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Abstract
We have reported a block-iterative algorithm named as DRAMA for image reconstruction for emission
tomography (Tanaka and Kudo 2003).  DRAMA is a modified version of the row-action maximum
likelihood algorithm (RAMLA), in which the relaxation parameter  is subset-dependent and is changed in
such a way that the noise propagation from subsets to the reconstructed image is substantially
independent of the access order of the subsets.  The algorithm provides fast convergence with
reasonable signal-to-noise ratio.  The optimal relaxation parameter has been derived assuming a two-
dimensional (2D)-PET model, and the detailed performance in three-dimensional (3D)-reconstruction
has not been clear enough.  We have developed the new version “DRAMA-3D,” based on the 3D-PET
model.  The optimal relaxation parameter is a function of access order of the subsets and the ring
difference, and its value is determined by simple formulas from the design parameters of the PET scanner,
the operating conditions and the post-smoothing resolution.  In this paper, we present the theory of
DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative
studies of the related algorithms.  It is shown that DRAMA-3D is robust for various access orders of
subsets and is suitable to realize the one-pass (single iteration) reconstruction.

1. Introduction

Block iterative algorithms are now important tools for image reconstruction in PET.  The best known
among these is the ordered subsets EM (OSEM) algorithm (Hudson and Larkin 1994), in which the
projection data are grouped into a number of subsets, and the expectation maximization (EM) algorithm
(Shepp and Vardi 1982) is applied sequentially to these subsets in turn.  A complete cycle of the
successive sub-iterations for all subsets forms a main iteration of OSEM.  The OSEM algorithm
produces remarkable improvements in the initial convergence rate compared to the original EM algorithm
by a factor roughly equal to the number of subsets.  This property, coupled with the relatively simple
form of the update equation, has led to the widespread use of OSEM in PET and SPECT.  While the
method is practically attractive, it does not converge to the true maximum likelihood (ML) solution but
falls into limit cycles, and the excessive acceleration of the convergence by the use of a large number of
subsets results in the degradation in signal-to-noise ratio (Hudson and Larkin 1994, Meikle et al 1994).

The drawback of OSEM was improved by incorporating a suitably controlled relaxation parameter
denoted by the symbol l below.  The resulting algorithm is called “relaxed OSEM”.  One example of

this approach is the row-action maximum likelihood algorithm (RAMLA) of Browne and De Pierro
(1996).  RAMLA is a special case of the relaxed OSEM where the number of subsets is equal to the
number of projection views.  In RAMLA or relaxed OSEM, l  is fixed throughout a complete cycle of

sub-iterations.  The use of a large l  allows a fast convergence when the data are consistent, but it tends

to enhance the error due to inconsistent components (statistical noise) when the data contain Poisson
noise.  This property prevents the use of single iteration with a large l, and plural iterations are required

with a small l  or with an asymptotically decreasing l.  The undesirable feature on the noise
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enhancement with a large l is due to the fact that the noise components of data are propagated to the final

image of the cycle of sub-iterations with different efficiency, and the final image contains more of the
noise of the lately accessed projections than those of the early accessed projections.  The unbalanced
propagation of the noise is a main cause of the limit cycle phenomenon that degrades the signal-to-noise
ratio.  

Tanaka and Kudo (2003) have developed an algorithm named as “DRAMA (dynamic RAMLA)”,
in which l  is “subset-dependent” and is changed in such a way that the noise propagation from subsets to

the reconstructed image is substantially independent of the access order of the subsets.  As a result, the
contribution of noise from each subset is balanced at the end of each main iteration, making it possible to
avoid the limit cycle problem.  We call this property “uniform noise propagation” below.  The
algorithm provides fast convergence with reasonable signal-to-noise ratio.  Helou Neto and De Pierro
(2005) proved the convergence of DRAMA recently.  

The optimal relaxation parameter l  of DRAMA has been derived assuming a 2D-PET model in

Tanaka and Kudo (2003), and the detailed performance in 3D-reconstruction has not been well clarified.
In spite of these circumstances, DRAMA has been applied successfully to 3D-PET reconstruction
(Fukano et al 2004), 3D-PET with list-mode data acquisition (Nakayama and Kudo 2005, Yamada et al
2007) and 2D time-of-flight PET (Tanaka et al 2007).

In this paper, we describe a revised theory of DRAMA for 3D-reconstruction and present the new
definitions of the optimal relaxation parameter.  We call the new algorithm “DRAMA-3D” for
discriminating it from the previous one, “DRAMA-2D”.  This work focuses on the one-pass (single
iteration) reconstruction, considering the feature that the number of subsets is usually sufficiently large in
the 3D-reconstruction.  The outline of this paper is the following.  In section 2, we describe the theory
of the proposed algorithms and the optimal relaxation parameter.  Section 3 describes the simulation
studies.  In the last section, we describe a brief discussion of the consequences of our simulation studies
and conclusions.

2. Theory

2.1. DRAMA-2D

In this section, we describe briefly the outline of DRAMA based on the 2D-PET model (Tanaka and Kudo
2003), which is necessary in the following revision for 3D-PET model.  Suppose we count coincidences
along I lines of response (LORs) and denote by yi (1 £ i £ I) the number of detected events along the ith
LOR.  These data are arranged into M angular views with the view index m (1 £ m £ M).  Each view
consists of N parallel LORs, where I = M¥N.  We consider a square image matrix of N¥N = J pixels, and
photon emission from pixel j is denoted by xj (1 £ j £ J).  Effect of the photon attenuation and scattering
is not taken into account for simplicity.  The update equations of DRAMA-2D are

x x q
x

C
a

y

a x
j
k q

j
k q

k
j
k q

j
ij

i S

i

ij j
k q

j

J

q

( , ) ( , )
( , )

( , )
( )+

Œ ¢ ¢¢ =

= + -
Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃Â Â

1

1

1l (1.1)

x xj
k

j
k M( , ) ( , )+ =1 0 (1.2)

C aj q iji Sq

=
ŒÂmax (1.3)

where aij is the probability that a photon emission from pixel j is recorded in the ith LOR, q (0, 1,···, M–1)
is the index of the access order of views, and Sq is the subset of LORs accessed at the qth order.  Note
that, in DRAMA-2D, the number of subsets is equal to M, and a subset consists of all parallel LORs
having a constant view angle.  The index k (0, 1, 2, ···) refers to the main iterations, lk(q) is the

relaxation parameter (0 < lk(q) £ 1), and Cj is called the normalization constant.  We assume that the

iteration starts with a positive image xj
(0) > 0.  To regularize the reconstructed image, we apply the post-
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smoothing with a Gaussian filter after the iterations are terminated (Snyder and Miller 1985).
Tanaka and Kudo (2003) have shown that the noise component of the projection accessed at the

qth order will appear in the final image of the complete cycle of the sub-iterations with a propagation
efficiency given by

e l l f
f

( ) ( ) ( ) ( )q q r g
r q

M

= -Ê
Ë
Á ˆ

¯
˜

= +

-

’ 1 2

1

1

   (2)

g
M

g
m

M
2 2

1

11
1

( ) ( )f f
f

=
- =

-

Â with  f p= m M (3)

where g(f) is the geometrical correlation coefficient (GCC) of two LORs, f is the angle between the two

LORs, and ∑ f  denotes a constant obtained by averaging with respect to f.  Denoting the two LORs by

LOR-1 and LOR-2, the GCC is defined by
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where a1j or a2j is the probability that a photon emission from pixel j is recorded in the LOR-1 or LOR-2,
respectively.  If we define the relaxation parameter l(q) by

l b b( ) ( )q q= +0 0 (5)

b f
f0

2 1
=

-
g ( ) (6)

we can show that the noise propagation efficiency is independent of q.  That is, we have, from equations
(2), (5) and (6), e b b( ) ( )q M= + -0 0 1  = constant.  DRAMA-2D with the relaxation parameter defined
by equation (5) will then provide uniform noise propagation.  
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  (a) 2D-PET model (b) 3D-PET model

Figure 1. Two LORs model for calculating geometrical correlation coefficient.

In practice, we consider two LORs crossing at angle f  (£p/2)  and calculate g(f) assuming that the

LORs have a Gaussian cross-section corresponding to the post-smoothing (see figure 1(a)).  The GCC
between the two LORs is given by (Tanaka and Kudo 2003)
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where q =f /2, ss is the standard deviation of the Gaussian post-smoothing and D is the diameter of the

field of view to be reconstructed.  Using equation (7) in equations (3), (5) and (6), we can calculate b0
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and l(q).  However, the l(q)-value thus obtained is a function of M, even though there is no reason that

l(q) depends on M.  In the present paper, we describe a new simple expression of b0 in the followings.

The new expression of b0 does not include the calculation of the GCC, and the obtained b0-value (and

l(q)-value too) is independent of M.  The implementation of DRAMA becomes quite simple with this

new expression of b0.  

We consider the minimum angular interval Df to be considered to compute the average

geometrical correlation g2( )f
f

 in equation (3).  Usually M is set to a sufficiently large number than

that necessary to yield required spatial resolution, and the angular interval is equal to p/M (in 2D-PET

model).  In the iterative image reconstruction with post-smoothing, the effective number of views is
reduced to a value defined by the consistency condition (Natterer 1986) on the relation between the
spatial resolution ds and the minimum necessary number of angular views nf (in p), which is derived from

Shannon’s sampling theorem.  The relation is given by n D dsf p= ( )2 , where ds is the smoothing width1

of the post-smoothing.  The smoothing width of the Gaussian post-smoothing is ds s= 2 p s .  The
angular interval in the consistency condition is then given by

Df p f= =n d Ds2 . (8)

Considering the effect of the post-smoothing, it is reasonable to define b0 using the angular interval

given by equation (8).  For f ≥ Df, the value of the integrand of equation (7) at the upper limit of the

integration, y =D/2,  is negligibly small (£ exp(–p)), and then we can execute the integration by replacing

the upper limit of the integral with infinity.  The result is

g D d Ds s( ) ( sin ) ( sin )f p s f fª =2 . (9)

We assume that the summation in equation (3) is approximated by the integral with the lower limit of Df .
Then we have

b f f f f
f

p

0
2

2 1 2

2

2

22
2 2

ª
Ê
Ë
Á

ˆ
¯
˜ = ªÚ

-

g
D

d

D

d
( )

tan
d

s s
D

D D
.  (10)

Using equation (8) in equation (10), we have a simple expression of b0 as

b0 ª D ds. (11)

We confirmed that the b0-value obtained with the integration (equations (10) and (11)) is 5~6% larger

than the value obtained with the summation (equation (3)) with M=nf for ds=1.5~6.0 pixels and

D=128~256 pixels.  The difference is allowable.  
It is worth noting that the ratio D/ds (= b0) corresponds to the ratio of the information content on

positioning of a resolution element having size ds ¥ ds to that of an LOR having width ds and length D.
We call the ratio “CT-loss”, because it reflects the ratio of the noise variance of a 2D-PET image to that of
a gamma camera image obtained with the same total counts.  In other words, 2D-PET imaging needs
larger total counts than gamma camera imaging by a factor of about b0ªD/ds to obtain the similar image

quality (Tanaka and Iinuma 1976).  
                                                            
1 The smoothing width ds of a filter function f (x) ( ≥ 0) is defined as the width of the rectangular filter
having the same smoothing effect as that of the filter f (x) for Poisson noise:
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2.2. DRAMA-3D

2.2.1. Geometry and model of 3D-PET.   We consider a multi-ring 3D-PET model as shown in figure 2.
We denote the diameter of the detector ring by Dring, the diameter of the reconstructed field of view by D,
and the detector ring pitch by dpitch.  We consider to reconstruct a number of contiguous slices, and we
assume that the slice thickness w is equal to a half of the detector ring pitch, i.e. w = dpitch /2.  The slices
are divided into direct-slices or cross-slices.  Consider an oblique LOR with a ring difference d.  The

slant angle Q is given by tanQ = d  dpitch /Dring.  In the conventional PET scanner, the finite axial length of

the detector ring limits the maximum ring difference dmax.  As a result, the value of dmax varies not only

along different slices (smallest in the end-slices and largest in the central slice) but also changes with the
distance from the axis of the detector ring.  These situations are inconvenient to develop the theory of
DRAMA-3D.  We then assume that dmax is determined by a given constant value and is not affected by

the detector rings, in developing the theory on DRAMA-3D (section 2).  We also perform simulation
studies (section 3) to check the validity of DRAMA-3D under the same assumption (constant dmax).

However, we have to check carefully the effect of the assumption.  We will report the results of the
simulation study with a PET scanner having a limited axial length in section 3.6.  Note that, in some
kinds of PET systems, approximately flat axial-profile of dmax is obtained by stepwise or continuous

scanning of the patient bed or the detector gantry in the axial direction.

Ring 
difference

Detector ring

 Dring

Direct slice Cross slice

 D

d

LOR

Q

 dpitch

Figure 2. Configuration of a 3D-PET scanner.

2.2.2. Reconstruction algorithm.   We assume again that coincidence data are obtained along I lines of
response (LORs) and denote by yi (1 £ i £ I) the number of detected coincidence events along the ith LOR.
These data are grouped (subsetized) by the azimuthal angle f  and the ring difference d (0, 1, ···, dmax),

where dmax is the maximum ring difference.  The range of the azimuthal angle f is 0~p for d=0 and 0~2p
for d >0.  Each subset consists of parallel LORs having constant d  and f.  We consider a square image

matrix of N¥N boxels on each slice, and photon emission from boxel j is denoted by xj (1 £ j £ J).  In the
3D-PET, we usually have a sufficiently large number of views (projections), and then we consider here
single main iteration (one-pass reconstruction) and drop the index k of the main iteration for simplicity.
The update equations of the proposed DRAMA-3D are

r = 0. (12)
For n = 0, 1, ···, dmax {

For q = 0, 1, ··, qmax(d) –1 {
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}

where n is the index of the access order of the ring difference d ( ≥ 0), q is the index of the access order of

azimuthal angle f and qmax(d) is the number of the azimuthal angles of a subset having ring difference d.

That is, d =d(n), f =f(q), qmax(0)=M and qmax(d >0)=2M.  Sn,q is the subset of LORs having the same

azimuthal angle f and ring difference d.  l(d, r) is the relaxation parameter (0 < l(d, r) £ 1) and r is the

index of the overall access order of a subset.  The value of r is initialized by equation (12) prior to the
iteration, and is incremented with 1 inside the q-loop by equation (13.4).  The other parameters are same
as those used in section 2.1.  

2.2.3. Reciprocal of mean squared GCC: b(d).  In DRAMA-2D, the parameter b0 plays an important role

in defining the optimal relaxation parameter (see equation (5)).  b0 is the reciprocal of the mean squared

GCC between two LORs (see equation (6)).  In DRAMA-3D, we suppose two oblique LORs having the
same ring difference d intersect an imaging slice, and we define g(d,f) as the GCC between the two

LORs on the slice, where f (0 £ f £ p) is the azimuthal angle between the two LORs (see figure 1(b)).  

It is reasonable to consider that b(d) defined by the following equations (14) plays the similar role to b0 in

DRAMA-2D.

b d d f
f

( ) ( , )=
-

g2 1
d  > 1 (14.1)

b d b( ) = 0 d = 0, 1 (14.2)

where ∑ f  denotes a constant obtained by averaging with respect to f.  The GCC between the two

LORs in the 2D-PET model is given as equation (A.7) in the previous paper (Tanaka and Kudo 2003).
However, in the case of 3D, we have to modify it by including the effect of the intersection between the
oblique LORs and a slice of interest.  

It is known that oblique projections lack low (and zero) frequency components of the 2D-image of
the slice, and the frequency distribution depends on the profile of the intersection between the LOR and
the slice (Tanaka and Amo 1998) (see Appendix A).  We then consider the profile of the intersection for
our PET model.  In general, the axial profile of the LOR depends on the detector response and the
distances from the detectors.  However, we assume here a very simple model.  That is, we assume the
axial thickness of the LOR is equal to the slice thickness w (=dpitch/2) and the axial response is rectangular.
The profile of the intersection is then expressed as an isosceles triangle having the base length of 2L as
shown in figure 3.  Letting Q be the slant angle, we have L = w / tanQ.  The triangular profile is

approximated by a Gaussian profile having the same smoothing width as that of the triangle, D0=3L/2, for
the convenience for the following calculation.  The standard deviation of the Gaussian profile is

s p0 3 4= ( )L .  The GCC between the two oblique LORs crossing with azimuthal angle f (see figure

1(b)) is then given by equation (B.2) in Appendix B, but the equation is too complicated for the following
analysis.  We then made further approximation to obtain a simpler expression given by (see Appendix B)



7

g c( , ) exp expd f
x x x x

s
x y

s
x yq q

q
= -

-( ) + +( )Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

- +Ê

Ë
Á

ˆ

¯
˜

-•

+•

-•

+•

ÚÚ
2 2

2

2 2

0
22 4

d d (15)

where q =f /2, x y qq = tan , s s qq = s cos , and c is the normalizing constant.  Equation (15) has two

exponential terms.  The second exponential term was newly introduced for the 3D-PET model to adapt
to the finite length of the intersections.  From equations (15) and (14.1), we have (see Appendix C)

b d s s s( ) = + = +0
2 2

0
2 2

s s s sD d d d > 1 (16.1)

D L0 02 3 2= =p s (16.2)

where D0 is the smoothing width of the triangular profile of the intersection between the oblique LORs
and the slice of interest.  In the above calculation, we have neglected the truncation of the triangular

intersection due to the limited field of view of the slice.  In practice, it is apparent that D ds0
2 2+  should

not be larger than the diameter of the field of view, D, and hence we have
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Note that b(d) is given by the similar expression to b0 in equation (11), and that its value corresponds to

the CT-loss D0/ds in the 3D-reconstruction.

dw

Slice
 LOR

 D

Q

  Dring

 D0

 dpitch

Triangular profile

 L
Gaussian profile

Intersection

(Standard deviation : s0 )

Figure 3. Profiles of the intersection of an LOR and a slice.

2.2.4. Noise propagation efficiency e(d, r) and optimal relaxation parameter l(d, r).   Suppose a subset

having the ring difference d is accessed at the order r, and consider the propagation efficiency e(d, r) of

the noise contained in the subset to the end of each main iteration.  Up to a reasonable approximation,
the noise propagation efficiency is expressed in the similar manner to the case of DRAMA-2D (see
equations (2) and (14.1))
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where rout is the last access order and ds is the ring difference of the subset accessed at the order s.

l d b d( , ) ( )s ss  in equation (19.2) implies the rate of the image density deposited by the sth subset, and the
noise component of the old image is erased by this rate.  The factor in the parentheses in equation (19.2)
represents the survival rate of the noise component before accessing the sth subset.

In DRAMA-2D, it was shown that the relaxation parameter given by equation (5) provides
uniform noise propagation in section 2.1.  In DRAMA-3D, we can show that the following l(d, r)

provides uniform noise propagation
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where b0 and b(d) are defined by equations (11) and (17), respectively, r is the access order of a subset,

and a (≥1) is the damping factor to stabilize excessive updating at the early stage of iterations with small

r.  Using equation (20) in equation (19.2), we have
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The first factor of equation (21.1) represents the intensity of the input noise, and the second factor
quantifies the decrease of the noise by the following iterations.  Equation (19.2) implies that, up to a
reasonable approximation, the magnitude of the input noise depends on d , but the decrease of the noise is

independent of  the ring difference ds of the following iterations.  In other words, equation (21.2) is valid

even if the following iterations are performed with subsets having ring differences different from d.

Thus, the above theory can be applied in any mode of data access described in the following section 2.2.5.
It is interesting to note that e d l d( , ) ( , )r r= out .

The intuitive understanding of e(d, r) is as follows.  Equation (21.2) can be rewritten as a product

of two factors
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d > 1. (22)

The first factor, D0/D, is equal to the reciprocal of the effective number of slices, which cross an oblique
LOR having ring difference d.  The oblique LOR contains the information (and noise) of all these slices,

and hence a fraction D0/D of the total information of the LOR should be allocated to each slice. b(d)/b0 or

D0/D is the allocation factor.  The second factor represents noise propagation corresponding to e(q) in

DRAMA-2D.  The above allocation is rather approximate, because the distribution of activity along the
LOR is not generally uniform.  The ambiguity of the allocation may cause unstable updating when r is
small and d is large.  The instability will be relaxed by using a >1 in equation (20) as shown later in

section 3.2.
It is reasonable that b(d) is involved in l(d, r) and e(d, r), from the concept of the CT-loss.  That is,

since the variance of noise deposited to the slice is inversely proportional to the CT-loss D ds0 ª b d( ) ,

the input rate of the data should be proportional to b(d) in order to equalize the noise variance for various
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oblique projections having different ring differences.  l(d, r) given by equation (20) will then provide

uniform noise propagation regardless of any choice of access order of d.  The rationality of the d-

dependence of l(d, r) will be confirmed by the simulation studies described in section 3.

2.2.5. Modes of data access.   Performance of DRAMA-3D depends on the access order of the ring
difference d as shown later (see section 3.2).  We consider the following four modes of data access in

order to understand the effect of access order of d
(a) Ascending mode in which d(n) = n.

(b) Descending mode in which d(n) = dmax – n.

(c) Constant increment scheme (CIS) mode based on the recursive formula: d(n) = (d(n–1)

+ constant) Mod (dmax +1).  If d(n) is already used, add one until obtaining a new value.  We

use the integer nearest to 0.7dmax as the constant.

(d) Random mode in which we choose d and f  randomly and independently of n and q.

In (a), (b) and (c), d is first selected and the data for all azimuthal angles are processed according to the

selected access order, q.  After all azimuthal angles are processed, the next d  is selected.

3. Simulation studies

3.1. General descriptions

We consider a multi-ring 3D-PET scanner as shown in figure 2.  The detector ring diameter Dring is 80
cm, the axial detector ring pitch dpitch is 8 mm, and the slice thickness w is 4 mm (= a half of the detector
pitch).  The size of the reconstructed image matrix is 128¥128 for each slice, the boxel size is 4¥4¥4
mm3, and the number of azimuthal angles is 256 in 2p for d > 0.  We performed simulation studies using

computer generated projection data of mathematical phantoms.  We controlled the transaxial spatial
resolution of reconstructed images by transaxial post-smoothing with a Gaussian filter having full-width
at half maximum (FWHM) of 2 pixels (8 mm).  We can apply axial post-smoothing (section 3.5), but we
did not apply any axial smoothing unless otherwise stated.  The values of b (d) with the above condition

are plotted in figure 4.

b 
(d

 )

Ring difference, d

Figure 4. Examples of b(d) (dmax=15).
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We evaluated the performances of the algorithms by the following four items.  In these tests, we
reconstructed the images of a number of contiguous slices, assuming that the axial length of the detector
is sufficiently long.  The axial length of the phantom is equal to the axial length of the contiguous slices.
We performed the following tests for the two adjacent slices (one is a direct-slice and the other is a cross-
slice) axially located at the middle of the reconstructed slices, and we reported the mean value of the two
test results.  The number of reconstructed slices was (dmax+1)/2.  For an example, when dmax =15, we

reconstructed 8 slices (sl-1, sl-2, ···, sl-8), and the mean value of the test results for sl-4 and sl-5 was
reported.  We confirmed that the further increase of the number of the reconstructed slices did not bring
meaningful difference in the results.  For the tests with noisy data, we assumed that the total counts of
the projections with d = 0 is 2¥105 per slice.

∑Structural error (%):  This item measures how the reconstructed image is close to the phantom
image.  The structural error was calculated by taking the average of the absolute difference
between the reconstructed boxel value and the phantom value over the whole region of interest,
and expressed it as the ratio to the mean density of the phantom2.  For this test, we used the
phantom consisting of a cylindrical uniform phantom (40 cmf), a cylindrical hot area (16 cmf),
a cold area (16 cmf) and a rod source (1 cmf).  The phantom was uniform axially.  We
smoothed the phantom with the same filter as that used in the post-smoothing for the
reconstructed image.  Statistical noise was not added in this test. An example of the
reconstructed image of a slice is shown in figure 5(a).  

∑Spatial resolution (transverse, pixels):  We assumed a phantom consisting of a cylindrical
uniform phantom (40 cmf) and a rectangular plane source (4 mm thickness) embedded on the
cylindrical phantom.  The plane source was placed in parallel to the axis in such a way that the
phantom was uniform axially.  We defined transverse spatial resolution as the FWHM of the
spread function of the reconstructed image of the plane source evaluated by fitting it with a
Gaussian function.  The value was expressed in terms of pixels.  An example of the
reconstructed image of a slice is shown in figure 5(b).  

∑RMS noise (%):  Root mean square (RMS) noise of the reconstructed image was evaluated with a
uniform cylindrical phantom (see figure 5(c)).  The value was calculated by taking the average
of the squared difference between the reconstructed boxel value and the phantom value over the
central circular region having 80% of the phantom in diameter3.

∑Noise propagation ratio (NPR):  We defined NPR in order to check the uniformity of the noise
propagation.  NPR is defined as the ratio of RMS noise of the reconstructed image with noise on
data having d > dmax/2 (data of d < dmax/2 are noiseless) to that with noise on data having d <

dmax/2 (data of d > dmax/2 are noiseless).  Both the images were reconstructed using all ring

difference, 0 £ d £ dmax.  More precisely, NPR is defined by

NPR
RMS noise

RMS noise
= >

< +

Ê

Ë
Á

ˆ

¯
˜

  of the image with noise on 
  of the image with noise on 

d d
d d

d
d

max

max

max

max

2
2 1

. (23)

  The factor in the parentheses is the correction factor to the fact that number of the azimuthal
angles of d =0 is a half of that of d >0.  NPR ª 1 indicates uniform noise propagation, and

NPR > 1 implies that the noise of larger d contributes more strongly to the final image than that

of smaller d.

                                                            
2 We evaluate the structural error using L1 norm in a region larger than the phantom.  If we evaluate
using L2 norm, the error at the edge of the phantom appears more strongly than the error at the flat portion
of the phantom, and hence it is better to evaluate using L1 norm.  
3 We evaluate the RMS noise using L2 norm in a flat-area smaller than the phantom.  If we evaluate in the
area larger than (or equal to) the phantom, the estimated RMS noise will be affected by the structural
recovery.
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(a) Structural error    (b) Spatial resolution     (c) RMS noise

Figure 5. Examples of images reconstructed in the performance tests.

3.2. Modes of data access and damping factor

Performances of DRAMA-3D depend on the mode of data access (see section 2.2.5.) and the damping
factor a in equation (20).  We determined the a-value in such a way that the performance is stable with

all modes of data access.  Figure 6 shows the plots of RMS noise versus structural error with various
damping factor a.  The maximum ring difference is dmax =15.  With a =1, the RMS noise of the

descending mode and CIS mode is excessively high.  The reason for this is that the data of large d are

accessed at early stage (small r) and the iteration becomes unstable (see the second paragraph from the
end in section 2.2.4).  The excessive noise is effectively reduced by using a ≥2.  Figure 7 shows the

noise propagation ratio (NPR) for various dmax with a =1 (left) and a =3 (right).  It is seen that the

excessively large NPRs in the descending mode and CIS mode are reduced to normal values around unity
by using a =3.  Although the ascending mode is quite stable even with a =1, we have used a =3 for all

access modes in the following studies.  
Figure 8 shows (a) the plots of  l(d, r) (q=0) as a function of access order n and (b) its trajectories

for various access modes.  In the ascending mode, the data with d =0 and d =1 are concerned with only

direct-slices and cross-slices, respectively, and these slices are independent of each other.  Then,  l(d, r)
given by equation (20) was modified in such a way that  l(1, r) = l(0, r) holds by redefining it

l d b d
a b

,
( )

max( , )
r

q n M
( ) =

+ + -0 0 1 2
(in ascending mode). (24)

In the random mode, the value of l(d, r) appears randomly in the region between the two curves marked

with “random+” and “random–” in figure 8(b).  
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  Figure 6. Effect of damping factor a on the plots of RMS noise versus structural error (dmax =15).
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  Figure 7. Effect of damping factor a on the plots of noise propagation ratio (NPR) versus dmax.
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  Figure 8. Relaxation parameters and their trajectories for various access modes (dmax =15).

3.3. Performance of DRAMA-3D

Figure 9 shows the performances of DRAMA-3D as a function of the access order n.  These figures
demonstrate how the images are formed in a single iteration for the four modes of data access.  The
maximum ring difference dmax is 15.  It is seen that the RMS noise is similar for all the modes of data

access.  This is a consequence of the adequate d -dependence of l(d, r).  The value on spatial resolution

approaches to the final value asymptotically (the resolution of the post smoothing is 2 pixels in FWHM)
for all the modes of data access, but the convergence of the ascending mode is a bit slower than the others.
The reason for this may be the rapid decrease of l(d, r) with n in the ascending mode (see figure 8(b)).
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As described before, oblique projections lack low (and zero) frequency components of the transaxial
image (Tanaka and Amo 1998) (see Appendix A).  For this reason, we hypothesize that the low
frequency components are not properly reconstructed in the late stage of iteration of the ascending mode,
and it may cause a little larger structural error in the late stage of the ascending mode (figure 9(a)).  In
the descending mode, on the other hand, updating of low frequency components is not properly
performed in the early stage of iteration, and it results in the abnormal behavior on the spatial resolution
(figure 9(b)) and a bit larger structural error at the early stage of iteration (figure 9(a)).  The CIS mode
and the random mode show similar performances to each other, and both the modes provide better
performances for structural accuracy than the other modes.  This will be by virtue of the balanced
updating for all frequency components.  We recommend the use of either of these two modes.  The
results of the one-pass reconstruction with various dmax are summarized in table 1.  
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Figure 9. Performances of DRAMA-3D (dmax=15).
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Table 1. Performances of DRAMA-3D (one-pass reconstruction)
Test item Mode of access dmax=11 dmax=15 dmax=21 dmax=31

Structural Error
(%)

Ascending
Descending

CIS
Random

1.501
1.325
1.125
1.203

1.437
1.240
1.074
1.191

1.328
1.156
1.040
1.104

1.212
1.031
0.931
0.991

Resolution
(FWHM, pixels)

Ascending
Descending

CIS
Random

2.037
2.020
2.026
2.023

2.032
2.022
2.020
2.021

2.027
2.013
2.019
2.017

2.022
2.014
2.015
2.008

RMS noise
(%)

Ascending
Descending

CIS
Random

5.60
5.70
5.52
5.54

4.74
4.95
4.84
4.97

4.54
4.38
4.22
4.48

4.15
3.40
3.62
3.77

3.4. Comparison with related algorithms, DRAMA(b) and RAMLA(l)

We have performed comparative studies on the performances of DRAMA-3D with two related algorithms.
The first algorithm is a simplified version of DRAMA-3D having a relaxation parameter
l b a b( ) ( )r r= +0  where b is a constant.  We named the algorithm as “DRAMA(b)”.  The purpose of

DRAMA( b) is two-fold.  The one is to check the effect of discarding b(d) in l(d, r) and the other is to

reveal the difference in behavior between DRAMA(b) and DRAMA-3D.  The second algorithm is

“RAMLA( l)”, in which the relaxation parameter l is a subset-independent constant.  Since there is no

simple way to determine the suitable values of b  and l, we determined them manually by trial and error.

We used a =3 in DRAMA(b) too.  The maximum ring difference dmax is 15.  

Figure 10 shows the plots of RMS noise versus structural error for the four modes of data access.
It is shown that, in the ascending mode, the data points of RAMLA(l) are very far from those of

DRAMA-3D, which implies that RAMLA(l) is useless in this mode.  The reason for this is that the

ascending mode requires a rapidly decreasing l-value with n as shown in figure 8(b) while the l-value is

constant in RAMLA(l).  On the other hand, in the descending mode, RAMLA(l) behaves almost

similarly to DRAMA-3D with a suitable l-value.  This may be due to the fact that the trajectories of l(d,

r) of the descending mode is U-shaped (see figure 8(b)), which is roughly approximated by the constant l
in RAMLA( l).  Note that DRAMA(b) is reasonably good in any mode.  In particular, in the random

mode and CIS mode, DRAMA( b) provides the much closer performances to DRAMA-3D than

RAMLA( l).  We compared the RMS noise of the three algorithms at the same structural error for the

random mode of data access.  The results are summarized in table 2.  The values in parentheses are the
ratio to the RMS noise of DRAMA-3D.  Note that the RMS noise of RAMLA(l) is larger than those of

DRAMA-3D by a factor of about 1.24~1.33, but the difference of noise between DRAMA(b) and

DRAMA-3D is not so large (4~11%).  The noise propagation ratio, NPR, is around 2.0 in both the
algorithms, which implies that noise of the data of larger d affects more to the result than the data of

smaller d.  On the other hand, NPR of DRAMA-3D is close to unity (0.81~0.89), which implies that the

d-dependence of l(d, r) is reasonable.
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Figure 10. Plots of RMS noise versus structural error of the three algorithms for the four data access
modes. (dmax=15).

Table 2. Comparison of DRAMA-3D, DRAMA( b) and RAMLA(l) at the same structural error.

dmax=11 dmax=15 dmax=21 dmax=31

DRAMA-3D
RMS noise (%)

NPR
5.54
0.89

4.97
0.85

4.48
0.81

3.77
0.81

RAMLA( l)
l

RMS noise (%)
NPR

0.0082
6.95 (1.26)

2.29

0.0051
6.15 (1.24)

2.18

0.0033
5.64 (1.26)

2.02

0.0019
5.02 (1.33)

1.93

DRAMA(b)
b

RMS noise (%)
NPR

8.8
5.74 (1.04)

2.17

7.0
5.20 (1.05)

2.02

5.3
4.73 (1.06)

2.00

4.7
4.20 (1.11)

2.16

The values in parentheses are the ratio to the RMS noise of DRAMA-3D.  Data access is
random mode.

 

3.5. Axial post-smoothing.

Although we have not applied axial smoothing so far, we can apply the axial post-smoothing in addition
to the transaxial post-smoothing to reduce the statistical noise at the cost of the axial resolution.  We
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have tested the effect of an axial filter having the relative weights (sa:1:sa) on the contiguous slices, where
sa (0 £ sa £ 1) is a constant.  The phantom used in this test consists of 10 slices (slice-1, -2, …, -10).
The slices-1, -4, -7 and -9 have different source distributions each other, and the rest slices are blank.
The slices with even number are direct-slices and the others are cross-slices.  Figure 11 shows the
reconstructed images with (a) sa=0 (no axial smoothing) (b) sa=0.25 and (c) sa=0.50.  The transaxial
post-smoothing filter was Gaussian having 2 pixels in FWHM, the maximum ring difference dmax was 15

and the access order was the random mode (we confirmed that the other access modes yield similar
results).  The images shown in figure 11(a) are quite similar to the phantom except the transaxial blur
due to the transaxial smoothing.  It is seen that there is negligible axial cross-talk between slices when
sa=0 regardless of direct- or cross-slices, and that axial resolution is well recovered for finite values of sa.
This may not be surprising, because we did not take into account the axial response of the detector ring in
this simulation, and we assume that the axial width of the LOR is sufficiently small.  

We have tested the effect of the axial post smoothing on statistical noise by repeating the RMS
noise test (described in section 3.1) with various axial filters, and we found that the RMS noise is reduced
by a factor of about 0.71 and 0.61 with the filter sa=0.25 and sa=0.50, respectively, as compared to the
case of no axial smoothing (sa=0).  These factors are very close to the theoretical values estimated by

1 2 1 22+ +( )s sa a .

(a)

(b)

(c)

Slice-1 2 3 4 5

Slice-1 2 3 4 5

Slice-1 2 3 4 5

7 8 9 106

7 8 9 10
6

7 8 9 10
6

Figure 11. Images showing the effect of axial post-smoothing with a filter sa : 1: sa.
(a) sa = 0, (b) sa = 0.25 and (c) sa = 0.50.

3.6. Performance of DRAMA-3D with a PET scanner having a limited axial length.

We have assumed that the maximum ring difference dmax is constant in the theoretical treatment of

DRAMA-3D (section 2.2.1).  We have also assumed a constant dmax in the simulation studies described

in section 3.1 ~ 3.5.  In a practical PET scanner, however, dmax is usually determined by the limited axial
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length of the detector ring.  If all ring differences are accepted, dmax (and sensitivity) vary along different

slices, and the axial sensitivity is approximated by a triangular pattern.  We have made simulation tests
for the practical PET scanner assuming the number of detector rings was 12 and the number of slices was
23.  Other parameters were same as those used so far.  The maximum value of dmax is 12 at the center of

the central slices.  The results are shown in figure 12 as the curves marked with “Limited ring”.  It is
seen that the structural accuracy and the spatial resolution are highest at the central slices and degrade
toward the end slices due to the varying sensitivity along different slices.  The convergence is apparently
insufficient at the slices near the ends due to the low sensitivity.  We have also performed similar tests
using a constant dmax (=6) for comparison.  The results are shown as the curves marked with “Constant

dmax” in the figure.  It is seen that the structural accuracy and the spatial resolution are nearly uniform in

the case of the constant dmax.  The above tests were performed with the random data access mode, but we

have confirmed that similar results were obtained with the other data access modes.  From these results,
we expect that DRAMA-3D is feasible to apply to the practical PET scanner having a limited axial length,
although further studies will be desirable on the details of the performance and on the limitation in
applications.
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Figure 12. Comparisons of performances with limited detector ring and with constant dmax after one

main iteration.   The number of detector rings is 12 and dmax=6 in the constant dmax test.
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4. Discussion and conclusions

We have presented the theory of DRAMA-3D and the results of the simulation studies.  The optimal
relaxation parameter l(d, r) is given by equation (20) or (24), and its value is a function of the ring

difference d and the access order r of subsets.   The d-dependence plays an important role for providing

uniform noise propagation in any mode of data access.  As a result, DRAMA-3D is robust for various
data access modes, and is suitable to achieve one-pass reconstruction.  The parameters b0 and b(d) in

equation (20) are determined by simple formulas (equations (11) and (17), respectively) from the
parameters of the PET scanner, the operating conditions and the post smoothing resolution.  

The damping factor a (≥1) is introduced to avoid instability, which may occur when the data

having large d are accessed at the early stage (small r) of iterations.  It is preferable to take the a-value

as small as possible to obtain faster convergence, but we have no theoretical means to determine the
appropriate a-value, and we have to determine it experimentally for the particular operating conditions.

However, if  we first access the data having d £1, DRAMA-3D provides stable convergence with a =1

regardless of the following access order for the remaining data having d ≥2.  We have confirmed this

feature using l(d, r) defined by equation (24) with a =1.  The reason for the stable convergence is that,

after processing with d £1, the value of l(d, r) for the following processing becomes sufficiently small

(see equation (24)).  In addition, the whole frequency components of images are properly reconstructed
by the processing with d £1 and the following iterations are quite stable.

Since the relaxation parameter depends on the ring difference d, DRAMA-3D does not satisfy the

convergence conditions of Neto and De Pierro (2005).  The algorithm aims at one pass (single iteration)
reconstruction as referred in the paper title.  In fact, DRAMA-3D provides images having good noise
balance (uniform noise propagation) by one or two main iteration(s).  Our main concern is to realize a
better noise balance with a single main iteration and not to realize stable convergence with a large number
of the main iterations.

We have compared the performances of DRAMA-3D with the simpler algorithms, DRAMA(b)

and RAMLA(l).  RAMLA(l) is generally poor as shown in figure 10 as long as one-pass reconstruction

is considered.  RAMLA(l) with descending data access mode showed exceptionally good performances,

which is comparable to that of DRAMA-3D.  It may be, however, an accidental result occurred in
particular system parameters and dmax-value.  On the other hand, DRAMA(b) provides unexpectedly

good performances with the CIS or random mode, if a suitable b-value is used.  The RMS noise of

DRAMA( b) is close to that of DRAMA-3D, although the NPR is about 2.0.  This behavior indicates that

the r-dependence in l(d, r) plays a more important role than the d-dependence.  However, the suitable b-

value for DRAMA(b) depends sensitively on the operating conditions and data access mode, and it is

generally not easy to find the suitable b-value in clinical routine.  This will be a serious drawback of

DRAMA( b).

In conclusion, we have developed a 3D-reconstruction algorithm, DRAMA-3D, for 3D-PET, and
we have derived the optimal relaxation parameters suitable for one-pass image reconstruction.  We have
demonstrated the usefulness of the algorithm by simulation.  In this study, however, we have made a lot
of assumptions and approximations in the theory and in the simulation.  For example, we have ignored
attenuation and scattering of photons and the effect of random coincidence for simplicity.  The
sensitivity response of the detectors has also been simplified.  Further work would be necessary to
clarify the effect of these assumptions or approximations on the optimal relaxation parameters and on the
performance of the algorithm.
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Appendix A. 3D-frequency response of oblique projection data

It is known that, according to projection-slice theorem in 3D, oblique projection data with oblique angle
j  lacks information in a cone region in 3D frequency space ( , , )w w wx y z  as shown in figure A1.  The

corresponding 2D frequency response at each slice-z is obtained by taking the 1D inverse Fourier
transform of the 3D response with respect to the axial frequencyw z.  Consequently, at each slice-z, it is

shown that information of low-frequency component (with smallw wx y
2 2+ ) is missing.

Direction of

Projection data

y0

x

Region of missing
frequency

projection

z

0

wy
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wz

p j2 -
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Figure A1. Relation between oblique projections (left) and the 3D Fourier transform (right)

Appendix B. Derivation of equation (15)

Consider the intersections between the two oblique LORs and the slice as shown in figure 1(b).  We
denote these two intersections by LOR-1 and LOR-2.  The 2D “Gaussian” responses of the LOR-1 and
LOR-2 are given by
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respectively, where ( , )u v  and ( , )¢ ¢u v  are the coordinates rotated by angle± =( )q f 2  with respect to the
coordinates ( , )x y  around the origin of ( , )x y as shown in figure B1.  The coordinates of the centers of
LOR-1 and LOR-2 are ( , )0 0v  and ( , )0 0¢v , respectively.  The GCC between the two LORs crossing with

azimuthal angle f is expressed as

g Gau Gau v v( , ) ( , ) ( , )d f x y x y x y= ¢ÚÚÚÚ 1 2 0 0d d d d (B.2)

where the ranges of integration with the four variables are from -•  to +• .  Equation (B.2) is however
too complicated to execute the integration.  We then intend to find a suitable approximate expression of
the GCC in the followings.

If s0 is sufficiently large, the GCC given by equation (B.2) should be approximated by the GCC of

the 2D-PET model given by (Tanaka and Kudo 2003)  
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where q =f /2, x y qq = tan , s s qq = s cos , D is the diameter of the transaxial field of view, and c is the

normalizing constant.  The value of g(f) is inversely proportional to sin f as shown by equation (9), and

the value of g(f) with a smaller f affects more strongly to the value of the relaxation parameter l(f) than

a smaller f (see equation (5)).  Taking into account this property, we intend to modify equation (B.3) so

as to include the effect of the practical finite s0-value in the 3D-PET model.  If f is sufficiently small,

the response of the GCC g(d,f) in y-direction is approximated by the auto-correlation function of the

Gaussian function (having standard deviation s0) due to the integration with respect to v0  and ¢v0  in

equation (B.2).  The auto-correlation function is also a Gaussian function having the standard deviation
2 0s .  We then modify equation (B.3) by multiplying a 2D weighting factor W(x,y) given by

W( , ) exp ( )x y x y s= - +( ){ }2 2
0
24 . (B.4)

The function W(x,y) is circularly symmetric, and the radial response of W(x,y) is equal to the auto-

correlation function.  The reason why we use a circularly symmetric weighting factor is to simplify the
following calculation.  Thus, we obtain equation (15).
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22 4
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Equation (15) has been derived using intuitive or experienced approximations, and we have no
evidence to guarantee the validity.  The adequacy of equation (15) is evaluated by how it satisfies the
following requirements: 1) the equation should be reduced to a simple analytical expression with
reasonable approximations, 2) the resulted GCC should be consistent with the GCC of the 2D-PET model,
3) the GCC should be consistent with the concept of “CT-loss” in the 3D-PET model, 4) the relaxation
parameter based on the GCC should provide good performance for DRAMA-3D regardless of the order
of data access, and 5) the DRAMA-3D should provide uniform noise propagation regardless of the order
of data access.  It will be shown in this paper that the GCC given by equation (15) is fairly adequate
because it satisfies the above requirements reasonably.
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Figure B1. Gaussian intersections LOR-1 and LOR-2.
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Appendix C. Derivation of equation (16)

We have, from equation (15)
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If we denote
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then
g c( , )d f p s s= 4 1 2. (C.3)

From equations (C.2) and (C.3),
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We determine the normalizing constant c so as to g(f)=1 when q=0.  We then have
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Using equation (C.5) in equation (14.1), we have
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Equation (C.6) gives the relation between b(d) and Df.  

Equation (C.6) corresponds to equation (10) in the 2D-PET model.  From equations (8) and (11),
we have b0Df = 2, which is considered to be an expression of the consistency condition.    Assuming the

similar consistency condition b(d)Df = 2 is hold in the 3D-PET model, we can determine b(d) from

equation (C.6) by numerical calculation.  The obtained result is
 

b d s s s( ) = +1 04 0
2 2. s s. (C.7)

We shall omit the factor 1.04 for simplicity in the following, since b(d)Df = 2 is not a rigorous

requirement.  We then have equation (16).  
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