where cii = cr′r′ = 1, 0 and the rest were drawn randomly from the uniform

distribution on [0.0, 1.0]. Hence, CTC has three nonzero entries at most in each row.

Also, each component of d was a uniformly random number in the interval [0.0, 1.0].

To make the feasible set bounded, b′ was an all-ones vector and each component in the

last row of [A′,B′] was fixed at 1.0/n′. Other components were all random numbers

in [−0.5, 1.0], where the percentages of zeros and negative numbers were about 20%

and 10%, respectively. Selecting various sets of parameters (m′, n′, r′, σ), we solved ten

instances of (5.1) for each set using revsbb, sbb 1 and sbb 2 on a Linux workstation

(Linux 2.4.21, Itanium2 processor 1.3GHz).

5.1 Computer codes

Each of the codes revsbb, sbb 1 and sbb 2 was written using GNU Octave (version 2.1.50)

[16], a MATLAB-like computational tool, according to the depth-first rule. To adjust

the form of (5.1) to (2.1), we introduced additional variables ξ ∈ IR, η ∈ IRm′

and

applied the codes revsbb and sbb 1 to
∣∣∣∣∣∣∣∣

minimize z = −σξ − (1/2)xTCTCTx

subject to A′x + B′y + η = b′, (x,y) ≥ 0

ξ − dTy = 0, (ξ, η) ≥ 0,

(5.2)

15

where we should note ξ ≥ 0 because d ≥ 0. The size (m, n, r) of (5.2) is therefore equal

to (m′ + 1, m′ + n′ + 1, r′ + 1). As for sbb 2, we applied it directly to (5.1) because it

uses only the relaxed problem Q(∆), which can be written with the slack variable η as

follows [7, 6, 19]: ∣∣∣∣∣∣∣∣

minimize w = (f′)Tζ − σdTy

subject to A′V′ζ + B′y + η = b′

eTζ = 1, (ζ,y, η) ≥ 0,

where V′ = [v1, . . . ,vr′+1] and f′ = [f(v1), . . . , f(vr′+1)]
T for r′ + 1 vertices vj’s of

∆ ⊂ IRr′

.

The backtracking criterion was f(x∗)− zk ≤ ε|f(x∗)| with ε = 10−5 in each code. As

the subdivision rule of ∆, we adopted bisection of ratio α = 1/2 in revsbb and sbb 1, but

did not in sbb 2, because we found in our preliminary experiment that the convergence

of sbb 2 with the bisection rule is too slow to compare with the other two codes. Instead,

we took the way to bisect the longest edge of the minimal face of ∆ which contains an

optimal x◦ = V′ζ◦ of Q(∆). Although this subdivision rule does not guarantee the

convergence, sbb 2 using it terminated for every tested instance of (5.1) and generated

the same output as revsbb and sbb 1 with the usual bisection rule.

5.2 Numerical results

In Figures 5.1–5.4, line plots are given for comparing the behavior of revsbb (solid lines

with circle markers), sbb 1 (dotted lines with cross markers) and sbb 2 (dashed lines

with triangle markers) when the size of constraint matrix [A′,B′] was fixed at (m′, n′) =

(40, 80).

Figure 5.1 shows the variation in the average number of branching operations required

by each code when σ was fixed at 5.0 and r′ was changed in {16, 20, 24, 28, 30, 32, 34}.

First, it is noteworthy that revsbb and sbb 1 took the same number of branching opera-

tions for each r′. Both codes incorporate a similar kind of bound tightening procedures

based on Lagrangian relaxation. However, taking account of the relationship between

the bounds w̃ and w shown in Proposition 3.1, we can conclude that it is more effective

in the code revsbb of REVISED SBB. We also see that the tightening procedures work

better for larger r′, and in fact the dominance of the standard sbb 2 over revsbb and

sbb 1 is reversed around r′ = 25. The variations in the average CPU seconds are plotted

in Figure 5.2. For every r′, the code revsbb surpasses the other two codes. In particular,

compared with sbb 2, it requires only fortieth part of the CPU seconds. This proves

that problem (3.14) associated with Q̃(∆) is easy enough to cancel out the inferiority of

revsbb to sbb 2 in the number of branching operations for r′ < 25.

Figures 5.3 and 5.4 show that the variations in the average number of branching

operations and CPU seconds, respectively, required by each code when r′ was fixed at

20 and σ was changed in {3.0, 3.5, 4.0, 5.0, 7.0, 10.0, 20.0}. Unfortunately, each code is

rather sensitive to changes in σ, especially when σ < 5. Nevertheless, revsbb and sbb 1

need considerably less branching operations than the standard sbb 2 when σ < 4, which

is totally due to the tight lower bound yielded by the Lagrangian relaxation. This,

16

 10

 100

 1000

 16 18 20 22 24 26 28 30 32 34

lo
g(

 #
 b

ra
nc

he
s

)

nonlinear variables (r)

revsbb
sbb_1
sbb_2

Figure 5.1: Numbers of branching operations when (m′, n′, σ) = (40, 80, 5.0).

 0.1

 1

 10

 100

 16 18 20 22 24 26 28 30 32 34

lo
g(

 C
PU

 s
ec

on
ds

)

nonlinear variables (r)

revsbb
sbb_1
sbb_2

Figure 5.2: CPU seconds when (m′, n′, σ) = (40, 80, 5.0).

17

 1

 10

 100

 1000

 0 5 10 15 20

lo
g(

 #
 b

ra
nc

he
s

)

Weight (σ)

revsbb
sbb_1
sbb_2

Figure 5.3: Numbers of branching operations when (m′, n′, r′) = (40, 80, 20).

 0.1

 1

 10

 100

 0 5 10 15 20

lo
g(

 C
PU

 s
ec

on
ds

)

Weight (σ)

revsbb
sbb_1
sbb_2

Figure 5.4: CPU seconds when (m′, n′, r′) = (40, 80, 20).

18

Table 5.1: Computational results of revsbb and sbb 1 when σ = 5.0.

r′ = 0.2n′ r′ = 0.3n′ r′ = 0.4n′ r′ = 0.5n′

m′× n′ # time # time # time # time

60×120 revsbb 18.2 0.445 79.9 1.082 103.6 2.430 230.9 9.081

sbb 1 18.2 0.480 79.9 1.234 103.6 2.706 230.9 9.747

180×120 revsbb 21.6 2.418 58.8 3.486 111.3 6.034 199.2 13.06

sbb 1 21.6 2.589 58.8 3.979 111.3 7.958 199.2 14.82

80×160 revsbb 37.6 1.102 97.0 2.865 128.2 7.850 256.6 27.83

sbb 1 37.6 1.203 97.0 3.238 128.2 8.699 256.6 29.43

240×160 revsbb 12.6 7.026 38.6 8.892 83.2 14.83 151.2 32.01

sbb 1 12.6 7.225 38.6 9.833 83.2 17.56 151.2 38.12

100×200 revsbb 45.6 2.180 88.4 5.245 115.4 15.77 227.6 63.60

sbb 1 45.6 2.752 88.4 5.753 115.4 16.99 227.6 66.57

300×200 revsbb 9.6 19.06 47.4 24.16 110.8 39.09 236.4 105.2

sbb 1 9.6 18.88 47.4 24.55 110.8 45.00 236.4 117.3

together with the ease of solution to (3.14), yields the significant advantage of revsbb

against sbb 2 in computational time when σ < 10.

It would be clear from the above observation that revsbb and sbb 1 are of more

promise than the standard sbb 2. To compare revsbb and sbb 1 in more detail, we

next solved (5.1) of larger scale using those two codes. The size (m′, n′) ranged from

(60, 120) to (300, 200) and σ was fixed at 5.0. The number of nonlinear variables r ′

was set from 20% to 50% of the whole variables, i.e., the maximum size of (m′, n′, r′)

was (300, 200, 100). The computational results are listed in Table 5.1, in which the

columns # and time show the average number of branching operations and CPU seconds,

respectively, required by revsbb and sbb 1 for each (m′, n′, r′). Again, we notice that both

codes took the same number of branching operations. Therefore, the difference between

the CPU seconds of sbb 1 and revsbb directly reflects the difficulty of (3.6) and (3.14),

associated with Q(∆) and Q̃(∆), repectively. Although the test problem (5.1) has no

special structure, the computational time is improved by ten percent from sbb 1 to revsbb

for each (m′, n′, r′). If we solve favorable structured problems, we can expect even more

significant improvement. The number of branching operations and CPU seconds increase

rather mildly as m′ and n′ increase, in contrast to the case of r′. We could solve still

larger scale problems by elaborating the computer code of algorithm REVISED SBB,

as long as the number r′ of nonlinear variables is less than half of n′.

19

References

[1] Ahuja, R.K., T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms

and Applications, Prentice Hall (N.J,, 93).

[2] Avriel, M., W.E. Diewett, S. Schaible and I. Zang, Generalized Concavity, Plenum

Press (N.Y., 88).

[3] Chvátal, V., Linear Programming, Freeman (N.Y., 1983).

[4] Falk, J.E. and R.M. Soland, “An algorithm for separable nonconvex programming

problems”, Management Science 15 (1969), 550 – 569.

[5] Horst, R., “An algorithm for nonconvex programming problems”, Mathematical

Programming 10 (1976), 312 – 321.

[6] Horst, R., P.M. Pardalos and N.Y. Thoai, Introduction to Global Optimization,

2nd ed., Kluwer Academic Publishers (Dordrecht, 200).

[7] Horst, R. and H. Tuy, Global Optimization: Deterministic Approaches, 2nd ed.,

Springer-Verlag (Berlin, 1993).

[8] Konno, H. and T. Kuno, “Linear multiplicative programming”, Mathematical Pro-

gramming 56 (1992), 51 – 64.

[9] Konno, H., P.T. Thach and H. Tuy, Optimization on Low Rank Nonconvex Struc-

tures, Kluwer Academic Publishers (Dordrecht, 1997).

[10] Kuno, T., “A finite branch-and-bound algorithm for linear multiplicative program-

ming”, Computational Optimization and Applications 20 (2001), 119 – 135.

[11] Kuno, T. and H. Nagai, “A simplicial algorithm with two-phase bounding operation

for a class of concave minimization problems”, Pacific Journal of Optimization 1

(2005), 277–296.

[12] Kuno, T. and T. Utsunomiya, “A Lagrangian based branch-and-bound algo-

rithm for production-transportation problems”, Journal of Global Optimization 18

(2000), 59 – 73.

[13] Kuno, T., Y. Yajima and H. Konno, “An outer approximation method for mini-

mizing the product of several convex functions on a convex set”, Journal of Global

Optimization 3 (1993), 325 – 335.

[14] Nagai, H. and T. Kuno, “A simplicial branch-and-bound algorithm for production-

transportation problems with inseparable concave production cost”, Journal of the

Operations Research Society of Japan 48 (2005), 97–110.

[15] Nemhauser, G.L. and L.A. Wolsey, Integer and Combinatorial Optimization, John

Willey and Sons (N.Y., 1988).

[16] Octave Home Page, http://www.octave.org/.

[17] Rockafellar, R.T., Convex Analysis, Princeton (N.J., 1970).

20

[18] Ryoo, H.S. and N.V. Sahinidis, “Global optimization of multiplicative programs”,

Journal of Global Optimization 26 (2003), 387 – 418.

[19] Tuy, H., Convex Analysis and Global Optimization, Kluwer Academic Publishers

(Dordrecht, 1998).

[20] Tuy, H., N.D. Dan and S. Ghannadan, “Strongly polynomial time algorithms for

certain concave minimization problems on networks”, Operations Research Letters

14 (1993), 99 – 109.

[21] Tuy, H., S. Ghannadan, A. Migdalas and P. Värbrand, “Strongly polynomial al-

gorithm for a concave production-transportation problem with a fixed number of

nonlinear variables”, Mathematical Programming 72 (1996), 229 – 258.

21

