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Let A be a ring with an identity and A9Jl the category of all unitary left A­
modules. 

A full subcategory s.B of A\)J1 is called a reflective subcategory if there is a 
covariant additive functor S: .4\)J( -+ Q3 which is a left adjoint of the inclusion func­
tor T: ~ -+ A~Jl; in this case S is called a reflector from A~J( to s.B. For a left A­
module V let us denote by SD( V) the full subcategory of J19Je consisting of all left 
A-modules of V-dominant dimension~2. 

In a previous paper [6J we have proved that a full subcategory Q3 of }JJ1 which 
is closed under isomorphic images is a reflective subcategory which is itself a 
Grothendieck category iff (=if and only if) there is a left A-module V of type FI 
with s.B=SD( V). 

Let V be a left A-module of type F1 and S a reflector from .'19)1 to SDC V). Then 
the module S(AA) carries a ring structure so that the natural A-homomorphism 
AA -+ Se1A) turns out to be a ring homomorphism, and in this way we have all 
quotient rings by letting V range over all injective modules. 

In view of these results, in the present paper we shall give a new construc­
tion of a reflector S from A 9J1 to SD( V) for the case of V being either of type FI 
or injective. 

Let V be a left A-module and let B=End (A V); we consider B as a right 
operator domain of V. Thus V is an A-B-bimodule. Let us put 

( 1 ) 

the map 7r(){): X -+ D(X) defined by 

(2 ) [7r(X)(.r)J(f) = f(x) for xEX,fEHomA (X, V) 

is a natural homomorphism. Let us put further 

( 3 ) D(X)= n {Ker fl!EHomA (D(X), V) with !7r()()=O}. 

If we denote by ~(X) the inclusion map from D(X) to D(X), then 7r(X) is fac­
tored as 

( 4 ) 7r(X) =~(X)· iE(X) with iE(X): X -+ DeX). 

Now, let us assume that V is either of type Flor injective, and let ~Y-EA9Jl. 
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Then it will be established in § 2 that D is a reflector S from AS)J( to SD( V). 
As for the problem: /I Under what condition does D(X) coincide with D()O ? " 

we can give a number of necessary and sufficient conditions in § 3; the condition 
that DiU{) be V-reflexive (that is, r:(Di(X» be an isomorphism) for some i?; 1 (or 
all i~l) is one of these conditions. However, a sufficient condition for D(X)=D(X), 
which is sometimes more useful, is that D(X) be isomorphic to an A-submodule 
of vn for some n. where vn is a direct sum of n copies of V. In particular, it 
will be shown that in case Xc VP,){ is V-reflexive iff )(E'lD( V). 

In § 4 we shall discuss conditions for the V-reflexivity of a module X without 
imposing any such restriction on V that is described in §§ 2 and 3. It will be 
shown that these conditions lead naturally to the conditions for the double central­
izer prperty of a mod ule V. 

Finally, in § 5 we shall give a characterization of SD( V) with V injective among 
full reflective Grothendie·ck subcategories of A9Jc. 

Our results above were obtained at the end of 1971 and reported at the Sym­
posium on Ring Theory, Matsumoto, Japan, August 28-31, 1972. Our results for 
the case of V being injective and those in Lambek [9J overlap, although the for­
mulation and the methods of proof are different. (As for the features of the 
situation for the case of V being a module of type Fl, one should refer to Remark 
preceding Example 2.8) Almost the same result as Theorem 4.1 was established 
also by Onodera [10]. 

§ 1. Generalities on D 

Throughout this paper V will denote a left A-module, and B=End (A V). With 
respect to V, we shall use the same notations as in the introduction. 

(5) D(f)=Hom (Hom (I, 11').117): D(X) -)- D(Y), 

We shall first prove 

[D(f) o~(){)J(y) E D( Y) for y E D(){). 

Let hEHom.1 (D(Y), V) such that hor:(Y)=O. Then we have 

hoD(/)or:(X~) =ho1f( Y)o f =0, 

and hence hoD(f)o;(X) =0. This shows that [D(f)o~(X)J(Y)EJ5(Y). Let us denote 
by D(f) the map D(f)o~(X) with D( Y) as its range. Then 

( 6) 

Thus, we have 

LEMMA 1.1. D is a covariant additive functor and if(X) : X -+ D(X) is a natural. 
homomorphism. 
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PrWOF. Since ~(Y)oD(f)oif(){)=D(f)orr(X)=rr(Y)of=~(Y)oif(Y)of and ~(Y) 
is a monomorphism, we have DCf)if(X)=if(Y)f. 

PROPOSITION 1.2. If YE9Jcn, then A[Homn [Y/3, A Vn)]ESD(V). 

PROOF. Let 

be a free resolution of Yn. Then the sequence 

is exact and Homn( Y i , A VB) are direct products of copies of A V. 

COROLLARY 1.3. D(~Y)ESD(V) for XE A9Je. 

On the other hand, by the definition of D(~Y) we have 

PROPOSITION 1.4. V-dom. dim DCY)!D(X)~l. 

Now for any positive integer n let us put 

n 

V"= ~ EB17. 
'i=l 

Then we have easily 

PROPOSITION 1.5. rr( 17n) : 1771 ~D( VI/.) and D( 17 11
) =D( 1711

). If X is a direct 

product of copies of V, then rr(X) is a monmnorphism. 

Next, for fEHomA eX, vn) let us put 

Then we have 

An(X)(f) =rr( Vn)-loD(f): D(X) -+ 17 71
, 

J.nCY)(f) =rr( vn)-lo~( Vn)oD(f) : D(X) -+ V n. 

f =;'n(X~.)(f)orrCY) = ;'n(X)(f)oif(~Y), 

J.n(X)(f) =J.nU{)(f)o~(X). 

PROPOSITION 1.6. An(X): Hom (X, vn) -+ Hom (D(~Y), vn) is a monomorphism. 

PROPOSITION 1.7. Al(X)(ho f) =ho}nCX)(f) for 

PROOF. 
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In what follows, instead of Al(X) we write also I.(X). 

PROPOSITION 1.8. Foy fEHomA (X, V n
), let us put 

Then foy aED()() we have 

PROOF. For fEHomA (X, V) it is easy to see that [A(X)(f)J(a)=a(f), and the 
general case is obtained from this. 

§ 2. The functor jj as a reflector 

Let B=End (A V), C=End (VB); ¢: A -~ C is a canonical ring homomorphism. 
Henceforth let us make the following assumption. 

ASSUMPTION (*): There exists a subring R of C such that 
(a) q)(A)cRcC, 
( b) R VB ~HomA CIRR, A VB), and 
( c) R V is injective. 
This assumption is satisfied if V is either of type FI or injective; we have 

only to put R=C or R=¢(A). 
Let us put 

Then by [3, Lemma 3.1J K carries SD(A V) into SD(R V), L carries SD(R V) into SD(A V), 
and LI( (resp. KL) is naturally equivalent to the identity functor on SD(A V) (resp. 
SD(R V». Hence we have 

LEMMA 2.1. If X, XI ESD(A V) and fEHomA (X, XI), then X and XI are left R­
modules contained in SD(R V) and f is an R-homomoyphism. 

PROPOSITION 2.2. R V-dom. dim D(X)/D(X)~l for XE A9JL 

PROOF. By Corollary 1.3 D(X)ESD(V). Since VESD(V), by Lemma 2.1 every 
A-homomorphism f: D(X) -+ V is an R-homomorphism. I-Ie nee by definition D(X) 
is an R-module. This proves Proposition 2.2 by Proposition 1.4. 

LEMMA 2.3. D(X)ESD( V) foy XE A9J1. 

PROOF. R V-dom. dim D(X)~2 by Corollary 1. 3 and Lemma 2.1, and R V is 
injective. Hence we have D(X)ESDR( V) by Proposition 2.2. 

LEMMA 2.4. j()(): HomA (X, V)~HomA (D(X), V) and 
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Hom (ir(X), 1): HomA (D(X), V)~HomA (X, V) 

for XE A9)? 

PROOF. Let gEl-IomA (D(X), V). Then by Lemma 2.1 g is an R-homomorphism. 
Since ~C)(): DUO -;. D(X) is an R-monomorphism and R V is injective, there is 
hEHomR (D(X), V) such that g=ho~(X). If we put f=goif(X), then f=horr(X). 
On the oter hand, f =/(X)(f)orr(X). Hence (h - )(){)(f» ° rrU{) =0. Thus by defini­
tion we have (h- )()()(f»o~(X) =0, that is, 9 =ho~(X) =)(X)(f)o~C)()(f) =J.(X)(f), 
which shows that J.(X) is onto. Since J.(X) is a monomorphism by Proposition 1.6, 
J.(X) is an isomorphism. 

LEMMA 2.5. For XE A9)? and YEstl(17), we have a natural isomorphism 

Hom (if(X), 1y): HomA (D(X), Y)~HomA U{, Y). 

PROOF. Since Y ESD( V), there is an exact sequence in A:JJ? 

such that each Yi is a direct product of copies of A V. Then we have a commuta­
tive diagram 

o --;. HomA (D(X), Y) -;. HomA (D(X), YJ -;. HomA (D(X), Y 2 ) 

Hom (irC¥), 1y )1 Hom (ir(X), 1y )1 Hom (if(X), 1y2 )1 
o ---'). HomA (X, Y) ---'). HomA (X, Y 1 ) -)0- HomA (X, Y 2 ) 

in which each row is exact. It follows from Lemma 2.4 that the two vertical 
homomorphisms on the right hand side are isomorphisms. Hence by the Five 
Lemma we get the desired isomorphisms. 

We are now in a position to establish the following theorem. 

THEOREM 2.6. Let V be a left A -module satisfying the standing assumption(*). 
Then '3)( V) is a reflective subcategory of A SJJ( with 15 as its reflector and SD( V) is 
a Grothendieck category. 

PROOF. The first assertion is a restatement of Lemma 2.5, while the second 
follows from the fact that R V is injective, SD(A V) ~SD(R V) and that 5D(R V) is a 
Grothendieck category. 

COROLLARY 2.7. ir(X):)[ -+ D(X) is an isomorphism iff XESD( V). 

PROOF. The" only if" part is clear by Lemma 2.3. To prove the" if" part, 
suppose that XE5D(17). Then by Lemma 2.5 there exists y6EHomA (D(X), X) such 
that lx=1)oif(X). Thus we have a commutative diagram 
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In fact, 115(x)oK(X) = K(X)olx =(K(X-)OCP)OK(X), and hence by Lemma 2.5 we have 
115(x) = K(X) 0cj;. 

REMARK. Let A V be injective or of type PI. Then by [3J and [6J there exists 
a reflector S from A~J( to SD( V). The kernel of the natural homomorphism ([JC'K): 
X -~ SeX) is, coincident with Ker ;reX). Since S is a reflector, by Corollary 1. 3 
there is a unique A-homomorphism r;(X): S(){) ---+ D(X) such that ;r(X) = r;(){) ° (j)(_'K). 
Hence Ker r;(X) n 1m (JJ(X) =0. In case V is injective, SeX) is an essential extension 
of 1m (JJ(X) and hence we can conclude that Ker r;(X) =0, from which Theorem 2.6 
follows readily. However, SeX) is not an essential extension of 1m (/)(X) in general 
in case V is not injective, as will be seen from Example 2.8 below. 

EXAMPLE 2.8. Let A be a K-subalgebra of (K)~ with a K-basis {Cll, C22, C33, C21, 

cad, where K is a commutative field and Cik are matrix units. Let us put V =Acll 
and _Y=AC21 +AC31' Then V is of type PI and B=End CtT7) =K. Let fiEHomA (X, 
V), i=1,2, be maps defined by 

Jf1(C21)=C21 

1 fl(C31) =0, {
f2(C21)=0 

f2(cSl)=CSJ' 

Then HomA(X, V)=f1K+f2K. Now, for (Vl,V2)EVEBV, let us define ¢(Vl,V2)ED(X~) 
by 

Then it is easy to see that 0: VEB V ---+ D(X) is an isomorphism and that 

Thus, we have Xc V, D(_Y)=D(X)~ VEBV, and D(_Y) is not an essential extension 
of 1m ;reX). 

§ 3. Conditions for iJ(X) = n(x) 

Let V be a left A-module satisfying the standing assumption (*) in § 2. 

PROPOSITION 3.1. A left A-module X is V-reflexive, that is, rr(X): X~D(X) if 
XESD( V) and DeX)=D(_Y). 

[Sc. Rep. T.K.D. Sect. A. 
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PROOF. This proposition follows readily from Corollary 2.7. 

THEOREM 3.2. For~)C E A9)( the following conditions are equivalent. 

(a) DU{) =D(X). 
(b) Hom (7r(X), 1): HomA (D(X), V)~HomA (X, V). 

(c) 7r(D(~)c»: D(~)c)~D(DC)C». 
( d) 7r(DC)c»: DC)c) ~D(D(X». 
(e) ;n:(Di(~)C»: Di(X)~Di'l(X) for some i~1. 
( f) ;n:(Di(X»: DiC)C) ~Di ;1(~)C) for all i2': 1. 

159 

PROOF. Since D(X) and D(X) are R-modules and R V is injective, we have an 
exact sequence 

0-)- HOl11n (D(~)C)ID(X), V) -)- Homn (D(X), V) ll()lll(~(X),l») Hom (D(X), V) -)- o. 

By Proposition 2.2 D(X)=DCK) in Homn (D(X)/DU(), V)=O. On the other hand, 
if (b) holds, then by Lemma 2.4 Hom (~(X), Iv) is an isomorphism since 7r(X)= 

NX)o7l'(X). This proves (a) <=> (b). 
Next, let us consider the diagram 

Since D(7l'(X»o~(X)o7l'(X~) =D(7l'(X»o;n:(X) =7r(D(X»o7l'(X), we have D(7l'(X»o~C>{) = 
n:(DU{» by Lemma 2.5. On the other hand, by Lemma 2.4 D(7l'(~)C» is an isomor­
phism. Hence ~(X) is an isomorphism in ,,(D(){» is an isomorphism. This proves 
(a) <=> (c). 

If (a) holds, then we have Cd) by (c). To prove (d) =? (c), let us consider a 
commutative diagram 

o -------+ DU{) -------+ D(X) -------+ DC)c)/ D(){) -)- 0 

l;r(1)(X)) l;r(D(X)) 1 ;r(D(X)/1)(X)) 

o -} D(D(X~» -------+ D(D(.cY» -------+ D(D(X);D(~)c», 

in which the upper row is exact. Here we note that the lower row is also exact 
since R V is injective. By Proposition 2.2 ,,(D(X);DCK» is a monomorphism. Hence, 
if ,,(D(X» is an isomorphism, then n:(i5(X» is an epimorphism by Five Lemma and 
so an isomorphism. This shows that (d) =? (c). 

Finally, assume that n:(Dit-J(X»: Di+l(X~)~Di+2C-)C) for some i~1. Let us put 
Y =Di(X). Then, by the equivalence (a) <=> (d) which has been just proved above, 
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we have DCY)=DCY). Since YESD(V), this shows that ;T(Y): Y~D(Y). Thus we 
have ;T(Di(X»: Di(X)~D7>1(X). By repeating this argument, we see that (d) holds. 
This proves (e) => (d). 

Since (d) => (f) and (f) => (e) are obvious, this completes our proof of Theorem 
3.2. 

n 

THEOREM 3.3. Let X be an A-submodule of vn = L: EB V. Then ;T()C): X~D(X) 

iff XESD(V). 

PROOF. The" only if" part is obvious from. Corollary 1.3. To prove the" if" 
part, suppose that XESD( V). Then, there is an exact sequence in R'J)( 

such that lV is a direct product of copies of V. By using the injectivity of R V, 
we have a commutative diagram 

0---+ )( ---+ vn -}- w 

l"(X) 1,,( V") 1,,( TV) 

o ---+ D(X) ---+ D( vn) ---+ D( llV) 

in which each row is exact. Since;r( V'll) is an isomorphism and ;r( TtV) is a mono­
morphism, n(X) is an isomorphism. 

THEOREM 3.4. If D(X) is isomorphic to an A-submodule 0/ V'll for sOJne n, 
then D(X) =D(X). 

PROOF. In view of Theorem 3.3, Theorem 3.4 IS a direct consequence of 
Theorem 3.2. 

PROPOSITION 3.5. The following conditions are equivalent for _;( E A '))(; in par-
ticular, (b) and (c) are equivalent without the assumption (*). 

( a) There exists a 11wnomorphism g: D(X) -}- V'll for some positive integer n. 
( b) [HomA (X, A V)JB is finitely generated as as a right B-module. 
( c) There exists an A-homomorphism ¢; X -}- vn for sOJne n such that for any 

fEHomA ()C, V) there is hEHomA (Vll, V) with f =11.01). 

PROOF. (c) => (b) and (b) => (a) are obvious. Suppose that (b) holds. Then 
there are a finite number of elements fiEHomA (X, V), i=l, ... , n, such that 

u 

[HomA eX, V)]n= L: fiB. 
i==l 

Let us define an A-homomorphism ¢: X -}- V l1 by putting ¢(X)=(/l(,X), .. ·,/nex» for 

XEX. Then for any fEHomA(X, V) there are biEB,i=l, "',n, such that f=r.,!ib'i. 

If we put h(vl) "', vn) = £ vib i , then /zEHomA (V'll, V) and / =/zo¢. 'l"hus, w~==have 
i=l 
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(b) => (c). Here we note that assumption (*) is not used in this proof. Hence (b) 
is equivalent to (c) without the assumption (*). 

Finally, assume (a). Let us put t/J =gor:CX) : X -)0 V7I. With the notation in § 1 
we have f=J.(X)(f)or:(X) for fEHomA eX, V). Since )(X)(f): D(X) -)0 V is an R­
homomorphism by Lemma 2.1 and RV is injective, there is hEHomR(17n

, V) with 
J.(X)(f) =hog. Thus f =hot/J. This proves (c). 

COROLLARY 3.6. In case A V is injective, each of the conditions in Proposition 
3.5 is equivalent to (d) below. 

e d ) X is finitely cogenerated by V in the sense of [3, § 2]. 

PROOF. (a) => (d). The map cj) =gorrCX) : _X -» 17n shows the validity of (d). 
(d) => (c). Assume (d). Then there exists t/JEHomA (X, V1I) for some n such 

that Ker t/J=Ker r:(X). Then for any fEHomA ()C, V) there exists hEHomA (T/,'\ V) 
such that f =h0t/J, since V is injective. This proves (c). 

REMARK. From the above proof v.,re may say that in case V is injective XC:; 17n 
implies D(X)C:; 17n

. (Here by "C;:" we mean" is isomorphic to a submodule of ".) 
This implication, however, fails to be true if V is not injective, as we have shown 
already in Example 2.8. The problem whether XC:; 17n implies D(X)C:; 17,n for some 
m?;;n when V is of type FI remains open. 

§ 4. Conditions for the V-reflexivity of a module X 

The following theorem is a direct consequence of Proposition 3.1 and Theorem 
3.2 if V satisfies the assumption (*) in § 2 which is not assumed in this section. 

THEOREM 4.1. Let V be a left A-module. Then a left A-module X is 17-
rejlexive, that is, 7r(_X): X=::.D(X) iff XESD( V) and Hom (ir(X), 1): HomA (D(X), V) ~ 
HomA (X, V). 

PROOF. The" onl y if" part is obvious from Corollary 1. 3. To prove the" if " 
part, suppose that XESD( V) and Hom (;r(X), 1v) is an isomorphism. Then there is 
an exact sequence 

such that each )Ci is a direct product of copies of 17. Now, let us consider the 
following commutative diagram in which each row is exact: 

o -----* Hom (D(X),)C) -----* Hom (D(X), Xl) -----* Hom (D(X), _X2 ) 

Hom (rr(X), Ix) 1 Hom (rr(X), Ix,) I Hom (rr(X), Ix,) 1 
o -)0 Hom (X, )C) -)0 Hom (X, Xl) -)0 Hom (X, X 2). 

From the assumption that Hom (7reY) , 1v) is an isomorphism it follows that each 
Hom (7r(X), 1.1) : Hom (D(X), X) -» Hom (X, -Xi) is an isomorphism. Hence Hom (rr():), 
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Ix): Hom (D(X), X)~Hom (X, X). 
Therefore, there exists fEHom (D(X), X) such that Ix =fOH(X). Thus, we have 

D(X)=Im ;r(.:Y)EBKerf, 

and hence from an exact sequence 

o -~X~ D(X) -» Kerf-» 0 

we get another exact sequence 

o -» Hom (Ker f, V) -» Hom (D(X), V) llOm("(X)'lV~ Hom ()C, V). 

Since Hom (H(X), Iv) is an isomorphism, we have Hom (Ker j, V) =0. 
On the other hand, D(X)E5D( V) by Corollary 1. ~\, and hence V-dom. dim 

Ker j;:; 1, since Ker fcD(X). Therefore, we have Ker f=O. Thus, f, and hence 
H(X), is an isomorphism. This completes our proof of Theorm 4.1. 

The following theorem provides us with another condition for V-reflexivity, 
which is valid in the restricted case but is easier to handle. 

THEOREM 4.2. Suppose that condition (c) in Proposition 3.5 holds for a left 
A-module)C. Then ;r(X-) is surjective iff Vii / <j;(X)C, 17 V, where <j;: X ~ vn is the 
1nap described in condition (c). 

PROOF. Let us put 

where fiEHomA eX, V), i=l, "', n. Then any fEHom (X, V) can be written as f= 
11 

L.. fib i with biEB, i=l, ''', n. Next, let us define a map if;: D(X) ~ vn by 
-i=1 

for ~ED(X). 

Then we have ¢=if;OH(X) and 

Indeed, if (Vl, "', vn ) belongs to the set on the right hand side of the above equality, 
the map f;: HomA ()C, V) -» V defined by 

is one-valued and hence ~EDeX), from which we have 

fori=l, "', n. 

Since the other inclusion is obvious, we have the above equality. 
Then we have 
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;reX) surjective ¢=:> ¢)(D(X» =~0(X) 

Thus, the theorem is proved. 

¢=:> n {Ker glgEHom~1 (Vn/cj,(X), V)l =¢ 

¢=:> V lI /1)( X)G II T1. 

163 

As before, let B=End (A V) and C=End (Vn). Then D(.1A)=AC, Let 1): V-", 
HOl11A (AC, A V) be a map defined by ¢(v)(c) = cv for VE V, CEC. Then \~re have 

Therefore, in view of [3, Lemma 2.1J, we have the equivalence of (a), (b) and (c) 
below: 

(a) ¢: V~HomA etC, A V), 
(b) 0 VB~HomA (.-tCc , A VB), 
(c) Hom (;r(AA), Iv): HomA el C, A V)~HomA CtA, A V). 

Thus, as a direct consequence of Theorem 4.1 we get the following corollary, 
which was obtained by Morita [5J and by Y. Suzuki [8J independently. 

COROLLARY 4.3. A faithfuL left A-module V has the double centralizer projJerty 
iff AAESD(V) and 0 VB~HomA C1CC , A VB). 

On the other hand, Theorem 4.2 leads us to the following corollary, which was 
obtained by Morita [7J and by T. Kato and Y. Suzuki independently. 

COROLLARY 4.4. Let V be a faithful left A -module such that VJJ is finitely 
generated. Then there is an A-monomorphism 1): A -'" VII for S07ne inte/!;er n,"?;.l 
such that for any fEHomA C1A, V) there is gEHomA (VII, V) with f =go<j;, and V 
has the double centralizer property iff VII/<j;(A)G II T1. 

§ 5. A characterization of SD( V) with V injective. 

In a previous paper [4J we have given a characterization of SD(V) with V in­
jective. I-Iere we shall establish anotl1er characterization. 

THEOREM 5.l. Let ~ be a full refi~ective subcategory of A9)( closed under iso­
m,orpizic images. Then there is an injective m,odule V with ~=SD( V) iff I,B is a 
Grothendiec1, category and XEI,B implies E(X)E~, where E(X) is the injective envelope 
of X. 

PROOF. The" only if" part is obvious. To prove the" if" part, suppose that 
I,B is a Grothenc1ieck category and that )CE~ implies EC){)E~. Then by [6, Theorem 
1.11J there is a left A-module TIV of type FI such that ~=SDOV). Let C be the 
double centralizer of fill and let us put 

!{(_){)=HomA (ACO , X), 

L(Z) = ACC@Z, 

XE A9Je, 

ZE c9Jc. 

Then by [3, Theorem 3. 3J K (resp. L) carries SD(A TV) (resp. SDCc fiV» into SDCc W) 
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(resp. SD(A W)) and there is an A-homomorphism r(X): LK(X) -+ X which is natural 
in XE}JJ1 and is an isomorphism for XESDCl TiV). 

Suppose that X =X1EB)C2 • Then we have a commutative diagram: 

o ---+ LK(X]) ---+ LK(X) ---+ LKCKz) -+ 0 

jl'(X,) jJ'(X) jnY,) 
o -)- Xl ---+ ){ ---+ X2 -'>- 0 

in which each row is exact. If reX) is an isomorphism, then r(Xl ) is a mono­
morphism and J'eX2 ) is an epimorphism. By exchanging ~Kl with LY2, we see that 
if ['(X) is an isomorphism, so is r(Xi ) for i = 1, 2. This shows that I.J) satisfies 
condition (b) in [4, Theorem 1.1], since SD(c Tiff) is proved to satisfy this condition 
by this theorem. 

From the proof of [4, Theorem 1.1J it follows that there is a finitely cogene­
rating injective left ~4-module V such that 

V-dom. dim X~ 1 ¢=> Tiff-dom. dim X~ 1 ; 

we have only to apply the arguments there to the present case by putting ~I = 
{XEA1)J1IE(X)ESD(vV)}. Since E(V)ESD(W), we have VESDOV). Then cV=K(V)E 
SD(c TiV) and G V is injective. Since vV-dom. dim V~ 1 and V-dom. dim Tiff~ 1, we 
have c lV-dom. dim c V~ 1 and G V-dom. dim c riff~ 1. Hence S5)(c V) =(3)(c Tiff). 
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