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Abstract

Random anisotropy model (RAM)was investigated by means of numerical simulation. Magnetization of magnetically interacting
grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation where the magnetiza-
tion in a particular grain is assumed to align in the same direction (single spin model). Calculations were carried out for 10×10×10
three dimensional cells changing cell sizes from 5 to 25 nm. The relation between coercive forces and grain sizes was obtained
to beHC ∼ D5.7 from the simulated magnetization curves. This result fits to the primitive theoryHC ∼ D6 and the experimental
results.
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1. Introduction

Nanocrystalline materials have been intensively studied as
one of the most typical examples of nanotechnology.[1] In these
materials, nono-sized crystalline grains were densely gathered
and have a bulk form. Especially for magnetic materials, these
sorts of materials realize excellent soft magnetic properties and
have great potentials as realistic materials.[2] Basically, ran-
dom orientation of nano-sized ferromagnetic grains with dense
packing is essentially important. Exchange interaction work-
ing between fine grains averaged out the magnetic anisotropy
and lowered their amplitudes remarkably and it resulted in soft
magnetic characteristics.

In the model proposed by Herzer[3, 4], the magnetic
anisotropy energy is averaged out in a magnetically coherent
area coupled with exchange interaction, and the relation be-
tween the grain size,D, and coercive force,HC, is predicted to
beHC ∼ D6. The model is called random magnetic anisotropy
model (RAM) and is the most popular one for interpreting soft
magnetic characteristics. Many experimental reports support
this simple theory not only for single phase materials but also
for multi-phase substances and granular substances (see Fig
1.). Recently we have reported on coercive forces of pure Ni
nanocrystals and confirmedD6 dependence in a diameter range
between 8 and 13 nm.[5] However, the different expressions
form the 6th power law,D6, were reported, in which the shape
of the sample and the distribution of the stress might affect to
the dependency of the coercive force.[6, 7] Therefore, to recon-
firm the relation betweenD6 andHC within the framework of
RAM, an analysis purely including the exchange interaction is
necessary.

An analytic model of Herzer, where averaging effect of the
magnetic anisotropy is dealt with the statistical technique, has
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Figure 1: Example of therelation of coercive force and initial permeability to
grain size in fine grain magnetic material.[3]D6 dependence of coercive force
is clearly demonstrated in a nanocrystalline region.

pointed out that coercive force becomes 0 keepingD6 low even
if grain size becomes very small.[8] In order to avoid this dis-
crepancy between the model and experimental results, effects
of defects and stresses[7, 9, 10] with the decrease in grain sizes
have been introduced in analysis. However, there are still un-
clear parts in the effect of stress on the relation ofD6 and the
range of grain size and minimum values of coercive forces re-
sembled materials with different magnitudes of magnetostric-
tion. These facts require us to propose a new model interpreting
the change of coercive force only by the diameter of grains.

Kronmüller et al.[11] made the precise calculation of mag-
netic coercive force in a magnetic particle assembly using a fi-
nite element method. They reproduced the increase of the co-
ercive force with the increase of the grain size for small grain
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Figure 2: Model of inter-particle exchange interaction based on single spin
approximation.

size region and a decrease in grain diameters becoming larger.
However, this model was insufficient because the aim of the re-
search was focused on the analysis of magnetic coercive force
of the permanent magnet and the resulting relation between the
coercive force and the grain size was far from the form ofD6.

In this study, an analytic model only taking into account the
effects of the grain diameter is built for the analysis of the ran-
dom anisotropy model. The numerical analysis with formal-
ization of the exchange magnetic field which works in between
particles was carried out to obtain the relation between the co-
ercive force and the grain diameter.

2. Expression of exchange coupling field under single spin
approximation

When we calculate the distribution of local magnetic moment
with numerical modeling, it is necessary to use discrete analy-
sis techniques such as a difference equation method and a finite
element method. As a simple discrete model, the following re-
lation:

dM( x)
dx

≈ M (x+ δx) −M( x)
(x+ δx) − x

(1)

can be considered for theefficient approach to numerical cal-
culation by taking the maximum amplitude ofδx. This means
that eq.(1) is generally kept when the locally defined magneti-
zationM( x) is constant in a range ofδx. Then local magneti-
zation,M( xi), at the positionxi is represented by the averaged
amplitude over the range,δx. This approach where the aver-
aged value represents the local magnetization is called single
spin approximation and is generally used in the numerical anal-
ysis such as micromagnetic simulation.[12] Based on this as-
sumption, the single spin model can be adopted in the magnetic
particle assembly composed of magnetic single domain parti-
cles.

The model of nanocrystalline magnetic materials proposed
here is shown in Fig. 2. Each crystalline grain has a cube form
in which the magnetic moment distributes uniformly. The size
of the particle is sufficiently small to behave as single domain

ferromagnets. Magnetization at thei-th particle is written as
mi and keeps a relation with individual spinSi , mi = gµB

∑
Si .

Namely, magnetic ions withSi spin align on a simple cubic
allay havingN × N × N lattice points. The distance between
magnetic ions is supposed to bea. Magnetic moments on two
adjacent grains are coupled with magnetic exchange interaction
through the interface atoms. It is supposed that Heisenberg type
direct exchange interaction takes place between the interface
atoms of the mother phase. An effective field working on the
precise particle is evaluated by solving an energy equation.

Exchange interaction energy of the classical Heisenberg
model upon magnetic atoms is expressed asE = −J(Si · Sj)
whereJ is an exchange constant among two spins. From the
definition of the interface between two grains,N × N spins are
faced in bothi-th and j-th grains and form spin pairs. In each
grain, all spins direct the same direction, therefore, exchange
energy at the interface is

Eint =
∑
−J(Si · Sj) = −JN2(Si · Sj). (2)

Here, summation is carried out on all possible spin pairs at the
interface. Grain sizeD is equal to the sizes of the cube and
D = aN, thus, it is clear that the energy is proportional to the
area of the interface from eq.(2). There is also exchange energy
among spins within a grain,

Egr =
∑
−J(Si · Si′ ) = −

JzN3

2
(Si · Si′). (3)

Summation is carried out over the all the possible spin pairs.
Here,z and 1/2 are the coordination numbers in the crystal and
the correction factor during summation. Finally, the total en-
ergy related to exchange interaction oni-th grain is given by
the sum of eq.(2) and eq.(3),Ei

ex =
∑

Eint + Egr. The term∑
Eint is summed up over the adjacent grains.
Effective magnetic field originated from the exchange ener-

gies is deduced by the differentiation of the exchange energy,

Hex = −∂Eex

∂mi

= −∂
∑

Eint

∂mi
−
∂Egr

∂mi
(4)

The second term should bezero because eq. 3 becomes con-
stant due to the relation, (Si · Si′) = 1 because of the parallel
configuration of spins in the grains. The fact that the number of
spins in a grain isN × N × N andmi = gµB

∑
Si leads to the

next relation

Hex =
∂
∑∑

J(Si · Sj)

gµB∂
∑

Si

=
JN2∂

∑
(Si · Sj)

gµBN3∂Si

=
J

NgµB

∑
Sj . (5)
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Figure 3: Numerically simulated hysteresis curves for ferromagnetic randomly
oriented nano-grains. The grain size,D, was changed in the range from 5 to 25
nm. Inter-particle exchange interaction was taken into account.

The number of atoms at the side of the interface regionN is
N = D/a then the following relation results in

Hex =
Ja

DgµB

∑
Sj . (6)

This relation shows thatexchange interaction proportional to its
area results in the exchange field inversely proportional to the
grain size. Since the definition of the exchange stiffness is iden-
tical to eq.(6), exchange stiffness decreases with the increase in
size of grain,D.

3. Analysis of coercive force in nanocrystals based on the
single spin approximation

Magnetization process of magnetic nanocrystal assembly
was investigated using the single spin approximation mentioned
above. The Hamiltonian for thei-th grain is written by the sum
of the exchange energy, magnetic anisotropy energy,Ean, and
Zeeman energy,

Hi =
∑

Eint + Ean+ EZeeman. (7)

The anisotropy energy is given as

Ean = −
D3K
m2

(mi · ni)
2 , (8)

whereK andni are the magnetic anisotropyconstant and unit
direction vector for magnetic easy axis of the grain, respec-
tively.

Motion of magnetization of thei-th grain under the effective
magnetic field is supposed to obey Landau–Lifshitz–Gilbert
equation,

(1+ α2)
dmi

dt
= −γmi × Heff −

α

m
mi × (mi × Heff) . (9)

The effectivefield, Heff is obtained to be the differentiation of
the model Hamiltonian,Heff = −∂Hi/∂mi .

Figure 4: Illustration of magneticmoment distribution resulted from the sim-
ulation atH0 = Hc. Distributions for grain sizes ofD = 10 andD = 20 nm
with inter–grain interaction ofJ = 0.1× 10−14 erg are displayed in Figs. 4 (a)
and (b), respectively. Directions of grain magnetization are expressed by the
direction mapping sphere shown in (c).

We assumed atomic magnetic moment ofgµBS = 5.56×
10−21 emu, distance of atoms ofa = 3.4 × 10−8 cm, ex-
change energy betweeninterfaceatoms ofJ = 0.1 × 10−14

(J = 1.6×10−14 erg for bulk Ni), and magnetic anisotropy con-
stant ofK = 4×104 erg/cm3. These conditions were set to fit to
a Ni nanocrystals case, and uniaxial magnetic anisotropy is as-
sumed for the sake of simplicity. Periodic boundary condition
was applied to eliminate the edge effect.

Simulation was started from building up random orientation
of magnetic anisotropy onn3(10× 10× 10) cells. The simula-
tion cell size,n, was mainly 10 and was extended up to 15. The
motion equation was numerically solved according to eq. (9).
First, the energy in the eq. (7) on the each grain under the suf-
ficiently high magnetic field was calculated. The effective field
can determine the torque for each spin and distribution of the
spins was obtained by the self-consistent calculation for allmi .
By changing the amplitude of the external magnetic field, hys-
teresis loops were reproduced and the coercive force of the sys-
tem will be determined. Fig. 3 shows simulated magnetic hys-
teresis curves with different grain sizes. Jumps inMH curves at
aroundH ≃ HC was observed in larger grain sizeD ∼ 20 nm,
while smooth change was shown in a smaller size nanocrystal.
In Fig. 4, magnetization distribution atHC is displayed where
the direction of magnetization in each grain is expressed by an

3

This is an author version based on a templated by Elsevier.



0.1

1

10

100

C
oe

rc
iv

e 
F

or
ce

   
(O

e)

1 10 100

Grain Size, D   (nm)

D
5.7

Figure 5: Dependence of coercivity on grain size in the magnetic nanoparticle
system. Solid circles indicate coercive forces simulated with the simulation cell
size ofn = 10 and the solid curve is obtained by fitting data in a nanocrystalline
rangeD = 10 ∼ 22 nm. Bars indicate the maximum and minimum values of
coercive forces simulated with cell sizes up ton = 15.

arrow and its color. In the case ofD = 10 nm, the magnetiza-
tions of all grains refer to parallel configuration. On the other
hand, in the case ofD = 20 nm, the magnetization randomly
points to the arbitrary direction.

Coercive forces were determined in a grain size ranging from
5 to 25 nm for the simulation cell size ofn = 10 and they
are plotted as a function of the grain size,D, in Fig. 5. In a
grain size range from 10 to 22 nm, the coercive force changed
steeply. Those data points can be fitted by a curve of the the
D5.7 relation. The number of power, 5.7, well agrees with the
theoretical prediction by Herzer. It is concluded that theD6

law is held in a bulk nanocrystal materials when the effect of
demagnetization can be disregarded.

It is noted that the coercive forces deviated slightly when the
simulation cell size increased up ton = 15 (displayed by the
bars in Fig. 5). The initial distribution of magnetic anisotropy
also influenced the magnitude of coercive forces with the same
order as the case of cell size, however, both changes look not
systematic but random.

4. Discussion

In this section, applicability of the model will be discussed on
the grain size of magnetic nanocrystals. In the present model,
the magnetically single domain particles are under considera-
tion, therefore, the magnetization in a certain grain can be re-
garded as a single spin. That is, the coercive force of a sin-
gle grain is simply determined by the Stoner-Wohlfarth model.
The coercive force of the nanoparticle assembly is given by an
average of the coercive force on such single domain particles,
when there is no interaction between particles.[13] However,
in the present model, the simulated coercive force is reduced
from a simple average, and such reduction originates from the

inter-grain exchange interaction. Namely, the maximum coer-
cive force should be realized in non-coupled assemblies as the
single spin model. For example, the relation ofHC = 0.479Hk

is produced by randomly oriented anisotropies in that system.
Here,Hk depicts an anisotropy field.

The fitted curve of coercive forces on the log–log plot shown
in Fig. 5 is expressed as

HC = 10k logD+h. (10)

As a fitting result,k = 5.7±0.5 andh = −5.9±0.7 are obtained.
This approximate equation givesHC = 55.6 Oe when D= 22
nm. This value coincides well withHC for non-interacting as-
sembly, corresponding to maximum coercive force of the sim-
ulated system. Thus, the particle diameter,D = 22 nm, deter-
mines the upper limit of applicability as the single spin approxi-
mation for RAM. Above that diameter,HC changes more mod-
erately and obeyD6 law no longer. The magnetic anisotropy
energy dominates the behavior of coercive forces. In such a
case, the distribution of magnetization (probably multi-domain
structure) in a single grain should be taken into account. Be-
yond this single spin approximation, the model proposed by
Kronmüller[11] will be suitable.

On the other hand, the minimum coercive force also exists in
the system as mentioned, and a simple expression of RAM is
not able to be adopted. The reduction of coercive force begins
with the inter-grain exchange interaction. The minimum of ex-
change energy is obtained when the magnetization of all grains
align in parallel. At the same time, the magnetic anisotropy en-
ergy reaches the maximum (the minimum state of anisotropy
is given by the non-interacting assembly as mentioned above).
Thus, it is thought that the minimum state of total energy exist
in between the minimum states of exchange and anisotropy en-
ergies. Corresponding to that consideration, the magnetization
in Fig. 4(a) shows the relaxation from the parallel state. There-
fore, the calculated data of coercive forces displaces from the
curve ofD6 when particles become too small. From the view-
point of energy minimization, the present model is suitable to
calculate the small coercive forces. The definitions of the mini-
mum coercive force in this system need more details, and it will
be discussed in a separate paper.

5. Conclusion

Numerical simulation for Random Anisotropy Model applied
on the ferromagnetic nanoparticle assembly was performed.
By taking into account inter-grain exchange interaction pro-
portional to the interface area, single spin approximation was
revealed to reproduce the relation between coercive force and
grain sizes,D6. As the grain size decreased down to the
nanocrystal limit, the coercive force began to leave from the
relationD6 and approached to a constant value.
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