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SUMMARY  The availability of IP networks has increased its impor-
tance due to the evolving use of real-time and mission-critical applications
on IP networks. Methods for preparing alternate routing tables that can be
used for fast restoration from link failures have been investigated. In such
methods, each node has to compute a number of alternate routing tables in
advance since they have to prepare for each potential failure. The result-
ing huge number of alternate routing tables has prevented these methods
from being deployed. In this paper, we propose a method for reducing the
number of alternate routing tables for link failure. It analyzes three types
of shortest path trees on the basis of link-state information. We show that
the number of alternate routing tables can be reduced to 1/100, on average,
from that with the conventional method, and that they are small enough to
be stored in the memory of IP routers.
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1. Introduction

The Internet has become an important social infrastructure,
and its importance is increasing daily. Various business
applications, such as VoIP and e-commerce, are becoming
widely used as are various personal applications. Since busi-
ness applications tend to require high availability, today’s IP
networks have to provide services that are as highly avail-
able as leased-line services.

Although required availability is significantly high, e.g.
leased-line services achieve restoration times of less than
50 ms [1], IP networks cannot achieve such high availability.
For example, recent studies [2], [3] have revealed a high fre-
quency of failures in well managed IP networks. The weak-
ness of the basic mechanism used to achieve IP network
availability worsens this drawback. This mechanism, i.e.,
the IP restoration mechanism, depends on redundant links
and intra-domain routing protocols. When a failure occurs,
redundant links enable intra-domain routing protocols, e.g.,
OSPF [4] and IS-IS [5], to calculate an alternate routing ta-
ble without using failed equipments. Although this alternate
routing table can be used to restore IP availability, calculat-
ing them typically takes from 100 to 400 ms [6], [7]. Thus,
IP networks cannot achieve sufficient availability.

A naive method for restoring IP networks calculates
alternate routing tables from link-state information in ad-
vance, and uses them when a failure occurs. However, the
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huge number of alternate routing tables has prevented such
naive methods from becoming practical since there are too
many potential failures and resulting alternate routing ta-
bles. In this paper, we propose a method for reducing the
number of alternate routing tables. By analyzing three types
of shortest path trees, the proposed method reduces the num-
ber of alternate routing tables needed for potential link fail-
ures.

This paper is structured as follows. In Sect.2, we
briefly survey related work. In Sect.3, we present the ba-
sic idea for reducing the number of alternate routing tables
and describe an algorithm for implementing it. In Sect. 4,
we describe how we experimentally evaluated our proposed
method and show that it can reduce the amount of memory
to store alternate routing tables to a practical size. We show
that the calculation cost is also sufficiently low for practical
use. After Sect.5 discusses future work, Sect. 6 summaries
our findings.

2. Related Work

Much work has been studied to achieve fast restoration from
failures in IP network.

One approach to IP network restoration is to use a rout-
ing protocol. Restoration using a routing protocol can be
divided into four processes: failure detection, failure notifi-
cation, alternate route calculation, and routing table update.
To shorten the time for calculating alternate routes, incre-
mental SPF algorithm [8] was proposed. Since the incre-
mental SPF algorithm only reconstructs the difference from
the original shortest path tree after failure, the calculation
time is reduced. However, the calculation time cannot be re-
duced to zero if only the incremental SPF algorithm is used.
There is limit on the reduced restoration time. Nevertheless,
the concept of the incremental SPF algorithm is useful. It
can be used as a process to reduce the number of excess al-
ternate routing tables. Section 3.1 explains the process of
reduction using the incremental SPF algorithm in detail. We
also adopted the incremental SPF algorithm to reduce the
calculation cost for preparing alternate routing tables, which
we discuss in Sect. 4.4.

Sub-second restoration after a failure has been
achieved by tuning the routing protocol parameters [6], [7].
Tannaccone et al. [6] measured the time for each restoration
process using an actual Tier-1 network, and estimated the
restoration time for a large network. Francois et al. [7] ana-
lyzed the relationship between the restoration time and var-
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ious timers for the routing protocol. They reported an opti-
mum value of the timers for attaining fast restoration. How-
ever, even with parameter tuning, a restoration time of less
than 50 ms has not been achieved.

IP fast reroute methods [9], [10] have been proposed
for shortening the restoration time after a failure in an IP-
based network. Several alternate routing tables are prepared
in advance, and the routers switch to one immediately after
a failure. These methods use original forwarding mecha-
nisms that differ from those of conventional IP forwarding
for quicker failure notification. One such method [9] marks
packets that cannot be forwarded due to failure and forwards
them using an alternate routing table instead of the normal
routing table. Nelakuditi et al. [10] proposed a method that
infers the locations of failures from interfaces where pack-
ets have been received. Different prepared routing tables
are used to forward packets in accordance with the receiv-
ing interfaces. Because these methods require changes in
the forwarding mechanisms, it is difficult to deploy them in
conventional IP-based networks.

Previous work [11] showed that routing loops occur
more frequently when a node is close to the location of
a failure. This finding suggests that, for achieving packet
reachability, it is sufficient for nodes that are close to the
failure location to update their own routing table. Our pro-
posed method is based on this finding.

3. Reducing Number of Alternate Routing Tables
3.1 Reducing Processes in Naive Method

Various related techniques have been proposed to achieve
fast IP restoration. For example, the incremental SPF al-
gorithm [8] uses a procedure that computes routing tables
incrementally. This incremental procedure can be used as a
naive method for computing alternate routing tables.

Let us assume the network topology in Fig. 1(a) and
that there is a link failure between nodes D and F. OSPF, a
typical intra-domain routing protocols, computes the whole
routing table from scratch. The computation cost can be
reduced by using the incremental SPF algorithm to compute
a subset of the routing table. For example, a packet going
from nodes A to G uses the link between nodes D and F (see
Fig. 1(b)). Thus, the incremental SPF algorithm computes
a routing table of node A. It does not compute a routing

(b) Shortest path tree  (c) Shortest path tree

(a) Based topology of node A of node E

Fig.1  Network topologies and shortest path trees.

IEICE TRANS. COMMUN., VOL.E93-B, NO.5 MAY 2010

table of node E since a packet from E does not use the link
between D and F (see Fig. 1(c)). By omitting the calculation
related to node E, the incremental SPF algorithm reduces
the computing cost.

We can use this incremental procedure to create alter-
nate routing tables. For each possible failures, we can use
this procedure to calculate alternate routing tables after fail-
ure. By storing these alternate routing tables in each nodes
and use these tables in case of failures, each node can restore
IP availability.

The criteria under which the incremental SPF algo-
rithm omits calculations are based on the shortest path tree.
For example, the network in Fig. 1 has eight links, and the
alternate routing table needed for each node depends on the
failed link. Without calculating eight alternate routing ta-
bles of node A, the incremental SPF algorithm calculates
only six tables, which corresponds to the links in the short-
est path tree from node A (see Fig. 1(b)). The calculations
for two links, between nodes C—E and E-G, are omitted be-
cause these links are not on the shortest path from node A.
Hereafter, we call this the on shortest path tree method.

Although the on shortest path tree method reduces the
number of alternate routing tables compared with the ex-
haustive approach, it still requires an large number of rout-
ing tables (see Sect. 4.5). In our proposed method, the num-
ber of alternate routing tables is reduced even further. The
key idea is to concentrate on packet reachability, and to give
up the shortest path.

To create the shortest path from node A with failure
between D and F, we have to prepare an alternate routing
table of node A. However, if we consider only availability,
i.e. reachability from node A to G in Fig.2(a), we can use
the original routing table for node A if node D has an ap-
propriate routing table for link failure between nodes D and
F. For the same reason, node A can use the original routing
table after link D-E, E-G, or F-G has failed. However, a
routing loop occurs between nodes A and B if node A does
not update its routing table after link B—C has failed (see
Fig.2(b)). In short, node A needs alternate routing tables
for only three potential link failures (A-B, A-D and B-C).
The calculation of the five alternate routing tables can be
omitted.

The following sections describe and discuss our

(a) Failure of link D-F

(b) Failure of link B-C

= = » Path to destination before link failure
------- +» Path to destination after link failure

Fig.2  Link failures and routing table updates.
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(b) After failure

(a) Before failure

Fig.3  Reverse shortest path tree.

method for reducing the number of alternate routing tables
for a link failure based on this idea. Section 3.2 presents
the criteria for updating a routing table. Section 3.3 presents
a distributed approach for identifying the nodes that satisfy
the criteria. Section 3.4 describes our proposed procedure
for IP fast restoration using the distributed approach.

3.2 Criteria for Routing Table Update

We specify the criteria for identifying those nodes that need
to update routing table after a particular link failure.

Since each packet is forwarded in accordance with the
destination in its header, it is important to investigate the
change in the path to a destination after a failure. The
change is investigated by using the reverse shortest path
trees, as illustrated in Fig. 3. The shortest path tree indicates
the shortest paths from a specific source node, whereas the
reverse shortest path tree indicates the shortest paths to a
specific destination node.

If the link between nodes B and C fails, as illustrated
in Fig. 3, the direction of the path between nodes A and B
changes. If only a part of these node does not update its
routing table after the failure, a routing loop occurs between
them. Therefore, nodes A and B should both update their
routing tables. These nodes have two characteristics in com-
mon. 1) The shortest path from these nodes to node C be-
fore failure includes the failed link (see Fig. 3(a)). 2) These
nodes are on the shortest path from B, which is connected
with the failed link, to C after failure (see Fig. 3(b)). Con-
sequently, to identify which nodes need to update routing
table after a link failure, we simply need to determine which
nodes have these two characteristics.

Let us summarize these characteristics. Assume that e
is the failed link, 7, is a node connected with e, and ny is
the destination node. If n; satisfies the following criteria, n;
needs to update its routing table after e fails.

Criterion 1: Before a failure at e, the shortest path from n;
to ny uses link e.

Criterion 2: After a failure at e, the shortest path from n,
to ny uses n;.

Criterion 1 is a naive standard used to enumerate the
candidate nodes for updating the routing table. Criterion 2
is used to avoid routing loops. Note that the on shortest
path tree method essentially uses criterion 1. It calculates
unnecessary alternate routing tables because it does not use
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criterion 2.

With our proposed method, only those nodes satisfy-
ing both criteria 1 and 2 for n, update their route to n,; in
their routing table after failure of e. We prove that it is suffi-
cient to update the routes of these nodes to restore the packet
reachability in the network in Appendix.

We will now discuss the calculation cost involved in
checking the criteria for all nodes in the network. An ex-
haustive approach requires calculation of the shortest path
trees for all possible combination of source nodes n; and
link failures e. Thus, the total calculation cost with the ex-
haustive approach is N x L times SPF calculations, where
N is the number of nodes, and L is the number of links in
the network. Since the on shortest path tree method checks
only criterion 1, the total calculation cost with this method
is N times SPF calculations. In contrast, a method which
checks both criteria requires N + 2L times SPF calculations.
This can be broken down into N times SPF calculations for
source nodes, and 2L times SPF calculations for both ends
of the links. The former is used to check criterion 1, and the
latter to check criterion 2.

3.3 Distributed Processing for Checking Criteria

This section presents a distributed approach for each node
in network to identify the nodes that satisfy the criteria. We
can simply design a distributed processing method in which
each node checks criteria 2 in parallel. This approach re-
quires N + D, times SPF calculations at each node, where
D, is the number of links that node n, has’. The SPF calcu-
lations incur heavy costs and they are huge for all nodes.

We have developed a method that can check both cri-
teria with only a few SPF calculations by using the charac-
teristics of the shortest path length, i.e., a metric. To explain
the characteristics, we use the notation shown in Table 1.
The last seven notations in Table 1 define important metrics,
and Fig. 4 illustrates them graphically.

First, we present a necessary condition to satisfy cri-
terion 1. Since node n,, which is connected with e, is on
the shortest path between n; and ny, the following equation
holds:

Mg = Mijsp + Myy. (1)

This equation is a necessary condition for satisfying crite-
rion 1, but not a sufficient one. This is because the shortest
path from #n; to n; may not include e, but n,. The enumer-
ating algorithm explained in the next section has a step to
avoid this case. A necessary and sufficient condition to sat-
isfy criterion 2 is as follows. If node n, satisfies criterion

If each node connected with e checks the criteria as node n,,
all nodes have to check criterion 1 independently. Therefore, each
node requires N times SPF calculations for checking criterion 1
and D, times that for checking criterion 2. In contrast, if we check
criterion 1 in parallel, each node has to calculate SPF 1 + 2L times
as source node n;. Here, all nodes have to check criterion 2 inde-
pendently. Since L > N and L > D, in general, we have selected
the former, which requires N + D, calculations by node.
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Table1  Notations.

vV = Nodes in network
& = Links in network
e = Failed link

SPF(n,V,&8) = Shortest path tree from

source node n with {7V, &}
Reverse shortest path tree to
destination node n with {V, &}
Metric from n to ng calculated
from normal or reverse shortest
path tree 7~

Nexthop for destination node g4
on routing table of ny calculated
from shortest path tree 7~

RevS PF(n,V,8) =

Metric(ng,ng,T) =

Nexthop(ng,ng,T) =

Link(n;,n;) =  Link between n; and n;

T = SPF@n,YV,E&)

T: = SPF@n;,V,8)

7, = SPFn,V,&-{e})

7, = RevSPF(n,V,E)
miq =  Metric(nj,ng,7T;)
mi—, = Metric(nj,n,,T;)
my—qg =  Metric(n.,ng,T,)
m_, = Metric(n;,ng, 7))
m._, = Metric(n;,n,T})
m?_}d = Metric(ni,ng, T})
mi, =  Metric(nj,n,, ‘71,-)

Fig.4  Metrics between nodes related to criteria.

’ ’ ’
m._, =m,_;+m_,. 2)

We use the following inequality to illustrate the relationship
between Eqgs. (1) and (2). Since it is trivial for a metric be-
tween the source and destination nodes before a failure to
be less than or equal to that after a failure, the following
inequality holds:

Misg < M_, ;. 3)

Substituting Egs. (1) and (2) into (3) results in the following
inequality:
Misy + Mg <M, — M. 4

r—i

Thus,
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’

’
Mir +m,_; < m,_,qg — Mr—q. (5)

We modify Inequality (5) by using the following equations.
Since failure e does not change the path between nodes n,
and n;,

m._.=m,_;. (6)

r—i

The m;_,, calculated from 77 (i.e., the shortest path tree with

source node ;) is the same value as m;,_,, calculated from T, .
(i.e., the reverse shortest path tree with destination node n,).

Miy = Misy. @)
Finally, substituting Eqgs. (6) and (7) into (5) gives:
F’li—ﬂ +my; < m;ad — My_q. (8)

Link failure e changes the shortest path between nodes
n, and ny, and changes the metric between these nodes.
The right-hand side of Inequality (8) shows this difference,
which we can calculate by using the shortest path trees with
and without the failure. We can also calculate the second
term on the left-hand side using the shortest path tree with-
out failure. To calculate the first term on the left-hand side,
a reverse shortest path tree to node 7, is necessary. Thus, we
can evaluate Inequality (8) from these three shortest path
trees (i.e., 7., 7',, and 7’,). Note that we can calculate these
metrics related to Inequality (8) using the shortest path trees
and the reverse shortest path tree for a specific node, #,.

All the nodes whose routing tables should be updated
satisfy Inequality (8). This inequality requires only 2 + D,
SPF calculations, where D, is the number of links that the
node has. This can be broken down into two SPF calcula-
tions for 7, and 7, and D, SPF calculations for 7, with
each failure in links that n, has. Since all routers regularly
calculate 7, for creating the routing tables they usually use.
Briefly, n, additionally requires 1 + D, SPF calculations for
checking the criteria. By using Inequality (8), we can fi-
nally reduce SPF calculations needed for checking in paral-
lel from N + D, to 1 + D,.

Next we consider the total number of SPF calculations
for parallel processing by all nodes in the network, V. Since
all nodes requires 1+ D, times SPF calculations, the total of
that is showed as the following.

Z(1+Di)=N+ZDi=N+2L )
ieN ieN
This equation shows that total number of SPF calculations
for parallel processing is the same as that for concentrated
processing. In brief, parallel processing using Inequality (8)
does not require any overhead compared with concentrated
processing.

3.4 Procedure for IP Fast Restoration
The criteria discussed above are used in the procedure for

fast IP network restoration.
The algorithm used to count V,, which is the set of
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Enumerating algorithm( n,, ¢ )
1: 7,<=SPFn,vV,&)

2: T <SPF@n,V,E&—{e)

3: 7, & RevSPF(n,,V,E)

4: forVYny € Vdo

5: ng < Nexthop(n,,ng,7T)

6: next if e # Link(n,, ny)

7 VD ey

8: n; < Nexthop(ny,ng, T})

9: tq & Metric(ny,ng,7T,) — Metric(ny,ng, T,)
10: while Metric(n;, n,, '7~“,) + Metric(ny,n;,7,) < tg do
11: VD = YDy (n)

12: n; < Nexthop(ni,na, T;)
13: end
14: end

15: return YV,

Fig.5 Enumerating algorithm.

nodes satisfying both criteria 1 and 2, from node n, and link
e is shown in Fig. 5. Here, n, is an end node of link e.

Steps 5 and 6 are for avoiding cases that satisfy Eq. (1), but
criterion 1. Step 5 calculates the nexthop of n, on the short-
est path to n, before failure. If the link between n, and its
nexthop is not e, no nodes satisfies criterion 1 for the com-
bination of n,, ny, and e. Then, steps 7 to 13 are skipped for
this ngy.

Using this algorithm, we can identify the nodes that
need to update routing tables after failure, and have them
prepare alternate routes. This is done in four steps by each
node n,.

1. Calculate normal routing table.

2. Enumerate (V(ud) using the algorithm in Fig. 5.
3. Notify all nodes n, in (V,(,d).

4. Repeat steps 1 and 2 for all Vo,

This procedure assumes that all nodes have a function
for creating an alternate routing table for a specified link
failure. Each node n,, which notified above, then performs
the following procedure.

5. Sort messages received from n, by failed link e.

6. Calculate the shortest path tree without e, and create
alternate routes to nodes that is as n, in the sorted mes-
sages for e.

7. Store the alternate routes in an alternate routing table
for e.

8. Repeat steps 6 and 7 for all e in the sorted messages.

When node n, detects a failure in connecting link e,
n, sends a message requesting to switch to the appropriate
alternate routing table. This notification can be achieved
with a conventional process, such as flooding a link-state
advertisement (LSA) in OSPF.

The exhaustive and on the shortest path approaches do
not require steps 1 to 5. In other word, these steps are over-
head of our proposed method. Step 3 is a notification step.
Since this step must be repeated for all nodes in V,, the
number of nodes in V, affects the amount of overhead. A
later evaluation showed that the number of nodes is only a
few percent of the total number in the network, as shown in
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Fig. 11. This overhead is therefore acceptable amount.
4. Experimental Results

We evaluated the number of alternate routing tables and the
amount of computing resources required to assess the effect
of our proposed method. We used both artificially generated
topologies and those of real networks.

4.1 Topologies Used in Experiments

We used topologies generated by the BRITE topology gen-
erator [12] to investigate how our proposed method worked
in networks with various parameters. BRITE is widely
used for generating topologies for simulating networks. Its
use enabled us to analyze the effect of such parameters as
the number of nodes and their average degree. Although
we could select the model for generating topologies with
BRITE, we used the Barabasi-Albert (BA) model [13] to
generate the topologies in our experiments.

To simplify the discussion, we made three assumptions
about the topologies generated with BRITE.

o All links are point-to-point and bi-directional.

o All links have symmetric costs.

e All nodes in the network have a single address, and
no links have a network address. In other words, the
destinations in the routing tables that all nodes have are
nodes, not links.

Sections 4.2 to 4.5 present the results with BA topolo-
gies and discuss our analysis of the effect of various param-
eters. In Sect. 4.6, we use the topologies of actual networks,
i.e. GEANT2 [14], Internet2(Abilene) [15] and SINET3
[16], to complement our analysis. We excluded stub nodes
(nodes with degree 1) from the analysis since a link failure
does not change their path.

4.2 Number of Alternate Routing Tables

To estimate the number of alternate routing tables that have
to be prepared on each node for a single link failure, we gen-
erated various networks by changing the assumed number of
nodes and their average degrees. Figure 6 plots the results.

Figure 6(a) plots the average number of alternate rout-
ing tables. Although an increase in the number of nodes and
their degree both increased the required number of alternate
routing tables, the average number was relatively small. For
example, with the proposed method, only 19 alternate rout-
ing tables are needed for networks with 1000 nodes and an
average node degree of 12. Since the actual network de-
grees are less than 4 (see Sect. 4.6), this number is less than
we expected.

Figure 6(c) plots the maximum number of alternate
routing tables. Although up to 350 alternate routing tables
are needed for networks with 1000 nodes and an average de-
grees of 12, only of 5% of the nodes require more than 50
alternate routing tables. Figure 6(b) shows that 95% of the
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nodes require less than 50 alternate routing tables. In short,
only a few nodes need many alternate routing tables.

Figure 7 shows the characteristics of such nodes under
the condition that the average node degree is 4. As shown in
Fig. 7, as the node degree increases, the number of alternate
routing tables increases. In an actual network, nodes with
a large degree correspond to core routers and nodes with a
small degree correspond to edge routers. This means that
core routers tend to require more alternate routing tables.
As shown in Fig. 7(c), a core router node with 110 degrees
requires 596 alternate routing tables. In the following sec-
tions, we discuss that calculating and storing these alternate
routing tables are practicable for general IP routers.

4.3 Memory Size

Figure 8 shows the relationship between the memory size
required to store alternate routing tables on each node and
the node degree. The units on the vertical axis represent the
sizes relative to a normal routing table.

Since the alternate routing table stores only changes re-

Node degree

Node degree

Memory size for alternate routing tables. (average node degree of 4)

quired for a link failure, they do not need to be full size.
Thus, they require memory of less than 2.5 times that of a
normal routing table. For example, the total size of alternate
routing tables for a core router, i.e. a node with 100 degrees,
in a network of 1000 nodes is only 76 kB (35 kB for a nor-
mal routing table” x 2.2). Those for an edge router (with the
degree assumed to be 2) and a middle-range router (with the
degree assumed to be 10) are respectively 44 kB and 45 kB.
If we assume DRAM memory is used to store the alternate
routing tables, this size does not make any practical problem
in its implementation.

4.4 Calculation Cost

We estimated the cost of calculating alternate routing tables
using the incremental SPF algorithm for networks with 200,
500 and 1000 nodes when the average degree was 4. Fig-
ure 9 shows the relationship between cost and the node de-
gree, where the units for cost represent the cost of a full SPF
calculation.

The frequency of SPF calculation is the same as the
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Fig.10  Advantages over conventional method. Since the number of links in the shortest path tree is the

number of alternate routing tables. However, the cost of
each calculation can be reduced by using the incremental
SPF algorithm [8]. Barbehenn [17] reported that the com-
plexity of Dijkstra’s algorithm, on which the SPF calcula-
tion is based, is O(N + Llog N) where N and L are the num-
ber of nodes and links. Since the incremental SPF algorithm
reconstructs only the difference from the original shortest
path tree, and the number of nodes and links in the differ-
ence is fewer than that of all nodes and links in the network,
it can reduce the calculation cost.

As shown in Fig. 9, the cost for the largest degree nodes
is less than 1. Since nodes with a large degree, i.e. core
routers, have many links, a single-link failure has a rela-
tively small effect on their routing tables. Thus, the use of
the incremental SPF algorithm can reduce the cost of calcu-
lation.

However, the cost of calculation is relatively large for
small degree nodes because the numbers of nodes and links
considered by the incremental SPF algorithm are relatively
large. However, the total cost of alternate calculation was
within three times that of full SPF calculation in all cases.

The maximum values does not differ greatly, regardless
of network size. Thus, calculating alternate routing tables
for routers with our proposed method does not make prob-
lems in term of calculation cost.

4.5 Advantages over Conventional Method

Figure 10 compares the proposed method with the conven-
tional one, i.e., the on shortest path tree method. It shows

number of nodes in the network minus 1, the number of al-
ternate routing tables prepared by the on shortest path tree
method is 999 for the example shown here.

In contrast, the number on average with our proposed
method is 1/50 to 1/100 that with the on shortest path tree
method. Furthermore, the maximum values with our method
are less than 60% of those with the on shortest path tree
method. Therefore, our method needs far fewer alternate
routing tables than the on shortest path tree method.

4.6 Results on Real Network

Table 2 compares the number of alternate routing tables
for actual networks, i.e., GEANTZ, Internet2, and SINET?3,
with those of BA topologies using similar node degrees.

As shown in the table, the smaller the average node
degree, the smaller the number of alternate routing tables.
This is consistent with the results shown in Fig. 6. Table 2
also shows that the results for actual networks are similar
to those for networks generated by BA topologies with sim-
ilar parameters. Thus, these results support our assertions
described in the discussion above.

5. Discussion and Future Work
5.1

Node Failure

Our discussion so far has focused on link failure in this

To store an IPv6 route, 16 bytes each are needed for the prefix
and gateway address, 1byte is needed for the prefix length field,
and 2 bytes are needed for the interface index field for each node
of the 1000 nodes.
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paper, not node failure. It is generally difficult to deter-
mine which type of failure has occurred without the failure-
detecting function of the lower layer. If the layer 2 network,
i.e., Ethernet, does not have this function, the keepalive-
based failure detection mechanism of layer 3, i.e., OSPF
Hello or BFD [18], is used to report failures. In such cases,
link failures may be treated as node failures because these
failures cannot be distinguished.

Our proposed method can be modified to handle node
failures. Let ny be a failed node, n, be a neighbor node of
ny, and &y be the set of all links connected to ny. To modify
the enumerating algorithm for node failure, we can use 77
calculated from the following instead of line 2 in Fig. 5.

T, < SPF(n,,V - {ne},&-Ey)

Evaluation and discussion of this case remain for future
work.

5.2 Failure Notification

Pei et al.[19] reported the importance of fast calculation
of alternate routing tables for quick network convergence.
They also reported the importance of fast notification of fail-
ure.

Our proposed method reduces the time required to cal-
culate alternate routing tables. However, the underlying
concept can also be applied to fast notification. The time for
failure notification may be reduced by sending the notifica-
tion directly to selected nodes rather than using a standard
flooding mechanism. If node n, detects a failure in connect-
ing link e, for example, it can use V, to send a message
requesting switching to an alternate routing table.

Figure 11 plots the average percentage of nodes that
receive a failure notification under this scheme. On aver-
age, a single-link failure affects only a small percent of the
nodes in the network. This percentage decreases as the av-
erage node degree increases. When the average node degree
increases, the number of links increases, so the possibility
of each link being on the shortest path tree decreases. Then,
the percentage of nodes that receive a failure notification de-
creases.

IEICE TRANS. COMMUN., VOL.E93-B, NO.5 MAY 2010

In summary, these results show that it is sufficient for
only a few nodes to be notified of a failure for the network
to be restored. This is even more so for large networks due
to their many links and nodes. The details of a direct notifi-
cation mechanism remain for future work.

5.3 Equal-Cost Multi-Path

In actual IP networks, there may be more than one shortest
path. The equal-cost multipath (ECMP) [4] is used in such
cases. ECMP can be supported by extending our algorithm.
Since steps 8 to 13 in our algorithm (Fig. 5) examine each
node on the shortest path with respect to criterion 1, all we
have to do is apply these steps to each shortest path.

Since we used networks without ECMP in the evalua-
tion described in Sect.4, ECMP may affect our evaluation
results. For example, as the number of ECMP increases,
the possibility that a node is on a shortest path increases.
Therefore, each node may require more alternate routing ta-
bles than were given by our evaluation. This depends on the
number of shortest paths, the network topology, etc. The
quantitative evaluation of this remains for future work.

5.4 Deployment Issue

Assuming the use of the conventional IP forwarding mech-
anism, we described a method that can be used to create
loop-free alternate routes. This method does not require any
change of the forwarding mechanism. Note that the routes
calculated by the normal router after a failure are the same
routes created by our method. Thus, routers supporting our
method can be in the same network as ones that do not.
It is possible to gradually replace the normal routers with
ones supporting our method. Transient loops, which de-
grade packet reachability, may occur between the two types
of routers. This is because these two types of routers up-
date the routes at different times after a failure. However,
transient loops can occur regardless of whether or not our
method is deployed. The time until the end of the tran-
sient loops is not increased by the gradual deployment of
our method. The occurrence of transient loops is not a dis-
advantage of our method.

6. Conclusion

Our proposed method reduces the number of alternate rout-
ing tables for IP fast restoration. It does this by analyzing
three types of shortest path trees.

The proposed method has three particular advantages.

e The number of alternate routing tables can be re-
duced to 1/100, on average, from that the conventional
method.

e Both the calculation cost and memory size are small
enough to enable it to be implemented in general IP
routers.

o Since the proposed method does not require any change
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of the forwarding mechanism, it can be deployed grad-
ually in actual working networks.

We also described 1) a method based on the proposed
approach for attaining faster failure notification and 2) a
method for handling node failures. However, in-depth dis-
cussion related to these methods remains for future work.
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Appendix: Proof of Criteria

Our proposed method makes only nodes satisfying both Cri-
terion 1 and Criterion 2 for n; update a route to n, on their
own routing tables after a failure. Assume that a link in the
network has failed. We prove that it is sufficient to update
the route of these nodes to restore the packet reachability in
the network.

We discuss the case where a specific node, ny, is the
destination node. Let e denote a failed link. Let V be the
set of all nodes in the network. It is then divided into three
subsets that are pairwise disjointed.

e Let V9 be a set of nodes that satisfy both criterion 1
and 2 for ny.

o Let (Vf,d ) be a set of nodes that satisfy only criterion 1
for ny, not criterion 2.

o Let ‘V;d) be a set of nodes that are not included in either

d d
Vf,)orV(a).

With our proposal method, only nodes in VD need to up-
date the route to ny in their routing table after the failure of
e. Figure A- 1 illustrates the relationships among these sets.

Now, let us assume the network that is a connected
graph when e fails. This means that the failure of e does
not divide the network into two parts.

Lemma 1: 7, is an element of ‘V;d).

Proof 1: Because n,; does not satisfy criterion 1 for ny, ny
is a element of ”V;}d). O

Lemma 2: Letn, be an end node of link e, where the short-
est path from n, to n, includes e. Then, n, is an element of
(V(d)

s
Proof 2: According to the definition of n,, n, satisfies cri-

terion 1 for ny,. It is trivial that n, satisfies criterion 2 for ng.
Therefore, n, is an element of ‘Vf,d). O

We prove three lemmas for packets starting from any
node in "Vf,d ), (Vg,d), or ‘V;d).

Lemma 3: A packet that starts from any node in (Vzd) to ng
can reach the destination node, n .

Proof 3: According to lemma 1, n, is an element in fv;””.

Satisfying criterion 1 for n, 7
— i
G - N
7/[](0') Wb(d)
Satisfying
criterion 2 @ € O
for n, I

e N @ I

(d)
W

Relationships among defined sets.

N )

Fig.A-1
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A shortest path from any node in ‘V;d) to ng does not include

e, because all nodes in (V;d) do not satisfy criterion 1 for
ny. Briefly, the failure of e do not change this shortest path.

Therefore, a packet that starts from any nodes in "Vzd) can
reach ny. O

Lemma 4: A packet that starts from any node in (V,(,d) tong
can reach a node in (Vzd).

Proof 4: We discuss a shortest path from any node in (V,(,d)
to ng after the failure of e. Since all nodes in V.’ update
routes to ny, a node in (Vf,d) forwards a packet destined to
ng along this shortest path tree. Therefore, a routing loop
between nodes in (V;d) does not occur.

We show that this shortest path does not include any
node in (Vf,d). According to lemma 2, n, is in "Vf,d ). Be-
cause all nodes in "V(ud) are on the shortest path from n, to
ng, the shortest path from any node in VD 10 ny is part of
the shortest path from 7, to n;. According to the definition
of (Vfld), all nodes in "Vfld) do not satisfy criterion 2. If nodes
are on the shortest path from n, to ny, they satisfy criterion
2. Therefore, all nodes on the shortest path from any node

in (Vf,d) to ng are in (V,(,d) or ‘V;d), not (Vﬁld).
Therefore, a packet that starts from any node in Yo
can reach a node in "Vzd). O

Lemma 5: A packet that starts from any node in (ng) tong
can reach a node in (Vf,d) or (V(bd).

Proof 5: Since all nodes in (V,(ld) do not update routes to
ng, anode in V@ forwards a packet destined to n, along the
shortest path to n; before the failure. Therefore, a routing
loop between nodes in (Vfld) does not occur. According to
lemma 1, (Vfld) does not include ng.

Briefly, a packet that starts from any node in VO can
reach a node in "Vf,d ) or (Vzd). |

We can prove the following theorem using the lemmas
above.

Theorem 6: The packet reachabilities for all pair nodes in
the network can be guaranteed by only updating the routing
tables of the nodes in V.

Proof 6: According to lemma 5, a packet that starts for ny
from any node in (Vf,d) can reach a node in (Vf,d) or "Vzd).
According to lemma 4, a packet that starts for n; from any
node in (V,(,d) can reach a node in ”V,(Jd). According to lemma

3, a packet that starts for n; from any node in (Vzd) can reach
the destination node. Therefore, a packet which starts from
any node in the network can reach the destination node after
a failure. O
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