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Abstract

We have rported a block-iteratiy algorithm named as DRAMA for image reconstruction for emission
tomography (Tanaka and Ka 2003). DRAMA is a modified version of the row-action maximum
likelihood algorithm (RAMLA), in which the relaxation parametersubset-dependent and is changed in
such a way that the noise propagation from subsets to the reconstructed image is substantially
independent of the access order of the subsets. The algorithm provides fast convergence with
reasonable signal-to-noise ratio. The optimal relaxation parameter has been derived assuming a two-
dimensional (2D)-PET model, and the detailedfgrenance in three-dimensional (3D)-reconstruction

has not been clear enough. We have developed the new version “DRAMA-3D,” based on the 3D-PET
model. Theoptimal relaxation parameter is a function of access order of the subsets and the ring
difference, and its value is determined by simple formulas from the design parameters of the PET scanner,
the operating conditions and the post-smoothing resolution. In this paper, we present the theory of
DRAMA-3D, the results of simulation studies on the performance of DRAMA-3D and the comparative
studies of the relatealgorithms. It is shown that DRAMA-3D is robust for various access orders of
subsetsand is suitable to realize the one-pass (single iteration) reconstruction.

1. Introduction

Block iterative algorithms are nownportant tools for image reconstruction in PET. The best known
among these is therdered subsets EM (OSEM) algorithm (Hudson and Larkin 1994), in which the
projection data are grouped into a number of subsets, and the expectation maximization (EM) algorithm
(Shepp ad Vardi 1982) is applied sequentially to these subsets in turn. A complete cycle of the
swcecessive sub-iterations for all subsets forms a main iteration of OSEM. The OSEM algorithm
produces remarkable improvements in the initial convergence rate compared to the original EM algorithm
by a factor roughly equal to the number of subsets. This property, coupled with the relatively simple
form of theupdate equation, has led to the widespread use of OSEM in PET and SPECT. While the
method is practically attractive, dloes not converge to the true maximum likelihood (ML) solution but
falls into limit cycles, and the excessive acceleration of the convergence by the use of a large number of
subsets results in the degradation in signal-to-noise ratio (Hudson and Larkin 1994, Meikle et al 1994).

The drawback of OSEM was impred by incorporating a suitablyontrolled relaxion paameter
denoted by the symbdl below. The resulting algorithm is é&d “relaxed OSEM”. One example of

this approach is the row-action maximum likelihood algorithm (RAMLA) of Browne and De Pierro
(1996). RAMLA is a special case of the relaxedE®Bwher the numbeiwof subsets is equal to the

number of projection views. In RAMLA or relaxed OSEM,is fixed throughout a complete cycle of
sub-iterations. The use of a largeallows a fast convergence when theta are consistent, but it tends
to enhance the error due to inconsistent components (statistical noise) when the data contain Poisson
noise. This property prevents the use of single iteration with a Aay®d plural iterations are required

with a small A or with an asymgtically decreasingAd. The umlesirable feature on the noise



enhancement with a largeis due to the fact that the noise components of data are propagated to the final

image of the cycle of sub-iterations with different efficiency, and the final image contains more of the
nose of the lately accessed projections than those of the early accessed projections. The unbalanced
propagation of the noise is a main cause of the limit cycle phenomenon that degrades the signal-to-noise
ratio.

Tanaka ad Kudo (2003) have developed an algorithm named as “DRAMA (dynamic RAMLA)”,
in which 4 is “subset-dependent” and is changed in such a way that the noise propagation from subsets to

the reconstructed image is substantially independent of the access order of the subsets. As a result, the
contribution of noise from each subset is balanced at the end of each main iteration, making it possible to
avoid the limit cycleproblem. We call this property “uniform noise propagation” below. The
algorithm provides fast convergence with reasonable signal-to-noise ratio. Helou Neto and De Pierro
(2005) proved the convergence of DRAMA recently.

The opimal relaxation parametet of DRAMA has been derived assuming a 2D-PET model in

Tanaka ad Kudo (2003), and the detailed performance in 3D-reconstruction has not been well clarified.
In spite of these circumstances, DRAMA has been applied successfully to 3D-PET reconstruction
(Fukano et al 20043D-PET with list-mode data acquisition (Nakayama and Kudo 2005, Yamada et al
2007) and 2D time-of-flight PET (Tanaka et al 2007).

In this paper, we describe a revised theory of DRAMA for 3D-reconstruction and present the new
definitions of the optimal relaxation parameter. We call the new algorithm “DRAMA-3D” for
discriminating it from the previous one, “DRAMA-2D”. This work focuses on the one-pass (single
iteration) reconstruction, considering the feature that the number of subsets is usually sufficiently large in
the 3D-reconstruction. The outline of this paper is the following. In section 2, we describe the theory
of the proposed algorithms and the optimal relaxation parameter. Section 3 describes the simulation
studies. In the last section, we describe a brief discussion of the consequences of our simulation studies
and conclusions.

2. Theory
2.1. DRAMA-2D

In this section, we describe briefly the outline of DRAMA based on the 2D-PET model (Tanaka and Kudo
2003), which is necessary in the following revision for 3D-PET model. Suppose we count coincidences
alorg | lines of response (LORs) and denoteyp{l <i < I) thenumber of detected events along ttte

LOR. These datare arranged intM angudar views with the view indexn (1 < m< M). Each view
conssts ofN parallel LCRs, wherd = MxN. We congler a square image matrix NN = J pixels, and

photon emission from pixglis denoted by, (1 <j <J). Effectof the photon attenuation and scattering

is nat taken into account for simplicity. The update equations of DRAMA-2D are

(k,q)
x! :
X060 = 04, () (J: Y a, ﬁ_l (1.1)
i ies, zj,:laij, X]_ N
X(jk+2LO) _ XEk,M) (1.2)
Cj = maxq Ziesq aij (13)

whete g; is the probability that a photon emission from pixia recorded in théth LOR, q (0, 1,---,M-1)
is the index of the access order of views, &ds the subset of LORs accessed at giie order. Note
that, in DRAMA-2D, the number of subsets is equaMpanda subset consts of all parallel LORs

having a constant view angle. The index0, 1, 2, ---) referso the main iterationsd,(q) is the
relaxation parameter (0 #(q) < 1), andC; is called the normalization constant. We assume that the
iteration starts with a positive imagg” > 0.  To reguleize the reconstried image, we apply the post-



smoothing with a Gaussian filter after the iterations are terminated (Snyder and Miller 1985).

Tanaka and Kudo (2003) have shown that the noise component of the projection accessed at the
gth order will appear in the final image of the complete cycle of the sub-iterations with a propagation
efficiency given by

e(@ =40 [ (1— M ¢@)), } 2
r=q+1
(F0), =153 290 with ¢ =7 m/ M ©

where g(¢) is the geometrical correlation coefficient (GCC) of two LORSs the angle between the two
LORs, and< o > o denotes a constant obtained by averaging with respeéct tDending the two LORs by
LOR-1 and LOR-2, ta GCC idefined by

1/2
J J J
a0)=Y a, aZJ/[ZSf;Z ;J (4)
j=1 j=1

j=1

whetre a;; or a, is the probability that a photon emission from pixil recorded in the LOR-1 or LOR-2,
respectively. If we define the relaxation paraméfe) by

A(a) = Bo/(Bo+ 0 ®)
e N
Bo={d°®), (6)
we can show thathe noise propagation efficiency is independer.of That is, we hae, from equations

(2), (5) and (6),e(q)= B, /(B,+ M—1) = constant. DRAMA-2D with té relaxéion parameer defined
by equation (5) will then provide uniform noise propagation.

(a) 2D-PET model (b) 3D-PET model

Figure 1. Two LORs model focalculating geometrical correlation coefficient.

In practice, we consider two LORs crossing at agglen/2) and calculatg(¢) assuminghat the

LORs hae a Gaussian cross-section corresponding to the post-smoakmdique 1(a). The GCC
between the two LORs is given by (Tanaka and Kudo 2003)

_ 2 o2 | (ysing)y
90)= 5], exp{ = }dw ™

wher 6=¢/2, o, is the standard deviation of the Gaussian post-smoothindaedhe diameter of the
field of view to be reconstructed. Using equation (7) in equations (3), (5) and (6), we can c#@culate
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and A(g). However,the A(qg)-value thus obtained is a function &, ewven ttough there is no reason that
Aq) depends onM. In thepresent paper, we describe a new simple expressi@piofthe followings.
The newexpressn of B, does not include the calculation of the GCC, and the obtgigedlue (and
AQ)-value tm) is independent ofl. The implenentaton of DRAMA becomes quite simple with this
new expression gf,.

We congler the minimum angular intervah¢ to be considered taompute the average

geometrcal correlation<gz(¢)>¢ in equation (3). Usually is set to a sufficiently large number than

that necessary to yield required spatial resolution, and the angular interval is eqiMl (io 2D-PET
model). In the iterative imagesconsruction with post-smoothing, the effective number of views is
reduced to a Jae defined by the consistency condition (Natterer 1986) on the relation between the
spatial rsolutiond; and the minimum necessanymber of angular views, (in ), which is derived from
Shanna’s sampling theorem.  The relation is given by= 7 D/(2d,), where d; is the smoothing width

of the post-smoothing. The smoothing width of the Gaussian post-smoothidg:igx/;as. The
anguar interval in the consistency condition is then given by

A¢=m /n,=2d,/D. 8)

Considering the effect dhe post-smoothing, it is reasonable to defip@ising the angular interval
given by equation (8). Faj>A¢, thevalue of the integrand of equation (7) at the upper limit of the

integration,y=D/2, is negligibly small £ exp(—r)), and then we can executee integration by replacing
the upper limit of the integral with infinity. The result is

9(¢) =2Jro,/(Dsing)=dy/ (Dsinp ) 9)

We assume #t the summation in equation) (3 approximated btyhe integral with the lower limit oA¢ .
Then wehave

x/ B A¢ D? A¢ D?
ﬁo:(ZJAjgz(wdcvj -2 -2 (10)

Using equation (8) in equation (10), we have a simple expressigyasf

ﬁo = D/ds- (11)

We confirmel that thef,-value oltained with the integration (equations (10) and (11)) is 5~6% larger
than the value obtained with the summation (equation (3)) Witm, for d~=1.5~6.0 pels and
D=128~256 pixks. The diference is allowable.

It is worth noting that the rati®/d, (= ;) correspondgo the ratio of the information content on

positioning of a resolution element having size d; to that of an LOR having widtlds and length D.
We call the ratio “CT-loss”, because it reflects the ratio of the noise variance of a 2D-PET image to that of
a gamma camera image obtained wilie same total counts. In other words, 2D-PET imaging needs

larger total counts than gamma camera imaging by a factor of gpddd, to obtain the similar image
quality (Tanaka and linuma 1976).

! The smoothing widthl, of a filter functionf (x) ( > 0) is defined as the width of the rectangular filter
having the same smoothing effect as that of the filgerfor Poisson noise:

ds=(j_+: f(x)dsz/f: f2(%) dx



2.2.DRAMA-3D

2.2.1. Geometry and model of 3D-PET.We congler a multi-ring 3D-PET model as shownfigure 2

We denote the diameter of the detector ring Dy, thediameter of the reconstructed field of view Dy
andthe detector ring pitch bgl,... We congler to reconstruct a number of contiguous slices, and we
assume that thslice thicknessv is equal to a half of the detector ring pitch, we= dy;n /2.  The slices

are divded into direct-slices or cross-slices. Consider an obligue LOR with a ring diffe¥encehe
slantangle @ is given by ta® = 6 d,, /Dying.  In theconventional PET scannghe finite axial length of

the detector ring limits the maximum ring differen§g, As a resultthevalue of 8., varies not only

alorg different slices (smallest in the end-slices and largest in the central slice) but also changes with the
distance from the axis of the detector ring. These situations are inconvenient to develop the theory of
DRAMA-3D. We then assume tha},., is determined by a given constant value and is not affected by
the detector rings, in developing the theory on DRAMA-3D (section 2). We also perform simulation
studies (section 3) to check the validity of DRAMA-3D under the same assumption (cofgiant
However, we haveo check carefully the effect of the assumption. We will report the results of the
simulation study with a PET scanner having a limited axial length in section 3.6. Note that, in some
kinds of PET systems, approximately flat axial-profile &f, is obtained by stepwise or continuous
scanning of the patient bed or the detector gantry in the axial direction.
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Figure 2. Configuration of a 3D-PET scanner.

2.2.2. Reconstruction algorithm. We assumegain that coincidence data are obtained aloliges of
resporse (LORS) ad denote by, (1 <i <1) the number of detected coincidence events alonghheOR.

The® data are grouped (subsetized) by the azimuthal angled the ring differencé (0, 1, -, Sna),
wher 6, is the maximum ring fference. The range of the azimuthal angls 0~ for =0 ard 0~2r
for 6>0. Each subset consistf parallel LORs having constagtand ¢. We congler a square image

matrix of NxN boxels on each slice, and photon emission from bgxeldenoted by; (1<j <J). Inthe
3D-PET, we usually have a sufficiently large number of views (projections), and then we consider here
single main iteration (one-pass reconstruction) and drop the kdéxhe main iteration for simplicity.

The uglate equations of the proposed DRAMA-3D are

r=0. (12)
Forn=0,1, - dn{

Forg=0, 1, - fna{0) =1 {
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X4 =x"Y+A(8,r a| —————-1 131
nq j’=1 ] ]
X110 = (M) (13.2)
C, =max,, ziesn,q a; (133)
r+=1 (13.4)

}

where n is the index of the access order of the ring differefi€e 0), g is the index of the access order of
azimuthal anglep and g.,.{9) is the number of the azimuthal angles of a subset having ring diffeéence
That is, 6=6(n), ¢=¢(0), Gnaf0)=M and g,.(6>0)=2M. §,, is the subset of LORs having the same
azimuthal anglep and ring differenced. A(4, r) is the relaxation parameter €0A(4, r) < 1) andr is the

index of the overall access order of a subset. The valueigfinitialized by equation (12) prior to the
iteration, and is incremented with 1 inside thiop by equation (13.4). The other parameters are same
as tlose used in section 2.1.

2.2.3. Reciprocal of mean squared GQ3(5). In DRAMA-2D, the paramete, plays an important role
in defining the optimal relaxation parameter (see equation (B)is the recipocal of the mean squared

GCC béween two LORs (see equation (6)). In DRAMA-3D, we suppose two oblique LORs having the
same ringdifference 6 intersect an imaging slice, and we defig@,¢) as the GCC between the two

LORs onthe slice,wher ¢ (0< ¢ < 7) is the azimuthal angle between the two LORs (gpee 1(b)).

It is reasonabléo consider thaB(d) definedby the following equations (14) plays the similar rolg3§on
DRAMA-2D.

B©)=(g"6.0)), 5>1 (14.0)
B(0) =B, 0=0,1 (142)

wher (o) denotes a constant obtained by averaging with respegt toThe GCC beveen the two
¢

LORs inthe 2D-PET model is given as equation (A.7) in the previous paper (Tanaka and Kudo 2003).
However, inthe case of 3D, we have to modify it by including the effect of the intersection between the
oblique LORs and a slice of interest.

It is known that oblique projections lack low (and zero) frequency components of the 2D-image of
the slice, and the frequency distribution depends on the profile of the intersection between the LOR and
the slice (Tanaka and Amo 1998) (see Appendix A). We then consider the profile of the intersection for
our PET model. In general, the axial profile of the LOR depends on the detector response and the
distances from the detectors. However, we assume here a very simple model. That is, we assume the
axial thickness of the LOR is equal to the slice thicknegsdy;/2) and the axial resmse is ectangular.

The pofile of the intersection is then expressed as an isosceles triangle having the base lehgih of 2
shown infigure 3 Letting @ be the slant angle, we hale=w/tan®. The trangular profile is

approximated by a Gaussian pi®fharing the same smoothing width as that of the triarigle3L/2, for
the convenience for the following calculation. The standard deviation of the Gaussian profile is

Oy = 3L/(4x/;). The GCC beveen the two oblique LORs crossing with azimuthal agglseefigure

1(b)) isthen given by equation (B.2) in Appendix B, but the equation is too complicated for the following
analysis. We then made further approximation taioba simpler expression given by (see Appendix B)
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wher 6=¢/2, ¢ ,=wtand, o, =0,/cosh, andc is the normalizing constant. Equation (15) has two

expaential terms. The second exponential term was newly introduced for the 3D-PET model to adapt
to the finite length of the intersections. From equations (15) and (14.1), we have (see Appendix C)

B(8)=+ol+02 Jo,=/D2+d?/d, §>1 (16.1)
D,=2Vro,=3L/2 (162)

wher D, is the smoothing width of the triangular profile of the intersection between the oblique LORs
and the slice of interest. In the above calculation, we have neglected the truncation of the triangular

intersection due to the limited field of view of the slice. In practice, it is apparent/tbgt- d> should
not be larger than the diameter of the field of vibwandhence we have

ﬁ(é):min —\M D a7)
=~ min[— —J whend, << D, (18)

Note thatf(9) is given by the similar expression fiy in equation (11), and that its value corresponds to
the CT-losdD/d, in the 3D-reconstruction.
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Figure 3. Proiles of the intersection of an LOR and a slice.

2.2.4. Noise propagation efficienefo, r) and optimal relaxation paramete(d,r).  Suppose a subset
having the ring differencé is accessed at the orderandconsider the propagation efficieneys,r) of

the noise contained in the subset to the end of each main iteration. Up to a reasonable approximation,
the noise propagation efficiency is expressedhim similar manner to éhcase of DRAMA-2D (see
equations (2and (#.1))

Tout

e@n=260]] (1—;L(é>‘s,s)<g2 6.0 )>¢j (191)

Ss=r+l
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wher r,, is the last access order ady is the ring difference of the subset accessed at the crder
A(6,5)/B(6 ) in equation (19.2) implies the rate of the image density deposited Isththebset, and the
noise component of the old image is erased by this rate. The factor in the parentheses in equation (19.2)
represents the survival rate of the noise component before accessihgsilieset.

In DRAMA-2D, it was shownthat the relaxation parameter given by equation (5) provides
uniform noise propagation in section 2.1. In DRAMA-3D, we can show that the folloa{digr)

provides uniform noise propagation

As.r)= L)L (20)
ofy+r
where S, and B(6) are defind by equations (11) and (17), respectivelis the access order of a subset,

and o (1) isthe damping factor to stabilizxcessive updating at the early stage of iterations with small
r. Usirg equation (20) in equation (19.2), we have

B PraBets-1 | B©) | aBytr
8(5’r)_ aﬂ0+r s=r+l a%o"'s _[aﬂ0+ rj[aﬁo(:‘ rout] (21.1)
__be) (212)
aﬁ0+rout

The first factor of eqation (21.1) represents the intensity of the input noise, and the second factor
guantifies the decrease of the noise by the following iterations. Equation (19.2) implies that, up to a
reasonable approximation, the magdéa ofthe input noise depends @n bu the decrease of the noise is
independent othe ringdifferenced, of the following iterations. In other words, equation (21.2) is valid
even if the folbwing iterations are performed with subsets having ring differences different drom
Thus, the above theory can be applied in any mode of data access described in the following section 2.2.5.
It is interesting to note thag(5,r)=A(5,r,,)-

The irtuitive understanding of(6,r) is as ftlows. Equation (21.2) can be rewritten as a product
of two factors

_| B(6) Bo | [Bo] Bo
8(&")—[ Bo ][aﬂ0+rout JN[ D )(aﬁo"'routJ o>t (22)

The first factor,Dy/D, is eqial to the reciprocal of the effective number of slices, which cross an oblique
LOR having ring differenced. The olique LOR contains the information (and noise) of all these slices,
and hence a fractioDy/D of the total information of the LOR should be allocated to each &3, or
Dy/D is the allocation factor. The second factor represents noise propagation correspordipgnto
DRAMA-2D. The aboveallocation is rather approximate, becatise distribution of activity along the
LOR is not generally uniform. The ambiguity of the allocation may cause unstable updating vghen
small andd is large. The instability will be relaxed by using>1 in equation (20) as shown later in
section 3.2.

It is reasonable thl(d) isinvolved inA(4,r) ande(6,r), from the concepof the CT-loss. That is,
since the variance of noise deposited to the slice is inversely proportional to the iltds~ (),
the input rate of the data should be proportiongd(d) in order to equalize the noise variance for various




oblique projections having different ring differenced(d,r) given by equation (20) will then provide
uniform noise propagation regardless of any choice of access ord&r dthe ratiomlity of the &
dependence of(d,r) will be confirmed by the simulation studies described in section 3.

2.2.5. Modes of data access Performance of DRAMA-3D depends on the access order of the ring
difference § as shown later (see section 3.2). We consider the following four modes of data access in

order to understand the effect of access ordef of
(a) Ascending mode inwhich &(n) = n.
(b) Dexending mode inwhich &(n) = §,.c— N.
(c)Constant increment schemlS) mode based on the recursive formuldn) =(d(n-1)
+ congant) Mod (6,.x*+1). If &(n) is already used, ddone until obtaining a new value. We
use the integer nearest to §),4 as the constant.
(d) Random modm which we choosé and¢ rancomly ard independently ofi andg.
In (a), (b) and (c)¢ is first selected and the data for all azimuthal angles are processed according to the
sdected access ordegy, After al azimuthal angles are processed, the Bastsekcted.

3. Simulation studies
3.1.General descriptions

We congder a multi-ring 3D-PET scanner as shownfigure 2 The déector ringdiameter D,,q is 80

cm, the axibdetector ring pitchd,., is 8 mm, and the slice thicknessis 4 mm (= a half of the detector
pitch). The size of the reconstructed image matrix isx128 for each slice, thédoxel size is &4x4

mn?, andthe number of azimuthal angles is 256 mf@r 6> 0. Weperformed simulation studies using
computer generade projection data of mathematical phantoms. We controlled the transaxial spatial
resoldion of reconsructed images by transaxial post-smoothing with a Gaussian filter having full-width
at half maximum (FWHM) o pixels (8 mm). We can apply axial post-smoothing (section 3.5), but we
did not apply any axial smoothing unless otherwise stated. The valy&8)afith the above condition

are ploted infigure 4

ol .

B(d)

20 foe S N — S — -

Ring difference, §

Figure 4. Exampks of3(6) (0na=15).



We ewaluated the performances of thgaithms by the following four items. In these tests, we
reconsructed the images of a number of contiguous slices, assuming that the axial length of the detector
is sufficiently long. The axial length of the phantom is equal to the axial length of the contiguous slices.
We paformed the following tests for the two adjacent slices (one is a direct-slice and the other is a cross-
slice) axially located at the middle of the reconstructed slices, and we reported the mean value of the two
test results. The number of reconstructed slices Wagt1)/2. Fo an example, whe®@,,, =15, we

reconsructed 8 slices (sl-1, sl-2, -+, sl-8), and the mean value of the test results for sl-4 and sl-5 was
reported. We confirmed that the further increaséhefnumber of the reconstructed slices did not bring
meaningful difference in the results. For the tegth noisy data, we assumed that the total counts of
the projections witld = 0is 2x10 per slice.
eStructural errg (%): This item measures how the redousted image is close to the phantom
image. The structural error was calculated by taking the average of the absolute difference
between the reconstructed boxel value and the phantom value over the whole region of interest,
and expressed it as the ratioth® mean density of the phantom For ths test, we used the
phantom consisting of a cylindrical uniform phantom (4@ cylindrical hot area (16 @)
a cold area (16 cf) and a rod source (1 @ The phantom wasiniform axially. We
smoothed the phantom with the same filter as that used in the post-smoothing for the
reconsructed image.  Statistical noise was not added in this test. An example of the
reconsgructed image of a slice is shownfigure 5(a).
eSpatial resolution (transverse, pels): We assumed a phantom consisting of a cylindrical
uniform phantom (40 cty) and a rectangular plane source (4 mm thickness) embedded on the
cylindrical phantom. The plane source was placed in parallel to the axis in such a way that the
phantom was uniform axially. We defined transvespatial resolutionas the FWHMof the
spread function of the reconstructed image of the plane source evaluated by fitting it with a
Gaussian foction. The value was expressed in terms of pixels. An example of the
reconsgructed image of a slice is shownfigure 5(b).
*RMS nase (%): Root mean square (RNI8dse of the reconstructed image was evaluated with a
uniform cylindrical phantom (sefigure 5(c)). The vdue wascalculated by taking the average
of the squared difference between the reconstructed boxel value and the phantom value over the
central circular regin haring 80% of the phantom in diameter
eNoise popagation ratio(NPR: We definedNPRin order to check the uniformity of the noise
propagation. NPRis defined as the ratio ®MS ndse of the reconstructed image with noise on
data havingd > 6,../2 (dat of 6 < §,./2 are noiseless) to that with noise on data hawvirg

Onal2 (dat of 6 > §,,/2 are noiseless). Both the images were reconstructed using all ring
difference, X 6< 6,0 More preciselyNPRIs defined by

NPR= (23)

RMS noiseof the image with noise ah> J,,,,/2 6 max
RMS noiseof the image with noise ahi< 8, /2| 8,0 +1 )

The factorin the parentheses is the correction factor to the fact that number of the azimuthal
angles of6=0 is ahalf of that of 6>0. NPR=1 indicates uniform noise propagation, and

NPR> 1 implies that the noise of largércontributes morestrongly to the final image than that
of smalleré.

2 We ewluatethe structural errorusing Ly norm in a region larger than the phantom. If we evaluate
using L, norm, the error at the edge ottphantom appears more strongly than the error at the flat portion
of the phantom, and hence it is better to evaluate usingrim.

*We ewluatethe RMS néseusing L, norm in a flat-area smaller than the phantom. If we evaluate in the
area larger than (or equal)tthe phantom, the estimateldMS nase will be affected by the structural
recovery.
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(a) Structural error (b) Spatial resolution (c) RMS noise

Figure 5. Exampks ofimages reconstructed in the performance tests.
3.2. Modes of data access and damping factor

Performances of DRAMA-3D depend on the mode of data access (see g269nandthe damping
factor o in equation (20). We determined threvalue in such avay that the performance is stable with
all modes of data accessFigure 6shows the plots of RMS noise versus structural error with various
damping factoro. The maxmum ring difference isd,.,=15. With a=1, the RMS ndse of the
descending mode and CIS mode is excessively high. The reason for this is that the datadairtarge
accessed at early stage (snralland the iteratio becomes unstable (see the second paragraph from the
end in section 2.2.4). The excessive noise is effectively reduced by mgihg Figure 7shows the
noise propagation ratioNPR for various é,. with oc=1 (left) and =3 (right). It is seen that the
excessively larg®lPRs in the descending mode and CIS mode are reduced to normal values around unity
by usinga=3. Although the ascending mode is quite stable even with, we hae useda =3 for all
access modes in the following studies.

Figure 8shows (a) the plots ol(6, r) (g=0) as a function of access ordeand (b) itstrajectories
for various access modes. In the ascending mode, the daté v@tAndd=1 ae concernedvith only
direct-slices and cross-slices, respectively, and these slices are independent of each othed(d, Then,

given by equation (20) was modified in such a way #{atr) =A(0, r) hdds by redéning it

_ B(3) - -
A8,r)= Bt G+ max® n_ 12V (in asceding mode). (24)

In the random mae, thke vdue of A(6, r) appears randomly in the region between the two curves marked
with “random+ and “random-" infigure 8(b).

8.5 :

8- a=l1 —e— ascending -
—®— descending
e —+—CIS 7

o=1 —O— random

~
T

RMS noise (%)
I I

5
5
T

5
T
[\

45 | | | | |
0.9 1 1.1 1.2 1.3 1.4 1.5
Structural error (%)

Figure 6. Effect of damping factos on the plots of RMS noise versus structural erdgg,E15).
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—O— random
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Figure 7. Effect of damping factor on the plots of noise propagation ratMPR) versusd, .

1 1 \

_— ascending

o

=
<
Relaxation parameter, 4 (4, r)

Relaxation parameter, A (4, r)

0.001

o
o
<

0 5 10 15
Access order, n Access order, n
(a) Relaxation parameters (b) Trajectories of various modes

Figure 8. Relaxation parameters and their trajectories for various access ngged ).

3.3. Performance of DRAMA-3D

Figure 9shows the performances of DRAMA-3D as a function of the access arderThese figures
demonstrate how the images are formed in a single iteration for the four modes of data access. The
maximum ring differencey,. is 15. It is seen that the RMS noise is similar for all the modes of data
access. This is a consequence of the ade@udépendence of(6, r). Thevalue on spatial resolution

approaches to the final value asymptotically (thelutism of the postsmoothing is 2 pixels in FWHM)
for all the modes of data access, but the convergence of the ascending mode is a bit slower than the others.

The eason for tis may be the rapid decreaseAgd, r) with n in the asendng mode (sedigure 8(b)).

12



As descibed before, oblique projections lack low (and zero) frequency components of the transaxial
image (Tanaka and Amo 1998) (see Appendix A). For this reason, we hypothesize that the low
frequency components are not propedgonsgructed in the late stage of iteration of the ascending mode,

and it may cause ktle larger structural error in the late stage of the ascending niigdee(9(a). In

the descending mode, on the other hand, updating of low frequency components is not properly
performed in the early stage of iteration, and it results in the abnormal behavior on the spatial resolution
(figure 9(b)) and a bit larger structural error at the early stage of iterdiguré 9(a). The CIS mode

and the random mode show similar performances to each other, and both the modes provide better
peaformances for structural accuracy than the other modes. This will be by virtue of the balanced
updating for all frequency components. We recommend the use of either of these two modes. The

resuls ofthe one-pass reconstruction with varidjig are summarized in table 1.

2.8 °
I ) “} —e— ascending
5 ® ascendlng ’('_n‘ 26 L I descending _
;@ —®— descending g \ s
~ 4L cIs A= \ —O— random
o —O— random - 24 i
= o A \
@) = \ \
E 3 ° \ :
2 S22 R\ \ _
S = .
& ceeeen.) & . Aernon00004
= ,iﬂ” @ %)
L kﬁﬂﬁ -
| | 1.8 T | |
0 5 10 15 0 5 10 15
Access order, n Access order, n
(a) Structural error (b) Transaxial spatial resolution

—&— ascending
—®— descending
—&—C(IS
—O— random

RMS noise (%)
I

Access order, n

(c) RMS noise

Figure 9. Paformances oDRAMA-3D (,.,=15).
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Table 1. Performances of DRMA-3D (one-passeconsruction)

Test item Modeof access | Opnar-11 Omar=15 Oma=21 Oma=31
Ascending 1.501 1.437 1.328 1.212
Structural Error Desendng 1.325 1.240 1.156 1.031
(%) CIS 1.125 1.074 1.040 0.931
Random 1.203 1.191 1.104 0.991
Ascending 2.037 2.032 2.027 2.022
Resolution Desendng 2.020 2.022 2.013 2.014
(FWHM, pixels) CIS 2.026 2.020 2.019 2.015
Random 2.023 2.021 2.017 2.008
Ascending 5.60 4.74 4.54 4.15
RMS noise Degendng 5.70 4.95 4.38 3.40
(%) CIS 5.52 4.84 4.22 3.62
Random 5.54 4.97 4.48 3.77

3.4. Comparison with related algorithnBRAMA() and RAMLAA)

We hare performed comparative studies on the performances of DRAMA-3D with two related algorithms.
The first algorithm is a simplified version oDRAMA-3D having a ré&xation parameter

A(r)=B/(aB,+r) wher Bis a constant. We named the algorithm as “DRABA( The purpose of
DRAMA(P) is two-fold. The one is to check the effect of discardfiig) in A(S, r) andthe other is to
reveal the difference in behavior between DRAMA@nd DRAMA-3D. The second algorithm is
“RAMLA( A)", in which the relaxation parametéris a subsetAdegndent costant. Since there is no
simple way to determine the suitable valuegaind A, we deéermined them manually by trial and error.
We usedx =3 in DRAMA(f) too. The maximum ring differendg,,is 15.

Figure 10shows the plots of RMS noise versus structural error for the four modes of data access.
It is shown that, in the ascending mode, the data points of RAM)Ate very far from those of

DRAMA-3D, which implies that RAMLAQ) is useless in this mode. The reason for this is that the
ascending made requires a rapidly decreasifgyalue with n as show in figure 8(b) while the A-value is
congant in RAMLA(Z). On tke oter hand, in the descending mode, RAMRA(benaves almost
similarly to DRAMA-3D with a suitablel-value. This may be due to the fact that the trajectoridgdf

r) of the descending mode is U-shapedg( figure 8(h) which is roughly approximated by the constant

in RAMLA(4). Note that DRAMAQ) is reasonablygood in any mode. In particular, in the random
mode and CISmode, DRAMA(S) provides the much closer ermances to DRAMA-3D than

RAMLA(A). We compared the RMS noise of the three algorithms at the same structural error for the
random mode of data access. The results are summarized in table 2. The values in parentheses are the
ratio tothe RMS noise of DRAMA-3D. Note that the RMS noise of RAMAAs larger than those of

DRAMA-3D by a factorof about 1.24~1.33, but the difference of noise between DRAMANd

DRAMA-3D is not so large (4~11%). The noise propagation rai®R is aound 2.0 inboth the
algorithms, vhich implies that noise of the data of largeaffects more to the salt thanthe data of

smallerd. On theother handNPRof DRAMA-3D is close to unity (0.81~0.89), which implies that the
o6-dependence of(4, r) is reasonable.
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Figure 10. Plots of RMS noise versus structural error of the three algorithms for the four data access

modes. §,.,=15).

Table 2. Comparison 0DRAMA-3D, DRAMA(8) and RAMLA(#) at the same structural error.

8.=11 8..,=15 8021 8,,=31
RMS noise (%) 5.54 4.97 4.48 3.77
DRAMA-3D NPR 0.89 0.85 0.81 0.81
A 0.0082 0.0051 0.0083 0.0019
RAMLA(A) | RMS noise (%) 6.95(1.26) | 6.15(1.24) | 5.64(1.26) | 5.02(1.33)
NPR 2.29 2.18 2.02 1.93
B 8.8 7.0 5.3 47
DRAMA(B) | RMS noise (%)| 5.74(1.04) | 5.20(1.05) | 4.73(1.06) | 4.20 (1.11)
NPR 2.17 2.02 2.00 2.16

The values in parentheses are the ratio to the RMS noise of DRAMA-3D. Data access is

rancbm mode.

3.5. Axial post-smoothing.

Although we have not applied axial smoothing so far, we can apply the axial post-smoothing in addition

to the transaxial post-smoothing to reduce the statistical noise at the cost of the axial resolution.
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have tested the effect of an axial filter having the relative weighfissf) onthe contiguous slices, where

s, (0<s,<1)is a constant. The phantom used in this test consists of 10 slices (slice-1, -2, ..., -10).
The slices-1, -4, -7 and -9 have different source distributions each other, and the rest slices are blank.
The slies with even number are direct-slices and the others are cross-shogsie 11 shows the
reconsructed images with (a3,=0 (no axial smoothing) (b%,=0.25 awn (¢ s,=0.50. Tt transaxial
post-smoothing filter was Gaussian having 2 pixels in FWHM, the maximum ring diffedggogas 15

and the access order was the random mode (we confirmed that the other access modes yield similar
resuls). The imags show in figure 11(a)are quite similar tdhe phantom except the transaxial blur

due to the transaxial smoothing. It is seen that there is negligible axial cross-talk between slices when
s.=0 regadless of direct- or cross-slices, and that axisbhgion is wellrecovered for firte values o&,.

This may not be surprising, because we did not take into account the axial response of the detector ring in
this simulation, and we assume that the axial width of the LOR is sufficiently small.

We have tested the effect of the axial post smoothing on statistical noise by repeating the RMS
noise test (described in section 3.1) with various axial filters, and we found that the RMS noise is reduced
by a factor of about 0.71 and 0.61 with the filggr0.25 ands,=0.50, respctively, as compared to the
case of no axial smoothing€0). Thes factors are very close to the theoretical values estimated by

N1+ 232/(1+ 2s,).

(a) ., 7 8 9 10
o )
II_
Slice-1 2 3 4 5
F {]{ I.'_|"“ v l I i 1
(b) 3 7 8 9 10
= —— A— -
(¥ Y 7557 7T 705
Slice-1 2 3 4 5
e b ey ) )
(c) 6 7 8 9 10
( | 'S B o e Tl
Slice-1 2 3 4 5

Figure 11. Images showing the effect of ak@ost-smathing with a filters, : 1:s..
(@)s,=0,(b) s, =0.25and (c)s, = 0.50.

3.6. Performance of DRAMA-3D with a PET scanner having a limited axial length.

We hare assumed that the mimum ring differenced,., is constant in the theoretical treatment of
DRAMA-3D (section 2.2.1). We have also assumed a con8apin the simulation studies described
in section 3.1 ~ 3.5. In agustical PET scanner, howevé,,, is usually determined by the limited axial
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length of the detector ring. If all ring differences are acceptgd, (and senisivity) vary along different

slices, and the axial sensitivity is approximated by a triangular pattern. We have made simulation tests
for the practical PET scanner assumihg number of detector rings was 12 and the number of slices was

23. Other parameters were same as those used so far. The maximum vglues &R at the center of

the central slices. The results are showrfigure 12as the curves marked with “Limited ring”. It is

seen that the structural accuracy and the spatial resolution are highest at the central slices and degrade
toward the end slices due to the varying sensitivity along different slices. The convergence is apparently
insufficient at the slices near the ends due to the low sensitivity. We have also performed similar tests

using a constand,,,, (=6) for comparison. The results are shown as the curves marked with “Constant
dnax IN the figure. It is seen that the structural accuracy and the spatial resolution are nearly uniform in

thecase of the consta@t,. The above tests were performed with the random data access mode, but we

have confirmed that similar results were obtained with the other data access modes. From these results,
we expect that DRAMA-3D igeasilbe to apply to the practical PET scanner having a limited axial length,
although further studies will be desirable on the details of the performance and on the limitation in
applicatons.

5 26 ¢
45 L - B 25| Limited ring -
Q R [
I [ X ./. “J
S 4 Limited ring s % sal Constant § < N/
o N . /
2 g . % , onstant & A
= T Constant § S “ °
3 \ e A, g 23 . P, 7
§ 3 e \ e /7 T ././x .‘\\ .
2 2 N * ma g ,, LR A LA rl—r'\.\
) Q 22 - 2 .
25 le =/"/=I .\ll‘l’.\I"‘?"./'"‘ - 2 °
® %000’
2 ! | | | | 2.1 | | | | |
0 4 8 12 16 20 24 0 4 8 12 16 20 24
slice number slice number
(a) Structural error (b) Transaxial spatial resolution
8 I I
Constant &
s /l . max |
w-/ \ -u |
G\O ’/ \/ ’
5 6" [ \./N .
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° oo »
Q st ¢ ey o, .
o /./ .. R R J LN o
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Figure 12. Comparisons of performancegth limited detector ring and with constadt., after one
main iteratim.  The number of detector rings is 12 @png=6 inthe constang,,., test.
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4. Discussion and conclusions

We hae presented the theory of DRAMA-3D and the results of the simulation studies. The optimal
relaxdion paameterA(d, r) is given by equation (20) or (24), and its value is a function of the ring
differenced and the access ordeof subsets.  Thé-dependence plays an inrent rde for providing

uniform noise propagation in any mode of data access. As a result, DRAMA-3D is robust for various
daa access modes, and is suitable to achieve one-pass reconstruction. The pafjnaetfX0) in

equation (20) are dermined by simple formulas (equations (11) and (17), respectively) from the
parameters of the PET scanner, the operating conditions and the post smoothing resolution.

The dampig factor o (=1) is introduced to avoid instability, which may occur when the data
having largeé are accessed at the early stage (smaiff iterations. It is preferable to take thevalue
as small as posdito obtain faster convergence, but we have no theoretical means to determine the
appropriatea-value, and we hee to determine it experimentally for the particular operating conditions.
However, if we first access the data havirixl, DRAMA-3D provides sble convegence witha=1
regardless of the following access order for the remaining data h&®ing We have confirmed this
featureusing A(9, r) definedby equation (24) withe=1. The eason for the stable convergence is that,
after procesing with 6<1, the vdue of A(9, r) for the folloning processing becomes sufficiently small
(see equation (24)). In addition, the whole frequency components of images are properly reconstructed
by the processing with<1 andthe following iterations are quite stable.

Since the relaxatioparameter depends on the ring differedc®RAMA-3D does no satisfy the

convergence contibns of Neto and De Pierro (2005). The algorithm aims at one pass (single iteration)
recongruction as referred in the paper title. In fact, DRAMA-3D provides images having good noise
balance (uniform noise propagation) by one or two main iteration(s). Our main concern is to realize a
better noise balance with a single main iteration and not to realize stable convergence with a large number
of the main iterations.

We hare comm@red the performances of DRAMA-3D with the simpler algorithms, DRABJA(
and RAMLA@{). RAMLA(A) is generally poor as shown figure 10as lang as one-pass reconstruction
is considered. RAMLA{) with descending data access mode showed exceptionally good performances,
which is comparable to that of DRAMA-3D. It may be, however, an accidental result occurred in
particular system parameters afg.-value. On the other hand, DRAMAG) provides uexpectedly
good performances with the CIS or random mode, if a suitgalue isused. The RMS noise of
DRAMA(p) is close to that of DRAMA-3D, although ti¢PRis about 2.0. This behavior indicates that
ther-dependence iA(4, r) plays a more impaant rde than thed-dependence. However, the suitaBle
value for DRAMA(B) depends sensitively on the operating conditions and data access mode, and it is
generally not easy to find the suitatevalue in clinical ratine. This will be a serious drawback of
DRAMA( ).

In conclusionwe hae developed a 3D-reconstruction algorithm, DRAMA-3D, for 3D-PET, and
we have derived the optimal relaxation parameters suitable for one-pass image reconstruction. We have
demonstrated the usefulness of the algorithm by simulation. In this study, however, we have made a lot
of assumptions and approximations in the theory and in the simulation. For example, we have ignored
attenuatio and scattering of photons and the effect of random coincidence for simplicity. The
sensitivity response of the detectors has also been simplified. Further work would be necessary to
clarify the effect of these assumptions or approxinmgtionthe optimal relaxation parameters and on the
peformance of the algorithm.
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Appendix A. 3D-frequency response of oblique projection data

It is known that, according to projection-slice theorem in 3D, oblique projection data with oblique angle
¢ lacks information in a cone region in 3D frequency sp&eg,w,,»,) as show in figure AL The

corresponding 2D frequency response at each =zlise-obtained by taking the 1D inverse Fourier
transform of the 3D response with respect to the axial frequencyConsequently, at each sliggit is

shown that information of low-frequency component (with smal wyz) iS missing.

z Regionof missing #
Direction of A fregueny ° ‘
projection /
n/2—¢
Wy
/2—¢ , 0

Projecton data

FigureAl. Relatbn between oblique projections (left) and the 3D Fourier transform (right)

Appendix B. Derivation of equation (15)

Consider the intersaons between the two oblique LORs and the slice as shoviigure 1(b). We
denote these two intersections by LOR-1 and LOR-2. The 2D “Gaussian” responses of the LOR-1 and
LOR-2are gven by

2

_ _U__M} _ p{_u'z_(vf—vo)Z}
Gau(&,y)=ex 2032 205 and Gau,(&,w) =ex 2052 205 (B.1)

respectively, where(u,v) and (u’,v) are the coordinateotatel by anglete(: (/)/2) with respect to the
coordnates (&,w) arownd theorigin of (&,y)as show in figure BL The coordnatesof the centers of
LOR-1 andLOR-2 are (0,v,) and (0,vp), resgectively. The GCC betwedhe two LORs crossing with
azimuthal angl® is expessed as

93.0)= || ] Gau(€w) GauEw)dé dy dy dy (B.2)

where the ranges dhtegration with the four variables are from~ to +eo. Equdion (B.2) is however
too complicated to execute the integration. We then intend to find a suitable approximate expression of
the GCC in the followings.

If o, is sufficiently large, the GCC given by equation (B.2) should be approximated by the GCC of
the 2D-PET model given by (Tanaka and Kudo 2003)
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g(¢)=c,f+D/2J'_+:e 6=¢) +£§9+§) }dédw (B.3)

-D/2 20

wher 0=¢/2, & ,=ytand, o, =0./cosd, D is the diameter of the traaxial field of view, andc is the
normalizing constant. The value gf¢) is inversely proportional to sinas show by equation (9), and

the value ofg(¢) with a smallerg affects more strongly to the lu@ of the relaxation paramet&f¢) than

a smallerg (see equation (5)). Taking into account this property, we intend to modify equation (B.3) so
as to include the effect of the practical findgvalue in the 3D-PET model. If is sufficiently small,

the response of the GC@§d,¢) in y-direcion is approximated by the auto-correlation function of the
Gaussian faction (having standard deviatian) dueto the integration with respect te, and v; in

equation (B.2). The autaoelation function is also a Gaussian function having the standard deviation
«/Eco, We then modifyequation (B.3) bynultiplying a 2D weghting factonM&,w) given by

W(Ey)=exg—(£2+y?)/ 4ol )} (B.4)

The functionW(&,y) is circulrly symmetic, and the radial response (&, y) is eqial to the auto-

correlation function. The reason why we use a aitylsymmetic weighting factor is to simplify the
following calculation. Thus, we obtain equation (15).

o0.0)=of ;;;ex4_ &=+ (&) }ex,g_w]dgdw. -

26}

Equaton (15) has been derived using intuitive or experienced approximations, and we have no

evidence to guarantee the validity. The adequacggoftion (5) is evaluated by how it satisfies the
following requirements: 1) the equation should be reduced to a simple analytical expression with
reasonable approximations, 2) the resulted GCClghmuconsistent with the GCC of the 2D-PET model,
3) the GCC should be consistent with the concept of “CT-loss” in the 3D-PET model, 4) the relaxation
parameter based on the GCC should provide good performance for DRAMA-3D regardless of the order
of daa access, and 5) the DRAMA-3D should provide uniform noise propagation regardless of the order
of daa access. It will be shown in this paper that the GCC given by equation (15) is fairly adequate
because it satisfies the al@orequirements reasonably.

Figure B1. Gaussianntersections LOR-1 and LOR-2.
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Appendix C. Derivation of equation (16)

We hare, from equation (15)
oo 2 2
o .9)=c| L, exp{ 5“5 _5 +"’ }dédw
0

oo 4o0 tan20 1 , 11 .,
=C +— —| =+ déd
J. Le [ o, 4o} ]‘/’ (0'92 40} }5} sdv

oo (oo i 1 2 C0§0 1 2
=C ex + ——t— dédy . C1
f L [ p 403}’/ [ p 4@5]5} S dy (C.1)
If we denote
1(site 1 ) 1(coge 1 |
= + and o,= | ——+— c.2
Y2l 62 4ot 22| 62 402 (C.2)
then
0(0,¢) =4r co,0,. (C.3)
From equations (C.2) and (C.3),
4 4 1/2
400
5,0)=4r s 0
%0.4) (40¢sin’0+02)(40¢ coso+0?)
4 4 1/2
= 4rc 400 . (C.4)
464 sin ¢+46 co+o.

We déermine the normalizing constamso as t@(¢#)=1 when6=0. Wethen have

4clog+o!l 2 ol 2
J, 0 ~|———5—— | for 402>>02 C.5
9(0.9) [400 sin¢+ 4o ol +0? ] (oésinz(pﬂyf} 0T (©5)

Using equation (C.5) in equation (14.1), we have

T o
~—arcta > tam¢

L zj §7(5.0)dp = —2%5_ VoG +og
(o Jol+o? |2 O .

Equaton (C.6) gives the relation betwe(d) andAg.

Equaton (C.6) corresponds to equation (10) in the 2D-PET model. From equations (8) and (11),
we hare BA¢ = 2, whichis considered to be an expression of the consistency condition. Assuming the
similar consistency conditiof}(6)A¢ = 2 is hold in the 3D-PET model, we can determp@) from
equation (C.6) by numerical calation. The obtained result is

=1.0402+02 o, (C.7)

We shall omit the factor 1.04 for simplicity in the following, sing&d8)A¢ = 2 is not a rigorous
requirement. We themave equation (16).

(C.6)
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