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Let A be a ring with an identity and ,M the category of all unitary left A-
modules.

A full subcategory B of M is called a reflective subcategory if there is a
covariant additive functor S: M — B which is a left adjoint of the inclusion func-
tor 78 — 4M; in this case S is called a reflector from M to B. For a left A-
module ¥ let us denote by ©(V) the full subcategory of IR consisting of all left
A-modules of V-dominant dimension=2.

In a previous paper [6] we have proved that a full subcategory B of 9 which
is closed under isomorphic images is a reflective subcategory which is itself a
Grothendieck category iff (=if and only if) there is a left A-module V of type FI
with B=D(V).

Let V be a left A-module of type F7and S a reflector from M to D(V). Then
the module S(4A) carries a ring structure so that the natural A-homomorphism
4A — S(4A) turns out to be a ring homomorphism, and in this way we have all
quotient rings by letting V range over all injective modules.

In view of these results, in the present paper we shall give a new construc-
tion of a reflector S from ,M to D(V) for the case of V being either of type F/
or injective.

Let V be a left A-module and let B=End (4 V); we consider B as a right
operator domain of V. Thus V is an A-B-bimodule. Let us put

(1) D(X)=s[Homp (Hom4 (X, 4 V), s Ve)]  for XeuI;
the map =(X): X — D(X) defined by

(2) (R(X)@)I()=r(x)  for zeX, feHomu(X, V)

is a natural homomorphism. Let us put further

(3) D(X)=n{Ker f|feHom, (D(X), V) with fr(X)=0}

If we denote by £X) the inclusion map from D(X) to D(X), then =(X) is fac-
tored as

(4) A X)=6X)-#X) with #X): X— D(X).
Now, let us assume that V is either of type FI or injective, and let Xe M.
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154 Kiiti Morira

Then it will be established in §2 that [ is a reflector S from M to D(V).

As for the problem: “Under what condition does D(X) coincide with D(X)?”
we can give a number of necessary and sufficient conditions in §3; the condition
that D¥X) be V-reflexive (that is, (D X)) be an isomorphism) for some i=1 (or
all i=1) is one of these conditions. However, a sufficient condition for J(X)=D(X),
which is sometimes more useful, is that D(X) be isomorphic to an A-submodule
of V™ for some n. where V" is a direct sum of = copies of V. In particular, it
will be shown that in case Xc V?, X is V-reflexive iff Xe®D(V).

In §4 we shall discuss conditions for the V-reflexivity of a module X without
imposing any such restriction on V that is described in §§2 and 3. It will be
shown that these conditions lead naturally to the conditions for the double central-
izer prperty of a module V.

Finally, in §5 we shall give a characterization of ©(V') with ¥V injective among
full reflective Grothendieck subcategories of IN.

Our results above were obtained at the end of 1971 and reported at the Sym-
posium on Ring Theory, Matsumoto, Japan, August 28-31, 1972. Our results for
the case of V being injective and those in Lambek [9] overlap, although the for-
mulation and the methods of proof are different. (As for the features of the
situation for the case of V being a module of type FI, one should refer to Remark
preceding Example 2.8) Almost the same result as Theorem 4.1 was established
also by Onodera [10].

§1. Generalities on D

Throughout this paper V will denote a left A-module, and B=End (,V'). With
respect to V, we shall use the same notations as in the introduction.

Lot /X 7 17 be an Ahumomerphiom. Let ue put
(5) D(fy=Hom (Hom (f,1y).1y): D(X)— D(Y).
We shall first prove
[DU)e£(X)w)eD(Y)  for yeD(X).
Let 2eHomy, (D(Y), V') such that Aex(Y)=0. Then we have
o D(f)en(X)=hor(Y )o f =0,

and ~hence hoD(f)o£(X)=0. This sliows that [D(f)e&(X)](x)eD(Y). Let us denote
by D(f) the map D(f)o&(X) with D(Y) as its range. Then

(6) D(f)ol(X)=&(Y Yo D(f).
Thus, we have

Lemma 1.1. D is a covariant additive Functor and #(X): X > D(X) is a natura
homomorphism.

[Sc. Rep. T.K.D. Sect. A.
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Localization in categories of modules. IV 155

Proor. Since g‘(Y)oﬁ(f)of(X):D(f)on(X):n(Y)ofz&(Y)oy?(Y)of and £(Y)
is 2 monomorphism, we have D()F(X)=#Y)f.

Prorosition 1.2. If YeWMy, then J[Hompz[Yg, 4 Ve)]eD(V).

Proor. Let

0« Y «— Yl"" Y2<_
be a free resolution of Yp Then the sequence
0 — Homp (Y, 4Vp) > Homp (Y, 4 Vi) — Homp (Y., 4 V)

is exact and Homp(Y;, 4 V) are direct products of copies of V.

CoroLLARY 1.3, DX)eD(V) for Xe M.
On the other hand, by the definition of J(X) we have

ProrosiTion 1.4. V-dom. dim D(X)/ﬁ(X)gl.
Now for any positive integer n let us put

V=S @V
i=

Then we have easily

ProOPOSITION 1.5. =(V™): V*=D(V™ and D(V*)=D(V". If X is a direct
product of copies of V, then =(X) is a monomorphism.

Next, for feHomy (X, V™) let us put

(XN )==(V") e D(f): DX)— V",
2 X)) =a(V ™) eE (Ve D) DX) — V™

Then we have
f =X er(X) = 2l X))o (X),
Aa( X)) = (X f)o8(X).
ProrositioN 1.6. 2,(X):Hom (X, V™) — Hom (D(X), V™) is a monomorphism.
ProrosiTioN 1.7. 4(X)(hof)=heln(X)(f) for
feHon (X, V™) and heHom, (V7" V).

Proor.
24(X) (e f)=a(V ) o D(R)e D(f)
=z( V) o D(R)ea(V™)er( V™) 1o D(f)
=0, (X)(S).
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In what follows, instead of 1,(X) we write also A(X).
ProrosiTioN 1.8. For feHomu (X, V™), let us put
F@)y=(fsla), -+, falz)), weX.
Then for acD(X) we have
[ X)) =(a(f1), -+, al T w))-

Proor. For feHom, (X, V) it is easy to see that [A(X )}/ «)=a(f), and the
general case is obtained from this.

§2. The functor D as a reflector

Let B=End (4 V), C=End(Vp); ¢: A— C is a canonical ring homomorphism.
Henceforth let us make the following assumption.

AssumprTION (¥): There exists a subring R of C such that

(a) ¢(A)cRcC,

(b) rVz=Homy (4R, 4 V), and

(¢) =rV is injective.

This assumption is satisfied if V is either of type FI or injective; we have
only to put R=C or R=¢(A).

Let us put

]{(X)ZHOITIA (ARR; X), XG@(A V))
L(Y)=4R:RY, YeD(rV).

Then by [3, Lemma 3.1] K carries D4 V) into ©(» V), L carries D(» V) into D4 V),
and LK (resp. KL) is naturally equivalent to the identity functor on ®(4 V) (resp.
D(rV)). Hence we have

Lemma 2.1 7f X, X'eDLV) and feHom, (X, X), then X and X' are lefi R-
modules contained in D(RV) and f is an R-homomorphism.

PROPOSITION 2.2. gV-dom. dim D(X)/D(X)=1 for Xe M.

Proor. By Corollary 1.3 D(X)e®D(V). Since VedD(V), by Lemma 2.1 every
A-homomorphism f:D(X) — V is an R-homomorphism. Hence by definition J(X)
is an R-module. This proves Proposition 2.2 by Proposition 1.4.

Lemma 2.3. ﬁ(X)e@(V) Jor Xe M.

Proor. zV-dom. dim D(X)=2 by Corollary 1.3 and Lemma 2.1, and zV is
injective. Hence we have D(X)eDgr(V') by Proposition 2.2.

LemMMA 2.4, A(X):Homu (X, V)=Hom4 (D(X), V) and

[Sc. Rep. T.K.D. Sect. A.
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Localization in categories of modules. IV 157

Hom (#(X),1): Hom 4 (D(X), Vy=Hom, (X, V)
for Xe M.

Proor. Let geHomy (D(X), V). Then by Lemma 2.1 ¢ is an R-homomorphism.
Since &X): D(X)— D(X) is an R-monomorphism and rV is injective, there is
heHompg (D(X), V) such that g=he&(X). If we put f=gosi(X), then f=hor(X).
On the oter hand, f=XX)(f)exn(X). Hence (A—HX)f))on(X)=0. Thus by defini-
tion we have (A—A(X)())e&(X)=0, that is, g=rho&(X)=AX))&(X)(f)=AX)S),
which shows that A(X) is onto. Since A(X) is a monomorphism by Proposition 1.6,
A(X) is an isomorphism.

LemMmAa 2.5, For Xe M and YeD(V), we have a natural isomovphism

Hom (7(X), 1y) : Hom. (D(X), Y)=Hom (X, Y).

Proor. Since Ye®(V), there is an exact sequence in It
O —> Y'—) Y1 — YQ

such that each Y; is a direct product of copies of 4,V. Then we have a commuta-
tive diagram
0 —- Hom , (D(X), ¥) — Hom, (D(X), ¥,) — Hom,, (D(X), ¥2)
Hom (#(X), 11,)1 Hom (#(X), 1m>l Hom (#(X), 1y3>[
0 — Hom,(X,Y) — Homu(X,Y) » Homy (X, Y5)

in which each row is exact. It follows from Lemma 2.4 that the two vertical
homomorphisms on the right hand side are isomorphisms. Hence by the Five
Lemma we get the desired isomorphisms. ’

We are now in a position to establish the following theorem.

THEOREM 2.6. Let V be a left A-module satisfying the standing assumption(*).
Then (V) is a reflective subcategory of SN with D as its veflector and (V) is
a Grothendieck category.

Proor. The first assertion is a restatement of Lemma 2.5, while the second
follows from the fact that zV is injective, DV )=D(zV) and that D(RV) is a
Grothendieck category.

COROLLARY 2.7. #(X): X — D(X) is an isomorphism iff XeD(V).

Proor. The “only if” part is clear by Lemma 2.3. To prove the “if” part,
suppose that Xe®(V). Then by Lemma 2.5 there exists ¢eHom, (ﬁ(X),X) such
that 1y=¢o7#(X). Thus we have a commutative diagram
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158 Kiiti Morita

X RN DX

D=1

¥y — Y L
In fact, 13 e®(X)=F(X)ely=(F(X)oh)o7(X), and hence by Lemma 2.5 we have
15(3'325()()090.

Remark. Let 4V be injective or of type FI. Then by [3] and [6] there exists
a reflector S from ,M to D(V). The kernel of the natural homomorphism @(X):
X—S(X) is coincident with Ker z(X). Since S is a reflector, by Corollary 1.3
there is a unique A-homomorphism 7»(X):S(X)— D(X) such that z(X)=#n(X)P(X).
Hence Ker o(X)nIm @(X)=0. In case V is injective, S(X) is an essential extension
of Im @(X) and hence we can conclude that Ker 5»(X)=0, from which Theorem 2.6
follows readily. However, S(X) is not an essential extension of Im @(X) in general
in case V is not injective, as will be seen from Example 2.8 below.

ExampLE 2.8. Let A be a K-subalgebra of (K); with a K-basis {¢1,, Cas, Css, Cas,
ca1}, where K is a commutative field and ¢ are matrix units. Let us put V=A4c,
and X=Acs+Acsi. Then Visof type FI and B=End (4V)=K. Let fieHom, (X,
V), i=1,2, be maps defined by

Filea)=cn Fa(cs;)=0
Jiles)=0, Jales) =cq.

Then Homy (X, V)= K+ /K. Now, for (v,,2,)e VOV, let us define ¢(vi,v)e D(X)
by

G, v)F) =01, o1, ) (F2)=0s
Then it is easy to see that ¢: V@OV — D(X) is an isomorphism and that
(X )(c21)=d(cn, 0), (X )Xes)=¢(0, ¢31).

Thus, we have XcV, D(X)=D(X)= V@V, and D(X) is not an essential extension
of Imn(X). ’

§3. Conditions for D(X)=D(X)
Let V be a left A-module satisfying the standing assumption (*) in §2.

ProrositioN 3.1. A left A-module X is V-reflexive, that is, =(X): X=D(X) if
XeD(V) and D(X)=D(X).

[Sc. Rep. T.K.D. Sect. A.
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Localization in categories of modules. IV 159

Proor. This proposition follows readily from Corollary 2.7.

THEORNEM 3.2. For Xe M the following conditions are equivalent.
(a) D(X)=D(X).

(h) HONm (=(X),1): Hom_i (D(X), VY=Hom, (X, V).

(¢) =(D(X)): DX)=DWD(X)).

(d) =(D(X)): D(X)=D(D(X)).

(e) =(D{X)):DY{X)=D""'(X) for some i=1.

() =(DYX)): D X)=D¥N(X) for all i=1.

Proor. Since D(X) and D(X) are R-modules and rV is injective, we have an
exact sequence
0 — Homz (D(X)/D(X), V) = Homy (D(X), V) —2C20, Hom (D(X), V) — 0.

By Proposition 2.2 D(X)=D(X) iff Homp (D(X)/D(X), V)=0. On the other hand,
if (b) holds, then by Lemma 2.4 Hom (5(X),1,) is an isomorphism since =(X)=
E(X)e7(X). This proves (a) & (b).

Next, let us consider the diagram

(X))

X — DY)

SAY)

=(X) =(D(x))

DED o
D(X) ML> DD(X)) -

Since D(F(X))o&(X)o#(X)=D(#H(X Nor(X)=a(D(X))o#(X), we have D(F(X))o&(X)=
=(D(X)) by Lemma 2.5. On the other hand, by Lemma 2.4 D(#(X)) is an isomor-
phism. Hence £X) is an isomorphism iff =(J(X)) is an isomorphism. This proves
(a) & (c).

If (a) holds, then we have (d) by (¢). To prove (d)= (c), let us consider a
commutative diagram

0— DX) — DX) — DX)IDX) —0

2(D(X)/D(X))

=(D(X)) JW(D(XD

M v

0 —> DID(X)) — D(D(X)) —> D(D(X)|D(X)),

in which the upper row is exact. Here we note that the lower row is also exact
since »V is injective. By Proposition 2.2 z(D(X)/D(X)) is a monomorphism. Hence,
if #(D(X)) is an isomorphism, then z(D(X)) is an epimorphism by Five Lemma and
so an isomorphism. This shows that (d) = (c).

Finally, assume that =(D*(X)): D#*Y(X)=D**X) for some i=1. Let us put
Y=D¥X). Then, by the equivalence (a) < (d) which has been just proved above,
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we have D(Y)=D(Y). Since Ye®(V), this shows that =(¥): Y=D(¥). Thus we
have =(D¥X)): Di(X)=D"Y(X). By repeating this argument, we see that (d) holds.
This proves (e) = (d).

Since (d) = (f) and (f) = (e) are obvious, this completes our proof of Theorem
3.2.

Tueorem 3.3, Let X be an A-submodule of V=3 @V. Then =(X): X=D(X)
=1
i XeD(V).

Proor. The “only if 7 part is obvious from Corollary 1.3. To prove the “if”
part, suppose that Xe®(V'). Then, there is an exact sequence in M

0—— X— V" — W

such that W is a direct product of copies of /. By using the injectivity of RV,
we have a commutative diagram

00— X — V" — W
Jn’(X) (V™) jf( W)
0 — D(X) — D(V™) — D(W)

in which each row is exact. Since x(V™) is an isomorphism and =(W) is a mono-
morphism, #(X) is an isomorphism.

TEIEOREM 3.4. If D(X) is isomorphic to an A-submodule of V™ for some n,
then D(X)=D(X).

Proor. In view of Theorem 3.3, Theorem 3.4 is a direct consequence of
Theorem 3.2.

Prorosition 3.5. The following conditions arve equivalent for Xe M ; in par-
ticular, (b) and (¢) are equivalent without the assumption (¥).

(a) There exists a monomorphism g:D(X)— V™ for some positive integer n.

(b) [Homu(X, 4V)Is is finitely generated as as a right B-module.

(c) There exists an A-homomorphism &; X — V™ for some n such that for any
feHom, (X, V) there is heHom, (V", V) with f=hoo.

Proor. ()= (b) and (b)=> (a) are obvious. Suppose that (b) holds. Then
there are a finite number of elements f;eHom, (X, V),i=1, ---, %, such that

(Hom, (X, V)ls= 3 £:B.

Let us define an A-homomorphism ¢: X — V" by putting ¢(X)=(f1(z), -+, fa(z)) for

zeX. Then for any feHom, (X, V) there are b;eB,i=1, --,n, such that fzifib@‘
n =1

It we put A(v, -, v.)=3 v:b;, then heHom, (V" V) and f=ho¢. Thus, we have
1=1

[Sc. Rep. T.K.D. Sect. A.
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(b) = (¢). Here we note that assumption (*) is not used in this proof. Hence (b)
is equivalent to (¢) without the assumption (*).

Finally, assume (a). Let us put ¢ =gon(X): X— V". With the notation in §1
we have f=i(X)(f)en(X) for feHom (X, V). Since 2(X)(f):D(X)— V is an R-
homomorphism by Lemma 2.1 and zV is injective, there is zeHomg(V™, V) with
WX)(f)=hog. Thus f=hop. This proves (c).

CorROLLARY 3.6. In case 4V is injective, each of the conditions in Proposition
3.5 is equivalent to (d) below.
(d) X is finitely cogenerated by V in the sense of (3, §2].

Proor. (a)= (d). The map ¢=gon(X): X — V" shows the validity of (d).

(d)=> (c). Assume (d). Then there exists ¢geHom, (X, V") for some n such
that Ker g =Kerz(X). Then for any feHom, (X, V) there exists heHom, (V™" V)
such that f=/o¢, since V is injective. This proves (c).

Remark. From the above proof we may say that in case V is injective XG V™"
implies D(X)G V™. (Here by “G "7 we mean “is isomorphic to a submodule of ”.)
This implication, however, fails to be true if V is not injective, as we have shown
already in Example 2.8. The problem whether XG V" implies D(X)G V'™ for some
m=n when V is of type FI/ remains open.

§4. Conditions for the V-reflexivity of a module X

The following theorem is a direct consequence of Proposition 3.1 and Theorem
3.2 if V satisfies the assumption (*) in §2 which is not assumed in this section.

THEOREM 4.1. Let V be a left A-module. Then a left A-module X is V-
reflexive, that is, =(X): X=D(X) iff XeD(V) and Hom (=(X),1): Hom, (D(X), V)=
Homy, (X, V).

Proor. The “only if 7 part is obvious from Corollary 1.3. To prove the “if”
part, suppose that Xe®(V) and Hom (z(X), 1) is an isomorphism. Then there is
an exact sequence

0—X-—X —X,

such that each X; is a direct product of copies of V. Now, let us consider the
following commutative diagram in which each row is exact:

0 — Hom (D(X), X) — Hom (D(X), X;) — Hom (D(X), X.)
Hom (=(X), 1) Hom (z(X), 1x,) Hom (=(X), 1x,)
0

v v

> Hom (X, X,) —— Hom (X, X,).

»  Hom (X, X)

From the assumption that Hom (z{X), 1y) is an isomorphism it follows that each
Hom (=(X), 1x,): Hom (D(X), X,) - Hom (X, X)) isan isomorphism. Hence Hom (z(X),
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1) Hom (I(X), X)=Hom (X, X).
Therefore, there exists feHom (D(X), X) such that 1y=fon(X). Thus, we have
D(X)=Im =(X)PKer f,

and hence from an exact sequence

0— X D(X) — Kerf — 0
we get another exact sequence
0 — Hom (Ker £, V) — Hom (D(X), V) 2 Hom (X, V).

Since Hom (=(X),1y) is an isomorphism, we have Hom (Ker /, V)=0.

On the other hand, D(X)e®(V) by Corollary 1.3, and hence V-don. dim
Ker fz1, since Ker fcD(X). Therefore, we have Ker f=0. Thus, f, and hence
7(X), is an isomorphism. This completes our proof of Theorm 4.1.

The following theorem provides us with another condition for V-reflexivity,
which is valid in the restricted case but is easier to handle.

THeorEM 4.2, Suppose that condition (c) in Proposition 3.5 holds for a left
A-module X. Then =(X) is surjective iff V'/W(X)GHV, where ¢: X — V" is the
map described in condition (c).

Proor. Let us put
dx)y=(F1(z), -, falz))e V"

where f;eHom, (X, V), i=1,---,n. Then any feHom (X, V) can be written as f=
2 fibi with b;eB,i=1, .., n. Next, let us define a map ¢:D(X)—~ V" by
=1

dE=E(f1), -, &(fn)y  for &eD(X).

Then we have ¢g=¢on(X) and

Z 'Z);b;,‘;(} for all biGB,i=1,7ﬁ, such that Zf;bq,:—‘o .
in i1

H(D(X)) = {(vl, 0

Indeed, if (vi, -+, v,) belongs to the set on the right hand side of the above equality,
the map &:Homu (X, VV)— V defined by

5(2 fibi> = Z vib;
=1 i=1
is one-valued and hence £e D(X), from which we have

&f)=v; for i=1,---, n

Since the other inclusion is obvious, we have the above equality.
Then we have

[Sc. Rep. 'T.K.D. Sect. A
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(X)) surjective &= ¢{D(X))=(X)
> niKer glgeHoma (V" (X), V)i=¢
> V(XSG

Thus, the theorem is proved.
As before, let B=End (4 V) and C=End (V). Then D(4A)=.C. Let ¢:V —
Homy (4C, 4 V) be a map defined by ¢(v)(c)=cv for veV,ceC. Then we have

Hom (z(4A), 1y)od: V=Hom, (44, 4V ).

Therefore, in view of [3, Lemma 2.1}, we have the equivalence of (a), (b) and (c)
below :

(a) ¢:V=Hom,(.C, 4 V),

( b) el VB EHOH’)A (ACC) A VB),

(¢) Hom (=(4A),1y): Hom, (4C, 4 V)=Hom, (4A, 4 V).
Thus, as a direct consequence of Theorem 4.1 we get the following corollary,
which was obtained by Morita [5] and by Y. Suzuki [8] independently.

CoRrOLLARY 4.3. A faithful left A-module V has the double centralizer property
iff AAG@(V) and ¢Vy=Hom, (,160, 4 Vg).

On the other hand, Theorem 4.2 leads us to the following corollary, which was
obtained by Morita [7] and by T. Kato and Y. Suzuki independently.

CorOLLARY 4.4. Let V be a faithful left A-module such that Vi is finitely
generated. Then there is an A-monomorphism ¢: A— V" for some integer nzl
such that for any feHomu (4A, V) there is geHomy (V", V) with f=ged, and V
has the double centralizer property iff V"[o(A)GILV.

§5. A characterization of ®(V) with V injective.

In a previous paper [4] we have given a characterization of ®©(V) with V' in-
jective. Here we shall establish another characterization.

THEOREM 5.1. Let B be a full reflective subcategory of M closed under iso-
morphic images. Then theve is an injective module V. with B=DV) iff B is «
Grothendieck category and XeB implies E(x)eB, where E(X) is the injective envelope
of X.

Proor. The “only if ” part is obvious. To prove the “if ” part, suppose that
B is a Grothendieck category and that Xe®B implies £(X)e®B. Then by [6, Theorem
1.11] there is a left A-module W of type FI such that B=D(W). Let C he the
double centralizer of W and let us put

_[((AXJ:I_IOTHA (ACC', X), XG,JD},
L(Z)=aCc®2Z, Zed.

Then by [3, Theorem 3.3] K (resp. L) carries D(4 W) (resp. D(cW)) into D(cW)
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(resp. D4 W) and there is an A-homomorphism /(X ): LK(X) — X which is natural
in Xe, M and is an isomorphism for XeD(4W).
Suppose that X=X,PX,. Then we have a commutative diagram:

0 — LK(X)) —> LK(X) — LK(X;) — 0
I'(Xy) 1'(X)

v v v

> X, — X — X,

I(X)

0 >0

in which each row is exact. If /(X)) is an isomorphism, then /'(X,) is a mono-
morphism and /7(X,) is an epimorphism. By exchanging X, with X,, we see that
if I’(X) is an isomorphism, so is ['(X;) for i=1,2. This shows that B satisfies
condition (b) in [4, Theorem 1.1}, since ©(¢c W) is proved to satisfy this condition
by this theorem.

From the proof of [4, Theorem 1.1} it follows that there is a finitely cogene-
rating injective left A-module V such that

V-dom.dim X=1 < W-dom.dim X=1;

we have only to apply the arguments there to the present case by putting ¥ =
(Xe MEX)eD(W)}. Since E(V)eD(W), we have VeD(W). Then V=K(V)e
(e W) and ¢V is injective. Since W-dom.dim Vz1 and V-dom.dim Wz1, we
have ¢ W-dom.dim ¢ V=1 and ¢V-dom.dim ¢ W=1. Hence D V)=D(c W).
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