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 Synthetic studies of mycalolide B, an actin-depolymerizing  
marine macrolide: construction of the tris-oxazole macrolactone  

using ring-closing metathesis  
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305-8571, Japan. 

Abstract—Tris-oxazole macrolactone 2, a key intermediate of mycalolide B (1), which has 13 stereogenic centers, was synthesized 
through the use of ring-closing metathesis (RCM). The E/Z ratio of the RCM product 2 was reversed by the use of CH2Cl2 and toluene, 
whereas a cross metathesis reaction yielded the C1–C35 long-chain compound 19 in a highly E-selective manner. Thus, the loss of 
flexibility in aliphatic carbon chains and the steric hinderance of β- and γ-substituents of the C20 olefin in the precursor 11 may affect the 
stereoselectivity in RCM reactions.  © 2010 Elsevier Science. All rights reserved. 

Mycalolide B (1) is a cytotoxic and antifungal macrolide 
isolated from the marine sponge Mycale sp. It bears a 
unique tris-oxazole structure and 13 stereogenic centers 
(Fig. 1).1 This compound also inhibits actomyosin 
Mg2+–ATPase and shows potent actin-depolymerizing 
activity by sequestering G-actin and forming a 1:1 
complex.2 Mycalolides can be divided into two 
characteristic parts: the C1–C24 macrolactone and the 
C25–C35 side-chain moieties. Studies of the 
structure-activity relationship 3 and photo-affinity labeling 
experiments 4 have established that the side-chain part of 1 
is critically important for its ability to bind to and 
depolymerize actin. Several tris-oxazole macrolides closely 
related to mycalolides have been isolated, such as 
ulapualides,5 halichondramides,6 jaspisamides,7 and 
kabiramides;8 all of which exhibit potent actin- 
depolymerizing properties. These agents may be useful for 
the development of novel pharmacological tools for 
analyzing actin-mediated cell functions, such as muscle 
contraction, cell motility, and cytokinesis. Furthermore, it 
is noteworthy that aplyronine A, which has an 
actin-binding side-chain moiety similar to mycalolides, 
exhibits potent antitumor activity in vivo against P388 
leukemia and several cancers.9,10 Thus, mycalolides and 
related actin-targeting natural products have great potential 
as preclinical candidates for use in cancer chemotherapy.  

   Due to their extraordinary structures and important 
biological activities, several synthetic studies on tris- 
oxazole-containing macrolides have been reported.11 
Recently, total syntheses of mycalolide A 12 and ulapualide 
A 13 have been accomplished, in which Yamaguchi 
lactonization, cyclization of the central oxazole ring, or 
intramolecular Horner–Wadsworth–Emmons olefination 
were used to construct macrocycles. Subsequent studies 

have shown that olefin metathesis is a useful method for 
connecting the C19–C20 double bonds in mycalolide 
analogs.14 Here we describe the synthesis of tris-oxazole 
macrolactone 2, a key synthetic intermediate of 
mycalolides, through the use of ring-closing metathesis 
(RCM). We expected that the convergent assembly of three 
fragments via Ni/Cr-mediated Nozaki–Hiyama–Kishi 
coupling 15 at C6–C7, esterification, and RCM at the 
C19–C20 olefin could efficiently afford 2. 
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   The synthesis started with removal of the Boc and 
acetonide groups of the previously reported oxazole (–)-3 14 
under acidic conditions, and subsequent condensation with 
2-chloroxazole-4-carboxylic acid 16 afforded amide 4 (77%, 
2 steps) (Scheme 1). Due to the considerable instability of 
the 2-vinyloxazole moieties under basic and dehydration 
conditions, we planned to introduce the vinyl group to the 
oxazole ring after construction of the tris-oxazole structure. 
Dehydrating cyclization of 4 by diethylaminosulfur 
trifluoride (DAST) 17 gave an oxazoline intermediate (85%), 
which was oxidized with a combination of 
bromotrichloromethane and 1,8-diazabicycloundec-7-ene 
(DBU) 18 at room temperature to give tris-oxazole 5 (98% 
based on recovered starting material).19 We found that 
acetonitrile is a better solvent than the conventional CH2Cl2 
in this reaction. Catalytic dihydroxylation of 5 with 
OsO4–NMO and Migita–Stille coupling with 
tri-n-butylvinyltin furnished a vinyloxazole intermediate, 
and this was transformed into aldehyde 6 via oxidative 
cleavage of the 1,2-diol with NaIO4 (73%, 3 steps).  
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Scheme 1.  Synthesis of the RCM precursor 11. Reagents and conditions: 
(a) 3 M HCl, EtOAc, rt; (b) 2-chlorooxazole-4-carboxylic acid, EDCI·HCl, 
HOBt, Et3N, CH2Cl2, 0 °C to rt, 77% in 2 steps; (c) DAST, CH2Cl2, –78 to 
0 °C, 85%; (d) DBU, BrCCl3, MeCN, rt, 54% (98% brsm); (e) OsO4, 
NMO, THF–tBuOH–H2O, rt; (f) tri-n-butylvinyltin, PdCl2(PPh3)2, 
1,4-dioxane, reflux; (g) NaIO4, EtOH–H2O, rt, 73% in 3 steps; (h) 7, 
CrCl2–NiCl2, THF–DMF, rt; (i) DMP, pyridine, CH2Cl2, rt, 71% in 2 
steps; (j) TFA, CH2Cl2, 0 °C, 90%; (k) TBAF, THF, 40 °C, 97%; (l) 10, 
MNBA, Et3N, DMAP, CH2Cl2, rt, 55%.  
 

   Fragment coupling between 6 and vinyl iodide 7 12 by a 
Ni/Cr-mediated coupling reaction was followed by 
oxidation of the C7 allylic alcohol with Dess–Martin 
periodinane (DMP) 20 to afford a ketone (71%, 2 steps), the 
tert-butyl group of which was removed to give carboxylic 
acid 8 (90%). Removal of the tert-butyldimethylsilyl (TBS) 
group in 9 14,3b,21 by tetra-n-butylammonium fluoride 
(TBAF) gave C20–C35 fragment 10 (97%), which was 
condensed with 8 by the Shiina procedure 22 to afford the 
RCM precursor 11 in 55% yield.  

   With the key intermediate 11 in hand, RCM reactions 
were examined (Table 1). First, treatment of 11 with 30 
mol% of 2nd-generation Grubbs catalyst (12) 23 in degassed 
refluxing toluene led to decomposition of the starting 
material and gave a complex mixture (entry 1). We 
assumed that the low reactivity of 11 toward RCM 
reactions would be due to the electron-deficient C19 olefin. 
To overcome this problem, more thermally-stable and 
highly-active catalyst was considered. Treatment of 11 with 
30 mol% of 2nd-generation Hoveyda–Grubbs catalyst (13) 
24 in refluxing CH2Cl2 (0.8 mM) yielded tris-oxazole 
lactone 2 as a separable 2:1 mixture of stereoisomers in 
30% yield (entry 2).25–27 With the use of toluene as a 
solvent (0.9 mM), the yield of 2 was improved to 76%, but 
the E/Z-product ratio was changed to 1:1.2 (entry 3).  

Table 1.  Ring-closing metathesis of 11.  
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Entry Catalyst  

(30 mol%) 
Reaction conditions Yields (%) 

Product 19Z-isomer 
1 12 toluene, reflux, 4 h trace a trace 
2 13 CH2Cl2, reflux, 24 h 20 b 10 
3 13 toluene, reflux, 3 h 34  42 

 a S.m. was decomposed and not recovered.  
 b S.m. was recovered (50%).  

   For comparison, we also used a cross-metathesis 
reaction (Scheme 2). Acidic treatment of cyanide 15 in 
aqueous MeOH, which was prepared from (S)-epichloro- 
hydrin (14),28 and protection of the hydroxyl group gave 16 
(60% in 2 steps). Ozonolysis of the terminal olefin (80%) 
and Takai olefination 29 gave vinyl iodide 17 (66%, E/Z = 
11/1). Nozaki–Hiyama–Kishi coupling between 
compounds 6 and 17 gave an allylic alcohol (87%), which 
was oxidized with DMP to afford the C1–C19 ketone 18 in 
84% yield. In contrast to the RCM reactions, treatment of 
the C1–C19 segment 18 (1.2 equiv.) and the C20–C35 
segment 9 with 50 mol% of catalyst 13 in refluxing CH2Cl2 
(7 mM for 9) for 25 h yielded the C1–C35 long-chain 
compound 19 in a highly E-selective manner (66%, E/Z = 
5:1).25,30–32  
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Scheme 2.  Cross metathesis reaction. Reagents and conditions: (a) conc. 
H2SO4, MeOH–H2O, reflux; (b) TBDPSCl, imidazole, DMF, rt, 60% in 2 
steps; (c) O3, CH2Cl2, –78°C, then Me2S, –78 °C to rt, 80%; (d) CrCl2, 
CHI3, 1,4-dioxane–THF, rt, 65%; (e) 17, CrCl2–NiCl2, THF–DMF, rt, 
87%; (f) DMP, pyridine, CH2Cl2, rt, 84%; (g) 9, 13 (50 mol%), CH2Cl2, 
reflux, 55 % with 11% of 19Z–isomer.  
 
   Our work demonstrated that the RCM reaction of 11 
proceeded with low stereoselectivity, unlike the 
cross-metathesis reaction of 18. The E/Z ratios did not 
significantly change during the course of the metathesis 
reactions, and thus the formation of C=C bonds in 2 and 19 
would take place under kinetic control. In the 
ruthenocyclobutane intermediate for the desired 
19E-isomer of 2, the oxazole rings and C21–C35 alkyl 
chain are located in an anti-orientation. Due to the rigidness 
of the tris-oxazole and α,β-unsaturated ketone moieties, the 
anti-ruthenocyclobutane intermediate would be more 
strained than the syn-intermediate, which may affect the 
stereoselectivity in RCM reactions.  

   In conclusion, we achieved the synthesis of tris-oxazole 
macrolactone 2 through the use of RCM reactions as a key 
step, which includes all of the 13 stereogenic centers and 
the whole carbon framework of mycalolide B (1). Also, this 
key intermediate possesses a common framework for 
mycalolides and related actin-depolymerizing tris-oxazole 
macrolides. Studies on the total synthesis of mycalolide B 
(1) as well as on the stereoselectivity of RCM reactions, 
and especially solvent effects, are currently underway.  
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dimer of 18 was not formed.  

32 Model reactions for the cross-metathesis of 2-vinyloxazole 
derivatives using catalyst 13 in toluene at 40 °C also 
preferentially yielded E-isomer, but the selectivity was lower 
than in the case of CH2Cl2 (E/Z = 2.0~1.5:1). Thus, the 
difference of solvent (CH2Cl2 and toluene) rather than 
reaction temperature may affect the stereoselectivity in the 
RCM reactions of 11. 
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