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Analyzing the Number of Varieties in Frequently Found
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SUMMARY  Abnormal traffic that causes various problems
on the Internet, such as P2P flows, DDoS attacks, and Internet
worms, is increasing; therefore, the importance of methods that
identify and control abnormal traffic is also increasing. Though
the application of frequent-itemset-mining techniques is a promis-
ing way to analyze Internet traffic, the huge amount of data on
the Internet prevents such techniques from being effective. To
overcome this problem, we have developed a simple frequent-
itemset-mining method that uses only a small amount of mem-
ory but is effective even with the large volumes of data associated
with broadband Internet traffic. Using our method also involves
analyzing the number of distinct elements in the itemsets found,
which helps identify abnormal traffic. We used a cache-based
implementation of our method to analyze actual data on the In-
ternet and demonstrated that such an implementation can be
used to provide on-line analysis of data while using only a small
amount of memory.
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1. Introduction

Abnormal traffic, such as that due to P2P flows, dis-
tributed denial of service (DDoS) attacks, and Internet
worms, cause various problems in wide-area networks.
The vast consumption of network bandwidth caused
by P2P mass flows, for example, disturbs smooth com-
munication amongst other users. Network operators
therefore need to find and remove these flows in order
to maintain optimal Internet operation. Furthermore,
DoS/DDoS attacks have become prevalent, and finding
Internet worms has also become an important Internet
security task.

Various kinds of P2P software, DDoS attacks, and
Internet worms are emerging daily; therefore, we need
automatic methods of finding them. The method re-
ported in [1] finds P2P flows and Internet worms by
looking for frequently found flows because P2P hosts
and Internet worms send a lot of packets. A detailed
analysis of a group of these flows is also required. When
a malicious client tries to find vulnerable servers, it con-
tacts many servers. Malicious clients can thus be found
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by analyzing the number of distinct servers that a single
client tries to access [2]. This can be done by counting
the number of distinct destination IP addresses (DIPs)
contained in packets that share the same source IP ad-
dress (SIP). Implementing such a method is problem-
atic because it requires huge amounts of memory and
processing power.

We have therefore developed a simple frequent-
itemset-mining method that uses only small amounts
of memory and processing power. The most important
characteristic of our method is its ability to analyze
the number of distinct elements in traffic. It first enu-
merates frequent itemsets in packet headers and at the
same time enumerates the number of varieties in the
non-frequent parts of the headers. By analyzing the
number of distinct elements in the traffic, various ab-
normal flows can be found, such as those due to P2P
traffic, DDoS attacks, and Internet worms. We used
our method to analyze real data on the Internet and
the results show that our method can be used for on-
line analysis of such data without using large amounts
of memory.

The organization of this paper is as follows. Sec-
tion 2 contains a brief review of related work, and Sec-
tion 3 explains our method. Section 4 analyzes the
characteristics of Internet traffic and shows how we can
use our method to find abnormal traffic. Section 5 dis-
cusses the resource requirements of our method, Section
6 details some remaining issues, and Section 7 summa-
rizes of our findings.

2. Related Work

Monitoring Internet traffic is an extensively stud-
ied area ([3]-[7]). The Internet Engineering Task
Force’s (IETF) Interprovider Performance Measure-
ment (IPPM) working group has proposed a frame-
work of IP performance metrics [3]. Their work is
important in standardizing the attributes to be mea-
sured. Surveyor [4] is a project intended to create a
measurement infrastructure. NLANR [5] has a project
to develop a large-scale data collection system that will
serve as the base infrastructure for various data anal-
yses. MAWT [6] provides an archive of actual Internet
traffic data. CAIDA [7] make various tools for analyz-
ing network data. Their visualization tools can be used
in various analyses of network data.
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Fig.1 Behavior of suspicious flows.

The analysis of measured data has also been stud-
ied [8],[9]. Some studies (e.g., [1] and [10]) used data-
mining techniques to automate analysis. Finding fre-
quently occurring flows is a useful way to analyze Inter-
net traffic because Internet viruses search for vulnera-
ble hosts by repeatedly accessing various IP addresses
(Figure 1 (a)). This tends to create many packets that
share the same combination of source IP address (SIP)
and destination port number (DPT). Here the SIP is
the IP address of a host that is already affected by an
Internet virus and the affected host is trying to find
the next vulnerable host. The DPT is the port number
of a target service the virus tries to use in an intru-
sion. A DDoS attacker attempts to make a computer
resource unavailable by flooding it with packets that
have a forged sender address (Figure 1 (b)). Such at-
tacks tend to send many packets that share the same
combination of destination IP address (DIP) and DPT.

The frequent-itemset-mining algorithm [11] is a
promising approach to finding frequently occurring
flows caused by infected computers. One of the most
important requirements for any method used to find
frequently occurring flows is the ability to analyze huge
amounts of data without using huge amounts of mem-
ory. Among established studies, CPM [1] and Space-
Saving [12] can handle vast amounts of data without
using huge amounts of memory.

Mori et al. [2] reported that the number of distinct
elements in TCP/IP headers was important in network
analysis. For example, P2P software generates service
port numbers randomly and the packets include various
DPTs but the same SIP. Thus, we can find P2P pack-
ets by finding groups of packets that share the same
SIP but have a variety of DPTs. Several studies have
reported methods that collect the number of distinct
flows efficiently (e.g., [13], [14], [15], and [16]). For ex-
ample, the number of distinct SIPs in the flow can be
measured by the method proposed in [13]. The number
of distinct SIPs for some specific DIP can be measured
by the method proposed in [15] and [16]. However, it is
not, possible to analyze both the distinct elements and
mine for frequent itemsets at the same time using either
of these methods. Even though such a method enables
simultaneous analysis and mining without specifying
specific IP or combination of IP and port number, no
such method has been developed as of yet.

The method developed by Yoshida et al. [1] can be
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used to find the flows of DDoS attacks, scans, and Inter-
net worms. Additional information can be obtained by
evaluating the number of distinct elements in TCP/IP
headers [2]. We therefore developed a method for col-
lecting statistics on the number of distinct elements in
TCP/IP headers without using a large amount of mem-
ory.

We also used actual Internet traffic data to evalu-
ate the performance of the mining method we devel-
oped. The evaluation showed that cache-based im-
plementation enables data on the Internet to be an-
alyzed in real time without using a huge amount of
memory. Note that the huge amount of Internet traf-
fic makes both the analysis of distinct elements in the
traffic and the mining of frequent itemsets difficult. Al-
though some researchers have attempted to solve this
problem (e.g., [17], [18], and [19]), most of them ana-
lyzed only the number of frequently found flows. We
have developed a method that can be used to also ana-
lyze distinct elements in transactions. Combining these
tasks increases the amount of memory required.

Snort [20] is an open source network intru-
sion detection system that uses a signature-based
method. The method we developed is a complement
to signature-based methods. Network operators can
use our method to screen candidate intrusion events
and use a signature-based method to confirm intrusion
incidents.

3. Algorithm

To find frequent itemsets and count the number of their
corresponding distinct elements, we modified CPM [1],
which uses a fixed-size cache memory to find frequent
itemsets. Since we intend to control mass flows, our
proposed method is first used to find frequent itemsets
(i.e. mass flows). Then, the number of varieties are
used to classify the found flows. For example, when the
modified CPM finds a frequent combination of SIP and
DPT, it also counts the other elements in the TCP /TP
headers (e.g., DIP and source port number (SPT)). The
information about the number of DIPs and SPTs can
be used to classify the behavior of the host.

The modified CPM algorithm is shown in Figure 2.
The modified parts are underlined. The original CPM
algorithm simply counts the frequency of itemsets (i.e.,
possible combinations of items) in the transactions. In
proposed applications, each transaction is made from
the TCP/IP header of every single packet. An item-
sets function is recursively called to count the frequency
of itemsets. Figure 3 shows an example of a function
call process with variables. In Figure 3, the precedence
numbers appended to the arrow shows the calling se-
quence. () marks show the value of variable “items”,
and {} marks show that of “rests”. A fixed-size cache
is used to store the itemsets and their frequencies. Al-
though the original algorithm is extremely simple, it
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Algorithm CPM
Variable

Cachel]: fixed-size table
begin

Create empty cache;

while (input Transaction)

for each item in Transaction
Itemsets(item, rest of items in Transaction);

end

Function Itemsets(items, rests)
Variable
items[]: items in the current itemsets
rests[[: other items in the transaction
begin
1 = index of items in cache; (calculated by hash2)
if (¢ is new index)
increment cache_diff[index of original items] by 1;
increment cache_cnit[i] by 1;
for each item in rests
Itemsets(items+item, rest of items in rests);
if (cache-cntfi] > thresh_hold)

report statistics;
cache_cnitfi] = 0;

cache_diff[i] = 0;

end

Fig.2 Modified CPM algorithm.
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Fig.3 Function call process.

works well with a specific memory management strat-
egy.

The Hash2 memory management strategy [1] is
used to select the cache entry for new items and item-
sets (Figure 4). It first calculates “n” hash values of a
given item and then generates “n” indexes from these
hash values. If the item to be stored is already in the
cache, one of the indexes refers to the entry for the item.
If the item is a new item, Hash2 selects the index that
refers to the least frequent of the “n” entries referred
to by the “n” indexes. Then, the old item stored in the
cache at that index is replaced by the new item. Here,
the “n” influence processing capacity and quantity of
mass flows detected. After referring to the recent study
by Yoshida et al. [1], we set “n” to 4 in the experiments
reported in the next section.

The analysis of Internet traffic data in this work
differs from standard frequent itemset mining in that

Function Hash2
Input
Item: Data to be stored in Cache
Variable
Hash[]: Table of Hash Values
Idz([]: Table of Cache Index
begin
Calculate “n” hash values from Item
and store them into Hash[]
Idz[] = Hash[] % Cache Size
if (one of entry refereed by Idz[] stores Item)
then return Idz that refers the entry
else Select Idz that refers least frequent entry
cache_cnt[ldz] = 0
return Idz

end
Fig.4 Pseudo code for memory management.
Table 1  Structure of cache table.
D cache | 1st item (e.g. SIP) | 2nd item (e.g. SPT) | n-th
—cnt [ cachediff | value | cachediff | value | item
1 16 - 192.168.1.5 - 80
2 152 - 10.100.0.19 8 -
3 2 2 - - 443
4 40 - 172.16.1.46 - 110
5 20 - 192.168.1.5 2 -
6 20 2 - - 80

each item in the transaction has a specific meaning,
such as SIP and SPT. A cache table with fixed en-
tries is used to store the information (See Table 1). Tt
stores the counters for the distinct elements (cache_diff
in Table 1) together with the frequency of itemsets
(cache_cnt in Table 1). The cache table used in our
experiments described in the next section has columns
for five items: SIP, SPT, DIP, DPT, and protocol num-
ber.

Each entry (i.e., each row) in Table 1 stores the
value of an item or the number of its distinct elements,
that is, each entry stores an alternative value of a spe-
cific item (“value” column in Table 1) or the number of
its distinct elements (“cache_diff” column in Table 1).
When the “value” of an item is stored, the “cache_diff”
column of that entry is empty. When the number of
distinct elements is stored, the “value” column of that
entry is empty. When a cache table for five items is used
and the entry stores the information about an itemset
with two items, two corresponding columns store the
values of items and others store the number of distinct
elements of the corresponding items. For example, the
first entry in the table (ID=1) shows that

e There are 16 packets whose SIP is “192.168.1.5”
and SPT is “80.”

The second entry in the table (ID=2) shows that
e There are 152 packets whose SIP is “10.100.0.19”.
and

e The number of distinct elements in the SPT of
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these packets is “8.”

To analyze the distinct elements for the found
itemsets, steps (single-underlined in Figure 2) are
added. When the method selects an entry to be
stored, it checks whether the combination of items is
new. When no index in “n” indexes calculated by
hash2 refers to the entry, it is determined to be a
new item. If it is a new item, the number of dis-
tinct elements for the original items is increased by
1. The original items are derived by subtracting any
one item from the items processed at that time (Fig-
ure 5). For example, if the method makes a new entry
with SIP=192.168.1.5 and SPT=80, it increments the
counter that stores the number of distinct elements for
both item “SIP=192.168.1.5” and “SPT=80” (i.e., SPT
cache_diff column of ID=5 and SIP cache_diff column
of ID=6 in Table 1).

A normalized operation has also been implemented
using the second set of modified steps in our modi-
fied CPM algorithm (doubly-underlined in Figure 2).
The statistics of frequent items that have a frequency
greater than the threshold are reported and then the en-
try is set to zero. Using this operation, statistics on the
same number of related transactions are collected and
normalized information about their distinct elements is
obtained.

The drawback of using this algorithm is that all the
necessary information cannot be held when it is used
with a small memory. With a small memory, less fre-
quent items and itemsets must be discarded and not all
of them can be found. The number of distinct elements
is also overestimated because the novelty check makes
errors when data has been discarded. However, we can
use this algorithm to analyze extremely biased Internet
traffic data. (See Section 5 for details.)

4. Internet Traffic and Abnormal Flows
4.1 Characteristics of Internet Traffic

In the experiments described in this section, we ana-
lyzed two traffic logs: one recorded at a monitoring
point of a line crossing the Pacific ocean and the other
recorded at a monitoring point on a campus line. These
data were provided by the MAWI working group [6].
The characteristics of these traffic flows are summa-
rized in Table 2.

Figure 6 shows the number of packets per flow in
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Table 2  Traffic characteristics.

Trans-Pacific line  Campus line

Number of packets 16,031,975 26,954,392
Number of flows 1,228,425 864,916
Percentage of SYN packets 5.27% 2.94%
Average packet length 427.5 677.1
14 T T T T T
- k =-0.933046 -------
12 -
:@ ++Hmt+
2 10 \i\fftr B
S N
g NGt
= 8 N i
. U,
£ of :
2 RS
S 4 N 1
S +++\+3r;\
2 - P 1
i
O 1 1 1 1 1 1 —
0 2 4 6 8 10 12 14
Log(rank)

Fig.6 Number of Packets per Flow.

the Trans-Pacific line. Here, each flow shares the com-
bination of the same source IP address (SIP), desti-
nation IP address (DIP), source port number (SPT),
destination port number (DPT), and protocol number.
As shown in Figure 6, the distribution follows a power
law with an exponent of -0.933. The relation between
the number of packets P and rank of flows F' in the
traffic is given by the following equation:

F
P = F0.933/ $_0'933d$. (1)
1

Although the traffic data involves other N tuples
(where N = 1 ~ 4), the varieties of flows (i.e., 5 tu-
ples) are dominant; therefore, we can use the number
of flows as an index of memory requirements. The du-
ration of each flow is also important. In the following
experiments, we analyze every 1000 packets in order
to determine the characteristics of each flow. In the
Trans-Pacific line traffic, a typical scan takes 451.8 sec-
onds to send 1000 packets and a scan sending packets
slowly takes 1363.1 seconds to send 1000 packets. How-
ever typical TCP flow takes only 191.8 seconds to send
1000 packets. To analyze the slowest scan, we are re-
quired to analyze packets sent during a 1363.1 second
period. Since the average packet length is 427.5 bytes,
the number P of packets we have to analyze is given by

P =1363.1x% ~ 0.399 x B, (2)

_B
42758

where B is the bandwidth of the communication line
(bits per second).
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Table 3 Campus line results.
# of different # of  collected flows
DPTs SIP Flows (%)
1,2 Scan 8§ 208,040 33.80
Normal 15 23,192 3.77
3-10 Normal 15 49,818 8.10
11-100 - - - -
100- P2pP 1 1,703 0.28
Total 39 282,753  45.94
Table 4 Trans-Pacific line results.
# of different # of  collected flows
DPTs SIP Flows (%)
1,2 Scan 10 63,828 11.86
Normal 5 7,033 1.31
3-10 Normal 6 36,530 6.78
Unknown 5 7,821 1.45
11-100 Normal 1 7,370 1.37
Unknown 2 9,933 1.85
100- P2pP 1 3,971 0.74
Total 44 155,580  28.89

Using equation (1) and (2), we can estimate the
amount of memory required in order to get the infor-
mation we need about the traffic packets.

4.2 Analysis of Internet Traffic

A prototype system based on the design described in
the previous section has been implemented using a per-
sonal computer with a Xeon 2.0 GHz CPU and 2G bytes
of RAM. The system reports various piece of informa-
tion on packet flows appearing more than 1,000 times.
Before describing the resource requirements in detail,
we give some experimental results obtained using suffi-
cient resources.

4.2.1 Analysis of TCP Packets with SYN flag

We extracted TCP packets that had SYN flags. We
analyzed 45.9% of the flows through the campus line
and 28.9% of the flows through the Trans-Pacific line.
The results are summarized in Tables 3 and 4.

These tables show the number of distinct DPTs
for packets that share the same SIP. The number of
distinct DPTs for a specific SIP reflects the behavior
of the client computer with that IP address, and these
tables summarize the types of client computers in the
networks. For example, the first row in Table 3 indi-
cates that a few hosts (8 SIPs, third column) generates
208,040 flows to specific DPTs (first column). The 5th
row indicates that a single host generates 1,703 flows
to various (over 100) DPTs.

The type of flow in the second column can be iden-
tified because the number of distinct DPTs indicates

the number of services the SIP host tries to access. The
actual service of each flow is confirmed as follows:

Scan
We found that the number of distinct DIPs for
these flows is 254 or more than 500." These flows
contain only packets with SYN flags and do not
contain data packets. These flows indicate typi-
cal behavior of crackers or viruses trying to find a
target.

P2P
The number of distinct DPTs is more than 100.
This behavior indicates that the hosts generate ser-
vice port numbers randomly and also use a com-
bination of the same TCP port and UDP port.
This is typical behavior of a BitTorrent client. We
confirmed this by observing the header portion of
payloads.

Normal
These are flows that use well-known services, such
as SMTP, HTTP, and SSH.

Unknown

Other flows.

The total number of SIPs found in the flows is
small. There were 39 SIPs in the campus line and 44
SIPs in the Trans-Pacific line. By analyzing those flows,
we found flows with a high probability of being abnor-
mal.

4.2.2 Analysis of all TCP Packets

Other abnormal flows were found by analyzing all the
TCP packets. Typical results for the TCP packets anal-
ysis are shown in Figure 7. In Figure 7, each point
represents the reported number of distinct DIPs (hori-
zontal axis) and DPTs (vertical axis) for specific com-
binations of SIP and SPT. Since these numbers are re-
ported every time the number of packets reaches 1000
when the proposed method is used, same combinations
of SIP and SPT generate multiple points. For example,
(d) in the figure indicates that the number of distinct
DPTs for packets from a single port of a single host is
about 600. The number of distinct DIPs for the same
packets is also about 600.

The figure shows the statistics collected for a com-
bination of SIP and SPT, which mainly reflect server
output behavior. These statistics can be classified into
three groups according to the number of different DIPs.

More than 500 different DIPs:
Four combinations of the same SIP and SPT were
found in the Trans-Pacific line data set ((a),(b),(c),
and (d) in Figure 7). These four hosts were under

fThe number of distinct DIPs is also reported simulta-
neously when using proposed method. Although using the
proposed method reports other information, we choose Ta-
ble 3 and 4 as examples.
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Fig.7 Characteristics of all TCP packets.

attack or were trying to find vulnerable hosts. Host
(a) sent only packets with RST and ACK flags,
and it always used SPT 7000. Host (b) sent only
packets with SYN and ACK flags, and it also used
SPT 7000. Host (c) and (d) sent only packets with
SYN and ACK flags, and they used SPT 80.
150-500 different DIPs:
Two combinations of the same SIP and SPT were
found in this category (see (e) and (f)). They also
used the combination of the same TCP port and
UDP port. These two hosts appeared to be hub
hosts of an overlay network. They tried to keep
sessions active with a large number of hosts in or-
der to maintain an overlay network.
Less than 150 different DIPs:
These are flows about which no conclusion could
be made in this analysis.

Clearly, a group of packets with more than 150 different
DIPs tends to be suspect and is worth monitoring.

4.2.3 Analysis of UDP Packets

By analyzing UDP packets in a similar way, we found
anomalous hosts that scanned vulnerable hosts using
UDPs and found hosts that formed a P2P network.
Typical results of analysis of the campus line and the
Trans-Pacific line are shown in Figure 8 and Figure 9,
respectively. Statistics on the packets that shared the
same SIP and SPT are shown in these figures.

We also performed a manual analysis of the results
from the proposed method. We found seven clusters
of varieties of DPTs and DIPs (see Figure 10). The
characteristics of each area are summarized in Tables 5
and 6:

Area (1):
Flows in this area were thought to be real-time
traffic (voice and video). Manual analysis of flows
in this area did not find any flows with unusual

behavior.
Area (2):
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Table 5 Campus line results.
Area # of SIP/SPT  Collected Packets
Comb. Packets (%)
(1) Unknown 39 4,545,023 88.74
(2) DNS 11 115,592 2.26
(3) Scan, Spam 7 9,751 0.19
(4) DNS 14 85,005 1.66
(5)  DNS Anomaly 2 5,964 0.12
(6) DNS 1 3,371 0.07
(7)  P2P 1 2,693 0.05
Total 75 4,767,399 93.09
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Table 6 Trans-Pacific line results.
Area # of SIP/SPT  Collected Packets
Comb. Packets (%)

(1) Unknown 69 1,313,263 44.75
(2) DNS 31 112,958 3.85
Unknown 4 7,073 0.24

(3)  Scan, Spam 22 103,670 3.53
(4) DNS 26 583,501 19.88
Broken packets 2 11,003 0.38

P2P 1 7,319 0.25
Unknown 1 4,155 0.14

B - 0 0 0.00
(6) DNS 1 1,600 0.06
(7)  P2P 5 136,518 1.65
Total 162 2,281,060 77.73

Most of the flows in this area were due to DNS
client traffic. They consisted of packets going to
DPT 53 (i.e., DNS servers). DNS clients connect
to multiple DNS servers with the same SPT; there-
fore, we saw a variety of DIPs in a single combina-
tion of the same SIP, SPT, and DPT.

Area (3):
We detected scans and spam in this area. Scans
were caused by the SQL slammer worm, which uses
port number 1434. Spam used the Windows Mes-
senger service, which uses port numbers 1026 and
1027.

Area (4):
In this area, we detected DNS server traffic and
also found broken packets and P2P traffic in the
Trans-Pacific data set. Broken packets are located
near the Y-axis. P2P traffic is located wherey < x,
which is far from the points of the DNS server.

Area (5):
We detected DNS server traffic that was suspect in
this area. By observing the header portion of pay-
loads, we confirmed that these were replies refusing
requests for the same name resolution.

Area (6):
We detected DNS server traffic in this area. It
consisted of packets from SPT 53.

Area (7):
All the flows in this area were those due to P2P
traffic. They used a combination of the same TCP
port and UDP port, which is typical behavior of
P2P traffic.

Note that the analysis shown in this section fol-
lows an un-supervised learning framework. However,
the analysis could still find abnormal flows in the Inter-
net traffic. The analysis of the distinct elements in the
frequent itemsets contributes to semi-automatic finding
of abnormal flows.

5. Evaluation of Resource Consumption

As shown in the previous section, a frequent-itemset-
mining method with distinct-element analysis capa-
bility can find abnormal flows in Internet traffic.
Since combining frequent-itemset-mining and distinct-
element analysis increases resource requirements, we
detail the resource requirements needed when our pro-
posed method is used.

5.1 Processing capacity

The prototype system took 110.9 seconds to process
1.60 million packets of the Trans-Pacific traffic. If only
packets with SYN flags are analyzed, this processing
rate (141 k packets per second) is high enough to mon-
itor the traffic in a 9.15-Gbps line (141 kpps * 427.5
byte * 8 bits / 0.0527). It was shown in the previous
section that the analysis of packets with SYN flags pro-
vides valuable information and that the average use of
backbone bandwidth is far less than 100%. Therefore,
the performance of our proposed method could poten-
tially handle Internet traffic rates up to 10 Gbps.

5.2 Memory requirement

A cache table with 12 million entries was used in the
experiments described in the previous sections. Each
entry consumed 50 bytes of memory; therefore, the
cache table contains 600 Mbytes of data. With this
600-Mbyte cache table, the results include flows with
distinguishing characteristics. Each flow is from a spe-
cific SIP and the number of distinct DIPs is 254. Such
flows seem to be the flows of worms, which scan C-class
address spaces. This result indicates that our proposed
method with 12 million entries could count an accurate
number of distinct elements in frequently found flows.

The question here is how many packets the pro-
posed method can analyze with a 2-Gbyte memory. If
the proposed method can analyze Internet traffic with
a 2-Gbyte memory, we can use it as a practical tool
for network management. To analyze its performance
with 2-Gbyte memory, we evaluated its performance by
restricting the number of cache entries.

Figure 11 shows the number of frequently found
flows. Although the traffic used in this experiments
had about 1800 flows that had more than 1000 pack-
ets, a cache table with more than 10k entries can still
estimate this number accurately. This signifies that the
proposed method can find almost all the frequently oc-
curring flows by using 10k cache entries.

With insufficient memory, the proposed system
stores new data by overwriting old cache entries. This
causes the second occurrence of old data to be mistaken
for the first occurrence of new data, and thus results in
the number of distinct elements being overestimated.
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Figure 12 shows the average number of DIPs estimated
for the TCP packets that share the same SIP.

With 32k cache entries, using our proposed method
leads to overestimates in the number of DIPs by 5%,
which from a network management viewpoint is accept-
able accuracy. Figure 13, 14, and 15 show the captured
distribution of the number of DIPs. These figures show
that DIP distribution can be captured with 32k~1024k
entries but not with 4k entries.

Figure 16 shows results of different experiments.
As shown in the previous section, the packets that scan
C-class address spaces tend to have longer packet inter-
vals. Since using the proposed method is unsuitable for
retaining statistics of flows that have longer packet in-
tervals, we also measured its performance by analyzing
specific worms packets. For this purpose, we selected 10
flows that were sent from the same SIPs (i.e. 10 hosts)
to C-class addresses and analyzed the results obtained
using the proposed method by changing the cache size.
If the cache size is sufficient, the proposed method can
report accurate statistics. However, if it isn’t, it over-
estimates the number of distinct elements.

Figure 16 shows the number of DIPs that were
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found with different cache sizes. With a sufficient cache
size (i.e., 1024k entries), the proposed method found
the correct number (254) for all 10 flows. With smaller
caches, it overestimated the number of DIPs. With 16k
cache entries, for examples, it estimated DIP numbers
ranging from 514 to 631. We think that even if the
number of varieties is overestimated by up to a factor



SHOMURA et al.: ANALYZING THE NUMBER OF VARIETIES IN FREQUENTLY FOUND FLOWS

10 T T T T T T T T
| 1024k ——
0 128k ------- .
sl ; 32k - '
> i 16k o i
2 i 8k -l
E e s
g °r | : ]
E’ "‘ !‘ !
g af : ; b
> | !
E ! | ;
=} ! |
(@) I
2+ i ! -
i i
‘ : ] 0
0 1 1 1! 1 1 1 1i 1 i

0 100 200 300 400 500 600 700 800 900 1000
Number of different DIPs

Fig.16 Distinct elements of worms.

Table 7 Estimated performance.

Assumed bandwidth 10 G bps
Cache entry size 50 bytes
Assumed duration 1363.1 sec.
Number of packets for 1363.1 sec. 3.99G
Number of flows for 1363.1 sec. 267M

Number of entries for 1363.1 sec. 8.2M

Estimated memory size 410 M bytes
Assumed memory size 2 G bytes
Number of entries in 2-Gbyte cache 40 M
Estimated number of flows 1.3G
Estimated number of packets 19.4G
Estimated duration 6737 sec.

of two, using the proposed method will still have ap-
plications in the network management. Thus, we have
concluded that 30~40k entries (i.e., ~3% of flows) are
required for the traffic described in Table 2.

Table 7 shows the estimated traffic that the pro-
posed method can handle. A 10-Gbps Internet line can
send 3.99 G packets during 1363.1 seconds (Equation
(2)), and that traffic is estimated to contain 267 million
flows (Equation (1)). Since the proposed method would
require 8.2 million entries to handle that amount of traf-
fic (i.e., about 3% of the flows in it), the required mem-
ory size would be 410 Mbytes. If we used a PC with a
2G memory, we could handle traffic for ~ 110 minutes.
These results indicate that the proposed method can be
used to analyze the Internet traffic in a 10-Gbps line.

5.3 Worst case evaluation

In a worst-case scenario, the estimations of both flow
frequency and the number of distinct elements for the
flow become large due to the data discard by hash2
memory management. In other words, the memory re-
quirement for the proposed method becomes large if the
target network involves more new flows. The CPU re-
quirement is also increased due to the data replacement
for the new flows. Note that the CPU requirement for
incrementing counters of known flows is much smaller

than that for the data replacement caused by new flows.
Thus, both memory and CPU requirements can possi-
bly become larger than those described above.

Although the theoretical analysis of the worst and
average case resource requirements is desirable, the dif-
ference between the theoretical estimation and real data
is too large to design a network monitoring system for
daily network monitoring tasks. Some flow characteris-
tics that have not yet been analyzed seem to exist and
cause this difference.

Due to this deficiency in real flow characteristics,
we evaluated our proposed method by using real Inter-
net traffic in this section.

6. Future Work

We have manually analyzed the flows found by our pro-
posed method; however, the manual analysis was only
done to demonstrate the feasibility of the method. In
most cases, network operators can use the results of the
proposed method to determine potential problems.

In Figures 8 and 9 the data for scans and spam
is shown by cross marks and the data for P2P traffic
is shown by triangles. Similar to the analysis of TCP
packets with the same SIP and SPT, the analysis of
the UDP packets that share the same SIP and SPT
can identity suspect flows. The data for these kinds of
abnormal traffic are clearly found in different parts of
these plots.

Analyzing packets with the same SIP and DPT is
useful for analyzing client output behavior. Analyzing
packets with the same DIP and SPT is useful for an-
alyzing client input behavior. Analyzing packets with
the same DIP and DPT is useful for analyzing server
input behavior. However, the utility of our proposed
method in these kinds of analyses remains to be inves-
tigated.

The proposed method might also be useful for daily
network monitoring that is not specifically for identify-
ing abnormal flows. For example, Figures 7, 8 and 9
represent some aspect of network usage. They repre-
sent the characteristics of the communication between
servers and clients. Bandwidth consumption and the
percentage of used port numbers are typically observed
in daily network monitoring. The additional informa-
tion provided by our proposed method is expected to
facilitate network monitoring.

In this paper, we analyzed every 1000 packets of
flow in the experiments. “1000” was chosen empirically.
Studying how this number affects the analysis remains
as future work.

7. Conclusion
Network management is important for maintaining the

Internet as an important social infrastructure. Finding
P2P flows, DDoS attacks, and Internet worms is an



10

important part of network management.

We have developed a method that uses an ex-
tremely small amount of memory to analyze the number
of varieties in frequently found flows. The most impor-
tant characteristic of the method is that it can be used
to analyze the number of varieties in frequently found
flows. In experiments with actual Internet traffic, we
demonstrated the following:

e The proposed method can find P2P software,
spams, and scans in Internet traffic.

e The performance of the proposed method enables
on-line analysis of Internet backbone lines with
bandwidths up to 10 Gbps.

Typical examples of analysis indicate the advan-
tages of our proposed method. Studying the best uses
of the method and making full use of its potential re-
main as future work.
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