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Abstract

A trading problem can be classified into the following four types: a selling problem and a buying problem, each of which can be categorized
as a problem with a reservation price mechanism (where the counter trader proposes the trading price) and a problem with a posted price
mechanism (where the leading trader proposes the trading price). Let us refer to this group of four problems as the quadruple-asset-trading-
problems. The main objective of this paper is twofold: to construct a general theory that integrates the quadruple-asset-trading-problems
and to analyze these problems by using the theory. To achieve this objectives, several novel concepts are introduced, say symmetry, analogy,
initiating time, quitting penalty price, market restriction, etc. These concepts lead us to a new horizon that has not been previously explored
by any researchers. The most notable findings resulting from the analyses of these models are twofold: first, there is a significant breakdown
of symmetry between the selling problem and the buying problem; second, the existence of null-time-zone, a time period during which
any decision-making activity is entirely senseless. Particularly, the latter discovery challenges us to re-examine the entire discussions that
have been conducted so far regarding conventional trading problems as decision-making processes. Moreover interestingly, when this time
zone encompasses all points in time on the planning horizon except the deadline, it follows that all decision-making activities scheduled
throughout the entire planning horizon are engulfed in the deadline, which is reminiscent of all matter, even light, falling into a black hole.
Lastly, we present an extensive range of models for asset trading problems that have not yet been proposed, concluding this study by
emphasizing that the treatment of these problems is nearly impossible without the integrated theory.
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and that will be the end of it. However, if you choose not to, this apple will disappear, and another one may appear—either greater or
smaller than the one that vanished. In considering this situation, how would you decide whether or not to take this apple ?”. After a few
moments of contemplation, the professor softly continued “Many decision problems in corporate management have a similar structure · · · .
This is the subject of your master’s thesis !”. With that, he left the room. Even now, the sound of the chalk sliding on the blackboard
echoes in the depths of my ears. With those words, he exited the room, leaving behind the lingering resonance of chalk sliding on the
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Chapter 1

Preface

1.1 Overview
First, let us focus on the fact that an economic behaviour is fundamentally constituted by various types of transactions. Thus

far, different types of models for trading assets (house, car, a lot of land, · · · ), commodities (wheat, copper, gasoline, · · · ), and
goods (fruit, fish, clothes, · · · ) have been proposed and examined. These trading problems can be classified into the following

four types: an asset selling problem† and an asset buying problem,‡ each of which can be categorized as a problem with a

reservation price mechanism (where the counter trader proposes the trading price (R-mechanism)) and a problem with a posted

price mechanism (where the leading trader proposes the trading price (P-mechanism)). Let us refer to this group of four problems

as the quadruple-asset-trading-problems (see Section 1.4.5(p.7) ). In addition, taking into account the two events, “whether or not

to conduct the search for counter trader (see A5(p.12) )” and “presence or absence of quitting penalty price (see A7(p.12) )”, we can

make up the six types of quadruple-asset-trading-problems in all, the whole of which is called the “structured-unit-of-models.”

(see Section 3.3(p.18) ). The main objective of this paper is twofold: to construct a general theory that integrates the quadruple-

asset-trading-problems and to analyze these problems by using the theory. To achieve this objectives, several novel concepts are

introduced, say symmetry, analogy, initiating time, quitting penalty price, market restriction, etc. These concepts lead us to a

new horizon that has not been previously explored by any researchers. The most notable findings resulting from the analyses

of these models are twofold: first, there is a significant breakdown of symmetry between the selling problem and the buying

problem; second, the existence of null-time-zone (see Section 7.2.4.5(p.46) ), a time period during which any decision-making

activity is entirely senseless. Particularly, the latter discovery challenges us to re-examine the entire discussions that have been

conducted so far regarding conventional trading problems as decision-making processes. Moreover interestingly, when this time

zone encompasses all points in time on the planning horizon except the deadline, it follows that all decision-making activities

scheduled throughout the entire planning horizon are engulfed in the deadline (see Section 7.2.4.6(p.46) ), which is reminiscent

of all matter, even light, falling into a black hole. Lastly, we present an extensive range of models for asset trading problems

that have not yet been proposed (see Section 30.1(p.287) and F1(p.287) ), concluding this study by emphasizing that the treatment

of these problems is nearly impossible without the integrated theory.

1.2 Two Motives
While considering the four problems in the quadruple-asset-trading-problems, two questions as shown below naturally come to

appear. The exploration of these questions has formed the two main motivations that have driven the present paper.

Motive 1 Is a buying problem always symmetrical to a selling problem ?

Long before the inception of this study, we held a naive perspective on the selling and buying problems: “Could a

buying problem always be symmetrical to a selling problem ?” In other words, if we understand the nature of a seller’s

problem, could we immediately grasp the nature of its corresponding buyer’s problem by merely altering the signs of

variables, parameters, constants, etc. defined in the seller’s problem? Our ultimate response to this viewpoint in this

study is a resolute “no !”

Motive 2 Does a general theory integrating quadruple-asset-trading-problems exist ?

Before beginning to write this paper, we extensively reviewed numerous papers related to the buying and selling

problems and naturally developed a preliminary expectation that there could potentially be a “common denominator”

underlying all discussions presented therein. This intuition guided us to the insight (realization) that this common

denominator is closely connected to a function known as the T -function defined by (5.1.1(p.25) ). Urged by this insight,

we soon developed a faint anticipation that a general theory integrating the quadruple-asset-trading-problems might

exist. As we delved deeper into our exploration, a ray of hope emerged that constructing such a theory might

†[32,1962], [33,1963], [2,1977], [39,1983], [38,1983], [41,1990], [6,1991], [34,1993], [45,1993], [37,1995], [29,1995], [46,1995], [3,1995], [48,1997],
[8,1997], [11,1998], [19,1999], [1,1999], [12,2001], [36,2002], [10,2002], [14,2004], [18,2005], [15,2005]

‡[8,1998], [10,2002]
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indeed be possible. This hope was buoyed by introducing the concepts of symmetry (see Chap. 12(p.69) ) and analogy

(see Chap. 13(p.89) ), and fortunately our attempt over more than fifty years led to the successful construction of this

theory (see Chap. 16(p.115) ).

1.3 Philosophical Background of This paper
Before proceeding with our discussions, below let us outline our philosophical background that underpins the entire writing of

this paper.

1.3.1 Outset

When I (Ikuta) was a high-school student (1958), during a physics lesson, the teacher placed one cotton ball and one iron ball

in a glass tube of one-meter length, setting it upright. Not surprisingly, the iron ball fell with a thud, and the cotton ball

fell slowly as if chasing the iron ball. Afterward, the air in the tube was evacuated with a turn of the motor switch, and the

tube was again set upright. This time, both balls fell alongside. Why ? A surprise passed through my mind. The teacher

then drew a picture on the blackboard and explained the rationality of this phenomenon; it was my first introduction to the

power of real experiments and thought experiments in physics. After an interval, he mentioned that Galileo conducted an

experiment of a free fall in the Tower of Pisa and harked back that it took several thousand years to recognize the shift from

the earth-centered theory to the sun-centered theory (the Copernican revolution). Shortly afterwards, the teacher tossed a

sponge ball from the platform toward us (students) and explained that the trajectory of an object tossed over forms a parabola

expressed by the quadratic curve. Without air, a speed at which an object thrown horizontally will loop back around the earth,

drawing a circular orbit, is approximately 7.9 kilometers per second, and the speed at which it flies out of the orbit is about 11.2

kilometers per second. After graduating from high-school, I enrolled in the engineering department of Keio University, where

I learned high-level physics. In the spring afternoon of March, 1966, I visited the laboratory office of my academic supervisor,

Dr. Professor Shizuo Senju (see the episode on the title page of this paper). In the process of this personal history, I gradually

came to recognize not only natural phenomena but also human behaviors physically. This is the fundamental outset that has

influenced the entirety of my investigative life.

1.3.2 Decision Theory as Physics

Basically, every human being’s behavior is influenced by their underlying philosophical background. Therefore, naturally, the

authors (Ikuta & Kang, both holding Dr.Engineering) consistently approached their research with a deep-rooted focus on the

physical perspective. Since physics is a research discipline free from preconceived premises, assumptions, hypotheses, or precon-

ceptions, it requires researchers to actively engage both ears and eyes in observing the research object, calmly listening to every

sound from its depths and carefully observing every light emerging within. While the authors are open to integrating concepts,

knowledge, and techniques from business administration, economics, and mathematics as necessary, their core viewpoint is that

decision processes are inherently connected to human-driven physical phenomena. Accordingly, for us who are both natural

scientists, it follows that the decision theory discussed in this paper is a decision theory as physics. If we were not researchers

in the field of natural science, this paper would not saw the light of day at all.

1.4 Structure of Asset Trading Problems
The section clarifies the structure of asset trading problems which are dealt with in this paper.

1.4.1 Definitions of Terms

Before moving on, let us establish definitions for some key terms that will be used in our upcoming discussion.

• For the subject matter of transaction, whether properties, commodities, or goods, we refer to it as the asset in a general

term.

• For the decision-making problem related to the trading of asset, we refer to it as the asset trading problem, ATP for short,

consisting of asset selling problem and asset buying problem, simply ASP and ABP respectively.

• For the parts involved in a trading, we use the terms “leading-trader” and “counter-trader” to distinguish between the part

leading the trading and its counterpart. Accordingly, in ASP (ABP), the seller (buyer) is a leading-trader and the buyer (seller)

is an counter-trader.

1.4.2 Asset Trading Problem (ATP)

Below, let us conceptualize the asset trading problem as a drama involving a leading-trader and an counter-trader on unfolding

two scenes below:

• Scene R in which

◦ first a counter-trader appears and posts his trading price,
◦ then a leading-trader appears and answers whether or not to accept it based on his reservation price.†

• Scene P in which

◦ first a leading-trader appears and posts his trading price,
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◦ then a counter-trader appears and answers whether or not to accept it based on his reservation price.

Let us refer to the trading in SceneR (SceneP) as the asset trading problem with the reservation price mechanism (posted price

mechanism), simply ATP with R-mechanism¶ (ATP with P-mechanism ∥), further abbreviated as

ATP[R] (ATP[P]).

The above asset trading problem (ATP) can be translated into the asset selling problem (ASP) and the asset buying problem

(ABP) which are presented in the two sections that follows.

1.4.3 Asset Selling Problem (ASP)

In the asset selling problem (ASP), a leading-trader is a seller and its counter-trader is a buyer, hence the drama of the asset

selling problem can be rewritten as below:

Scene R in which

◦ first a buyer (counter-trader) appears and posts his buying price,

◦ then a seller (leading-trader) appears and answers whether or not to accept it based on his reservation price.

Scene P in which

◦ first a seller (leading-trader) appears and posts his selling price,

◦ then a buyer (counter-trader) appears and answers whether or not to accept it based on his reservation price.

Let us refer to the asset selling problem in SceneR (SceneP) as the asset selling problem with reservation price mechanism

(posted price mechanism), simply ASP with R-mechanism (P-mechanism), further abbreviated as

ASP[R] (ASP[P]).

The following two examples convey a flavor of the above asset selling problem, which mirror the “mental conflict” (see Sec-

tion 7.3(p.47) ) of a seller (leading-trader) in the above drama.

� Example 1.4.1 (SceneR) Suppose you (seller, leading-trader) have to sell your car by a specified deadline due to a

compelling reason, such as being required to suddenly return to your mother country by order of the head office when you are

stationed in a foreign country. Suppose a potential buyer (counter-trader) has just appeared. In this situation, if the buyer offers

a high buying price, you (leading-trader) would likely sell the car. However, if the offered price is very low, you might hesitate.

In either case, you are faced with a decision that involves the following risks. Selling the car carries the risk of missing out a

higher-paying buyer that may appear in the future. On the other hand, not selling the car carries the risk that a higher-paying

buyer may not appear before the deadline, or even worse, no buyers may appear at all, leading to the necessity of selling the

car at a very low price (a giveaway price) or incurring costs to dispose of it. Considering these risks, you must decide whether

or not to sell your car to each successive buyer. This perspective implies that, as the deadline approaches, it is necessary to

gradually lower the minimum permissible selling price (reservation price). The above expectation reflects a mental conflict that

you must more and more become “selling spree” as the deadline approaches.

The above example is what has been defined and investigated under the name “optimal stopping problem”. To the best of the

authors’ knowledge, the earliest papers related to the problem can be traced back to 1960’s

[44,1961][32,1962][9,1971][35,1973].

� Example 1.4.2 (SceneP) In the same example as mentioned above, let us suppose that you (leading-trader) set a selling

price for your car to buyers who appear successively in front of you. In the situation, if you set your price too low, a buyer

will buy the car, conversely, if your price is excessively high, the buyer will leave (walk away). This indicates that a low posted

price carries the risk of missing an opportunity that a potential buyer willing to pay a higher price appears in the future.

On the other hand, setting a high posted price carries the risk of no buyer who buys for such a price appearing before the

deadline; if so, then you are compelled to sell your car at a significantly reduced price (a rock-bottom price) or dispose of it

at a cost. Considering these risks, you must decide whether or not to sell your car to each successive buyer. Similarly to in

Example 1.4.1(p.5) , this perspective implies that, as the deadline approaches, it is necessary to gradually lower the selling price

to propose (posted price). The above expectation reflects a mental conflict that you must more and more become “selling spree”

as the deadline approaches.

†A threshold based on which it is judged whether or not to accept it.
¶[3,1995],[5,2001]
∥[4,1998],[5,2001],[20,1994],[45,1993],[46,1995]
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1.4.4 Asset Buying Problem (ABP)

In the asset buying problem (ABP), a leading-trader is a buyer and its counter-trader is a seller, hence the drama of the asset

buying problem can be rewritten as below:

Scene R in which

◦ first a seller (counter-trader) appears and posts his selling price,

◦ then a buyer (leading-trader) appears and answers whether or not to accept it based on his reservation price.

Scene P in which

◦ first a buyer (leading-trader) appears and posts his buying price,

◦ then a seller (counter-trader) appears and answers whether or not to accept it based on his reservation price.

Let us refer to the asset buying problem in SceneR (SceneP) as the asset buying problem with reservation price mechanism

(posted price mechasnism), simply ABP with R-mechanism (ABP with P-mechanism), further abbreviated as

ABP[R] (ABP[P]).

One may say that since the above two problems seem to be mere inverses of the asset selling problem aforementioned, they

are redundant and unnecessary. However, it will be known later on that fine differences between the asset selling problem

(ASP) and the asset buying problem (ABP) produces a significant difference between both. The following two examples convey

a flavor of the models of the above asset buying problem, which mirror the “mental conflict” (see Section 7.3(p.47) ) of a buyer

(leading-trader) in the above drama.

� Example 1.4.3 (SceneR) Suppose you (buyer, leading-trader) have to buy a car by a specified date (deadline), and then

you find a potential seller. In this situation, if the price offered by the seller is low enough, you will buy the car from the seller.

However, if it is very high, you will hesitate. Buying the car carries the risk of missing an opportunity that you can find a

potential seller offering a lower price in the future. On the other hand, not buying a car carries the risk that a lower-offering

seller may not appears before the deadline. Considering these risks, you must decide whether or not to buy a car from each

successive seller. This perspective implies that, as the deadline approaches, it is necessary to gradually raise the maximum

permissible buying price (reservation price). The above expectation reflects a mental conflict that you must more and more

become “buying spree” as the deadline approaches.

� Example 1.4.4 (SceneP) Suppose that you (leading-trader) propose your buying price to a potential seller. Then, if your

proposed price is high enough, the seller will sell the car, conversely, if it is very low, the seller will reject the offer. Buying the

car carries the risk that a seller offering a lower price may appear in the future. On the other hand, not buying a car carries the

risk that a lower-offering seller may not appear before the deadline. Considering these risks, you must determine your buying

price to propose. Similarly to in Example 1.4.3(p.6) , this perspective implies that, as the deadline approaches, it is necessary

to gradually raise the buying price to propose (proposed price). The above expectation reflects a mental conflict that you must

more and more become “buying spree” as the deadline approaches.
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1.4.5 Quadruple-Asset-Trading-Problems

Let us refer to the set of the four asset trading problems ASP[R], ABP[R], ASP[P], and ABP[P] defined above as the quadruple-

asset-trading-problems , represented as

qATP = {ASP[R], ABP[R], ASP[P], ABP[P]}. (1.4.1)

The interconnectedness among these problems are somewhat akin to a drama played across the looking glass, depicted as in

Figure 1.4.1(p.7) below.

⟨1⟩ ASP[R] · · ·
�� ��seller

�� ��buyer · · · ABP[R]⟨2⟩

⟨3⟩ ASP[P] · · ·
�� ��seller

�� ��buyer · · · ABP[P]⟨4⟩

I �

	 R

looking glass

looking glass

looking glass looking glass

selling problem
↓

buying problem
↓

↑
selling problem

↑
buying problem

R-mechanism → ← R-mechanism

P-mechanism → ← P-mechanism

Figure 1.4.1: Interconnectedness among the quadruple-asset trading-problems

The aslant arrows RI	� in the above figure symbolizes a drama which revolves between a leading-trader in ASP and a leading-trader

in ABP, i.e.,

◦ R The leading-trader
�� ��seller in ⟨1⟩ ASP[R] faces, across the looking glass, the leading-trader

�� ��buyer in ⟨4⟩ ABP[P],†

◦ I The leading-trader
�� ��buyer in ⟨4⟩ ABP[P] faces, across the looking glass, the leading-trader

�� ��seller in ⟨1⟩ ASP[R],‡

◦ 	 The leading-trader
�� ��buyer in ⟨2⟩ ABP[R] faces, across the looking glass, the leading-trader

�� ��seller in ⟨3⟩ ASP[P],

◦ � The leading-trader
�� ��seller in ⟨3⟩ ASP[P] faces, across the looking glass, the leading-trader

�� ��buyer in ⟨2⟩ ABP[R].

1.4.6 Symmetry and Analogy

The concepts of symmetry and analogy† play pivotal role in the construction of the integrated theory as stated in Motive 2(p.3) .

We delve into these concepts further by illustrating their significance in Figure 1.4.2(p.7) below.

(i) A symmetry is observed between ⟨1⟩ ASP[R] and ⟨2⟩ ABP[R],
(ii) A symmetry is observed between ⟨3⟩ ASP[P] and ⟨4⟩ ABP[P],
(iii) An analogy is observed between ⟨1⟩ ASP[R] and ⟨3⟩ ASP[P],
(iv) An analogy is observed between ⟨2⟩ ABP[R] and ⟨4⟩ ABP[P].

⟨1⟩ ASP[R] · · ·
�� ��seller

�� ��buyer · · · ABP[R]⟨2⟩

⟨3⟩ ASP[P] · · ·
�� ��seller

�� ��buyer · · · ABP[P]⟨4⟩

Y *

� j

(i)

(ii)

(iii) (iv)

looking glass

looking glass

looking glass looking glass

selling problem
↓

buying problem
↓

↑
selling problem

↑
buying problem

R-mechanism → ← R-mechanism

P-mechanism → ← P-mechanism

⇐= symmetry =⇒

⇐= symmetry ⇐=

⇑
analogy

⇓

⇑
analogy

⇓

Figure 1.4.2: Symmetry and analogy among the quadruple-asset-trading-problems

Roughly speaking, the two concepts implies the following. The symmetry relation in (i) and (ii) means that for each of X = R,P,
a given transformation of some variables in an assertion on ASP[X] yields its corresponding assertion on ABP[X] and vice versa,

and the analogy relation in (iii) and (iv) means that a given replacement of some variables in an assertion on ATP[R] yields its

corresponding assertion on ATP[P] and vice versa.

†The leading-trader
�� ��buyer in ⟨4⟩ ABP[P] is an counter-trader from the standpoint of the leading-trader

�� ��seller in ⟨1⟩ ASP[R].
‡The leading-trader

�� ��seller in ⟨1⟩ ABP[R] is an counter-trader from the standpoint of the leading-trader
�� ��buyer in ⟨4⟩ ASP[P].

†The strict definitions and deep implications of symmetry and analogy will be given in Chaps. 12(p.69) , 13(p.89) , 14(p.101) , and 15(p.111) .
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1.5 Highlights of This Paper
Before proceeding with our discussions, let us outline the key points of this paper.

H1. Five points in time

The following five points in time (see Section 7.1(p.43) ) are essential requisites that inevitably arise from the philosophical

background of “decision theory as physics” (see Section 1.3.2(p.4) ). Below are summaries of implications that they have:

a. Recognizing time tr
Since a decision is, after all, what is made by a human-being, it eventually follows that a behaviour of “decision”

first materializes only when being recognized in the bottom of heart of a person; let us refer to the time point of this

recognition as the recognizing time tr. Now, when a decision-making problem is recognized, the first question to answer

is whether or not it is enforced to tackle with the decision problem.

i. tE-case: Let us refer to the former case as the tackle-Enforced-case. In this case, even if it is known to yield no

profit when tackling the problem, a decision-maker must accept the red ink.

ii. tA-case: Let us refer to the latter case as the tackle-Allowed (not enforced) case. In this case, a decision-maker

has the option “whether to tackle the problem or not”. Therefore, when it is known that no profit yields even if

tackling the problem, it suffices not to tackle it.

b. Starting time τ

Whether in tE-case or when it is determined to tackle the problem in tA-case, after a period of preparation, it arrives at

the time when the decision-maker can start to initiate the attack of the decision-making problem. Let us refer to the

time point as the starting time τ .

c. Initiating time ti
Before moving further on ahead, let us suppose the following two cases related to “whether or not it is enforced to

immediately initiate the attack of the problem at the starting time τ”:

i. iiE-Case: The case in which it is enforced to immediately initiate the attack, called the immediate-initiation-

enforced-case.

ii. iiA-Case: The case in which it is allowed (not enforced) to immediately initiate the attack, called the immediate-

initiation-allowed-case. In this case, it is possible to postpone its initiation; in other words, we have the options

“initiation at the starting time τ”, “initiation at the time τ − 1”, · · · , “initiation at the deadline (time 0)”. Then,

if it is determined to initiate the attack of the decision-making problem at time t (τ ≥ t ≥ 0), let us refer to this

time point as the initiating time ti. Here it is naturally questioned how to determine the optimal initiating time,

denoted by t∗τ (τ ≥ t∗τ ≥ 0) (see Section 7.2.4.1(p.44) ).

d. Stopping time ts
When the attack of the decision-making problem initiates at the optimal initiating time t∗τ and the asset’s sale (in ASP)

or the asset’s purchase (in ABP) occurs thereafter, the process stops at that time. We refer to this point in time as the

stopping time ts .

e. Deadline 0

In this paper, from a practical viewpoint, we stress that a decision process with an infinite planning horizon is a product

of mathematical imagination beyond the real world; in fact, considering a planning horizon spanning over 135 hundred

millions years is nonsensical and futile. Therefore, in this paper, we will focus on only models with finite planning

horizons. Then, let us refer to the terminal (final) point in time of the decision process as deadline. However, we can

have the two reasons for which it becomes still meaningful to discuss the model with the infinite planning horizon. One

is that it can become an approximation for the models with an enough long (finite) planning horizon, the other is that

results mathematically derived from it can provide an important information for the analyses of models with the finite

planning horizon.

f. The flow of the five points in time

All physical phenomena are not alien to a time concept; in other words, there do not exist physical phenomena alien to

the time concept. The above five points in time are concepts that were yielded by our physical recognition. The flow of

these points in time can be depicted as below.

-• • • • • • • • • • • • • • • • • • • • •· · · · · · · · · · · · · · · 0ti tsτtr

stopping timeinitiating timestarting timerecognizing time deadline

Figure 1.5.1: Five points in time
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H2. Deadline and Decision-Making Behaviour

A decision process with a finite planning horizon is akin to a conveyor-belt machinery which willy-nilly moves on to a

deadline with the passage of time, usually leading to undesirable results, say a sale for a giveaway price in Example 1.4.1(p.5) ,

a bankruptcy in the business management, and a ruination of state in the political decision. This event which is brought

forth by the deadline becomes stronger as it gets nearer to the deadline and conversely weaker as it get away from the

deadline. The mental conflict of a seller (decision-maker) stated in Examples 1.4.1(p.5) graphically reflects this situation in

the sense that the reservation price of a seller becomes smaller as the distance from the deadline get shorter. The above

phenomenon also implies that a decision-making behaviour at any point in time is, in varying degrees, touched off by the

existence of deadline. For this reason, the existence of deadline should be said to be an imperative requirement of decision

process in the real world. In other words, the decision process with infinite planning horizon (without deadline) is what

can be considered only at an abstract level (see A11(p.13) ), implying that the existence of such decision process should be

said to be a creature of fantasy from the realistic viewpoint.

H3. Null-time-zone and Deadline-engulfing

Before delving into the implication of the two terms in the title, let us recall here the definitions of the starting time τ

(see H1b(p.8) ) and the initiating time ti (see H1c(p.8) ). Then, the case of τ > t∗τ indicates that no action is taken at every point

in time t ∈ {τ, τ −1, · · · , t∗τ}. In this case, we will refer to this period of time as the null-time-zone (see Section 7.2.4.5(p.46) ).

Next, consider an interesting case in which the optimal initiating time t∗τ coincides with the deadline, i.e., t∗τ = 0. This

situation ultimately implies that any actions undertaken prior to the deadline are rendered meaningless, suggesting “Don’t

do anything until the deadline.” Using a metaphorical comparison, it is akin to “All actions that must be undertaken before

the deadline being engulfed by the deadline”, much like all forms of matter, including light, being absorbed into a black

hole. Taking this into consideration, we refer to this phenomenon as deadline-engulfing (see Section 7.2.4.6(p.46) ). Then,

when we regard a decision process with the infinite planning horizon as the limiting process of the finite planning horizon

process, the existence of “deadline-engulfing” implies that the decision process with the finite planning horizon fades away

in time toward the infinite future. What are presented above can be said to be one of the most remarkable discoveries in

this paper, compelling us to undertake a comprehensive re-examination of the entire theory of decision processes that have

been explored so far without taken into account the phenomenon of “deadline-engulfing”.

H4. Symmetry

The notion of the adjective “symmetrical” used in the description of Motive 1(p.3) was initially sparked by a vague inspi-

ration. This notion is shaped in the process in which transforming some of variables and constants related to the asset

selling problem with R-mechanism (ASP[R]) produces its corresponding asset buying problem with R-mechanism ABP[R]
(see Chap. 12(p.69) ).

H5. Analogy

At the earlier stage of this study we could not absolutely imagine that there will exist a relationship between the asset

selling problem with R-mechanism (ASP[R]) and the asset selling problem with P-mechanism (ASP[P]). However, in the

process of delving into discussions, we observed certain similarity between the two problems. This insight led us, before

long, to a procedure, called the analogy replacement operation, replacing the two parameters a and µ† included within

ASP[R] by a⋆‡ and a respectively yields ASP[P] (see Chap. 13(p.89) ).

H6. Integrated Theory

One of the most important results obtained in this paper is the successful construction of the theory integrating selling

and buying problems based on concepts of symmetry and analogy. The two concepts were derived through a highly

complicated discussion in Chaps. 12(p.69) , 13(p.89) , 14(p.101) , and 15(p.111) . The full spectrum of this theory can be schematized

by Figure 16.2.1(p.115) .

H7. Collapse of symmetry

The symmetry and analogy in H6(p.9) is discussed under the premise that the price ξ is defined on the interval (−∞,∞),

which allows for the possibility of negative values. However, in a typical the real-world, prices ξ are always positive, i.e.,

ξ ∈ (0,∞). Consequently, if (−∞,∞) is constrained to (0,∞), then a natural question arises: “Is the symmetry inherited ?”

(see Motive 1(p.3) ). Contrary to this expectation, it will be observed later that it is not inherited.

H8. Underlying functions

The introduction of the underlying functions T , L, K, and L (see Chap. 5(p.25) ) stands as a significant highlights in this

paper. While T -function has been widely recognized thus far in fields of statistics, operational research, and economics

(see [13,Deg1970]), the remaining underlying functions L, K, and L are all what are first defined in the present paper. It

will be known later on that the properties of these functions (see Chap. 10(p.55) ) play a central role in the analyses of all

the models dealt with in the present paper. Without properties of these functions, not only could we challenge systematic

analysis of these models, but also the successful construction of the integrated theory would have been nearly impossible.

†The lower bound a and the expectation µ of the distribution function of ξ (see A9(p.13) )
‡See (5.1.26(p.26) )
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H9. Structured-unit-of models

This paper addresses two types of models, no-recall model and recall model (see Section 3.2(p.17) ). For each model we define 24

distinct models. In this paper we refer to the whole of these 24 models as the structured-unit-of-model (see Section 3.3(p.18) ).

Now, these 24 models are not what were capriciously defined but what were inevitably established based on the principles

of search enforced/allowed-case (see (A5(p.12) )) and quitting penalty price ρ (see A7(p.12) ). In this paper, through treating the

entirety of these 24 models as a cohesive unit, we endeavored to comprehensively analyze all of them. Although so many

models of asset trading problems have been posed so far,† all of them have been one-by-one and independently treated

thus far without touching upon any relationships each other. Against this, in the present paper, we aim to clarify the

interconnectedness among all models included in the structured-unit-of-model.

†[32,1962], [33,1963], [2,1977], [39,1983], [38,1983], [41,1990], [6,1991], [34,1993], [45,1993], [37,1995], [29,1995], [46,1995], [3,1995], [48,1997],

[8,1997], [11,1998], [19,1999], [1,1999], [12,2001], [36,2002], [10,2002], [14,2004], [18,2005], [15,2005]‡



Chapter 2

Preliminaries

2.1 Simplification of Models
In addressing a given real-world problem, two distinct approaches emerge. One is the construction of a model that faithfully

represents its research object to the greatest extent possible. The other involves building the simplest model conceivable where

further simplification risks the loss of its existence itself. Here, we label research based on the former as experimental study and

the latter as theoretical study. While there is no inherent superiority between these two approaches, our overall stance in the

present paper aligns with the latter. The methodology classification into these two categories acts as a dividing ridge, causing

a study to bifurcate in counter directions. The first drop of water from the former follows the east wall, and the first drop of

water from the latter follows the west wall. Eventually, both converge in a lake with a common bottom, and shortly thereafter,

a flower blooms. This amalgamation of results from both methodologies leads us to a genuine understanding of the reality in

question.

2.2 Assumptions
In order to realize the simplification of models that was presented above, let us configure the following assumptions:

A1 Points in time

The asset trading process occurs intermittently at points in time equally spaced along a finite length of the time axis as

depicted in Figure 2.2.1(p.11) below. We shall backward label each point in time from the final point in time, denoted as time

0 (deadline), as 0, 1, and so forth. Accordingly, when the present point in time is designated as time t, the two adjacent

points in time, t+ 1 and t− 1, are the previous and next points in time respectively.

-• • • • • time
time 0time 1· · ·time t− 1time ttime t + 1

(deadline)(next)(present)(previous)

Figure 2.2.1: Points in time

A2 Absolutely necessary condition

In ASP (ABP), the leading-trader acting as a seller (buyer) must sell (buy), by all means, the trading asset to a buyer (from a

seller) by the deadline. To rephrase, the seller (buyer) is not allowed to quit the selling (buying) process without completing

the sale (purchase) of the asset.

A3 Stop of process

The process stops when the leading-trader accepts a price proposed by an counter-trader in ATP[R] and when an counter-

trader accepts a price proposed by the leading-trader in ATP[P].

A4 Search cost

A cost s ≥ 0 (search cost) must be paid to search for counter-traders, which includes expenses for advertising, communication,

transfer, and so on.

11
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A5 Search-Enforced-Model and search-Allowed-Model

The existence of the search cost s inevitably leads us to a question whether conducting the search activity always become

profitable or not. Here we consider the following two cases in the paper.

a. search-Enforced-model (sE-model): This refers to the case in which, once the process has initiated, conducting the search

is mandatory at every subsequent point in time. In this case, the above question loses its meaning. Then, as illustrated

in Figure 2.2.2(p.12) below, a decision-maker must continue to conduct the search until the process stops.

-• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

C C C C C C C C Stop

Figure 2.2.2: Flow of search-Conducts in the search-Enforced-model

b. search-Allowed-model (sA-model): This refers to the case in which, after the process has initiated, it is permissible to

skip the search at every subsequent point in time. In other words, a leading-trader has the option to conduct the search

or to skip at every point in time as long as the process does not stop. In this case, it becomes a necessary subject of study

how to answer the above question. Then, we can consider different types of flows for search-Conduct and search-Skip,

as illustrated in Figure 2.2.3(p.12) below, where “ ” represents the transition from search-Skip to search-Conduct or from

search-Conduct to search-Skip.

-• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

Type 1 C C C C C C C C → Stop

Type 2 C C C C C C C C  S S S S C → Stop

Type 3 C C C S S S S C C C C C C → Stop

Type 4 S S S  C C C C  S S S S C → Stop

Type 5 S S  C C C  S S S  C C  S S S  C → Stop

Type 6 S S S S S S S S S  C → Stop

Figure 2.2.3: Different flows of search-Conduct and search-Skip

Definition 2.2.1 By C S (S C ) let us denote the switch from search-Conduct to search-Skip (search-Skip to search-
Conduct).

A6 Opposite-trader’s appearance probability λ

In this paper, it is assumed that when the search is conducted at a certain point in time, a counter-trader appears at the

next point in time with a known probability λ (0 < λ ≤ 1).

A7 Quitting penalty price

Suppose that a counter-trader appearing probability λ is less than 1, i.e., 0 < λ < 1. Then it is possible that no counter-

trader appears in the subsequent points in time even if conducting the search. This situation can lead to the risk that a

leading-trader potentially has to quit the process at the final point in time point (deadline) without executing the trade for

the asset, which contradicts the requirement of A2. When facing with such a circumstance, the leading-trader will take the

following actions at the deadline:

◦ In ASP, the seller (leading-trader) will attempt to find ways to sell the asset by proposing a giveaway price ρ to any

available buyer (counter-trader).

◦ In ABP, the buyer (leading-trader) will strive to acquire the asset by presenting a notably high-price ρ to any available

seller (counter-trader).

Let us refer to such a price ρ as the terminal quitting penalty price ρ, implying that, at the deadline, the leading-trader

can quit the process in exchange for the ρ. Additionally, we can consider the case that such a ρ is available also at every

point in time including the deadline. Then let us refer to it as the intervening quitting penalty price. In the explanation

above, the ρ is implicitly assumed to be positive ρ ∈ (0,∞); however, to generalize discussions that follows, we define it to

be ξ ∈ (−∞,∞).

A8 Range of price

Whether a price ξ proposed by an appearing counter-trader or the reservation price ξ of an appearing counter-trader, it

should be defined on (0,∞) in the normal market of the real-world (see Section 17.2(p.117) ). However, in this paper, to

successfully construct the integrated theory in Part 2 (p.51) we dare to define it on (−∞,∞).
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A9 Distribution function

In ATP[R] (ATP[P]) we assume that the prices proposed by successively appearing counter-trader, ξ, ξ′, · · · (the reservation

prices of successively appearing counter-trader, ξ, ξ′, · · · ) are independent identically distributed random variables having

a continuous distribution function F (ξ) = Pr{ξ ≤ ξ} with a finite expectation µ where

F (ξ) = 0 · · · (1) ξ ≤ a,

0 < F (ξ) < 1 · · · (2) a < ξ < b,

F (ξ) = 1 · · · (3) b ≤ ξ,

(2.2.1)

for given constants a and b such that

−∞ < a < µ < b <∞. (2.2.2)

Furthermore, for its probability density function f(ξ) let us assume

f(ξ) = 0 · · · (1) ξ < a,

0 < f(ξ) < 1 · · · (2) a ≤ ξ ≤ b,

f(ξ) = 0 · · · (3) b < ξ.

(2.2.3)

Here assume that there exits f such that

f = inf
a≤ξ≤b

f(ξ)dξ > 0. (2.2.4)

Let us represent the set consisting of all possible distribution functions with (2.2.2(p.13) ) by F , i.e.,

F = {F
∣∣ −∞ < a < µ < b <∞}, (2.2.5)

called the total distribution function space, simply the total-DF-space .

ξ

f(ξ)

µ0 a b
............
.........
...........
..............
.....................................................................................
...........
.........
........
.........
.........
...........
.............
................
.......................................................
.........
.........
...........
.............
.................
...................
...........
..............................................................................................................................................................................................................................................................................................................................................................................................................

Figure 2.2.4: Probability density function f(ξ)

A10 Recallability of once rejected counter-trader

Whether model with R-mechanism or model with P-mechanism, if a once-rejected counter-trader can be recalled later

and accepted at the discretion of the leading-trader, then it is referred to as the recall-model or model-with-recall (see

Section 3.2.2(p.18) ). Conversely, if such recallability is not allowed, then it is referred to as the no-recall-model, model-with-

no-recall, or model-without-recall.

A11 Finiteness of planning horizon

In the present paper we consider only models with the finite planning horizon (see H1e(p.8) ). Our basic standpoint over

the whole of this paper lies in a grim reality that a process with the infinite planning horizon is a mere product of fantasy

created by mathematics, which does not exist in the real world at all; in fact, it is an inanity to consider a model with the

planning horizon of more than 135 hundred millions years. However, we can have the two reasons for which it becomes still

meaningful to discuss the model with the infinite planning horizon. One is that it can become an approximation for the

process with an enough long (finite) planning horizon, the other is that results obtained from it can provide a meaningful

information for the analyses of models with the finite planning horizon.

2.3 Discount factor
This section presents the actual and theoretical implication of the discount factor which will be used in describing the systems

of optimality equations for any decision processes (see Chap. 6(p.29) )

2.3.1 Our Basic Stance

In whether mathematics or natural science, what to do first of all before proceeding with discussions is to clearly define the

concepts and terms employed there. Going back this stance, in this section we try to provide rigorous definitions for terms profit

and cost which seem to be quite commonplace at a glance in the fields of business science and economic science.
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2.3.2 Definitions

To start with, we provide the following four definitions.

(a) Fund F : We refer to the total amount of available money on hand as the fund F , which can be always and freely invested.

(b) Interest rate r: We denote the interest rate per period by r ≥ 0, implying that the today’s fund of one unit increases to

the 1 + r units tomorrow. Here let us define β = (1 + r)−1 (1 ≥ β > 0), called the discount factor. Then 1 + r = β−1.

(c) Profit P : Let us refer to the incremented amount of the fund F yielded by a managerial and/or economic activity as the

profit P , i.e.,

profit P = incremented fund F i · · · (1•),

(d) Cost C: The definition of cost is rather complicated.

◦ Suppose that an amount of fund F has been paid away for a reason. Here we refer to the amount of fund paid away as

the expense E and to the amount of fund lost by the expense E as the decremented fund F d, i.e.,

expense E = decremented fund F d · · · (2•).

Here anew register that the profit P is defined by the incremented fund F i and that the expense E is defined by the

decremented fund F d.

◦ Although the decremented fund F d is what was once paid away as an expense E, supposedly let us assume here that the

expense E were not paid away. Then, it backs to the fund F , hence it is squirreled away as a savings on hand, so let us

refer to this savings as the conditional savings Sc in the sense that it remains on hand under the condition of not having

been paid away, i.e.,
decremented fund F d = conditional savings Sc · · · (3•).

◦ Now, since this conditional savings Sc is eventually reduced to what must be paid away in the end, we refer to this

conditional savings Sc as the conditional expense Ec, i.e.,

conditional savings Sc = conditional expense Ec · · · (4•).

◦ In fact, this conditional expense Ec is what is conventionally referred to as the cost C, i.e.,

conditional expence Ec = cost C · · · (5•).

◦ From (2•) – (5•) we have the following translation flow.

expence E = decremented fund F d = conditional savings Sc = conditional expence Ec = cost C · · · (6•).

Now, the above interpretation may seem to be somewhat periphrastic; however, when trying to introduce the interest

rate r to the evaluation of cost on the time axis, we will see that the above flow in (6•) become decisively essential

(see Section 2.3.5(p.15) ) .

What should be especially noted here is that while the profit P is defined via only F i (see (1•)), the cost C is defined via Ec,

Sc, F d, and E (see (6•)).

2.3.3 Discount Factor for Fund

Suppose you have the fund F today. Then, since it can be invested at a given interest rate r, the today’s fund F increases to

(1 + r)nF = β−nF after n days, i.e., F → β−nF . Multiplying this relation by βn leads to βnF → F , implying that if we have

the fund βnF today, it increase to F after n days. Accordingly, denoting the fund of n = 0, 1, · · · days later by Fn,
† we have

βnFn → Fn · · · (1◦),

meaning that if you have the fund βnFn today, it increase to Fn after n days. This implies that the fund Fn of n days later can

be evaluated as the fund βnFn of today; in other words, as an economical value, the fund Fn of n days later is equivalent to the

fund βnFn of today, vice versa. In this sense, βnFn is usually called the present (today) value of the fund Fn of n days later.

2.3.4 Discount Factor for Profit

Since P = F i due to (1•), defining P and F i of n days later by Pn and F i
n respectively, we have Pn = F i

n. Hence, since

βnPn → Pn due to (1◦), the present (today) value of Pn is given by βnPn. Thus, it follows that the total present value of profit

for the whole actions with profits P0, P1, P2, · · · is given by not P0 +P1 +P2 + · · · but P0 + βP1 + β2P2 + · · · .§ This is a reason

why the discount factor β is introduced in the description of the system of optimality equations for the “selling problem” with

the profit maximization.

†Hence F0 represent the fund of 0 day later, i.e., today with n = 0.
§Let V0

def
= P0 + βP1 + β2P2 + · · · and V1

def
= P1 + βP2 + β2P3 + · · · . Then we have V0 = P0 + βV1.
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2.3.5 Discount Factor for Cost

♡Alice 1 Here Alice wandered round with the following question. “In the asset buying problem, since a buying price is what have
been already paid away, it does not remain on hand, hence it cannot invest !. But, but —, if so, the concept of the discount factor
cannot be applied to the asset buying problem which is a cost minimizing problem !. Then, what will happen ?. Then, Dr. Rabbit
clad in the waistcoat-pocket suddenly appeared in front of her and told “Well, it’s, it’s puzzled · · · .”. And, after looking dead at
her for a while, taking a watch out of its waistcoat-pocket and then murmuring “Oh dear! Oh dear !, I shall be too late for the
faculty meeting”, he disappeared down the hole.

Below is our answer to the Alice’s question. Let us denote the expense E of n days later by En. Then, let us represent

the decremented fund F d corresponding to the En by F d
n (see (2•)), next the conditional savings Sc corresponding to the F d

n

by Sc
n (see (3•)), furthermore the conditional expense Ec corresponding to the Sc

n by Ec
n (see (4•)), and finally the cost C

corresponding to the Ec
n by Cn (see (5•)). Accordingly, from (6•) we have

En = F d
n = Sc

n = Ec
n = Cn.

Thus, since F d
n = Cn, we have βnCn → Cn from (1◦), hence the present (today) value of Cn is given by βnCn. Consequently, it

follows that the total cost for the whole behavior consisting of actions with costs C0, C1, C2, · · · is given by not C0+C1+C2+ · · ·
but C0+βC1+β2C2+ · · · . This is a reason why the discount factor β is introduced in the description of the system of optimality

equations for the “buying problem” with the cost minimization.

2.3.6 Essential Point

Presumably, this paper will be the first to define the concepts of profit and cost through the third concept of fund. To be

honest, we have always found certain inconsistencies in conventional approaches to profit and cost where clear definitions are

often lacking. Despite the extensive discussions about the discount factor for profit, it is surprising that the discount factor for

cost has been addressed so infrequently. We believe this oversight stems from a misguided assumption that the buying problem

is of little importance, as it is merely considered the inverse of the selling problem. This assumption implies that the buying

problem can be fully explained by simply reversing the signs of the variables, parameters, constants, etc., defined in the selling

problem. However, we emphasize here that this paper demonstrates that the two problems are not inversely related at all.
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Chapter 3

Classification of Models

3.1 Model Classification Factors
The paper categorizes models based on the following four factors:

(A) The first factor is whether selling model or buying model, represented as:

◦ Selling model → M.

◦ Buying model→ M̃.

(B) The second factor is the presence or absence of the quitting penalty price ρ (see A7(p.12) ), classified as:

◦ Model 1 in which the quitting penalty price ρ is not available.

◦ Model 2 in which the only terminal quitting penalty price ρ is available.

◦ Model 3 in which both terminal quitting penalty price ρ and intervening quitting penalty ρ are available.

(C) The third factor is whether R-mechanism or P-mechanism (see Section 1.4(p.4) ), denoted as:

◦ R-mechanism-model (R-model)→ [R].
◦ P-mechanism-model (P-model)→ [P].

(D) The last factor is whether search-Enforced-model or search-Allowed-model (see A5(p.12) ), symbolized as:

◦ search-Enforced-model (sE-model)→ [E].

◦ search-Allowed-model (sA-model)→ [A].

3.2 Tables of Models

3.2.1 No-Recall-Model

Let us designate the no-recall-model by

M:x[X][X] (M̃:x[X][X]) x = 1, 2, 3, X = R,P, X = E, A‡

Then let us define the set

Q⟨M :x[X]⟩ def
= {M:x[R][X], M̃:x[R][X],M:x[P][X], M̃:x[P][X]}, x = 1, 2, 3, X = E, A,

called the quadruple-asset-trading-models-with-no-recall, consisting of the 24 models in the table below:

Table 3.2.1: Twenty Four No-recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{M:1[E]} = { M:1[R][E], M̃:1[R][E], M:1[P][E], M̃:1[P][E] }
Q{M:1[A]} = { M:1[R][A], M̃:1[R][A], M:1[P][A], M̃:1[P][A] }

Q{M:2[E]} = { M:2[R][E], M̃:2[R][E], M:2[P][E], M̃:2[P][E] }
Q{M:2[A]} = { M:2[R][A], M̃:2[R][A], M:2[P][A], M̃:2[P][A] }

Q{M:3[E]} = { M:3[R][E], M̃:3[R][E], M:3[P][E], M̃:3[P][E] }
Q{M:3[A]} = { M:3[R][A], M̃:3[R][A], M:3[P][A], M̃:3[P][A] }

‡Throughout the paper, the model of the asset buying problem (ABP) is represented by the symbol upon which the tilde “˜” is capped
like M̃.
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3.2.2 Recall-Model

Let us designate the recall-model by

rM:x[X][X] (rM̃:x[X][X]) x = 1, 2, 3, X = R,P, X = E, A.

Then let us define the set

Q⟨rM :x[X]⟩ def
= {rM:x[R][X], rM̃:x[R][X], rM:x[P][X], rM̃:x[P][X]}, x = 1, 2, 3, X = E, A,

called the quadruple-asset-trading-models-with-recall, consisting of the 24 models in the table below:

Table 3.2.2: Twenty Four Recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E] }
Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A] }

Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E], rM̃:2[P][E] }
Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A], rM̃:2[P][A] }

Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E], rM̃:3[P][E] }
Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A], rM̃:3[P][A] }

3.3 Structured-Unit-of-Models
Let us refer to the set of 24 models defined in each of Tables 3.2.1(p.17) and 3.2.2(p.18) as the structured-unit-of-models. Here note

that all models within each structured-unit-of-model are not ones blindly defined but ones systematically and inevitably defined

according to the four factors in Section 3.1(p.17) . The big difference from all other studies that have been conventionally made

by many researchers, including the authors in the past, lies in clarifying the overall interconnectedness among these models.

In addition, let us refer to the whole of problems corresponding to models included in a given structured-unit-of-models as the

structured-unit-of-problems.

3.4 Decisions

What a leading-trader should determine in each of models defined in Tables 3.2.1(p.17) and 3.2.2(p.18) are as follows:

⟨1⟩ Whether or not to accept the price proposed by a counter-trader (only for R-model) (see Section 7.2.1(p.43) ),

⟨2⟩ What price to post (only for P-model) (see Section 7.2.2(p.44) ),

⟨3⟩ Whether or not to conduct the search (only for sA-model) (see Section 7.2.3(p.44) ),

⟨4⟩ When to initiate the process (for all models) (see Section 7.2.4(p.44) ).

3.5 Trading Problem with Negative Trading Price
In A8(p.12) we defined a price ξ on (−∞,∞). However, this seemingly unrealistic assumption can be justified for the following

reason. First let us note here that “sell” means “deliver” and “buy” means “receive”; more precisely speaking:

◦ In a selling problem, a seller (leading-trader) delivers the asset to a buyer (counter-trader), who receives it from the seller.

◦ In a buying problem, a buyer (leading-trader) receives the asset from a seller (counter-trader), who delivers it to the buyer.

The above two scenarios can be schematized as below.

leading-trader counter-trader
↓ ↓

selling problem: seller (delivering-side) ↔ (recieving-side) buyer

buying problem: buyer (recieving-side) ↔ (delivering-side) seller

In other words, “selling problem” and “buying problem” can be said to be “delivering problem” and “receiving problem”

respectively. Now let us consider here a transaction in which the asset traded there is a worthless debris such as surplus soil,

concrete blocks and so on which are disposed of when a building is broken up. In this case, a receiving-side (buyer), in whether

selling problem or buying problem, rightly requires some amount of money as a disposal cost, nevertheless being a buyer. Seeing

the problem from the standpoint of the seller (delivering-side), the seller gives some amount of money to the buyer (receiving-

side), nevertheless being a seller. This interpretation implies that the trading problem stated above can be regarded as “a

trading problem with a negative trading price” whether selling problem or buying problem. To discuss the trading problem

more generally taking into account the above reason, expanding the range of the trading price to (−∞,∞) can be said to be

reasonable from a practical viewpoint. See Section A7.5(p.317) for a further economic implication.
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3.6 Simplified Notation of Models
In the paper we will sometimes use the following simplified notational convention for the no-recall-model.

◦ By M:x[R/P][X] let us denote M:x[R][X] and M:x[P][X].

◦ By M̃:x[R/P][X] let us denote M̃:x[R][X] and M̃:x[P][X].

◦ By M/M̃:x[R/P][X] let us denote M:x[R/P][X] and M̃:x[R/P][X].

◦ By M:1/2/3[X][X] let us denote M:1[X][X], M:2[X][X], and M:3[X][X].

◦ By M:x[X][E/A] let us denote M:x[X][E] and M:x[X][A].

◦ By M̃:1/2/3[X][X] let us denote M̃:1[X][X], M̃:2[X][X], and M̃:3[X][X].

◦ By M̃:x[X][E/A] let us denote M̃:x[X][E] and M̃:x[X][A].

Also for the recall-model we define the same symbols, say rM/M̃:x[R/P][X], rM̃:x[R/P][X], · · ·
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Chapter 4

Definitions of Models

4.1 No-Recall-Model

4.1.1 Model 1

4.1.1.1 Search-Enforced-Model: Q⟨M :1[E]⟩ = {M:1[R][E], M:1[P][E], M̃:1[R][E], M̃:1[P][E]}
4.1.1.1.1 M:1[R][E] and M:1[P][E]

The two are the most basic models of the asset selling problem [7,Ber1995,p.158-162][47,You1998], which are defined by the

following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for buyers (see (A5a(p.12) )),

hence the search cost s ≥ 0 is paid at every point in time (see A4(p.11) ).

A2. After the search has been conducted at a point in time t > 0, a buyer certainly appears at time t− 1 (next point in time),

i.e., the buyer appearing probability λ = 1 (see A6(p.12) ).

A3. The prices ξ, ξ′, ξ′′, · · · proposed by successively appearing buyers in M:1[R][E] and the reservation prices ξ, ξ′, ξ′′, · · ·
of successively appearing buyers in M:1[P][E] are both assumed to be independent identically distributed random variables

having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ} (see A9(p.13) ).†

A4. Both terminal quitting penalty price ρ and intervening quitting penalty price ρ are not available (see A7(p.12) ).

A5. The selling process stops at the point in time when the asset is sold to an appearing buyer (see A3(p.11) ).

- time• • • • • • •
01· · ·t− 1tt + 1t + 2

ξ
z′

6

M:1[R][E]: buying price ξ proposed by an appearing buyer (counter-trader)
M:1[P][E]: selling price z proposed by the seller (leading-trader)

6
?
s

?
s

previous present next deadline

search cost

Figure 4.1.1: M:1[R][E] and M:1[P][E]

The objective is to maximize the total expected present discounted profit, i.e., the expected present discounted value of the

price for which the asset is sold, minus the total expected present discounted value of the search costs which will be paid until

the process stops with selling the asset.

Remark 4.1.1

(a) The starting time τ must be greater than or equal to 1, i.e., τ ≥ 1 for the following reason. If τ = 0, there exists no buyer
at time 0, hence the process must stop without selling the asset, which contradicts A2(p.11) .

(b) Suppose the process has proceeded up to time 1. Then, since the search is conducted at that time due to A1(p.21) , a buyer
certainly appears at time 0 (deadline) due to A2(p.21) .

1. In M:1[R][E], due to A2(p.11) the seller must sell the asset to the buyer however small the price proposed by the buyer
may be.

2. In M:1[P][E], the seller must propose the price a to the buyer where a is the lower bound of the distribution function
F for the reservation price ξ of the buyer (see Figure 2.2.4(p.13) ). Then, the buyer certainly buys the asset.

†ξ and ξ represent a random variable and a realized value respectively.
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4.1.1.1.2 M̃:1[R][E] and M̃:1[P][E]

The two are both the models of the asset buying problem, defined by the following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for sellers, hence the

search cost s ≥ 0 is paid at every point in time.

A2. After the search has been conducted at a point in time t > 0, a seller certainly appears at time t− 1 (next point in time),

i.e., the seller appearing probability λ = 1.

A3. The prices ξ, ξ′, ξ′′, · · · proposed by successively appearing sellers in M̃:1[R][E] and the reservation prices ξ, ξ′, ξ′′, · · ·
of successively appearing sellers in M̃:1[P][E] are both assumed to be independent identically distributed random variables

having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ}.†

A4. Both terminal quitting penalty price ρ and intervening quitting penalty price ρ are not available.

A5. The buying process stops at the point in time when the asset is bought by an appearing seller.
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M̃:1[R][E]: selling price ξ proposed by an appearing seller (counter-trader)

M̃:1[P][E]: buying price z proposed by the buyer (leading-trader)

66
s

6
sprevious

present next

deadline

Figure 4.1.2: M̃:1[R][E] and M̃:1[P][E]

The objective is to minimize the total expected present discounted cost, i.e., the expected present discounted value of the price

for which the asset is bought, plus the total expected present discounted value of the search costs which will be paid until the

process stops with buying the asset.

Remark 4.1.2 Here it should be noted that although in 4.1.2(p.22) , ξ, z, and s are all in an upward direction, in 4.1.1(p.21) ,
only s is in a downward direction.

4.1.1.2 Search-Allowed-Model 1: Q⟨M :1[A]⟩ = {M:1[R][A], M:1[P][A], M̃:1[R][A], M̃:1[P][A]}
4.1.1.2.1 M:1[R][A] and M:1[P][A]

The two are the same as M:1[R][E] and M:1[P][E] in Section 4.1.1.1.1(p.21) only except that A1(p.21) is changed into as follows:

A1. At every point in time t > 0, it is allowed to skip the search (see (A5b(p.12) )); in other words, the seller has an option

whether to conduct the search or to skip.

Remark 4.1.3

(a) The starting time τ must be greater than 0, i.e., τ > 0 for the same reason as in Remark 4.1.1(p.21) (a).

(b) Suppose the process has proceeded up to time t = 1. Then, if the search is skipped at that time, no buyer appears
at time t = 0, hence the seller is faced with the situation of having to quit the process without selling the asset, which
contradicts A2(p.11) . Accordingly, also in this case the search must be necessarily conducted at time t = 1; as a result, a buyer
certainly appears at time 0 due to the assumption A2.

4.1.1.2.2 M̃:1[R][A] and M̃:1[P][A]

The two are the same as M̃:1[R][E] and M̃:1[P][E] in Section 4.1.1.1.2(p.22) only except that after the process has initiated, it is

allowed to skip the search.

4.1.2 Model 2

4.1.2.1 Search-Enforced-Model 2: Q⟨M :2[E]⟩ = {M:2[R][E], M:2[P][E], M̃:2[R][E], M̃:2[P][E]}
The quadruple models indicated in the above brace are the same as in Section 4.1.1.1(p.21) only except that the assumptions

A2(p.21) and A4(p.21) are changed into as follows:

A2. After the search has been conducted at time t > 0, a buyer appears at the next point in time with a probability λ ≤ 1.

A4. The terminal quitting penalty price ρ is available.

Remark 4.1.4 In these models it is possible to stop the process by accepting the terminal quitting penalty price ρ at time 0
(deadline), hence the starting time τ = 0 is permitted since the leading-trader can quit the process with accepting the ρ at
time 0 even if no counter-trader exists at time 0. Accordingly, in these models it follows that the starting time τ is greater than
or equal to 0, i.e., τ ≥ 0.

†ξ and ξ represent a random variable and a realized variable respectively.
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4.1.2.2 Search-Allowed-Model 2: Q⟨M :2[A]⟩ = {M:2[R][A], M:2[P][A], M̃:2[R][A], M̃:2[P][A]}
The quadruple models indicated in the above brace are the same as in Section 4.1.2.1(p.22) only except that A1(p.21) is changed as

follows:

A1. After the process has initiated, it is allowed to skip the search at every point in time t > 0.

4.1.3 Model 3

4.1.3.1 Search-Enforced-Model 3: Q⟨M :3[E]⟩ = {M:3[R][E], M:3[P][E], M̃:3[R][E], M̃:3[P][E]}
The quadruple models are the same as in Section 4.1.2.1(p.22) only except that the assumption A4(p.22) is changed as follows:

A4. In addition to the terminal quitting penalty price ρ, the intervening quitting penalty price ρ is also available.

4.1.3.2 Search-Allowed-Model 3:Q⟨M :3[A]⟩ = {M:3[R][A], M:3[P][A], M̃:3[R][A], M̃:3[P][A]}
The quadruple models are the same as those in Section 4.1.2.2(p.23) only except that after the process has initiated, it is allowed

to skip the search.

4.2 Recall-Model
See Chap. 23(p.237) .

4.3 Spaces
Let us refer to λ ∈ (0, 1], β ∈ (0, 1], s ∈ [0,∞), and ρ ∈ (−∞,∞) as the parameter of models, all of which are independent of

the distribution function F . Then, let p = (λ, β, s) for Model 1 and p = (λ, β, s, ρ) for Models 2 and 3, which are called the

parameter vector. We represent the set of all possible p’s by

P = {p
∣∣ λ = 1, 0 < β ≤ 1, 0 ≤ s} for Model 1, (4.3.1)

P = {p
∣∣ 0 < λ ≤ 1, 0 < β ≤ 1, 0 ≤ s, −∞ < ρ <∞} for Models 2,3, (4.3.2)

called the total parameter space, simply total-P-space . Then, let us refer to the direct product (Cartesian product) of the

total-P-space P and total-DF-space F (see (2.2.5(p.13) )), i.e.,

P ×F = {(p, F )
∣∣ p ∈P, F ∈ F} (4.3.3)

as the total-P/DF-space.
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Chapter 5

Underlying Functions

This chapter defines some functions called the underlying function, which will be used to derive the system of optimality

equations of the 24 model in Table 3.2.1(p.17) .

5.1 Definition

5.1.1 T , L , K , and L of Type R
For any F ∈ F let us define

T (x) = E[max{ξ − x, 0}] (5.1.1)

=
∫∞
−∞ max{ξ − x, 0}f(ξ)dξ, †‡ (5.1.2)

and then define

L (x) = λβT (x)− s, (5.1.3)

K (x) = λβT (x)− (1− β)x− s, § (5.1.4)

L (s) = L (λβµ− s), (5.1.5)

κ = λβT (0)− s (5.1.6)

= L (0) = K (0) = λβT (0)− s (5.1.7)

Let us refer to each of T , L , K , and L as the underlying function of Type R and to κ as the κ-value of Type R. The formula

below will be sometimes used in the rest of the paper.

K (x) + (1− β)x = L (x), (5.1.8)

K (x) + x = L (x) + βx, (5.1.9)

λβE[max{ξ, x}] + (1− λ)βx− s = K (x) + x (5.1.10)

5.1.2 T̃ , L̃ , K̃ , and L̃ of Type R
For any F ∈ F let us define

T̃ (x) = E[min{ξ − x, 0}] (5.1.11)

=
∫∞
−∞ min{ξ − x, 0}f(ξ)dξ, (5.1.12)

and then define

L̃ (x) = λβT̃ (x) + s, (5.1.13)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (5.1.14)

L̃ (s) = L̃ (λβµ+ s), (5.1.15)

κ̃ = λβT̃ (0) + s (5.1.16)

= L̃ (0) = K̃ (0). (5.1.17)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype R and to κ̃ as the κ̃-value of T̃ype R.

†See [13,DeGroot70].
‡See Figure A 7.3(p.315) (I) ,
§See Figure A 7.3(p.315) (II) ,
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5.1.3 T , L , K , and L of Type P
For any F ∈ F let us define

p(z) = Pr{z ≤ ξ}, (5.1.18)

T (x) = max
z

p(z)(z − x)† (5.1.19)

and then define

L (x) = λβT (x)− s, (5.1.20)

K (x) = λβT (x)− (1− β)x− s, (5.1.21)

L (s) = L (λβa− s), (5.1.22)

κ = λβT (0)− s (5.1.23)

= L (0) = K (0) (5.1.24)

Let us refer to each of T , L , K , and L as the underlying function of Type P and to κ as the κ-value of Type P. Let us denote
z maximizing p(z)(z − x) by z(x) if it exists, i.e.,

T (x) = p(z(x))(z(x)− x). (5.1.25)

Definition 5.1.1 If there exists multiple z(x), let us define the smallest of them as z(x).

Furthermore, for convenience of later discussions, let us define

a⋆ = inf{x
∣∣ T (x) + x > a} = inf{x

∣∣ T (x) > a− x}, (5.1.26)

x⋆ = inf{x | z(x) > a}. (5.1.27)

Noting that (5.1.18(p.26) ) can be rewritten as p(z) = 1−Pr{ξ < z} = 1−Pr{ξ ≤ z} due to the assumption of F being continuous

(see A9(p.13) ), we have p(z) = 1− F (z). Accordingly, it can be immediately seen that

p(z)

{
= 1, z ≤ a · · · (1) due to (2.2.1 (1) (p.13) ),

< 1, a < z · · · (2) due to (2.2.1 (2,3) (p.13) ),
(5.1.28)

p(z)

{
> 0, z < b · · · (1), due to (2.2.1 (1,2) (p.13) ),

= 0, b ≤ z · · · (2), due to (2.2.1(p.13) )3.
(5.1.29)

In general p(z)(z − x) can be depicted as below.

1

a bx

p(z)

p(z)(z−x)

•
z(x)

z−
x

z
•TP (z(x))

Figure 5.1.1: Graph of p(z)(z − x)

When F is the uniform distribution function on [a, b], we have

a⋆ = 2a− b (see (A 7.6 (1) (p.316) ) ). (5.1.30)

5.1.4 T̃ , L̃ , K̃ , and L̃ of Type P
For any F ∈ F let us define

p̃(z) = Pr{ξ ≤ z}, (5.1.31)

T̃ (x) = min
z

p̃(z)(z − x), (5.1.32)

†See Figure A 7.4(p.315) .
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and then define

L̃ (x) = λβT̃ (x) + s, (5.1.33)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (5.1.34)

L̃ (s) = L̃ (λβb+ s), (5.1.35)

κ̃ = λβT̃ (0) + s (5.1.36)

= L̃ (0) = K̃ (0). (5.1.37)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype P and to κ̃ as the κ̃-value of T̃ype P. Let us denote
z minimizing p̃(z)(z − x) by z(x) if it exists, i.e.,

T̃ (x) = p̃(z(x))(z(x)− x). (5.1.38)

Definition 5.1.2 If there exists multiple z(x), let us define the largest of them as z(x).

Furthermore, for convenience of later discussions, let us define

b⋆ = sup{x
∣∣ T̃ (x) + x < b} = sup{x

∣∣ T̃ (x) < b− x}, (5.1.39)

x̃⋆ = sup{x | z(x) < b}. (5.1.40)

Noting that (5.1.31(p.26) ) can be rewritten as p̃(z) = F (z), we can immediately see that

p̃(z)

{
= 0, z ≤ a · · · (1) due to (2.2.1 (1) (p.13) ),

> 0, a < z · · · (2) due to (2.2.1 (2.3) (p.13) ),
(5.1.41)

p̃(z)

{
< 1, z < b · · · (1) due to (2.2.1 (1,2) (p.13) ),

= 1, b ≤ z · · · (2) due to (2.2.1 (3) (p.13) ).
(5.1.42)

5.2 Solutions

The solutions defined below are commonly used in the analyses of all models in the whole paper.

(a) Let us define the solutions of the equations L (x) = 0, K (x) = 0, and L (s) = 0 (whether Type R or Type P) by xL , xK ,

and sL respectively if they exist, i.e.,

L (xL) = 0 · · · (1), K (xK) = 0 · · · (2), L (sL) = 0 · · · (1). (5.2.1)

If multiple solutions exist for each of the above three equations, we employ the smallest as its solution.

(b) Let us define the solutions of the equations L̃ (x) = 0, K̃ (x) = 0, and L̃ (s) = 0 (whether T̃ype R or T̃ype P) by x
L̃ , x

K̃ ,

and sL̃ respectively if they exist.

L̃ (xL̃ ) = 0 · · · (1), K̃ (xK̃) = 0 · · · (2), L̃ ( sL̃) = 0 · · · (1). (5.2.2)

If multiple solutions exist for each of the above three equations, we employ the largest as its solution.

5.3 Primitive Underlying Functions and Derivative Underlying Functions

Sometimes let us refer to each of T - and T̃ -functions as the primitive underlying function and to each of L-, K-, L-, L̃-, L̃-, and
L̃-functions as the derivative underlying function, which are defined by use of primitive underlying functions T and T̃ .

5.4 Identical Representation and Explicit Representation

In the rest of the paper, when we need to distinguish

T , L ,K , L , κ, xL , xK , sL , T̃ , L̃ , K̃ , L̃ , κ̃, x
L̃ , x

K̃ , sL̃ (5.4.1)

between Type R and Type P, let us denote them by

TR ,LR ,KR ,LR ,κR, xLR,xKR, sLR, T̃R ,L̃R ,K̃R ,L̃R ,κ̃R, xL̃R, xK̃R, sL̃R, (5.4.2)

TP , LP ,KP , LP , κP, xLP, xKP, sLP , T̃P , L̃P , K̃P , L̃P ,κ̃P, xL̃P, xK̃P, sL̃P. (5.4.3)

Let us refer to (5.4.1) as the identical representation and to (5.4.2) and (5.4.3) as the explicit representation.
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5.5 Characteristic Vector and Characteristic Element
Let us here define the two vectors, CR consisting of (5.1.3(p.25) )-(5.1.6(p.25) ) and C̃R consisting of (5.1.13(p.25) )-(5.1.16(p.25) ), i.e,

CR = (LR , KR ,LR , κR), C̃R = (L̃R , K̃R , L̃R , κ̃R).

Likewise, let us define the two vectors, CP consisting of (5.1.20(p.26) )-(5.1.23(p.26) ) and C̃P consisting of

(5.1.33(p.27) )-(5.1.36(p.27) ), i.e.,

CP = (LP , KP ,LP , κP), C̃P = (L̃P , K̃P , L̃P , κ̃P).

Furthermore, adding T - and T̃ -functions to the above vectors, let us define

CT
R = (TR , LR , KR ,LR , κR), C̃T

R = (T̃R , L̃R , K̃R , L̃R , κ̃R),

CT
P = (TP , LP , KP ,LP , κP), C̃T

P = (T̃P , L̃P , K̃P , L̃P , κ̃P).

Let us call each of the vectors defined above the characteristic vector and its element the characteristic element. In the identical

representation, the above vectors are all represented by C , C̃ , CT , and C̃T respectively.



Chapter 6

Systems of Optimality Equations

In this chapter we derive the system of optimality equations (SOE) for each of the 24 models in Table 3.2.1(p.17)

(see Chap. 24(p.239) for models in Table 3.2.2(p.18) ).

6.1 Preliminary

Definition 6.1.1 Throughout the paper let us represent the action

“Conduct the search at time t” (“Skip the search at time t”)

as Conductt (Skipt) for short. Then, when this action is simply optimal, indifferently optimal, or strictly optimal, let us
represent it as respectively

Conductt△ (Skipt△), Conductt∥ (Skipt∥), or ConducttN (SkiptN).

Remark 6.1.1 (relationship between SOE and assertion) In general, a model M of a decision process, whether in this
paper or not, has the system of optimality equations, denoted by SOE{M}, which should be said to be a mirror exhaustively
reflecting the entire aspect of the model M. In other words, SOE{M} involves the exhaustive information of the model M as if
a gene has the exhaustive information of a life. This implies that any assertion which is characterized by the sequence {Vt}
generated from SOE{M} can be regarded as an assertion on the model M; conversely, an assertion which is not characterized by
the sequence {Vt} cannot be said to be an assertion on the M.

Below let us represent “buyer (seller) proposing a price w” by “buyer (seller) w” for short.

6.2 No-Recall-Model
6.2.1 Search-Allowed-Model

6.2.1.1 Model 1

Let us note here that λ = 1 is assumed in this model.

6.2.1.1.1 M:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then, we have

v0(w) = w, (6.2.1)

vt(w) = max{w, Vt}, t > 0, (6.2.2)

where Vt is the maximum of the total expected present discounted profit from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)]− s = βE[ξ]− s = βµ− s (see Remark 4.1.3(p.22) (b)), (6.2.3)

Vt = max{C : βE[vt−1(ξ)]− s, S : βVt−1}, t > 1, (6.2.4)

where C and S represent the actions of Conducting the search and Skipping the search respectively. Then, since vt−1(ξ) =

max{ξ, Vt−1} = max{ξ−Vt−1, 0}+Vt−1, we have E[vt−1(ξ)] = T (Vt−1)+Vt−1 for t > 1 (see (5.1.1(p.25) )), hence (6.2.4(p.29) ) can

be written as

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4(p.25) ) with λ = 1) (6.2.5)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.8(p.25) )). (6.2.6)

� SOE{M:1[R][A]} is given by the set of (6.2.1(p.29) ) – (6.2.4(p.29) ). However, since the sequence {Vt} is generated from the two

expressions (6.2.3(p.29) ) and (6.2.5(p.29) ), due to Remark 6.1.1(p.29) it can be reduced to only the two in Table 6.4.1(p.41) (I).
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Now, let us here define

St = β(E[vt−1(ξ)]− Vt−1)− s, t > 1. (6.2.7)

Then, (6.2.4(p.29) ) can be rewritten as

Vt = max{βE[vt−1(ξ)]− βVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 1, (6.2.8)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), (6.2.9)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (6.2.10)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.11)

St > (<) 0 ⇒ ConducttN (SkiptN). (6.2.12)

Then, from (6.2.2(p.29) ) we can rewrite (6.2.7(p.30) ) as

St = β(E[max{ξ, Vt−1}]− Vt−1)− s = βE[max{ξ − Vt−1, 0}]− s.

Accordingly, from (5.1.1(p.25) ) and (5.1.3(p.25) ) with λ = 1 we have

St = βT (Vt−1)− s (6.2.13)

= L(Vt−1), t > 1. (6.2.14)

6.2.1.1.2 M̃:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = w, (6.2.15)

vt(w) = min{w, Vt}, t > 0, (6.2.16)

where Vt is the minimum of the total expected present discounted cost from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)] + s = βE[ξ] + s = βµ+ s, (6.2.17)

Vt = min{βE[vt−1(ξ)] + s, βVt−1}, t > 1. (6.2.18)

Then, since vt−1(ξ) = min{ξ, Vt−1} = min{ξ−Vt−1, 0}+Vt−1, we have E[vt−1(ξ)] = T̃ (Vt−1)+Vt−1 for t > 1 (see (5.1.11(p.25) )),

hence (6.2.18(p.30) ) can be written as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14(p.25) ) with λ = 1) (6.2.19)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.14(p.25) ) and (5.1.13(p.25) ) with λ = 1). (6.2.20)

� SOE{M̃:1[R][A]} can be reduced to (6.2.17(p.30) ) and (6.2.19(p.30) ), listed in Table 6.4.1(p.41) (II).

Remark 6.2.1 Note here that the same notations vt(w) and Vt are used for both M:1[R][A] and M̃:1[R][A]. For explanatory
convenience, later on we sometimes represent the vt(w) and Vt for M̃:1[R][A] by ṽt(w) and Ṽt respectively. Then (6.2.15(p.30) )-
(6.2.18(p.30) ) are written as respectively

ṽ0(w) = w,

ṽt(w) = min{w, Ṽt},

Ṽ1 = βµ+ s,

Ṽt = min{βE[ṽt−1(ξ)] + s, βṼt−1}.
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Now, let us here define
S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 1. (6.2.21)

Then, (6.2.18(p.30) ) can be rewritten as

Vt = min{βE[vt−1(ξ)]− βVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 1, (6.2.22)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (6.2.23)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (6.2.24)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.25)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (6.2.26)

Then, from (6.2.16(p.30) ) we can rewrite (6.2.21(p.31) ) as

S̃t = β(E[min{ξ, Vt−1}]− Vt−1) + s = βE[min{ξ − Vt−1, 0}] + s.

Accordingly, from (5.1.11(p.25) ) and (5.1.13(p.25) ) with λ = 1 we have

S̃t = βT̃ (Vt−1) + s (6.2.27)

= L̃(Vt−1), t > 1. (6.2.28)

6.2.1.1.3 M:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1 (see Remark 4.1.3(p.22) (b)), there exists a

buyer at time 0. Suppose the process has proceeded up to time 0. Then, since the seller must necessarily sell the asset at that

time, he must propose the price a† to a buyer appearing at that time (see Remark 4.1.1(p.21) (b2)), thus we have

z0 = a. (6.2.29)

Hence, the profit that the seller obtains at time 0 becomes a, i.e.,

v0 = a. (6.2.30)

Now, since the search is conducted at time 1 (see Remark 4.1.3(p.22) (b)), we have

V1 = βv0 − s = βa− s. (6.2.31)

In addition, we have
Vt = max{βvt−1 − s, βVt−1}, t > 1. (6.2.32)

If the seller proposes a price z, the probability of a buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see
(5.1.18(p.26) )), hence we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (6.2.33)

due to (5.1.19(p.26) ), implying that the optimal price zt which the seller should propose is given by

zt = z(Vt), t > 0, (see (5.1.25(p.26) )). (6.2.34)

Now, since vt−1 = T (Vt−1) + Vt−1 for t > 1, we can rearrange (6.2.32(p.31) ) as follows

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.26) ) with λ = 1) (6.2.35)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (see (5.1.21(p.26) ) and (5.1.20(p.26) ) with λ = 1) (6.2.36)

� SOE{M:1[P][A]} is given by (6.2.31(p.31) ) and (6.2.35(p.31) ), listed in Table 6.4.1(p.41) (III).

Now, let us here define
St = β(vt−1 − Vt−1)− s, t > 1. (6.2.37)

†The lower bound of the distribution function for the reservation price (maximum permissible buying price) of the buyer.
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Then, (6.2.32(p.31) ) can be rewritten as

Vt = max{βvt−1 − βVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 1, (6.2.38)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt). (6.2.39)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (6.2.40)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.41)

St > (<) 0 ⇒ ConducttN (SkiptN). (6.2.42)

Then, from (6.2.33(p.31) ) with t − 1 we have vt−1 = T (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T (Vt−1), thus, noting (5.1.20(p.26) ), we

can rewrite (6.2.37(p.31) ) as below

St = βT (Vt−1)− s (6.2.43)

= L(Vt−1), t > 1. (6.2.44)

6.2.1.1.4 M̃:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1, there exists a seller at time 0. Suppose

the process has proceeded up to time 0. Then, since the buyer must necessarily buy the asset at that time, he must propose

the price b† to a seller appearing at that time, thus we have

z0 = b. (6.2.45)

Hence, the cost that the buyer pays at time 0 becomes b, i.e.,

v0 = b. (6.2.46)

Now, since the search is conducted at time 1, we have

V1 = βv0 + s = βb+ s. (6.2.47)

In addition, we have
Vt = min{βvt−1 + s, βVt−1}, t > 1. (6.2.48)

If the buyer proposes a price z, the probability of a seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.26) )), hence

we have

vt = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.49)

due to (5.1.32(p.26) ), implying that the optimal price zt which the buyer should propose is given by

zt = z(Vt), t > 0, (see (5.1.38(p.27) )). (6.2.50)

Now, since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1, we can rearrange (6.2.48(p.32) ) as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.27) ) with λ = 1) (6.2.51)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (5.1.34(p.27) ) and (5.1.33(p.27) ) with λ = 1) (6.2.52)

� SOE{M̃:1[P][A]} is given by (6.2.47(p.32) ) and (6.2.51(p.32) ), listed in Table 6.4.1(p.41) (IV).

Now, let us here define

S̃t = β(vt−1 − Vt−1) + s, t > 1. (6.2.53)

Then, (6.2.48(p.32) ) can be rewritten as

Vt = min{βvt−1 − βVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 1, (6.2.54)

implying that
S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (6.2.55)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

†The upper bound of the distribution function for the reservation price (minimum permissible selling price) of the seller
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S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (6.2.56)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.57)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (6.2.58)

Then, from (6.2.49(p.32) ) with t − 1 we have vt−1 = T̃ (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T̃ (Vt−1), thus, noting (5.1.33(p.27) ), we

can rewrite (6.2.53(p.32) ) as below

St = βT̃ (Vt−1) + s (6.2.59)

= L̃(Vt−1), t > 1. (6.2.60)

6.2.1.2 Model 2

6.2.1.2.1 M:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then we have

v0(w) = max{w, ρ}, (6.2.61)

vt(w) = max{w, Vt}, t > 0, (6.2.62)

where
Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.63)

Let us here define

V0 = ρ. (6.2.64)

Then (6.2.62(p.33) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, Vt}, t ≥ 0. (6.2.65)

Since vt−1(ξ) = max{ξ, Vt−1} = max{ξ− Vt−1, 0}+ Vt−1 = T (Vt−1) + Vt−1 for t > 0 (see (5.1.1(p.25) )), from (6.2.63(p.33) ) we have

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4(p.25) )) (6.2.66)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.8(p.25) )). (6.2.67)

� SOE{M:2[R][A]} is given by (6.2.64(p.33) ) and (6.2.66(p.33) ), listed in Table 6.4.3(p.41) (I).

Let us here define

St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (6.2.68)

Then, (6.2.63(p.33) ) can be rewritten as

Vt = max{λβE[vt−1(ξ)]− λβVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 0, (6.2.69)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (6.2.70)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (6.2.71)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.72)

St > (<) 0 ⇒ ConducttN (SkiptN). (6.2.73)

Then, from (6.2.68(p.33) ) we can rewrite (6.2.62(p.33) ) as

St = β(E[max{ξ, Vt−1}]− Vt−1)− s = βE[max{ξ − Vt−1, 0}]− s.

Accordingly, from (5.1.1(p.25) ) and (5.1.3(p.25) ) we have

St = βT (Vt−1)− s (6.2.74)

= L(Vt−1), t > 0. (6.2.75)
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6.2.1.2.2 M̃:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = min{w, ρ}, (6.2.76)

vt(w) = min{w, Vt}, t > 0, (6.2.77)

where
Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0. (6.2.78)

Let us here define
V0 = ρ. (6.2.79)

Then (6.2.77(p.34) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, Vt}, t ≥ 0. (6.2.80)

Since vt−1(ξ) = min{ξ, Vt−1} = min{ξ−Vt−1, 0}+Vt−1 = T̃ (Vt−1)+Vt−1 for t > 0 (see (5.1.11(p.25) )), from (6.2.78(p.34) ) we have

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14(p.25) )) (6.2.81)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 0. (see (5.1.14(p.25) ) and (5.1.13(p.25) )) (6.2.82)

� SOE{M̃:2[R][A]} is given by (6.2.79(p.34) ) and (6.2.81(p.34) ), listed in Table 6.4.3(p.41) (II).

Let us here define
S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (6.2.83)

Then, (6.2.78(p.34) ) can be rewritten as

Vt = min{λβE[vt−1(ξ)]− λβVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 0, (6.2.84)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (6.2.85)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (6.2.86)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.87)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (6.2.88)

Then, from (6.2.77(p.34) ) we can rewrite (6.2.83(p.34) ) as

S̃t = β(E[min{ξ, Vt−1}]− Vt−1) + s = βE[min{ξ − Vt−1, 0}] + s.

Accordingly, from (5.1.11(p.25) ) and (5.1.13(p.25) ) we have

S̃t = βT̃ (Vt−1) + s (6.2.89)

= L̃(Vt−1), t > 1. (6.2.90)

6.2.1.2.3 M:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, the seller must determine whether to accept the

terminal quitting penalty ρ or to sell the asset to the buyer. Let the ρ is accepted. Then the profit which the seller can obtain

is ρ. On the other hand, let the asset be sold to the buyer. Then since the seller must necessarily sell the asset to the buyer due

to A2(p.11) , the price a† must be proposed to the buyer; in other words, the optimal price to propose at time t = 0 is given by

z0 = a, (6.2.91)

hence the profit which the seller can obtain at that time is a. Accordingly, it follows that the profit that the seller can obtain

at time 0 is given by

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer.
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v0 = max{ρ, a}. (6.2.92)

Suppose there exists a buyer at a time t > 0. Then, since the reservation price (maximum permissible buying price) of the

buyer is ξ, if the seller proposes a price z, the probability of the buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see

(5.1.18(p.26) )). Hence we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (6.2.93)

due to (5.1.19(p.26) ), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (6.2.94)

due to (5.1.25(p.26) ). Finally Vt can be expressed as follows.

V0 = ρ, (6.2.95)

Vt = max{λβvt−1 + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.96)

For t = 1 we have

V1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}

= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (6.2.97)

Since vt−1 = T (Vt−1) + Vt−1 for t > 1 from (6.2.93(p.35) ), we can rearrange (6.2.96(p.35) ) as follows.

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K(Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.26) )) (6.2.98)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.21(p.26) ) and (5.1.20(p.26) )). (6.2.99)

� SOE{M:1[P][A]} is given by (6.2.95(p.35) ), (6.2.97(p.35) ), and (6.2.98(p.35) ), listed in Table 6.4.3(p.41) (III).

Now let us here define

St = λβ(vt−1 − Vt−1)− s, t > 0. (6.2.100)

Then (6.2.96(p.35) ) can be rewritten as

Vt = max{λβvt−1 − λβVt−1 − s, 0} − βVt−1

= max{St, 0}+ βVt−1, t > 0, (6.2.101)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), (6.2.102)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (6.2.103)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.104)

St > (<) 0 ⇒ ConducttN (SkiptN). (6.2.105)

Then, from (6.2.93(p.35) ) with t − 1 we have vt−1 = T (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T (Vt−1), thus, noting (5.1.20(p.26) ), we

can rewrite (6.2.100(p.35) ) as below

St = βT (Vt−1)− s (6.2.106)

= L(Vt−1), t > 0. (6.2.107)

6.2.1.2.4 M̃:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, the buyer must determine whether to accept the

terminal quitting penalty ρ or to buy the asset from the seller. Let the ρ is accepted. Then the cost which the buyer pays is ρ.

On the other hand, let an asset be bought from the seller. Them since the buyer must necessarily buy the asset from the seller

due to A2(p.11) , the price b† must be proposed to the seller; in other words, the optimal price to propose at time t = 0 is given by

†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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z0 = b, (6.2.108)

hence the cost which the buyer pays at that time is b. Accordingly, the cost that the buyer pays at time 0 becomes

v0 = min{ρ, b}. (6.2.109)

Suppose there exists a seller at a time t > 0. Then, since the reservation price (minimum permissible selling price) of the seller

is ξ, if the buyer proposes a price z, the probability of the seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.26) )).

Hence we have

vt = min
z
{p̃(z)z + (1− p(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.110)

due to (5.1.32(p.26) ), implying that the optimal buying price zt which the buyer should propose is given by

zt = z(Vt), t > 0, (6.2.111)

due to (5.1.38(p.27) ). Finally Vt can be expressed as follows.

V0 = ρ, (6.2.112)

Vt = min{λβvt−1 + (1− λ)βVt−1 + s, βVt−1}, t > 0. (6.2.113)

For t = 1 we have

V1 = min{λβv0 + (1− λ)βV0 + s, βV0}

= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}

= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (6.2.114)

Since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1 from (6.2.110(p.36) ), we can rearrange (6.2.113(p.36) ) as follows.

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.27) )) (6.2.115)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (5.1.34(p.27) ) and (5.1.33(p.27) )) (6.2.116)

� SOE{M̃:2[P][A]} can be reduced to (6.2.112(p.36) ), (6.2.114(p.36) ), and (6.2.115(p.36) ), listed in Table 6.4.3(p.41) (IV).

Now, let us here define

S̃t = λβ(vt−1 − Vt−1) + s, t > 0. (6.2.117)

Then, (6.2.113(p.36) ) can be rewritten as

Vt = min{λβvt−1 − λβVt−1 + s, 0} − βVt−1

= min{S̃t, 0}+ βVt−1, t > 0, (6.2.118)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (6.2.119)

which can be rewritten as, due to Def. 6.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (6.2.120)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (6.2.121)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (6.2.122)

Then, from (6.2.110(p.36) ) with t− 1 we have vt−1 = T̃ (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T̃ (Vt−1), thus, noting (5.1.33(p.27) ), we

can rewrite (6.2.117(p.36) ) as below

St = βT̃ (Vt−1) + s t > 0. (6.2.123)

= L̃(Vt−1), t > 0. (6.2.124)
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6.2.1.3 Model 3

6.2.1.3.1 M:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively, expressed as

v0(w) = max{w, ρ}, (6.2.125)

vt(w) = max{w, ρ, Ut}, t > 0, (6.2.126)

V0 = ρ, (6.2.127)

Vt = max{ρ, Ut}, t > 0, (6.2.128)

where Ut is the maximum of the total expected present discounted profit from rejecting both the price w and intervening quitting

penalty ρ in (6.2.126(p.37) ) and from rejecting the intervening quitting penalty ρ in (6.2.128(p.37) ). Then, Ut can be expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (6.2.129)

For convenience, let us here define U0 = ρ, hence from (6.2.127(p.37) ) we have

V0 = U0 = ρ. (6.2.130)

Then, it follows that both (6.2.126(p.37) ) and (6.2.128(p.37) ) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, ρ, Ut}, t ≥ 0, (6.2.131)

Vt = max{ρ, Ut}, t ≥ 0, (6.2.132)

thus (6.2.131(p.37) ) can be expressed as

vt(w) = max{w, Vt}, t ≥ 0. (6.2.133)

Accordingly, since E[vt−1(ξ)] = E[max{ξ, Vt−1}] = E[max{ξ − Vt−1, 0}] + Vt−1 = T (Vt−1) + Vt−1 for t > 0 from (5.1.1(p.25) ),

we can rewrite (6.2.129(p.37) ) as

Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (5.1.4(p.25) )) (6.2.134)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.8(p.25) )). (6.2.135)

� SOE{M:3[R][A]} can be reduced to (6.2.130(p.37) ), (6.2.132(p.37) ), and (6.2.134(p.37) ), listed in Table 6.4.5(p.41) (I).

6.2.1.3.2 M̃:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t ≥ 0 with a seller w and with no seller respectively, expressed as

v0(w) = min{w, ρ}, (6.2.136)

vt(w) = min{w, ρ, Ut}, t > 0, (6.2.137)

V0 = ρ, (6.2.138)

Vt = min{ρ, Ut}, t > 0, (6.2.139)

where Ut is the minimum of the total expected present discounted cost from rejecting both the price w and intervening quitting

penalty ρ in (6.2.137(p.37) ) and from rejecting the intervening quitting penalty ρ in (6.2.139(p.37) ). Then, Ut can be expressed as

Ut = min{C :λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (6.2.140)

For convenience, let us here define U0 = ρ, hence from (6.2.138(p.37) ) we have

V0 = U0 = ρ. (6.2.141)

Then, it follows that both (6.2.137(p.37) ) and (6.2.139(p.37) ) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, ρ, Ut}, t ≥ 0, (6.2.142)

Vt = min{ρ, Ut}, t ≥ 0, (6.2.143)

thus (6.2.137(p.37) ) can be expressed as
vt(w) = min{w, Vt}, t ≥ 0. (6.2.144)
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Accordingly, since vt−1(ξ) = min{ξ, Vt−1} = E[min{ξ − Vt−1, 0}] + Vt−1 = T̃ (Vt−1) + Vt−1 for t > 0 from (5.1.11(p.25) ), we can

rewrite (6.2.140(p.37) ) as follows.

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.14(p.25) )) (6.2.145)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L̃ (Vt−1), 0}+ βVt−1, t > 0 (see (5.1.14(p.25) ) and (5.1.13(p.25) )). (6.2.146)

� SOE{M̃:3[R][A]} can be reduced to (6.2.141(p.37) ), (6.2.143(p.37) ), and (6.2.145(p.38) ), listed in Table 6.4.5(p.41) (II).

6.2.1.3.3 M:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, the seller must determine whether to accept the

terminal quitting penalty ρ or to sell the asset to the buyer. Let the ρ be accepted. Then the profit which the seller can obtain

is ρ. On the other hand, let the asset be sold to the buyer. Then, since the seller must sell the asset to the buyer due to A2(p.11) ,

the price a† must be proposed to the buyer, in other words, the optimal price to propose at time t = 0 is given by

z0 = a, (6.2.147)

hence the profit which the seller obtains at that time is a. Accordingly, the profit that the seller obtains at time 0 becomes

v0 = max{ρ, a}. (6.2.148)
Next we have

vt = max{ρ,Ht}, t > 0, (6.2.149)

V0 = ρ, (6.2.150)

Vt = max{ρ, Ut}, t > 0, (6.2.151)

where Ht and Ut are defined as follows. Firstly Ht is the maximum of the total expected present discounted profit from

rejecting the intervening quitting penalty ρ. Since a buyer exists due to the above definition of vt and since the reservation

price (maximum permissible buying price) of the buyer is ξ, if the seller proposes a price z, the probability of the buyer buying

the asset is given by p(z) = Pr{z ≤ ξ} (see (5.1.18(p.26) )). Hence we have

Ht = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0 (6.2.152)

due to (5.1.19(p.26) ), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (6.2.153)

due to (5.1.25(p.26) ). Finally Ut is the maximum of the total expected present discounted profit from rejecting the intervening

quitting penalty ρ. Since no buyer exists due to the above definition of Vt, it can be expressed as follows.

Ut = max{ C : λβvt−1 + (1− λ)βVt−1 − s, S : βVt−1}, t > 0. (6.2.154)

For t = 1 we have
U1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}

= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (6.2.155)

Now, from (6.2.152(p.38) ) we have Ht − Vt = T (Vt) for t > 0, hence from (6.2.149(p.38) ) we have vt − Vt = max{ρ− Vt,Ht − Vt} =
max{ρ− Vt, T (Vt)} · · · ((1)) for t > 0. Since Vt ≥ ρ for t > 0 from (6.2.151(p.38) ), we have ρ− Vt ≤ 0 for t > 0. In addition, since

p(b) = 0 due to (5.1.29 (2) (p.26) ), from (5.1.19(p.26) ) we have T (Vt) ≥ p(b)(b− Vt) = 0. Therefore, since ρ− Vt ≤ 0 ≤ T (Vt), from
(1) we have vt − Vt = T (Vt) for t > 0, i.e., vt = T (Vt) + Vt for t > 0, hence vt−1 = T (Vt−1) + Vt−1 for t > 1. Accordingly

(6.2.154(p.38) ) with t > 1‡ can be rearranged as

Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K(Vt−1) + Vt−1, βVt−1} (see (5.1.21(p.26) )) (6.2.156)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (5.1.21(p.26) ) and (5.1.20(p.26) )). (6.2.157)

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer
‡Instead of t > 0.
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For convenience, let U0 = ρ. Then, due to (6.2.150(p.38) ) we have

V0 = U0 = ρ, (6.2.158)

hence it follows that (6.2.151(p.38) ) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = max{ρ, Ut}, t ≥ 0. (6.2.159)

� SOE{M:3[P][A]} is given by (6.2.158(p.39) ), (6.2.159(p.39) ), (6.2.155(p.38) ), and (6.2.156(p.38) ), listed in

Table 6.4.5(p.41) (III).

6.2.1.3.4 M̃:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, the buyer must determine whether to accept the

terminal quitting penalty ρ or to buy the asset from the seller. Let the ρ be accepted. Then, the cost which the buyer pays at

time 0 is ρ. On the other hand, let the asset be bought for the buyer. Then, since the buyer must buy the asset from the seller

due to A2(p.11) , the price b† must be is proposed to the seller; in other words, the optimal price to propose is given by

z0 = b, (6.2.160)

hence the cost which the buyer pays at that time is b. Accordingly, the buyer pays at time 0 becomes

v0 = min{ρ, b}. (6.2.161)

Next we have
vt = min{ρ,Ht}, t > 0. (6.2.162)

V0 = ρ, (6.2.163)

Vt = min{ρ, Ut}, t > 0, (6.2.164)

where Ht and Ut are defined as follows. Firstly Ht is the minimum of the total expected present discounted cost from rejecting

the intervening quitting penalty ρ. Since a seller exists due to the above definition of vt and since the reservation price (minimum

permissible selling price) of the seller is ξ, if the buyer proposes the price z to an appearing seller, the probability of the seller

selling the asset for the price z is p̃(z) = Pr{ξ ≤ z} (see (5.1.31(p.26) )). Hence we have

Ht = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (6.2.165)

due to (5.1.32(p.26) ), implying that the optimal buying price which the buyer should pay is given by

zt = z(Vt), t ≥ 0, (6.2.166)

due to (5.1.38(p.27) ). Finally Ut is the minimum of the total expected present discounted cost from rejecting the intervening

quitting penalty ρ. Since no seller exists due to the above definition of Vt, it can be expressed as follows.

Ut = min{C : λβvt−1 + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (6.2.167)

For t = 1 we have
U1 = min{λβv0 + (1− λ)βV0 + s, βV0}

= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}

= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (6.2.168)

Now, from (6.2.165(p.39) ) we have Ht − Vt = T̃ (Vt) for t > 0, hence from (6.2.162(p.39) ) we have vt − Vt = min{ρ− Vt,Ht − Vt} =
min{ρ− Vt, T̃ (Vt)} · · · ((2)) for t > 0. Since Vt ≤ ρ for t > 0 from (6.2.164(p.39) ), we have ρ− Vt ≥ 0 for t > 0. In addition, since

p̃(a) = 0 due to (5.1.41 (1) (p.27) ), from (5.1.32(p.26) ) we have T̃ (Vt) ≤ p̃(a)(a− Vt) = 0. Therefore, since ρ− Vt ≥ 0 ≥ T̃ (Vt), from
(2) we have vt − Vt = T̃ (Vt) for t > 0, i.e., vt = T̃ (Vt) + Vt for t > 0, hence vt−1 = T̃ (Vt−1) + Vt−1 for t > 1. Accordingly

(6.2.167(p.39) ) with t > 1 can be rearranged as

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + Vt−1) + βVt−1 + s, βVt−1}

= min{K̃(Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.27) )) (6.2.169)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1, t > 1

= max{L̃ (Vt−1) + Vt−1, βVt−1} (see (5.1.34(p.27) ) and (5.1.33(p.27) )) (6.2.170)

†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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For convenience, let U0 = ρ. Then, due to (6.2.163(p.39) ) we have

V0 = U0 = ρ, (6.2.171)

hence it follows that (6.2.164(p.39) ) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = min{ρ, Ut}, t ≥ 0. (6.2.172)

� SOE{M̃:3[R][A]} is given by (6.2.171(p.40) ), (6.2.172(p.40) ), (6.2.168(p.39) ), and (6.2.169(p.39) ), listed in Table 6.4.5(p.41) (IV).

6.2.2 Search-Enforced-Model

In sE-model (M:x[X][E] and M̃:x[X][E] with x = 1, 2, 3 and X = R,P) a leading-trader needs to take no decision activity regarding

whether or not to conduct the search. This implies that eliminating the terms related to this decision from the systems

of optimality equations in sA-model (SOE{M:x[X][A]} and SOE{M̃:x[X][A]}) produces the systems of optimality equations in

sE-model (SOE{M:x[X][E]} and SOE{M̃:x[X][E]}). Noting this, from Tables 6.4.1(p.41) , 6.4.3(p.41) , and 6.4.5(p.41) we can immediately

obtain the systems of optimality equations for E-model, which are given by Tables 6.4.2(p.41) , 6.4.4(p.41) , and 6.4.6(p.41) .

6.2.3 Assertion and Assertion System of Model

In general, let us refer to a description on whether or not a given statement is true as the assertion, denoted by A, and as a set

consisting of some assertions as the assertion system, denoted by A . In addition, let us denote an assertion and an assertion

system for a given Model by respectively A{Model} and A {Model}.

6.3 Recall-Model
See Chap. 24(p.239) .
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6.4 Summary of the System of Optimality Equations (SOE)

Model 1
Table 6.4.1: Search-Allowed-Model 1

(I) SOE{M:1[R][A]}
V1 = βµ− s, (6.4.1)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.2)

(II) SOE{M̃:1[R][A]}
V1 = βµ + s, (6.4.3)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.4)

(III) SOE{M:1[P][A]}
V1 = βa− s, (6.4.5)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.6)

(IV) SOE{M̃:1[P][A]}
V1 = βb + s, (6.4.7)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.8)

Table 6.4.2: Search-Enforced-Model 1

(I) SOE{M:1[R][E]}
V1 = βµ− s, (6.4.9)
Vt = K(Vt−1) + Vt−1, t > 1. (6.4.10)

(II) SOE{M̃:1[R][E]}
V1 = βµ + s, (6.4.11)

Vt = K̃(Vt−1) + Vt−1, t > 1. (6.4.12)

(III) SOE{M:1[P][E]}
V1 = βa− s, (6.4.13)
Vt = K(Vt−1) + Vt−1, t > 1, (6.4.14)

(IV) SOE{M̃:1[P][E]}
V1 = βb + s, (6.4.15)

Vt = K̃(Vt−1) + Vt−1, t > 1, (6.4.16)

Model 2
Table 6.4.3: Search-Allowed-Model 2

(I) SOE{M:2[R][A]}
V0 = ρ, (6.4.17)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (6.4.18)

(II) SOE{M̃:2[R][A]}
V0 = ρ, (6.4.19)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (6.4.20)

(III) SOE{M:2[P][A]}
V0 = ρ, (6.4.21)
V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (6.4.22)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.23)

(IV) SOE{M̃:2[P][A]}
V0 = ρ, (6.4.24)
V1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (6.4.25)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.26)

Table 6.4.4: Search-Enforced-Model 2

(I) SOE{M:2[R][E]}
V0 = ρ, (6.4.27)
Vt = K(Vt−1) + Vt−1, t > 0, (6.4.28)

(II) SOE{M̃:2[R][E]}
V0 = ρ, (6.4.29)

Vt = K̃(Vt−1) + Vt−1, t > 0, (6.4.30)

(III) SOE{M:2[P][E]}
V0 = ρ, (6.4.31)
V1 = λβmax{0, a− ρ}+ βρ− s, (6.4.32)
Vt = K(Vt−1) + Vt−1, t > 1, (6.4.33)

(IV) SOE{M̃:2[P][E]}
V0 = ρ, (6.4.34)
V1 = λβmin{0, b− ρ}+ βρ + s, (6.4.35)

Vt = K̃(Vt−1) + Vt−1, t > 1, (6.4.36)

Model 3
Table 6.4.5: Search-Allowed-Model 3

(I) SOE{M:3[R][A]}
V0 = U0 = ρ, (6.4.37)
Vt = max{ρ, Ut}, t ≥ 0, (6.4.38)
Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (6.4.39)

(II) SOE{M̃:3[R][A]}
V0 = U0 = ρ, (6.4.40)
Vt = min{ρ, Ut}, t ≥ 0, (6.4.41)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (6.4.42)

(III) SOE{M:3[P][A]}
V0 = U0 = ρ, (6.4.43)
Vt = max{ρ, Ut}, t ≥ 0, (6.4.44)
U1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (6.4.45)
Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.46)

(IV) SOE{M̃:3[P][A]}
V0 = U0 = ρ, (6.4.47)
Vt = min{ρ, Ut}, t ≥ 0, (6.4.48)
U1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (6.4.49)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (6.4.50)

Table 6.4.6: Search-Enforced-Model 3

(I) SOE{M:3[R][E]}
V0 = U0 = ρ, (6.4.51)
Vt = max{ρ, Ut}, t ≥ 0, (6.4.52)
Ut = K(Vt−1) + Vt−1, t > 0. (6.4.53)

(II) SOE{M̃:3[R][E]}
V0 = U0 = ρ, (6.4.54)
Vt = min{ρ, Ut}, t ≥ 0, (6.4.55)

Ut = K̃(Vt−1) + Vt−1, t > 0. (6.4.56)

(III) SOE{M:3[P][E]}
V0 = U0 = ρ, (6.4.57)
Vt = max{ρ, Ut}, t ≥ 0, (6.4.58)
U1 = λβmax{0, a− ρ}+ βρ− s, (6.4.59)
Ut = K(Vt−1) + Vt−1, t > 1. (6.4.60)

(IV) SOE{M̃:3[P][E]}
V0 = U0 = ρ, (6.4.61)
Vt = min{ρ, Ut}, t ≥ 0, (6.4.62)
U1 = λβmin{0, b− ρ}+ βρ + s, (6.4.63)

Ut = K̃(Vt−1) + Vt−1, t > 1. (6.4.64)
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Chapter 7

Optimal Decision Rules

This chapter clarifies the structure of the optimal decision rules for the 24 no-recall-models in Table 3.2.1(p.17) .

7.1 Points in Time
To start with, let us note here that the optimal decision rules are closely related to the following six points in time (see H1(p.8) ).

• Recognizing time tr (see H1a(p.8) ),

• Starting time τ (see H1b(p.8) ),

• Initiating time ti (see H1c(p.8) ),

• Stopping time ts (see H1d(p.8) ),

• Deadline td = 0 (see H1e(p.8) ),

• Quasi-deadline tqd, the smallest of all possible initiating times.

◦ For Model 1, the initiating time ti must be greater than or equal to 1 (i.e., ti ≥ 1) for the following reason. If ti = 0,

there exists no buyer at time 0, hence the process must stop without selling the asset at that time, which contradicts

A2(p.11) . Accordingly, the initiating time ti must be 1 by definition.

◦ For Models 2/3, suppose the initiating time ti is equal to the deadline 0 (i.e., ti = 0). Then, although there exists no

buyer at that time, the process can stop by accepting the terminal quitting penalty price ρ, hence the smallest initiating

time ti is 0 by definition.

Thus it follows that we have

tqd = 1 for Model 1 (7.1.1)

tqd = 0 for Model 2/3 (7.1.2)

Model 1-• • • • • • • • • • • • • • • • • • •· · · · · · td = 0tqd = 1t = ti t = ts′ · · ·ts = τtr

stopping timeinitiating timestarting timerecognizing time
quasi-deadline

deadline

Model 2/3-• • • • • • • • • • • • • • • • • • •· · · · · · td = 0

tqd = 0

t = ti t = ts′ · · ·ts = τtr

stopping timeinitiating timestarting timerecognizing time
quasi-deadline

deadline

Figure 7.1.1: Six points in time related to the optimal decision rules

7.2 Four Types of Decisions
Below let us provide the strict definitions for the four types of decisions prescribed in Section 3.4(p.18) .

7.2.1 Whether or Not to Accept the Proposed Price

This is the decision only for R-model. Below let us represent

Accept a price w at time t → Acceptt⟨w⟩, (7.2.1)

Reject a price w at time t → Rejectt⟨w⟩. (7.2.2)

First, in the selling model, suppose that a buyer appearing at a time t has proposed a buying price w. Then, from (6.2.2(p.29) )

and (6.2.62(p.33) ) we have
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w ≥ (≤)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩). (7.2.3)

Similarly, in the buying model, suppose that a seller appearing at a time t has proposed a selling price w. Then, from (6.2.16(p.30) )

and (6.2.77(p.34) ) we have

w ≤ (≥)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩).

Then, we refer to the Vt as the optimal-reservation-price, opt-R-price for short.

7.2.2 What Price to Propose

This is the decision only for P-model. In the selling model, the optimal selling price which a seller (leading-trader) should

propose at a time t is given by

zt = z(Vt) (see (6.2.34(p.31) ) and (6.2.94(p.35) )).

Similarly, in the buying model, the optimal buying price which a buyer (leading-trader) should propose at a time t is given by

zt = z(Vt) (see (6.2.50(p.32) ) and (6.2.111(p.36) )).

Then, we refer to the zt as the optimal-posted-price, opt-P-price for short.

7.2.3 Whether or not to Conduct the Search

This is the decision only for sA-model (see (A5b(p.12) ). Then, its decision rule is given by (6.2.9(p.30) ), (6.2.23(p.31) ), (6.2.39(p.32) ),

(6.2.55(p.32) ), (6.2.70(p.33) ), (6.2.85(p.34) ), (6.2.102(p.35) ), and (6.2.119(p.36) ).

Remark 7.2.1 (Conduct Skip (C S ) (see Figure 2.2.3(p.12) )) Figure 7.2.1(p.44) (I) below sketches the case (Model 1) that the
search-Conduct starts at the optimal initiating time t∗τ and continue up to the quasi-deadline tqd = 1 so long as the process
does not stop; it will be known later on that this case occurs everywhere in the paper. Contrary to this, Figure 7.2.1(p.44) (II)
schematizes the case (Model 2) that the search-Conduct starts at the optimal initiating time t∗τ , continues for a while, and switches
to the search-Skip at a certain point in time t′ > tqd = 1; this is a very rare case that occurs only in Tom’s 20.1.4(p.160) (b3iii),
20.1.12(p.169) (b3iii), and 20.1.15(p.170) (b3iii). Let us represent the case as Conduct Skip, simply C S (Def. 2.2.1(p.12) ).

(I)
Model 1

-• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 01· · · · · · ︸ ︷︷ ︸
search-Conduct

(II)
Model 2

-• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 · · · t′ t′ − 1 · · · 01· · · · · · ︸ ︷︷ ︸
search-Conduct

↓

search-Skip
(Conduct Skip)

Figure 7.2.1: Conduct Skip (C S )

♡Alice 2 (jumble of intuition and theory) Herein, Alice was hit by the following question. Suppose that St < 0 at a
time t (see (6.2.12(p.30) )), i.e., the search-skip becomes strictly optimal at that time. Then, since max{St, 0} = 0, we have
Vt = βVt−1 from (6.2.8(p.30) ), implying that initiating the process at time t becomes indifferent to initiating the process at
time t − 1; nevertheless, the search skip is strictly optimal ! After having mumbled, letting out a strange noise “Is this a little
bit funny ?”, she gave a shout “Such a laughable affair !”. Then, Dr. Rabbit again appeared and pedantically told to Alice “The
above two results are both ones based on a theory of mathematics, but your confusion is caused by an intuition; there does not exist
any logical relationship between the two ! Well · · · your confusion is what is caused by a jumble of intuition and theory !!”, and he
again disappeared down the hole as murmuring “Oh dear! Oh dear! I shall be too late for the faculty meeting !”.

7.2.4 When to Initiate the Process (Optimal Initiating Time)

This is the decision only for iiA-Case (see H1cii(p.8) ).

7.2.4.1 Definition

The definition below is only for a selling model with tqd = 1 (Model 1 (tqd = 0 for Model 2)). Suppose that the process has

started at the starting time τ and that the seller (leading-trader) has determined to initiate the process at a given time t after

that (τ ≥ t ≥ tqd), i.e., τ − t periods hence. Then, the total expected present discounted profit at the starting time τ is given by

Itτ
def
= βτ−tVt, τ ≥ t ≥ tqd. (7.2.4)

See (6.2.3(p.29) ) and (6.2.4(p.29) ) for the definition of Vt. Then, by t∗τ let us denote t maximizing Itτ on τ ≥ t ≥ tqd, i.e.,

I
t∗τ
τ = max

τ≥t≥tqd
Itτ or equivalently I

t∗τ
τ ≥ Itτ , τ ≥ t ≥ tqd. (7.2.5)
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Let us call the t∗τ the optimal initiating time, denoted by OITτ ⟨t∗τ ⟩△. If

I
t∗τ
τ > Itτ for t ̸= t∗τ , (7.2.6)

then it is called the strictly optimal initiating time, denoted by OITτ ⟨t∗τ ⟩N.

Remark 7.2.2 (strictness of optimality (N )) Suppose that the initiating time t∗τ is strictly optimal in a sense of (7.2.6(p.45) ).

Then, since I
t∗τ
τ > I

t∗τ−1
τ , we have βτ−t∗τVt∗τ > βτ−t∗τ+1Vt∗τ−1, hence Vt∗τ > βVt∗τ−1. Accordingly, since Vt∗τ = max{St∗τ , 0}+βVt∗τ−1

from (6.2.8(p.30) ) with t = t∗τ , we have max{St∗τ , 0} > 0, hence St∗τ > 0, implying that it becomes strictly optimal to conduct the
search due to (6.2.12(p.30) ); in other words, it is not allowed to skip the search.

Throughout the paper, let us employ the following preference rule.

Preference Rule 7.2.1 Let Itτ = It−1
τ for a given t. Then, the seller (leading-trader) prefers t − 1 to t as the initiating time,

implying that “Postpone the initiation of the process so long as it is not unprofitable to do so.”

7.2.4.2 β-adjusted sequence Vβ[τ ]

First, let us denote the sequence consisting of Vτ , Vτ−1, Vτ−2, · · · , Vtqd by

V[τ ]
def
= {Vτ , Vτ−1, Vτ−2, · · · , Vtqd}, (7.2.7)

called the original sequence and let

t∗′τ = argmaxV[τ ] = argmax{Vτ , Vτ−1, Vτ−2, · · · , Vtqd}. (7.2.8)

Next, let us denote the sequence

Vβ[τ ]
def
= {Vτ , βVτ−1, β

2Vτ−2, · · · , βτ−tqdVtqd} = {I
τ
τ , I

τ−1
τ , Iτ−2

τ , · · · , Itqdτ }, (7.2.9)

called the β-adjusted sequence of V[τ ]. By definition, the optimal initiating time t∗τ is given by t attaining the maximum of

elements within β-adjusted sequence Vβ[τ ], i.e.,

t∗τ = argmaxVβ[τ ] = argmax{Vτ , βVτ−1, β
2Vτ−2, · · · , βτ−tqdVtqd}. (7.2.10)

Note here that the monotonicity of the original sequence V[τ ] is not always inherited to the β-adjusted sequence Vβ[τ ], i.e.,

t∗τ ̸= t∗′τ (see Section A5.2.2(p.310)).

7.2.4.3 Three Possibilities

Below let us define the three types of the optimal initiating time (OIT).

1. Degeneration to the starting time τ

Let t∗τ = τ , i.e., it is optimal to initiate the process at the starting time τ , denoted by ⃝⃝s . Then, the optimal initiating

time t∗τ is said to degenerate to the starting time τ , represented by ⃝s dOITsτ ⟨τ⟩ △ (⃝⃝s △ for short). If the optimal initiating

time t∗τ is strict (see (7.2.6(p.45) )), it is called the strictly degenerate OIT, represented by ⃝s dOITsτ ⟨τ⟩ N (⃝⃝s N for short).

2. Non-degeneration (τ > t∗τ > tqd)

Let τ > t∗τ > tqd, i.e., the optimal initiating time is between the starting time τ and the quasi-deadline tqd, denoted by } .

Then, the optimal initiating time t∗τ is said to be the non-degenerate OIT, represented by } ndOITτ ⟨t∗τ ⟩ △ (} △ for short).

If

Iττ = Iτ−1
τ = · · · = I

t∗τ
τ ≥ I

tqd
τ (7.2.11)

as a special case, then it is said to be the indifferently non-degenerate OIT (see Preference Rule 7.2.1), represented by

} ndOITτ ⟨t∗τ ⟩ ∥ (} ∥ for short). If I
t∗τ
τ > Itτ for all t ̸= t∗τ , then it is said to be the strictly non-degenerate OIT, represented

by } ndOITτ ⟨t∗τ ⟩ N (} N for short).

3. Degeneration to the deadline tqd

Let t∗τ = tqd = 1 (0) for Model 1 (Model 2/3), i.e., the optimal initiating time is the quasi-deadline, denoted by•dd . Then,

the optimal initiating time t∗τ is said to degenerate to the quasi-deadline tqd, represented by • dOITdτ ⟨tqd⟩ △ (•dd △ for short).

If its optimality is strict, then it is called the strictly degenerate OIT, represented by • dOITdτ ⟨tqd⟩ N (•dd N for short). If

Iττ = Iτ−1
τ = · · · = I

tqd
τ , · · · ((1))

then the degeneration is said to be indifferent, represented by • dOITdτ ⟨tqd⟩ ∥ (•dd ∥ for short).

Remark 7.2.3 When (7.2.11(p.45) ) is possible, as an optimal initiating time we can define ⃝⃝s ∥ if Preference Rule 7.2.1(p.45) is
ignored. However, this definition is not permitted since the preference rule is applied throughout the paper.
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7.2.4.4 First Search Conducing Time

There might exist a person who thinks that the optimal initiating time can be given also by the first search conducing time.

Here, for example, consider M:2[R][A] (tqd = 0) with the starting time τ = 6 where

Skip6△, Skip5△, Skip4△, Conduct3N, Conduct2△, Conduct1△,

meaning that the first search conducting time is t∗∗τ
def
= 3 · · · ((2)). Then, since

S6 ≤ 0, S5 ≤ 0, S4 ≤ 0, S3 > 0, S2 ≥ 0, S1 ≥ 0

from (6.2.71(p.33) ) and (6.2.73(p.33) ), we have

max{S6, 0} = 0, max{S5, 0} = 0, max{S4, 0} = 0, max{S3, 0} > 0, max{S2, 0} ≥ 0, max{S1, 0} ≥ 0.

Thus, from (6.2.69(p.33) ) we have

V6 = βV5, V5 = βV4, V4 = βV3, V3 > βV2, V2 ≥ βV1, V1 ≥ βV0,

so

V6 = βV5 = β2V4 = β3V3 > β4V2 ≥ β5V1 ≥ β6V0 or equivalently I66 = I56 = I46 = I36 > I26 ≥ I16 ≥ I06

due to (7.2.4(p.44) ), hence we have the optimal initiating time t∗τ = 3 · · · ((3)) by definition.

♡Alice 3 (first search conducting time) When the story has come up to here, after a moment’s reverse, Alice happened to
conceive of an idea; “Since t∗∗τ = t∗τ = 3 due to (2) and (3) , as an optimal initiating time we can employ the first search conducting
time t∗∗τ = 3 instead of t∗τ = 3 !”. Then, Dr. Rabbit appeared and told to her “ Surely you are not incorrect, Miss Alice !. But, but—
the profit attained by initiating the process at the first search conducting time t∗∗τ is the same as the profit attained by initiating the
process at the optimal initiating time t∗τ ; in other words, since the former profit does not become greater than the latter profit, we
have no reason why t∗∗τ must be used instead of t∗τ ; accordingly, it suffices to employ t∗τ !! Miss Alice !!! ”. And then, taking a watch
out of the waistcoat-pocket and murmuring “Oh dear! Oh dear! I shall be too late for the faculty meeting”, he again disappeared
down the hole.

7.2.4.5 Null-Time-Zone

In this section let us raise a perplexing question caused by the optimal initiating time t∗τ . Here, let τ > t∗τ , i.e., the optimal

initiating time t∗τ is not the starting time τ (see Figure 7.2.2(p.46) below), implying that no decision-making action is taken at

every point in time t = τ, τ − 1, · · · , t∗τ + 1. Let us refer to each of τ, τ − 1, · · · , t∗τ + 1 as the null point in time and the whole

of these time points as the null-time-zone, denoted as Null-TZ.

Null-TZ
def
= ⟨τ, τ − 1, · · · , t∗τ + 1⟩.

-• • • • • • • • • • • • • • • • • • • • • • time︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time starting time optimal initiating time (OIT) quasi-deadline tqd

deadline

tr τ τ − 1 t∗τ + 1 t∗τ t∗τ − 1 01· · · · · ·

Figure 7.2.2: Null-time-zone in Model 1 with tqd = 1 (Null-TZ)

The above event implies that, without noticing the existence of Null-TZ, so far we unwittingly or unconsciously might have

continued to fall into the senselessness of engaging in unnecessary decision-making activities over these points in time.

7.2.4.6 Deadline-Engulfing

♡Alice 4 (black hole) Hereupon, Alice supposed “If the optimal initiating time t∗τ degenerates to the deadline (time 0), then
what will ever happen ?”, and screamed out “If so, it follows that don’t conduct any decision-making activity up to the deadline !; If
that happens, the whole of decision-making activities which are scheduled at the starting time τ come to nought as if being engulfed
in the deadline !”. Alice was heavily nonplused and cried “It · · · , it is the same as that black hole into which all physical matters,
even light, are squeezed into ! If so, · · · , a decision process with an infinite planning horizon vanishes away in time toward an infinite
future ! Oh dear!! Oh dear !!! · · · ” She hunkered down, and then buried her head in her hands. Then, Dr. Rabbit again appeared
and told to her a little bit ungraciously “This is an undeniable conclusion that is theoretically derived !.”

� Example 7.2.1 In fact, consider Tom 20.2.4(p.196) (d2i) with the condition of “β < 1, s > 0, ρ > xK , and κ ≤ 0”, which has

• dOITdτ>0⟨0⟩ N (•ddN). Thus, it follows that the model vanishes away in time toward an infinite future under this condition.

� Example 7.2.2 What should be noteworthy is here that Pom 20.2.1(p.198) (b) with the condition of “a > 0, β = 1, s = 0, and

ρ ≥ b” has • dOITdτ>0⟨0⟩ ∥ (•dd∥), implying that there can exist an instance of vanishing away in time toward an infinite future

even under the most simple condition of β = 1 and s = 0.
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In this paper, let us refer to “engulfed in the deadline” as “deadline-engulfing”, represented by•dd -engulfing. This situation can

be depicted as the two figures below.

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨1⟩

deadline

tr tr − 1 τ

starting time

τ − 1 t∗τ = 1 0· · · · · ·
.......................................................................

................................................................................
...........................................................................................................



- •dd

Figure 7.2.3: Deadline-engulfing (•dd ) for Model 1

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨0⟩

deadline

tr tr − 1 ττ

starting time

t∗τ = 0· · · · · ·
.........................................................................

......................................................................................
..................................................................................................................



- •dd

Figure 7.2.4: Deadline-engulfing (•dd ) for Model 2/3

Later on we will demonstrate that the•dd -engulfing is not a rare event but a phenomenon which is very often possible; amazingly,

it can occur even in the simplest case “β = 1 and s = 0” (see Pom’s 20.2.1(p.198) , 20.2.5(p.200) , 20.2.9(p.210) , and 20.2.17(p.217) ). Taking

this fact into consideration, we will inevitably be led to a serious re-examination of the whole discussion that have been made

so far for all decision processes, including Markovian decision processes [21,Howard,1960] (see Section A5(p.310) ).

7.3 Mental Conflicts
Below let us represent the collective term of

opt-R-price (Vt) (optimal-reservation-price (see Section 7.2.1(p.43) ))

opt-P-price (zt) (optimal-posted-price (see Section 7.2.2(p.44) ))

as opt-R/P-price (Vt/zt). One of our main concerns on the opt-R/P-price (Vt/zt) is its monotonicity.

7.3.1 Normality

Suppose that the monotonicity over the entire planning horizon is

◦ nondecreasing in t (see Figure 7.3.1(p.47) (I)) or

◦ nonincreasing in t (see Figure 7.3.1(p.47) (II)).

opt-R/P-price (Vt/zt)

-
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(II)

Figure 7.3.1: Normal Mental Conflict

Remark 7.3.1 (normal mental conflict) The monotonicity of the opt-R/P-price reflects the mental conflict of decision-
maker that was presented within the expectation of Examples 1.4.1(p.5) - 1.4.4(p.6) . This mental conflict can be restated as follows.
As the deadline approaches,

◦ a seller becomes “selling spree” in the selling problem.
◦ a buyer becomes “buying spree” in the buying problem.

Let us refer to this as the normal mental conflict..
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7.3.2 Abnormality

Suppose that the monotonicity over the entire planning horizon shifts

◦ from “nondecreasing” to “nonincreasing” in t (see Figure 7.3.2(p.48) (I)) or

◦ from “nonincreasing” to “nondecreasing ”in t (see Figure 7.3.2(p.48) (I)).

Remark 7.3.2 (abnormal mental conflict) The above monotonicity of the opt-R/P-price reflects the mental conflict stated
below. As the deadline approaches

◦ A seller shift from “selling spree” to “buying spree”in the selling problem.
◦ A buyer shift from “buying spree” to “selling spree” in the buying problem.

Let us refer to this as the abnormal mental conflict..

opt-R/P-price (Vt/zt)

-
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Figure 7.3.2: Abnormal Mental Conflict



Chapter 8

Conclusions of Part 1 (Introduction)

The whole discussions over Chaps. 1(p.3) - 7(p.43) are summarized as below.

C1. Two motives

Behavior of human-beings, whether a little action or a significant one, often starts with subtle motives. In an early stage of

this study, the authors observed similarities between selling problem and buying problem as well as resemblances between

methodologies used to analyze the two problems. This observation led us, before long, to the motives with the following

questions (see Section 1.2(p.3) ): (1) Is a buying problem symmetrical to a selling problem ? and (2) Does a general theory

integrating quadruple-asset-trading-problems exist ? This study, spanning over near half a century, was inspired by the

desire to answer the two questions. Our final conclusions are “No” for (1) and “Yes” for (2).

C2. Philosophical background

Refer to Section 1.3(p.4) for the philosophical background of “how and why we came to perceive a decision theory as physics”,

which fundamentally informs the entire writing of this paper. Generally, a physical viewpoint stems from a mental process

involving unfiltered observation of a subject, free from any preconceived premises, assumptions, hypotheses, biases, and

so on. It is crucial to recognize the difficulty of this task, even for modern individuals who consider themselves enough

scientifically aware. In fact, Prior to Galileo’s era (pre-1600s), no one would have questioned the belief that the heaven

revolved around the Earth (Ptolemaic system). Similarly, in the absence of modern knowledge, individuals, including

the authors, would adhere to this theory without question. It is essential to acknowledge that the transition to the sun-

centered theory (Copernican system) took thousands of years. History demonstrates that the natural science has successfully

undergone this rigorous examination. Scientists must be open to the existence of “as-yet-unrecognized knowledge” and

embrace the acknowledgment of ignorance. Those familiar with physics will quickly grasp the essence of Albert Einstein

“As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer

to reality.” However, for those without this experience, the understanding of this context may require significant time or

might never fully materialize.

C3. Time concept

Guided by the above philosophical background, we came to regard human beings as real entities that scientists study as

their research objects. Now, there are no physical existence devoid of the time concept; accordingly, we inevitably and/or

unconsciously began to recognize the existence of the five points in time: recognizing time, starting time, initiating time,

stopping time, and deadline (see H1(p.8) and Section 7.1(p.43) ), which dominate the whole description of this paper.

C4. Optimal initiating time

Especially noteworthy one among the above five points in time is the initiating time, which leads us to the optimal initiating

time (OIT) (see Section 7.2.4.1(p.44) ). This yields three kinds of points in time: ⃝⃝s (starting time), } (non-degenerate

time), and•dd (deadline) (see Section 7.2.4.3(p.45) ).

C5. Null-time-zone and deadline-engulfing

It is striking that the two optimal initiating times (OIT) } and •dd inevitably gives rise to the events of null-time-zone

and deadline-engulfing (see H3(p.9) and Sections 7.2.4.5(p.46) and 7.2.4.6(p.46) ), which can be said to be novel findings in

the sense that they have not been previously recognized by any researchers, including the authors in the past. What

is furthermore remarkable is that the existence of } and •dd are not rare but rather frequent (see 22.2% and 33.4% in

Table 22.1.1(p.234) ). Here it should be emphasized that }N and •ddN (strictly optimal) occur although at the very small

rates of 2.6% and 3.2% respectively (see Table 22.1.1(p.234) ). Lastly, note that the existence of the above two events suggests

the need for a comprehensive re-examination of all results derived in the conventional investigations of decision processes

without incorporating the concept of the optimal initiating time.
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C6. Structured-unit-of-models

Before delving into the core of the study, we endeavored to clarify the general structure of asset trading problems

(see Section 1.4(p.4) ), which gave rise to the concepts of the quadruple-asset-trading-problems (see Section 1.4.5(p.7) ) and

the structured-unit-of-models (see Section 3.3(p.18) ). One of the key points in this paper is not to analyze respective mod-

els included in the structured-unit-of-models discretely and individualistically but to clarify the interconnectedness among

these models systematically and comprehensively by using the integrated theory in Part 2(p.51) .

C7. Assumptions

In Section 2.2(p.11) we presented the eleven assumptions, A1(p.11) -A11(p.13) , which become necessary for providing strict

definitions of all models related to asset trading problems discussed in this paper. Presumably, the three of them, A5(p.12) ,

A7(p.12) , and A11(p.13) , are all what are first introduced in this paper. The first one, A5(p.12) (search-Enforced-Model and

search-Allowed-Model), is from the realistic requirement, the second one, A7(p.12) (quitting penalty price), from the inevitable

assumption due to λ < 1, and the last one (finiteness of planning horizon), from the physical recognition that there does

not exist a problem with the infinite planning horizon in the real world.

C8. Discount factor for cost

Refer to [40, Ross] for a description concerning an economic implications of the discount factor β for profit. However,

surprisingly, to the best of the authors’ knowledge, we have not encountered references providing a persuasive explanation

for the implications of the discount factor β for cost. We provided a clear interpretation for this issue in Section 2.3(p.13) .

C9. Underlying functions.

The systems of optimality equations (see Chap. 6(p.29) ) for all models (see Table 3.2.1(p.17) ) are expressed by using functions

T , L , K , and L , referred to as the underlying function (see Chap. 5(p.25) ). The function T has been often defined and

used thus far in the fields of mathematical statistics, operational research, and economics (see [13,Deg1970]); however, the

introduction of remaining functions L, K, and L (see (5.1.3(p.25) ) - (5.1.5(p.25) )) is presumably first in this paper. Moreover,

the different properties of these functions are consistently utilized in the analyses of these models. All properties of these

underlying functions (see Lemmas 10.1.1(p.55) - 10.3.1(p.59) ) were derived through the repeated arrangement and rearrangement,

as if solving a jigsaw puzzle, of many results that were obtained, over more than ten years, for various models. It was

demonstrated in [25,Iku1996] that various results for wide-ranging types of decision problems that have been posed and

examined in many references thus far can be derived by using these functions.

C10. Mental conflict As illustrated in Examples 1.4.1(p.5) -1.4.4(p.6) , the normal mental conflict experienced by a leading

trader (see Remark 7.3.1(p.47) ) can be intuitively understood. On the other hand, the abnormal mental conflict (see Re-

mark 7.3.2(p.48) ) is hard to immediately grasp, which is possible in fact as presented in C1b2(p.233) .
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Part 2

Integrated Theory

In this part we attempt to construct the integrated theory.

Chap. 9 Flow of the Construction of Integrated Theory . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chap. 10 Properties of Underlying Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chap. 11 Proof of A {M:1[R][A]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chap. 12 Symmetry Theorem (R↔ R̃) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chap. 13 Analogy Theorem (R↔ P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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Chapter 9

Flow of the Construction of Integrated Theory

9.1 Bird’s-Eye View of Integrated Theory
Figure 9.1.1(p.53) below provides a bird’s-eye view of the flow of discussions which constructs the integrated theory.

Chap. 10(p.55)

(Underlying Functions)

↓

Chap. 11(p.61)

(Proof of A {M:1[R][A]}) -�
Chap. 12(p.69)

Symmetry Theorem (R↔ R̃)
(Derivation of A {M̃:1[R][A]})

?

6

?

6

Chap. 13(p.89)

Analogy Theorem (R↔ P)
(Derivation of A {M:1[P][A]})

-�
Chap. 14(p.101)

Symmetry Theorem (P↔ P̃)
(Derivation of A {M̃:1[P][A]})

Figure 9.1.1: The flow of the construction of the integrated theory

←
Chap. 15(p.111)

Analogy Theorem (R̃↔ P̃)
(Derivation of A {M̃:1[P][A]})

AR→P AP→R AR̃→P̃ AP̃→R̃

The above figure presents the following:

◦ In Chap. 10(p.55) , lemmas and corollaries for underlying functions are proven.

◦ In Chap. 11(p.61) , A {M:1[R][A]} is proven by using the results in Chap. 10(p.55) .

◦ In Chap. 12(p.69) , the symmetry theorem (R↔ R̃) is proven, by which A {M̃:1[R][A]} is derived form A {M:1[R][A]}.
◦ In Chap. 13(p.89) , the analogy theorem (R↔ P) is proven, by which A {M:1[P][A]} is derived form A {M:1[R][A]}.
◦ In Chap. 14(p.101) , the symmetry theorem (P↔ P̃) is proven, by which A {M̃:1[P][A]} is derived form A {M:1[P][A]}.
◦ In Chap. 15(p.111) , the analogy theorem (R̃ ↔ P̃) is proven, which gives the relationship between A {M̃:1[R][A]} and

A {M̃:1[P][A]}.

9.2 Connection with Both Directions
In the flow of Figure 9.1.1(p.53) we should note the following:

◦ It is only A {M:1[R][A]} that is directly proven.

◦ The remaining three A {M̃:1[R][A]} , A {M:1[P][A]} , and A {M̃:1[P][A]} are derived by applying operations SR→R̃, AR→P, and

SP→P̃ to A {M:1[R][A]} .

◦ The above four boxes are connected with both directions (↔ ↕). This interrelationship implies that any given box can be
derived from any other box by applying operations SR→R̃, S R̃→R, SP→P̃, S P̃→P, AR→P, AP→R, AR̃→P̃, and AP̃→R̃, which are defined
in Chaps. 12(p.69) -15(p.111) .
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Chapter 10

Properties of Underlying Functions

This chapter examines the properties of underlying functions TR , LR , KR , and LR and the κR-value (see (5.1.1(p.25) )-(5.1.6(p.25) )),
which are used to clarify the properties of the optimal decision rules for M:1[R][A] (see Chap. 11(p.61) ).

Definition 10.0.1 (A{XR}and A {XR}) Let us denote an assertion on XR = TR , LR , KR ,LR , κR by A{XR} and an assertion
system consisting of some assertions A{XR}’s by A {XR}.

10.1 Primitive Underlying Function TR
To begin with, let us prove the following lemma for the assertion system A {TR}.

Lemma 10.1.1 (A {TR }) For any F ∈ F :

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) + x is nondecreasing on (−∞,∞).

(e) T (x) + x is strictly increasing on [a,∞).

(f) T (x) = µ− x on (−∞, a] and T (x) > µ− x on (a,∞).

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(h) T (x) ≥ max{0, µ− x} on (−∞,∞).

(i) T (0) = µ if a > 0 and T (0) = 0 if b < 0.

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x < y and a < y, then T (x) + x < T (y) + y.

(m) λβT (λβµ− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) a < µ.†

• Proof First, for any x and y let us prove the following two inequalities:

−(x− y)(1− F (y)) ≤ T (x)− T (y) ≤ −(x− y)(1− F (x)) · · · ((1)), (10.1.1)

(x− y)F (y) ≤ T (x) + x− T (y)− y ≤ (x− y)F (x) · · · ((2)). (10.1.2)

Then, let T (x, y)
def
= E[(ξ − x)I(ξ > y)] for any x and y.‡ Since 1 ≥ I(ξ > y) ≥ 0 and since max{ξ − x, 0} ≥ 0 and

max{ξ − x, 0} ≥ ξ − x, we have

max{ξ − x, 0} ≥ max{ξ − x, 0}I(ξ > y) ≥ (ξ − x)I(ξ > y),

hence from (5.1.1(p.25) ) we get T (x) ≥ E[(ξ − x)I(ξ > y)] = T (x, y). Accordingly, for any x and y we have

T (x)− T (y) ≥ T (x, y)− T (y) = E[(ξ − x)I(ξ > y)]− E[(ξ − y)I(ξ > y)] = −(x− y)E[I(ξ > y)].

Since I(ξ ≤ y) + I(ξ > y) = 1, we have

T (x)− T (y) ≥ −(x− y)(E[1− I(ξ ≤ y)]) = −(x− y)(1− E[I(ξ ≤ y)]).

Then, since

E[I(ξ ≤ y)] =
∫∞
−∞ I(ξ ≤ y)f(ξ)dξ =

∫ y

−∞ 1× f(ξ)dξ =
∫ y

−∞ f(ξ)dξ = Pr{ξ ≤ y} = F (y),

we have T (x)− T (y) ≥ −(x− y)(1− F (y)), hence the far left inequality of (1) holds. Multiplying both sides of the inequality
by −1 leads to −T (x) + T (y) ≤ (x− y)(1− F (y)) or equivalently T (y)− T (x) ≤ −(y − x)(1− F (y)). Then, interchanging the

†The self-evident assertion is intentionally added here in order to keep the consistency with Lemma 13.2.1(p.93) (n).
‡If a given statement S is true, then I(S) = 1, or else I(S) = 0.
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notations x and y yields T (x)− T (y) ≤ −(x− y)(1− F (x)), hence the far right inequality of (1) holds. (2) is immediate from
adding x− y to (1) . Let us note here that T (x) defined by (5.1.1(p.25) ) can be rewritten as

T (x) = E[max{ξ − x, 0}I(a ≤ ξ)] + E[max{ξ − x, 0}I(ξ < a) · · · ((3)), (10.1.3)

= E[max{ξ − x, 0}I(b < ξ)] + E[max{ξ − x, 0}I(ξ ≤ b)] · · · ((4)). (10.1.4)

(a,b) Immediate from (5.1.1(p.25) ) and from the fact that max{ξ− x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for
any given ξ.

(c) Let y < x < b, hence x− y > 0. Then, since F (x) < 1 due to (2.2.1 (1,2) (p.13) ), we have −(x− y)(1− F (x)) < 0, hence
T (x)−T (y) < 0 due to (1) , so T (x) < T (y), i.e., T (x) is strictly decreasing on x < b · · · ((5)). Let us assume T (x) = T (b) on x < b.

Then, for any sufficiently small ε > 0 such that b− x > 2ε we have b > b− ε > x+ ε > x, hence T (b) = T (x) > T (b− ε) ≥ T (b)
due to the strict decreasingness shown above and the nonincreasingness in (b), which is a contradiction. Thus, it must be that
T (x) ̸= T (b) on x < b, so T (x) > T (b) or T (x) < T (b) on x < b; however, the latter is impossible due to (b), hence it follows
that T (x) > T (b) on x < b. From this fact and (5) it inevitably follows that T (x) is strictly decreasing on x ≤ b, i.e., T (x) is
strictly decreasing on (−∞, b].

(d) Evident from the fact that T (x) + x = E[max{ξ, x}] from (5.1.1(p.25) ) and max{ξ, x} is nondecreasing in x for any ξ.

(e) Let a < y < x, hence F (y) > 0 due to (2.2.1 (2,3) (p.13) ). Then, since (x− y)F (y) > 0, we have 0 < T (x) + x− T (y) + y
from (2) , hence T (y) + y < T (x) + x, i.e., T (x) + x is strictly increasing on a < x · · · ((6)). Let us assume T (a) + a = T (x) + x

on a < x. Then, for any sufficiently small ε > 0 such that x − a > ε we have a < a + ε < x, hence T (a) + a = T (x) + x >
T (a+ ε)+ a+ ε ≥ T (a)+ a due to the strict increasingness shown above and the nondecreasing in (d), which is a contradiction.
Thus, it must be that T (x)+ x ̸= T (a)+ a on a < x, so we have T (x)+ x > T (a)+ a or T (x)+ x < T (a)+ a on a < x; however,
the latter is impossible due to (d), hence it follows that T (x) + x > T (a) + a on a < x. From this fact and (6) it inevitably
follows that T (x)+ is strictly increasing on a ≤ x, i.e., T (x) + x is strictly increasing on [a,∞).

(f) Let x ≤ a. If a ≤ ξ, then x ≤ ξ, hence max{ξ − x, 0} = ξ − x and if ξ < a, then f(ξ) = 0 · · · ((7)) due to (2.2.3 (1) (p.13) ).

Thus, from (3) we have T (x) = E[(ξ− x)I(a ≤ ξ)] + 0. Then, since E[(ξ− x)I(ξ < a)] =
∫ a

∞(ξ − x)f(ξ)dξ = 0 due to (7) , we
have

T (x) = E[(ξ − x)I(a ≤ ξ)] + E[(ξ − x)I(ξ < a)] = E[(ξ − x)(I(a ≤ ξ) + I(ξ < a)] = E[ξ − x] = µ− x,

hence the former half is true. Then, since T (a) = µ − a or equivalently T (a) + a = µ, if a < x, from (e) we have T (x) + x >
T (a) + a = µ, hence T (x) > µ− x, thus the latter half is true.

(g) Let b ≤ x. If b < ξ, then f(ξ) = 0 due to (2.2.3 (3) (p.13) ), hence E[max{ξ−x, 0}I(b < ξ)] =
∫∞
b

max{ξ−x, 0}f(ξ)dξ = 0

and if ξ ≤ b, then ξ ≤ x, hence max{ξ − x, 0}I(ξ ≤ b) = 0, so E[max{ξ − x, 0}I(ξ ≤ b)] = 0. Accordingly, from (4) we
have T (x) = 0 · · · ((8)), so the latter half is true. Let x < b. Then, since T (x) > T (b) from (c) and T (b) = 0 from (8) , we have

T (x) > 0, hence the former half is true.

(h) Since T (x) ≥ µ− x on (−∞,∞) from (f) and T (x) ≥ 0 on (−∞,∞) from (g), it follows that T (x) ≥ max{0, µ− x} on
(−∞,∞).

(i) From (5.1.1(p.25) ) and (2.2.3 (1,3) (p.13) ) we have T (0) = E[max{ξ, 0}] = E[max{ξ, 0}I(a ≤ ξ ≤ b)]. Hence, if a > 0, then
T (0) = E[ξI(a ≤ ξ ≤ b)] = E[ξ] = µ and if b < 0, then T (0) = E[0I(a ≤ ξ ≤ b)] = 0.

(j) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (d).

(k) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (d).

(l) Let x < y and a < y. If x ≤ a, then T (x) + x ≤ T (a) + a < T (y) + y due to (d,e), and if a < x, then a ≤ x < y, hence
K(x) + x < K(y) + y due to (e). Thus, whether x ≤ a or a < x, we have T (x) + x < T (y) + y

(m) From (5.1.1(p.25) ) we have

λβT (λβµ− s)− s = λβE[max{ξ − λβµ+ s, 0}]− s

= E[max{λβξ − (λβ)2µ+ λβs, 0}]− s

= E[max{λβξ − (λβ)2µ− (1− λβ)s,−s}],

which is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) Evident.

10.2 Derivative Underlying Functions
First let us define

δ = 1− (1− λ)β. (10.2.1)

Then, since 0 < β ≤ 1 and 1 ≥ λ > 0, we have

δ ≥ 1− (1− λ)× 1 = λ > 0 · · · (1), δ ≤ 1− (1− λ)× 0 = 1 · · · (2). (10.2.2)
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Now, from (5.1.3(p.25) ) and (5.1.4(p.25) ) and from Lemma 10.1.1(p.55) (f) we obtain

L (x)

{
= λβµ− s− λβx on (−∞, a] · · · (1),

> λβµ− s− λβx on (a,∞) · · · (2),
(10.2.3)

K (x)

{
= λβµ− s− δx on (−∞, a] · · · (1),

> λβµ− s− δx on (a,∞) · · · (2).
(10.2.4)

In addition, from (5.1.4(p.25) ) and Lemma 10.1.1(p.55) (g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(10.2.5)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (10.2.6)

Then, from (10.2.4 (1) (p.57) ) and (10.2.5 (2) (p.57) ) we get

K (x) + x =

{
λβµ− s+ (1− λ)βx on (−∞, a] · · · (1),

βx− s on [b,∞) · · · (2).
(10.2.7)

From (5.1.8(p.25) ) we have K (x) = L (x)− (1− β)x and L (x) = K (x) + (1− β)x. Accordingly, if xL and xK exist, then we get

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2). (10.2.8)

Lemma 10.2.1 (A {LR })
(a) L (x) is continuous.

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβµ− s)/λβ ≤ (>) a ⇔ xL = (>) (λβµ− s)/λβ.

• Proof (a-c) Immediate from (5.1.3(p.25) ) and Lemma 10.1.1(p.55) (a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), from Lemma 10.1.1(p.55) (g) we have L (x) > 0 for b > x and L (x) = 0 for
b ≤ x, hence xL = b by the definition of xL (see Section 5.2(p.27) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by
contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.

(e) Let s > 0.

(e1) From (10.2.3 (1) (p.57) ) and from λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that x ≤ a. In
addition, we have L (b) = λβT (b) − s = −s < 0 due to Lemma 10.1.1(p.55) (g). Hence, from (a,c) it follows that xL uniquely
exists. The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβµ− s)/λβ ≤ (>) a, from (10.2.3(p.57) ) we have

L ((λβµ− s)/λβ) = (>) λβµ− s− λβ(λβµ− s)/λβ = 0,

hence xL = (>) (λβµ− s)/λβ from (e1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

Corollary 10.2.1 (A {LR})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma 10.2.1(p.57) (d,e1). “⇐” is evident by contraposition.

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 or equivalently xL = x ⇒ L (x) = 0, hence xL = x ⇒
L (x) ≥ 0. Accordingly, it follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma 10.2.2 (A {KR })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).
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(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a,∞).

(h) If x < y and a < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβµ− s)/δ ≤ (>) a ⇔ xK = (>) (λβµ− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof (a-c) Immediate from (5.1.4(p.25) ) and Lemma 10.1.1(p.55) (a-c).

(d) Immediate from (5.1.4(p.25) ) and Lemma 10.1.1(p.55) (b).

(e) From (5.1.4(p.25) ) we have

K (x) + x = λβT (x) + βx− s = λβ(T (x) + x) + (1− λ)βx− s · · · ((1)),

hence the assertion holds from Lemma 10.1.1(p.55) (d).

(f) Obvious from (1) and Lemma 10.1.1(p.55) (d).

(g) Clearly from (1) and Lemma 10.1.1(p.55) (e).

(h) Let x < y and a < y. If x ≤ a, then K(x) + x ≤ K(a) + a < K(y) + y due to (e,g), and if a < x, then a < x < y, hence
K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a or a < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (5.1.4(p.25) ), from Lemma 10.1.1(p.55) (g) we have K (x) > 0 for x < b
and K (x) = 0 for b ≤ x, hence xK = b by the definition of xK (see Section 5.2(p.27) (a)). Thus xK > (≤) x ⇒ K (x) > (=) 0.
The inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (10.2.5 (2) (p.57) ). If β < 1, then K (x) < 0 for any sufficiently large x > 0 with x ≥ b and if s > 0, then, whether
β < 1 or β = 1, we have K (x) < 0 for any sufficiently large x > 0 with x ≥ b. Hence, whether β < 1 or s > 0, we have
K (x) < 0 for any sufficiently large x > 0 with x ≥ b.

• Next note (10.2.4 (1) (p.57) ). Then, since δ > 0 from (10.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) > 0 for any
sufficiently small x < 0 with x ≤ a.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution xK is unique from (d).

◦ Let s > 0. If β < 1, the solution xK is unique for the reason just above. If β = 1, we have K (b) = −s < 0 from
(10.2.5 (2) (p.57) ), hence xK < b due to (c), so K (x) is strictly decreasing on the neighbourhood of x = xK due to (c), hence
the solution xK is unique. Therefore, whether β < 1 or β = 1, it follows that the solution xK is unique.

◦ Accordingly, whether β < 1 or s > 0, it follows that the solution xK is unique.

From all the above, whether β < 1 or s > 0, it follows that the solution xK uniquely exists and hence that the latter half
becomes true.

(j2) Let (λβµ− s)/δ ≤ (>) a. Then, from (10.2.4 (1(2)) (p.57) ) we have

K ((λβµ− s)/δ) = (>) λβµ− s− δ(λβµ− s)/δ = 0,

hence xK = (>) (λβµ− s)/δ due to (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (5.1.7(p.25) ), hence xK > (= (<)) 0 from (j1).

Corollary 10.2.2 (A {KR})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma 10.2.2(p.57) (i,j1). “⇐” is evident by contraposition.

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 or equivalently xK = x ⇒ K (x) = 0, hence xK = x ⇒
K (x) ≥ 0. Accordingly, it follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Lemma 10.2.3 (A {LR /KR })
(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.
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• Proof (a) If β = 1 and s = 0, then xL = b from Lemma 10.2.1(p.57) (d) and xK = b from
Lemma 10.2.2(p.57) (i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K ( xL ) = 0 from (10.2.8 (1) (p.57) ), hence xK = xL from
Lemma 10.2.2(p.57) (j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma 10.2.1(p.57) (d).

◦ If b > 0, then xL > 0, hence K ( xL ) < 0 from (10.2.8 (1) (p.57) ), so xL > xK from Lemma 10.2.2(p.57) (j1). If b = (<) 0, then
xL = (<) 0, hence K ( xL ) = (>) 0 from (10.2.8 (1) (p.57) ), so xL = (<) xK from
Lemma 10.2.2(p.57) (j1). Accordingly, we have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first
relation “⇔ ” holds.

◦ If b > 0, from (5.1.7(p.25) ) we haveK (0) = λβT (0) > 0 due to Lemma 10.1.1(p.55) (g), hence xK > 0 · · · ((2)) from Lemma 10.2.2(p.57) (j1).

If b = (<) 0, from (5.1.7(p.25) ) we haveK (0) = λβT (0) = 0 due to Lemma 10.1.1(p.55) (g), hence xK = (<) 0 from Lemma 10.2.2(p.57) (j1).
Accordingly, we have the second relation “⇒ ”.

(d) Let β < 1 and s > 0. Now, since κ = K (0) from (5.1.7(p.25) ), if κ > (= (<)) 0, then K (0) > (= (<)) 0, thus
xK > (= (<)) 0 · · · ((3)) from Lemma 10.2.2(p.57) (j1). Accordingly L (xK ) > (= (<)) 0 from (10.2.8 (2) (p.57) ), hence xL > (= (<)) xK

from Lemma 10.2.1(p.57) (e1). Thus, “⇒ ” in the first relation “⇔ ” holds and its inverse “⇐ ” is immediate by contraposition.
Finally, the first relation “⇒” is immediate from (3) .

Lemma 10.2.4 (LR )

(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.

(b) Let λβµ ≥ b.

1. xL ≤ λβµ− s.

2. Let s > 0 and λβ < 1. Then xL < λβµ− s.

(c) Let λβµ < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβµ− s.

• Proof (a) From (5.1.5(p.25) ) and (5.1.3(p.25) ) we have

L (s) = L (λβµ− s) = λβT (λβµ− s)− s · · · ((1)),

hence the assertion holds from Lemma 10.1.1(p.55) (m).

(b) Let λβµ ≥ b. Then, from (1) we have L (0) = λβT (λβµ) = 0 · · · ((2)) due to Lemma 10.1.1(p.55) (g).

(b1) Since s ≥ 0, from (a) we have L (s) ≤ L (0) = 0 due to (2) or equivalently L (λβµ − s) ≤ 0 due to (1) , hence
xL ≤ λβµ− s from Corollary 10.2.1(p.57) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L (s) < L (0) = 0 · · · ((3)) due to (2) or equivalently L (λβµ− s) < 0 due

to (1) , hence xL < λβµ− s from Lemma 10.2.1(p.57) (e1).

(c) Let λβµ < b. From (1) we have L (0) = λβT (λβµ) > 0 · · · ((4)) due to Lemma 10.1.1(p.55) (g). Note (10.2.3 (1) (p.57) ). Then,

for any sufficiently large s > 0 such that λβµ− s ≤ a and λβµ− s < 0 we have

L (s) = L (λβµ− s) = λβµ− s− λβ(λβµ− s) = (1− λβ)(λβµ− s) ≤ 0.

Accordingly, due to (a) it follows that there exists the solution sL of L (s) = 0 where sL > 0 due to (4) . Then, since L (s) > 0
for s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβµ − s) > 0 for s < sL and L (λβµ − s) ≤ 0 for s ≥ sL , from
Corollary 10.2.1(p.57) (a) we get xL > λβµ− s for s < sL and xL ≤ λβµ− s for s ≥ sL .

10.3 κR-value
Lemma 10.3.1 (A {κR})
(a) κ = λβµ− s if a > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof (a) Immediate from (5.1.6(p.25) ) and Lemma 10.1.1(p.55) (i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (5.1.7(p.25) ), hence xK > (= (<)) 0 from
Lemma 10.2.2(p.57) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.
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Chapter 11

Proof of A {M:1[R][A]}

11.1 Preliminary
From (6.2.8(p.30) ) and (6.2.14(p.30) ) we have

Vt − βVt−1 = max{St, 0}

= max{L (Vt−1), 0}, t > 1. (11.1.1)
Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence from (5.1.9(p.25) ) we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (11.1.2)

2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0, hence

Vt = βVt−1, t > 1.. (11.1.3)

Now, from (6.4.2(p.41) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (11.1.4)

Finally, from (6.2.14(p.30) ) and (6.2.12(p.30) ) we have

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 1.. (11.1.5)

11.2 Proof of A {M:1[R][A]}
Definition 11.2.1 (assertion and assertion system) ByA{M:1[R][A]} let us represent an assertion included in each of Tom’s 11.2.1(p.61)

and 11.2.2(p.62) below and by A {M:1[R][A]} the assertion system consisting of all assertions included in each Tom.

Definition 11.2.2 (primitive Tom (�� ) and derivative Tom (�� )) Let us refer to a Tom the assertions included in which are directly
proven as the primitive Tom (�� ) and to a Tom the assertions included in which are derived by transforming assertions included
in a primitive Tom (�� ) as the derivative Tom (�� ).

Below, note that λ = 1 is assume in the model (See Section 4.1.1.2.1(p.22) for the meaning of symbol �� which is used below).

� Tom 11.2.1 (�� A {M:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (5.1.4(p.25) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma 10.1.1(p.55) (g), hence from (6.4.2(p.41) ) and (1) we have

Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)), t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma 10.1.1(p.55) (d) we have Vt ≤ T (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in
t > 0.

(b) Since V1 = µ from (6.4.1(p.41) ), we have V1 < b. Suppose Vt−1 < b. Then, from (2) we have Vt < T (b) + b = b due to
Lemma 10.1.1(p.55) (l,g). Accordingly, by induction Vt−1 < b for t > 1, hence L (Vt−1) > 0 for t > 1 due to Lemma 10.2.1(p.57) (d);
accordingly, L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Thus, from (11.1.1(p.61) ) we obtain Vt − βVt−1 > 0 for τ ≥ t > 1, i.e., Vt > βVt−1

for τ ≥ t > 1. Accordingly, since Vτ > βVτ−1 > · · · > βτ−1V1, we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N, hence we have

ConducttN for τ ≥ t > 1 due to (3) and (11.1.5(p.61) ).
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Let us define

S1 ⃝s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where CONDUCTτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where CONDUCTτ≥t>1N.

}
� Tom 11.2.2 (�� A {M:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ < b.

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)) .

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)) .

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a and s < sL . Then S1(p.62) ⃝s N } ∥ is true.

• Proof Let β < 1 or s > 0. In this model, note that the search must be necessarily conducted at time t = 1 (see Re-
mark 4.1.3(p.22) (b)) and that δ = 1 · · · ((1)) (see (10.2.1(p.56) )) due to the assumption λ = 1 · · · ((2)).

(a) Since xK ≥ βµ− s = V1 due to Lemma 10.2.2(p.57) (j2) and (6.4.1(p.41) ), we have K (V1) ≥ 0 due to Lemma 10.2.2(p.57) (j1),
hence V2− V1 ≥ 0 from (11.1.4(p.61) ), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (6.4.2(p.41) ) and Lemma 10.2.2(p.57) (e) we have
Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0. Consider a
sufficiently largeM > 0 with βµ−s ≤M and b ≤M , hence V1 ≤M from (6.4.1(p.41) ). Suppose Vt−1 ≤M . Then, from (6.4.2(p.41) ),
Lemma 10.2.2(p.57) (e), and (10.2.7 (2) (p.57) ) we have Vt ≤ max{K (M) +M,βM} = max{βM − s, βM} ≤ max{M,M} = M due
to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤ M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.4.2(p.41) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since
K (V ) ≤ 0, we have V ≥ xK from Lemma 10.2.2(p.57) (j1).

(b) Let βµ ≥ b. Then xL ≤ βµ − s = V1 from Lemma 10.2.4(p.59) (b1) with λ = 1, hence xL ≤ Vt−1 for t > 1 from (a).
Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary 10.2.1(p.57) (a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1. Hence, from

(11.1.3(p.61) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ , hence t∗τ = 1 for
τ > 1, i.e., • dOITdτ>1⟨1⟩ ∥ (see Preference Rule 7.2.1(p.45) ).

(c) Let βµ < b.

(c1) Let β = 1 · · · ((3)), hence s > 0 due to the assumption “β < 1 or s > 0”. Then, from (3) , (1) , (2) we have (λβµ−s)/δ =

µ− s · · · ((4)). In addition, since xL = xK · · · ((5)) from Lemma 10.2.3(p.58) (b), we have K (xL) = K (xK) = 0 · · · ((6)).

(c1i) Let µ− s ≤ a. Then xL = xK = µ− s = V1 from (5) , Lemma 10.2.2(p.57) (j2), (4) , and (6.4.1(p.41) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma 10.2.1(p.57) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.

(c1ii) Let µ− s > a. Then xL = xK > µ− s = V1 > a from (5) and Lemma 10.2.2(p.57) (j2), hence a < Vt−1 for t > 1 from
(a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from Lemma 10.2.1(p.57) (e1). Then, from (11.1.2(p.61) ), Lemma 10.2.2(p.57) (g), and
(5) we have Vt < K (xL) + xL = K (xK) + xL = xL . Accordingly, by induction Vt−1 < xL for t > 1, hence L (Vt−1) > 0 for
t > 1 due to Corollary 10.2.1(p.57) (a). Thus, for the same reason as in the proof of Tom 11.2.1(p.61) (b) we have ⃝s dOITsτ>1⟨τ⟩ N
and CONDUCTτ≥t>1N.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((7)) from Lemma 10.2.3(p.58) (c ((d))). Now, since xK ≥ βµ − s due to

Lemma 10.2.2(p.57) (j2), (1) , and (2) , we have xK ≥ V1 from (6.4.1(p.41) ). Suppose xK ≥ Vt−1. Then, from (6.4.2(p.41) ) and
Lemma 10.2.2(p.57) (e) we have Vt ≤ max{K (xK) + xK , β xK } = max{xK , β xK } = xK due to (7) . Accordingly, by induction
Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (7) , thus L (Vt−1) > 0 for t > 1 due to Corollary 10.2.1(p.57) (a). Hence,
for the same reason as in the proof of Tom 11.2.1(p.61) (b) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((8)) from Lemma 10.2.3(p.58) (c ((d))).

(c2ii1) Let βµ− s ≤ a. Then, xK = βµ− s = V1 from Lemma 10.2.2(p.57) (j2). Suppose Vt−1 = xK , hence Vt−1 = xL from
(8) , so L (Vt−1) = L (xL) = 0. Then, from (11.1.2(p.61) ) we have Vt = K (xK) + xK = xK . Accordingly, by induction Vt−1 = xK

for t > 1, hence Vt−1 = xL for t > 1 due to (8) . Then, since L (Vt−1) = L (xL) = 0 for t > 1, we have Vt = βVt−1 for t > 1
from (11.1.3(p.61) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.
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(c2ii2) Let βµ − s > a. Then, since V1 > a from (6.4.1(p.41) ), we have Vt−1 > a for t > 1 due to (a). In addition, we have
xK > βµ− s = V1 from Lemma 10.2.2(p.57) (j2). Suppose xK > Vt−1, hence xL > Vt−1 from (8) . Then, since L (Vt−1) > 0 due
to Corollary 10.2.1(p.57) (a), from (11.1.2(p.61) ) and Lemma 10.2.2(p.57) (g) we have Vt < K (xK ) + xK = xK . Hence, by induction
xK > Vt−1 for t > 1, so xL > Vt−1 for t > 1 due to (8) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary 10.2.1(p.57) (a),
for the same reason as in the proof of (c1ii) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((9)) from Lemma 10.2.3(p.58) (c ((d))).

(c2iii1) Let βµ− s ≤ a or sL ≤ s. First let βµ− s ≤ a. Then, since xK = βµ− s = V1 from
Lemma 10.2.2(p.57) (j2), we have xL < V1 from (9) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βµ − s due to
Lemma 10.2.4(p.59) (c), we have xL ≤ V1. Accordingly, whether βµ − s ≤ a or sL ≤ s, we have xL ≤ V1, thus xL ≤ Vt−1 for
t > 1 due to (a). Hence, since L (Vt−1) ≤ 0 for t > 1 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof of (b) we
obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βµ − s > a · · · ((10 )) and s < sL . Then, from (9) and Lemma 10.2.4(p.59) (c) we have xK > xL > βµ − s =

V1 · · · ((11 )), hence K (V1) > 0 · · · ((12 )) from Lemma 10.2.2(p.57) (j1). In addition, since V1 > a due to (10) , we have Vt−1 > a

for t > 0 from (a). Now, from (11.1.4(p.61) ) and (12) we have V2 − V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from
Lemma 10.2.2(p.57) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt is
strictly increasing in t > 0. Note that V1 < xL due to (11) . Assume that Vt−1 < xL for all t > 1, hence V ≤ xL due to (a).
Then, from (9) and from V ≥ xK due to (a) we have the contradiction of V ≥ xK > xL ≥ V . Hence, it is impossible that
Vt−1 < xL for all t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · ,
from which

Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt−1, t > t•τ . (11.2.1)

Therefore, from Corollary 10.2.1(p.57) (a) we have

L (Vt−1) > 0 · · · ((13 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((14 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((15 )) for τ ≥ t > 1 from (13) , for the same reason as in the proof of (c1ii) we

have ⃝s dOITst•τ≥τ>1⟨τ⟩ N and CONDUCTτ≥t>1N. Hence S1(1) is true.

2. Let τ > t•τ . First, let τ ≥ t > t•τ . Then, since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (14) , we have Vt = βVt−1 for τ ≥ t > t•τ from
(11.1.3(p.61) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ · · · ((16 )).

Next let t•τ ≥ t > 1. Then, from (13) and (11.1.1(p.61) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1, i.e., Vt > βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1 · · · ((17 )).

From (16) and (17) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ due to Preference Rule 7.2.1(p.45) . In addition, we have ConducttN for

t•τ ≥ t > 1 due to (13) and (11.1.5(p.61) ). Hence S1(2) is true.

Definition 11.2.3 (model-migration) If “ ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N” holds in M:1[R][A], then the search is con-
ducted over τ ≥ t > 1, implying that the model M:1[R][A] is substantively reduced to the model in which the search is enforced
over τ ≥ t > 1, i.e. , M:1[R][E]. We refer to this event as “ M:1[R][A] migrates over to M:1[R][E] ”, represented as

M:1[R][A] # M:1[R][E].



64

11.3 Structure of Assertion System A {M:1[R][A]}
In this section we clarify the structure of the assertion system A {M:1[R][A]} (see Def. 11.2.1(p.61) ). It will be known later on that
its structure will play an essential role in the discussions in Step 6 (p.78) .

11.3.1 Breakdown and Aggregation

Before proceeding with our discussions, let us define the following two perspectives (see Figure 11.3.1(p.64) below (k = 3)).

(I) The breakdown of a given set X into k mutually disjoint subsets X1, X2, · · · , and Xk (k > 0), i.e.,

X = X1 ∪X2 ∪ · · · ∪Xk where Xi ∩Xj = ∅ for any i ̸= j.

This is called the breakdown scenario, represented as X ⇒ {X1,X2, · · · ,Xk}.

(II) The aggregation of k mutually disjoint subsets X ′
1 , X ′

2 , · · · , and X ′
k (k > 0) of a given set X , i.e.,

X ′ def
= X ′

1 ∪X ′
2 ∪ · · · ∪X ′

k ⊆ X where X ′
i ∩X ′

j = ∅ for any i ̸= j.

This is called the aggregation scenario, represented as {X ′
1 ,X

′
2 , · · · ,X ′

k} ⇒ X ′.
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Figure 11.3.1: Breakdown and aggregation

11.3.2 Structure of Assertion A{M:1[R][A]}
11.3.2.1 Condition Space C ⟨A⟩
In general, any given assertion A{M:1[R][A]} consists of a statement S and a condition expression CE, schematized as

A{M:1[R][A]}={S holds if CE is satisfied}. (11.3.1)

� Example 11.3.1 The assertion given by Tom 11.2.2(p.62) (b) can be rewritten as

A{M:1[R][A]}={ • dOITdτ>1⟨1⟩ ∥ holds if βµ ≥ b is satisfied}

where S = { • dOITdτ>1⟨1⟩ ∥} and CE = {βµ ≥ b}.

In general, for a given parameter space PA ⊆ P (see (4.3.1(p.23) ) and (4.3.2(p.23) )) and for a given distribution function space
FA|p ⊆ F (see (2.2.5(p.13) )) related to a given p ∈ PA, the condition expression CE is given as a conditional on a parameter
vector p and a distribution function F where

p ∈PA ⊆P,

F ∈ FA|p ⊆ F .

Then (11.3.1(p.64) ) can be rewritten as

A{M:1[R][A]} = {S holds for p ∈PA ⊆P and F ∈ FA|p ⊆ F}. (11.3.2)

� Example 11.3.2 For the assertion A given by Tom 11.2.2(p.62) (c1i) we have

PA = {p
∣∣ λ = 1 ∩ β = 1 ∩ s > 0}, †

FA|p = {F
∣∣ βµ < b ∩ µ− s ≤ a}.

†When β = 1, we have s > 0 due to the assumption “β < 1 or s > 0”.
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� Example 11.3.3 For the assertion A given by Tom 11.2.2(p.62) (c2iii2) we have

PA = {p
∣∣ λ = 1 ∩ β < 1 ∩ s = 0 ((s > 0))},

FA|p = {F
∣∣ βµ < b ∩ b < 0 ((κ < 0)) ∩ βµ− s > a ∩ s < sL }.

Here let us define
C ⟨A⟩ def

= {(p, F )
∣∣ p ∈PA ⊆P, F ∈ FA|p ⊆ F}, (11.3.3)

called the condition-space of a given assertion A{M:1[R][A]}. Then, (11.3.2(p.64) ) can be rewritten as

A{M:1[R][A]} = {S holds on C ⟨A⟩ }. (11.3.4)

Throughout the rest of the paper, let us alternatively express the whole of (11.3.4(p.65) ) as

A{M:1[R][A]} holds on C ⟨A⟩ (11.3.5)
for short

11.3.2.2 Structure of Tom

Definition 11.3.1

(a) We sometimes represent Tom 11.2.1(p.61) and Tom 11.2.2(p.62) by “Tom” for short, removing “11.2.1” and “11.2.2”.

(b) For multiple Tom’s we sometimes use terms Tom1, Tom2, · · · . For example, Tom1 = Tom 11.2.1(p.61) and Tom2 = Tom 11.2.2(p.62) .

(c) In order to stress that an assertion A{M:1[R][A]} is included in a given Tom, i.e., A{M:1[R][A]} ∈ Tom, let us represent it
as ATom{M:1[R][A]} and an assertion system consisting of all ATom{M:1[R][A]} as ATom {M:1[R][A]}.

Then (11.3.2(p.64) ) - (11.3.5(p.65) ) can be rewritten as respectively

ATom{M:1[R][A]} = {S holds for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F}, (11.3.6)

C ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F}, (11.3.7)

ATom{M:1[R][A]} = {S holds on C ⟨ATom⟩ }, (11.3.8)

ATom{M:1[R][A]} holds on C ⟨ATom⟩. (11.3.9)

Closely looking into the structure of Tom’s 11.2.1(p.61) and 11.2.2(p.62) , in general we see that a given Tom consists of a basic premise
BPTom and some assertions A1

Tom, A
2
Tom, · · · , i.e.,

Tom= {Let BP be true. Then assertions A1
Tom, A

2
Tom, · · · hold.}

or equivalently
Tom= {Assertions A1

Tom, A
2
Tom, · · · hold if BPTom be true.} (11.3.10)

in which the basic premise BP is given as a conditional on a parameter vector p and a distribution function F where, for given
subsets PTom ⊆P and FTom|p ⊆ F ,

p ∈PTom ⊆P,

F ∈ FTom|p ⊆ F (11.3.11)

Then the basic premise BPTom can be written as

BPTom = {a condition on p ∈PTom ⊆P and F ∈ FTom|p ⊆ F}. (11.3.12)

� Example 11.3.4 For M:1[R][A] in Section 11.2(p.61) we have

PTom = {p
∣∣ λ = 1 ∩ β = 1 ∩ s = 0} for Tom 11.2.1(p.61)

PTom = {p
∣∣ λ = 1 ∩ (β < 1 ∪ s > 0)} for Tom 11.2.2(p.62)

FTom|p = F for Tom 11.2.1(p.61)

FTom|p = F for Tom 11.2.2(p.62)

For M:2[R][A] in Section 20.1.3(p.156) we have

PTom = {p
∣∣ λ ≤ 1 ∩ β = 1 ∩ s = 0 ∩ −∞ < ρ <∞} for Tom 20.1.1(p.156)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 20.1.2(p.156)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 20.1.3(p.159)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 20.1.4(p.160)

FTom|p = {F
∣∣ −∞ < a < µ < b <∞} = F for Tom 20.1.1(p.156)

FTom|p = {F
∣∣ F ∈ F ∩ ρ < xK } for Tom 20.1.2(p.156)

FTom|p = {F
∣∣ F ∈ F ∩ ρ = xK } for Tom 20.1.3(p.159)

FTom|p = {F
∣∣ F ∈ F ∩ ρ > xK } for Tom 20.1.4(p.160)
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11.3.2.3 Condition Space C ⟨Tom⟩
For a given Tom let us define

C ⟨Tom⟩ def
= {(p, F )

∣∣ p ∈PTom ⊆P, F ∈ FTom|p ⊆ F}, (11.3.13)

called the condition space of Tom. Then (11.3.12(p.65) ) can be rewritten as

BPTom = {a condition on C ⟨Tom⟩ }, (11.3.14)

hence (11.3.10(p.65) ) can be rewritten as

Tom = {Assertions A1
Tom, A

2
Tom. · · · hold on BPTom}, (11.3.15)

alternatively as

Tom = {Assertions A1
Tom, A

2
Tom, · · · hold on C ⟨Tom⟩}. (11.3.16)

For explanatory convenience, we will sometimes express “Aj
Tom is included in Tom ” as “Aj

Tom ∈ Tom ” or sometimes as “ATom ∈ Tom”
removing the superscript j .

11.3.3 Construction of Assertion System A {M:1[R][A]}�� ��breakdown scenario

↓

11.3.3.1 Completeness of Tom on C ⟨Tom⟩
(11.3.16(p.66) ) means that assertions A1

Tom, A
2
Tom, · · · included in Tom are all over all possible parameters (p, F ) ∈ C ⟨Tom⟩. In this

paper we refer to this fact as the completeness of Tom on C ⟨Tom⟩. Here note that this completeness is not what should be proven
but a necessary condition to be satisfied, implying that Tom must be constructed so as for the completeness to be attained.

11.3.3.2 Breakdown of C ⟨Tom⟩
The completeness of Tom is what is given as a necessary condition as stated just above. This requirement can be attained by
the breakdown of the condition space C ⟨Tom⟩ to the condition spaces C ⟨A1

Tom⟩, C ⟨A2
Tom⟩, · · · , i.e.,

C ⟨Tom⟩ = ∪j=1,2,···C ⟨Aj
Tom⟩ = ∪ATom∈TomC ⟨ATom⟩, (11.3.17)

depicted as in Figure 11.3.2(p.66) (k = 3) below.

C ⟨Tom⟩

⇓breakedown�� ��C ⟨A1
Tom⟩, C ⟨A2

Tom⟩ C ⟨A3
Tom⟩

Figure 11.3.2: Breakedown of C ⟨Tom⟩ to C ⟨A1
Tom⟩, C ⟨A2

Tom⟩, C ⟨A3
Tom⟩ (k = 3)

11.3.3.3 Construction of ATom {M:1[R][A]}
Consider the list of (11.3.9(p.65) ) over Tom, i.e., A1

Tom, A
2
Tom, · · · ∈ Tom, or equivalently

“A1
Tom{M:1[R][A]} holds on C ⟨A1

Tom⟩ ”,

“A2
Tom{M:1[R][A]} holds on C ⟨A2

Tom⟩ ”,
...

Then, gathering the above list with noting (11.3.17(p.66) ), we get

ATom {M:1[R][A]} holds on C ⟨Tom⟩ (11.3.18)

where

ATom {M:1[R][A]} def
= {A1

Tom{M:1[R][A]}, A2
Tom{M:1[R][A]}, · · · }. (11.3.19)
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11.3.3.4 Condition Space C ⟨Tom⟩
For explanatory convenience, let us represent Tom 11.2.1(p.61) and Tom 11.2.2(p.62) by Tom1 and Tom2 respectively; in general, let
Tom1, Tom2, · · · . Then, let us define

Tom def
= {Tom1, Tom2, , · · · } = {Tom}.

� Example 11.3.5 For example we have

Tom = {Tom1 = Tom 11.2.1(p.61) , Tom2 = Tom 11.2.2(p.62) },

Tom = {Tom1 = Tom 20.1.1(p.156) , Tom2 = Tom 20.1.2(p.156) , Tom3 = Tom 20.1.3(p.159) , Tom4 = Tom 20.1.4(p.160) }.

Here let us define
C ⟨Tom⟩ def

= ∪i=1,2,···C ⟨Tomi⟩ = ∪Tom∈TomC ⟨Tom⟩, (11.3.20)

called the condition space of Tom, schematized as in Figure 11.3.3(p.67) below.
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C ⟨Tom⟩

∥definition�� ��C ⟨Tom1⟩, C ⟨Tom2⟩, C ⟨Tom3⟩

Figure 11.3.3: Condition space C ⟨Tom⟩

For convenience of discussions that follows, as one corresponding to (11.3.16(p.66) ), let us define, for i = 1, 2, · · · ,

Tomi = {Assertions A1
Tomi

, A2
Tomi

, · · · hold on C ⟨Tomi⟩}. (11.3.21)

11.3.3.5 Construction of A {M:1[R][A]}
Using (11.3.17(p.66) ), we can express (11.3.20(p.67) ) as below

C ⟨Tom⟩ = ∪i=1,2,··· ∪j=1,2,··· C ⟨Aj
Tomi
⟩ (11.3.22)

= ∪Tom∈Tom ∪j=1,2,··· C ⟨Aj
Tom⟩ (11.3.23)

= ∪Tom∈Tom ∪ATom∈Tom C ⟨ATom⟩ (11.3.24)

This relation implies the breakdown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩, C ⟨Aj

Tom⟩, and C ⟨ATom⟩.

� Example 11.3.6 As an example let us consider Tom = {Tom1, Tom2, Tom3} where Tom1 = {A1
Tom1 , A

2
Tom1 , A

3
Tom1}, Tom2 =

{A1
Tom2 , A

2
Tom2 , A

3
Tom2}, and Tom3 = {A1

Tom3 , A
2
Tom3 , A

3
Tom3}.

Then, fetching Figure 11.3.2(p.66) in Figure 11.3.3(p.67) , we see that (11.3.22(p.67) ) can be depicted as Figure 11.3.4(p.67) below,
demonstrating the breakdown of C ⟨Tom⟩ into C ⟨Aj

Tomi
⟩.

C ⟨Tom⟩

⇓breakedown
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C ⟨Tom⟩

∥definition

C ⟨Tom1⟩
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Tom1
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Tom1
⟩ C ⟨A3

Tom1
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Tom2
⟩, C ⟨A2
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⟩ C ⟨A3
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breakedown breakedown breakedown

Figure 11.3.4: Breakdown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩, i, j = 1, 2, 3

Figure 11.3.4(p.67) above implies that first

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨Tomi⟩ , i = 1, 2, 3 ”,

and then
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“ each
�� ��C ⟨Tomi⟩ , i = 1, 2, 3 is broken down to

�� ��C ⟨Aj
Tomi
⟩ , i, j = 1, 2, 3. ”

The above two successive breakdown procedures eventually yields

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨Aj
Tomi
⟩ for i, j = 1, 2, 3 ”,

more generally

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨ATom⟩ with Tom ∈ Tom ”

Here, consider the list of (11.3.18(p.66) ) over Tom1, Tom2, , · · · ∈ Tom = {Tom1, Tom2, · · · }, i.e.,

“ATom1 {M:1[R][A]} holds on C ⟨Tom1⟩ ”.

“ATom2 {M:1[R][A]} holds on C ⟨Tom2⟩ ”.
...

Then, gathering the above list with noting (11.3.22(p.67) ), we obtain

A {M:1[R][A]} holds on C ⟨Tom⟩ (11.3.25)
where

A {M:1[R][A]} def
= {ATom1{M:1[R][A]},ATom2{M:1[R][A]}, · · · }.

11.3.3.6 Completeness of Tom on C ⟨Tom⟩ = P ×F

Closely looking at the contents of Tom’s 11.2.1(p.61) and 11.2.2(p.62) , we see that the whole of assertions presented there is over all
possible parameters p and distribution functions F ; in other words, over the total-P/DF-space P ×F (see (4.3.3(p.23) )). This
means that the condition space C ⟨Tom⟩ is constructed so as to become equal to P ×F , i.e.,

C ⟨Tom⟩ = P ×F . (11.3.26)

This implies that the whole of assertions Aj
Tomi

, i, j = 1, 2, · · · is all over C ⟨Tom⟩ = P×F . Let us refer to this as the completeness
of Tom on C ⟨Tom⟩ = P ×F .

Remark 11.3.1 (a priori requirement) What should be especially noted here is that this is not what should be proven
but what should be satisfied as a priori requirement.

The above perspective can be depicted as in Figure 11.3.4(p.67) as below.

C ⟨Tom⟩ = P ×F

⇓complete breakedown
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Figure 11.3.5: The completeness of C ⟨Tom⟩ to C ⟨Aj
Tomi
⟩, i, j = 1, 2, 3

↑�� ��breakdown scenario



Chapter 12

Symmetry Theorem (R↔ R̃)

12.1 Two Kinds of Equality

12.1.1 Correspondence Equality

For ξ, a, µ, b, T (x), · · · , which are all dependent on a given distribution function F ∈ F (see (2.2.5(p.13) )), let us define ξ̂ = −ξ,
â = −a, µ̂ = −µ, b̂ = −b, T̂ (x) = −T (x), · · · respectively, called the reverse operation R. Then, for any given distribution
function F ∈ F , i.e.,

F (ξ) = Pr{ξ ≤ ξ} ⊆ F , (12.1.1)

let us define the distribution function of ξ̂ by F̌ , i.e.,

F̌ (ξ)
def
= Pr{ξ̂ ≤ ξ}, (12.1.2)

where its probability density function is represented by f̌ and the set of all possible F̌ is denoted by F̌ , i.e.,

F̌
def
= {F̌

∣∣ F ∈ F}. (12.1.3)

Now, since ˇ̌F (ξ) = Pr{ˆ̂ξ ≤ ξ} for any ξ due to the definition (12.1.2(p.69) ) and since

ˆ̂
ξ = −̂ξ = −(−ξ) = ξ, (12.1.4)

we have ˇ̌F (ξ) = Pr{ξ ≤ ξ} = F (ξ) for any ξ due to (12.1.1(p.69) ), i.e.,

ˇ̌F ≡ F. (12.1.5)
For any subset F ′ ⊆ F let us define

F̌ ′ def
= {F̌

∣∣ F ∈ F ′}. (12.1.6)

Then we have

ˇ̌F ′ = { ˇ̌F
∣∣ F̌ ∈ F̌ ′} = {F

∣∣ F̌ ∈ F̌ ′} (12.1.7)

due to (12.1.5(p.69) ). If F ∈ F ′, then F̌ ∈ F̌ ′ from (12.1.6(p.69) ), hence F ∈ ˇ̌F ′ due to (12.1.7(p.69) ); accordingly, we have

F ′ ⊆ ˇ̌F ′ · · · (∗). If F ∈ ˇ̌F ′, then F̌ ∈ F̌ ′ due to (12.1.7(p.69) ), hence F ∈ F ′ from (12.1.6(p.69) ); therefore, we have ˇ̌F ′ ⊆ F ′.
From this and (∗) it follows that

ˇ̌F ′ = F ′. (12.1.8)
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By ǎ, µ̌, and b̌ let us denote the lower bound, expectation, and upper bound of F̌ ∈ F̌ corresponding to any given F ∈ F with
the lower bound a, expectation µ, and upper bound b. Then, from Figure 12.1.1(p.70) just below we clearly have, for any ξ,

f(ξ) = f̌(ξ̂), (12.1.9)

called the correspondence equality , where

â = b̌, µ̂ = µ̌, b̂ = ǎ. (12.1.10)

0

ξ̂ ξξξ̂
a b−a = â = b̌

−µ = µ̂ = µ̌

−b = b̂ = ǎ µ
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?

reverse

f(ξ)f̌(ξ̂)

Figure 12.1.1: Relationship between probability density functions f and f̌

12.1.2 Identity Equality

Lemma 12.1.1

(a) F and F̌ are one-to-one correspondent where F = F̌ .

(b) For any F̌ ∈ F̌ there exists a F ∈ F which is identical to the F̌ , i.e., F ≡ F̌ .†

(c) For any F ∈ F there exists a F̌ ∈ F̌ which is identical to the F , i.e., F̌ ≡ F .

• Proof If F ∈ F , then F̌ ∈ F̌ from (12.1.3(p.69) ), hence F ∈ F ⇒ F̌ ∈ F̌ · · · ((1)). Conversely, if F̌ ∈ F̌ , then F from which

F̌ ∈ F̌ is defined is clearly an element of F due to (12.1.3(p.69) ), i.e., F ∈ F , hence F̌ ∈ F̌ ⇒ F ∈ F · · · ((2)).

(a) First, for any F ∈ F and for the F̌ ∈ F̌ corresponding to the F we have

F̌ (ξ) = Pr{ξ̂ ≤ ξ} = Pr{−ˆ̂ξ ≤ −ξ̂} = Pr{ˆ̂ξ ≥ ξ̂} = Pr{ξ ≥ ξ̂} (due to (12.1.4(p.69) ))

= 1− Pr{ξ < ξ̂} = 1− Pr{ξ ≤ ξ̂}‡ = 1− F (ξ̂) · · · ((3)).

Suppose any F ∈ F yields the two different F̌1 ∈ F̌ and F̌2 ∈ F̌ , meaning that there exists at least one ξ′ such that
F̌1(ξ

′) ̸= F̌2(ξ
′). Then, since F̌1(ξ

′) = 1−F (ξ̂′) and F̌2(ξ
′) = 1−F (ξ̂′) due to (3) , we have the contradiction of F̌1(ξ

′) = F̌2(ξ
′),

hence the F ∈ F must correspond to a unique F̌ ∈ F̌ .

Next, for any F̌ ∈ F̌ and for F ∈ F from which F̌ ∈ F̌ is defined we have

F (ξ) = Pr{ξ ≤ ξ} = Pr{−ξ̂ ≤ −ξ̂} = Pr{ξ̂ ≥ ξ̂} = 1− Pr{ξ̂ < ξ̂} = 1− Pr{ξ̂ ≤ ξ̂}‡ = 1− F̌ (ξ̂) · · · ((4)).

Suppose any F̌ ∈ F̌ is yielded from the two different F1 ∈ F and F2 ∈ F , meaning that there exists at least one ξ′ such that
F1(ξ

′) ̸= F2(ξ
′). Then, since F1(ξ

′) = 1− F̌ (ξ̂′) and F2(ξ
′) = 1− F̌ (ξ̂′) due to (4) , we have the contradiction of F1(ξ

′) = F2(ξ
′),

hence the F̌ ∈ F̌ must correspond to a unique F ∈ F . Thus, the former half of the assertion is true.

The latter half can be proven as follows. First, consider any F ∈ F̌ . Then, since F ∈ F by definition, we have F̌ ⊆ F · · · ((5)).

Next, consider any F ∈ F . Then, since F̌ ∈ F̌ due to (1) , we have F̌ ∈ F due to (5) . Hence ˇ̌F ∈ F̌ due to (1(p.70) ), so F ∈ F̌
due to (12.1.5(p.69) ), thus we have F ⊆ F̌ . From this and (5) we have F̌ = F · · · ((6)).

(b) Consider any F̌ ∈ F̌ , hence F̌ ∈ F · · · ((7)) due to (6) . Suppose every F ∈ F is not identical to the F̌ , i.e., F ̸≡ F̌ ,

implying that the F̌ lies outside F ,§ hence cannot become an element of F , i.e., F̌ ̸∈ F , which contradicts (7) . Hence, it
follows that there must exist at least one F such that F ≡ F̌ , thus the assertion holds.

(c) Consider any F ∈ F , hence F ∈ F̌ · · · ((8)) due to (6) . Suppose every F̌ ∈ F̌ is not identical to the F , i.e., F̌ ̸≡ F ,

implying that the F lies outside F̌ ∥, hence cannot become an element of F̌ , i.e., F ̸∈ F̌ , which contradicts (8) . Hence, it
follows that there must exist at least one F̌ such that F̌ ≡ F , thus the assertion holds.

Lemma 12.1.1(p.70) (b,c) implies that there always exist F and F̌ such that F ≡ F̌ holds; in other words, there always exist f and
f̌ such that f ≡ f̌ or equivalently

f(ξ) ≡ f̌(ξ), (12.1.11)
called the identity equality .

†This means F (x) = F̌ (x) for all x ∈ (−∞,∞).
‡Due to the assumption of F being continuous (see A9(p.13) )
§Note that F is a set consisting of al possible F ’s by definition.
∥Note that F̌ is a set consisting of al possible F̌ ’s by definition.
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12.2 Definitions of Underlying Functions
The functions defined in the successive two sections are all the variations of ones that were defined in Sections 5.1.1(p.25) and
5.1.2(p.25) .

12.2.1 Ť , Ľ , Ǩ , Ľ , and κ̌ of Type R
Let us define the underlying functions of Type R (see Section 5.1.1(p.25) ) for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

Ť (x) = Ě[max{ξ − x, 0}] =
∫∞
−∞ max{ξ − x, 0}f̌(ξ)dξ, (12.2.1)

Ľ (x) = λβŤ (x)− s, (12.2.2)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (12.2.3)

Ľ (s) = Ľ (λβµ̌− s). (12.2.4)

Let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by xĽ , xǨ , and sĽ respectively if they exist. If each of the

equations has the multiple solutions, let us employ the smallest one (see (a) of Section 5.2(p.27) ). Let us define

κ̌ = λβŤ (0)− s. (12.2.5)

By M̌:1[R][A] let us define M:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M:1[R][A] we can
express SOE{M̌:1[R][A]} as (see Table 6.4.1(p.41) (I))

SOE{M̌:1[R][A]} = {V1 = βµ̌− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}.

12.2.2 ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , and ˇ̃κ of T̃ype R
Let us define the underlying functions of T̃ype R for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

ˇ̃T (x) = Ě[min{ξ − x, 0}] =
∫∞
−∞ min{ξ − x, 0}f̌(ξ)dξ, (12.2.6)

ˇ̃L (x) = λβ ˇ̃T (x) + s, (12.2.7)

ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (12.2.8)

ˇ̃L (s) = ˇ̃L (λβµ̌+ s). (12.2.9)

Let the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (s) = 0 be denoted by xˇ̃L , xˇ̃K , and sˇ̃L respectively if they exist. If each of the
equations has the multiple solutions, let us employ the largest one (see (b) of Section 5.2(p.27) ). Let us define

ˇ̃κ = λβ ˇ̃T (0) + s. (12.2.10)

By
ˇ̃M:1[R][A] let us define M̃:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M̃:1[R][A] we can

express SOE{ ˇ̃M:1[R][A]} as (see Table 6.4.1(p.41) (II))

SOE{ ˇ̃M:1[R][A]} = {V1 = βµ̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}.

12.2.3 List of the Underline Functions of Type R and T̃ype R
So far we have defined the four kinds of underlying functions, which may cause confusions. To give a clearer picture of these
functions, we shall coordinate them as in Table 12.2.1(p.71) .

Table 12.2.1: List of the underlying functions of Type R and T̃ype R

Type R T̃ype R

For any F ∈ F For F̌ ∈ F̌ corresponding
to any F ∈ F

T (x) =
∫ b
a
max{ξ − x, 0}f(ξ)dξ

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βµ− s)

See Section 5.1.1(p.25)

Ť (x) =
∫ b
a
max{ξ − x, 0}f̌(ξ)dξ

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βµ̌− s)

See Section 12.2.1(p.71)

T̃ (x) =
∫ b
a
min{ξ − x, 0}f(ξ)dξ

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x + s

L̃ (x) = L̃ (βµ + s)

See Section 5.1.2(p.25)

ˇ̃T (x) =
∫ b
a
min{ξ − x, 0}f̌(ξ)dξ

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x + s

ˇ̃L (x) = ˇ̃L (βµ̌ + s)

See Section 12.2.2(p.71)
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12.3 Two Kinds of Replacements
12.3.1 Correspondence Replacement

Lemma 12.3.1 (CR) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, µ̂ = µ̌, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.

• Proof (a) The same as (12.1.9(p.70) ).

(b) The same as (12.1.10(p.70) ).

(c) The function T (x) for any F (see (5.1.2(p.25) )) can be rewritten as

T (x) =
∫∞
−∞ max{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f̌(ξ̂)dξ due to (a).

Let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, we have

T (x) =
∫ −∞
∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= − ˇ̃T (x̂) (see (12.2.6(p.71) )),

hence T̂ (x) = ˇ̃T (x̂).

(d) From (5.1.3(p.25) ) and (c) we have L (x) = −λβT̂ (x)− s = −λβ ˇ̃T (x̂)− s = − ˇ̃L (x̂) from

(12.2.7(p.71) ), hence L̂ (x) = ˇ̃L (x̂).

(e) From (5.1.4(p.25) ) and (c) we have K (x) = −λβT̂ (x)+ (1−β)x̂− s = −λβ ˇ̃T (x̂)+ (1−β)x̂− s = − ˇ̃K (x̂) from (12.2.8(p.71) ),

hence K̂ (x) = ˇ̃K (x̂).

(f) From (5.1.5(p.25) ) we have L (s) = −L̂ (λβµ − s), hence from (d) we obtain L (s) = − ˇ̃L ( ̂λβµ− s) = − ˇ̃L (−λβµ + s) =

− ˇ̃L (λβµ̂+ s) = − ˇ̃L (λβµ̌+ s) due to (b). Accordingly, from (12.2.9(p.71) ) we obtain L (s) = − ˇ̃L (s), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have L̂ ( xL ) = 0, which can be rewritten as ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have K̂ (xK ) = 0, which can be rewritten as ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have L̂ (sL) = 0, which can be rewritten as ˇ̃L (sL) = 0 from (f), implying that ˇ̃L (s) = 0
has the solution sˇ̃L = sL by definition.

(j) From (5.1.6(p.25) ) we have κ = −λβT̂ (0)−s, which can be rewritten as κ = −λβ ˇ̃T (0̂)−s from (c), hence κ = −λβ ˇ̃T (0)−s =
−ˇ̃κ from (12.2.10(p.71) ), thus κ̂ = ˇ̃κ.

Definition 12.3.1 (correspondence replacement operation CR) Let us call the operation of replacing the left-hand of each
equality in Lemma 12.3.1(p.72) by its right-hand the correspondence replacement operation CR.

Lemma 12.3.2 (C̃R) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).

(b) b̂ = ǎ, µ̂ = µ̌, â = b̌.

(c) ˆ̃T (x) = Ť (x̂).

†The mere replacement of the symbol η by ξ.
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(d) ˆ̃L (x) = Ľ (x̂).

(e) ˆ̃K (x) = Ǩ (x̂).

(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = xĽ .

(h) x̂
K̃ = xǨ .

(i) sL̃ = sĽ .

(j) ˆ̃κ = κ̌.

• Proof (a) The same as (12.1.9(p.70) ).

(b) The same as (12.1.10(p.70) ).

(c) The function T̃ (x) for any F (see (5.1.12(p.25) )) can be rewritten as

T̃ (x) =
∫∞
−∞ min{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f̌(ξ̂)dξ (due to (a(p.72) )).

Let η = ξ̂ = −ξ. Then, since dη = −dξ, we have

T̃ (x) =
∫ −∞
∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= −Ť (x̂) (see (12.2.1(p.71) )),

hence ˆ̃T (x) = Ť (x̂).

(d) From (5.1.13(p.25) ) and (c) we have L̃ (x) = −λβ ˆ̃T (x)+ s = −λβŤ (x̂)+ s = −Ľ (x̂) from (12.2.2(p.71) ), hence ˆ̃L (x) = Ľ (x̂).

(e) From (5.1.14(p.25) ) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+(1−β)x̂+s = −λβŤ (x̂)+(1−β)x̂+s = −Ǩ (x̂) from (12.2.3(p.71) ),

hence ˆ̃K (x) = Ǩ (x̂).

(f) From (5.1.15(p.25) ) and (d) we have L̃ (s) = − ˆ̃L (λβµ+s) = −Ľ ( ̂λβµ+ s) = −Ľ (−λβµ−s) = −Ľ (λβµ̂−s) = −Ľ (λβµ̌−s)

due to (b), hence from (12.2.4(p.71) ) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˆ̃L ( xL̃ ) = 0, which can be rewritten as Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˆ̃K ( xK̃ ) = 0, which can be rewritten as Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have ˆ̃L (sL̃) = 0, which can be rewritten as Ľ (sL̃) = 0 from (f), implying that Ľ (s) = 0

has the solution sĽ = sL̃ by definition.

(j) From (5.1.16(p.25) ) we have κ̃ = −λβ ˆ̃T (0) + s, which can be rewritten as κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ =
−λβŤ (0) + s = −κ̌ from (12.2.5(p.71) ), thus ˆ̃κ = κ̌.

Definition 12.3.2 (correspondence replacement operation C̃R) Let us call the operation of replacing the left-hand of each
equality in Lemma 12.3.2(p.72) by its right-hand the correspondence replacement operation C̃R.

Definition 12.3.3 (reversible element and non-reversible element) It should be noted that the left-hand of each of the equalities
in Lemmas 12.3.1(p.72) (i) and 12.3.2(p.72) (i) have not the hat symbol “ ˆ”. In other words, sL and sL̃ are not subjected to the
reverse. For the reason, let us refer to each of sL and sL̃ as the non-reversible element and to each of all the other elements
as the reversible element.

12.3.2 Identity Replacement

Lemma 12.3.3 (IR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.

(b) ǎ = a, µ̌ = µ, b̌ = b.

(c) ˇ̃T (x) = T̃ (x).

(d) ˇ̃L (x) = L̃ (x).

(e) ˇ̃K (x) = K̃ (x).

†The mere replacement of the symbol η by ξ.
†See Lemma 12.1.1(p.70) (b,c).
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(f) ˇ̃L (s) = L̃ (s).
(g) xˇ̃L = x

L̃ .

(h) xˇ̃K = x
K̃ .

(i) sˇ̃L = sL̃ .

(j) ˇ̃κ = κ̃.

• Proof (a) Clear from [1∗].

(b) Obvious from (a).

(c) Evident from (12.2.6(p.71) ), (5.1.12(p.25) ), and [3∗].

(d) From (12.2.7(p.71) ) and (c) we have ˇ̃L (x) = λβT̃ (x) + s, hence ˇ̃L (x) = L̃ (x) from (5.1.13(p.25) ).

(e) From (12.2.8(p.71) ) and (c) we have ˇ̃K (x) = λβT̃ (x)− (1− β)x+ s, hence ˇ̃K (x) = K̃ (x) from (5.1.14(p.25) ).

(f) From (12.2.9(p.71) ) and (d) we have ˇ̃L (s) = L̃ (λβµ̌+ s), hence ˇ̃L (s) = L̃ (λβµ+ s) from (b), so ˇ̃L (s) = L̃ (s) (5.1.15(p.25) ).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˇ̃L ( xL̃ ) = 0 from (d), hence ˇ̃L (x) = 0 has the solution xˇ̃L = x
L̃ .

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˇ̃K ( xK̃ ) = 0 from (e), hence ˇ̃K (x) = 0 has the solution xˇ̃K = x
K̃ .

(i) Since L̃ ( sL̃ ) = 0 by definition, we have ˇ̃L ( sL̃ ) = 0 from (f), hence ˇ̃L (x) = 0 has the solution sˇ̃L = sL̃ by definition.

(j) From (12.2.10(p.71) ) and (c) with x = 0 we have (5.1.16(p.25) ).

Definition 12.3.4 (identity replacement operation IR) Let us call the operation of replacing the left-hand side of each equality
in Lemma 12.3.3(p.73) by its right-hand side the identity replacement operation IR.

Lemma 12.3.4 (ĨR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.

(b) ǎ = a, µ̌ = µ, b̌ = b.

(c) Ť (x) = T (x).

(d) Ľ (x) = L (x).

(e) Ǩ (x) = K (x).

(f) Ľ (s) = L (s).
(g) xĽ = xL .

(h) xǨ = xK .

(i) sĽ = sL .

(j) κ̌ = κ.

• Proof (a) Clear from [1∗].

(b) Obvious from (a).

(c) Evident from (12.2.1(p.71) ), (5.1.2(p.25) ), and [3∗].

(d) From (12.2.2(p.71) ) and (c) we have Ľ (x) = λβT (x)− s, hence Ľ (x) = L (x) from (5.1.3(p.25) ).

(e) From (12.2.3(p.71) ) and (c) we have Ǩ (x) = λβT (x)− (1− β)x− s, hence Ǩ (x) = K (x) from (5.1.4(p.25) ).

(f) From (12.2.4(p.71) ) and (d) we have Ľ (s) = Ľ (λβµ− s), hence Ľ (s) = Ľ (λβµ+ s) from (b), so L (s) = Ľ (λβµ+ s), hence
Ľ (s) = L (s) from (5.1.5(p.25) ).

(g) Since L ( xL ) = 0 by definition, we have Ľ ( xL ) = 0 from (d), hence Ľ (x) = 0 has the solution xĽ = xL by definition.

(h) Since K (xK ) = 0 by definition, we have Ǩ (xK ) = 0 from (e), hence Ǩ (x) = 0 has the solution xǨ = xK by definition.

(i) Since L ( sL ) = 0 by definition, we have Ľ ( sL ) = 0 from (f), hence Ľ (x) = 0 has the solution sĽ = sL by definition.

(j) From (12.2.5(p.71) ) and (c) with x = 0 we have (5.1.6(p.25) ).

Definition 12.3.5 (identity replacement operation ĨR) Let us call the operation of replacing the left-hand of each equality in
Lemma 12.3.4(p.74) by its right-hand the identity replacement operation ĨR.

12.4 Attribute Vector
Closely looking into the contents of all assertions A{M:1[R][A]} ∈ A {M:1[R][A]} (see Tom’s 11.2.1(p.61) and 11.2.2(p.62) ), we can
immediately see that each assertion is described by using a part or all of the following twelve kinds of elements;

a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt

where Vt represents the sequence {Vt, t = 1, 2, · · · } generated from SOE{M:1[R][A]} (see Table 6.4.1(p.41) (I)). Let us call each
element the attribute element and the vector of them the attribute vector, denoted by

†See Lemma 12.1.1(p.70) (b,c).
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θ(A{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (12.4.1)

In addition, also for the assertion system A {M:1[R][A]} we can employ the similar definition, denoted by

θ(A {M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (12.4.2)

12.5 Scenario[R]
In this section we write up a scenario deriving an assertion on M̃:1[R][A] (buying model with R-mechanism) from a given assertion
on M:1[R][A] (selling model with R-mechanism). Let us refer to this as the scenario of Type R, denoted by Scenario[R].

� Step 1 (opening )

◦ The system of optimality equations for M:1[R][A] is given by Table 6.4.1(p.41) (I), i.e.,

SOE{M:1[R][A]} = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}. (12.5.1)

◦ Let us consider an assertion ATom{M:1[R][A]}† included in Tom 11.2.1(p.61) or Tom 11.2.2(p.62) , which can be written in general as

ATom{M:1[R][A]} = {S is true for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F} (see (11.3.6(p.65) )) (12.5.2)

= {S is true on C ⟨ATom⟩} (see (11.3.8(p.65) )). (12.5.3)

To facilitate the understanding of the discussion that follows, let us use the following example.‡

S = ⟨Vt + sL + xL + κ + a+ µ+ b ≥ 0, t > 0 ⟩. (12.5.4)

◦ The attribute vector of the assertion ATom{M:1[R][A]} is given by (12.4.1(p.75) ), i.e.,

θ(ATom{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (12.5.5)

� Step 2 (reverse operation R)

◦ Applying the reverse operation R (see Section 12.1.1(p.69) ) to (12.5.1(p.75) ) produces

R[SOE{M:1[R][A]}] = {−V̂1 = −βµ̂− s, −V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}

= {−V̂1 = −βµ̂− s, −V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}

= {V̂1 = βµ̂+ s, V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (12.5.6)

◦ Applying R to (12.5.2(p.75) ) and (12.5.3(p.75) ) yields to

R[ATom{M:1[R][A]}] = {R[S] is true for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F} (12.5.7)

= {R[S] is true on C ⟨ATom⟩}. (12.5.8)

For our example we have:

R[S] = ⟨−V̂t + sL − x̂L − κ̂ − â− µ̂− b̂ ≥ 0, t > 0 ⟩§

= ⟨ V̂t − sL + x̂L + κ̂ + â+ µ̂+ b̂ ≤ 0, t > 0 ⟩. (12.5.9)

◦ The attribute vector of the assertion R[ATom{M:1[R][A]}] is given by applying R to (12.5.5(p.75) ), i.e.,

θ(R[ATom{M:1[R][A]}]) def
= R[θ(ATom{M:1[R][A]})] (12.5.10)

= (â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t). (12.5.11)

� Step 3 (correspondence replacement operation CR)
◦ Here let us consider the application of the correspondence replacement operation CR, i.e., the replacement of the left-hand

side of each equality in Lemma 12.3.1(p.72) ,

f(ξ), â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ (x), L̂ (x), K̂ (x), L̂ (s) · · · (1∗),
by its right-hand,

f̌(ξ̂), b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x̂), ˇ̃L (x̂), ˇ̃K (x̂), ˇ̃L (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

†See Def. 11.3.1(p.65) (c) for the symbol “Tom” in ATom{M:1[R][A]}.
‡The example is a hypothetical assertion which is not contained in ATom {M:1[R][A]}; It is used merely for explanatory convenience.
§Note Def. 12.3.3(p.73) .
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◦ Applying CR to (12.5.6(p.75) ) leads to

CRR[SOE{M:1[R][A]}] = {V̂1 = βµ̌+ s, V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (12.5.12)

◦ Applying CR to R[S] in (12.5.9(p.75) ), we have

CRR[S] = ⟨ V̂t − sˇ̃L + xˇ̃L + ˇ̃κ + b̌+ µ̌+ ǎ ≤ 0, t > 0 ⟩. (12.5.13)

Now, let us note here that the application of CR inevitably transforms

“F ∈ FATom|p ⊆ F ” in (12.5.2(p.75) )

into

“ F̌ ∈ F̌ATom|p ⊆ F̌ corresponding to F ∈ FATom|p ⊆ F ” (12.5.14)

where

F̌ATom|p
def
= {F̌

∣∣ F ∈ FATom|p} ⊆ {F̌
∣∣ F ∈ F} = F̌ (see (12.1.3(p.69) )). (12.5.15)

Hence, applying CR to (12.5.7(p.75) ) produces

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom and F̌ ∈ F̌ATom|p ⊆ F̌

corresponding to F ∈ FATom|p ⊆ F}. (12.5.16)

Now, since the phrase “ F̌ ∈ F̌ATom|p ⊆ F̌ ” is implicitly accompanied with the phrase “ corresponding to F ∈ FATom|p ⊆ F ”,
the latter phrase becomes redundant. Accordingly, (12.5.16(p.76) ) can be rewritten as

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F̌}

= {CRR[S] is true on Č ⟨ATom⟩} (12.5.17)

where

Č ⟨ATom⟩ = {(p, F̌ )
∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌} (compare (11.3.3(p.65) )). (12.5.18)

◦ The attribute vector of CRR[ATom{M:1[R][A]}] is given by applying CR to (12.5.10(p.75) ), i.e.,

θ(CRR[ATom{M:1[R][A]}]) = CRR[θ(ATom{M:1[R][A]})]

= (b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , Vt). (12.5.19)

� Step 4 (identity replacement operation IR)

◦ Here let us consider the application of the identity replacement operation IR, i.e., the replacement of the left-hand side of
each equality in Lemma 12.3.3(p.73) ,

f̌(ξ), ǎ, µ̌, b̌, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x), ˇ̃L (x), ˇ̃K (x), ˇ̃L (s) · · · (1∗),

by its right-hand side,
f(ξ), a, µ, b, x

L̃ , x
K̃ , sL̃ , κ̃ T̃ (x), L̃ (x), K̃ (x), L̃ (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F̌ ∈ F , i.e., F̌ ≡ F · · · ((1))
(see Lemma 12.1.1(p.70) (c)).

◦ Applying IR to (12.5.12(p.76) ) yields

IRCRR[SOE{M:1[R][A]}] = {V̂1 = βµ+ s, V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (12.5.20)

Now, we have V̂1 = βµ+ s = V1 from (6.4.3(p.41) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (6.4.4(p.41) ), by induction V̂t = Vt for t > 0. Thus (12.5.20(p.76) ) can be rewritten as

IRCRR[SOE{M:1[R][A]}] = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1},

which is the same as SOE{M̃:1[R][A]} (see Table 6.4.1(p.41) (II)). Thus we have

SOE{M̃:1[R][A]} = IRCRR[SOE{M:1[R][A] }] (12.5.21)

= {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (12.5.22)
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◦ Applying IR to (12.5.17(p.76) ) yields (note F̌ ≡ F in (1) )

IRCRR[ATom{M:1[R][A]}] = {IRCRR[S] is true on Č ⟨ATom⟩ }. (12.5.23)

Applying IR to (12.5.13(p.76) ) yields

IRCRR[S] = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (12.5.24)

Now Vt within IRCRR[S] is generated from SOE{M̃:1[R][A]}, hence (12.5.23(p.77) ) can be regarded as the assertion on M̃:1[R][A]
(see Remark 6.1.1(p.29) ). Thus, we have

ATom{M̃:1[R][A]} = IRCRR[ATom{M:1[R][A]}] (12.5.25)

= {IRCRR[S] is true on Č ⟨ATom⟩}. (12.5.26)

◦ The attribute vector of ATom{M̃:1[R][A]} is given by applying IR to (12.5.19(p.76) ), i.e.,

θ(ATom{M̃:1[R][A]}) = IRCRR[θ(ATom{M:1[R][A]})]

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt), (12.5.27)� Step 5 (symmetry transformation operation SR→R̃)

Lining up the four attribute vectors in Steps 1-4, we have the following:

Step 1: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (12.5.5(p.75) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← R

Step 2: θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t ) (← (12.5.11(p.75) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← CR (12.5.28)

Step 3: θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , Vt ) (← (12.5.19(p.76) ))

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← IR
Step 4: θ( b, µ, a, x

L̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (12.5.27(p.77) ))

The above flow can be eventually reduced to

SR→R̃
def
=


a, µ, b, xLR,xKR, sLR,κR, TR ,LR ,KR ,LR , Vt

            

b, µ, a, x
L̃R, xK̃R, sL̃R, κ̃R, T̃R , L̃R ,K̃R ,L̃R , Vt

 (12.5.29)

called the symmetry transformation operation, which can be regarded as the successive application of the three operations, i.e.,
“ R→ CR → IR ”. Hence, defining

SR→R̃ = IRCRR, (12.5.30)

we can rewrite (12.5.25(p.77) ) as

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}]

= {S̃ holds on Č ⟨ATom⟩ } (12.5.31)

where

S̃
def
= SR→R̃[S]. (12.5.32)

Then, from (12.5.24(p.77) ) we have

S̃ = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (12.5.33)

Furthermore, (12.5.21(p.76) ) can be rewritten as

SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A] }]. (12.5.34)

In addition, (12.5.27(p.77) ) can be rewritten as

θ(ATom{M̃:1[R][A]}) = SR→R̃[θ(ATom{M:1[R][A]})] (12.5.35)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (12.5.36)

From all the above we see that Scenario[R] starting with (12.5.3(p.75) ) finally ends up with (12.5.31(p.77) ), which can be alternatively
rewritten as respectively (see (11.3.5(p.65) ))

ATom{M:1[R][A]} holds on C ⟨ATom⟩ (see (11.3.8(p.65) )), (12.5.37)

ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩.

From the above two results and (12.5.34(p.77) ) we eventually obtain the following lemma.
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Lemma 12.5.1 Let ATom{M:1[R][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩ where

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}]. (12.5.38)

� Step 6 (Completeness of T̃om) �� ��aggregation scenario

↓

⋆ Condition Space Č ⟨ATom⟩
Applying Lemma 12.5.1(p.78) to any assertion ATom{M:1[R][A]} included in Tom’s 11.2.1(p.61) and 11.2.2(p.62) , we have ATom{M̃:1[R][A]}
corresponding to each ATom{M:1[R][A]}, which are given by Tom’s 12.7.1(p.84) and 12.7.2(p.84) . Below let us define

Tom1
def
= Tom 12.7.1(p.84) and Tom2 = Tom 12.7.2(p.84) .

Furthermore, let
Tom

def
= Tom1, Tom2, · · · . (12.5.39)

Here, as one corresponding to (12.5.18(p.76) ), let us define

Č ⟨ATomi⟩ = {(p, F̌ )
∣∣ p ∈PATom i

⊆P, F̌ ∈ F̌A·Tom i|p ⊆ F̌}, i = 1, 2, · · · . (12.5.40)

In general, let
Č ⟨ATom⟩ = {(p, F̌ )

∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌}. (12.5.41)

In addition, let us define

Tomi
def
= {A1

Tomi
, A2

Tomi
, · · · } = {ATomi},

T̃om def
= {Tom1, Tom2, · · · } = {Tom}.

Then, as one corresponding to (11.3.17(p.66) ), let us define

Č ⟨Tomi⟩
def
= ∪j=1,2,···Č ⟨Aj

Tomi
⟩ = ∪ATomi

∈Tomi Č ⟨ATomi⟩, i = 1, 2, · · · , (12.5.42)

which is the aggregation of Č ⟨Aj
Tomi
⟩, j = 1, 2, · · · , into Č ⟨Tomi⟩, i.e.,

Č ⟨Tomi⟩
def
= {Č ⟨A1

Tomi
⟩, Č ⟨A2

Tomi
⟩, · · · }, i = 1, 2, · · · . (12.5.43)

� Example 12.5.1 Let T̃om = {Tom1, Tom2, Tom3} and Č ⟨Tomi⟩ = {Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩, Č ⟨A3

Tomi
⟩}, i = 1, 2, 3.

Then, the flow of the above aggregation can be depicted as in Figure 12.5.1(p.78) below:
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Č ⟨Tomi⟩

⇑aggregation

Č ⟨A1
Tomi
⟩ →

Č ⟨A2
Tomi
⟩ → ← Č ⟨A3

Tomi
⟩

←⟨∗⟩
Č ⟨Tomi⟩

⇑aggregation�� ��Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩, Č ⟨A3

Tomi
⟩

Figure 12.5.1: Aggregation of Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩,Č ⟨A3

Tomi
⟩ into Č ⟨Tomi⟩
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⋆ Condition Space Č ⟨T̃om⟩
As one corresponding to (11.3.20(p.67) ), let us define

Č ⟨T̃om⟩ def
= ∪i=1,2,···Č ⟨Tomi⟩ = ∪T̃om∈T̃omČ ⟨Tom⟩, (12.5.44)

called the condition space of T̃om, which is the aggregation of Č ⟨Tomi⟩ into Č ⟨T̃om⟩, depicted as in Figure 12.5.2(p.79) below
(compare Figure 11.3.3(p.67) ).
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Č ⟨T̃om⟩

∥definition

Č ⟨Tom2⟩

Č ⟨Tom1⟩

Č ⟨Tom3⟩

←⟨∗∗⟩

←⟨∗⟩
Č ⟨T̃om⟩

∥definition�� ��Č ⟨Tom1⟩, Č ⟨Tom2⟩, Č ⟨Tom3⟩

Figure 12.5.2: Condition space Č ⟨T̃om⟩

In the above figure, the small deformed circle ⟨∗⟩ is the same as the deformed circle ⟨∗⟩ in Figure 12.5.1(p.78) .

⋆ Construction of A {M̃:1[R][A]}
Using (12.5.42(p.78) ), as ones corresponding to (11.3.22(p.67) )-(11.3.24(p.67) ), from (12.5.44(p.79) ) we have

Č ⟨T̃om⟩ = ∪i=1,2,··· ∪j=1,2,··· Č ⟨Aj
Tomi
⟩ (12.5.45)

= ∪Tom∈T̃om ∪j=1,2,··· Č ⟨Aj
Tom⟩ (12.5.46)

= ∪Tom∈T̃om ∪ATom∈Tom Č ⟨ATom⟩ (12.5.47)

Then, fetching Figure 12.5.1(p.78) in Figure 12.5.2(p.79) , we see that (12.5.45(p.79) ) produces Figure 12.5.3(p.79) below, demonstrating
the aggregation of Č ⟨Aj

Tomi
⟩ to Č ⟨T̃om⟩.

Č ⟨T̃om⟩
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Č ⟨A3
Tom1
⟩
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⟩
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⟩
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Č ⟨T̃om⟩

∥definition

Č ⟨Tom1⟩

⇑�� ��Č ⟨A1
Tom1
⟩, Č ⟨A2
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aggregation aggregation aggregation

Figure 12.5.3: The aggregation of Č ⟨Aj
Tomi
⟩ into Č ⟨T̃om⟩

Figure 12.5.3(p.79) above implies that first

“aggregating
�� ��Č ⟨Aj

Tomi
⟩ , j = 1, 2, 3, for i = 1, 2, 3 produces

�� ��Č ⟨Tomi⟩ ”

and then

“aggregating
�� ��Č ⟨Tomi⟩ , i = 1, 2, 3, produces

�� ��Č ⟨T̃om⟩ ”.

The above two successive aggregating procedures eventually yields

“ aggregating
�� ��C ⟨Aj

Tomi
⟩ for i, j = 1, 2, 3 produces

�� ��Č ⟨T̃om⟩ ”, (12.5.48)

Moreover, note that A {M̃:1[R][A]} is what is aggregated over
�� ��Č ⟨T̃om⟩ , i.e.,

A {M̃:1[R][A]} holds on Č ⟨T̃om⟩ . (12.5.49)
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⋆ Completeness of T̃om on Č ⟨T̃om⟩ = P ×F

From (12.5.49(p.79) ) and (11.3.25(p.68) ) we see that aggregating Lemma 12.5.1(p.78) produces Lemma 12.5.2(p.80) below.

Lemma 12.5.2 Let A {M:1[R][A]} holds on C ⟨Tom⟩. Then A {M̃:1[R][A]} holds on Č ⟨T̃om⟩ where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}].

Here note again (11.3.26(p.68) ), i.e.
C ⟨Tom⟩ = P ×F . (12.5.50)

What is interesting here is that also for Č ⟨T̃om⟩ we have the same result as above, i.e.,

Č ⟨T̃om⟩ = P ×F . (12.5.51)

• Proof Note here that for any given F̌ ∈ F̌ there exists a F ∈ F such that F ≡ F̌ · · · ((1)) (see Lemma 12.1.1(p.70) (b)) and

that for any given F ∈ F there exists a F̌ ∈ F̌ such that F̌ ≡ F · · · ((2)) (see Lemma 12.1.1(p.70) (c)).

◦ From (12.5.18(p.76) ) we have Č ⟨ATom⟩ ⊆ {(p, F̌ )
∣∣ p ⊆ P, F̌ ⊆ F̌} for any ATom, hence due to (1) we get Č ⟨ATom⟩ ⊆ {(p, F )

∣∣
p ∈ P, F ∈ F̌} = P × F̌ = P ×F due to F̌ = F from Lemma 12.1.1(p.70) (a). Accordingly, from (12.5.47(p.79) ) we obtain
Č ⟨T̃om⟩ ⊆ ∪T̃om∈T̃om ∪ATom∈T̃om P ×F = P ×F · · · ((3)).

◦ Consider any (p, F ) ∈ P × F · · · ((4)). Then, since (p, F ) ∈ C ⟨Tom⟩ due to (11.3.26(p.68) ), we have (p, F ) ∈ C ⟨ATom⟩ for at

least one C ⟨ATom⟩ due to (11.3.24(p.67) ). Hence, since F ∈ FATom|p due to (11.3.7(p.65) ), we have F̌ ∈ F̌ATom|p due to (12.1.3(p.69) ),

hence (p, F̌ ) ∈ Č ⟨ATom⟩ due to (12.5.18(p.76) ), thus (p, F ) ∈ Č ⟨ATom⟩ due to (2) , hence (p, F ) ∈ Č ⟨T̃om⟩ due to (12.5.47(p.79) ).
Accordingly, from (4) we have P ×F ⊆ Č ⟨T̃om⟩ · · · ((5)).

From (3) and (5) we obtain Č ⟨T̃om⟩ = P ×F .

Let us refer to the equality (12.5.51(p.80) ) as the completeness of T̃om on Č ⟨T̃om⟩ = P ×F . Then (12.5.48(p.79) ) can be rewritten
as

“aggregating Č ⟨Aj
Tomi
⟩ for i, j = 1, 2, 3, produces Č ⟨T̃om⟩ = P ×F”, (12.5.52)

hence Figure 12.5.3(p.79) can be rewritten as Figure 12.5.4(p.80) below.

Č ⟨T̃om⟩ = P ×F

⇑aggregation

........
........
........
.........
..........
..........
..........
...........
...........
............
.............
.............
................
................
.....................
..........................
..........................................
.............................


...........................................
.....................
.................
...............
............
............
..........
..........
.........
.........
.........
............
.............
.................
..........................

..................................................................................................................................................................................................................

.............
...............
....................
..................................................................................................................................................................................................................................

.........
.........
..........
..........
...........
.............
...............
....................
.......................................................................................................................

.........
.........
..........
..........
...........
.............
...............
....................
.......................................................................................................................

.................................................................................................

......................................................................................................................................................................................................................

.....................................................................................................
...............................................................................................................................................

.......................................................................................................................................................
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Č ⟨T̃om⟩ = P ×F
∥
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Tom2
⟩, Č ⟨A2
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Figure 12.5.4: The aggregation of Č ⟨Aj
Tomi
⟩ into Č ⟨T̃om⟩ = P ×F

� Step 7 (symmetry theorem (R→ R̃))
From (12.5.50(p.80) ) and (12.5.51(p.80) ), it follows that Lemma 12.5.2(p.80) can be rewritten as Theorem 12.5.1(p.80) below.

Theorem 12.5.1 (symmetry theorem (R→ R̃)) Let A {M:1[R][A]} holds on P×F . Then A {M̃:1[R][A]} holds on P×F
where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (12.5.53)

Then, clearly the attribute vector of A {M̃:1[R][A]} becomes as follows (see (12.5.35(p.77) ))

θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (12.5.54)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (12.5.55)

↑�� ��aggregation scenario



81

� Step 8 (summary of Scenario[R])
At a glance, the symmetry transformation operation SR→R̃ seems to be rather complicated, however it can be simply prescribed
as follows.

◦ Firstly, apply the reverse operation R to all reversible elements (see Defs 12.3.3(p.73) ) appearing within the description of
A {M:1[R][A]} (see Tom’s 11.2.1(p.61) and 11.2.2(p.62) ).

◦ Next, replace each of all elements, whether resultant ones (reversible) or non-reversible ones, with the right side of its
corresponding equality in Lemma 12.3.1(p.72) (correspondence replacement operation CR).

◦ Finally, remove the check sign “ˇ” from all the replaced symbols (identity replacement operation IR).

12.6 Derivation of T̃R , L̃R , K̃R , L̃R , and κ̃R

To begin with, let us note here the fact that Scenario[R] with SR→R̃ is applicable for an assertion A{M:1[R][A]} related to the
attribute vector (see Section 12.4(p.74) )

θ = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt).

This fact implies that the scenario can be always applied also to any assertions involved with the attribute vector θ. Accordingly,
applying the scenario to any assertions on TR , LR , KR ,LR , and κR yields the corresponding assertions on T̃R , L̃R , K̃R , L̃R and κ̃R,
i.e.,

A {T̃R , L̃R , K̃R , L̃R , κ̃R} = SR→R̃[A {TR , LR , KR ,LR , κR}].

Accordingly, we have the following lemma:

Lemma 12.6.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x strictly increasing on (−∞, b].

(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).

(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).

(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) b > µ.

• Proof by symmetry The lemma, excluding (a,n), can be easily obtained by applying SR→R̃ (see (18.0.1(p.130) )) to
Lemmas 10.1.1(p.55) as shown below.

(a) Evident from the fact that min{ξ − x, 0} in (5.1.11(p.25) ) is continuous on (−∞,∞).

(b) Lemma 10.1.1(p.55) (b) can be rewritten as A ={T (x) ≥ T̃ (x′) for x < x′}. Applying R to this yields R[A]={−T̂ (x) ≥
−T̂ (x′) for −x̂ < −x̂′}={T̂ (x̂) ≤ T̂ (x̂′) for x̂ > x̂′}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ ˇ̃T (x̂′) for x̂ > x̂′}.
Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ T̃ (x̂′) for x̂ > x̂′}. Without loss of generality, this can be rewritten as
IRCRR[A ={T̃ (x) ≤ T̃ (x′) for x > x′}, meaning that T̃ (x) is nonincreasing on (−∞,∞).

(c-e) Almost the same as the proof of (b)

(f) Let the former half of Lemma 10.1.1(p.55) (f) can by rewritten as A ={T (x) = µ− x for x ≤ a}. Applying R to this yields

R[A]={−T̂ (x) = −µ̂+x̂ for −x̂ ≤ −â}={T̂ (x) = µ̂−x̂ for x̂ ≥ â}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) = µ̌−x̂
for x̂ ≥ b̌}. Finally, applying IR to this lead to IRCRR[A] ={T̃ (x̂) = µ − x̂ for x̂ ≥ b}. Without loss of generality, this can be
rewritten as IRCRR[A] ={T̃ (x) = µ − x for x ≥ b}={T̃ (x) = µ − x on [b,∞)}. The proof of the latter half is almost the same
as the above.

(g) The former half of Lemma 10.1.1(p.55) (g) can be rewritten by A ={T (x) > 0 for x < b}. Applying R to this yields

R[A] ={−T̂ (x) > 0 for −x̂ < −b̂}={T̂ (x) < 0 for x̂ > b̂}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) < 0 for x̂ > ǎ}.
Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) < 0 for x̂ > a}. Without loss of generality, this can be rewritten as
IRCRR[A] ={T̃ (x) < 0 for x > a}={T̃ (x) < 0 on (a,∞)}. The proof of the latter half is almost the same as the above.

(h) ApplyingR to Lemma 10.1.1(p.55) (h) yieldsR[A] ={−T̂ (x) ≥ max{0,−µ̂+x̂} for −∞ < −x̂ <∞}={T̂ (x) ≤ min{0, µ̂−x̂}
for∞ > x̂ > −∞}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ min{0, µ̌− x̂} for∞ > x̂ > −∞}. Finally, applying
IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ min{0, µ − x̂} for ∞ > x̂ > −∞}. Without loss of generality, this can be rewritten as
IRCRR[A] ={T̃ (x) ≤ min{0, µ− x} for ∞ > x > −∞}={T̃ (x) ≤ min{0, µ− x} on (−∞,∞)}.
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(i) Immediate from T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)] from (5.1.11(p.25) ) and
(2.2.3(p.13) )).

(j,k) Almost the same as the proof of (b and c)

(l) Lemma 10.1.1(p.55) (l) can be rewritten as A ={If x < y and a < y, then T (x) + x < T (y) + y}. Applying R to this
yields R[A]={If −x̂ < −ŷ and −â < −ŷ, then −T̂ (x) − x̂ < −T̂ (y) − ŷ}={If x̂ > ŷ and â > ŷ, then T̂ (x)x̂ > T (y) + ŷ}, and
then applying CR to this produces CRR[A] ={If x̂ > ŷ and b̌ > ŷ, then ˇ̃T (x̂) + x̂ > ˇ̃T (ŷ) + ŷ}={If x > y and b̌ > y, then
ˇ̃T (x) + x > ˇ̃T (y) + y}. Finally, applying IR to this leads to IRCRR[A] ={If x > y and b > y, then T̃ (x) + x > T̃ (y) + y}.
(m) The former half of Lemma 10.1.1(p.55) (m) can be rewritten as Let A ={λβT (λβµ−s)−s is nonincreasing in s}, which can

be rewritten as A ={λβT (λβµ−s)−s ≥ λβT (λβµ−s′)−s′ for s < s′}. ApplyingR to this yieldsR[A] ={−λβT̂ (−λβµ̂−s)−s ≥
−λβT̂ (−λβµ̂−s′)−s′ for s < s′}={λβT̂ (−λβµ̂−s)+s ≤ λβT̂ (−λβµ̂−s′)+s′ for s < s′},† and then applying CR to this produces

CRR[A] ={λβ ˇ̃T (−̂λβµ̌− s)+s ≤ λβ ˇ̃T (−̂λβµ̌− s′)+s′ for s < s′}={λβ ˇ̃T (λβµ̌+s)+s ≤ λβ ˇ̃T (λβµ̌+s′)+s′ for s < s′}. Finally,
applying IR to this leads to IRCRR[A] ={λβT̃ (λβµ+ s) + s ≤ λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s
is nondecreasing in s. Similarly, the latter half of Lemma 10.1.1(p.55) (m) can be rewritten as IRCRR[A] ={λβT̃ (λβµ+ s) + s <
λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s is nonincreasingness in s.

(n) Clear from (2.2.2(p.13) ).

• Direct proof See the proof of Lemma A1.1(p.289) .

We have:

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),
< λβµ+ s− λβx on (−∞, b) · · · (2),

(12.6.1)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),
< λβµ+ s− δx on (−∞, b) · · · (2).

(12.6.2)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),
= −(1− β)x+ s on (−∞, a] · · · (2),

(12.6.3)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (12.6.4)

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(12.6.5)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (12.6.6)

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to (10.2.3(p.57) ) - (10.2.8(p.57) ).

• Direct proof See (A 1.1(p.290) )-(A 1.6(p.291) ) .

Lemma 12.6.2 (A {L̃R })
(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Lemmas 10.2.1(p.57)

• Direct proof See the proof of Lemma A1.2(p.291) .

Corollary 12.6.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Corollaries 10.2.1(p.57)

• Direct proof See the proof of Corollary A 1.1(p.291) .

Lemma 12.6.3 (A {K̃R })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

†Note Def. 12.3.3(p.73) ).
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(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞, b].

(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Lemmas 10.2.2(p.57) .

• Direct proof See the proof of Lemma A1.3(p.291) .

Corollary 12.6.2 (A {K̃R})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Corollaries 10.2.2(p.58) .

• Direct proof See the proof of Corollary A 1.2(p.292) .

Lemma 12.6.4 (A {L̃R /K̃R })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (>)) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Lemmas 10.2.3(p.58) .

• Direct proof See the proof of Lemma A1.4(p.292) .

Lemma 12.6.5 (A {L̃R })
(a) L̃ (s) is nondecreasing in s and is strictly increasing in s if λβ < 1.

(b) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(c) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

• Proof by symmetry Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Lemmas 10.2.4(p.59) .

• Direct proof See the proof of Lemma A1.5(p.293) .

Lemma 12.6.6 (κ̃R) We have:

(a) κ̃ = λβµ+ s if b < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof Obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Lemmas 10.3.1(p.59) .

• Direct proof See the proof of Lemma A1.6(p.293) .

12.7 Derivation of A {M̃:1[R][A]}
Lemma 12.7.1 (M̃:1[R][A]) The optimal initiating time t∗τ (OIT) is not subject to the influence of the symmetry transformation
operation SR→R̃ (see (12.5.29(p.77) )).

• Proof First, let us represent (7.2.5(p.44) ) as D
def
= {It

∗
τ

τ ≥ Itτ for τ ≥ t ≥ tqd}· · · ((1)), which can be rewritten as D = {βτ−t∗τVt∗τ ≥
βτ−tVt for τ ≥ t ≥ tqd}. Next, applying R to this yields R[D]={−βτ−t∗τ V̂t∗τ ≥ −β

τ−tV̂t for τ ≥ t ≥ tqd}={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t

for τ ≥ t ≥ tqd}. Then, even if applying CR (Lemma 12.3.1(p.72) ) to this, no change occurs, i.e., CRR[D] ={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t for

τ ≥ t ≥ tqd}. Finally, applying IR (Lemma 12.3.3(p.73) ) to this, we have IRCRR[A] ={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t for τ ≥ t ≥ tqd}. Then,
since V̂t changes into Vt for the same reason as been stated just below (12.5.20(p.76) ), so we have IRCRR[A] ={βτ−t∗τVt∗τ ≤ βτ−tVt

for τ ≥ t ≥ tqd}, i.e., {I
t∗τ
τ ≤ Itτ for τ ≥ t ≥ tqd}· · · ((2)). The above result means that the optimal initiating time is t∗τ even

if SR→R̃ (= IRCRR) is applied, hence it follows that the optimal initiating time t∗τ due to (1) is entirely inherited to t∗τ due to
(2) .
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� Tom 12.7.1 (�� ATom {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof by symmetry Immediately obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Tom 11.2.1(p.61) .

• Direct proof See the proof of Tom A4.1(p.303) .

� Tom 12.7.2 (�� A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof by symmetry Immediately obtained by applying SR→R̃ (see (12.5.29(p.77) )) to Tom 11.2.2(p.62) .

• Direct proof See the proof of Tom A4.2(p.304) .

12.8 S̃cenario[R]
In this section we write up the inverse of Scenario[R](p.75 ) which derives A {M:1[R][A]} (see Tom’s 11.2.1(p.61) and 11.2.2(p.62) )
from A {M̃:1[R][A]} (see Tom’s 12.7.1(p.84) and 12.7.2(p.84) ). Let us represent this scenario as S̃cenario[R].

� S̃tep 1 (opening)

◦ The system of optimality equation of M̃:1[R][A] is given by Table 6.4.1(p.41) (II), i.e.,

SOE{M̃:1[R][A]} = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (12.8.1)

◦ Let us consider an assertion ATom{M̃:1[R][A]} in each of Tom’s 12.7.1(p.84) and 12.7.2(p.84) , which can be rewritten as

ATom{M̃:1[R][A]} = {S̃ is true for p ∈PATom ⊆P and F ∈ FATom|p with p ∈PAT̃om
⊆ F}

= {S̃ is true on Č ⟨ATom⟩} (see (12.5.31(p.77) )) (12.8.2)

where

Č ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F}.

To facilitate the understanding of the discussion that follows let us use the following example.

S̃ = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0 ⟩ (see (12.5.33(p.77) )).

◦ The attribute vector of the assertion ATom{M̃:1[R][A]} is given by (12.5.36(p.77) ), i.e.,

θ(ATom{M̃:1[R][A]}) = (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (12.8.3)

� S̃tep 2 (reverse operation R)

◦ Applying the reverse operation R to (12.8.1(p.84) ) produces

R[SOE{M̃:1[R][A]}] = {−V̂1 = −βµ̂+ s, −V̂t = min{− ˆ̃K (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}

= {−V̂1 = −βµ̂+ s, −V̂t = −max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}}

= {V̂1 = βµ̂− s, V̂t = max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (12.8.4)
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◦ Applying R to (12.8.2(p.84) ) yields to

R[ATom{M̃:1[R][A]}] = {R[S̃] is true on Č ⟨ATom⟩ }. (12.8.5)

For our example we have:

R[S̃] = ⟨−V̂t − sL̃ − x̂
L̃ − ˆ̃κ − b̂− µ̂− â ≤ 0, t > 0 ⟩

= ⟨ V̂t + sL̃ + x̂
L̃ + ˆ̃κ + b̂+ µ̂+ â ≥ 0, t > 0 ⟩. (12.8.6)

◦ The attribute vector of the assertion R[ATom{M̃:1[R][A]}] is given by applying R to (12.5.36(p.77) ), i.e.,

θ(R[ATom{M̃:1[R][A]}]) def
= R[θ(ATom{M̃:1[R][A]})]

= (b̂, µ̂, â, x̂L̃ , x̂K̃ , sL̃ , κ̂, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t). (12.8.7)

� S̃tep 3 (correspondence replacement operation C̃R)
◦ Here let us consider the application of the correspondence replacement operation C̃R, i.e., the replacement of the left-hand

side of each equality in Lemma 12.3.2(p.72) .

b̂, µ̂, â, x̂
L̃ , x̂

K̃ , sL̃ , ˆ̃κ, ˆ̃T (x), ˆ̃L (x), ˆ̃K (x), ˆ̃L (s) · · · (1∗)
by its right-hand side

ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x̂), Ľ (x̂), Ǩ (x̂), Ľ (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

◦ Applying C̃R to (12.8.4(p.84) ) leads to

C̃RR[SOE{M̃:1[R][A]}] = SOE{M:1[R][A]} = {V̂1 = βµ̌− s, V̂t = max{Ǩ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (12.8.8)

◦ Applying C̃R to R[S̃] in (12.8.6(p.85) ), we have

C̃RR[S̃] = ⟨ V̂t + sĽ + x̌L + κ̌ + ǎ+ µ̌+ b̌ ≤ 0, t > 0 ⟩. (12.8.9)

Now, let us note here that the application of C̃R (see Lemma 12.3.2(p.72) ) inevitably changes

“ for F ∈ FATom|p ⊆ F ” in (12.8.5(p.85) )

into

“ for F̌ ∈ F̌ATom|p ⊆ F corresponding to any F ∈ FATom|p with p ∈PATom ⊆P ”

where
F̌ATom|p = {F̌

∣∣ F ∈ FATom|p} (see (12.1.3(p.69) )).

Hence, applying (12.8.5(p.85) ), we have

C̃RR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F (12.8.10)

corresponding to F ∈ FATom|p ⊆ F with p ∈PATom ⊆P}. (12.8.11)

Now, since the phrase “F ∈ FATom|p ⊆ F ” is implicitly accompanied with the phrase “ F̌ ∈ F̌ATom|p ⊆ F ”. Accordingly
(12.8.11(p.85) ) can be rewritten as

C̃RR[ATom{M̃:1[R][A]}] = {C̃RR[S̃] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F}, (12.8.12)

= {CRR[S] is true on Č ⟨ATom⟩ }
where

Č ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F}. (12.8.13)

◦ The attribute vector of C̃RR[ATom{M̃:1[R][A]}] is given by applying C̃R to (12.8.7(p.85) ), i.e.,

θ(C̃RR[ATom{M̃:1[R][A]}]) = C̃RR[θ(ATom{M̃:1[R][A]})]

= (ǎ, µ̌, b̌, x̌L , x̌K , sĽ .κ̌, Ť , Ľ , Ǩ , Ľ , V̂t). (12.8.14)

� S̃tep 4 (identity replacement operation ĨR)
◦ Here let us consider the application of the identity replacement operation ĨR, i.e., the replacement of the left-hand of each

equality in Lemma 12.3.4(p.74)

F̌ , ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x), Ľ (x), Ǩ (x), Ľ (s) · · · (1∗)
by its right-hand side

F , a, µ, b, xL , xK , sL , κ, T (x), L (x), K (x), L (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F ∈ F , i.e., F̌ ≡ F · · · ((1)).
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◦ Applying ĨR to (12.8.8(p.85) ) yields

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V̂1 = βµ− s, V̂t = max{K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}.

Now, we have V̂1 = βµ− s = V1 from (6.4.5(p.41) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = max{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (6.4.6(p.41) ), by induction V̂t = Vt for t > 0. Thus we have

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1},

which is the same as SOE{M:1[R][A]} (see Table 6.4.1(p.41) (I)). Thus we have

SOE{M̃:1[R][A]} = ĨRC̃RR[SOE{M̌:1[R][A]}] (12.8.15)

= {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}.

◦ Applying ĨR to (12.8.12(p.85) ) yields

ĨRC̃RR[ATom{M̃:1[R][A]}] = {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }. (12.8.16)

Applying ĨR to (12.8.9(p.85) ) yields

ĨRC̃RR[S̃] = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩. (12.8.17)

Now Vt within ĨRC̃RR[S̃] is generated from SOE{M:1[R][A]}, hence (12.8.16(p.86) ) can be regarded as an assertion as to M:1[R][A].
Thus, we have

ATom{M:1[R][A]} = ĨRC̃RR[ATom{M̃:1[R][A]}] (12.8.18)

= {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }.

◦ The attribute vector of AT̃om{M:1[R][A]} is given by applying ĨR to (12.8.14(p.85) ), i.e.,

θ(ATom{M:1[R][A]}) = ĨRC̃RR[θ(ATom{M̃:1[R][A]})]

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt), (12.8.19)

� S̃tep 5 (symmetry transformation operation S R̃→R)

Below, letting us line up the attribute vectors given in S̃tep 1 to S̃tep 4, we have the following:

S̃tep 1: θ( b, µ, a, x
L̃ , x

K̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (12.8.3(p.84) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← R

S̃tep 2: θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˜̂κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t ) (← (12.8.7(p.85) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← C̃R (12.8.20)

S̃tep 3: θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , Vt ) (← (12.8.14(p.85) ))

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← ĨR
S̃tep 4: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (12.8.19(p.86) ))

The above flow can be eventually reduced to

S R̃→R
def
=


b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

      

↓

     

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt

 (12.8.21)

called the symmetry transformation operation, which can be regarded as the successive application of the three operations, i.e.,
“ R→ C̃R → ĨR ”. Here let us define

S R̃→R
def
= ĨRC̃RR. (12.8.22)

Then (12.8.18(p.86) ) can be rewritten as

ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}]

= {S is true on Č ⟨ATom⟩ } (12.8.23)

where
S = S R̃→R[S̃]. (12.8.24)

Then, from (12.8.17(p.86) ) we have

S = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩.
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Then, (12.8.15(p.86) ) can be rewritten as

SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A] }]. (12.8.25)

In addition, (12.5.27(p.77) ) can be rewritten as

θ(ATom{M:1[R][A]}) = S R̃→R[θ(ATom{M̃:1[R][A]})] (12.8.26)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (12.8.27)

From all the above we see that S̃cenario[R] starting with (12.8.2(p.84) ) finally ends up with (12.8.23(p.86) ), which can be rewritten
as respectively

ATom{M̃:1[R][A]} holds on C ⟨ATom⟩, (12.8.28)

ATom{M:1[R][A]} holds on Č ⟨ATom⟩. (12.8.29)

From the above two results and (12.8.25(p.87) ) we eventually obtain the following lemma.

Lemma 12.8.1 Let ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩. Then ATom{M:1[R][A]} holds on C ⟨ATom⟩ where

ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}]. (12.8.30)

� S̃tep 6 (aggregation)

We can construct quite the same procedure as in Step 6 (p.78) .

� S̃tep 7 (symmetry theorem R← R̃)
Through the procedure in S̃tep 6 (p.87) we have the following theorem

Theorem 12.8.1 Let A {M̃:1[R][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}]. (12.8.31)

• Proof Immediate for the same reason as in Theorem 12.5.1(p.80) .

The attribute vector of A {M:1[R][A]} is given by

θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (12.8.32)

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt) (12.8.33)

12.9 Definition of Symmetry
Thus far, the term of symmetry has been used in the rather intuitive nuance. In order to make our discussions more clear,
below let us provide its strict definition.

Definition 12.9.1

(a) Let A{M1} and A{M2} be assertions on models M1 and M2 respectively. Then, if A{M2} = SR→R̃[A{M1}] and A{M1} =
S R̃→R[A{M2}, let A{M1} and A{M2} be said to be symmetrical, denoted by A{M1} ∼ A{M2}. Then let us employ the
expression of “M1 and M2 are symmetrical with respect to A ”.

(b) For given two assertion systems A {M1} and A {M2} which are one-to-one correspondent, if A{M1} ∼ A{M2} for any pair
(A{M1},A{M2}) where A{M1} ∈ A {M1} and A{M2} ∈ A {M2}, then A {M1} and A {M2} are said to be symmetrical,
denoted by A {M1} ∼ A {M2}. Then, let us employ the expression of “M1 and M2 are symmetrical with respect to A ”.

(c) Without confusion, let us remove the phrases “with respect to A” and “with respect to A ”.

Lemma 12.9.1 A {M:1[R][A]} and A {M̃:1[R][A]} are symmetrical, i.e.,

A {M:1[R][A]} ∼ A {M̃:1[R][A]}. (12.9.1)

• Proof Immediate from (12.5.53(p.80) ) and (12.8.31(p.87) ).

12.10 Symmetry-Operation-Free
When no change occurs even if the symmetry operation is applied to a given assertion A, the assertion is said to be free from
the symmetry operation, called the symmetry-operation-free assertion.

Lemma 12.10.1 Even if the symmetry operation is applied to the symmetry-operation-free assertion, no change occurs.

• Proof Evident.

12.11 Symmetry between SOE{M:1[R][A]} and SOE{M̃:1[R][A]}
Here note that the symmetrical relation holds between SOE{M:1[R][A]} and SOE{M̃:1[R][A]} (see (I) and (II) in Table 6.4.1(p.41) ),
i.e., SOE{M̃:1[R][A]} ∼ SOE{M:1[R][A]}. It is an important point that, due to this very fact, the symmetry theorems
(Theorems 12.5.1(p.80) and 12.8.1(p.87) ) can be derived. It will be known later on that this symmetrical relation is one of the
necessary conditions on which the integrated theory can be successfully constructed.
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Chapter 13

Analogy Theorem (R↔ P)
In this chapter we present a methodology which derives A {M:1[P][A]} (selling model with P-mechanism) from A {M:1[R][A]}
(selling model with P-mechanism).

13.1 Preliminary

Lemma 13.1.1 ([47,You])

(a) Let x ≥ b. Then z(x) = b.
(b) Let x < b. Then x < z(x) < b.
(c) z(x) ≥ a for any x.

• Proof (a) Let x ≥ b. If z < b · · · (I), then z < x, hence p(z)(z − x) < 0 due to (5.1.29 (1) (p.26) ), and if b ≤ z · · · (III), then
p(z)(z − x) = 0 due to (5.1.29 (2) (p.26) ). Hence z(x) can be given by any z ≥ b, thus z(x) = b due to Def. 5.1.1(p.26) .

-
b
◦• z

-z < b

(I)
� b ≤ z

(III)

Figure 13.1.1: Case x ≥ b

(b) Let x < b. If z ≤ x · · · (I), then p(z)(z − x) ≤ 0, if x < z < b · · · (II), then p(z)(z − x) > 0 due to (5.1.29 (1) (p.26) ),
and if b ≤ z · · · (III), then p(z)(z − x) = 0 from (5.1.29 (2) (p.26) ). Hence, z(x) is given by z such that x < z < b or equivalently
x < z(x) < b.

-
x
•◦

b
◦• z

-z ≤ x

(I)
-� x < z < b

(II)
� b ≤ z

(III)

Figure 13.1.2: Case x < b

(c) Assume that z(x) < a for a certain x. Then, since p(z(x)) = 1 = p(a) due to (5.1.28 (1) (p.26) ), from (5.1.25(p.26) ) we have
T (x) = p(z(x))(z(x)− x) = z(x)− x < a− x = p(a)(a− x) ≤ T (x), which is a contradiction. Hence, it must be that z(x) ≥ a
for any x.

Corollary 13.1.1 ([47,You]) a ≤ z(x) ≤ b for any x.

• Proof Immediate from Lemma 13.1.1(p.89) .

Lemma 13.1.2 ([47,You]) p(z) is nonincreasing on (−∞,∞) and strictly decreasing in z ∈ [a, b].

• Proof The former half is immediate from (5.1.18(p.26) ). Let a ≤ z′ < z ≤ b. Then p(z′)− p(z) = Pr{z′ ≤ ξ} − Pr{z ≤ ξ} =
Pr{z′ ≤ ξ < z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.2.3 (2) (p.13) )), hence p(z′) > p(z), i.e., p(z) is strictly decreasing on [a, b].

Lemma 13.1.3 ([47,You]) z(x) is nondecreasing on (−∞,∞).
• Proof From (5.1.25(p.26) ), for any x and y we have

T (x) = p(z(x))(z(x)− x)

= p(z(x))(z(x)− y)− (x− y)p(z(x))

≤ T (y)− (x− y)p(z(x))

= p(z(y))(z(y)− y)− (x− y)p(z(x))

= p(z(y))
(
z(y)− x+ (x− y)

)
− (x− y)p(z(x))

= p(z(y))(z(y)− x) + (x− y)(p(z(y))− p(z(x)))

≤ T (x) + (x− y)(p(z(y))− p(z(x))).

‡This is the most important property of the function T , which was proven in [?, 0298].

89



90

Hence 0 ≤ (x− y)(p(z(y))− p(z(x))). Let x > y. Then 0 ≤ p(z(y))− p(z(x)), so p(z(x)) ≤ p(z(y)) · · · ((1)). Since a ≤ z(x) ≤ b

and a ≤ z(y) ≤ b from Corollary 13.1.1(p.89) , if z(x) < z(y), then p(z(x)) > p(z(y)) from Lemma 13.1.2(p.89) , which contradicts
(1) . Hence, it must be that z(x) ≥ z(y), i.e., z(x) is nondecreasing in x ∈ (−∞,∞).

Lemma 13.1.4

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(e) T (x) ≥ a− x on (−∞,∞).

(f) T (x) + x is nondecreasing on (−∞,∞).

(g) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(h) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(i) T (x) ≥ max{0, a− x} on (−∞,∞).

(j) λβT (λβa− s)− s is nonincreasing in s and is strictly decreasing in s if λβ < 1.

• Proof (a,b) Immediate from the fact that p(z)(z − x) in (5.1.19(p.26) ) is continuous and nonincreasing in x ∈ (−∞,∞) for
any z.

(c) Let x′ < x < b. Then z(x) < b from Lemma 13.1.1(p.89) (b). Accordingly, since p(z(x)) > 0 due to (5.1.29 (1) (p.26) ) and
since z(x) − x < z(x) − x′, from (5.1.25(p.26) ) we have T (x) = p(z(x))(z(x) − x) < p(z(x))(z(x) − x′) ≤ T (x′), implying that
T (x) is strictly decreasing on (−∞, b) · · · · · · ((1)). Assume T (b) = T (x) for a given x < b, so b− x > 0. Then, for any sufficiently

small ε > 0 such that b − x > 2ε > 0 we have b > b − ε > x + ε > x, hence T (b) = T (x) > T (b − ε) ≥ T (b) due to the strict
unceasingness shown above and the nonincreasingness in (b), which is a contradiction. Thus, since T (x) ̸= T (b) for any x < b,
we have T (x) > T (b) or T (x) < T (b) for any x < b. However, the latter is impossible due to (b), hence only the former is
possible. Consequently, it follows that T (x) is strictly decreasing on (−∞, b] instead of (−∞, b).

(d) Let x ≥ b. Then, since z(x) = b from Lemma 13.1.1(p.89) (a), we have p(z(x)) = 0 due to (5.1.29 (2) (p.26) ), hence
T (x) = p(z(x))(z(x)− x) = 0 on [b,∞). Let x < b. Then, from (c) we have T (x) > T (b) = 0, i.e., T (x) > 0 on (−∞, b).

(e) Since p(a) = 1 from (5.1.28 (1) (p.26) ), we have T (x) ≥ p(a)(a− x) = a− x for any x on (−∞,∞).

(f) Let x < x′. Then, we have

T (x) + x = p(z(x))(z(x)− x) + x

= p(z(x))z(x) + (1− p(z(x)))x

≤ p(z(x))z(x) + (1− p(z(x)))x′

= p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T (x) + x is nondecreasing on (−∞,∞).

(g) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Immediate from the fact that T (x) ≥ a− x on (−∞,∞) from (e) and T (x) ≥ 0 on (−∞,∞) from (d).

(j) From (5.1.19(p.26) ) we have

λβT (λβa− s)− s = λβmaxz p(z)(z − λβa+ s)− s = maxz p(z)(λβz − (λβ)2a+ λβs)− s.

Let s > s′. Then, we have

λβT (λβa− s)− s− λβT (λβa− s′) + s′

= maxz p(z)(λβz − (λβ)2a+ λβs)−maxz p(z)(λβz − (λβ)2a+ λβs′)− (s− s′)

≤ maxz p(z)(s− s′)λβ − (s− s′)†

≤ maxz(s− s′)λβ − (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= (s− s′)λβ − (s− s′)

= −(s− s′)(1− λβ) ≤ (<) 0 if λβ ≤ (<) 1.

Hence, since λβT (λβa− s)− s ≤ (<) λβT (λβa− s′)− s′ if λβ ≤ (<) 1, it follows that T (λβa− s)− s is nonincreasing (strictly
decreasing) in s if λβ ≤ (<) 1.

Let us define
h(z) = p(z)(z − a)/(1− p(z)), z > a,

h⋆ = supa<z h(z),

†maxx g(x)−maxx h(x) ≤ maxx{g(x)− h(x)}.
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Below, for a given x let us define the following successive four assertions:

A1(x) = ⟨⟨ z(x) > a ⟩⟩,

A2(x) = ⟨⟨ T (a, x) < T (z′, x, ) for at least one z′ > a ⟩⟩,

A3(x) = ⟨⟨ a− h(z′) < x for at least one z′ > a ⟩⟩,

A4(x) = ⟨⟨ infz>a{a− h(z)} < x ⟩⟩.

Proposition 13.1.1 For any given x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

• Proof Letting T (z, x)
def
= p(z)(z − x), we can rewrite (5.1.19(p.26) ) as T (x) = maxz T (z, x) = T (z(x), x) (see (5.1.25(p.26) )).

1. Let A1(x) be true for any given x. Suppose T (a, x) ≥ T (z′, x) for all z′ ≥ a, hence the maximum of T (z, x) for all z ≥ a is
attained at z = a, i.e., z(x) = a (see Def. 5.1.1(p.26) ), which contradicts A1(x). Hence it must be that T (a, x) < T (z′, x) for
at least one z′ > a, thus A2(x) becomes true. Accordingly, we have A1(x)⇒ A2(x). Suppose A2(x) is true for any given x.
Then, if z(x) = a, we have T (a, x) < T (z′, x) ≤ T (x) = T (z(x), x) = T (a, x), which is a contradiction, hence it must be that
z(x) > a due to Lemma 13.1.1(p.89) (c). Accordingly, we have A2(x) ⇒ A1(x). Thus, it follows that A1(x) ⇔ A2(x) for any
given x.

2. Since p(a) = 1 from (5.1.28 (1) (p.26) ), for z′ > a (hence 1 > p(z′) · · · ((1)) from (5.1.28 (2) (p.26) )) we have

T (a, x)− T (z′, x)

= p(a)(a− x)− p(z′)(z′ − x)

= a− x− p(z′)(z′ − x)

= a− x− p(z′)(a− x+ z′ − a)

= a− x− p(z′)(a− x)− p(z′)(z′ − a)

= (1− p(z′))(a− x)− p(z′)(z′ − a)

= (1− p(z′))
(
a− x− p(z′)(z′ − a)/(1− p(z′))

)
= (1− p(z′))(a− x− h(z′))

= (1− p(z′))(a− h(z′)− x).

Accordingly, due to (1) we immediately obtain A2(x)⇔ A3(x) for any given x.

3. Let A3(x) be true for any given x. Then clearly A4(x) is also true, i.e., A3(x)⇒ A4(x). Let A4(x) be true for any given x.
Then evidently a− h̃(z′) < x for at least one z′ > a, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows
that A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma 13.1.5

(a) 0 < h⋆ <∞.

(b) x⋆ = a− h⋆ < a.

(c) x⋆ < (≥) x⇔ z(x) > (=) a.

(d) a⋆ < a.

• Proof (a) For any infinitesimal ε > 0 such that a < b − ε < b · · · (II) we have 0 < p(b − ε) < 1 from (5.1.29 (1) (p.26) ) and
(5.1.28 (2) (p.26) ), hence h(b− ε) = p(b− ε)(b− ε− a)/(1− p(b− ε)) > 0. If b ≤ z · · · (III), then p(z) = 0 due to (5.1.29 (2) (p.26) ),
hence h(z) = 0 for z ≥ b. From the above we have h⋆ > 0 (finite) or h⋆ =∞.

-a
•◦ b◦•

-z ≤ a

(I)

-� a < z < b

(II)

� b ≤ z

(III)

6

h(b− ε) > 0

z
h(z) = 0

Figure 13.1.3: h(b− ε) > 0 and h(z) = 0 for z ≥ b

Assume that h⋆ =∞. Then, there exists at least one z′ on a < z′ < b such that h(z′) ≥ N for any given N > 0. Hence, if the
N is given by M/

¯
f† with any M > 1, we have h(z′) ≥ M/

¯
f or equivalently p(z′)(z′ − a)/(1 − p(z′)) ≥ M/

¯
f . Hence, noting

(5.1.18(p.26) ), we have

p(z′)(z′ − a) ≥ (1− p(z′))M/
¯
f = (1− Pr{z′ ≤ ξ})M/

¯
f = Pr{ξ < z′}M/

¯
f · · · (∗)

†See (2.2.4(p.13) )
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where Pr{ξ < z′} =
∫ z′

a
f(w)dw ≥

∫ z′

a
¯
fdw = (z′ − a)

¯
f . Accordingly, since p(z′)(z′ − a) ≥ (z′ − a)

¯
fM/

¯
f = (z′ − a)M , we have

p(z′) ≥M > 1 due to z′ − a > 0, which is a contradiction. Hence, it must follow that h⋆ <∞.

(b) Since A1(x)⇒ A4(x) due to Proposition 13.1.1, we can rewritten (5.1.27(p.26) ) as

x⋆ = inf{x
∣∣ infz>a{a− h(z)} < x}

= infz>a{a− h(z)} · · · ((1))

= a− supa<z h(z) = a− h⋆ < a (due to (a) ),

hence (b) holds.

(c) If x⋆ < x, then infz>a{a−h(z)} < x from (1) , hence z(x) > a due to A4(x)⇒ A1(x). If x
⋆ ≥ x, then infa<z{a−h(z)} ≥ x

from (1) . Now, since infa<z{a − h(z)} ≥ x ⇔ z(x) ≤ a due to a contraposition of A4(x) ⇔ A1(x), hence we obtain z(x) = a
due to Lemma 13.1.1(p.89) (c).

(d) First note T (x) ≥ p(z′)(z′ − x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a + ε < b we
have p(a + ε) > 0 from (5.1.29 (1) (p.26) ), hence T (a) ≥ p(a + ε)(a + ε − a) = p(a + ε)ε > 0. Adding a to the inequality yields
T (a) + a > a. Thus, we have T (x) + x ≥ T (a) + a > a for any x ≥ a due to Lemma 13.1.4(p.90) (f). Accordingly, if a⋆ ≥ a, then
since T (a⋆) + a⋆ ≥ T (a) + a > a, from Lemma 13.1.4(p.90) (a) we have T (a⋆ − ε) + a⋆ − ε > a for any sufficiently small ε > 0
or equivalently T (a⋆ − ε) > a − (a⋆ − ε), which contradicts the definition of a⋆ (see (5.1.26(p.26) )). Therefore, it must be that
a⋆ < a.

Lemma 13.1.6

(a) T (x) + x is strictly increasing on [a⋆,∞).

(b) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).

(c) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.

(d) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

• Proof (a) From (5.1.25(p.26) ) we have

T (x) + x = p(z(x))(z(x)− x) + x = p(z(x))z(x) + (1− p(z(x)))x. · · · ((1))

◦ Let x⋆ < x. Then z(x) > a from Lemma 13.1.5(p.91) (c), hence p(z(x)) < 1 due to (5.1.28 (2) (p.26) ), so 1 − p(z(x)) > 0. If
x < x′, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

i.e., T (x) + x is strictly increasing on (−∞,∞), hence understandably so also on [a⋆,∞).

◦ Let x⋆ ≥ x. Then z(x) = a from Lemma 13.1.5(p.91) (c), hence p(z(x)) = 1 from (5.1.28 (1) (p.26) ), so T (x) = p(z(x))(z(x)−x) =
a−x · · · ((2)). Suppose a⋆ < x⋆. Then, since a⋆ < a⋆ +2ε < x⋆ for an infinitesimal ε > 0, we have a⋆ < a⋆ + ε < x⋆− ε < x⋆

or equivalently x⋆ > a⋆ + ε; accordingly, due to (2) we obtain T (a⋆ + ε) = a− (a⋆ + ε) · · · ((3)). Now, due to (5.1.26(p.26) ) we

have T (a⋆ + ε) > a− (a⋆ + ε), which contradicts (3) . Accordingly, it must be that x⋆ ≤ a⋆. Let x′ > x > a⋆. Then, since
x⋆ < x, we have z(x) > a Lemma 13.1.5(p.91) (c), hence p(z(x)) < 1 due to (5.1.28 (2) (p.26) ) or equivalently 1 − p(z(x)) > 0.
Thus, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T (x) + x is strictly increasing· · · ((4)) on (a⋆,∞). Now, let us assume T (x) + x = T (a⋆) + a⋆ on a⋆ < x,

so x − a⋆ > 0. Then, for any sufficiently small ε > 0 such that x − a⋆ > 2ε we have x > x − ε > a⋆ + ε > a⋆, hence
T (x) + x = T (a⋆) + a⋆ ≤ T (a⋆ + ε) + a⋆ + ε < T (x) + x due to the nondecreasing in Lemma 13.1.4(p.90) (f) and the strict
increasingness shown above, which is a contradiction. Thus, it must be that T (x) + x ̸= T (a⋆) + a⋆ on a⋆ < x, so we have
T (x) + x > T (a⋆) + a⋆ or T (x) + x < T (a⋆) + a⋆ on a⋆ < x; however, the latter is impossible due to the nondecreasing in
Lemma 13.1.4(p.90) (f), hence it follows that T (x) + x > T (a⋆) + a⋆ on a⋆ < x. From this fact and (4) it inevitably follows
that T (x) + x is strictly increasing on a⋆ ≤ x, i.e., T (x) + x is strictly increasing on not (a⋆,−∞) but [a⋆,−∞).

Accordingly, whether x⋆ < x or x⋆ ≥ x, it follows that T (x) + x is strictly increasing on [a⋆,∞).

(b) Due to (5.1.26(p.26) ) we have T (x) > a− x for x > a⋆, i.e., T (x) > a− x on (a⋆,∞), hence the latter half is true. Since
T (x) ≥ a − x on (−∞,∞) due to Lemma 13.1.4(p.90) (e), we have T (x) + x ≥ a · · · ((5)) on (−∞,∞). Suppose T (a⋆) + a⋆ > a.

Then, for an infinitesimal ε > 0 we have T (a⋆− ε)+a⋆− ε > a due to Lemma 13.1.4(p.90) (a), i.e., T (a⋆− ε) > a− (a⋆− ε), which
contradicts the definition of a⋆ (see (5.1.26(p.26) )). Consequently, we have T (a⋆) + a⋆ = a · · · ((6)) or equivalently T (a⋆) = a− a⋆.

Let x < a⋆. Then, from Lemma 13.1.4(p.90) (f) we have T (x)+x ≤ T (a⋆)+a⋆ = a. From the result and (5) we have T (x)+x = a,
hence T (x) = a− x on (−∞, a⋆). From this and (6) it follows that T (x) = a− x on (−∞, a⋆]. Hence the former half is true.

(c) Let a⋆ > 0. Then, since 0 ∈ (−∞, a⋆], we have T (0) = a from the former half of (b). We have T (0) = maxz p(z)z · · · ((7))
from (5.1.19(p.26) ). Let b < 0. Then, if z ≥ b, we have p(z)z = 0 from (5.1.29 (2) (p.26) ) and if z < b (< 0), then p(z)z < 0 from
(5.1.29 (1) (p.26) ), hence T (0) = 0 due to (7) .

(d) Let x < y and a⋆ < y. If x ≤ a⋆, then T (x) + x ≤ T (a⋆) + a⋆ < T (y) + y due to Lemma 13.1.4(p.90) (f) and (a), and if
a⋆ < x, then a⋆ ≤ x < y, hence T (x)+x < T (y)+y due to (a). Thus, whether x ≤ a⋆ or a⋆ < x, we have T (x)+x < T̃ (y)+y.
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13.2 Analogy Replacement Operation AR→P
13.2.1 Three Facts

Let us focus on the three facts below.

⋆ Fact 1 First, the following lemma can be obtained.

Lemma 13.2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞) ← ← Lemma 13.1.4(p.90) (a)

(b) T (x) is nonincreasing on (−∞,∞) ← ← Lemma 13.1.4(p.90) (b)

(c) T (x) is strictly decreasing on (−∞, b] ← ← Lemma 13.1.4(p.90) (c)

(d) T (x) + x is nondecreasing on (−∞,∞) ← ← Lemma 13.1.4(p.90) (f)

(e) T (x) + x is strictly increasing on [a⋆,∞) ← ← Lemma 13.1.6(p.92) (a)

(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞) ← ← Lemma 13.1.6(p.92) (b)

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞) ← ← Lemma 13.1.4(p.90) (d)

(h) T (x) ≥ max{0, a− x} on (−∞,∞) ← ← Lemma 13.1.4(p.90) (i)

(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0 ← ← Lemma 13.1.6(p.92) (c)

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma 13.1.4(p.90) (g)

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma 13.1.4(p.90) (h)

(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y ← ← Lemma 13.1.6(p.92) (d)

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1 ← ← Lemma 13.1.4(p.90) (j)

(n) a⋆ < a ← ← Lemma 13.1.5(p.91) (d)

Here we shall pay attention to the fact that replacing a and µ in Lemma 10.1.1(p.55) (A {TR })(p.55 ) by a⋆ and a
respectively yields Lemma 13.2.1(p.93) (A {TP }) . Let us represent this replacement by

AR→P = {a→ a⋆, µ→ a}. (13.2.1)

In other words, applying AR→P to the former lemma leads to the latter lemma, i.e.,

Lemma 13.2.1(p.93) (A {TP}) = AR→P[ Lemma 10.1.1(p.55) (A {TR})]. (13.2.2)

Here let us focus on the following fact. The whole description proving Lemma 10.1.1(p.55) is quite different from that proving
Lemma 13.2.1(p.93) ; in other words, no relation exists at all between both descriptions. Nevertheless, what is amazing here is
that the whole descriptions of both lemmas are joined together by AR→P. In the paper, we call AR→P the analogy replacement
operation.

⋆ Fact 2 Next, note that replacing µ in L (s) = L (λβµ− s) (see (5.1.5(p.25) )) by a yields L (s) = L (λβa− s) (see
(5.1.22(p.26) )). This means that applying AR→P to the characteristic vector (LR , KR ,LR , κR) (see (5.1.3(p.25) ) - (5.1.6(p.25) )) produces
(LP , KP ,LP , κP) (see (5.1.20(p.26) ) - (5.1.23(p.26) )), i.e.,

(LP , KP ,LP , κP) = AR→P[(LR , KR ,LR , κR)]. (13.2.3)

⋆ Fact 3 Finally, note that replacing µ in V1 = βµ− s (see (6.4.1(p.41) )) by a yields V1 = βa− s (see (6.4.5(p.41) )). This means
that applying AR→P to the system of optimality equations SOE{M:1[R][A]} (see Table 6.4.1(p.41) (I)) leads to SOE{M:1[P][A]} (see
Table 6.4.1(p.41) (III)), i.e.,

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (13.2.4)

13.2.2 Prefiguration I

Here let us present a prefiguration through which A {M:1[P][A]} can be obtained only by replacing a and µ appearing A {M:1[R][A]}
by a⋆ and a respectively.

◦ First, by F (a,µ,b) let us denote the distribution function with the lower bound a, the expectation µ, and the upper bound b
(a < µ < b). For convenience of reference, below let us copy (13.2.2(p.93) ) - (13.2.4(p.93) ):

Lemma 13.2.1(p.93) (A {TP}) = AR→P[ Lemma 10.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ]
(1⋆)l (1⋆)r

For F (a,µ,b) For F (a,µ,b)

Procedure[P] Procedure[R]
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◦ Next, closely looking at the flow of the proofs of Tom’s 11.2.1(p.61) -11.2.2(p.62) , we see that A {M:1[R][A]} was derived only from
the procedure related to the three terms within the box (1⋆)r above; here let us denote this procedure by Procedure[R].
Now, for quite the same reason as in Procedure[R] we also see that A {M:1[P][A]} will be derived from the procedure related
to the three terms within the box (1⋆)l above, then let us denote this procedure by Procedure[P]. The flow of the above two
procedures can be schematized as below.

Lemma 13.2.1(p.93) (A {TP}) = AR→P[ Lemma 10.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ]

↓ ↓

Procedure[P] Procedure[R]
↓ ↓

A {M:1[P][A]} A {M:1[R][A]}

(1⋆)l

(2⋆)l

(1⋆)r

(2⋆)r

For F (a,µ,b) For F (a,µ,b)

◦ Then, since we have the relation (1⋆)l = AR→P[(1
⋆)r] due to the three Facts in the preceding section, it can be prefigured

that this relation will be inherited also between Procedure[P] and Procedure[R], i.e.,

Procedure[P] = AR→P[Procedure[R]],

hence also between A {M:1[P][A]} and A {M:1[R][A]}, i.e.

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (13.2.5)

In other words, A {M:1[P][A]} can be obtained by applying AR→P to A {M:1[R][A]}. From the above discussions we see that
the above figure can be rewritten as below.

Lemma 13.2.1(p.93) (A {TP}) = AR→P[ Lemma 10.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ]

↓ ↓
Procedure[P] = AR→P[ Procedure[R] ]

↓ ↓
A {M:1[P][A]} = AR→P[ A {M:1[R][A]} ](2⋆)l

(1⋆)l

(2⋆)r

(1⋆)r

For F (a,µ,b)

Put29.6 12.6For F (a,µ,b)

Here note that the above discussions is not a proof but a prefiguration.

13.2.3 Prefiguration II

Below is another prefiguration through which the validity of (13.2.5(p.94) ) will be confirmed.

◦ First, let us represent the procedure proving A {M:1[R][E]}(a,µ,b) with F (a,µ,b) by Procedure[R](a,µ,b) (see Section 11.2(p.61) ).
Now, since a⋆ < a < b due to Lemma 13.2.1(p.93) (n), we can express the F with the lower bound a⋆, the expectation a,
and the upper bound b as F (a⋆,a,b), hence we can define Procedure[R](a⋆,a,b), proving A {M:1[R][E]}(a⋆,a,b) with F (a⋆,a,b).
Here note that Procedure[R](a⋆,a,b) is identical to one resulting from replacing a and µ in Procedure[R](a,µ,b) by a⋆ and a
respectively, i.e.,

Procedure[R](a⋆,a,b) = AR→P[Procedure[R](a,µ,b)].

◦ Then, from the three facts in Section 13.2.1(p.93) we can regard Procedure[P](a,µ,b) as quite the same as Procedure[R](a⋆,a,b)
from the viewpoint of symbolic logic,† i.e.,

Procedure[P](a,µ,b)

s·logic
= Procedure[R](a⋆,a,b)

hence we have

Procedure[P](a,µ,b)
s·logic
= Procedure[R](a⋆,a,b) = AR→P[Procedure[R](a,µ,b)].

†A logic is regarded as reducing deduction to the process which transforms the expressions by representing propositions, the concept of
logic, and so on with symbols such as +, −, >, <, ∨, ∧, ⇒, and so on (Wikipedia)
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◦ The above relation implies that A {M:1[P][E]}(a,µ,b) proved by Procedure[P](a,µ,b) becomes identical (in the sense of “symbolic
logic”) to A {M:1[R][E]}(a⋆,a,b) proved by Procedure[R](a⋆,a,b), i.e.,

A {M:1[P][E]}(a,µ,b)
s·logic
= A {M:1[R][E]}(a⋆,a,b).

In other words, A {M:1[P][E]}(a,µ,b) can be given by A {M:1[R][E]}(a⋆,a,b) resulting from applying AR→P to A {M:1[R][E]}(a,µ,b)
or equivalently from replacing a and µ in A {M:1[R][E]}(a,µ,b) by a⋆ and a respectively, i.e.,

A {M:1[P][E]}(a,µ,b)
s·logic
= A {M:1[R][E]}(a⋆,a,b) = AR→P[A {M:1[R][E]}(a,µ,b)];

13.2.4 Strict Proof

In this section, by dividing the intuitive prefiguration in Section 13.2.2(p.93) into several stages, we shall strictly prove that
(13.2.5(p.94) ) holds also theoretically.

� First, let us note that Procedure[R] deriving A {M:1[R][E]} (see Section 11.2(p.61) ) can be restated as below.

◦ First, by applying A {TR} (see Lemma 10.1.1(p.55) ) to the characteristic vector (LR , KR ,LR , κR) consisting of (5.1.3(p.25) )-
(5.1.6(p.25) ), we obtain expressions (10.2.3(p.57) ) - (10.2.8(p.57) ); let us denote these expressions by {LR , KR ,LR , κR}.

◦ Next, by applying the A {TR} to the {LR , KR ,LR , κR}, we get the assertion system A {LR , KR ,LR , κR} (see Lemmas 10.2.1(p.57) -
10.3.1(p.59) ).

◦ Finally, by applying the system of optimality equations SOE{M:1[R][E]} (see Table 6.4.1(p.41) (I)) to A {LR , KR ,LR , κR}, we
get the assertion system A {M:1[R][E]} (see Tom’s 11.2.1(p.61) and 11.2.2(p.62) ).

The above flow of Procedure[R] can be schematized as below.

Procedure[R] = ⟨⟨A {TR } ⇒ (LR , KR ,LR , κR)→ {LR , KR ,LR , κR},

A {TR } ⇒ {LR , KR ,LR , κR} → A {LR , KR ,LR , κR},

SOE{M:1[R][E]} ⇒ A {LR , KR ,LR , κR} → A {M:1[R][E]} ⟩⟩

� Secondarily, applying AR→P to the above flow leads to

AR→P[Procedure[R]] = ⟨⟨AR→P[A {TR }]⇒ AR→P[(LR , KR ,LR , κR)]→ AR→P[{LR , KR ,LR , κR}] ,

AR→P[A {TR }]⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

AR→P[SOE{M:1[R][E]}]⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩

� Thirdly, due to (13.2.2(p.93) )-(13.2.4(p.93) ) we can replace

AR→P[A {TR}], AR→P[(LR , KR ,LR , κR)], AR→P[SOE{M:1[R][E]}]
in the above flow by

A {TP}, (LP , KP ,LP , κP), SOE{M:1[P][E]}

respectively. Accordingly, the above flow can be rewritten as follows.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (13.2.6)

� Fourthly, let us focus our attentions on the items without underline in the above flow, i.e.,

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (13.2.7)

Here (LP , KP ,LP , κP) can be describes as follows.

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(13.2.8)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2),

(13.2.9)

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(13.2.10)
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K (x) + x ≥ βx− s on (−∞,∞), (13.2.11)

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2),

(13.2.12)

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2), (13.2.13)

• Direct proof See (A 2.1(p.294) )-(A 2.6(p.294) ) .

� Fifthly, applyingAR→P to the relations {LR , KR ,LR , κR} (see Lemmas 10.2.1(p.57) -10.3.1(p.59) ) yields the relations {LP , KP ,LP , κP},
i.e.,

AR→P[{LR , KR ,LR , κR}] = {LP , KP ,LP , κP}. (13.2.14)

� Finally, noting (13.2.14(p.96) ), we can rewrite (13.2.7(p.95) ) as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (13.2.15)

� Now we have

AR→P[A {LR , KR ,LR , κR}] = A {LP , KP ,LP , κP}. (13.2.16)

Accordingly (13.2.15(p.96) ) can be rewritten as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → AR→P[A {M:1[R][E]}] ⟩⟩. (13.2.17)

� Applying (13.2.16(p.96) ) to Lemmas 10.2.1(p.57) to 10.3.1(p.59) yields the following lemmas and corollaries:

Lemma 13.2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ.

• Proof by analogy Obtained from applying AR→P to Lemma 10.2.1(p.57) .

• Direct proof See the proof of Lemma A2.2(p.294) .

Corollary 13.2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof by analogy Obtained from applying AR→P to Corollary 10.2.1(p.57) .

• Direct proof See the proof of Corollary A 2.1(p.294) .

Lemma 13.2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on [a⋆,∞).

(g) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.
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1. There uniquely exists xK where xK > (= (<)) x ⇔ K (x) > (= (<)) 0.

2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 10.2.2(p.57) .

• Direct proof See the proof of Lemma A2.3(p.294) .

Corollary 13.2.2 (A {KP})

(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof by analogy Obtained from applying AR→P to Corollary 10.2.2(p.58) .

• Direct proof See the proof of Lemma A2.2(p.295) .

Lemma 13.2.4 (A {LP /KP })

(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 10.2.3(p.58) .

• Direct proof See the proof of Lemma A2.4(p.295) .

Lemma 13.2.5 (A {LP })

(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.

(b) Let λβa ≥ b.

1. xL ≤ λβa− s.

2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(c) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

• Proof by analogy Obtained from applying AR→P to Lemma 10.2.4(p.59) .

• Direct proof See the proof of Lemma A2.5(p.296) .

Lemma 13.2.6 (κP) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.

(b) Let κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 10.3.1(p.59) .

• Direct proof See the proof of Lemma A2.6(p.296) .

� Since the assertion system AR→P[A {M:1[R][E]} in (13.2.17(p.96) ) is derived from SOE{M:1[P][E]}, it can be regarded as an
assertion system for the model M:1[P][E] (see Remark 6.1.1(p.29) ), i.e., A {M:1[P][E]}, hence we have

A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (the same as (13.2.5(p.94) )). (13.2.18)

Thus (13.2.17(p.96) ) can be rewritten as follows.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩ (13.2.19)

� The whole of the r.h.s. of (13.2.19(p.97) ) can be regarded as the procedure deriving A {M:1[P][E]}, so let us denote it by
Procedure⟨P⟩, i.e.,

AR→P[Procedure[R]] = Procedure[P]. (13.2.20)

Accordingly, finally it follows that we have

Procedure[P] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩
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13.3 Analogy Theorem (R↔ P)
From (13.2.5(p.94) ) we immediately obtain the following theorem.

Theorem 13.3.1 (analogy (R→ P)) Let A {M:1[R][A]} holds on P ×F . Then A {M:1[P][A]} holds on P ×F where

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (13.3.1)

Then, from the comparison of (I) and (III) of Tables 6.4.1(p.41) we also get

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (13.3.2)

Moreover, from (12.4.2(p.75) ) we obtain the following:

θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (13.3.3)

= ( a⋆, a, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (13.3.4)

The analogy replacement operation AR→P is a mere replacement of the two symbols, a → a⋆ and µ → a. Hence, defining its
inverse as

AP→R = {a⋆ → a, a → µ}, (13.3.5)

we can immediately obtain the inverse of the above theorem becomes true as follows.

Theorem 13.3.2 (analogy (P← R)) Let A {M:1[P][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = AP→R[A {M:1[P][A]}]. (13.3.6)

In addition, as an inverses of (13.3.2(p.98) ) and (13.3.3(p.98) ) we immediately obtain

SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}]. (13.3.7)

θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (13.3.8)

= ( a, µ, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (13.3.9)

13.4 Derivation of A {M:1[P][A]}
� Tom 13.4.1 (�� A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof by analogy Immediate from applying AR→P to Tom 11.2.1(p.61) .

• Direct proof See the proof of Tom A4.3(p.305) .

� Tom 13.4.2 (�� A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof by analogy Immediate from applying AR→P to Tom 11.2.2(p.62) .

• Direct proof See the proof of Tom A4.4(p.306) .
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13.5 Strict Definition of Analogy
Below let us provide the strict definition for “analogy” that we have indefinitely used so far.

Definition 13.5.1 (analogy)

(a) By AR→P[X] (AP→R[X]) let us denote the assertion defined by applying AR→P (AP→R) to a given X.

(b) If A{X2} = AR→P[A{X1}] and A{X1} = AP→R[A{X2}], then A{X1} and A{X2} is said to be analogous, denoted by
A{X1} ◃▹ A{X2}.

(c) For given two assertion systems A {X1} and A {X2} which are one-to-one correspondent, if A{X1} ◃▹ A{X2} for any pair
(A{X1},A{X2}) where A{X1} ∈ A {X1} and A{X2} ∈ A {X2} are correspondent each other, then A {X1} and A {X2} are
said to be analogous, denoted by A {X1} ◃▹ A {X2}.

13.6 Analogy-Operation-Free
When no change occurs even if the analogy operation is applied to a given assertion A, the assertion is said to be free from the
analogy operation, called the analogy-operation-free assertion.

Lemma 13.6.1 Even if the analogy operation is applied to the analogy-operation-free assertion, no change occurs.

• Proof Evident.

13.7 Optimal Price to Propose

Lemma 13.7.1 (A {M:1[P][A]}) The optimal price zt to propose is nondecreasing in t > 0.

• Proof Obvious from (6.2.34(p.31) ), Tom’s 13.4.1(p.98) (a) and 13.4.2(p.98) (a), and
Lemma 13.1.3(p.89) .

13.8 Analogy between SOE{M:1[R][A]} and SOE{M:1[P][A]}
Here note that the analogical relation holds between SOE{M:1[R][A]} and SOE{M:1[P][A]} (see (I) and (III) in Table 6.4.1(p.41) ),
i.e., SOE{M:1[P][A]} ◃▹ SOE{M:1[R][A]}. It is an important point that, due to this very fact, the analogy theorems
(Theorems 13.3.1(p.98) and 13.3.2(p.98) ) can be derived. It will be known later on that the analogical relation is one of the necessary
conditions on which the integrated theory can be successfully constructed.
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Chapter 14

Symmetry Theorem (P↔ P̃)

In this chapter we present the methodology deriving A {M̃:1[P][A]} (buying model with P-mechanism) from A {M:1[P][A]} (selling
model with P-mechanism).

14.1 Functions Ť , Ľ , Ǩ , and Ľ of Type P
Below let us define ones corresponding to the underlying functions that were defined in Section 5.1.3(p.26) . First let us define the
T -function of Type P for F̌ ∈ F̌ corresponding to any F ∈ F (see (5.1.19(p.26) ) and (5.1.18(p.26) )) by

Ť (x) = max
z

p̌(z)(z − x) · · · (1), p̌(z) = Pr{z ≤ ξ̂} · · · (2). (14.1.1)

By ž(x) let us define z maximizing p̌(z)(z − x) if it exists, i.e.,

Ť (x) = p̌(ž(x))(ž(x)− x). (14.1.2)

Furthermore, let us define

Ľ (x) = λβŤ (x)− s, (14.1.3)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (14.1.4)

Ľ (s) = Ľ (λβǎ− s), (14.1.5)

κ̌ = λβŤ (0)− s. (14.1.6)

Then, let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by respectively xĽ , xǨ , and sĽ if they exist. If multiple

solutions exist for each of xĽ , xǨ , and sĽ , let us employ the smallest as its solution (see Sections 5.2(p.27) (a) and 12.2.1(p.71) ).

Furthermore, let us define (see Figure 12.1.1(p.70) for ǎ, µ̌, and b̌)

ǎ⋆ = inf{x
∣∣ Ť (x) > ǎ− x} (see (5.1.26(p.26) )), (14.1.7)

x̌⋆ = inf{x
∣∣ ž(x) > ǎ} (see (5.1.27(p.26) )). (14.1.8)

By M̌:1[P][A] let us define M:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M:1[P][A]}
(see Table 6.4.1(p.41) (III)) we can obtain

SOE{M̌:1[P][A]} = {V1 = βǎ− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}. (14.1.9)

14.2 Functions ˇ̃T , ˇ̃L , ˇ̃K , and ˇ̃L of Type P
Below let us define ones corresponding to the underlying functions that were defined in Section 5.1.4(p.26) . First, let us define
the T̃ -function of T̃ype P for F̌ ∈ F̌ corresponding to any F ∈ F by (see (5.1.32(p.26) )).

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x) · · · (1), ˇ̃p(z) = Pr{ξ̂ ≤ z} · · · (2) (14.2.1)

where by ž(x) let us define z minimizing ˇ̃p(z)(z − x) if it exists, i.e.,

ˇ̃T (x) = ˇ̃p(ž(x))(ž(x)− x). (14.2.2)

Let us define
ˇ̃L (x) = λβ ˇ̃T (x) + s, (14.2.3)

ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (14.2.4)

ˇ̃L (s) = ˇ̃L (λβb̌+ s), (14.2.5)

ˇ̃κ = λβ ˇ̃T (0) + s (14.2.6)
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where let us define the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (x) = 0 by respectively xˇ̃L , xˇ̃K , and sˇ̃L . If multiple solutions
exist for each of x

L̃ , x
K̃ , and sL̃ , we shall employ the largest as its solution (see Sections 5.2(p.27) (b)). Furthermore let us define

(see Figure 12.1.1(p.70) for ǎ, µ̌, and b̌)

b̌⋆ = sup{x
∣∣ ˇ̃T (x) < b̌− x} (see (5.1.39(p.27) )), (14.2.7)

ˇ̃x⋆ = sup{x | ž(x) < b̌} (see (5.1.40(p.27) )). (14.2.8)

By
ˇ̃M:1[P][A] let us define M̃:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M̃:1[P][A]}

(see Table 6.4.1(p.41) (IV)) we can obtain

SOE{ ˇ̃M:1[P][A]} = {V1 = βb̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}. (14.2.9)

14.3 List of Underline Functions of Type P and T̃ype P
The table below is the list of the four kinds of underline functions of Type P and T̃ype P (see Table 12.2.1(p.71) ).

Table 14.3.1: List of the underlying functions of Type P and T̃ype P

Type P T̃ype P

For any F ∈ F
For F̌ ∈ F̌

corresponding to any F ∈ F

T (x) = max
z

p(z)(z − x)

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βa− s)

See Section 5.1.3(p.26)

Ť (x) = max
z

p̌(z)(z − x)

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βǎ− s)

See Section 14.1

T̃ (x) = min
z

p̃(z)(z − x)

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x+ s

L̃ (x) = L̃ (βb+ s)

See Section 5.1.4(p.26)

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x)

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x+ s

ˇ̃L (x) = ˇ̃L (βb̌+ s)

See Section 14.2

14.4 Two Kinds of Replacements
14.4.1 Correspondence Replacement

Lemma 14.4.1 (CP) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, â⋆ = b̌⋆, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.

• Proof (a) The same as (12.1.9(p.70) ).

(The first and third equalities of (b)) The same as the first and third equalities of (12.1.10(p.70) ). The second equality will
be proven after the proof of (c).

(c) From (5.1.18(p.26) ) and (14.2.1 (2) (p.101) ), we obtain

p(z) = Pr{−ẑ ≤ −ξ̂} = Pr{ξ̂ ≤ ẑ} = ˇ̃p(ẑ), (14.4.1)

hence from (5.1.19(p.26) ) we have T (x) = maxz
ˇ̃p(ẑ)(−ẑ + x̂) = −minz

ˇ̃p(ẑ)(ẑ − x̂). Now, in general “minz = min−∞<z<∞ =
min−∞<−ẑ<∞ = min∞>ẑ>−∞ = min−∞<ẑ<∞ = minẑ”, hence we have T (x) = −minẑ

ˇ̃p(z)(ẑ − x̂). Then, without loss of
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generality, this can be rewritten as T (x) = −minz
ˇ̃p(z)(z − x̂). Accordingly, since T (x) = − ˇ̃T (x̂) from (14.2.1 (1) (p.101) ), we

obtain T̂ (x) = ˇ̃T (x̂).

(The second equality of (b)) From (5.1.26(p.26) ) we have a⋆ = inf{−x̂
∣∣ −T̂ (x) > −â + x̂} = − sup{x̂

∣∣ T̂ (x) < â − x̂} =

− sup{x̂
∣∣ ˇ̃T (x̂) < b̌− x̂} due to (c) and (b). Without loss of generality, this can be rewritten as a⋆ = − sup{x

∣∣ ˇ̃T (x) < b̌− x},
hence a⋆ = −b̌⋆ due to (14.2.7(p.102) ), so that â⋆ = b̌⋆.

(d) From (5.1.20(p.26) ) and (c) we have L (x) = −λβT̂ (x)−s = −λβ ˇ̃T (x̂)−s = − ˇ̃L (x̂) from (14.2.3(p.101) ), hence L̂ (x) = ˇ̃L (x̂).

(e) From (5.1.21(p.26) ) and (c) we have K (x) = −λβT̂ (x)+(1−β)x̂−s = −λβ ˇ̃T (x̂)+(1−β)x̂−s = − ˇ̃K (x̂) from (14.2.4(p.101) ),

hence K̂ (x) = ˇ̃K (x̂).

(f) From (5.1.22(p.26) ) we have L (s) = −L̂ (λβa − s) = − ˇ̃L ( ̂λβa− s) due to (d). Then, since L (s) = − ˇ̃L (−λβa + s) =

− ˇ̃L (λβâ+ s) = − ˇ̃L (λβb̌+ s) due to (b), we have L (s) = − ˇ̃L (s) from (14.2.5(p.101) ), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have −L̂ ( xL ) = 0, i.e., L̂ ( xL ) = 0, hence ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have −K̂ (xK ) = 0, i.e., K̂ (xK ) = 0, hence ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have −L̂ (sL) = 0, i.e., L̂ (sL) = 0, hence ˇ̃L (sL) = 0 from (f), implying that ˇ̃L (s) = 0
has the solution sˇ̃L = sL by definition.

(j) From (5.1.23(p.26) ) we have κ = −λβT̂ (0)− s = −λβ ˇ̃T (0̂)− s from (c), hence κ = −λβ ˇ̃T (0)− s = −ˇ̃κ from (14.2.6(p.101) ),
thus κ̂ = ˇ̃κ.

Definition 14.4.1 (correspondent replacement operation CP) Let us call the operation of replacing the left-hand side of each
equality in Lemma 14.4.1(p.102) by its right-hand side the correspondence replacement operation CP.

Lemma 14.4.2 (C̃P) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, b̂⋆ = ǎ⋆, b̂ = ǎ.

(c) ˆ̃T (x) = Ť (x̂).

(d) ˆ̃L (x) = Ľ (x̂).

(e) ˆ̃K (x) = Ǩ (x̂).

(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = x̌L .

(h) x̂
K̃ = x̌K .

(i) sL̃ = sĽ .

(j) ˆ̃κ = κ̌.

• Proof (27.2.3) The same as (12.1.9(p.70) ).

(The first and third equalities of (b)) The same as the first and third equation of (12.1.10(p.70) ). The second equality will be
proven after the proof of (c).

(c) From (5.1.31(p.26) ) and (14.1.1 (2) (p.101) ) we obtain

p̃(z) = Pr{−ξ̂ ≤ −ẑ} = Pr{ξ̂ ≥ ẑ} = Pr{ẑ ≤ ξ̂} = p̌(ẑ), (14.4.2)

hence from (5.1.32(p.26) ) we have T̃ (x) = minz p̌(ẑ)(−ẑ + x̂) = −maxz p̌(ẑ)(ẑ − x̂). Now, in general “maxz = max−∞<z<∞ =
max−∞<−ẑ<∞ = max∞>ẑ>−∞ = max−∞<ẑ<∞ = maxẑ”, hence we have T̃ (x) = −maxẑ p̌(z)(ẑ − x̂). Then, without loss of
generality, this can be rewritten as T̃ (x) = −maxz p̌(z)(z − x̂). Accordingly, since T̃ (x) = −Ť (x̂) from (14.1.1 (1) (p.101) ), we

obtain ˆ̃T (x) = Ť (x̂).

(The second equality of (b)) From (5.1.39(p.27) ) we have b⋆ = sup{−x̂
∣∣ − ˆ̃T (x) < −b̂ + x̂} = − inf{x̂

∣∣ ˆ̃T (x) > b̂ − x̂} =
− inf{x̂

∣∣ Ť (x̂) > ǎ − x̂} due to (c) and (b). Without loss of generality, this can be rewritten as b⋆ = − inf{x
∣∣ Ť (x) > ǎ − x}

we have b⋆ = −ǎ⋆ due to (14.1.7(p.101) ) or equivalently −b⋆ = ǎ⋆, hence b̂⋆ = ǎ⋆.

(d) From (5.1.33(p.27) ) and (c) we have L̃ (x) = −λβ ˆ̃T (x)+s = −λβŤ (x̂)+s = −Ľ (x̂) from (14.1.3(p.101) ), hence ˆ̃L (x) = Ľ (x̂).

(e) From (5.1.34(p.27) ) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+(1−β)x̂+s = −λβŤ (x̂)+(1−β)x̂+s = −Ǩ (x̂) from (14.1.4(p.101) ),

hence ˆ̃K (x) = Ǩ (x̂).

(f) From (5.1.35(p.27) ) we have L̃ (s) = − ˆ̃L (λβb + s), hence from (d) we obtain L̃ (s) = −Ľ ( ̂λβb+ s) = −Ľ (−λβb − s) =

−Ľ (λβb̂− s) = −Ľ (λβǎ− s) due to (b). Accordingly, from (14.1.5(p.101) ) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have − ˆ̃L ( xL̃ ) = 0, i.e., ˆ̃L ( xL̃ ) = 0, hence Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.
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(h) Since K̃ ( xK̃ ) = 0 by definition, we have − ˆ̃K ( xK̃ ) = 0, i.e., ˆ̃K ( xK̃ ) = 0, hence Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have − ˆ̃L (sL̃) = 0, i.e., ˆ̃L (sL̃) = 0, hence Ľ (sL̃) = 0 from (f), implying that Ľ (s) = 0

has the solution sĽ = sL̃ by definition.

(j) From (5.1.36(p.27) ) we have κ̃ = −λβ ˆ̃T (0) + s, leading to κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ = −λβŤ (0) + s = −κ̌ from
(14.1.6(p.101) ), thus ˆ̃κ = κ̌.

Remark 14.4.1 The equality µ̂ = µ̌ in Lemmas 12.3.1(p.72) (b) changes into respectively â⋆ = b̌⋆ in
Lemma 14.4.1(p.102) (b) and the equality µ̂ = µ̌ in (12.1.10(p.70) ) changes into b̂⋆ = ǎ⋆ in Lemma 14.4.2(p.103) (b).

The definition below is the same as Def. 12.3.3(p.73) .

Definition 14.4.2 (reversible element and non-reversible element) It should be noted that the left side of each of the equalities
in Lemmas 14.4.1(p.102) (i) and 14.4.2(p.103) (i) is respectively sL and sL̃ without the hat symbol “ ˆ”; in other words, sL and sL̃
are not subjected to the reverse. For the reason, let us refer to each of sL and sL̃ as the non-reversible element and to each
of all the other elements as the reversible element.

Definition 14.4.3 (correspondent replacement operation C̃P) Let us call the operation of replacing the left-hand side of each
equality in the above lemma by its right-hand side the correspondence replacement operation C̃P.

14.4.2 Identity Replacement

Lemma 14.4.3 (IP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F̌ ≡ F · · · [1∗].† Then:

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, b̌⋆ = b⋆, b̌ = b,

(c) ˇ̃T (x) = T̃ (x),

(d) ˇ̃L (x) = L̃ (x),

(e) ˇ̃K (x) = K̃ (x),

(f) ˇ̃L (s) = L̃ (s),
(g) xˇ̃L = x

L̃ ,

(h) xˇ̃K = x
K̃ ,

(i) sˇ̃L = sL̃ ,

(j) ˇ̃κ = κ̃.

• Proof (a) Clear from [1∗].

(the first and last equalities of (b)) Immediate from (a). The second equality will be proven after the proof of (c).

(c) From (14.2.1 (2) (p.101) ) we have ˇ̃p(z) = Pr{ξ̂ ≤ z} =
∫ z

−∞ f̌(ξ)dξ. Then, due to [3∗] we have ˇ̃p(z) =
∫ z

−∞ f(ξ)dξ = Pr{ξ ≤
z} = p̃(z) from (5.1.31(p.26) ). Hence, we have that ˇ̃T (x) given by (14.2.1 (1) (p.101) ) becomes ˇ̃T (x) = minz p̃(z)(z − x), which is

identical to T̃ (x) given by (5.1.32(p.26) ), i.e., ˇ̃T (x) = T̃ (x) for any x.

(the second equality of (b)) From (14.2.7(p.102) ) and (c) we have b̌⋆ = sup{x
∣∣ T̃ (x) < b̌ − x}, hence from (b) we get

b̌⋆ = sup{x
∣∣ T̃ (x) < b− x} = b⋆ due to (5.1.39(p.27) ).

(d,e) Noting (c), from (14.2.3(p.101) ) and (5.1.33(p.27) ) we have ˇ̃L (x) = L̃ (x). Similarly, from (14.2.4(p.101) ) and (5.1.34(p.27) ) we

have ˇ̃K (x) = K̃ (x).

(f) (14.2.5(p.101) ) becomes ˇ̃L (s) = ˇ̃L (λβb + s) due to (b). This can be rewritten as ˇ̃L (s) = L̃ (λβb + s) due to (d), which is

the same as L̃ (s) given by (5.1.35(p.27) ), i.e., ˇ̃L (s) = L̃ (s).

(g-i) Evident from (d-f).

(j) (14.2.6(p.101) ) becomes ˇ̃κ = λβT̃ (0) + s due to (c), which is the same as κ̃ given by (5.1.36(p.27) ).

Definition 14.4.4 (identity replacement operation IP) Let us call the operation of replacing the left-hand of each equality in
the above lemma by its right-hand the identity replacement operation IP.

Lemma 14.4.4 (ĨP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F ≡ F̌ · · · [1∗]. Then :

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, ǎ⋆ = a⋆, b̌ = b,

(c) Ť (x) = T (x),

(d) Ľ (x) = L (x),

†See Lemma 12.1.1(p.70) (b)
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(e) Ǩ (x) = K (x),

(f) Ľ (s) = L (s),
(g) xĽ = xL ,

(h) xǨ = xK ,

(i) sĽ = sL ,

(j) κ̌ = κ.

• Proof (a) Clear from [1∗].

(The first and last equalities of b)) Immediate form (a). The second equality will be proven after the proof of (c).

(c) From (14.1.1 (2) (p.101) ) we have p̌(z) = Pr{z ≤ ξ̂} =
∫∞
z

f̌(ξ)dξ. Then, due to [3∗] we have p̌(z) =
∫∞
z

f(ξ)dξ = Pr{z ≤
ξ} = p(z) from (5.1.18(p.26) ). Hence, we have that Ť (x) given by (14.1.1 (1) (p.101) ) becomes Ť (x) = maxz p(z)(z − x), which is
identical to T (x) given by (5.1.19(p.26) ), i.e., Ť (x) = T (x) for any x.

(the second equality of (b)) From (14.1.7 (1) (p.101) ) and (c) we have ǎ⋆ = inf{x
∣∣ T (x) > ǎ − x}, hence from (b) we get

ǎ⋆ = inf{x
∣∣ T (x) > a− x} = a⋆ due to (5.1.26(p.26) ). Thus, the second equality of (b) is true.

(d,e) Noting (c), from (14.1.3(p.101) ) and (5.1.20(p.26) ) we have Ľ (x) = L (x). Similarly, from (14.1.4(p.101) ) and (5.1.21(p.26) ) we
have Ǩ (x) = K (x).

(f) (14.1.5(p.101) ) becomes Ľ (s) = Ľ (λβa − s) due to (b). This can be rewritten as Ľ (s) = L (λβa − s) due to (d), which is
the same as L (s) given by (5.1.22(p.26) ), i.e., Ľ (s) = L (s).

(g-i) Evident from (d-f).

(j) (14.1.6(p.101) ) becomes κ̌ = λβT (0)− s due to (c), which is the same as κ given by (5.1.23(p.26) ).

Definition 14.4.5 (Identity replacement operation ĨP) Let us call the operation of replacing the left-hand of each equality in
the above lemma by its right-hand the identity replacement operation ĨP.

14.5 Scenario of Type P
14.5.1 Scenario[P]
This section provides the scenario deriving A {M̃:1[P][A]} (buying model with P-mechanism) from A {M:1[P][A]} (selling model
with P-mechanism), denoted by Scenario[P].

� Before moving on, here let us carry out a review of Scenario[R]. For convenience of reference, below let us copy the
transformation process of the attribute vectors (see (12.5.28(p.77) )) in Scenario[R].

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[R][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R]: R→ θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (14.5.1)

Step 3[R]: Lemma 12.3.1(p.72) CR → θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R]: Lemma 12.3.3(p.73) IR → θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[R][A]})

� From the above flow of the attribute vectors, we see that Scenario[P] is the same as Scenario[R] only except that

◦ a and µ in θ(A {M:1[R][A]}) is replaced a⋆ and a in θ(A {M:1[P][A]}) (see (13.2.1(p.93) )) and

◦ Lemmas 12.3.1(p.72) and 12.3.3(p.73) are changed into Lemmas 14.4.1(p.102) and 14.4.3(p.104) respectively.

Therefore the above flow of attribute vectors can be rewritten as follows.

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P]: θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[P][A]}
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P]: R→ θ( â⋆, â, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (14.5.2)

Step 3[P]: Lemma 14.4.1(p.102) CP → θ( b̌⋆, b̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P]: Lemma 14.4.3(p.104) IP → θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[P][A]}

↓
Scenario[P]
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Accordingly, it follows that the operation which transforms θ(A {M:1[P][A]}) into θ(A {M̃:1[P][A]}) can be eventually reduced
to the operation below:

SP→P̃
def
=


a⋆, a, b, xLP, xKP, sLP , κP, TP , LP , KP , LP , Vt

            

b⋆, b, a, xL̃P, xK̃P, sL̃P, κ̃P, T̃P , L̃P , K̃P , L̃P , Vt

 .† (14.5.3)

� Thus, one sees that in Scenario[P] it suffices to change SR→R̃ = IRCRR(see (12.5.30(p.77) )) into S P→P̃ = IPCRP above.
� Moreover, from (III) and (IV) of Table 6.4.1(p.41) it can be easily seen that

SOE{M̃:1[P][A]} = S P→P̃[SOE{M:1[P][A]}]. (14.5.4)

From all the above discussions it follows that for quite the same reason as that for which Lemma 12.5.1(p.78) was derived we can
immediately obtain Lemma 14.5.1(p.106) below.

Lemma 14.5.1 Let ATom{M:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[P][A]} holds on C ⟨ATom⟩ where

ATom{M̃:1[P][A]} = S P→P̃[ATom{M:1[P][A]}]. (14.5.5)

Finally, also for almost the same reason as that for which Theorem 12.5.1(p.80) is derived from Lemma 12.5.1(p.78) we have
Theorem 14.5.1(p.106) below.

Theorem 14.5.1 (symmetry theorem (P→ P̃)) Let A {M:1[P][A]} holds on P×F . Then A {M̃:1[P][A]} holds on P×F
where

A {M̃:1[P][A]} = S P→P̃[A {M:1[P][A]}]. (14.5.6)

In addition, we have (see (12.5.54(p.80) ))

θ(A {M̃:1[P][A]}) def
= S P→P̃[θ(A {M:1[P][A]})] (14.5.7)

= (b⋆, b, a, xL̃ , sL̃ , xK̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (14.5.8)

14.5.2 S̃cenario[P]
This section provides the inverse of Scenario[R], i.e., the scenario deriving A {M:1[P][A]} (selling model with P-mechanism) from
A {M̃:1[P][A]} (buying model with P-mechanism), denoted by S̃cenario[P].
� Before moving on, here let us carry out a review of S̃cenario[R]. For convenience of reference, below let us copy the
transformation process (see (12.8.20(p.86) )) of the attribute vectors in Scenario[R].

Step 1[R̃]: θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[R][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R̃]: R→ θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (14.5.9)

Step 3[R̃]: Lemma 14.4.1(p.102) C̃R → θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R̃]: Lemma 14.4.3(p.104) ĨR → θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[R][A]})

� From the above we see that S̃cenario[P] is the same as S̃cenario[R] only except that

◦ b and µ in θ(A {M̃:1[R][A]}) is replaced b⋆ and b in θ(A {M̃:1[P][A]} and
◦ Lemmas 14.4.1(p.102) and 14.4.3(p.104) used there are changed into Lemmas 14.4.2(p.103) and 14.4.4(p.104) respectively.

Therefore the above flow of attribute vectors can be rewritten as follows.

Step 1[R̃]: θ( b, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P̃] θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[P][A]}
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P̃] R→ θ( b̂⋆, b̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (14.5.10)

Step 3[P̃] Lemma 14.4.2(p.103) C̃P → θ( ǎ⋆, ǎ, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P̃] Lemma 14.4.4(p.104) ĨP → θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[P][A]}

†Compare the dash box with that in (12.5.29(p.77) ).
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↓
S̃cenario[P]

Accordingly it follows that the operation which transforms θ(A {M̃:1[P][A]}) into θ(A {M:1[P][A]}) can be eventually reduced
to the operation below:

S P̃→P
def
= ĨPC̃PR =


b⋆, b, a, xL̃P, xK̃P, sL̃P, κ̃P, T̃P , L̃P , K̃P , L̃P , Vt

            

a⋆, a, b, xLP, xKP, sLP , κP, TP , LP , KP , LP , Vt

 . (14.5.11)

� Thus, one sees that in S̃cenario[P] it suffices to change S P→P̃ = IPCPR(see (14.5.3(p.106) )) into SR→R̃ = IRCRP above.

� Moreover, from (III) and (IV) of Table 6.4.1(p.41) it can be easily seen that

SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}]. (14.5.12)

From all the above discussions it follows that for quite the same reason as that for which Lemma 12.8.1(p.87) was derived we can
immediately obtain Lemma 14.5.2(p.107) below.

Lemma 14.5.2 Let ATom{M̃:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M:1[P][A]} holds on C ⟨ATom⟩ where

ATom{M:1[P][A]} = S P̃→P[ATom{M̃:1[P][A]}]. (14.5.13)

Finally, for the same reason as the one for which Theorem 12.8.1(p.87) is derived from Lemma 12.8.1(p.87) we have Theo-
rem 14.5.2(p.107) below.

Theorem 14.5.2 (symmetry theorem (P̃→ P)) Let A {M̃:1[P][A]} holds on P×F . Then A {M:1[P][A]} holds on P×F
where

A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}]. (14.5.14)
From (12.8.32(p.87) ) we have

θ(A {M:1[P][A]}) def
= S P̃→P[θ(A {M̃:1[P][A]})] (14.5.15)

= (a⋆, a, b, xL , sL , xK , κ, T , L ,K ,L , Vt). (14.5.16)14.6 Derivation of A {T̃P , L̃P , K̃P , L̃P , κ̃P}
For the same reason as in Section 26.2.2(p.274) we see that applying S P→P̃ to A {TP , LP , KP ,LP , κP} given by Lemmas 13.2.1(p.93) –
13.2.6(p.97) yields A {T̃P , L̃P , K̃P , L̃P , κ̃P}.
Lemma 14.6.1 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞).
(b) T̃ (x) is nonincreasing on (−∞,∞).
(c) T̃ (x) is strictly decreasing on [a,−∞).
(d) T̃ (x) + x is nondecreasing on (−∞,∞).
(e) T̃ (x) + x is strictly increasing on (−∞, b⋆].
(f) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).
(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a].
(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞).
(i) T̃ (0) = b if b⋆ ≤ 0 and T̃ (0) = 0 if a > 0.
(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.
(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.
(l) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.
(n) b⋆ > b.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.1(p.93) .

• Direct proof See the proof of Lemma A3.7(p.300) .

Applying S P→P̃ to (13.2.8(p.95) ) - (13.2.13(p.96) ), we obtain the relations below:

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(14.6.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(14.6.2)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(14.6.3)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (14.6.4)

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(14.6.5)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (14.6.6)

• Proof by analogy Immediate from applying S P→P̃ to (13.2.8(p.95) )-(13.2.13(p.96) ).

• Direct proof See the proof of (A 3.1(p.300) ) - (A 3.6(p.301) ).
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Lemma 14.6.2 (A {L̃P })
(a) L̃ (x) is continuous on (−∞,∞).
(b) L̃ (x) is nonincreasing on (−∞,∞).
(c) L̃ (x) is strictly decreasing on [a,∞).
(d) Let s = 0. Then x

L̃ = a where x
L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.

(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.2(p.96) .

• Direct proof See the proof of Lemma A3.8(p.301) .

Corollary 14.6.1 (A {L̃P})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.
• Proof by analogy Immediate from applying S P→P̃ to Corollary 13.2.1(p.96) .

• Direct proof See the proof of Corollary A 3.2(p.301) .

Lemma 14.6.3 (A {K̃P })
(a) K̃ (x) is continuous on (−∞,∞).
(b) K̃ (x) is nonincreasing on (−∞,∞).
(c) K̃ (x) is strictly decreasing on [a,∞).
(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.
(e) K̃ (x) + x is nondecreasing on (−∞,∞).
(f) K̃ (x) + x is strictly increasing on (−∞, b⋆].
(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.
(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.
(i) Let β = 1 and s = 0. Then x

K̃ = a where x
K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (=>)) 0.
2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x

K̃ = (<) (λβb+ s)/δ.
3. Let κ̃ < (= (>)) 0. Then x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.3(p.96) .

• Direct proof See the proof of Lemma A3.9(p.301) .

Corollary 14.6.2 (A {K̃P})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.
• Proof by analogy Immediate from applying S P→P̃ to Corollary 13.2.2(p.97) .

• Direct proof See the proof of Corollary A 3.3(p.302) .

Lemma 14.6.4 (A {L̃P /K̃P })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .
(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x

L̃ < (= (>)) x
K̃ ⇒ x

K̃ < (= (=)) 0.
(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x

L̃ < (= (>)) x
K̃ ⇒ x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.4(p.97) .

• Direct proof See the proof of Lemma A3.10(p.302) .

Lemma 14.6.5 (A {L̃P })
(a) L̃ (s) is nondecreasing in s and strictly increasing in s if λβ < 1.
(b) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(c) Let λβb > a. Then there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.5(p.97) .

• Direct proof See the proof of Lemma A3.11(p.302) .

Lemma 14.6.6 (κ̃P) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.
(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0. Then x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 13.2.6(p.97) .

• Direct proof See the proof of Lemma A3.12(p.303) .
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14.7 Derivation of A {M̃:1[P][A]}
� Tom 14.7.1 (�� A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 13.4.1(p.98) .

• Direct proof See the proof of Tom A4.5(p.308) .

� Tom 14.7.2 (�� A {M̃:1[P][A]}) Let β < 0 or s > 0. Then, for a given starting time τ > 1:

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 13.4.2(p.98) .

• Direct proof See the proof of Tom A4.6(p.308) .

14.8 Optimal Price to Propose

Lemma 14.8.1 (ATom {M̃:1[P][A]}) The optimal price to propose zt is nonincreasing in t > 0.

• Proof Obvious from Tom’s 14.7.1(p.109) (a) and 14.7.2(p.109) (a) and from (6.2.50(p.32) ) and
Lemma A3.3(p.297) .

14.9 Symmetry-Operation-Free
When no change occurs even if the symmetry operation is applied to a given assertion A, the assertion is said to be free from
the symmetry operation, called the symmetry-operation-free assertion.

Lemma 14.9.1 Even if the symmetry operation is applied to the symmetry-operation-free assertion, no change occurs.

• Proof Evident.
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Chapter 15

Analogy Theorem (R̃↔ P̃)

15.1 Relationship between M̃:1[P][A] and M̃:1[R][A]
In this chapter we clarify the interrelationship between A {M̃:1[P][A]} (buying model with P-mechanism) and A {M:1[P][A]}
(selling model with P-mechanism).

15.1.1 Assertion System A

First, note the three following relations:

◦ A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}] (← (12.5.53(p.80) )), (15.1.1)

• A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (← (13.3.1(p.98) )), (15.1.2)

• A {M̃:1[P][A]} = SP→P̃[A {M:1[P][A]}] (← (14.5.6(p.106) )). (15.1.3)

Next, the inverses of the above relations are:

• A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}] (← (12.8.31(p.87) )), (15.1.4)

◦ A {M:1[R][A]} = AP→R[A {M:1[P][A]}] (← (13.3.6(p.98) )), (15.1.5)

◦ A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}] (← (14.5.14(p.107) )). (15.1.6)

Then, from • (15.1.3(p.111) ), • (15.1.2(p.111) ), and • (15.1.4(p.111) ) we obtain the following relation:

A {M̃:1[P][A]} = SP→P̃AR→P S R̃→R[A {M̃:1[R][A]}]. (15.1.7)

Finally, from ◦ (15.1.1(p.111) ), ◦ (15.1.5(p.111) ), and ◦ (15.1.6(p.111) ) we obtain the following relation:

A {M̃:1[R][A]} = SR→R̃AP→R S P̃→P[A {M̃:1[P][A]}]. (15.1.8)

15.1.2 System of Optimality Equations (SOE)

First, note the following three relations:

◦ SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A]}] (← (12.5.34(p.77) )), (15.1.9)

• SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}] (← (13.3.2(p.98) )), (15.1.10)

• SOE{M̃:1[P][A]} = SP→P̃[SOE{M:1[P][A]}] (← (14.5.4(p.106) )), (15.1.11)

Next, the inverses of the above relations are:

• SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A]}] (← (12.8.25(p.87) )), (15.1.12)

◦ SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}] (← (13.3.7(p.98) )), (15.1.13)

◦ SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}] (← (14.5.12(p.107) )), (15.1.14)

Then, from • (15.1.11(p.111) ), • (15.1.10(p.111) ), and • (15.1.12(p.111) ) we obtain the following relation:

SOE{M̃:1[P][A]} = SP→P̃AR→P S R̃→R[SOE{M̃:1[R][A]}], (15.1.15)

Finally, from ◦ (15.1.9(p.111) ), ◦ (15.1.13(p.111) ), and ◦ (15.1.14(p.111) ) we obtain the following relation:

SOE{M̃:1[R][A]} = SR→R̃AP→R S P̃→P[SOE{M̃:1[P][A]}]. (15.1.16)
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15.1.3 Attribute Vector θ

First, note the following three relations:

◦ θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (← (12.5.54(p.80) )), (15.1.17)

• θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (← (13.3.3(p.98) )), (15.1.18)

• θ(A {M̃:1[P][A]}) = SP→P̃[θ(A {M:1[P][A]})] (← (14.5.7(p.106) )), (15.1.19)

Next, then the inverses of the above relations are:

• θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (← (12.8.32(p.87) )), (15.1.20)

◦ θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (← (13.3.8(p.98) )), (15.1.21)

◦ θ(A {M:1[P][A]}) = S P̃→P[θ(A {M̃:1[P][A]})] (← (14.5.15(p.107) )), (15.1.22)

Then, from • (15.1.19(p.112) ), • (15.1.18(p.112) ), and • (15.1.20(p.112) ) we obtain the following relation:

θ(A {M̃:1[P][A]}) = SP→P̃AR→P S R̃→R[θ(A {M̃:1[R][A]})] (15.1.23)

= (b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (14.5.8(p.106) )). (15.1.24)

Finally, from ◦ (15.1.17(p.112) ), ◦ (15.1.21(p.112) ), and ◦ (15.1.22(p.112) ) we obtain the following relation:

θ(A {M̃:1[R][A]}) = SR→R̃AP→R S P̃→P[θ(A {M̃:1[P][A]})] (15.1.25)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (12.5.55(p.80) )). (15.1.26)

15.1.4 Symmetry Theorem (R̃↔ P̃)
Here let us define

A R̃→P̃
def
= SP→P̃AR→P S R̃→R, (15.1.27)

A P̃→R̃
def
= SR→R̃AP→R S P̃→P. (15.1.28)

Then (15.1.7(p.111) ) and (15.1.8(p.111) ) can be expresses as below.

A {M̃:1[P][A]} = A R̃→P̃[A {M̃:1[R][A]}], (15.1.29)

A {M̃:1[R][A]} = A P̃→R̃[A {M̃:1[P][A]}]. (15.1.30)

(15.1.29(p.112) ) implies that the following theorem holds.

Theorem 15.1.1 (analogy [R̃→ P̃]) Let A {M̃:1[R][A]} holds on P ×F . Then A {M̃:1[P][A]} holds on P ×F where

A {M̃:1[P][A]} def
= A R̃→P̃[A {M̃:1[R][A]}]. (15.1.31)

Similarly (15.1.30(p.112) ) implies that the following theorem (inverse of the above theorem) holds.

Theorem 15.1.2 (analogy [R̃→ P̃]) Let A {M̃:1[P][A]} holds on P ×F . Then A {M̃:1[R][A]} holds on P ×F where

A {M̃:1[R][A]} def
= A P̃→R̃[A {M̃:1[P][A]}]. (15.1.32)

Then (15.1.15(p.111) ) and (15.1.16(p.111) ) can be expresses as below.

SOE{M̃:1[P][A]} = A R̃→P̃[SOE{M̃:1[R][A]}], (15.1.33)

SOE{M̃:1[R][A]} = A P̃→R̃[SOE{M̃:1[P][A]}]. (15.1.34)

Similarly (15.1.23(p.112) ) and (15.1.25(p.112) ) can be expresses as below.

θ(M̃:1[P][A]) = A R̃→P̃[θ(M̃:1[R][A])], (15.1.35)

θ(M̃:1[R][A]) = A P̃→R̃[θ(M̃:1[P][A])]. (15.1.36)
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15.1.5 The Structure of A P̃→R̃

The operation A R̃→P̃ = SP→P̃AR→P S R̃→R given by (15.1.27(p.112) ) means that the three operations are applied in the order of
S R̃→R → AR→P → SP→P̃. Then, putting this flow in vertically, we have

S R̃→R
def
= { b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (12.8.21(p.86) ))

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(2)}
AR→P

def
= { a, µ · · ·(3)

↓ ↓ (← (13.2.1(p.93) ))

a⋆, a · · ·(4)}
SP→P̃

def
= { a

⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(5)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (14.5.3(p.106) ))

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(6)
}

The above flow can be interpreted as follows:

◦ First, let us focus attention on elements outside the dashbox . Then, we see that first (1)-row changes into (2)-row, next
(2)-row is identical to (5)-row, and finally (5)-row changes into (6)-row, which is identical to the original (1)-row. In other
words, (1)-row remains unchanged outside the dash-box even if these operations are applied.

◦ Next, let us focus attention on elements inside the dashbox . Then, we see that first (1)-row changes into (2)-row,
next (2)-row identical to (5)-row, and finally (5)-row changes into (6)-row. In other words, b and µ in (1)-row change into
respectively b⋆ and b in (6)-row through the applications of these operations.

From the above we see that the above triple operations can be eventually reduced to the single operation

A R̃→P̃
def
= SP→P̃AR→PS R̃→R =


b, µ, a, xL̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

 (15.1.37)

Removing the unchanged elements from the above A R̃→P̃, eventually we obtain

A R̃→P̃ = SP→P̃AR→PS R̃→R = {b→ b⋆, µ→ b}. (15.1.38)

Similarly, the operation A P̃→R̃ = SR→R̃AP→R S P̃→P given by (15.1.28(p.112) ) means that the three operations are applied in the
order of S P̃→P → AP→R → SR→R̃. Then, putting this flow in vertically, we have

S P̃→P
def
= { b

⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (14.5.11(p.107) ))

a⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(2)
}

AP→R
def
= { a⋆, a · · ·(3)

↓ ↓ (← (13.3.5(p.98) ))

a, µ · · ·(4)}
SR→R̃

def
= { a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(5)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (12.5.29(p.77) ))

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(5)}

The above flow can be eventually reduced to as follows.

A P̃→R̃ = SR→R̃AP→R S P̃→P = {b⋆ → b, b→ µ}. (15.1.39)

From the comparison of Tom’s 12.7.2(p.84) and 14.7.2(p.109) we can easily reconfirm that Theorem 15.1.1(p.112) holds in fact.

15.2 Relationship between M̃:1[P][E] and M̃:1[R][E]
It can be easily confirmed that the same as in Section 15.1(p.111) holds also for A {M̃:1[P][E]} and A {M:1[P][E]}. Then we have

Theorem 15.2.1 (analogy [R̃→ P̃]) Let A {M̃:1[R][E]} holds on P ×F . Then A {M̃:1[P][E]} holds on P ×F where

A {M̃:1[P][E]} def
= A R̃→P̃[A {M̃:1[R][E]}]. (15.2.1)

Theorem 15.2.2 (analogy [R̃→ P̃]) Let A {M̃:1[P][A]} holds on P ×F . Then A {M̃:1[R][A]} holds on P ×F where

A {M̃:1[R][A]} def
= A P̃→R̃[A {M̃:1[P][A]}]. (15.2.2)

It can be easily confirmed that A R̃→P̃ and A P̃→R̃ are the same as (15.1.38(p.113) ) and (15.1.39(p.113) ) respectively.
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Chapter 16

Integrated Theory

16.1 Flow of Discussions
Let us here again recall Motive 2(p.3) “Does a general theory integrating quadruple-asset-trading-problems exist ?”, and this
motivation was put an end with a successful construction of the integrated theory, which is summarized as below, which is
summarized as below.

⟨1⟩ A {TR} is proven (see Lemma 10.1.1(p.55) ).

⟨2⟩ A {LR , KR ,LR , κR} is proven (see Lemmas 10.2.1(p.57) - 10.3.1(p.59) ).

⟨3⟩ A {M:1[R][A]} is proven (see Tom’s 11.2.1(p.61) and 11.2.2(p.62) ).

⟨4⟩ A {M̃:1[R][A]} is derived (see Tom’s 12.7.1(p.84) and 12.7.2(p.84) ).

⟨5⟩ A {TP} is proven (see Lemma 13.2.1(p.93) ).

⟨6⟩ A {M:1[P][A]} is derived (see Tom’s 13.4.1(p.98) and 13.4.2(p.98) ).

⟨7⟩ A {M̃:1[P][A]} is derived (see Tom’s 14.7.1(p.109) and 14.7.2(p.109) ).

⟨8⟩ The analogous relation between A {M̃:1[P][A]} and A {M̃:1[R][A]} is shown (see Theorems 15.1.1(p.112) and 15.1.2(p.112) ).

16.2 Structure of Integrated Theory
The above flow, ⟨1⟩ – ⟨8⟩, can be schematized as in Figure 16.2.1(p.115) below where the three shadow boxes are directly
proven and the remaining four frame boxes are all indirectly derived by applying SP→P̃, AR→P, and SR→R̃ to .

A {TR } - A {LR , KR ,LR , κR} - A {M:1[R][A]} -� A {M̃:1[R][A]}

?
6

?
6

?
6

A {TP } A {M:1[P][A]} -� A {M̃:1[P][A]}

⟨1⟩ Lemma 10.1.1(p.55) ⟨2⟩ Lemma 10.2.1(p.57) ⟨3⟩ Tom 11.2.1(p.61) ⟨4⟩ Tom 12.7.1(p.84)

⟨5⟩ Lemma 13.2.1(p.93) ⟨6⟩ Tom 13.4.1(p.98) ⟨7⟩ Tom 14.7.1(p.109)

⟨8⟩AR→P AP→R AR→P AP→R A R̃→P̃ A P̃→R̃

SR→R̃

S R̃→R

SP→P̃

S P̃→P

Figure 16.2.1: The whole flow of constructing the integrated theory

16.3 Implications

The interrelationship among the quadruple assertion systems within the dashbox of Figure 16.2.1(p.115) implies the following.
First, an assertion system of M:1[R][A] is defined as a core within the quadruple-asset-trading-models Q⟨M :1[A]⟩ and then proven
(see Chap. 11(p.61) ). Next, the assertion system for each of the remaining three models is derived by sequentially applying the

operations SR→R̃ and AR→P to the above core assertion system (see Chaps. 12(p.69) and 13(p.89) ). Finally, A {M̃:1[P][A]} is derived
so as to become symmetrical to A {M:1[P][A]} by applying SP→P̃ (see Chap. 14(p.101) ). Since it is proven that any of the above
four operations are reversible, even if any other assertion system within Q⟨M :1[A]⟩ is selected as a core, the same flow as the
above can be depicted. Let us refer to the whole structure consisting of the quadruple assertion systems in such a fashion as
stated above as the integrated theory. In the conventional approach, each of the quadruple assertion systems must be defined
separately and proven one by one. On the other hand, in our approach based on the integrated theory, the number of assertion
systems which must be defined and proven is only one as a core. In Part 3 that follows we try to apply the integrated theory
to all of the remaining five quadruple-asset-trading-models in Table 3.2.1(p.17) except for Q⟨M :1[A]⟩ the analyses of which was
already ended. From all the above, it will be realized that the integrated theory provides a strong tool for the treatment of
asset trading problems.
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16.3.1 Limitation of Integration Theory

Here note that the successful construction of the integrated theory is based on the following two premises: one is that price ξ is
defined on the total market (−∞,∞), the other is that the symmetrical relation between SOE{M:1[R][A]} and SOE{M̃:1[R][A]} and
the analogy relation between SOE{M:1[R][A]} and SOE{M:1[P][A]} must be satisfied (see ⋆Sections 12.11(p.87) and 13.8(p.99) ). How-
ever, as seen from ⋆Tables 6.4.3(p.41) - 6.4.6(p.41) , although the symmetrical relation always holds between SOE{M:1/2/3[R/P][A/E]}
and SOE{M̃:1/2/3[R/P][A/E]} (compare (I) and (II)), the analogical relation between SOE{M/M̃:2/3[R][A/E]} and SOE{M/M̃:2/3[P][A/E]}
does not hold (compare (I) and (III)). In other words, for Models 1/2/3 the symmetry theorems can be always applied; however,
the analogy theorems cannot be applied. Accordingly, it follows that the integrated theory are applicable only in discussions
related to symmetry. For the treatment of the case where the analogy theorem cannot be applied, see Lemma 20.1.1(p.153) and
Section 20.1.5(p.166) .



Chapter 17

Market Restriction

17.1 Preliminary
As seen from the whole discussions over Chaps. 10(p.55) –15(p.111) , the integrated theory is constructed under the premise that prices
ξ, whether reservation price or posted price, is defined on the total-DF-space (see (2.2.5(p.13) )), i.e.,

F = {F
∣∣ −∞ < a < µ < b <∞}, (17.1.1)

called the total market. However, since the prices ξ in a usual market of the real world are positive, i.e., ξ ∈ (0,∞), the above
premise, permitting a negative price ξ ∈ (−∞, 0), must be said to be unrealistic. This chapter proposes a methodology working
through this problem.

17.2 Market Restriction
Let us refer to the restriction of the total market F to a given subset

F ′ ⊆ F (17.2.1)

as the market restriction of F to F ′ and to the F ′ as the restricted market. Throughout this paper let us consider the following
three kinds of restricted markets:

F+ def
= {F

∣∣ 0 < a < b} (positive market), (17.2.2)

F± def
= {F

∣∣ a ≤ 0 ≤ b} (mixed market), (17.2.3)

F− def
= {F

∣∣ a < b < 0} (negative market) (17.2.4)

where clearly

F = F+ ∪F± ∪F−. (17.2.5)
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Figure 17.2.1: Three kinds of markets

Definition 17.2.1 In the present paper, let us represent the restriction of F to the above three restricted markets by the
same symbols F+, F±, and F− above, called the positive market restriction F+, the mixed market restriction F±, and the
negative market restriction F− respectively. See Section A7.5(p.317) for an economic implication brought about by the three
market restrictions.

17.3 Market Restricted Models
Throughout the rest of this paper, let us denote the models defined on the restricted markets F+, F±, and F− by Model+,
Model±, and Model− respectively, called the market restricted models. For x = 1, 2, 3 and X = A, E let us define the quadruple-
asset-trading-models:

Q⟨M :x[X]+⟩ def
= {M:x[R][X]+, M̃:x[R][X]+,M:x[P][X]+, M̃:x[P][X]+}, (17.3.1)

Q⟨M :x[X]±⟩ def
= {M:x[R][X]±, M̃:x[R][X]±,M:x[P][X]±, M̃:x[P][X]±}, (17.3.2)

Q⟨M :x[X]−⟩ def
= {M:x[R][X]−, M̃:x[R][X]−,M:x[P][X]−, M̃:x[P][X]−}. (17.3.3)
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17.4 Inequalities Resulting From Market Restriction
The lemma below will be used to examine what occurs when the market restriction is applied to results derived by using the
integrated theory constructed on the total market F .

Lemma 17.4.1 (positive market F+) Suppose 0 < a. Then we have:

[1]
[ref.8078]

0 < a < µ < b. Proof: Evident from (2.2.2(p.13) ).

[2]
[ref.9343]

βb ≤ b for 0 < β ≤ 1. Proof: Immediate from 0 < βb ≤ b with β = 1.

[3]
[ref.7865]

βµ < b for 0 < β ≤ 1. Proof: Immediate from 0 < βµ < b with β = 1.

[4]
[ref.8369]

βa < b for 0 < β ≤ 1. Proof: Immediate from 0 < βa < b with β = 1.

[5]
[ref.9483]

a < βµ and βµ ≤ a are both possible. Proof: Since 0 < a < βµ with β = 1, the former is possible for a β sufficiently close to β = 1

and the latter is possible for any sufficiently small β > 0.

[6]
[ref.6867]

a < βb and βb ≤ a are both possible. Proof: Since 0 < a < βb with β = 1, the former is possible for a β sufficiently close to β = 1

and the latter is possible for any sufficiently small β > 0.

[7]
[ref.6296]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 < βb < b⋆ with β = 1 due to Lemma 14.6.1(p.107) (n).

Lemma 17.4.2 (mixed market F±) Suppose a ≤ 0 ≤ b. Then we have:

[8]
[ref.8062]

a < βµ < b for 0 < β ≤ 1. Proof: Let µ = 0. Then a < µ = βµ = 0 < b for 0 < β ≤ 1. Let µ ̸= 0. If a < µ < 0, then

a < βµ < 0 ≤ b with β = 1, hence a < βµ < 0 ≤ b for 0 < β ≤ 1 and if 0 < µ < b, then a ≤ 0 < βµ < b with β = 1, hence a ≤ 0 < βµ < b

for 0 < β ≤ 1. Accordingly, whether a < µ < 0 or 0 < µ < b, we have a < βµ < b for 0 < β ≤ 1. Thus, whether µ = 0 or µ ̸= 0, it follows

that a < βµ < b for 0 < β ≤ 1.

[9]
[ref.6907]

βa < b for 0 < β ≤ 1. Proof: Let β = 1. Then βa = a < b. Let β < 1. If a = 0, then βa = a = 0 < b and if a < 0, then βa < 0 ≤ b,

hence βa < b whether a = 0 or a < 0. Thus, whether β = 1 or β < 1 (i.e., 0 < β ≤ 1) it follows that we have βa < b.

[10 ]
[ref.6892]

a < βb for 0 < β ≤ 1. Proof: If b > 0, then a ≤ 0 < b = βb with β = 1, hence a ≤ 0 < βb for 0 < β ≤ 1. If b = 0, then

a < b = βb = 0 for 0 < β ≤ 1. Therefore, whether b > 0 or b = 0, we have a < βb for 0 < β ≤ 1.

[11 ]
[ref.6896]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < βa ≤ 0 with β = 1 due to Lemma 13.2.1(p.93) (n).

[12 ]
[ref.6298]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 ≤ βb < b⋆ with β = 1 due to Lemma 14.6.1(p.107) (n).

Lemma 17.4.3 (negative market F−) Suppose b < 0. Then we have:

[13 ]
[ref.7486]

a < µ < b < 0. Proof: Evident from (2.2.2(p.13) ).

[14 ]
[ref.6118]

a ≤ βa for 0 < β ≤ 1. Proof: Immediate from a ≤ βa < 0 with β = 1.

[15 ]
[ref.8068]

a < βµ for 0 < β ≤ 1. Proof: Immediate from a < βµ < 0 with β = 1.

[16 ]
[ref.7482]

a < βb for 0 < β ≤ 1. Proof: Immediate from a < βb < 0 with β = 1.

[17 ]
[ref.7478]

βµ < b and b ≤ βµ are both possible. Proof: Since βµ < b < 0 with β = 1, the former is true for a β sufficiently close to β = 1

and the latter is true for a sufficiently small β > 0.

[18 ]
[ref.8296]

βa < b and b ≤ βa are both possible. Proof: Since βa < b < 0 with β = 1, the former is possible for a β sufficiently close to

β = 1 and the latter is possible for a sufficiently small β > 0.

[19 ]
[ref.6919]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < βa < 0 with β = 1 due to Lemma 13.2.1(p.93) (n).

Definition 17.4.1 (market-restriction-free-assertion) When no change occurs even if a market restriction is applied to a given
assertion, the assertion is said to be free from the market restriction, called the market-restriction-free assertion.

Lemma 17.4.4 Even if a market restriction is applied to a market-restriction-free assertion, no change occurs.

• Proof Evident.

17.5 Market Restriction

17.5.1 A {M:1[R][A]}
17.5.1.1 Positive Restriction

� Pom 17.5.1 (A {M:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 11.2.1(p.61) due to Lemma 17.4.4(p.118) .
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� Pom 17.5.2 (A {M:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N,

3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N (see Numerical Example 1(p.126) ).

ii. Let s ≥ βµ. Then • dOITdτ>1⟨1⟩ ∥ (see Numerical Example 2(p.126) ).

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Let β < 1 or s > 0. Then κ = βµ− s · · · ((2)) from
Lemma 10.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 11.2.2(p.62) (a).

(b,c) Always βµ < b due to [3(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 11.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 11.2.2(p.62) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s. Then, since κ > 0 due to (2) , it suffices to consider only (c2i) of Tom 11.2.2(p.62) .

(c3ii) Let βµ ≤ s. Then, since κ ≤ 0 due to (2) and since βµ − s ≤ 0 < a, it suffices to consider only (c2ii1,c2iii1) of
Tom 11.2.2(p.62) .

17.5.1.2 Mixed Restriction

� Mim 17.5.1 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 11.2.1(p.61) due to Lemma 17.4.4(p.118) .

� Mim 17.5.2 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a and sL > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 11.2.2(p.62) (a).

(b,c) Always βµ < b due to [8(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 11.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 11.2.2(p.62) and if b = 0, then since always
βµ− s = βµ > a due to [8] , it suffices to consider only (c2ii2) of Tom 11.2.2(p.62) . Therefore, whether b > 0 or b = 0, we have the
same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 11.2.2(p.62) (c2i-c2iii2) with κ = βT (0)− s from
(5.1.7(p.25) ) with λ = 1.
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17.5.1.3 Negative Restriction

� Nem 17.5.1 (A {M:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 11.2.1(p.61) due to Lemma 17.4.4(p.118) .

� Nem 17.5.2 (A {M:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.62) ⃝s N } ∥ is true.

3. Let β < 1 and s > 0.
i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let βµ− s > a and sL > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof Suppose b < 0 · · · ((1)). Let β < 1 or s > 0. Then, we have κ = −s · · · ((2)) from Lemma 10.3.1(p.59) (a). Moreover, in

this case, both βµ ≥ b and βµ < b are possible due to [17(p.118)] .

(a,b) The same as Tom 11.2.2(p.62) (a,b).

(c) Let βµ < b. Then sL > 0 · · · ((3)) from Lemma 10.2.4(p.59) (c).

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 11.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii1,c2iii2) of Tom 11.2.2(p.62) . Since βµ−s = βµ > a
due to [15(p.118)] and since s = 0 < sL due to (3) , we have Tom 11.2.2(p.62) (c2iii2).

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 11.2.2(p.62) .

17.5.2 A {M̃:1[R][A]}

17.5.2.1 Positive Restriction

� Pom 17.5.3 (A {M̃:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 12.7.1(p.84) due to Lemma 17.4.4(p.118) .

� Pom 17.5.4 (A {M̃:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ > a.

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.62) ⃝s N } ∥ is true.
3. Let β < 1 and s > 0.†

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.
ii. Let βµ+ s < b and sL̃ > s. Then S1(p.62) ⃝s N } ∥ is true (see

Numerical Example 3(p.127) ).

• Proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a). Here note that µβ ≤ a and µβ > a are both

possible due to [5(p.118)] .

(a,b) The same as Tom 12.7.2(p.84) (a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 12.6.5(p.83) (c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have
Tom 12.7.2(p.84) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.118)] and since sL̃ > 0 = s from (3) , due to (1) it
suffices to consider only (c2iii2) of Tom 12.7.2(p.84) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 12.7.2(p.84) .
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17.5.2.2 Mixed Restriction

� Mim 17.5.3 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 12.7.1(p.84) due to Lemma 17.4.4(p.118) .

� Mim 17.5.4 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > −βT̃ (0).
1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S1(p.62) ⃝s N } ∥ is true.

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 12.7.2(p.84) (a).

(b,c) Always βµ > a due to [8(p.118)] , hence βµ ≤ a is impossible. Hence sL̃ > 0 · · · ((1)) due to Lemma 12.6.5(p.83) (c).

(c1-c1ii) The same as Tom 12.7.2(p.84) (c1-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 12.7.2(p.84) . Let a = 0. Then
βµ + s = βµ < b due to [8(p.118)] , hence it suffices to consider only (c2ii2) of Tom 12.7.2(p.84) . Accordingly, whether a < 0 or
a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 12.7.2(p.84) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(5.1.16(p.25) ).

17.5.2.3 Negative Restriction

� Nem 17.5.3 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 12.7.1(p.84) due to Lemma 17.4.4(p.118) .

� Nem 17.5.4 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ ∥.

• Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 12.6.6(p.83) (a).

(a) The same as Tom 12.7.2(p.84) (a).

(b,c) Always a < βµ due to [15(p.118)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 12.7.2(p.84) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 12.7.2(p.84) .
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(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Hence, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 12.7.2(p.84) .

(c3ii) Let βµ ≥ −s, hence βµ+ s ≥ 0. Let βµ+ s = 0. Then, since κ̃ = 0 due to (3) and βµ+ s > b due to (2) , it suffices
to consider only (c2iii1) of Tom 12.7.2(p.84) . Let βµ + s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider only (c2iii) of
Tom 12.7.2(p.84) . Then, since βµ+ s > 0 > b due to (1) , it suffices to consider only (c2ii1) of Tom 12.7.2(p.84) . Accordingly, whether
βµ+ s = 0 or βµ+ s > 0, we have the same result.

17.5.3 A {M:1[P][A]}

17.5.3.1 Positive Restriction

� Pom 17.5.5 (A {M:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 13.4.1(p.98) due to Lemma 17.4.4(p.118) .

� Pom 17.5.6 (A {M:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 13.4.2(p.98) (a).

(b,c) Always βa < b due to [4(p.118)] , hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 13.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 13.4.2(p.98) .

(c3-c3iii2) Immediate from Tom 13.4.2(p.98) (c2-c2iii2) with κ = βT (0)− s from
(5.1.23(p.26) ) with λ = 1.

17.5.3.2 Mixed Restriction

� Mim 17.5.5 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 13.4.1(p.98) due to Lemma 17.4.4(p.118) .

� Mim 17.5.6 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.
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ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 13.4.2(p.98) (a).

(b,c) Always βa < b due to [9(p.118)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 13.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 13.4.2(p.98) (c2i) and if b = 0, then βa− s = βa > a⋆ from
[11(p.118)] , hence the assertion become true from Tom 13.4.2(p.98) (c2ii2). Accordingly, whether b > 0 or b = 0, we have the same
result.

(c3-c3iii2) The same as Tom 13.4.2(p.98) (c2i-c2iii2) with κ = βT (0)− s from
(5.1.23(p.26) )) with λ = 1.

17.5.3.3 Negative Restriction

� Nem 17.5.5 (A {M:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof Immediate from Tom 13.4.1(p.98) due to Lemma 17.4.4(p.118) .

� Nem 17.5.6 (A {M:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.62) ⃝s N } ∥ .

3. Let β < 1 and s > 0.

i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let βa− s > a⋆ and sL > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Suppose b < 0 · · · ((1)), hence κ = κP = −s · · · ((2)) from Lemma 13.2.6(p.97) (a). Then, both βa ≥ b and βa < b are

possible due to [18(p.118)] . If βa < b, then sL > 0 · · · ((3)) due to Lemma 13.2.5(p.97) (c) with λ = 1.

(a) The same as Tom 13.4.2(p.98) (a).

(b) Let βa ≥ b. Then, the assertion is true Tom 13.4.2(p.98) (b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 13.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 13.4.2(p.98) . In addition, since
βa− s = βa > a⋆ due to [19(p.118)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 13.4.2(p.98) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 from (2) , it suffices to consider only (c2iii) of Tom 13.4.2(p.98) .

17.5.4 A {M̃:1[P][A]}
17.5.4.1 Positive Restriction

� Pom 17.5.7 (A {M̃:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 14.7.1(p.109) due to Lemma 17.4.4(p.118) .

� Pom 17.5.8 (A {M̃:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥.
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(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ →
ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.62) ⃝s N } ∥ .

3. Let β < 1 and s > 0.

i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

ii. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a). In this case, βb ≤ a and βb > a are both

possible due to [6(p.118)] , and if βb > a, then sL̃ > 0 · · · ((3)) due to Lemma 14.6.5(p.108) (c) with λ = 1. In addition, we have

(a,b) The same as Tom 14.7.2(p.109) (a,b).

(c) Let βb > a.

(c1-c1ii)

The same as Tom 14.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 14.7.2(p.109) . In this case, since
βb+ s = βb < b⋆ due to [7(p.118)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 14.7.2(p.109) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only (c2iii-c2iii2) of Tom 14.7.2(p.109) .

17.5.4.2 Mixed Restriction

� Mim 17.5.7 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 14.7.1(p.109) due to Lemma 14.7.1(p.109) .

� Mim 17.5.8 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > −βT̃ (0).
1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 14.7.2(p.109) (a).

(b,c) Always βb > a due to [10(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 14.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 14.7.2(p.109) . Let a < 0. Then, the assertion is
true from Tom 14.7.2(p.109) (c2i). Let a = 0. Then, since βb+ s = βb < b⋆ due to [12(p.118)] , it suffices to consider only (c2ii2) of
Tom 14.7.2(p.109) . Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 14.7.2(p.109) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(5.1.36(p.27) ) with λ = 1.
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17.5.4.3 Negative Restriction

� Nem 17.5.7 (A {M̃:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 14.7.1(p.109) due to Lemma 17.4.4(p.118) .

� Nem 17.5.8 (A {M̃:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.62) ⃝s N } ∥ .

• Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 14.7.2(p.109) (a).

(b,c) Always βb > a due to [16(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 14.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 14.7.2(p.109) .

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 14.7.2(p.109) (c2-c2iii2) with κ̃ = βT̃ (0)+s from (5.1.36(p.27) )
with λ = 1.
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17.6 Numerical Example

Numerical Example 1 (A {M:1[R][A]}+ (selling model)

This is the example for ⃝s dOITsτ>1⟨τ⟩ N in Pom 17.5.2(p.119) (c3i) with a = 0.01, b = 1.00, β = 0.98, and s = 0.05.† Then,

we have xK = 0.6436 (see Section A6(p.312) ). Figure 17.6.1(p.126) below is the graphs of Itτ = βτ−tVt for τ = 2, 3, · · · , 15
and t = 1, 2, · · · , τ (see (7.2.4(p.44) )). For example, the two points on the line of τ = 2 are given by V2 = 0.538513 ( • ) and
βV1 = 0.98 × 0.444900 = 0.436002 ( � ) , hence V2 > βV1. Similarly, the three points on the polygonal curve of τ = 3 are
given by V3 = 0.583152 ( • ), βV2 = 0.98 × 0.538513 = 0.52774274 ( � ), and β2V1 = 0.982 × 0.4449 = 0.42728196 ( � ), hence
V3 > βV2 > β2V1. Then, the value of t on the horizontal line corresponding to the bullet • provides the optimal initiating time
t∗τ for each of τ = 2, 3, · · · , 15, i.e., OITτ ⟨t∗τ ⟩, so we have t∗2 = 2, t∗3 = 3, · · · , t∗15 = 15 (see t∗τ - column of the table below). This
result means ⃝s dOITsτ>1⟨τ⟩ N for τ = 2, 3, · · · , 15. Since Vt − βVt > 0 for t = 2, 3, · · · , 15 (see values of Vt − βVt - column in
the table below), we have L(Vt−1) > 0 from (11.1.1(p.61) ), meaning Conduct15≥t>1N from (11.1.5(p.61) ), i.e., it is strictly optimal
to conduct the search on 15 ≥ t > 1.
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t∗12 = 12

Vt − βVt−1, t∗τ (OIT)

t Vτ Vt − βVt−1 t∗τ decision

0
1 0.444900
2 0.538513 +0.102511 2 ConductN
3 0.583152 +0.055409 3 ConductN
4 0.607492 +0.036003 4 ConductN
5 0.621595 +0.026252 5 ConductN
6 0.630035 +0.020871 6 ConductN
7 0.635180 +0.017745 7 ConductN
8 0.638351 +0.015874 8 ConductN
9 0.640318 +0.014734 9 ConductN
10 0.641544 +0.014032 10 ConductN
11 0.642309 +0.013596 11 ConductN
12 0.642788 +0.013325 12 ConductN
13 0.643088 +0.013155 13 ConductN
14 0.643276 +0.013049 14 ConductN
15 0.643393 +0.012983 15 ConductN

Figure 17.6.1: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

Numerical Example 2 (A {M:1[R][A]}+ (selling model)

This is the example for • dOITdτ>1⟨1⟩ ∥ in Pom 17.5.2(p.119) (c3ii) with a = 0.01, b = 1.00, β = 0.98, and s = 0.50† The bullet
• in each of the 14 horizontal straight lines in Figure 17.6.2(p.126) below shows that the optimal initiating time t∗τ degenerates
to time 1 (i.e., t∗τ = 1 for τ = 2, 3, · · · , 15) under Preference Rule 7.2.1(p.45) , i.e., • dOITdτ=2,3,··· ,15⟨1⟩ ∥. The result comes
from the fact of Vt − βVt = 0 for t = 2, 3, · · · , 15 with t = 2, 3, · · · , 15 (see Vt − βVt−1 - column in the table below), leading to

Vτ = βVτ−1 = · · · = βτ−1V1 for τ = 2, 3, · · · , 15, i.e., Iττ = Iτ−1
τ = · · · = I1τ for τ = 2, 3, · · · , 15.
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Vt − βVt−1

t Vt Vt − βVt−1 t∗τ St
0
1 −0.005100
2 −0.004998 0.000000 1 −0.00010200
3 −0.004898 0.000000 1 −0.00021960
4 −0.004800 0.000000 1 −0.00029996
5 −0.004704 0.000000 1 −0.00039600
6 −0.004610 0.000000 1 −0.00049008
7 −0.004517 0.000000 1 −0.00058220
8 −0.004427 0.000000 1 −0.00067334
9 −0.004338 0.000000 1 −0.00076154
10 −0.004252 0.000000 1 −0.00084876
11 −0.004167 0.000000 1 −0.00093304
12 −0.004083 0.000000 1 −0.00101634
13 −0.004002 0.000000 1 −0.00109866
14 −0.003922 0.000000 1 −0.00117804
15 −0.003843 0.000000 1 −0.00125644

Figure 17.6.2: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

Note here that numbers in Vt-column are all negative, meaning that tackling the asset selling problem makes no profits (red ink).
Accordingly, if this is of tE-case (see H1(p.8) (a)), you must resign to the red ink and if it is of tA-case (see H1(p.8) (b)), it suffices
to pass over the problem without tackling the selling problem itself. Since 0.5× (a+ b) = 0.505 and since Vt < 0 < 0.01 = a for
t = 1, 2, · · · , 15 (see Vt-column of the above table), from (A7.2 (1) (p.314) ) we have T (Vt) = 0.505− Vt for t = 1, 2, · · · , 15, hence
we have:

T (V1) = 0.505 − (−0.005100) = 0.510100, T (V6) = 0.505 − (−0.004610) = 0.509610, T (V11) = 0.505 − (−0.004167) = 0.509167,

T (V2) = 0.505 − (−0.004998) = 0.509998, T (V7) = 0.505 − (−0.004517) = 0.509517, T (V12) = 0.505 − (−0.004083) = 0.509083,

T (V3) = 0.505 − (−0.004898) = 0.509898, T (V8) = 0.505 − (−0.004427) = 0.509427, T (V13) = 0.505 − (−0.004002) = 0.509002,

T (V4) = 0.505 − (−0.004800) = 0.509800, T (V9) = 0.505 − (−0.004338) = 0.509338, T (V14) = 0.505 − (−0.003922) = 0.508922,

T (V5) = 0.505 − (−0.004704) = 0.509704, T (V10) = 0.505 − (−0.004252) = 0.509252, T (V15) = 0.505 − (−0.003843) = 0.508843.

†Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01 + 1.00)/2 = 0.505, we have βµ = 0.98 × 0.505 = 0.4949 >
0.05 = s. Thus, the condition of this assertion is satisfied.

†Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.50 > 0. In addition, since µ = (0.01+ 1.00)/2 = 0.505, we have βµ = 0.98× 0.505 = 0.4949 <
0.50 = s. Thus, the condition of the assertion is satisfied.
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Since St = 0.98× T (Vt−1)− 0.5 from (6.2.13(p.30) ), we get

S2 = 0.98 × 0.510100 − 0.5 = −0.00010200, S7 = 0.98 × 0.509610 − 0.5 = −0.00058220, S12 = 0.98 × 0.509167 − 0.5 = −0.00101634,

S3 = 0.98 × 0.509998 − 0.5 = −0.00021960, S8 = 0.98 × 0.509517 − 0.5 = −0.00067334, S13 = 0.98 × 0.509083 − 0.5 = −0.00109866,

S4 = 0.98 × 0.509898 − 0.5 = −0.00029996, S9 = 0.98 × 0.509427 − 0.5 = −0.00076154, S14 = 0.98 × 0.509002 − 0.5 = −0.00117804,

S5 = 0.98 × 0.509800 − 0.5 = −0.00039600, S10 = 0.98 × 0.509338 − 0.5 = −0.00084876, S15 = 0.98 × 0.508922 − 0.5 = −0.00125644,

S6 = 0.98 × 0.509704 − 0.5 = −0.00049008, S11 = 0.98 × 0.509252 − 0.5 = −0.00093304.

From the results of the above numerical calculation we have St < 0 for 15 ≥ t > 1, hence it is strictly optimal to skip the
search over 15 ≥ t > 1 due to (6.2.9(p.30) ), i.e., SkipN. However, since Vt − βVt−1 = 0 for 15 ≥ t > 1 (see (Vt − βVt−1)-column
in the above table), we have V15 = βV14 = · · · = β14V1, i.e., the profit attained are indifferent over 15 ≥ t > 0. This is not a
contradiction, which is a false feeling caused by confusion from the jumble of intuition and theory (see Alice 2(p.44) ).

Numerical Example 3 (A {M̃:1[R][A]+} (buying model)

This is the numerical example for } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ in S1(p.62) ⃝s N } ∥ of Pom 17.5.4(p.120) (c3ii) with a = 0.01, b = 1.00,

β = 0.98, and s = 0.05.† Then, we have sL̃ = 0.323274 (see Section A6(p.312) ). Hence, the optimal initiating time t∗τ is given
by t attaining minτ≥t>0 I

t
τ (see (7.2.5(p.44) )).‡ The bullet • in Figure 17.6.3(p.127) below shows the optimal initiating time for

each of τ = 2, 3, · · · , 15 (see t∗τ - column in the table below). From the figure and table we see that t∗τ = τ for τ = 2, 3, · · · , 7,
i.e., ⃝s dOITs7≥τ>1⟨τ⟩ N (see S1(p.62) (1)) and that t∗τ = 7 for τ = 8, 9, · · · , 15, i.e., } ndOITτ>7⟨7⟩ ∥ (see S1(p.62) (2)). In the

numerical example, note the fact that S̃ = L̃ (Vτ−1) are all negative (< 0 (−), i.e., SkipN) for t = 2, 3, · · · , 7 and positive
(> 0 (+), i.e., ConductN) for t = 8, 9, · · · , 15. Moreover, note that we have Vt − βVt−1 = 0 or equivalently Vt = βVt−1

for t = 8, 9, · · · , 15 and Vt − βVt−1 < 0 or equivalently Vt < βVt−1 for t = 2, 3, · · · , 7 (see Vt − βVt−1-column), hence
V15 = βV14 = β2V13 = · · · = β8V7 < β9V6 < β10V5 < · · · < β14V1 (see β15−tVt-column), so we have } ndOITτ>7⟨7⟩ ∥.
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t β15−t Vt Vt − βVt−1 β15−tVt t∗τ S̃t = L̃ (Vt−1) decision

0
1 0.753641 0.544900 0.410658
2 0.769022 0.442388 −0.091614 0.340206 2 −0.091614 ConductN
3 0.784716 0.391004 −0.042535 0.306827 3 −0.042535 ConductN
4 0.800731 0.361335 −0.021849 0.289332 4 −0.021849 ConductN
5 0.817072 0.343013 −0.011094 0.280266 5 −0.011094 ConductN
6 0.833747 0.331264 −0.004889 0.276190 6 −0.004889 ConductN
7 0.850763 0.323555 −0.001084 0.275268 7 −0.001084 ConductN
8 0.868125 0.317084 0.000000 0.275268 7 +0.001338 SkipN
9 0.885842 0.310742 0.000000 0.275268 7 +0.003326 SkipN
10 0.903920 0.304527 0.000000 0.275268 7 +0.005233 SkipN
11 0.922368 0.298437 0.000000 0.275268 7 +0.007064 SkipN
12 0.941192 0.292468 0.000000 0.275268 7 +0.008822 SkipN
13 0.960400 0.286618 0.000000 0.275267 7 +0.010508 SkipN
14 0.980000 0.280886 0.000000 0.275268 7 +0.012127 SkipN
15 1.000000 0.275268 0.000000 0.275268 7 +0.013680 SkipN

Figure 17.6.3: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1)

†Note that a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01+1.00)/2 = 0.505, we have βµ = 0.98×0.505 = 0.4949,
hence βµ + s = 0.4949 + 0.05 = 0.5449 < 1.00 = b. In addition, sL̃ = 0.323274 > 0.05 = s. Thus, the conditions for the assertions are satisfied.

‡Note that this is a selling model with cost minimization.
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Chapter 18

Conclusions of Part 2 (Integrated Theory)

Below let us summarize the whole discussions over Chaps. 10(p.55) - 17(p.117) .

C1. Two preliminary steps

a. Proofs of assertions on underlying functions

The first preliminary step in constructing the integrated theory is to prove assertions on underlying functions (see
Chap. 10(p.55) ).

b. Proofs of four theorems

The second preliminary step is to prove the following four theorems.

1. Symmetry theorem (R↔ R̃)
The concept of symmetry between selling problem and buying problem was first vaguely inspired from the pattern
of the yin-yang principle in an ancient Chinese philosophy. This rather superstitious and shaky concept was first
formalized by the introduction of the reverse operation R (see Section 12.1.1(p.69) and Step 2 (p.75) ). After that,
through more than twenty years of trial-and-errors, this concept led us to the correspondence replacement operation
CR (see Lemma 12.3.1(p.72) and Step 3 (p.75) ) and then to identity replacement operation IR (see Lemma 12.3.3(p.73)

and Step 4 (p.76) ). Finally, the above three operations were compiled into a single operation SR→R̃ = IRCRR (see
(12.5.30(p.77) )), called the symmetry transformation operation, yielding Theorem 12.5.1(p.80) (symmetry theorem), which
derives A {M̃:1[R][A]} by applying SR→R̃ to A {M:1[R][A]} in Tom’s 11.2.1(p.61) and 11.2.2(p.62) . In addition, we obtained
Theorem 12.8.1(p.87) (the inverse of Theorem 12.5.1(p.80) ), which derives A {M:1[R][A]} from A {M̃:1[R][A]}.

2. Analogy theorem (R↔ P)
In the earlier stage of this study, we did not anticipate at all that there would exist a relation between asset trading
problem with R-mechanism and asset trading problem with P-mechanism. However, as proceeding with analyses
of both problems, we gradually noticed similarities between the two procedures for treating both problems. This
realization led us, as if solving the jigsaw puzzle, to the existence of an analogous relation between the above two
problems. This recognition eventually was materialized by the proof of Lemmas 10.1.1(p.55) and 13.2.1(p.93) , which
finally leads to the analogy replacement operation AR→P (see (13.2.1(p.93) )). This finding produced Theorems 13.3.1(p.98)

and 13.3.2(p.98) (analogy theorem), which combines A {M:1[P][A]} and A {M:1[R][A]}.
3. Symmetry theorem (P↔ P̃)

While the two symmetry theorems in C1b1(p.129) combine A {M:1[R][A]} nd A {M̃:1[R][A]}, we can relatively easily
obtain the two theorems, Theorems 14.5.1(p.106) and 14.5.2(p.107) , which combine A {M:1[P][A]} and A {M̃:1[P][A]}.

4. Analogy theorem (R̃↔ P̃)
In Chap. 15(p.111) it was demonstrated that the two theorems, Theorems 15.1.1(p.112) and 15.1.2(p.112) , combining A {M̃:1[R][A]}
and A {M̃:1[P][A]} can be relatively easily derived.

C2. Integrated theory

The highly distinguishing results in the present paper is the successful construction of the integrated theory (see Motive 2(p.3)

and Chap. 16(p.115) ), by use of which all models included in a given structured-unit-of-models (see Section 3.3(p.18) ) can be
systematically analyzed. The theory consists of the two symmetry theorems (see Theorems 12.5.1(p.80) and 14.5.1(p.106) ) and
the two analogy theorems (see Theorems 13.3.1(p.98) and 15.1.1(p.112) ). The former two combines the asset selling problem
and the asset buying problem and the latter two combines the asset trading problem with R-mechanism and the asset
trading problem with P-mechanism. The integrated theory plays a decisively important role in the analysis of not only all
models in the present paper but also all variations of the models which will be dealt with in the future (see Chap. 30(p.287) ).
However, the integrated theory is not always versatile, which has the following two weak points.

a. Market restriction

Here, let us note again that the integrated theory can be constructed under the premise that the price ξ, whether
R-price or P-price, is defined on the total market F (see (17.1.1(p.117) )). Under the integration theory we clarified that
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A {M̃:1[R][A]} (buying model with R-mechanism) can be derived so as to be symmetrical to A {M:1[R][A]} (selling model
with R-mechanism) and that A {M:1[P][A]} (selling problem with P-mechanism) can be derived so as to be analogous
to A {M:1[R][A]} (selling problem R-mechanism). However, since trading on the normal market in the real world is
usually conducted on the positive market F+ (see (17.2.2(p.117) )), it is an open question whether symmetry and analogy
on F are inherited by F+. To approach this problem, in this paper, we employ the methodology of restricting results
obtained on F to F+ by using Lemmas 17.4.1(p.118) - 17.4.3(p.118) . Through this methodology, we will show in C2C(p.134) ,
C3C(p.135) , C2C(p.148) , and C3C(p.149) that the symmetrical relation and the analogouse relation can strikingly collapse on
F+.

b. Symmetry and/or analogy among SOE’s
As stated in Section 16.3.1(p.116) , the integrated theory has the following imitation. In Model 1, the successful construction
of the integrated theory is based on the fact that the symmetrical relation between SOE{M:1[R][A]} and SOE{M̃:1[R][A]}
and the analogy relation between SOE{M:1[R][A]} and SOE{M:1[P][A]} must be satisfied (see Sections 12.11(p.87) and
13.8(p.99) ). However, for Models 2/3, from Tables 6.4.3(p.41) -6.4.6(p.41) we see that although the symmetrical relation always
holds between SOE{M:1/2/3[R][A]} and SOE{M̃:1/2/3[R][A]} (compare (I) and (II)), the analogical relation between
SOE{M:2/3[R][A]} and SOE{M:2/3[P][A]} (compare (I) and (III)) does not hold. In other words, while the symmetry
theorems can be applied for Models 1/2/3, the analogy theorems cannot be applied for Models 2/3. Accordingly, it
follows that the integrated theory are applicable in discussions only related to symmetry. For the treatment of the case
where the analogy theorem cannot be applied, see Section 20.1.5(p.166) .

C3. Summary of operations

For convenience of reference, let us summarize all operations depicted in Figure 16.2.1(p.115) below.

(12.5.29(p.77) ) → SR→R̃ = {a, µ, b, xL ,xK , sL ,κ, T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt

}. (18.0.1)

(12.8.21(p.86) ) → S R̃→R = { b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a, µ, b, xL ,xK , sL ,κ, T , L , K , L , Vt

}. (18.0.2)

(14.5.3(p.106) ) → SP→P̃ = { a⋆, a, b, xL ,xK ,κ, sL ,T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, x
L̃ ,xK̃ , κ̃, sL̃ , T̃ , L̃ , K̃ , L̃ , Vt

}. (18.0.3)

(14.5.11(p.107) ) → S P̃→P = { b⋆, b, a, x
L̃ ,xK̃ , κ̃, sL̃ , T̃ , L̃ , K̃ , L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a⋆, a, b, xL ,xK ,κ, sL ,T , L , K , L , Vt

}. (18.0.4)

(13.2.1(p.93) ) → AR→P = {a→ a⋆, µ→ a}. (18.0.5)

(13.3.5(p.98) ) → AP→R = {a⋆ → a, a→ µ}. (18.0.6)

(15.1.38(p.113) ) → A R̃→P̃ = {b→ b⋆, µ→ b} = SP→P̃AR→P S R̃→R. (18.0.7)

(15.1.39(p.113) ) → A P̃→R̃ = {b⋆ → b, b→ µ} = SR→R̃AP→R S P̃→P. (18.0.8)
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Chapter 19

Analysis of Model 1

Section 19.1(p.133) Search-Allowed-Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

Section 19.2(p.136) Search-Ellowed-Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Section 19.3(p.151) Conclusions of Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

19.1 Search-Allowed-Model 1: Q{M:1[A]} = {M:1[R][A], M̃:1[R][A],M:1[P][A], M̃:1[P][A]}
All analyses of the search-Allowed-model 1 already completed in Part 2(p.51) . Below, let us summarize the whole conclusions
obtained there.

19.1.1 Conclusion 1 (Search-Allowed-Model 1)

� The assertion systems A {M/M̃:1[R][A]} of the quadruple-asset-trading-models on the total market F

Q⟨M :1[A]⟩ = {M:1[R][A], M̃:1[R][A],M:1[P][A], M̃:1[P][A]},
are given by

A {M:1[R][A]} A {M̃:1[R][A]} A {M:1[P][A]} A {M̃:1[P][A]}
↓ ↓ ↓ ↓

Tom’s 11.2.1(p.61) , 11.2.2(p.62) , 12.7.1(p.84) , 12.7.2(p.84) , 13.4.1(p.98) , 13.4.2(p.98) , 14.7.1(p.109) , 14.7.2(p.109) .

� The assertion systems A {M/M̃:1[R][A]+} of the quadruple-asset-trading-models on the positive market F+

Q⟨M :1[A]⟩+ = {M:1[R][A]+, M̃:1[R][A]+,M:1[P][A]+, M̃:1[P][A]+},
are given by

A {M:1[R][A]+} A {M̃:1[R][A]+} A {M:1[P][A]+} A {M̃:1[P][A]+}
↓ ↓ ↓ ↓

Pom’s 17.5.1(p.118) , 17.5.2(p.119) , 17.5.3(p.120) , 17.5.4(p.120) , 17.5.5(p.122) , 17.5.6(p.122) , 17.5.7(p.123) , 17.5.8(p.123) .

� Closely looking into all the above assertion systems A leads to the following conclusions.

C1. Mental Conflict

On F , for any β ≤ 1 and s ≥ 0 we have:

a. The opt-R-price Vt in M:1[R][A] (selling model) is nondecreasing in t as in Figure 7.3.1(p.47) (I) (see Tom’s 11.2.1(p.61) (a)
and 11.2.2(p.62) (a)), hence we have the normal conflict (see Remark 7.3.1(p.47) ).

b. The opt-P-price zt in M:1[P][A] (selling model) is nondecreasing in t as in Figure 7.3.1(p.47) (I) (see Lemma 13.7.1(p.99) ),
hence we have the normal conflict (see Remark 7.3.1(p.47) ).

c. The opt-R-price Vt in M̃:1[R][A] (buying model) is nonincreasing in t as in Figure 7.3.1(p.47) (II) (see Tom’s 12.7.1(p.84) (a)
and 12.7.2(p.84) (a)), hence we have the normal conflict (see Remark 7.3.1(p.47) ).

d. The opt-P-price zt in M̃:1[P][A] (buying model) is nonincreasing in t as in Figure 7.3.1(p.47) (II) (see Lemma 14.8.1(p.109) ),
hence we have the normal conflict (see Remark 7.3.1(p.47) ).

The above results can be summarized as below.

A. On F , for any β ≤ 1 and s ≥ 0, whether selling problem or buying problem and whether R-model or P-model, we
have the normal mental conflict, which coincides with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

a. On F+ we have:
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1. Let β = 1 and s = 0. Then we have:

Pom 17.5.3(p.120) ∼ Pom 17.5.1(p.118) (A {M̃:1[R][A]}+ ∼ A {M:1[R][A]}+),
Pom 17.5.7(p.123) ∼ Pom 17.5.5(p.122) (A {M̃:1[P][A]}+ ∼ A {M:1[P][A]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 17.5.4(p.120) |∼ Pom 17.5.2(p.119) (A {M̃:1[R][A]}+ |∼ A {M:1[R][A]}+) · · · (s1),
Pom 17.5.8(p.123) |∼ Pom 17.5.6(p.122) (A {M̃:1[P][A]}+ |∼ A {M:1[P][A]}+) · · · (s2).

b. On F±, we have:

1. Let β = 1 and s = 0. Then we have:

Mim 17.5.3(p.121) ∼ Mim 17.5.1(p.119) (A {M̃:1[R][A]}± ∼ A {M:1[R][A]}±),
Mim 17.5.7(p.124) ∼ Mim 17.5.5(p.122) (A {M̃:1[P][A]}± ∼ A {M:1[P][A]}±).

2. Let β < 1 or s > 0. Then we have:

Mim 17.5.4(p.121) ∼ Mim 17.5.2(p.119) (A {M̃:1[R][A]}± ∼ A {M:1[R][A]}±),
Mim 17.5.8(p.124) ∼ Mim 17.5.6(p.122) (A {M̃:1[P][A]}± ∼ A {M:1[P][A]}±).

c. On F−, we have:

1. Let β = 1 and s = 0. Then we have:

Nem 17.5.3(p.121) ∼ Nem 17.5.1(p.120) (A {M̃:1[R][A]}− ∼ A {M:1[R][A]}−),
Nem 17.5.7(p.125) ∼ Nem 17.5.5(p.123) (A {M̃:1[P][A]}− ∼ A {M:1[P][A]}−).

2. Let β < 1 or s > 0. Then we have:

Nem 17.5.4(p.121) |∼ Nem 17.5.2(p.120) (A {M̃:1[R][A]}− |∼ A {M:1[R][A]}−) · · · (s3),
Nem 17.5.8(p.125) |∼ Nem 17.5.6(p.123) (A {M̃:1[P][A]}− |∼ A {M:1[P][A]}−) · · · (s4).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C2b(p.134) ).

B. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2a1(p.134) /C2c1(p.134) ).

C. On F+ and F−, if β < 1 or s > 0, the symmetry collapses (see (s1)/(s2)/(s3)/(s4)).

C3. Analogy

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 17.5.5(p.122) ◃▹ Pom 17.5.1(p.118) (A {M:1[P][A]}+ ◃▹ A {M:1[R][A]}+),
Pom 17.5.7(p.123) ◃▹ Pom 17.5.3(p.120) (A {M̃:1[P][A]}+ ◃▹ A {M̃:1[R][A]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 17.5.6(p.122) ◃▹| Pom 17.5.2(p.119) (A {M:1[P][A]}+ ◃▹| A {M:1[R][A]}+) · · · (a1),

Pom 17.5.8(p.123) ◃▹ Pom 17.5.4(p.120) (A {M̃:1[P][A]}+ ◃▹ A {M̃:1[R][A]}+).

b. On F±, we have:

1. Let β = 1 and s = 0. Then we have:

Mim 17.5.5(p.122) ◃▹ Mim 17.5.1(p.119) (A {M:1[P][A]}± ◃▹ A {M:1[R][A]}±),

Mim 17.5.7(p.124) ◃▹ Mim 17.5.3(p.121) (A {M̃:1[P][A]}± ◃▹ A {M̃:1[R][A]}±).
2. Let β < 1 or s > 0. Then we have:

Mim 17.5.6(p.122) ◃▹ Mim 17.5.2(p.119) (A {M:1[P][A]}± ◃▹ A {M:1[R][A]}±),

Mim 17.5.8(p.124) ◃▹ Mim 17.5.4(p.121) (A {M̃:1[P][A]}± ◃▹ A {M̃:1[R][A]}±).

c. On F−, we have:

1. Let β = 1 and s = 0. Then we have:

Nem 17.5.5(p.123) ◃▹ Nem 17.5.1(p.120) (A {M:1[P][A]}− ◃▹ A {M:1[R][A]}−),

Nem 17.5.7(p.125) ◃▹ Nem 17.5.3(p.121) (A {M̃:1[P][A]}− ◃▹ A {M̃:1[R][A]}−).
2. Let β < 1 or s > 0. Then we have:

Nem 17.5.6(p.123) ◃▹ Nem 17.5.2(p.120) (A {M:1[P][A]}− ◃▹ A {M:1[R][A]}−),

Nem 17.5.8(p.125) ◃▹| Nem 17.5.4(p.121) (A {M̃:1[P][A]}− ◃▹| A {M̃:1[R][A]}−) · · · (a2).

The above results can be summarized as below.
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A. On F±, for any β ≤ 1 and s ≥ 0, the analogy are inherited (see C2b(p.134) ).

B. On F+ and F−, if β = 1 and s = 0, the analogy is inherited (see C3a1(p.134) /C3c1(p.134) ).

C. On F+ and F−, if β < 1 or s > 0, the analogy partially collapses (see (a1)/(a2)).

C4. Optimal Initiation Time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 17.5.1(p.118) , Mim 17.5.1(p.119) , Nem 17.5.1(p.120) ,

Pom 17.5.3(p.120) , Mim 17.5.3(p.121) , Nem 17.5.3(p.121) ,

Pom 17.5.5(p.122) , Mim 17.5.5(p.122) , Nem 17.5.5(p.123) ,

Pom 17.5.7(p.123) , Mim 17.5.7(p.124) , Nem 17.5.7(p.125)

we obtain Table 19.1.1(p.135) below (the symbol “◦” in the table below represents “possible”):

Table 19.1.1: Possible OIT (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

b. Let β < 1 or s > 0. Then, from

Pom 17.5.2(p.119) , Mim 17.5.2(p.119) , Nem 17.5.2(p.120) ,

Pom 17.5.4(p.120) , Mim 17.5.4(p.121) , Nem 17.5.4(p.121) ,

Pom 17.5.6(p.122) , Mim 17.5.6(p.122) , Nem 17.5.6(p.123) ,

Pom 17.5.8(p.123) , Mim 17.5.8(p.124) , Nem 17.5.8(p.125)

we obtain Table 19.1.2(p.135) below:

Table 19.1.2: Possible OIT (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

c. The table below is the list of the occurrence rates of ⃝⃝s , } , and•dd on F appearing in the primitive Tom 11.2.1(p.61) (��
) and Tom 11.2.2(p.62) (�� ) (see Def. 11.2.2(p.61) ).

Table 19.1.3: Occurence rates of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
50.0%/ 5 10.0%/ 1 40.0%/ 4

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible × × possible × ×

–%/ – 0.0%/ 0 50.0%/ 5 10.0%/ 1 0.0%/ 0 0.0%/ 0 40.0%/ 4 0.0%/ 0 0.0%/ 0
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C5. Null-Time-Zone and Deadline-Engulfing

From Table 19.1.3(p.135) above we see that on F :

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole, we have ⃝⃝s , } , and•dd at 50.0%, 10.0%, and 40.0% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 7.2.3(p.45) .

2. }∥ is possible (10.0%).

3. •dd∥ is possible (40.0%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ never occur (0.0%).

6. •dd△ never occur (0.0%).

7. ⃝⃝s N is possible (50.0%).

8. }N never occur (0.0%).

9. •ddN never occur (0.0%).

From the above results we see that on F :

A. } and•dd causing the null-time-zone are possible at 50.0% (= 10.0% + 40.0%).

B. }N strictly causing the null-time-zone is impossible (0.0%).

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

19.2 Search-Enforced-Model 1: Q{M:1[E]} = {M:1[R][E], M̃:1[R][E],M:1[P][E], M̃:1[P][E]}

19.2.1 Preliminary

As ones corresponding to Theorems 12.5.1(p.80) , 13.3.1(p.98) , and 14.5.1(p.106) , let us consider the following three theorems:

Theorem 19.2.1 (symmetry[R→ R]) Let A {M:1[R][E]} holds on P ×F . Then A {M̃:1[R][E]} holds on P ×F where

A {M̃:1[R][E]} = SR→R̃[A {M:1[R][E]}]. (19.2.1)

Theorem 19.2.2 (analogy[R→ P)]) Let A {M:1[R][E]} holds on P ×F . Then A {M:1[P][E]}holds on P ×F where

A {M:1[P][E]} = AR→P[A {M:1[R][E]}]. (19.2.2)

Theorem 19.2.3 (symmetry[P→ P]) Let A {M:1[P][E]} holds on P ×F . Then A {M̃:1[P][E]} holds on P ×F where

A {M̃:1[P][E]} = SP→P̃[A {M:1[P][E]}]. 9039 (19.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:1[R][E]} = SR→R̃[SOE{M:1[R][E]}], (19.2.4)

SOE{M:1[P][E]} = AR→P[SOE{M:1[R][E]}], (19.2.5)

SOE{M̃:1[P][E]} = SP→P̃[SOE{M:1[P][E]}], (19.2.6)

corresponding to (12.5.34(p.77) ), (13.2.4(p.93) ), and (14.5.4(p.106) ). Then, for the same reason as in Chap. 15(p.111) it can be shown
that the equality

SOE{M̃:1[P][E]} = A R̃→P̃[SOE{M̃:1[R][E]}] (19.2.7)

holds (corresponding to (15.1.33(p.112) )) and that we have the following theorem, corresponding to Theorem 15.1.1(p.112)

Theorem 19.2.4 (analogy[R→ P]) Let A {M̃:1[R][E]} holds on P ×F . Then A {M̃:1[P][E]} holds on P ×F where

A {M̃:1[P][E]} = A R̃→P̃[A {M̃:1[R][E]}]. (19.2.8)

In fact, from the comparisons of (I) and (II), of (I) and (III), of (III) and (IV), and of (II) and (IV) in Table 6.4.2(p.41) we can
easily show that (19.2.4(p.136) ) - (19.2.7(p.136) ) hold.
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19.2.2 M:1[R][E]
19.2.2.1 Analysis

To begin with, let us note that
λ = 1 (19.2.9)

is assumed in the model (see A2(p.21) ), hence from (10.2.1(p.56) ) we have

δ = 1 (19.2.10)

� Tom 19.2.1 (�� A {M:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof Let β = 1 and s = 0. Then, from (5.1.4(p.25) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma 10.1.1(p.55) (g).

(a) From (6.4.10(p.41) ) with t = 2 we have V2 = K (V1) + V1 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma 10.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing
in t > 0.

(b) From (6.4.9(p.41) ) we have V1 = µ < b · · · ((2)). Suppose Vt−1 < b. Then, from (6.4.10(p.41) ) and

Lemma 10.2.2(p.57) (h) we have Vt < K (b) + b = T (b) + b = b due to (1) and Lemma 10.1.1(p.55) (g). Accordingly, by induction
Vt−1 < b for t > 1, hence L (Vt−1) > 0 for t > 1 due to Lemma 10.2.1(p.57) (d), thus L (Vt−1) > 0 for τ ≥ t > 1. Then, from
(6.4.10(p.41) ) and from (5.1.8(p.25) ) we have Vt− βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1) > 0 for τ ≥ t > 1 or equivalently Vt >
βVt−1 for τ ≥ t > 1. Hence, since Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1,
thus t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.

For explanatory simplicity, let us define the statement below:

S2 ⃝s N } ∥ } △ } N = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

(2) } ndOITt•τ+1⟨t•τ ⟩ △,

(3) } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( } ndOITτ>t•τ+1⟨t•τ ⟩ N )).†
}

� Tom 19.2.2 (�� A {M:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ < b.

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b = 0 ((κ = 0)).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let b < 0 ((κ < 0)).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true. 7→ →}N
• Proof Let β < 1 or s > 0. From (6.4.10(p.41) ) and (5.1.8(p.25) ), we have Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1) · · · ((1))
for t > 1. From (6.4.10(p.41) ) with t = 2 we have V2 − V1 = K (V1) · · · ((2)).

(a) Note that V1 = βµ − s from (6.4.9(p.41) ). Then, from Lemma 10.2.2(p.57) (j2) we have xK ≥ βµ − s due to (19.2.9(p.137) )
and (19.2.10(p.137) ), hence xK ≥ V1 · · · ((3)). Accordingly, since K (V1) ≥ 0 due to Lemma 10.2.2(p.57) (j1), we have V1 ≤ V2 from

(2) . Suppose Vt−1 ≤ Vt. Then, from (6.4.10(p.41) ) and Lemma 10.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by
induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0. Note (3) . Suppose Vt−1 ≤ xK . Then, from (6.4.10(p.41) ) and
Lemma 10.2.2(p.57) (e) we have Vt ≤ K (xK ) + xK = xK . Hence, by induction Vt ≤ xK for t > 0, i.e., Vt is upper bounded in
t, thus Vt converges to a finite V as t → ∞. Accordingly, from (6.4.10(p.41) ) we have V = K (V ) + V , hence K (V ) = 0, thus
V = xK due to Lemma 10.2.2(p.57) (j1).

†The outer side of (( )) is for s = 0 and the inner side is for s > 0.
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(b) Let βµ ≥ b · · · ((4)). Then xL ≤ βµ− s from Lemma 10.2.4(p.59) (b1), hence xL ≤ V1 from (6.4.9(p.41) ), so xL ≤ Vt−1 for

t > 1 from (a). Accordingly, L (Vt−1) ≤ 0 for t > 1 from Corollary 10.2.1(p.57) (a), hence L (Vt−1) ≤ 0 · · · ((5)) for τ ≥ t > 1. Then,

since Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (1) or equivalently Vt ≤ βVt−1 for τ ≥ t > 1, we have Vτ ≤ βVτ−1, Vτ−1 ≤ βVτ−2, · · · ,
V2 ≤ βV1, so Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 , hence it follows that t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ △.

(c) Let βµ < b.

(c1) Let β = 1 · · · ((6)), hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK · · · ((7)) due to Lemma 10.2.3(p.58) (b),

hence K ( xL ) = K (xK ) = 0 · · · ((8)).

(c1i) Let µ−s ≤ a. Then, noting (6) , (19.2.9(p.137) ), and (19.2.10(p.137) ), we have xK = µ−s · · · ((9)) from Lemma 10.2.2(p.57) (j2),

hence xK = V1 from (6.4.9(p.41) ). Let Vt−1 = xK . Then, from (6.4.10(p.41) ) we have Vt = K(xK ) + xK = xK . Accordingly, by
induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 from (7) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, thus L (Vt−1) = 0
for τ ≥ t > 1. Then, since Vt−βVt−1 = 0 for τ ≥ t > 1 from (1) or equivalently Vt = βVt−1 for τ ≥ t > 1, we have Vτ = βVτ−1,
Vτ−1 = βVτ−2, · · · , V2 = βV1, so Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , hence t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ ∥ (see
Preference-Rule 7.2.1(p.45) ).

(c1ii) Let µ − s > a. Then, since V1 > a from (6.4.9(p.41) ), we have Vt−1 > a for t > 1 from (a). From (7) and
Lemma 10.2.2(p.57) (j2) we have xL = xK > µ − s = V1 from (6.4.9(p.41) ). Let Vt−1 < xL . Then, from (6.4.10(p.41) ) and
Lemma 10.2.2(p.57) (g) we have Vt < K ( xL ) + xL = xL due to (8) , hence by induction Vt−1 < xL for t > 1. Thus, since
L (Vt−1) > 0 for t > 1 due to Lemma 10.2.1(p.57) (e1), for the same reason as in the proof of Tom 19.2.1(p.137) (b) we obtain
⃝s dOITsτ>1⟨τ⟩ N.
(c2) Let β < 1 and s = 0 ((s > 0)).

(c2i) Let b > 0 ((κ > 0)). Then xL > xK · · · ((10 )) from Lemma 10.2.3(p.58) (c ((d))). Now, since xK ≥ βµ − s due to

Lemma 10.2.2(p.57) (j2), we have xK ≥ V1 from (6.4.9(p.41) ). Suppose xK ≥ Vt−1. Then, from (6.4.10(p.41) ) and Lemma 10.2.2(p.57) (e)
we have Vt ≤ K (xK )+ xK = xK . Thus, by induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (10) . Accordingly,
since L (Vt−1) > 0 for t > 1 due to Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 19.2.1(p.137) (b) we obtain
⃝s dOITsτ>1⟨τ⟩ N.
(c2ii) Let b = 0 ((κ = 0)). Then xL = xK · · · ((11 )) from Lemma 10.2.3(p.58) (c ((d))), hence K ( xL ) = K (xK ) = 0 · · · ((12 )).

(c2ii1) Let βµ − s ≤ a. Then, since xK = βµ − s · · · ((13 )) from Lemma 10.2.2(p.57) (j2), we have xK = V1 from (6.4.9(p.41) ).

Let Vt−1 = xK . Then, from (6.4.10(p.41) ) we have Vt = K(xK ) + xK = xK . Accordingly, by induction Vt−1 = xK for t > 1,
hence Vt−1 = xL for t > 1 due to (11) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, for the same reason as in the proof of
(c1i) we have • dOITdτ>1⟨1⟩ ∥.

(c2ii2) Let βµ − s > a. Then, since V1 > a from (6.4.9(p.41) ), we have Vt−1 > a for t > 1 from (a). From (11) and
Lemma 10.2.2(p.57) (j2) we have xL = xK > βµ − s = V1. Let Vt−1 < xL . Then, from (6.4.10(p.41) ) and Lemma 10.2.2(p.57) (g)
we have Vt < K ( xL ) + xL = xL due to (12) , hence, by induction Vt−1 < xL for t > 1. Consequently, since L (Vt−1) > 0 for
t > 1 due to Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 19.2.1(p.137) (b) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c2iii) Let b < 0 ((κ < 0)). Then xL < xK · · · ((14 )) from Lemma 10.2.3(p.58) (c ((d))).

(c2iii1) Let βµ − s ≤ a, then xL < xK = βµ − s = V1 from (14) , Lemma 10.2.2(p.57) (j2) and (6.4.9(p.41) ), so xL ≤ V1. Let
sL ≤ s, then xL ≤ βµ − s due to Lemma 10.2.4(p.59) (c), hence xL ≤ V1. Therefore, whether βµ − s ≤ a or sL ≤ s, we have
xL ≤ V1, hence xL ≤ Vt−1 for t > 1 due to (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 10.2.1(p.57) (a), for the
same reason as in the proof of (b) we obtain • dOITdτ>1⟨1⟩ △.

(c2iii2) Suppose βµ − s > a and sL > s. Hence, since V1 > a from (6.4.9(p.41) ), we have Vt−1 > a for t > 0 from (a).
Then, since xK > xL > βµ − s = V1 · · · ((15 )) from (14) , Lemma 10.2.4(p.59) (c), and (6.4.9(p.41) ), we have K (V1) > 0 from

Lemma 10.2.2(p.57) (j1), hence V2 > V1 from (2) . Suppose Vt−1 < Vt. Then, from (6.4.10(p.41) ) and Lemma 10.2.2(p.57) (g) we have
Vt < K (Vt) + Vt = Vt+1. Accordingly, by induction we have Vt−1 < Vt for t > 1, i.e., Vt is strictly increasing in t > 0. Note
that V1 < xL due to (15) . Assume that Vt−1 < xL for all t > 1, hence V ≤ xL · · · ((16 )) from (a). Then, since V = xK due

to (a), we have the contradiction of V = xK > xL ≥ V due to (14) and (16) . Hence, it is impossible that Vt−1 < xL for all
t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · · · · ((17 )),
from which we have

Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (19.2.11)

Hence, we have

L (Vt−1) > 0 · · · ((18 )) t•τ ≥ t > 1 (← Corollary 10.2.1(p.57) (a))

L (Vt•τ ) ≤ 0 · · · ((19 )) (← Corollary 10.2.1(p.57) (a))

L (Vt−1) = ((< 0))† · · · ((20 )) t > t•τ + 1 (← Lemma 10.2.1(p.57) (d((e1))))

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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◦ Let t•τ ≥ τ > 1. Then L (Vt−1) > 0 · · · ((21 )) for τ ≥ t > 1 from (18) . Since Vt − βVt−1 > 0 for τ ≥ t > 1 from

(1) and (21) , we have Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1. Therefore, since
Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1, we obtain t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N, thus S2(1) is true. Let us
note here that when τ = t•τ , we have Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((22 )).

◦ Let τ = t•τ + 1. From (1) with t = t•τ + 1 and (19) we have Vt•τ+1 − βVt•τ ≤ 0, hence Vt•τ+1 ≤ βVt•τ . Accordingly, from (22)

we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((23 )),

thus t∗t•τ+1 = t•τ , i.e., } ndOITt•τ+1⟨t•τ ⟩ △, thus S2(2) is true.

◦ Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (20) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (1) , hence from (23)

we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ > β4Vt•τ−1 > · · · > βt•τ+2V1.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<)) βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τ Vt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1. · · · ((24 ))

◦ Let s = 0. Then (24) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1,

hence we have t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 7.2.1(p.45) ), hence S2(3) is true.

◦ Let s > 0. Then (24) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1, (19.2.12)

hence we have t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ N, hence S2(3) is true.

19.2.2.2 Market Restriction

19.2.2.2.1 Positive Restriction

� Pom 19.2.1 (A {M:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.1(p.137) due to Lemma 17.4.4(p.118) .

� Pom 19.2.2 (A {M:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let βµ ≤ s. Then • dOITdτ>1⟨1⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = βµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 19.2.2(p.137) (a).

(b,c) Always βµ < b from [3(p.118) ], hence βµ ≥ b is impossible.

(c1-c1ii) The same as Tom 19.2.2(p.137) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 19.2.2(p.137) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s, hence κ > 0 due to (2) . Hence it suffices to consider only (c2i) of Tom 19.2.2(p.137) .

(c3ii) Let βµ ≤ s, hence κ ≤ 0 due to (2) . Then, since βµ−s ≤ 0 < a, it suffices to consider only (c2iii1) of Tom 19.2.2(p.137) .
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19.2.2.2.2 Mixed Restriction

� Mim 19.2.1 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ 0. Let β = 1 and s = 0.
(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 19.2.1(p.137) due to Lemma 17.4.4(p.118) .

� Mim 19.2.2 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βµ ≥ b (impossible).
(c) Let βµ < b (always holds).

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 19.2.2(p.137) (a).

(b,c) Always βµ < b due to [8(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”.

(c1i,c1ii) The same as Tom 19.2.2(p.137) (c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 19.2.2(p.137) and if b = 0, then since always
βµ − s = βµ > a due to [8(p.118)] , it suffices to consider only (c2ii2) of Tom 19.2.2(p.137) . Therefore, whether b > 0 or b = 0, we
have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 19.2.2(p.137) (c2i-c2iii2) with κ = βT (0) − s
from (5.1.7(p.25) ) with λ = 1.

19.2.2.2.3 Negative Restriction

� Nem 19.2.1 (A {M:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 19.2.1(p.137) due to Lemma 17.4.4(p.118) .

� Nem 19.2.2 (A {M:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.
3. Let β < 1 and s > 0.

i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0, hence a < µ < b < 0 · · · ((1)). Hence κ = −s · · · ((2)) from Lemma 10.3.1(p.59) (a) with λ = 1. In addition,

βµ ≥ b and βµ < b are both possible due to [17(p.118) ].

(a,b) The same as Tom 19.2.2(p.137) (a,b).

(c) Let βµ < b.

(c1-c1ii) The same as Tom 19.2.2(p.137) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, since b < 0 due to (1) , it suffices to consider only (c2iii) of Tom 19.2.2(p.137) . In this case,
since βµ− s = βµ > βa > a due to (1) and since sL > 0 = s due to
Lemma 10.2.4(p.59) (c), it suffices to consider only (c2iii2) of Tom 19.2.2(p.137) .

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (2) . Thus, it suffices to consider only (c2iii1-c2iii2) of Tom 19.2.2(p.137) .
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19.2.3 M̃:1[R][E]
19.2.3.1 Analysis

� Tom 19.2.3 (�� A {M̃:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by symmetry Immediate from applying SR→R̃ (see (18.0.1(p.130) )) to Tom 19.2.1(p.137) .

� Tom 19.2.4 (�� A {M̃:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a = 0 ((κ̃ = 0)) .†

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let a > 0 ((κ̃ > 0)) .

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ+ s < b and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SR→R̃ (see (18.0.1(p.130) )) to Tom 19.2.2(p.137) .

19.2.3.2 Market Restriction

19.2.3.2.1 Positive Restriction

� Pom 19.2.3 (A {M̃:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.3(p.141) due to Lemma 17.4.4(p.118) .

� Pom 19.2.4 (A {M̃:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βµ+ s < b and s < sL̃ . Then S2

⃝s N } ∥ } △ } N is true
(see Numerical Example 4(p.147) ).

• Proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a). Here note that µβ ≤ a and µβ > a are both

possible due to [5(p.118)] .

(a,b) The same as Tom 19.2.4(p.141) (a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 12.6.5(p.83) (c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have
Tom 19.2.4(p.141) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.118)] and since sL̃ > 0 = s from (3) , due to (1) it
suffices to consider only (c2iii2) of Tom 19.2.4(p.141) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 19.2.4(p.141) .



142

19.2.3.2.2 Mixed Restriction

� Mim 19.2.3 (A {M̃:1[R][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 19.2.3(p.141) due to Lemma 17.4.4(p.118) .

� Mim 19.2.4 (A {M̃:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).
(c) Let βµ > a (always holds).

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > −βT̃ (0).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ+ s < b and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 19.2.4(p.141) (a).

(b,c) Always βµ > a due to [8(p.118)] , hence βµ ≤ a is impossible. Then sL̃ > 0 due to
Lemma 12.6.5(p.83) (c).

(c1-c1ii) The same as Tom 19.2.4(p.141) (c-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 19.2.4(p.141) . Let a = 0. Now, in this
case, since βµ + s = βµ < b due to [8(p.118)] , it suffices to consider only (c2ii2) of Tom 19.2.4(p.141) . Accordingly, whether a < 0
or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 19.2.4(p.141) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(5.1.16(p.25) ).

19.2.3.2.3 Negative Restriction

� Nem 19.2.3 (A {M̃:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.
(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 19.2.4(p.141) due to Lemma 17.4.4(p.118) .

� Nem 19.2.4 (ATom {M̃:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).
(c) Let βµ > a (always holds).

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ △.

• Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 12.6.6(p.83) (a).

(a) The same as Tom 19.2.4(p.141) (a).

(b,c) Always a < βµ due to [15(p.118)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 19.2.4(p.141) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 19.2.4(p.141) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Then, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 19.2.4(p.141) .

(c3ii) Let βµ ≥ −s, hence βµ + s ≥ 0. Let βµ + s = 0. Then, since κ̃ = 0 due to (3) and since βµ + s = 0 > b due to
(2) , it suffices to consider only (c2ii1) of Tom 19.2.4(p.141) . Let βµ + s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider
only (c2iii) of Tom 19.2.4(p.141) . Then, since βµ + s > 0 > b due to (1) , it suffices to consider only (c2iii1) of Tom 19.2.4(p.141) .
Accordingly, whether βµ+ s = 0 or βµ+ s > 0, we have the same result.
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19.2.4 M:1[P][E]
19.2.4.1 Analysis

� Tom 19.2.5 (�� A {M:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by analogy The same as Tom 19.2.1(p.137) due to Lemma 13.6.1(p.99) .

� Tom 19.2.6 (�� A {M:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b = 0 ((κ = 0)) .

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let b < 0 ((κ < 0)) .

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by analogy Immediate from applying AR→P (see (18.0.5(p.130) )) to Tom 19.2.2(p.137) .

Corollary 19.2.1 (optimal price to propose) The optimal price to propose zt is nondecreasing in t > 0.

• Proof Immediate from Tom’s 19.2.5(p.143) (a) and 19.2.6(p.143) (a) and
from (6.2.34(p.31) ) and Lemma 13.1.3(p.89) .

19.2.4.2 Market Restriction

19.2.4.2.1 Positive Restriction

� Pom 19.2.5 (A {M:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 19.2.5(p.143) due to Lemma 17.4.4(p.118) .

� Pom 19.2.6 (A {M:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and s < sL . Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 19.2.6(p.143) (a).

(b,c) Always βa < b from [4(p.118) ], hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 19.2.6(p.143) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 19.2.6(p.143) .

(c3) Let β < 1 and s > 0.

(c3i-c3iii2) Immediate from Tom 19.2.6(p.143) (c2i-c2iii2) due to (2) with κ = βT (0)− s · · · ((2)) from (5.1.23(p.26) ).
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19.2.4.2.2 Mixed Restriction

� Mim 19.2.5 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.5(p.143) due to Lemma 17.4.4(p.118) .

� Mim 19.2.6 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and sL > s. Then S2

⃝s N } ∥ } △ } N is true

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 19.2.6(p.143) (a).

(b,c) Always βa < b due to [9(p.118)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 19.2.6(p.143) (c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 19.2.6(p.143) (c2i) and if b = 0, then βa− s = βa > a⋆ from
[11(p.118)] , hence the assertion become true from Tom 19.2.6(p.143) (c2ii2). Accordingly, whether b > 0 or b = 0, we have the same
result.

(c3-c3iii2) The same as Tom 19.2.6(p.143) (c2i-c2iii2) with κ = βT (0)− s from
(5.1.23(p.26) )) with λ = 1.

19.2.4.2.3 Negative Restriction

� Nem 19.2.5 (A {M:1[P][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.5(p.143) due to Lemma 17.4.4(p.118) .

� Nem 19.2.6 (A {M:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βa− s > a⋆ and s < sL . Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0. Then, κ = −s · · · ((1)) from Lemma 13.2.6(p.97) (a). In addition, βa ≥ b and βa < b are both possible

due to [18(p.118) ].

(a,b) The same as Tom 19.2.6(p.143) (a,b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 19.2.6(p.143) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2iii-c2iii2) of Tom 19.2.6(p.143) . In this case, since βa−s = βa > a⋆

due to [19(p.118) ] and since sL > 0 = s due to Lemma 13.2.5(p.97) (c), it suffices to consider only (c2iii2) of Tom 19.2.6(p.143) .

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (1) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 19.2.6(p.143) .
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19.2.5 A {M̃:1[P][E]}
19.2.5.1 Analysis

� Tom 19.2.7 (�� A {M̃:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.3(p.130) )) to Tom 19.2.5(p.143) .

� Tom 19.2.8 (�� A {M̃:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆.† Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βb+ s < b⋆ and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.3(p.130) )) to Tom 19.2.6(p.143) .

Corollary 19.2.2 (optimal price to propose) The optimal price to propose zt is nonincreasing in t > 0.

• Proof Immediate from Tom’s 19.2.7(p.145) (a) and 19.2.8(p.145) (a) and
from (6.2.50(p.32) ) and Lemma A3.3(p.297) ).

19.2.5.2 Market Restriction

19.2.5.2.1 Positive Restriction

� Pom 19.2.7 (A {M̃:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.7(p.145) due to Lemma 17.4.4(p.118) .

� Pom 19.2.8 (A {M̃:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βb+ s < b⋆ and s < sL̃ . Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a). In addition, βb ≤ a and βb > a are both

possible due to [6(p.118) ].

(a,b) The same as Tom 19.2.8(p.145) (a,b).

(c) Let βb > a.

(c1-c1ii) The same as Tom 19.2.8(p.145) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii-c2iii2) of Tom 19.2.8(p.145) . In this case, since
βb+ s = βb < b⋆ due to [7(p.118) ] and since sL̃ > 0 = s from
Lemma 14.6.5(p.108) (c) with λ = 1, it suffices to consider only (c2iii2) of Tom 19.2.8(p.145) .

(c3-c3ii) Let β < 1 and s > 0, hence κ̃ > 0 due to (2) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 19.2.8(p.145) .
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19.2.5.2.2 Mixed Restriction

� Mim 19.2.7 (A {M̃:1[P][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.7(p.145) due to Lemma 17.4.4(p.118) .

� Mim 19.2.8 (A {M̃:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > −βT̃ (0).

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βb+ s < b⋆ and sL̃ > s. Then S2
⃝s N } ∥ } △ } N is true.

• Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 19.2.8(p.145) (a).

(b,c) Always βb > a due to [10(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 19.2.8(p.145) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 19.2.8(p.145) . Let a < 0. Then, the assertion is
true from Tom 19.2.8(p.145) (c2i). Let a = 0. Then, since βb+ s = βb < b⋆ due to [12(p.118)] , it suffices to consider only (c2ii2) of
Tom 19.2.8(p.145) . Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 19.2.8(p.145) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(5.1.36(p.27) ) with λ = 1.

19.2.5.2.3 Negative Restriction

� Nem 19.2.7 (A {M̃:1[P][E]−}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 19.2.7(p.145) due to Lemma 17.4.4(p.118) .

� Nem 19.2.8 (A {M̃:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βb+ s < b⋆ and sL̃ > s. Then S2
⃝s N } ∥ } △ } N is true.
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• Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 19.2.8(p.145) (a).

(b,c) Always βb > a due to [16(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 19.2.8(p.145) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 19.2.8(p.145) .

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 19.2.8(p.145) (c2-c2iii2) with κ̃ = βT̃ (0)+s from (5.1.36(p.27) )
with λ = 1.

19.2.6 Numerical Calculation

Numerical Example 4 (A {M̃:1[R][E]+} (buying model)

This is the example for ⃝s N and } N of S2(p.137) ⃝s N } ∥ } △ } N in Pom 19.2.4(p.141) (c3ii) with a = 0.01, b = 1.00, β = 0.98,
and s = 0.05 where x

K̃ = 0.3076395 and sL̃ = 0.3232736.† Note that the example is for the model of a buying problem
with the cost minimization. The figure below is the graph of Itτ = βτ−tVt where the symbol • shows the optimal initiating
time (OIT) for each τ = 2, 3, · · · , 15 (see t∗ - column in the table below). In addition, note that each of polygonal curves for
τ = 2, 3, · · · , 7 is strictly decreasing in t = 1, 2, · · · , 7 and that each of polygonal curves for τ = 8, 9, · · · , 15 is strictly decreasing
in t = 1, 2, · · · , 7 and strictly increasing in t = 7, 8, · · · , 15. The fact implies that the optimal initiating time t∗τ degenerates to
the starting time τ = 2, 3, · · · , 7, i.e., ⃝s dOITsτ ⟨τ⟩ N and that it is given by t∗τ = 7 (non-degenerate) for each of τ = 8, 9, · · · , 15,
i.e., } ndOITτ ⟨7⟩ N (see t∗ – column in the table below). Finally, note here that the leftmost point Vt in each curves converges
to x

K̃ = 0.3076395 as τ →∞ (see Pom 19.2.4(p.141) (a)).
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t Vt ∆βVt t∗τ

0
1 0.544900
2 0.442388 −0.091614 2
3 0.391004 −0.042535 3
4 0.361335 −0.021849 4
5 0.343013 −0.011094 5
6 0.331264 −0.004889 6
7 0.323555 −0.001084 7

8 0.318422 +0.001338 7
9 0.314972 +0.002918 7
10 0.312638 +0.003965 7
11 0.311053 +0.004667 7
12 0.309973 +0.005141 7
13 0.309236 +0.005462 7
14 0.308732 +0.005681 7
15 0.308388 +0.005830 7

∆βVt=Vt−βVt−1

Figure 19.2.1: Graphs of Itτ = βτ−tVt with τ = 2, 3, · · · , 15 and t = 1, 2, · · · , τ

19.2.7 Conclusion 2 (Search-Enforced-Model 1)

� The assertion systems A {M/M̃:1[R][E]} of the quadruple-asset-trading-models on the total market F

Q⟨M :1[E]⟩ = {M:1[R][E], M̃:1[R][E],M:1[P][E], M̃:1[P][E]}
are given by

A {M:1[R][E]} A {M̃:1[R][E]} A {M:1[P][E]} A {M̃:1[P][E]}
↓ ↓ ↓ ↓

Tom’s 19.2.1(p.137) , 19.2.2(p.137) , 19.2.3(p.141) , 19.2.4(p.141) , 19.2.5(p.143) , 19.2.6(p.143) , 19.2.7(p.145) , 19.2.8(p.145) .

� The assertion systems A {M/M̃:1[R][E]+} of the quadruple-asset-trading-models on the positive market F+

Q⟨M :1[E]⟩+ = {M:1[R][E]+, M̃:1[R][E]+,M:1[P][E]+, M̃:1[P][E]+}
are given by

A {M:1[R][E]+} A {M̃:1[R][E]+} A {M:1[P][E]+} A {M̃:1[P][E]+}
↓ ↓ ↓ ↓

Pom’s 19.2.1(p.139) , 19.2.2(p.139) , 19.2.3(p.141) , 19.2.4(p.141) , 19.2.5(p.143) , 19.2.6(p.143) , 19.2.7(p.145) , 19.2.8(p.145) .

� Closely looking into all the above assertion systems A leads to the following conclusions.

C1. Mental Conflict

On F , for any β ≤ 1 and s ≥ 0 we have:

a. The opt-R-price Vt in M:1[R][E] (selling model) is nondecreasing in t as in Figure 7.3.1(p.47) (I) (see Tom’s 19.2.1(p.137) (a)
and 19.2.2(p.137) (a), hence we have the normal conflict (see Remark 7.3.1(p.47) ).

†Since a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0, we have µ = (0.01 + 1.00)/2 = 0.525, βµ = 0.98 × 0.525 = 0.5145 > 0.01 = a,
βµ + s = 0.5145 + 0.05 = 0.5645 < 1.00 = b, and s = 0.05 < 0.3232736 = sL̃ . Thus, the condition of this assertion is satisfied.
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b. The opt-P-price zt in M:1[P][E] is nondecreasing (selling model) in t as in Figure 7.3.1(p.47) (I) (see Corollary 19.2.1(p.143) ),
hence we have the normal conflict (see Remark 7.3.1(p.47) ).

c. The opt-R-price Vt in M̃:1[R][E] (buying model) is nonincreasing in t as in Figure 7.3.1(p.47) (II) (see Tom’s 19.2.3(p.141) (a)
and 19.2.4(p.141) (a), hence we have the normal conflict (see Remark 7.3.1(p.47) ).

d. The opt-P-price zt in M̃:1[P][E] (buying model) is nonincreasing in t as in Figure 7.3.1(p.47) (II) (see Corollary 19.2.2(p.145) ),
hence we have the normal conflict (see Remark 7.3.1(p.47) ).

The above results can be summarized as below.

A. On F , for any β ≤ 1 and s ≥ 0, whether selling problem or buying problem and whether R-model or P-model, we
have the normal mental conflict, which coincides with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 19.2.3(p.141) ∼ Pom 19.2.1(p.139) (A {M̃:1[R][E]}+ ∼ A {M:1[R][E]}+),
Pom 19.2.7(p.145) ∼ Pom 19.2.5(p.143) (A {M̃:1[P][E]}+ ∼ A {M:1[P][E]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 19.2.4(p.141) |∼ Pom 19.2.2(p.139) (A {M̃:1[R][E]}+ |∼ A {M:1[R][E]}+) · · · (s1),
Pom 19.2.8(p.145) |∼ Pom 19.2.6(p.143) (A {M̃:1[P][E]}+ |∼ A {M:1[P][E]}+) · · · (s2).

b. On F± we have:

1. Let β = 1 and s = 0. Then we have:

Mim 19.2.3(p.142) ∼ Mim 19.2.1(p.140) (A {M̃:1[R][E]}± ∼ A {M:1[R][E]}±),

Mim 19.2.7(p.146) ∼ Mim 19.2.5(p.144) (A {M̃:1[P][E]}± ∼ A {M:1[P][E]}±).
2. Let β < 1 or s > 0. Then we have:

Mim 19.2.4(p.142) ∼ Mim 19.2.2(p.140) (A {M̃:1[R][E]}± ∼ A {M:1[R][E]}±),

Mim 19.2.8(p.146) ∼ Mim 19.2.6(p.144) (A {M̃:1[P][E]}± ∼ A {M:1[P][E]}±).

c. On F− we have:

1. Let β = 1 and s = 0. Then we have:

Nem 19.2.3(p.142) ∼ Nem 19.2.1(p.140) (A {M̃:1[R][E]}− ∼ A {M:1[R][E]}−),

Nem 19.2.7(p.146) ∼ Nem 19.2.5(p.144) (A {M̃:1[P][E]}− ∼ A {M:1[P][E]}−).
2. Let β < 1 or s > 0. Then we have:

Nem 19.2.4(p.142) |∼ Nem 19.2.2(p.140) (A {M̃:1[R][E]}− |∼ A {M:1[R][E]}−) · · · (s3),

Nem 19.2.8(p.146) |∼ Nem 19.2.6(p.144) (A {M̃:1[P][E]}− |∼ A {M:1[P][E]}−) · · · (s4).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C3b(p.148) ).

B. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2a1(p.148) /C2c1(p.148) ).

C. On F+ and F−, if β < 1 or s > 0, the symmetry collapses (see (s1)/(s2)/(s3)/(s4)).

C3. Analogy

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 19.2.5(p.143) ◃▹ Pom 19.2.1(p.139) (A {M:1[P][E]}+ ◃▹ A {M:1[R][E]}+),

Pom 19.2.7(p.145) ◃▹ Pom 19.2.3(p.141) (A {M̃:1[P][E]}+ ◃▹ A {M̃:1[R][E]}+).
2. Let β < 1 or s > 0. Then we have:

Pom 19.2.6(p.143) ◃▹| Pom 19.2.2(p.139) (A {M:1[P][E]}+ ◃▹| A {M:1[R][E]}+) · · · (a1),

Pom 19.2.8(p.145) ◃▹ Pom 19.2.4(p.141) (A {M̃:1[P][E]}+ ◃▹ A {M̃:1[R][E]}+).
b. On F± we have:

1. Let β = 1 and s = 0. Then we have:

Mim 19.2.5(p.144) ◃▹ Mim 19.2.1(p.140) (A {M:1[P][E]}± ◃▹ A {M:1[R][E]}±),

Mim 19.2.7(p.146) ◃▹ Mim 19.2.3(p.142) (A {M̃:1[P][E]}± ◃▹ A {M̃:1[R][E]}±).
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2. Let β < 1 or s > 0. Then we have:

Mim 19.2.6(p.144) ◃▹ Mim 19.2.2(p.140) (A {M:1[R][E]}± ◃▹ A {M:1[P][E]}±),

Mim 19.2.8(p.146) ◃▹ Mim 19.2.4(p.142) (A {M̃:1[R][E]}± ◃▹ A {M̃:1[P][E]}±).
c. On F− we have:

1. Let β = 1 and s = 0. Then we have:

Nem 19.2.5(p.144) ◃▹ Nem 19.2.1(p.140) (A {M:1[P][E]}− ◃▹ A {M:1[R][E]}−),

Nem 19.2.7(p.146) ◃▹ Nem 19.2.3(p.142) (A {M̃:1[P][E]}− ◃▹ A {M̃:1[R][E]}−).

2. Let β < 1 or s > 0. Then we have:

Nem 19.2.6(p.144) ◃▹ Nem 19.2.2(p.140) (A {M:1[P][E]}− ◃▹ A {M:1[R][E]}−),

Nem 19.2.8(p.146) ◃▹| Nem 19.2.4(p.142) (A {M̃:1[P][E]}− ◃▹| A {M̃:1[R][E]}−) · · · (a2).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the analogy is inherited (see C3b(p.148) ).

B. On F+ and F−, if β = 1 and s = 0, then the analogy is inherited (see C3a1(p.148) /C3c1(p.149) ).

C. On F+ and F−, if β < 1 or s > 0, then the analogy partially collapses (see (a1)/(a2)).

C4. Optimal initiating time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 19.2.1(p.139) , Mim 19.2.1(p.140) , Nem 19.2.1(p.140) ,

Pom 19.2.3(p.141) , Mim 19.2.3(p.142) , Nem 19.2.3(p.142) ,

Pom 19.2.5(p.143) , Mim 19.2.5(p.144) , Nem 19.2.5(p.144) ,

Pom 19.2.7(p.145) , Mim 19.2.7(p.146) , Nem 19.2.7(p.146)

we obtain the following table (the symbol “◦” in the table below represents “possible”):

Table 19.2.1: Possible OIT (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN
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b. Let β < 1 or s > 0. Then, from

Pom 19.2.2(p.139) , Mim 19.2.2(p.140) , Nem 19.2.2(p.140) ,

Pom 19.2.4(p.141) , Mim 19.2.4(p.142) , Nem 19.2.4(p.142) ,

Pom 19.2.6(p.143) , Mim 19.2.6(p.144) , Nem 19.2.6(p.144) ,

Pom 19.2.8(p.145) , Mim 19.2.8(p.146) , Nem 19.2.8(p.146)

we obtain the following table:

Table 19.2.2: Possible OIT (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ N }N ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN

c. The table below is the list of the occurrence rates of ⃝⃝s , } , and•dd on F appearing in the primitive Tom 19.2.1(p.137) (��
) and Tom 19.2.2(p.137) (�� ) (see Def. 11.2.2(p.61) ).

Table 19.2.3: Occurence rates of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
41.7%/ 5 25.0%/ 3 33.3%/ 4

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible possible possible possible possible ×

–%/ – 0.0%/ 0 41.7%/ 5 8.3%/ 1 8.3%/ 1 8.3%/ 1 16.7%/ 2 16.7%/ 2 0.0%/ 0

C5. Null-time-zone and deadline-engulfing

From Table 19.2.3(p.150) above we see that on F :

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 41.7%, 25.0%, and 33.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 7.2.3(p.45) .

2. }∥ is possible (8.3%).

3. •dd∥ is possible (16.7%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ is possible (3.8%).

6. •dd△ is possible (16.7%).

7. ⃝⃝s N is possible (41.7%).

8. }N is possible (8.3%).

• See Tom 19.2.2(p.137) (c2iii2)

9. •ddN never occur (0.0%).

From the above results we see that on F :

A. } and•dd causing the null-time-zone are possible at 58.3% (= 25.0% + 33.3%).

B. }N strictly causing the null-time-zone is possible at 8.3%.

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.
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19.3 Conclusions of Model 1
Conclusions 1 (p.133) and 2 (p.147) can be summarized as below.

C1. Mental Conflict

On F , from C1A(p.133) and C1A(p.148) , for any β ≤ 1 and s ≥ 0, whether search-Allowed-model od search-Enforced-model,
whether selling problem or buying problem, and whether R-model or P-model, we have the normal mental conflict, which
coincides with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

a. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C2A(p.134) and C2A(p.148) ).

b. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2B(p.134) and C2B(p.148) ).

c. On F+ and F−, if β < 1 or s > 0, the symmetry may collapse on F+ and F− (see C2C(p.134) and C2C(p.148) ).

C3. Analogy

a. On F±, for any β ≤ 1 and s ≥ 0, the analogy are inherited (see C2A(p.134) and C2A(p.148) ).

b. On F+ and F−, if β = 1 and s = 0, the analogy are inherited (see C2B(p.134) and C2B(p.148) ).

c. On F+ and F−, if β < 1 or s > 0, the analogy may collapse on F+ and F− (see C2C(p.134) and C2C(p.148) ).

C4. Optimal initiating time (OIT)

On F+, F±, and F−, we have:

a. Let β = 1 and s = 0. Then only ⃝⃝s N is possible (see Figures 19.1.1(p.135) and 19.2.1(p.149) ).

b. Let β < 1 or s > 0. Then:

1. For sA-model we have only ⃝⃝s N, }∥, and•dd∥ (see Figure 19.1.2(p.135) ).

2. For sE-model we have ⃝⃝s N, }∥, }△, }N,•dd∥, and•dd△ (see Figure 19.2.2(p.150) ).

c. Joining Tables 19.1.3(p.135) and 19.2.3(p.150) produces the following table:

Table 19.3.1: Occurance rates of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
45.5%/ 10 18.2%/ 4 36.3%/ 8

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible possible possible possible possible ×

–%/ – 0.0%/ 0 45.5%/ 10 9.0%/ 2 4.6%/ 1 4.6%/ 1 27.3%/ 6 9.0%/ 2 0.0%/ 0

C5. Null-time-zone and deadline-engulfing

From Table 19.3.1(p.151) above we see that on F

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 45.5%, 18.2%, and 36.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 7.2.3(p.45) .

2. }∥ is possible (9.0%).

3. •dd∥ is possible (27.3%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ is possible (4.6%).

6. •dd△ is possible (9.0%).

7. ⃝⃝s N is possible (45.5%),

8. }N is possible(4.6%).

• Tom 19.2.2(p.137) (c2iii2)

9. •ddN never occur (0.0%).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 54.5% (= 18.2% + 36.3%).

B. }N strictly causing the null-time-zone is possible at 4.6%.

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.
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20.1 Search-Allowed-Model 2: Q{M:2[A]} = {M:2[R][A], M̃:2[R][A],M:2[P][A], M̃:2[P][A]}

20.1.1 Preliminary
As ones corresponding to Theorems 12.5.1(p.80) , 13.3.1(p.98) , and 14.5.1(p.106) , let us consider the following three theorems:

Theorem 20.1.1 (symmetry[R→ R̃]) Let A {M:2[R][A]} holds on P ×F . Then A {M̃:2[R][A]} holds on P ×F where

A {M̃:2[R][A]} = SR→R̃[A {M:2[R][A]}]. (20.1.1)

Theorem 20.1.2 (analogy[R→ P]) Let A {M:2[R][A]} holds on P ×F . Then A {M:2[P][A]} holds on P ×F where

A {M:2[P][A]} = AR→P[A {M:2[R][A]}]. (20.1.2)

Theorem 20.1.3 (symmetry[P→ P̃]) Let A {M:2[P][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = SP→P̃[A {M:2[P][A]}]. (20.1.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:2[R][A]} = SR→R̃[SOE{M:2[R][A]}], (20.1.4)

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}], (20.1.5)

SOE{M̃:2[P][A]} = SP→P̃[SOE{M:2[P][A]}], (20.1.6)

corresponding to (12.5.34(p.77) ), (13.2.4(p.93) ), and (14.5.4(p.106) ). Then, for the same reason as in Chap. 15(p.111) it can be shown
that the equality

SOE{M̃:2[P][A]} = A R̃→P̃[SOE{M̃:2[R][A]}] (20.1.7)

holds (corresponding to (15.1.33(p.112) )) and that we have the following theorem, corresponding to Theorem 15.1.1(p.112)

Theorem 20.1.4 (analogy [R̃→ P̃]) Let A {M̃:2[R][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = A R̃→P̃[A {M̃:2[R][A]}]. (20.1.8)

In fact, from the comparisons of (I) and (II), of (I) and (III), of (III) and (IV), and of (II) and (IV) in Table 6.4.3(p.41) we can
easily show that (20.1.4(p.153) ) - (20.1.7(p.153) ) hold.

20.1.2 A Lemma

The following lemma provides the conditions which determine if each of Theorems 20.1.1(p.153) , 20.1.2(p.153) , and 20.1.3(p.153) holds
by testing whether or not each of (20.1.4(p.153) ), (20.1.5(p.153) ), and (20.1.6(p.153) ) is true.

Lemma 20.1.1 (M:2[R][A])
(a) Theorem 20.1.1(p.153) holds.

(b) Theorem 20.1.3(p.153) holds.

(c) If ρ ≤ a⋆ or b ≤ ρ, then Theorem 20.1.2(p.153) holds.

(d) If a⋆ < ρ < b, then Theorem 20.1.2(p.153) does not always hold.
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• Proof (a) From Table 6.4.3(p.41) (I) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[R][A]} = {V0 = ρ, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 0} (20.1.9)

First, applying the operation R (see Step 2 (p.75) ) to this leads to

R[SOE{M:2[R][A]}] = {−V̂0 = ρ, −V̂t = max{−K̂(Vt−1)− V̂t−1,−βV̂t−1}, t > 0}

= {−V̂0 = ρ, −V̂t = −min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = −ρ, V̂t = min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = ρ̂, −V̂t = −min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0} (20.1.10)

Then, applying CR (see Step 3 (p.75) ) to this yields

CRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{ ˇ̃K(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}. (20.1.11)

Finally, applying IR (see Step 4 (p.76) ) to this produces

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}. (20.1.12)

Since this holds for any ρ ∈ (−∞,∞), it holds also for ρ̂ ∈ (−∞,∞), hence holds also for the ˆ̂ρ, i.e.,

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ˆ̂ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0} (20.1.13)

due to ρ = ˆ̂ρ. Now, we have V̂0 = ρ = V0 from (6.4.17(p.41) ). Suppose V̂t−1 = Vt−1. Then, the second term in the r.h.s. of
(20.1.13(p.154) ) can be rewritten as V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt. Thus, by induction V̂t = Vt for t ≥ 0. Accordingly
(20.1.13(p.154) ) can be rewritten as

IRCRR[SOE{M:2[R][A]}] = {V0 = ρ, Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0, (20.1.14)

which is identical to SOE{M̃:2[R][A]} (see Table 6.4.3(p.41) (II)), i.e.,

SOE{M̃:2[R][A]} = IRCRR[SOE{M:2[R][A]}]

= SR→R̃[SOE{M:2[R][A]}] (see (12.5.30(p.77) )). (20.1.15)

Hence, since (20.1.4(p.153) ) holds, it follows that Theorem 20.1.1(p.153) holds.

(b) From Table 6.4.3(p.41) (III) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[P][A]} =


V0 = ρ,

V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ},
Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1


Applying the operation R to this leads to

R[SOE{M:2[P][A]}] =


−V̂0 = ρ,

−V̂1 = max{λβmax{0,−â− ρ}+ βρ− s, βρ},
−V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = max{−λβmin{0, â+ ρ}+ βρ− s, βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = −min{λβmin{0, â+ ρ} − βρ+ s,−βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = −ρ,
V̂1 = min{λβmin{0, â+ ρ}+ βρ− s, βρ},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = ρ̂,

V̂1 = min{λβmin{0, â− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1

 .

Applying CP to this yields
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CPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b̌− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1

 .

Applying IP to this produces

IPCPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1

 .

For the same reason as in the proof of (a), we can replace ρ̂ by ρ, hence we obtain.

IPCPR[SOE{M:2[P][A]}] =


V0 = ρ,

V1 = min{λβmin{0, b− ρ}+ βρ+ s, βρ},
Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1

 ,

which is the same as SOE{M̃:2[P][A]} given by Table 6.4.3(p.41) (IV), hence we have

SOE{M̃:2[P][A]} = IPCPR[SOE{M:2[R][A]}] (20.1.16)

= SP→P̃[SOE{M:2[P][A]}] (see (14.5.3(p.106) )). (20.1.17)

Hence, since (20.1.6(p.153) ) holds, it follows that Theorem 20.1.3(p.153) holds.

(c) Let ρ ≤ a⋆ or b ≤ ρ.

1. Let ρ ≤ a⋆. Then, since ρ ≤ a⋆ < a due to Lemma 13.2.1(p.93) (n), we have max{0, a− ρ} = a−ρ · · · ((1)). In addition, since

TR (ρ) = µ− ρ from Lemma 10.1.1(p.55) (f) and since TP (ρ) = a− ρ from Lemma 13.2.1(p.93) (f), we have

AR→P[TR (ρ)] = AR→P[µ− ρ] = a− ρ = TP (ρ) = max{0, a− ρ} · · · ((2)) (due to (1) )

2. Let b ≤ ρ. Then, since a < b < ρ, we have max{0, a− ρ} = 0 · · · ((3)). In addition, since TR (ρ) = 0 from

Lemma 10.1.1(p.55) (g) and since TP (ρ) = 0 from Lemma 13.2.1(p.93) (g), we have

AR→P[TR (ρ)] = 0 = TP (ρ) = max{0, a− ρ} · · · ((4)) (due to (3) ).

From (2) and (4) , whether ρ ≤ a⋆ or b ≤ ρ, we have

AR→P[TR (ρ)] = TP (ρ) = max{0, a− ρ}, (20.1.18)
hence from (5.1.4(p.25) ) we have

AR→P[KR (ρ)] = AR→P[λβTR (ρ)− (1− β)ρ− s]

= λβAR→P[TR (ρ)]− (1− β)ρ− s

= λβmax{0, a− ρ} − (1− β)ρ− s. (20.1.19)
Accordingly, we have

AR→P[(6.4.18(p.41) ) with t = 1]

= AR→P[
{
V1 = max{KR (V0) + V0, βV0}

}
]

= AR→P[
{
V1 = max{KR (ρ) + ρ, βρ}

}
]

=
{
V1 = max{AR→P[KR (ρ)] + ρ, βρ}

}
=

{
V1 = max{λβmax{0, a− ρ} − (1− β)ρ− s+ ρ, βρ}

}
(due to (20.1.19(p.155) ))

=
{
V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}

}
=

{
(6.4.22(p.41) )

}
.

The above result means that AR→P[(6.4.18(p.41) ) with “t > 0” is separated into the two cases, (6.4.22(p.41) ) with “t = 1” and
(6.4.23(p.41) ) “with “t > 1”. This fact implies that

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}]. (20.1.20)

Accordingly, since (20.1.5(p.153) ) holds whether ρ ≤ a⋆ or b ≤ ρ, it follows that Theorem 20.1.2(p.153) holds.

(d) Let a⋆ < ρ < b. Then, since the same reasoning as in the proof of (c) does not always hold, it follows that Theo-
rem 20.1.2(p.153) does not always hold.

Remark 20.1.1 (pseudo-reversible element ρ) Let us recall here thatR is an operation applied only to attribute elements
which depend on the distribution function F (see Section 12.1.1(p.69) ). Accordingly, the operation cannot be applied to the
constant ρ which is not related to F , implying that the ρ̂ in the proofs of (a,b) is one resulting from merely rearranging the
expression −V̂1 = ρ as V̂1 = −ρ → V̂1 = ρ̂. However, superficially this transformation ρ → ρ̂ seems to be the application of
the reversible operation R defined in Section 12.1.1(p.69) . For this reason, regarding this ρ, which is originally a non-reversible
element, as a reversible element of a sort (see Def. 12.3.3(p.73) ), let us call it the pseudo-reversible element.
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20.1.3 M:2[R][A]
20.1.3.1 Preliminary

From (6.4.18(p.41) ) and (5.1.8(p.25) ) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0, (20.1.21)

hence

Vt − βVt−1 = max{L (Vt−1), 0}, t > 0. (20.1.22)

Then, for t > 0 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (see (5.1.9(p.25) )), (20.1.23)

Vt = βVt−1 if L (Vt−1) ≤ 0. (20.1.24)

Finally, from (6.2.75(p.33) ) and from (6.2.71(p.33) ) and (6.2.73(p.33) ) we have

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△ (Skipt△), t > 0, (20.1.25)

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 0. (20.1.26)

20.1.3.2 Analysis

20.1.3.2.1 Case of β = 1 and s = 0

� Tom 20.1.1 (�� A {M:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Let β = 1 and s = 0, hence xL = xK = b · · · ((1)) from Lemmas 10.2.3(p.58) (a). Then, since K (x) = λT (x) · · · ((2)) for

any x from (5.1.4(p.25) ), due to Lemma 10.1.1(p.55) (g) we have K (x) ≥ 0 · · · ((3)) for any x and K (b) = 0 · · · ((4)).

(a) From (6.4.18(p.41) ) we have Vt ≥ K (Vt−1)+Vt−1 for t > 0, hence Vt ≥ Vt−1 for t > 0 due to (3) . Thus Vt is nondecreasing
in t ≥ 0.

(b) Let ρ ≥ b, hence ρ ≥ xL due to (1) . Then, since V0 ≥ xL from (6.4.17(p.41) ), we have Vt−1 ≥ xL for t > 0 from
(a). Hence, since L (Vt−1) = 0 for t > 0 from Lemma 10.2.1(p.57) (d), we have Vt − βVt−1 = 0 for t > 0 from (20.1.22(p.156) ), thus
Vt − βVt−1 = 0 for τ ≥ t > 0, i.e., Vt = βVt−1 for τ ≥ t > 0. Hence, since Vτ = βVτ−1 = · · · = βτV0 , we have t∗τ = 0 for τ > 0
due to Preference Rule 7.2.1(p.45) , i.e., • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then V0 < b from (6.4.17(p.41) ). Suppose Vt−1 < b. Then, from Lemma 10.2.2(p.57) (h) and (6.4.18(p.41) ) with
β = 1 we have Vt < max{K (b)+ b, b} = max{b, b} due to (4) , hence Vt < b. Accordingly, by induction Vt−1 < b · · · ((5)) for t > 0,

so Vt−1 < xL for t > 0 due to (1) . Thus, since L (Vt−1) > 0 for t > 0 from Lemma 10.2.1(p.57) (d), we have L (Vt−1) > 0 · · · ((6))
for τ ≥ t > 0. Accordingly, from (20.1.22(p.156) ) we have Vt − βVt−1 > 0 for τ ≥ t > 0, i.e., Vt > βVt−1 for τ ≥ t > 0, hence
Vτ > βVτ−1 > · · · > βτV0. Accordingly, we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N. Then ConducttN for τ ≥ t > 0 due to
(6) and (20.1.26(p.156) ).

20.1.3.2.2 Case of β < or s > 0

For explanatory simplicity, let us define

S3 ⃝s N } ∥ =


For any τ > 1 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N where Conductτ≥t>0N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>0N.

 .

� Tom 20.1.2 (�� A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≤ a.
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1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

2. Let (λβµ− s)/δ > a.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

• Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (6.4.17(p.41) ) and K (ρ) > 0 · · · ((3)) due to

Lemma 10.2.2(p.57) (j1). Accordingly, from (6.4.18(p.41) ) with t = 1 we have V1 − V0 = V1 − ρ = max{K (ρ), βρ − ρ} ≥ K (ρ) > 0
due to (3) , hence V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from (6.4.18(p.41) ) and
Lemma 10.2.2(p.57) (e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is
nondecreasing in t ≥ 0. Again note (4) . Suppose Vt−1 < Vt. If λ < 1, from Lemma 10.2.2(p.57) (f) we have Vt < max{K(Vt) +
Vt, βVt} = Vt+1, and if a < ρ, then a < V0 from (6.4.17(p.41) ), hence a < Vt for t ≥ 0 due to (a), thus from Lemma 10.2.2(p.57) (g)
we have Vt < max{K(Vt) + Vt, βVt} = Vt+1. Therefore, whether λ < 1 or a < ρ, by induction Vt−1 < Vt for t > 0, i.e., Vt

is strictly increasing in t ≥ 0. Consider a sufficiently large M > 0 with ρ ≤ M and b ≤ M , hence V0 ≤ M from (6.4.17(p.41) ).
Suppose Vt−1 ≤M . Then, from Lemma 10.2.2(p.57) (e) and (6.4.18(p.41) ) we have Vt ≤ max{K(M)+M,βM} = max{βM−s, βM}
due to (10.2.7 (2) (p.57) ), hence Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Thus, by induction Vt ≤ M for t ≥ 0, i.e., Vt is
upper bounded in t. Accordingly Vt converges to a finite V as t→∞. Then, since V = max{K(V ) + V, βV } from (6.4.18(p.41) ),
we have 0 = max{K(V ),−(1− β)V }, hence K(V ) ≤ 0, so V ≥ xK due to Lemma 10.2.2(p.57) (j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0 from (6.4.17(p.41) ), we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for
t > 0 due to Corollary 10.2.1(p.57) (a). Accordingly, since Vt − βVt−1 = 0 for t > 0 from (20.1.22(p.156) ), we have Vt − βVt−1 = 0
for τ ≥ t > 0 or equivalently Vt = βVt−1 for τ ≥ t > 0, leading to Vτ = βVτ−1 = · · · = βτV0 , implying that t∗τ = 0 for τ > 0,
i.e., • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL · · · ((5)), hence V0 < xL · · · ((6)) from (6.4.17(p.41) ).

(c1) Since L (V0) = L (ρ) > 0 · · · ((7)) due to (5) and Corollary 10.2.1(p.57) (a), we have V1 = L (V0) + βV0 · · · ((8)) due to

(20.1.23(p.156) ) with t = 1, hence V1 > βV0 · · · ((9)). Accordingly, we have t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((10 )) and Conduct1N · · · ((11 ))
due to (7) and (20.1.26(p.156) ) with t = 1. Below let τ > 1.

(c2) Let β = 1, hence s > 0 · · · ((12 )) due to the assumption “β < 1 or s > 0”. Then δ = λ · · · ((13 )) from (10.2.1(p.56) )

and xL = xK · · · ((14 )) from Lemma 10.2.3(p.58) (b), hence K ( xL ) = K (xK ) = 0 · · · ((15 )). Then, from (5) and (14) we have

ρ < xK · · · ((16 )).

(c2i) Let a < ρ. Then a < V0 from (6.4.17(p.41) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK .
Then, from (6.4.18(p.41) ) with β = 1 and Lemma 10.2.2(p.57) (g) we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK .
Hence, by induction Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due to (14) . Accordingly, since L (Vt−1) > 0 for t > 0
from Lemma 10.2.1(p.57) (e1), for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and
CONDUCTτ≥t>0N.

(c2ii) Let ρ ≤ a · · · ((17 )). Then V0 ≤ a · · · ((18 )) from (6.4.17(p.41) ). Here note that (8) can be rewritten as V1 = K (V0)+V0 =

K (ρ) + ρ · · · ((19 )) due to (5.1.9(p.25) ). Then, from (17) and (10.2.7 (1) (p.57) ) with β = 1 we have V1 = λµ− s+ (1− λ)ρ · · · ((20 ))

(c2ii1) Let (λµ−s)/λ ≤ a. Then xK = (λµ−s)/λ ≤ a · · · ((21 )) from Lemma 10.2.2(p.57) (j2) and (13) . HenceK (a) ≤ 0 · · · ((22 ))
from Lemma 10.2.2(p.57) (j1). Note (18) . Suppose Vt−1 ≤ a. Then, from Lemma 10.2.2(p.57) (e) and (6.4.18(p.41) ) with β = 1 we
have Vt ≤ max{K (a) + a, a} = a due to (22) , hence by induction Vt−1 ≤ a for t > 0. Accordingly, from (6.4.18(p.41) ) with β = 1
and (10.2.7 (1) (p.57) ) we have Vt = max{λµ− s+ (1− λ)Vt−1, Vt−1} · · · ((23 )) for t > 0.
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(c2ii1i) Let λ = 1. Then, since xK = µ− s from (21) , we have V1 = µ− s = xK · · · ((24 )) from (20) . In addition, from (23)

we have Vt = max{µ− s, Vt−1} = max{ xK , Vt−1} for t > 0. Note (24) . Suppose Vt−1 = xK . Then Vt = max{xK , xK } = xK .
Accordingly, by induction Vt−1 = xK for t > 1, thus Vt−1 = xL for t > 1 due to (14) . Hence L (Vt−1) = L ( xL ) = 0 for t > 1,
so L (Vt−1) = 0 · · · ((25 )) for τ ≥ t > 1. Then, from (20.1.22(p.156) ) we have Vt − βVt−1 = 0 for τ ≥ t > 1, i.e., Vt = βVt−1 for

τ ≥ t > 1, leading to Vτ = βVτ−1 = · · · = βτ−1V1. From this and (9) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence

t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥. Then, from (7) and (20.1.26(p.156) ) with t = 1 we have Conduct1N.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, since L (Vt−1) > 0 due to
Lemma 10.2.1(p.57) (e1), from (20.1.23(p.156) ) and Lemma 10.2.2(p.57) (f) we have Vt = K(Vt−1) + Vt−1 < K ( xL ) + xL = xL due to
(15) . Accordingly, by induction Vt−1 < xL for t > 0, so L (Vt−1) > 0 for t > 0 from
Lemma 10.2.1(p.57) (e1). Hence, for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and
Conductτ≥t>0N.

(c2ii2) Let (λµ− s)/λ > a. Then xK > (λµ− s)/λ > a · · · ((26 )) from Lemma 10.2.2(p.57) (j2). Note (6) . Suppose Vt−1 < xL .

Then L (Vt−1) > 0 from Lemma 10.2.1(p.57) (e1), hence Vt = K (Vt−1) + Vt−1 from (20.1.23(p.156) ). Now, since a < xK = xL

due to (26) and (14) , from Lemma 10.2.2(p.57) (h) we have Vt < K ( xL ) + xL = xL due to (15) . Accordingly, by induction
Vt−1 < xL · · · ((27 )) for t > 0, thus L (Vt−1) > 0 for t > 0 from Lemma 10.2.1(p.57) (e1). Hence, for almost the same reason as in

the proof of Tom 20.1.1(p.156) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((28 )). Then, we have a < V0 from (6.4.17(p.41) ), hence a < Vt−1 · · · ((29 )) for t > 0 from (a). Note (4) .

Suppose Vt−1 < Vt. Then, from Lemma 10.2.2(p.57) (g) and (6.4.18(p.41) ) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1, hence by
induction Vt−1 < Vt for t > 0. Accordingly, it follows that Vt−1 is strictly increasing in t > 0 · · · ((30 )).

(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then, xL ≥ xK ≥ 0 · · · ((31 )) from Lemma 10.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (29) , Lemma 10.2.2(p.57) (g), and (6.4.18(p.41) ) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due
to xK ≥ 0. Accordingly, by induction Vt−1 < xK for t > 0. Then, since Vt−1 < xL for t > 0 due to (31) , we have L (Vt−1) > 0
for t > 0 from Corollary 10.2.1(p.57) (a). Consequently, for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have
⃝s dOITsτ>1⟨τ⟩ N † and Conductτ≥t>0N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((32 )) from Lemma 10.2.3(p.58) (c ((d))). Note (6) , hence V0 ≤ xL . Assume that

Vt−1 ≤ xL for all t > 0, hence V ≤ xL due to (a) . Then, since xK ≤ V · · · ((33 )) due to (a), we have the contradiction of

V ≤ xL < xK ≤ V from (32) . Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (30) we
see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · .

Hence, for almost the same reason as in the proof of Tom 11.2.2(p.62) (c2iii2) we immediately see that S3 is true.‡

(c3ii) Let ρ ≤ a · · · ((34 )), hence V0 ≤ a from (6.4.17(p.41) ). Then, from (19) and (10.2.7 (1) (p.57) ) we have V1 = λβµ− s+ (1−
λ)βρ.

(c3ii1) Let (λβµ−s)/δ ≤ a. Then, since xK = (λβµ−s)/δ ≤ a · · · ((35 )) from Lemma 10.2.2(p.57) (j2), we have δ xK = λβµ−s,
hence V1 = δ xK + (1− λ)βρ · · · ((36 )).

(c3ii1i) Let λ = 1. Then, since δ = 1 from (10.2.1(p.56) ), we have xK = βµ − s ≤ a from (35) and V1 = xK ≤ a · · · ((37 ))
from (36) .

(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((38 )) due to Lemma 10.2.3(p.58) (c ((d))). Note (37) . Suppose Vt−1 = xK .

Then, from (6.4.18(p.41) ) we have Vt = max{K (xK ) + xK , β xK } = max{ xK , β xK } = xK due to xK > 0. Hence, by induction
Vt−1 = xK for t > 1, thus Vt−1 < xL for t > 1 due to (38) . Accordingly L (Vt−1) > 0 for t > 1 from Corollary 10.2.1(p.57) (a),
hence L (Vt−1) > 0 for t > 0 due to (7) . Therefore, for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have
⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 10.2.3(p.58) (c ((d))), from (37) we have V1 ≥ xL ,
hence Vt−1 ≥ xL for t > 1 from (a), so Vt−1 ≥ xL for τ ≥ t > 1. Accordingly, since L (Vt−1) ≤ 0 for τ ≥ t > 1 from
Corollary 10.2.1(p.57) (a), we obtain Vt − βVt−1 = 0 for τ ≥ t > 1 from (20.1.22(p.156) ) or equivalently Vt = βVt−1 for τ ≥ t > 1,
leading to Vτ = βVτ−1 = · · · = βτ−1V1. From this and (9) we obtain Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for

τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥. Then, we have Conduct1N from (7) and (20.1.26(p.156) ) with t = 1.

(c3ii1ii) Let λ < 1. Note (4) . Suppose Vt−1 < Vt. Then, from (6.4.18(p.41) ) and Lemma 10.2.2(p.57) (f) we have Vt <
max{K (Vt) + Vt, βVt} = Vt+1, hence by induction Vt−1 < Vt for t > 0. Accordingly, it follows that Vt is strictly increasing in
t ≥ 0 · · · ((39 )).

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((40 )) from Lemma 10.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (6.4.18(p.41) ) and Lemma 10.2.2(p.57) (f) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to

†Note that we have ⃝s dOITsτ>1⟨τ⟩ N instead of ⃝s dOITsτ>0⟨τ⟩ N due to (c1).
‡Note the fine difference between S3 and S1(p.62) .
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xK ≥ 0. Hence, by induction Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due to (40) . Accordingly, since L (Vt−1) > 0 for
t > 0 from Corollary 10.2.1(p.57) (a), for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have ⃝s dOITsτ>1⟨τ⟩ N
and Conductτ≥t>0N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK from Lemma 10.2.3(p.58) (c ((d))). Note (6) , hence V0 ≤ xL . Assume that
Vt−1 ≤ xL for all t > 0, hence V ≤ xL . Then, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V .
Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (39) we see that there exists t•τ > 0 such
that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 11.2.2(p.62) (c2iii2) we have S3
‡ is true.

(c3ii2) Let (λβµ − s)/λ > a · · · ((41 )). Then xK > (λβµ − s)/δ > a · · · ((42 )) from Lemma 10.2.2(p.57) (j2). Let us note here

that:

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 for the same reason as in the proof of (c3ii1ii).

2. Let λ = 1. Then βµ − s > a · · · ((43 )) from (41) . Now, since K (ρ) + ρ = βµ − s from (10.2.7 (1) (p.57) ) and (34) , we have

V1 = βµ− s from (19) , hence V1 > a from (43) , so Vt−1 > a for t > 1 from (a). Note (4) . Suppose Vt−1 < Vt. Then, from
(6.4.18(p.41) ) and Lemma 10.2.2(p.57) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly by induction Vt−1 < Vt for
t > 0, i.e., Vt is strictly increasing in t > 0.

Consequently, whether λ < 1 or λ = 1, it follows that Vt is strictly increasing in t > 0 · · · ((44 )).

(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((45 )) from Lemma 10.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (6.4.18(p.41) ) and from (42) and Lemma 10.2.2(p.57) (h) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } =
xK due to xK ≥ 0. Accordingly, by induction Vt−1 < xK for t > 0, hence Vt−1 < xL for t > 0 from (45) , so L (Vt−1) > 0
for t > 0 from Corollary 10.2.1(p.57) (a). Hence, for almost the same reason as in the proof of Tom 20.1.1(p.156) (c) we have
⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((46 )) from Lemma 10.2.3(p.58) (c ((d))). Note (6) . Assume that Vt−1 < xL for

all t > 0, hence V ≤ xL · · · ((47 )). Now, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V . Accordingly,

it is impossible that Vt−1 < xL for all t > 0. Therefore, from (44) and (6) we see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 11.2.2(p.62) (c2iii2) we have S3 is true.

� Tom 20.1.3 (�� A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof Let β < 1 or s > 0 and let ρ = xK . Then V0 = xK · · · ((1)) from (6.4.17(p.41) ), hence K (V0) = K (xK ) = 0 · · · ((2)).

(a) We obtain V1 ≥ K (V0) + V0 = V0 · · · ((3)) from (6.4.18(p.41) ) with t = 1 and (2) . Suppose Vt−1 ≤ Vt. Then, from

Lemma 10.2.2(p.57) (e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is
nondecreasing in t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK from Lemma 10.2.3(p.58) (b). Note (1) .
Suppose Vt−1 = xK . Then, from (6.4.18(p.41) ) we have Vt = max{K (xK ) + xK , xK } = max{xK , xK } = xK . Accordingly, by
induction Vt−1 = xK for t > 0, hence Vt−1 = xL for t > 0, so L (Vt−1) = L ( xL ) = 0 for t > 0. Accordingly, for the same
reason as in the proof of Tom 20.1.1(p.156) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((4)) from Lemma 10.2.3(p.58) (c ((d))). Note (1) . Suppose Vt−1 = xK . Then,

from (6.4.18(p.41) ) we have Vt = max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by induction
Vt−1 = xK for t > 0, hence Vt−1 < xL for t > 0 due to (4) , so L (Vt−1) > 0 for t > 0 due to Corollary 10.2.1(p.57) (a). Therefore,
for the same reason as in the proof of Tom 20.1.1(p.156) (c) we have ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 10.2.3(p.58) (c ((d))), we have xL ≤ V0 from (1) , hence xL ≤ Vt−1

for t > 0 from (a), so L (Vt−1) ≤ 0 for t > 0 due to Corollary 10.2.1(p.57) (a). Then, since Vt−βVt−1 = 0 for t > 0 from(20.1.22(p.156) ),
for the same reason as in the proof of Tom 20.1.1(p.156) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

‡Note the fine difference between S3 and S1(p.62) .
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S4
sN •∥ c s△ c sN = { There exist t•τ and t◦τ (t•τ > t◦τ ≥ 0) such that

(1) • dOITdt•τ≥τ>0⟨0⟩ ∥,

(2) ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N · · · (1∗) and
where C S t•τ≥t>t◦τ △ · · · (2∗) and

C S t◦τ≥t>0△ ((C S t◦τ≥t>0N )) · · · (3∗).†
}

� Tom 20.1.4 (�� A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.‡

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true. 7→ →

�� ��c s N
(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Let β < 1 or s > 0 and let ρ > xK · · · ((1)). Hence V0 > xK · · · ((2)) from (6.4.17(p.41) ) and K (ρ) < 0 · · · ((3)) due to

Lemma 10.2.2(p.57) (j1). Note that V0 ≥ xK . Suppose Vt−1 ≥ xK . Then, from (6.4.18(p.41) ) and
Lemma 10.2.2(p.57) (e) we have Vt ≥ K (Vt−1) + Vt−1 ≥ K (xK ) + xK = xK . Hence, by induction Vt−1 ≥ xK · · · ((4)) for t > 0.

From (6.4.18(p.41) ) with t = 1 we have

V1 − V0 = V1 − ρ = max{K(V0) + V0, βV0} − ρ = max{K(ρ) + ρ, βρ} − ρ = max{K (ρ),−(1− β)ρ} · · · ((5)).

(a) Let β = 1 or ρ = 0.

(a1) Then, since −(1 − β)ρ = 0, due to (3)we have V1 − V0 = 0 from (5) , i.e., V0 = V1. Suppose Vt−1 = Vt. Then, from
(6.4.18(p.41) ) we have Vt = max{K (Vt)+Vt, βVt} = Vt+1. Thus, by induction Vt−1 = Vt for t > 0, i.e., V0 = V1 = V2 = · · · , hence
Vt = V0 = ρ for t ≥ 0.

(a2) Let xL ≤ ρ. Then, since xL ≤ Vt−1 for t > 0 from (a1), we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 10.2.1(p.57) (a),
hence Vt − βVt−1 = 0 for t > 0 from (20.1.22(p.156) ). Accordingly, for the same reason as in the proof of Tom 20.1.1(p.156) (b) we
obtain • dOITdτ>0⟨0⟩ ∥.

(a3) Let xL > ρ. Then, since xL > Vt−1 for t > 0 from (a1), we have L (Vt−1) > 0 for t > 0 due to Corollary 10.2.1(p.57) (a),
hence for the same reason as in the proof of Tom 20.1.1(p.156) (c) we obtain ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(b) Let β < 1 · · · ((6)) and ρ > 0 · · · ((7)) and let s = 0 ((s > 0)) . Then, since −(1− β)ρ < 0 · · · ((8)), from (5) and (3) we have

V1 − V0 < 0, so V1 > V0, hence ρ = V0 > V1 · · · ((9)) from (6.4.17(p.41) ).

(b1) We have V0 ≥ V1 from (9) . Suppose Vt−1 ≥ Vt. Then, from (6.4.18(p.41) ) and Lemma 10.2.2(p.57) (e) we have Vt ≥
max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. In addition, since Vt

is lower bounded in t due to (4) , it follows that Vt converges to a finite V as t→∞. Accordingly, from (4) we have V ≥ xK .

(b2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 10.2.3(p.58) (c ((d))), from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 10.2.1(p.57) (a), we have Vt − βVt−1 = 0 for t > 0 from (20.1.22(p.156) ),
hence for the same reason as in the proof of Tom 20.1.1(p.156) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(b3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((10 )) from Lemma 10.2.3(p.58) (c ((d))).

(b3i) Let ρ < xL . Then, since V0 < xL from (6.4.17(p.41) ), we have Vt−1 < xL for t > 0 due to (b1). Therefore,
since L (Vt−1) > 0 for t > 0 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 20.1.1(p.156) (c) we have
⃝s dOITsτ>0⟨τ⟩ N and CONDUCTτ≥t>0N.

†See Def. 2.2.1(p.12) for the definition of the symbol C S .
†The inverse of the condition “β = 1 or ρ = 0” is “β < 1 and ρ ̸= 0”, which is classified into the two cases of “β < 1 and ρ > 0 ” and “β < 1

and ρ < 0 ”, leading to the conditions in (b) and (c) that follows.
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(b3ii) Let ρ = xL · · · ((11 )). Then, since V0 = xL from (6.4.17(p.41) ), we have L (V0) = L ( xL ) = 0 · · · ((12 )), hence from

(20.1.24(p.156) ) with t = 1 we have V1 = βV0 · · · ((13 )), so t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. From (9) and (11)

we have V1 < V0 = xL . Accordingly, since Vt−1 < xL for t > 1 from (b1), we have L (Vt−1) > 0 · · · ((14 )) for t > 1

from Corollary 10.2.1(p.57) (a), hence L (Vt−1) > 0 · · · ((15 )) for τ ≥ t > 1. Therefore, Vt − βVt−1 > 0 for τ ≥ t > 1 from

(20.1.22(p.156) ), hence Vt > βVt−1 for τ ≥ t > 1, so that Vτ > βVτ−1 > · · · > βτ−1V1. From this and (13) we obtain
Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then ConducttN for τ ≥ t > 1

due to (15) and (20.1.26(p.156) ).

(b3iii) Let xL < ρ, hence xL < V0 · · · ((16 )) from (6.4.17(p.41) ), so xL ≤ V0. Suppose xL ≤ Vt−1 · · · ((17 )) for all t > 0.

Then, since L (Vt−1) ≤ 0 for t > 0 from Corollary 10.2.1(p.57) (a), we have Vt = βVt−1 for t > 0 from (20.1.24(p.156) ), hence
Vt = βtV0 = βtρ > 0 for t ≥ 0 due to (7) . Then, since limt→∞ Vt = 0 due to (6) , from (10) we have xL > xK > Vt > 0 for
a sufficiently large t, which contradicts (17) . Hence, it is impossible that xL ≤ Vt−1 for all t > 0. Accordingly, from (16) and
(b1) we see that there exist t◦τ and t•τ (t◦τ < t•τ ) such that

V0 ≥ V1 ≥ · · · ≥ Vt◦τ−1 > Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · · · · ((18 ))
Hence, we have

xL > Vt•τ , xL > Vt•τ+1, · · · ,

Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V0 > xL , V1 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently
xL > Vt−1 · · · ((19 )), t > t•τ ,

Vt−1 = xL · · · ((20 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((21 )), t◦τ ≥ t > 0.

Accordingly, we have:

1. Let t•τ ≥ τ > 0. Then, since Vt−1 ≥ xL for τ ≥ t > 0 from (20) and (21) , we have L (Vt−1) ≤ 0 · · · ((22 )) for τ ≥ t > 0

from Corollary 10.2.1(p.57) (a), hence Vt − βVt−1 = 0 for τ ≥ t > 0 from (20.1.22(p.156) ), i.e., Vt = βVt−1 for τ ≥ t > 0, leading
to Vτ = βVτ−1 = · · · = βτV0 · · · ((23 )), hence t∗τ = 0 for t•τ ≥ τ > 0, i.e., • dOITdt•τ≥τ>0⟨0⟩ ∥. Accordingly, S4(1) is true.

Then, from (23) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τV0 · · · ((24 )),
2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (19) , we have L (Vt−1) > 0 · · · ((25 )) for τ ≥ t > t•τ from

Corollary 10.2.1(p.57) (a), hence Vt − βVt−1 > 0 for τ ≥ t > t•τ from (20.1.22(p.156) ), i.e., Vt > βVt−1 for τ ≥ t > t•τ , leading to

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((26 )). From this and (24) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτV0,

hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, so the former half of S4(2) is true.

(i) We have ConducttN for τ ≥ t > t•τ · · · ((27 )) form (25) and (20.1.26(p.156) ). Hence the latter half (1∗) of S4(2) is true.

Below let us show the latter half (2∗) and (3∗) of S4(2).

(ii) If t•τ ≥ t > t◦τ , then L (Vt−1) = L ( xL ) = 0 from (20) , hence we have Skipt△ from (20.1.25(p.156) ), implying C S t△ (see
Figure 7.2.1(p.44) (II)) or equivalently C S t•τ≥t>t◦τ △. Hence the latter half (2∗) of S4(2) is true.

(iii) If t◦τ ≥ t > 0, then L (Vt−1) = ((<)) 0 ‡ from (21) and Lemma 10.2.1(p.57) (d ((e1))), hence we have Skipt△ ((SkiptN)) from
(20.1.25(p.156) ) (((20.1.26(p.156) ))) , implying C S t△ ((C S tN)) or equivalently
C S t◦τ≥t>0△ ((C S t◦τ≥t>0N)) . Hence the latter half (3∗) of S4(2) is true..

(c) Let β < 1 and ρ < 0 · · · ((28 )) and let s = 0 ((s > 0)) .

(c1) Since −(1 − β)ρ > 0, from (5) we have V1 − V0 > 0, i.e., V0 < V1, hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from
(6.4.18(p.41) ) and Lemma 10.2.2(p.57) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 0, i.e.,
Vt is nondecreasing in t ≥ 0.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK due to Lemma 10.2.3(p.58) (c ((d))), hence from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 10.2.1(p.57) (a), we have Vt − βVt−1 = 0 for t > 0 from (20.1.22(p.156) ),
hence for the same reason as in the proof of Tom 20.1.1(p.156) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((29 )) from Lemma 10.2.3(p.58) (c ((d))). Then, since ρ < 0 < xK from (28) and

(29) , we have V0 < xK from (6.4.17(p.41) ), hence V0 ≤ xK . Suppose Vt−1 ≤ xK , hence Vt−1 < xL form (29) , thus L (Vt−1) > 0
from Corollary 10.2.1(p.57) (a). Accordingly, from (20.1.23(p.156) ) and Lemma 10.2.2(p.57) (e) we have Vt = K (Vt−1) + Vt−1 ≤
K (xK ) + xK = xK . Hence, by induction Vt−1 ≤ xK for t > 0, so Vt−1 < xL for t > 0 from (29) . Therefore, since
L (Vt−1) > 0 · · · ((30 )) for t > 0 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 20.1.1(p.156) (c) we have

⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

‡If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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20.1.3.3 Market Restriction

20.1.3.3.1 Positive Restriction

� Pom 20.1.1 (A {M:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Tom 20.1.1(p.156) due to Lemma 17.4.4(p.118) .

� Pom 20.1.2 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N.

2. Let β = 1, hence s > 0.

i. Let a ≤ ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

4. Let β < 1 and s > 0.

i. Let a < ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ < s. Then S3(p.156) ⃝s N } ∥ is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let βµ ≤ s. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ < s. Then S3(p.156) ⃝s N } ∥ is true.

2. Let (λβµ− s)/δ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then, we have κ = λβµ− s · · · ((3)) from
Lemma 10.3.1(p.59) (a).

(a-c2ii2) The same as Tom 20.1.2(p.156) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c3i1,c3ii1i1,
c3ii1ii1,c3ii2i) of Tom 20.1.2(p.156) .

(c4) Let β < 1 and s > 0.

(c4i-c4ii1ii2) Immediate from (3) and Tom 20.1.2(p.156) (c3i-c3ii1ii2) with κ.

(c4ii2) Let (λβµ − s)/δ > a. Then, since(λβµ − s)/δ > a > 0 due to (1) , we have λβµ − s > 0, so that κ > 0 due to (3) .
Hence, it suffices to consider only (c3ii2i) of Tom 20.1.2(p.156) .

� Pom 20.1.3 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.
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• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a).

(a,b) The same as Tom 20.1.3(p.159) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 20.1.3(p.159) .

(d) Let β < 1 and s > 0.

(d1,d2) Immediate from (2) and Tom 20.1.3(p.159) (c1,c2) with κ.

� Pom 20.1.4 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.

3. Let λβµ > s.

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N △ where Conductτ≥t>1N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true (see Numerical Example 5(p.187) ).

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t ≥ 0.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.

3. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > µ > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a).

(a-a3) The same as Tom 20.1.4(p.160) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. First, (b1) is the same as Tom 20.1.4(p.160) (b1). Next, due to (1) it suffices to
consider only (b3i-b3iii) of Tom 20.1.4(p.160) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. First, (c1) is the same as Tom 20.1.4(p.160) (b1). Next, due to (1) it suffices to
consider only (b3i-b3iii) of Tom 20.1.4(p.160) .

(d-d2) Let β < 1 and ρ < 0 and let s = 0. First, (d1) is the same as Tom 20.1.4(p.160) (c1). Next, since κ = λβµ > 0 due to
(2) and (1) , it suffices to consider only (c3) of Tom 20.1.4(p.160) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. First, (e1) is the same as Tom 20.1.4(p.160) (c1). Next, (e2,e3) are the same as
Tom 20.1.4(p.160) (c2,c3) with κ.

20.1.3.3.2 Mixed Restriction

Omitted.

20.1.3.3.3 Negative Restriction

Omitted.

20.1.4 M̃:2[R][A]

20.1.4.1 Preliminary

Due to Lemma 20.1.1(p.153) (a), we see that the following Tom’s 20.1.5(p.164) – 20.1.8(p.164) can be obtained by applying SR→R̃ (see
(18.0.1(p.130) )) to Tom’s 20.1.1(p.156) – 20.1.4(p.160) (see Theorem 20.1.1(p.153) ).
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20.1.4.2 Analysis

20.1.4.2.1 Case of β = 1 and s = 0

� Tom 20.1.5 (�� A {M̃:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.1.1(p.156) .

20.1.4.2.2 Case of β < 1 or s > 0

� Tom 20.1.6 (�� A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.156) ⃝s N } ∥ is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.156) ⃝s N } ∥ is true.

2. Let (λβµ+ s)/δ < b.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.156) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.1.2(p.156) .

� Tom 20.1.7 (�� A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.1.3(p.159) .

� Tom 20.1.8 (�� A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).
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1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SR→R̃ (see to Tom 20.1.4(p.160) .

20.1.4.3 Market Restriction

20.1.4.3.1 Positive Restriction

� Pom 20.1.5 (A {M̃:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Tom 20.1.5(p.164) due to Lemma 17.4.4(p.118) .

� Pom 20.1.6 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then we have S3(p.156) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let b > ρ. Then S3(p.156) ⃝s N } ∥ is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then S3(p.156) ⃝s N } ∥ is true.

2. Let (λβµ+ s)/δ < b. Then S3(p.156) ⃝s N } ∥ is true.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and κ̃ = s · · · ((3)) from Lemma 12.6.6(p.83) (a).

(a-c2ii2) The same as Tom 20.1.6(p.164) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb, hence λβµ ≥ δb ≥ λb due
to (2) and (10.2.2 (1) (p.56) ), so that βµ ≥ b, which contradicts [3(p.118) ]. Thus, it must be that (λβµ + s)/δ < b. From this and
(1) it suffices to consider only (c3ii2ii) of Tom 20.1.6(p.164) .

(c4-c4ii2) If β < 1 and s > 0, then κ > 0 due to (3) , hence it suffices to consider
only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) with κ.

� Pom 20.1.7 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.
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• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a).

(a) The same as Tom 20.1.7(p.164) (a).

(2b) Let β = 1. Then it suffices to consider only (b) of Tom 20.1.7(p.164) . Let β < 1. If s = 0, due to (1) it suffices to consider
only (c2) of Tom 20.1.7(p.164) and if s > 0, then κ̃ > 0 due to (2) , hence it suffices to consider only (c2) of Tom 20.1.7(p.164) , thus,
whether s = 0 or s > 0 we have the same result. Accordingly, whether β = 1 or β < 1, it follows that we have the same result.

� Pom 20.1.8 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a).

(a-a3) The same as Tom 20.1.8(p.164) (a-a3).

(b) Let β < 1 and ρ < 0.

(b1) The same as Tom 20.1.8(p.164) (b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 20.1.8(p.164) and if s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (b2) of Tom 20.1.8(p.164) . Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let β < 1 and ρ > 0.

(c1) The same as Tom 20.1.8(p.164) (c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 20.1.8(p.164) and if s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (c2) of Tom 20.1.8(p.164) . Accordingly, whether s = 0 or s > 0, we have the same result.

20.1.4.3.2 Mixed Restriction

Omitted.

20.1.4.3.3 Negative Restriction

Omitted.

20.1.5 M:2[P][A]
20.1.5.1 Preliminary

From (6.4.23(p.41) ) and from (5.1.21(p.26) ) and (5.1.20(p.26) ) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (20.1.27)

hence
Vt − βVt−1 = max{L (Vt−1), 0}, t > 1. (20.1.28)

Then, for t > 1 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (20.1.29)

Vt = βVt−1 if L (Vt−1) ≤ 0. (20.1.30)

Now, from (6.2.107(p.35) ) and from (6.2.103(p.35) ) and (6.2.105(p.35) ) we have, for t > 1,

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△(Skipt△), (20.1.31)

St = L (Vt−1) > (<) 0⇒ ConducttN(SkiptN). (20.1.32)

From (6.4.22(p.41) ) we have

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ, (20.1.33)
hence

V1 − βV0 = V1 − βρ = max{λβmax{0, a− ρ} − s, 0} ≥ 0. (20.1.34)

From the comparison of the two terms within { } in the r.h.s. of (20.1.33(p.166) ) it can be seen that

S1 = λβmax{0, a− ρ} ≥ (≤) s⇒ Conduct1△(Skip1△), (20.1.35)

S1 = λβmax{0, a− ρ} > (<) s⇒ Conduct1N(Skip1N). (20.1.36)
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20.1.5.2 Analysis

20.1.5.2.1 Case of β = 1 and s = 0

20.1.5.2.1.1 Preliminary

Let β = 1 and s = 0. Then, from (5.1.21(p.26) ), (5.1.20(p.26) ), and Lemma 13.2.1(p.93) (g) we have

K (x) = L (x) = λT (x) ≥ 0 for any x. (20.1.37)

In addition, from (20.1.28(p.166) ) we have

Vt − βVt−1 = max{λT (Vt−1), 0} = λT (Vt−1) ≥ 0, t > 1. (20.1.38)

Finally, from (20.1.33(p.166) ) we have

V1 = max{λmax{0, a− ρ}, 0}+ ρ (20.1.39)

= λmax{0, a− ρ}+ ρ (due to λmax{0, a− ρ} ≥ 0) (20.1.40)

= max{ρ, λa+ (1− λ)ρ}. (20.1.41)

20.1.5.2.1.2 Case of ρ ≤ a⋆

In this case, due to Lemma 20.1.1(p.153) (c), we can obtain Tom 20.1.1(p.167) below by applyingAR→P (see (18.0.5(p.130) )) to Tom 20.1.1(p.156)

with the condition ρ ≤ a⋆ (see Theorem 20.1.2(p.153) ).

Proposition 20.1.1 (ρ ≤ a⋆) Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) The same as Tom 20.1.1(p.156) (a).

(b) Due to the assumption ρ ≤ a⋆ we have ρ ≤ a⋆ < a < b from Lemma 13.2.1(p.93) (n). Hence it suffices to consider only (c)
of Tom 20.1.1(p.156) .

20.1.5.2.1.3 Case of b ≤ ρ

In this case, due to Lemma 20.1.1(p.153) (c), we can obtain Tom 20.1.2(p.167) below by applyingAR→P (see (18.0.5(p.130) )) to Tom 20.1.1(p.156)

with the condition b ≤ ρ (see Theorem 20.1.2(p.153) ).

Proposition 20.1.2 (b ≤ ρ) Assume b ≤ ρ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

• Proof Assume b ≤ ρ · · · ((1)) and let β = 1 and s = 0.

(a) The same as Tom 20.1.1(p.156) (a).

(b) Due to (1) it suffices to consider only (b) of Tom 20.1.1(p.156) .

20.1.5.2.1.4 Case of a⋆ < ρ < b

In this case, Theorem 20.1.2(p.153) does not always hold due to Lemma 20.1.1(p.153) (d), hence A {M:2[P][A]} must be directly found.

Proposition 20.1.3 (a⋆ < ρ < b) Assume a⋆ < ρ < b and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and C S 1△.

(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β = 1 and s = 0. Then, from (5.1.20(p.26) ) and (5.1.21(p.26) ) we have L (x) =

K (x) = λT (x) ≥ 0 · · · ((2)) for any x from Lemma 13.2.1(p.93) (g). Then, since ρ < b and a < b, from (20.1.41(p.167) ) we obtain

V1 < max{b, λb+ (1− λ)b} = max{b, b} = b. Suppose Vt−1 < b. Then, since a⋆ < b due to (1) , from (6.4.23(p.41) ) with β = 1 we
have Vt < max{K (b)+b, b} from Lemma 13.2.3(p.96) (h), hence Vt < max{βb−s, b} from (13.2.12 (2) (p.96) ), so Vt−1 < max{b, b} = b
due to the assumption “β = 1 and s = 0”. Accordingly, by induction we have Vt−1 < b · · · ((3)) for t > 1, hence T (Vt−1) > 0 · · · ((4))
for t > 1 from Lemma 13.2.1(p.93) (g). Accordingly, Vt − βVt−1 > 0 for t > 1 from (20.1.38(p.167) ), i.e., Vt > βVt−1 for t > 1.
Then, since Vt > βVt−1 for τ ≥ t > 1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)) for τ > 1. In addition, since

L (Vt−1) = λT (Vt−1) > 0 · · · ((6)) for τ ≥ t > 1 due to (4) , we have Conductτ≥t>1N · · · ((7)) from (20.1.32(p.166) ).

(a) From (20.1.40(p.167) ) and (6.4.21(p.41) ) we have V1 − V0 = V1 − ρ = λmax{0, a − ρ} ≥ 0, hence V1 ≥ V0 · · · ((8)). Since

V2 ≥ K (V1)+V1 from (6.4.23(p.41) ) with t = 2, we have V2−V1 ≥ K (V1) ≥ 0 due to (2) , hence V2 ≥ V1 · · · ((9)). Suppose Vt ≥ Vt−1.
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Then from (6.4.23(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt+1 = max{K (Vt) + Vt, βVt} ≥ max{K (Vt−1) + Vt−1, βVt−1} = Vt.
Hence, by induction Vt ≥ Vt−1 for t > 1. From this and (8) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing
in t ≥ 0.

(b) Let a ≤ ρ · · · ((10 )), hence V1 = ρ from (20.1.40(p.167) ), so V1 < b due to (1) . Then V1 − βV0 = V1 − V0 = ρ − ρ = 0

from (6.4.21(p.41) ), hence V1 = βV0 · · · ((11 )), so t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. Then, from (5) and (11) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 = βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Here note ConducttN

for τ ≥ t > 1 from (7) . In addition, since λmax{0, a − ρ} = 0 due to (10) , we have λmax{0, a − ρ} = 0 ≤ s for any s ≥ 0,
hence Skip1△ due to (20.1.35(p.166) ). Accordingly, it follows that we have C S 1△ (see Remark 7.2.1(p.44) ).

(c) Let ρ < a · · · ((12 )), hence V1 = λ(a− ρ) + ρ due to (20.1.40(p.167) ). Then, from (6.4.21(p.41) ) we have V1 − βV0 = V1 − V0 =

V1 − ρ = λ(a− ρ) > 0, i.e., V1 > βV0 · · · ((13 )), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((14 )). Below let τ > 1. Then, from (5) and

(13) we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From

the result and (14) we have ⃝s dOITsτ>0⟨τ⟩ N. Since a− ρ > 0 due to (12) , we have λmax{0, a− ρ} > 0 = s, implying that we

have Conduct1N due to (20.1.36(p.166) ). From this and (7) it follows that Conductτ≥t>0N.

20.1.5.2.1.5 Integration of Propositions 20.1.1(p.167) – 20.1.3(p.167)

� Tom 20.1.9 (�� A {M:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and C S 1△.

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof (a) The same as Tom’s 20.1.1(p.167) (a), 20.1.2(p.167) (a), and 20.1.3(p.167) (a).

(b) The same as Tom 20.1.1(p.167) (b).

(c) The same as Tom 20.1.2(p.167) (b).

(d-d2) The same as Tom 20.1.3(p.167) (b,c).

Corollary 20.1.1 Let β = 1 and s = 0. Then, the optimal price to propose zt is nondecreasing in t.

• Proof Immediate from Lemma 20.1.9(p.168) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

20.1.5.2.2 Case of β < 1 or s > 0

20.1.5.2.2.1 Case of ρ ≤ a⋆

In this case, Theorem 20.1.2(p.153) holds due to Lemma 20.1.1(p.153) (c), hence Tom’s 20.1.10(p.168) –20.1.12(p.169) below can be derived
by applying AR→P (see (18.0.5(p.130) )) to Tom’s 20.1.2(p.156) –20.1.4(p.160) . In the proofs below, let us represent what results from
applying AR→P to a given Tom by Tom′, i.e.,

Tom
′ = AR→P[Tom]. (20.1.42)

� Tom 20.1.10 (�� A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.
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2. Let λ < 1.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 20.1.2(p.156) . Then “a < ρ” in
Tom 20.1.2(p.156) (c2i,c3i) changes into “a⋆ < ρ” in the Tom′, which contradicts the assumption ρ ≤ a⋆. Accordingly, removing all
assertions with “a⋆ < ρ” from the Tom′ leads to Tom 20.1.10 above.

Corollary 20.1.2 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK . Then, the optimal price to propose
zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.10(p.168) (24.2.43) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.1.11 (�� A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy The same as Tom 20.1.3(p.159) due to Lemma 13.6.1(p.99) .

Corollary 20.1.3 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK . Then, the optimal price to propose
zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.11(p.169) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.1.12 (�� A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ > xL . Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by analogy The same as Tom 20.1.4(p.160) (see Lemma 13.6.1(p.99) ).

Corollary 20.1.4 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0, i.e., constant in t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.12(p.169) (a1,b1,c1) and from (6.2.94(p.35) ) and
Lemma 13.1.3(p.89) .
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20.1.5.2.2.2 Case of b ≤ ρ

In this case, Theorem 20.1.2(p.153) holds due to Lemma 20.1.1(p.153) (c), hence the following Tom’s 20.1.13(p.170) –20.1.15(p.170) can be
derived by applying AR→P (see (18.0.5(p.130) )) to
Tom’s 20.1.2(p.156) –20.1.4(p.160) :

� Tom 20.1.13 (�� A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.156) ⃝s N } ∥ is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 20.1.2(p.156) . Then “ρ ≤ a” in
Tom 20.1.2(p.156) (c2i,c3i) changes into “ρ ≤ a⋆ ” in the Tom′, hence ρ ≤ a⋆ < a < b due to
Lemma 13.2.1(p.93) (n), which contradicts the assumption b ≤ ρ. Accordingly, removing all assertions with “ρ ≤ a” from the Tom′

leads to Tom 20.1.13 above.

Corollary 20.1.5 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.13(p.170) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.1.14 (�� A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy The same as Tom 20.1.3(p.159) due to Lemma 13.6.1(p.99) .

Corollary 20.1.6 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.14(p.170) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.1.15 (�� A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by analogy The same as Tom 20.1.4(p.160) due to Lemma 13.6.1(p.99) .

Corollary 20.1.7 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) . Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.15(p.170) (a1,b1,c1) and from (6.2.94(p.35) ) and
Lemma 13.1.3(p.89) .
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20.1.5.2.2.3 Case of a⋆ < ρ < b

In this case, Theorem 20.1.2(p.153) does not always hold due to Lemma 20.1.1(p.153) (d), hence A {M:2[P][A]} must be directly found.
For convenience of reference, below let us copy (20.1.33(p.166) )

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ. (20.1.43)

Lemma 20.1.2

(a) Let V1 ≤ xK . Then Vt is nondecreasing in t > 0.

(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then Vt = V1 for t > 0.

2. Let β < 1 and V1 > 0. Then Vt is nonincreasing in t > 0.

3. Let β < 1 and V1 < 0. Then Vt is nondecreasing in t > 0.

• Proof (a) Let V1 ≤ xK . Then, K (V1) ≥ 0 due to Corollary 13.2.2(p.97) (b), hence from
(6.4.23(p.41) ) with t = 2 we have V2 ≥ K (V1) + V1 ≥ V1. Suppose Vt−1 ≤ Vt. Then, from (6.4.23(p.41) ) and Lemma 13.2.3(p.96) (e)
we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Let V1 > xK . Then K (V1) ≤ 0 · · · ((1)) due to Corollary 13.2.2(p.97) (a). Hence, from (6.4.23(p.41) ) with t = 2, hence

V2 − V1 = max{K (V1) + V1, βV1} − V1 = max{K (V1),−(1− β)V1} · · · ((2)).

(b1) Let β = 1 or V1 = 0. Then, since −(1− β)V1 = 0, from (2) we have V2 − V1 = max{K (V1), 0} = 0 due to (1) , hence
V2 = V1. Suppose Vt−1 = V1. Then from (6.4.23(p.41) ) we have Vt = max{K (V1) + V1, βV1} = V2 = V1. Hence, by induction we
have Vt = V1 for t > 0.

Below note that β = 1 or V1 = 0 (the negation of β = 1 or V1 = 0) is “β < 1 and V1 ̸= 0”, which can be classified into the
two cases, “β < 1 and V1 > 0” and “β < 1 and V1 > 0”.

(b2) Let β < 1 and V1 > 0. Then, since −(1− β)V1 < 0, from (2) we have V2 − V1 ≤ 0 due to (1) , hence V2 ≤ V1. Suppose
Vt−1 ≤ Vt−2. Then, from (6.4.23(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt ≤ max{K (Vt−2) + Vt−2, βVt−2} = Vt−1. Hence, by
induction we have Vt ≤ Vt−1 for t > 1, thus Vt nonincreasing in t > 0.

(b3) Let β < 1 and V1 < 0. Then, since −(1− β)V1 > 0, from (2) we have V2 − V1 > 0 or equivalently V2 > V1, so V2 ≥ V1.
Suppose Vt−1 ≥ Vt−2. Then from (6.4.23(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt ≥ max{K (Vt−2) + Vt−2, βVt−2} = Vt−1.
Hence, by induction we have Vt ≥ Vt−1 for t > 1, thus Vt nondecreasing in t > 0.

Let us define:

S5 ⃝s N } ∥ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1⇒ ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N

(2) τ > t•τ ⇒ } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>1N.

}
S6 ⃝s N } ∥ •∥ c s△ c sN = { There exists t•τ

† and t◦τ (t•τ > t◦τ > 1) such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.

(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ
⟨τ⟩ N where Conductτ≥t>t•τ N,

where pSKIPt•τ≥τ>t◦τ △ (C S t•τ≥t>t◦τ △), and
where pSKIPt◦τ≥t>1△ ((pSKIPt◦τ≥t>1N )) (C S t◦τ≥t>1△ ((C S t◦τ≥t>1))).

}
S7 ⃝s N } ∥ •∥ c s△ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.

(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N and where pSKIPt•τ≥τ>1△.
}

Remark 20.1.2 For explanatory convenience, let us represent “β = 1 or V1 = 0” as {β = 1 ∪ V1 = 0}. Then, its negation
{β = 1 ∪ V1 = 0} can be written as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ V1 ̸= 0} = {β < 1 ∩ V1 > 0} ∪ {β < 1 ∩ V1 < 0}.

Without loss of generality, this can be further expressed as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ s ≥ 0 ∩ V1 > 0} ∪ {β < 1 ∩ s ≥ 0 ∩ V1 < 0}.

Furthermore, since {s ≥ 0} can be denoted by {s = 0 ((s > 0))}, it follows that the above expression can be rewritten as

{β = 1 ∪ V1 = 0} =
{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 > 0}

}
∪

{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 < 0}

}
.
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� Tom 20.1.16 (�� A {M:2[P][A]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 .

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then S5
⃝s N } ∥ is true.

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) (see Remark 20.1.2(p.171) above)

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) . Then

i. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true. 7→ →

�� ��c s N
ii. Let V1 = xL . Then S7

⃝s N } ∥ •∥ c s△ is true. 7→ →
�� ��c s N

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) .

i. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a)

i. Let λβmax{0, a − ρ} ≤ s. Then, since λβmax{0, a − ρ} − s ≤ 0, we have V1 − βV0 = 0 from (20.1.34(p.166) ), i.e.,
V1 = βV0 · · · ((2)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, since λβmax{0, a − ρ} − s > 0, we have V1 − βV0 > 0 from (20.1.34(p.166) ), i.e.,
V1 > βV0 · · · ((3)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N. Then, since λβmax{0, a − ρ} − s > 0, from the comparison of the

two terms within { } in the r.h.s. of (20.1.33(p.166) ) it follows that conducting the search is strictly optimal at time t = 1,
i.e., Conduct1N · · · ((4)).

Below let τ > 1.

(b) Let V1 ≤ xK · · · ((5)).

(b1) Vt is nondecreasing in t > 0 due to Lemma 20.1.2(p.171) (a). Consider a sufficiently large M > 0 with b ≤M and V1 ≤M .
Suppose Vt−1 ≤M . Then, from (6.4.23(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt ≤ max{K(M)+M,βM} = max{βM−s, βM}
due to (13.2.12 (2) (p.96) ), hence Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Accordingly, by induction Vt ≤ M for t > 0,
i.e., Vt is upper bounded in t. Hence Vt converges to a finite V as t → ∞. Then, since V = max{K(V ) + V, βM} · · · ((6)) from

(6.4.23(p.41) ), we have 0 = max{K(V ),−(1− β)V } · · · ((7)), hence K(V ) ≤ 0, so V ≥ xK due to Lemma 13.2.3(p.96) (j1).

(b2) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 13.2.1(p.96) (a),
hence Vt − βVt−1 = 0 for t > 1 from (20.1.28(p.166) ), i.e., Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we have
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((8)).

i. Let λβmax{0, a− ρ} ≤ s. Then, from (8) and (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (8) and (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., } ndOITτ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

(b3) Let V1 < xL · · · ((9)).

(b3i) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”, thus xL = xK · · · ((10 )) from
Lemma 13.2.4(p.97) (b). Now, since V1 ≥ βρ from (6.4.22(p.41) ), we have V1 ≥ ρ due to the assumption β = 1, hence a⋆ < V1 due
to (1) . Accordingly, it follows that a⋆ ≤ Vt−1 for t > 1 due to (b1). Note V1 < xK from (9) and (10) . Suppose Vt−1 < xK .
Then, from Lemma 13.2.3(p.96) (f) and (6.4.23(p.41) ) with β = 1 we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK .
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Accordingly, by induction Vt−1 < xK for t > 1, hence Vt−1 < xL for t > 1 due to (10) , so L (Vt−1) > 0 for t > 1 from
Lemma 13.2.2(p.96) (e1). Then, since L (Vt−1) > 0 · · · ((11 )) for τ ≥ t > 1, we have Vt−βVt−1 > 0 for τ ≥ t > 1 from (20.1.28(p.166) ),

i.e., Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1 > · · · > βτ−1V1. In addition, since V1 ≥ βV0 from (20.1.34(p.166) ), we have
Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then, we have ConducttN for τ ≥ t > 1

from (11) and (20.1.32(p.166) ).

(b3ii) Let β < 1 and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((12 )) from Lemma 13.2.4(p.97) (c ((d))). Here note (9) and (b1). Then

suppose there exists a t′ such that Vt−1 ≥ xL for t ≥ t′. Then L (Vt−1) ≤ 0 for t ≥ t′ from Corollary 13.2.1(p.96) (a), hence

Vt = βVt−1 for t ≥ t′ due to (20.1.30(p.166) ). Therefore, we have Vt = βt−t′+1Vt′−1 for t ≥ t′, leading to V = limt→∞ Vt = 0 < xK

due to (12) , which contradicts V ≥ xK in (b1). Accordingly, it follows that Vt−1 < xL for all t > 1, hence L (Vt−1) > 0 for t > 1
from Corollary 13.2.1(p.96) (a). Thus, for the same reason as in the proof of (b3i) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>1N.

(b3ii2) Let b ≤ 0 ((κ ≤ 0)) .

• Let b = 0 ((κ = 0)) . Then xL = xK = 0 · · · ((13 )) from Lemma 13.2.4(p.97) (c ((d))), hence V ≥ xK = xL = 0 from (b1).

Here assume V > xK = 0. Then, since −(1− β)V < 0, we have K (V ) = 0 from (7) , leading to the contradiction V = xK

due to Lemma 13.2.3(p.96) (j1). Thus it must be that V = xK = 0. Accordingly, due to (b1) and due to V1 < xL = xK = V
from (9) and (13) it follows that there exists a t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL = xK = Vt•τ = Vt•τ+1 = · · · , †

where t•τ might be infinity (i.e., t•τ = ∞). Hence Vt−1 < xL for t•τ ≥ t > 1 and Vt−1 = xL for t > t•τ . Thus, from
Corollary 13.2.1(p.96) (a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) = 0 (hence L (Vt−1) ≤ 0) for t > t•τ · · · ((14 )).

• Let b < 0 ((κ < 0)) . Then xL < xK from Lemma 13.2.4(p.97) (c ((d))). Since V1 < xL from (9) and since xL < xK ≤ V
from (b1), there exists t•τ such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · ,

hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Accordingly, from Corollary 13.2.1(p.96) (a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) ≤ 0 for t > t•τ · · · ((15 )).

From (14) and (15) we have, whether b = 0 ((κ = 0)) or b < 0 ((κ < 0)) (or equivalently b ≤ 0 ((κ ≤ 0)) ),

L (Vt−1) > 0 · · · ((16 )) for t•τ ≥ t > 1,

L (Vt−1) ≤ 0 · · · ((17 )) for t > t•τ .

Accordingly, from (20.1.28(p.166) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1 due to (16) and Vt − βVt−1 = 0 for t > t•τ due to (17)

or equivalently

Vt > βVt−1 · · · ((18 )), t•τ ≥ t > 1, Vt = βVt−1 · · · ((19 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since Vt > βVt−1 · · · ((20 )) for τ ≥ t > 1 due to (18) , for the same reason as in the proof of (b3i)

we have ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N. Hence (1) of S5 holds. Then, since (20) with τ = t•τ can be rewritten as
Vt > βVt−1 for t•τ ≥ t > 1, we have

Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((21 )).

2. Let τ > t•τ . Then Vt = βVt−1 for τ ≥ t > t•τ due to (19) , hence

Vτ = βVτ−1 = · · · = βτ−t•τVt•τ · · · ((22 )).

Hence, from (22) and (21) and from the fact that V1 ≥ βV0 due to (2) and (3) we obtain

Vτ = βVτ−1 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1 ≥ βτV0,

so we have t∗τ = t•τ for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥. Then ConducttN for t•τ ≥ t > 1 due to (16) and (20.1.32(p.166) ). From

the above we see that (2) of S5 holds.

(c) Let V1 > xK · · · ((23 )).

(c1) Let β = 1 or V1 = 0.

(c1i) The same as Lemma 20.1.2(p.171) (b1).

(c1ii) Since Vτ = Vτ−1 = · · · = V1 for τ > 0 from (c1i), we have Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((24 )).

†Since Vt ≤ V for any t > 0 due to (b1), if V ≤ Vt for a t, then V = Vt.
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i. Let λmax{0, a− ρ} ≤ s. Then, from (2) and (24) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

ii. Let λmax{0, a− ρ} > s. Then, from (3) and (24) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., } ndOITτ>1⟨1⟩ ∥ where Conduct1N from (4) .

(c2) Let β < 1 · · · ((25 )) and s = 0 ((s > 0)) .

(c2i) Let V1 > 0.

(c2i1) The former half is the same as Lemma 20.1.2(p.171) (b2). The latter half can be proven as follows. Note (23) , hence
V1 ≥ xK . Suppose Vt−1 ≥ xK . Then from (6.4.23(p.41) ) we have Vt ≥ K(Vt−1)+Vt−1 ≥ K(xK )+ xK due to Lemma 13.2.3(p.96) (e),
hence Vt ≥ xK since K(xK ) = 0. Accordingly, by induction Vt ≥ xK for t > 0, i.e., Vt is lower bounded in t. Hence Vt converges
to a finite V as t → ∞. Then, since V = max{K(V ) + V, βV } from (6.4.23(p.41) ), we have 0 = max{K(V ),−(1 − β)V }, hence
K(V ) ≤ 0, so V ≥ xK due to Lemma 13.2.3(p.96) (j1).

(c2i2) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((26 )) from Lemma 13.2.4(p.97) (c ((d))).

(c2i2i) Let V1 > xL · · · ((27 )), hence V1 ≥ xL . Suppose Vt−1 ≥ xL for all t > 1. Then, since L (Vt−1) ≤ 0 for t > 1 from

Corollary 13.2.1(p.96) (a), we have Vt − βVt−1 = 0 for t > 1 from (20.1.28(p.166) ), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1.
Accordingly, we have V = limt→∞ Vt = 0 < xK due to (25) and (26) , which contradicts V ≥ xK in (c2i1). Thus it is impossible
that xL ≤ Vt−1 for all t > 0. Accordingly, due to (27) and (c2i1) it follows that there exist t•τ and t◦τ (t•τ > t◦τ > 0) such that

V1 ≥ V2 ≥ · · · ≥ Vt◦τ−1 > xL = Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 > Vt•τ ≥ Vt•τ+1 ≥ · · · .
Hence, we have

xL > Vt•τ , xL > Vt•τ+1, · · · ,

Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V1 > xL , V2 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently

xL > Vt−1 · · · ((28 )), t > t•τ ,

Vt−1 = xL · · · ((29 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((30 )), t◦τ ≥ t > 1.

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, since Vt−1 ≥ xL for τ ≥ t > 1 from (29) and (30) , we have L (Vt−1) ≤ 0 · · · ((31 )) for τ ≥ t > 1 from

Corollary 13.2.1(p.96) (a), hence Vt − βVt−1 = 0 for τ ≥ t > 1 from (20.1.28(p.166) ), i.e., Vt = βVt−1 for τ ≥ t > 1, leading to
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((32 )).

i. Let λmax{0, a − ρ} ≤ s. Then, from (2) and (32) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for
t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.

ii. Let λmax{0, a − ρ} > s. Then, from (3) and (32) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for

t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N from (4) .

Accordingly S6(1) holds. From (32) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((33 )).
2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (28) , due to Corollary 13.2.1(p.96) (a) we have L (Vt−1) > 0 · · · ((34 ))

for τ ≥ t > t•τ . Accordingly, from (20.1.28(p.166) ) we have Vt − βVt−1 > 0 for τ ≥ t > t•τ or equivalently Vt > βVt−1 for

τ ≥ t > t•τ , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ . From this and (33) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1. · · · ((35 )).

Since V1 ≥ βV0 due to (2) and (3) , from (35) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0.

Hence, we have t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, thus the former half of S6(2) holds. The latter half can be proven
as follows.

(i) If τ ≥ t > t•τ , then ConducttN from (34) and (20.1.32(p.166) ).

(ii) If t•τ ≥ t > t◦τ , then Vt−1 = xL from (29) , hence L (Vt−1) = L ( xL ) = 0, so Skipt△ from (20.1.31(p.166) ), implying that
we have C S t•τ≥t>t◦τ △ (see Figure 7.2.1(p.44) (II).

(iii) If t◦τ ≥ t > 1, then Vt−1 > xL from (30) , hence L (Vt−1) = ((<)) 0‡ from
Lemma 13.2.2(p.96) (d ((e1))); i.e., Skipt△ ((SkiptN)) due to (20.1.31(p.166) ) (((20.1.32(p.166) ))), implying that we have C S t◦τ≥t>1△
((C S t◦τ≥t>1)).

‡If s = 0, then “= 0” , or else “< 0”.
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From the above results we see that the latter half of S6(2) holds.

(c2i2ii) Let V1 = xL . Suppose Vt−1 = xL for all t > 1. Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have Vt−βVt−1 = 0
for all t > 1 from (20.1.28(p.166) ), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1. Then V = limt→∞ Vt = 0 < xK due to (25)

and (26) , which contradicts V ≥ xK in (c2i1). Hence, since Vt−1 is not equal to xL for all t > 1, due to (c2i1) it follows that
there exists t•τ > 1 such that

V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

or equivalently Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Thus, due to Corollary 13.2.1(p.96) (a) we have

L (Vt−1) = L ( xL ) = 0 · · · ((36 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((37 )), t > t•τ .

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, from (36) and (20.1.28(p.166) ) we have Vt − βVt−1 = 0 for τ ≥ t > 1 or equivalently Vt = βVt−1 for
τ ≥ t > 1, from which we have Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a− ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for t•τ ≥ τ > 1,
i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for t•τ ≥ τ > 1,

i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

Accordingly, it follows that S7(1) holds.

2. Let τ > t•τ . Then L (Vt−1) > 0 · · · ((38 )) for τ ≥ t > t•τ from (37) , hence due to (20.1.28(p.166) ) we have Vt − βVt−1 > 0 for

τ ≥ t > t•τ or equivalently Vt > βVt−1 for τ ≥ t > t•τ , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((39 )). In addition, since

Vt − βVt−1 = 0 for t•τ ≥ t > 1 from (36) and (20.1.28(p.166) ), we have Vt = βVt−1 for t•τ ≥ t > 1, leading to

Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((40 )).

From (39) and (40) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1.

In addition, since V1 ≥ βτV0 from (2) and (3) , we eventually obtain

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0 · · · ((41 )).

Thus t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence the former half of S7(2) holds. Then, we have that ConducttN for

τ ≥ t > t•τ due to (38) and (20.1.32(p.166) ). Moreover, we have Skipt△ for t•τ ≥ t > 1 due to (36) and (20.1.31(p.166) ), so it
follows that we have pSKIPt△ for t•τ ≥ t > 1 (see Figure 7.2.1(p.44) )(II)) or equivalently pSKIPt•τ≥t>1△. Hence the latter half
of S7(2) holds.

(c2i2iii) Let V1 < xL . Then Vt−1 < xL for t > 1 due to (c2i1), hence L (Vt−1) > 0 · · · ((42 )) for t > 1 from Corol-

lary 13.2.1(p.96) (a). Accordingly, since L (Vt−1) > 0 · · · ((43 )) for τ ≥ t > 1, we have Vt − βVt−1 > 0 for τ ≥ t > 1 from

(20.1.28(p.166) ) or equivalently Vt > βVt−1 for τ ≥ t > 1, hence

Vτ > βVτ−1 > · · · > βτ−1V1.

Since V1 ≥ βV0 from (2) and (3) , we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0,

hence we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. In addition, we have ConducttN for τ ≥ t > 1 due to (43) and
(20.1.32(p.166) ).

(c2i3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((44 )) from Lemma 13.2.4(p.97) (c ((d))). Then, from (23) and (c2i1) we have

Vt−1 ≥ xK for all t > 1, hence Vt−1 ≥ xL for all t > 1 due to (44) , thus L (Vt−1) ≤ 0 for all t > 1 from Corollary 13.2.1(p.96) (a).
Then, since L (Vt−1) ≤ 0 for τ ≥ t > 1, we have Vt − βVt−1 = 0 for τ ≥ t > 1 from (20.1.28(p.166) ) or equivalently Vt = βVt−1 for
τ ≥ t > 1, hence

Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,

• dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

} ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .
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(c2ii) Let V1 < 0.

(c2ii1) The same as the proof of (c2i1).

(c2ii2) Let b > 0 ((κ > 0)) , hence xL > xK > 0 · · · ((45 )) from Lemma 13.2.4(p.97) (c ((d))).

(c2ii2i) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (c2ii1), we have L (Vt−1) ≤ 0 for t > 1 from Corol-
lary 13.2.1(p.96) (a), hence L (Vt−1) ≤ 0 for τ ≥ t > 1. Thus Vt − βVt−1 = 0 for τ ≥ t > 1 from (20.1.28(p.166) ), i.e., Vt = βVt−1 for
τ ≥ t > 1, so

Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,
dOITτ>1⟨0⟩∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

} ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .

(c2ii2ii) Let V1 < xL . Suppose that there exists t′ > 1 such that xL ≤ Vt−1 for t > t′. Then, since L (Vt−1) ≤ 0 for t > t′

from Corollary 13.2.1(p.96) (a), we have Vt − βVt−1 = 0 for t > t′ due to (20.1.28(p.166) ), hence Vt = βVt−1 for t > t′, so

Vt = βVt−1 = β2Vt−2 = · · · = βt−t′Vt′ .

Accordingly V = limt→∞ Vt = 0 < xK due to (25) and (45) , which contradicts V ≥ xK in (c2ii1), hence it must be
that Vt−1 < xL for t > 1. Then, since Vt−1 < xL for τ ≥ t > 1, we have L (Vt−1) > 0 · · · ((46 )) for τ ≥ t > 1 from

Corollary 13.2.1(p.96) (a), hence Vt − βVt−1 > 0 for τ ≥ t > 1 from (20.1.28(p.166) ) or equivalently Vt > βVt−1 for τ ≥ t > 1, thus

Vτ > βVτ−1 > · · · > βτ−1V1.

Since V1 ≥ βV0 from (2) and (3) , we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From (46) and (20.1.32(p.166) ) we have ConducttN for τ ≥ t > 1.

(c2ii3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((47 )) from Lemma 13.2.4(p.97) (c ((d))). Then, due to (23) and (c2ii1) we have

Vt−1 > xK for t > 1, hence Vt−1 > xL for t > 1 from (47) , thus L (Vt−1) ≤ 0 for t > 1 from Corollary 13.2.1(p.96) (a).
Accordingly, the assertion is true for the same reason as in the proof of (c2ii2i).

Corollary 20.1.8 Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let V1 ≤ xK . Then zt is nondecreasing in t > 0.

(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then zt = z(V1) for t > 0.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let V1 > 0. Then zt is nonincreasing in t > 0.

ii. Let V1 < 0. Then zt is nondecreasing in t > 0.

• Proof Immediate from Tom 20.1.16(p.172) (b1,c1i,c2i1,c2ii1) and from (6.2.94(p.35) )
and Lemma 13.1.3(p.89) .

20.1.5.3 Market Restriction

20.1.5.3.1 Positive Restriction

20.1.5.3.1.1 Case of β = 1 and s = 0

� Pom 20.1.9 (A {M:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1 (
�� ��c s )

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Lemma 20.1.9(p.168) due to Lemma 17.4.4(p.118) .
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20.1.5.3.1.2 Case of β < 1 or s > 0

20.1.5.3.1.2.1 Case of ρ ≤ a⋆

� Pom 20.1.10 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s ≥ λβT (0). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.
i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s > λβT (0). Then S3(p.156) ⃝s N } ∥ is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≥ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let s < λβT (0). Then S3(p.156) ⃝s N } ∥ is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a-c2ii) The same as Tom 20.1.10(p.168) (24.2.43-c2ii).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 20.1.10(p.168) .

(c4-c4ii2) The same as Tom 20.1.10(p.168) (c3-c3ii2) with κ.

� Pom 20.1.11 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let s ≥ βµT (0). Then • dOITdτ ⟨0⟩ ∥.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a,b) The same as Tom 20.1.11(p.169) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 20.1.11(p.169) .

(d-d2) The same as Tom 20.1.11(p.169) (c1,c2) with κ.

� Pom 20.1.12 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.
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2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < βµT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V as t→∞.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0) and converges to a finite V as t→∞.

2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a-a3) The same as Tom 20.1.12(p.169) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only
(b1,b3i-b3iii) of Tom 20.1.12(p.169) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as Tom 20.1.12(p.169) (b1-b3iii) with κ.

(d-d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only (c1,c3) of Tom 20.1.12(p.169) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as Tom 20.1.12(p.169) (c1-c3) with κ.

20.1.5.3.1.2.2 Case of b ≤ ρ

� Pom 20.1.13 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s > λβT (0). Then S3(p.156) ⃝s N } ∥ is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a-c2) The same as Tom 20.1.13(p.170) (a-c2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i) of Tom 20.1.13(p.170) .

(c4-c4ii) Let β < 1 and s > 0. Then, we have the same as Tom 20.1.13(p.170) (c3i,c3ii) with κ.

� Pom 20.1.14 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a,b) The same as Tom 20.1.14(p.170) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 20.1.14(p.170) .

(d-d2) Let β < 1 and s > 0. Then, we have the same as Tom 20.1.14(p.170) (c1,c2) with κ.

� Pom 20.1.15 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.
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3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < λβT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0).

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a-a3) The same as Tom 20.1.15(p.170) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only
(b1,b3i-b3iii) of Tom 20.1.15(p.170) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as
Tom 20.1.15(p.170) (b1-b3iii) with κ.

(d,d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only
(c1,c3) of Tom 20.1.15(p.170) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as
Tom 20.1.15(p.170) (c1-c3) with κ.

20.1.5.3.1.2.3 Case of a⋆ < ρ < b

� Pom 20.1.16 (A {M:2[P][A]+}) Suppose a > 0. Assume a⋆ ≤ ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let s ≥ λβT (0). Then S5
⃝s N } ∥ is true.

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true.

3. Let V1 = xL . Then S7
⃝s N } ∥ •∥ c s△ is true.
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4. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true.

ii. Let V1 = xL . Then S7
⃝s N } ∥ •∥ c s△ is true.

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N
ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < xL . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N.

3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (5.1.23(p.26) ).

(a-b3i) The same as Tom 20.1.16(p.172) (a-b3i).

(b3ii) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (b3ii1) of Tom 20.1.16(p.172) .

(b3iii-b3iii2) Let β < 1 and s > 0. Then, the two assertions are immediate from
Tom 20.1.16(p.172) (b3ii1,b3ii2) with κ.

(c-c1ii) The same as Tom 20.1.16(p.172) (c-c1ii).

(c2-c2i4) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only
(c2i-c2i1,c2i2i-c2i2iii) of Tom 20.1.16(p.172) .

(c2ii-c2ii3) Due to (1) it suffices to consider only
(c2ii,c2ii1,c2ii2i,c2ii2ii) of Tom 20.1.16(p.172) .

(c3-c3i3) Let β < 1 and s > 0. Then, we have the same as Tom 20.1.16(p.172) (c2-c2i1,c2i2i-c2i2iii) with κ.

(c3ii-c3ii3) We have the same as Tom 20.1.16(p.172) (c2ii-c2ii2ii) with κ.

20.1.5.3.2 Mixed Restriction

Omitted.

20.1.5.3.3 Negative Restriction

Omitted.

20.1.6 M̃:2[P][A]
20.1.6.1 Preliminary

Since Theorem 20.1.3(p.153) holds due to Lemma 20.1.1(p.153) (b), we can derive A {M̃:2[P][A]} by applying SP→P̃ (see (18.0.3(p.130) ))
to A {M:2[P][A]}.

20.1.6.2 Analysis

20.1.6.2.1 Case of β = 1 and s = 0

� Tom 20.1.17 (�� A {M̃:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and pSKIP1△.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Lemma 20.1.9(p.168) .

Corollary 20.1.9 Let β = 1 and s = 0. Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.17(p.180) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .
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20.1.6.2.2 Case of β < 1 or s > 0

20.1.6.2.2.1 Case of ρ ≥ b⋆†

� Tom 20.1.18 (�� A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1.
i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.156) ⃝s N } ∥ is true.

ii. Let (λβb+ s)/δ < b⋆.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.156) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.10(p.168) .

Corollary 20.1.10 Assume ρ ≥ b⋆, let β < 1 or s > 0, and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.18(p.181) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.1.19 (�� A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, for a given starting time τ > 0:

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Clear from applying SP→P̃ to Tom 20.1.11(p.169) .

Corollary 20.1.11 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.1.19(p.181) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.1.20 (�� A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ < x
L̃ . Then S4

sN •∥ c s△ c sN is true.

†The condition of ρ ≥ b⋆ is what results from applying SP→P̃ to the condition ρ ≤ a⋆in Section 20.1.5.2.2.1(p.168) .
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(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.12(p.169) .

Corollary 20.1.12 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt is constant in t (zt = z(ρ) for t ≥ 0).

(b) Let β < 1 and ρ > 0. Then zt is nondecreasing in t ≥ 0 for any s ≥ 0.

(c) Let β < 1 and ρ < 0. Then zt is nonincreasing in t ≥ 0 for any s ≥ 0.

• Proof by symmetry Evident from Tom 20.1.20(p.181) (a1,b1,c1) and from (6.2.111(p.36) ) and
Lemma A3.3(p.297) .

20.1.6.2.2.2 Case of a ≥ ρ†

� Tom 20.1.21 (�� A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)) . Then S3(p.156) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.13(p.170) .

Corollary 20.1.13 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 20.1.21(p.182) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.1.22 (�� A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.14(p.170) .

Corollary 20.1.14 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 20.1.22(p.182) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.1.23 (�� A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

†The condition of a ≥ ρ is what results from applying SP→P̃ to the condition of b ≤ ρ in Section 20.1.5.2.2.2(p.170) .
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1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.15(p.170) .

Corollary 20.1.15 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 20.1.23(p.182) (a1,b1,c1) and from (6.2.111(p.36) ) and
Lemma A3.3(p.297) .

20.1.6.2.2.3 Case of b⋆ > ρ > a†

Let us here note that (20.1.43(p.171) ) changes as follows.

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ.† (20.1.44)

� Tom 20.1.24 (�� A {M̃:2[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmin{0, ρ− b} ≥ −s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 > x
L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then S5
⃝s N } ∥ is true.

(c) Let V1 < x
K̃ .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 < x
L̃ . Then S6

⃝s N •∥ } ∥ c s△ c sN is true.

ii. Let V1 = x
L̃ . Then S7

⃝s N •∥ } ∥ c s△ is true.

iii. Let V1 > x
L̃ . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 ≤ x
L̃ . If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > x
L̃ . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

†The condition of b⋆ > ρ > a is what results from applying SP→P̃ to the condition of a⋆ < ρ < b in Section 20.1.5.2.2.3(p.171) .
† −V̂1 = max{λβmax{0,−â + ρ̂} − s, 0} − βρ̂ (apply the reverse to (20.1.43(p.171) ))

V̂1 = −max{λβmax{0,−â + ρ̂} − s, 0}+ βρ̂ (multiply the above by −1)

= min{−λβmax{0,−â + ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

= min{λβmin{0, â− ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

V̂1 = min{λβmin{0, b̌− ρ̂}+ s, 0}+ βρ̂ (apply IR to the above)

V̂1 = min{λβmin{0, b− ρ̂}+ s, 0}+ βρ̂ (apply CR to the above)

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ (remove the hat symbol ˆ)
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• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.1.16(p.172) .

Corollary 20.1.16 Assume b⋆ > ρ > a. Let β < 1 or s > 0:

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then

1. Let β = 1 or V1 = 0. Then zt is constant in t > 0 (zt = z(V1) for t > 0).

2. Let β < 1.

i. Let V1 < 0. Then zt is nondecreasing in t > 0 for any s ≥ 0.

ii. Let V1 > 0. Then zt is nonincreasing in t > 0 for any s ≥ 0.

• Proof Immediate from Tom 20.1.24(p.183) (b1,c1i,c2i1,c2ii1) and from (6.2.111(p.36) ) and
Lemma A3.3(p.297) .

20.1.6.3 Market Restriction

20.1.6.3.1 Positive Restriction

20.1.6.3.1.1 Case of β = 1 and s = 0

� Pom 20.1.17 (A {M̃:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and C S 1△.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Tom 20.1.17(p.180) due to Lemma 17.4.4(p.118) .

20.1.6.3.1.2 Case of β < 1 or s > 0

20.1.6.3.1.2.1 Case of ρ ≥ b⋆

� Pom 20.1.18 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s > 0. Then we have S3(p.156) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then S3(p.156) ⃝s N } ∥ is true.

ii. Let (λβb+ s)/δ < b⋆. Then S3(p.156) ⃝s N } ∥ is true.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and b⋆ > 0 · · · ((3)) from Lemma 14.6.1(p.107) (n) and (2) . Then we have

κ̃ = s · · · ((4)) from Lemma 14.6.6(p.108) (a).

(a-c2ii) The same as Tom 20.1.18(p.181) (a-c2ii).

(c3) Let β < 1 and s = 0. Assume (λβb+ s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from (10.2.2 (1) (p.56) ), hence
λβb ≥ δb⋆ ≥ λb⋆ due to (3) , so that βb ≥ b⋆, which contradicts [7(p.118) ]. Thus it must be that (λβb + s)/δ < b⋆. From this it
suffices to consider only (c3ii2) of Tom 20.1.18(p.181) .

(c4-c4ii) Let β < 1 and s > 0. Then κ > 0 due (2) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 20.1.18(p.181) ; accordingly, whether s = 0 or s > 0, we have the same result.

†See Remark 20.1.2(p.171) .
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� Pom 20.1.19 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0. Then κ̃ = s · · · ((1)) from Lemma 14.6.6(p.108) (a).

(a) The same as Tom 20.1.19(p.181) (a).

(b) Let β = 1. Then, we have • dOITdτ>0⟨0⟩ ∥ from Tom 20.1.19(p.181) (b). Let β < 1. Then, if s = 0, it suffices to consider

only (c2) of Tom 20.1.19(p.181) and if s > 0, then κ̃ > 0 due to (1) , hence it suffices to consider only (c2) of Tom 20.1.19(p.181) ;
accordingly, whether s = 0 or s > 0, we have the same results. Therefore, whether β = 1 or β < 1, we have the same result.

� Pom 20.1.20 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a-a3) The same as Tom 20.1.20(p.181) (a-a3).

(b-b2) Let β < 1 and ρ > 0. First, we have the same as Pom 20.1.20(b1). Next, if s = 0, then due to (1) it suffices to
consider only (b2) of Tom 20.1.20(p.181) and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (b2) of Tom 20.1.20(p.181) .
Thus, whether s = 0 or s > 0, we have the same result.

(c-c2) Let β < 1 and ρ < 0. First, we have the same as Pom 20.1.20(c1). Next, if s = 0, then due to (1) it suffices to consider
only (c2) of Tom 20.1.20(p.181) and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (c2) of Tom 20.1.20(p.181) . Thus,
whether s = 0 or s > 0, we have the same result.

20.1.6.3.1.2.2 Case of a ≥ ρ

� Pom 20.1.21 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1. Then S3(p.156) ⃝s N } ∥ is true.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a-c2) The same as Tom 20.1.21(p.182) (a-c2).

(c3) Let β < 1. Then, if s = 0, then due to (1) it suffices to consider only (c3ii) of Tom 20.1.21(p.182) and if s > 0, then κ̃ > 0
due to (2) , hence it suffices to consider only (c3ii) of Tom 20.1.21(p.182) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 20.1.22 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0, and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a) The same as Tom 20.1.22(p.182) (a).

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ from Tom 20.1.22(p.182) (b). Let β < 1. Then, if s = 0, then due to (1) it suffices

to consider only (c2) of Tom 20.1.22(p.182) , and if s > 0, then κ̃ ≥ 0 due to (2) , hence it suffices to consider only (c2) of
Tom 20.1.22(p.182) with κ̃; accordingly, whether s = 0 or s > 0, we have • dOITdτ>0⟨0⟩ ∥. Thus, whether β = 1 or β < 1, we have

• dOITdτ>0⟨0⟩ ∥.
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� Pom 20.1.23 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0. Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a-a3) The same as Tom 20.1.23(p.182) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Pom 20.1.23(b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 20.1.23(p.182) and if s > 0, then κ̃ > 0 from (2) , hence
it suffices to consider only (b2) of Tom 20.1.23(p.182) . Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Pom c1(b1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 20.1.23(p.182) and if s > 0, then κ̃ > 0 from (2) , hence it
suffices to consider only (c2) of Tom 20.1.23(p.182) . Thus, whether s = 0 or s > 0, we have the same result.

20.1.6.3.1.2.3 Case of b⋆ > ρ > b

� Pom 20.1.24 (A {M̃:2[P][A]+}) Suppose a > 0. Assume b⋆ > ρ > b. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmax{0, ρ− b} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 > x
L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1. Then S5
⃝s N } ∥ is true.

(c) Let V1 < x
K̃ .

1. Let β = 1 or V1 = 0. Then:

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞ where V = x

K̃ if the immediate
initiation is strictly optimal for any τ ≫ 0.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a-b3i) The same as Tom 20.1.24(p.183) (a-b3i).

(b3ii) Let β < 1. If s = 0, due to (1) it suffices to consider only (b3ii2) of Tom 20.1.24(p.183) and if s > 0, then κ̃ > 0 due to
(2) , hence it suffices to consider only (b3ii2) of Tom 20.1.24(p.183) . Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let V1 < x
K̃ .

(c1-c1ii) The same as Tom 20.1.24(p.183) (c1-c1ii).

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i,c2i1) The same as Tom 20.1.24(p.183) (c2i,c2i1).

(c2i2) The same as Tom 20.1.24(p.183) (c2i3).

†See Remark 20.1.2(p.171) .
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(c2ii,c2ii1) The same as Tom 20.1.24(p.183) (c2ii,c2ii1).

(c2ii2) If s = 0, then due to (1) it suffices to consider only (c2ii3) of Tom 20.1.24(p.183) and if s > 0, then κ̃ > 0 due to (2) ,
hence t suffices to consider only (c2ii3) of Tom 20.1.24(p.183) . Thus, whether s = 0 or s > 0, we have the same result.

20.1.6.3.1.2.4 Mixed Restriction

Omitted.

20.1.6.3.1.2.5 Negative Restriction

Omitted.

20.1.7 Numerical Calculation

Numerical Example 5 (A {M:2[R][A]+} (selling model)

This is the example for c sN of S4
sN •∥ c s△ c sN in Pom 20.1.4(p.163) (c3iii) in which a > 0, ρ > xK , β < 1, ρ > 0, s > 0, and

xL < ρ. As an example let a = 0.01, b = 1.00, λ = 0.7, β = 0.98, s = 0.1, and ρ = 0.5where xL = 0.462767.† The graph
below is for Itτ = βτ−tVt, τ = 1, 2, · · · , 15 and t = 0, 1, · · · , τ , where • represents the optimal initiating time (OIT) for each
τ = 1, 2, · · · , 15 (see t∗τ - column in the table below).

1. Since ∆βV1 = ∆βV2 = ∆βV3 = ∆βV4 = 0 (see ∆βVt-column in the table below), we have V4 = βV3, V3 = βV2, V2 = βV1, and
V1 = βV0, implying that it becomes indifferent to skip the search up to the deadline td = 0 on t = 4, 3, 2, 1 (see Preference
Rule 7.2.1(p.45) ), i.e., • dOITdτ=4,3,2,1⟨0⟩ N. On the other hand, since L (Vt−1) < 0 for 1 ≤ t ≤ 4 (see L (Vt−1)-column in the
table below), it follows that it is strictly optimal to skip the search up to the deadline 0 (see (20.1.26(p.156) )) for 1 ≤ t ≤ τ = 4,
i.e., • dOITdτ=4,3,2,1⟨0⟩ N. Although the above two results “indifferent” and “strictly optimal” seem to contradict each other
at a glance, it is what is caused by the jumble of intuition and theory (see Alice 2(p.44) ).

2. Each of the graphs for τ = 6, 7, · · · , 15 shows that the optimal initiating time is strictly, i.e., ⃝s dOITs6≤τ≤15⟨τ⟩ N, meaning
that the immediate initiation is strictly optimal and that conducting the search is strictly optimal at time t = 6, 7, · · · , 15
(ConductN) and skipping the search becomes strictly optimal at time t = 5, 4, 3, 2, 1 after that (see L (Vt−1)-column in the
table below), implying that we have C S N (see Remark 7.2.1(p.44) ) occurs.

-
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t Vt ∆βVt = Vt − βVt−1 t∗τ L (Vτ−1)

0 0.5000000
1 0.4900000 0.0000000 0 −0.0133838 (SKIPN )
2 0.4802000 0.0000000 0 −0.0098846 (SKIPN )
3 0.4705960 0.0000000 0 −0.0063880 (SKIPN )
4 0.4611841 0.0000000 0 −0.0028969 (SKIPN )

5 0.4525469 +0.0005865 5 +0.0005865 (ConductN)
6 0.4473331 +0.0038371 6 +0.0038371 (ConductN)
7 0.4442109 +0.0058244 7 +0.0058244 (ConductN)
8 0.4423501 +0.0070235 8 +0.0070235 (ConductN)
9 0.4412444 +0.0077413 9 +0.0077413 (ConductN)
10 0.4405885 +0.0081690 10 +0.0081690 (ConductN)
11 0.4401998 +0.0084231 11 +0.0084231 (ConductN)
12 0.4399696 +0.0085738 12 +0.0085738 (ConductN)
13 0.4398333 +0.0086631 13 +0.0086631 (ConductN)
14 0.4397527 +0.0087160 14 +0.0087160 (ConductN)
15 0.4397049 +0.0087473 15 +0.0087473 (ConductN)

Figure 20.1.1: Graphs of Itτ = βτ−tVt (15 ≥ τ > 1, τ ≥ t > 0)

20.1.8 Conclusion 3 (Search-Allowed-Model 2)

� The assertion systems A {M/M̃:2[R][A]} of the quadruple-asset-trading-models on the total market F

Q⟨M :2[A]⟩ = {M:2[R][A], M̃:2[R][A],M:2[P][A], M̃:2[P][A]}
are given by

A {M:2[R][A]}
↓

Tom’s 20.1.1(p.156) , 20.1.2(p.156) , 20.1.3(p.159) , 20.1.4(p.160) ,

A {M̃:2[R][A]}
↓

Tom’s 20.1.5(p.164) , 20.1.6(p.164) , 20.1.7(p.164) , 20.1.8(p.164) ,

A {M:2[P][A]}
↓

Tom’s 20.1.9(p.168) , 20.1.10(p.168) , 20.1.11(p.169) , 20.1.12(p.169) , 20.1.13(p.170) , 20.1.14(p.170) , 20.1.15(p.170) , 20.1.16(p.172) ,

A {M̃:2[P][A]}
↓

Tom’s 20.1.17(p.180) , 20.1.18(p.181) , 20.1.19(p.181) , 20.1.20(p.181) , 20.1.21(p.182) , 20.1.22(p.182) , 20.1.23(p.182) , 20.1.24(p.183) ,

†Note that a = 0.01 > 0, ρ = 0.5 > 0, β = 0.98 < 1, and s = 0.1 > 0. In addition, since µ = (1.00 + 0.01)/2 = 0.505, we have
λβµ = 0.34643 > 0.1 = s. Furthermore, we have xL = 0.4627674 < 0.5 = ρ. Thus the condition of the assertion is satisfied.
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� The assertion systems A {M/M̃:2[R][A]+} of the quadruple-asset-trading-models for Model 2 on the positive market F+

Q⟨M :2[A]⟩+ = {M:2[R][A]+, M̃:2[R][A]+,M:2[P][A]+, M̃:2[P][A]}+
are given by

A {M:2[R][A]+}
↓

Pom’s 20.1.1(p.162) , 20.1.2(p.162) , 20.1.3(p.162) , 20.1.4(p.163) ,

A {M̃:2[R][A]+}
↓

Pom’s 20.1.5(p.165) , 20.1.6(p.165) , 20.1.7(p.165) , 20.1.8(p.166) ,

A {M:2[P][A]+}
↓

Pom’s 20.1.9(p.176) , 20.1.10(p.177) , 20.1.11(p.177) , 20.1.12(p.177) , 20.1.13(p.178) , 20.1.14(p.178) , 20.1.15(p.178) , 20.1.16(p.179) ,

A {M̃:2[P][A]+}
↓

Pom’s 20.1.17(p.184) , 20.1.18(p.184) , 20.1.19(p.185) , 20.1.20(p.185) , 20.1.21(p.185) , 20.1.22(p.185) , 20.1.23(p.186) , 20.1.24(p.186) ,

� Closely looking into all the assertion systems above leads to the following conclusions.

C1. Mental Conflict

On F+, we have:

a. Let β = 1 and s = 0.

1. The opt-R-price Vt in M:2[R][A] (selling model) is nondecreasing in t N
a

as in Figure 7.3.1(p.47) (I), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

2. The opt-P-price zt in M:2[P][A] (selling model) is nondecreasing in t N
b

as in Figure 7.3.1(p.47) (I), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

3. The opt-R-price Vt in M̃:2[R][A] (buying model) is nonincreasing in t H
c

as in Figure 7.3.1(p.47) (II), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

4. The opt-P-price zt in M̃:2[P][A] (buying model) is nonincreasing in t H
d

as in Figure 7.3.1(p.47) (II), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

· Na ← Tom’s 20.1.1(p.156) (a).

· Nb ← Corollaries 20.1.1(p.168) .
· Hc ← Tom’s 20.1.5(p.164) (a).

· Hd ← Corollaries 20.1.9(p.180) .

b. Let β < 1 or s > 0.

1. The opt-R-price Vt in M:2[R][A] (selling model) is nondecreasing Na , constant ∥a , or nonincreasing in t H
a

as in Fig-
ure 7.3.2(p.48) (I), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

2. The opt-P-price zt in M:2[P][A] (selling model) is nondecreasing Nb , constant ∥b , or nonincreasing in t H
b

as in
Figure 7.3.2(p.48) (I), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

3. The opt-R-price Vt in M̃:2[R][A] (buying model) is nondecreasing Nc , constant ∥c , or nonincreasing in t H
c

as in
Figure 7.3.2(p.48) (II), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

4. The opt-P-price zt in M̃:2[P][A] (buying model) is nondecreasing Nd , constant ∥d , or nonincreasing in t H
d

as in
Figure 7.3.2(p.48) (II), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

· Na ← 20.1.2(p.156) (a), 20.1.3(p.159) (a), 20.1.4(p.160) (c1).
∥a ← Tom 20.1.4(p.160) (a1)).
Ha ← Tom 20.1.4(p.160) (b1).

· Nb ← 20.1.2(p.169) , 20.1.3(p.169) ,20.1.4(p.169) (c),

20.1.5(p.170) , 20.1.6(p.170) , 20.1.7(p.170) (c), 20.1.8(p.176) (a,b2ii).
∥b ← Corollary 20.1.4(p.169) (a), 20.1.7(p.170) (a), 20.1.8(p.176) (b1).

Hb ← Corollaries 20.1.4(p.169) (b), 20.1.7(p.170) (b), 20.1.8(p.176) (b2i).

· Nc ← Tom 20.1.8(p.164) (b1).
∥c ← Tom 20.1.8(p.164) (a1).
Hc ← 20.1.6(p.164) (a), 20.1.7(p.164) (a), 20.1.8(p.164) (c1).

· Nd ← Corollaries 20.1.12(p.182) (b), 20.1.15(p.183) (b),20.1.16(p.184) (b2i).
∥d ← Corollaries 20.1.15(p.183) (a), 20.1.16(p.184) (b1).

Hd ← 20.1.10(p.181) , 20.1.11(p.181) , 20.1.12(p.182) (c),

20.1.13(p.182) , 20.1.14(p.182) , 20.1.15(p.183) (c), 20.1.16(p.184) (a),b2ii).
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The above results can be summarized as below.

A. If β = 1 and s = 0, then, on F+, whether selling problem or buying problem and whether R-model or P-model, we
have the normal mental conflict, which coincides with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

B. If β < 1 or s > 0, then, on F+, whether selling problem or buying problem and whether R-model or P-model, we
have the abnormal mental conflict, which does not coincide with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

On F+, we have:

a. Let β = 1 and s = 0. Then we have:

Pom 20.1.5(p.165) ∼ Pom 20.1.1(p.162) (A {M̃:2[R][A]}+ ∼ A {M:2[R][A]}+),
Pom 20.1.17(p.184) ∼ Pom 20.1.9(p.176) (A {M̃:2[P][A]}+ ∼ A {M:2[P][A]}+).

b. Let β < 1 or s > 0. Then we have

Pom 20.1.6(p.165) |∼ Pom 20.1.2(p.162) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 20.1.7(p.165) |∼ Pom 20.1.3(p.162) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 20.1.8(p.166) |∼ Pom 20.1.4(p.163) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 20.1.18(p.184) |∼ Pom 20.1.10(p.177) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 20.1.19(p.185) |∼ Pom 20.1.11(p.177) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 20.1.20(p.185) |∼ Pom 20.1.12(p.177) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 20.1.21(p.185) |∼ Pom 20.1.13(p.178) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 20.1.22(p.185) |∼ Pom 20.1.14(p.178) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 20.1.23(p.186) |∼ Pom 20.1.15(p.178) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 20.1.24(p.186) |∼ Pom 20.1.16(p.179) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+).

The above results can be summarized as below.

A. Let β = 1 and s = 0. Then the symmetry is inherited.

B. Let β < 1 or s > 0. Then the symmetry collapses.

C3. Analogy

On F+, for any β ≤ 1 and s ≥ 0 we have:

a. We have:

Pom 20.1.9(p.176) ◃▹| Pom 20.1.1(p.162) (A {M̃:2[R][A]}+ ◃▹| A {M:2[R][A]}+),
Pom 20.1.10(p.177) ◃▹| Pom 20.1.2(p.162) (A {M̃:2[P][A]}+ ◃▹| A {M:2[P][A]}+),
Pom 20.1.17(p.184) ◃▹| Pom 20.1.5(p.165) (A {M̃:2[R][A]}+ ◃▹| A {M:2[R][A]}+),
Pom 20.1.18(p.184) ◃▹| Pom 20.1.6(p.165) (A {M̃:2[P][A]}+ ◃▹| A {M:2[P][A]}+).

The above results can be summarized as below.

A. The analogy collapses.

C4. Optimal initiating time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 20.1.1(p.162) , Pom 20.1.5(p.165) , Pom 20.1.9(p.176) , Pom 20.1.17(p.184) ,

we have the following table:

Table 20.1.1: Possible OIT (β = 1 and s = 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN
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b. Let β < 1 or s > 0. Then, from

Pom 20.1.2(p.162) , Pom 20.1.3(p.162) , Pom 20.1.4(p.163) , Pom 20.1.5(p.165) , Pom 20.1.6(p.165) ,

Pom 20.1.7(p.165) , Pom 20.1.8(p.166) , Pom 20.1.10(p.177) , Pom 20.1.11(p.177) , Pom 20.1.12(p.177) ,

Pom 20.1.13(p.178) , Pom 20.1.14(p.178) , Pom 20.1.15(p.178) , Pom 20.1.16(p.179) , Pom 20.1.19(p.185) ,

Pom 20.1.20(p.185) , Pom 20.1.21(p.185) , Pom 20.1.22(p.185) , Pom 20.1.23(p.186) , Pom 20.1.24(p.186) ,

we have the following table:

Table 20.1.2: Possible OIT (β < or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

c. The table below is the list of the occurrence rates of ⃝⃝s , } , and•dd on F
(See the primitive Tom’s 20.1.1(p.156) (�� ), 20.1.2(p.156) (�� ), 20.1.3(p.159) (�� ), 20.1.4(p.160) (�� ), and 20.1.16(p.172) (�� )).

Table 20.1.3: Occurence rates of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
47.5%/ 29 21.3%/ 13 31.2%/ 19

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd ∥ •dd △ •dd N
− × possible possible × × possible × ×

–%/ – 0.0%/ 0 47.5%/ 29 21.3%/ 13 0.0%/ 0 0.0%/ 0 31.2%/ 19 0.0%/ 0 0.0%/ 0

C5. Null-time-zone and deadline-engulfing

From Table 20.1.3(p.190) above we see that on F :

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 47.5%, 21.3%, and 31.2% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 7.2.3(p.45) .

2. }∥ is possible (21.3%).

3. •dd∥ is possible (31.2%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ never occur (0.0%).

6. •dd△ never occur (0.0%).

7. ⃝⃝s N is possible (47.5%).

8. } N never occurs (0.0%).

9. •dd N never occurs (0.0%).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 52.5% (= 21.3% + 31.2%).

B. }N strictly causing the null-time-zone is impossible (0.0%).

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

C6. C S On F+, we have (see (A5b(p.12) )):

Let β < 1 or s > 0. Then from Pom’s 20.1.4(p.163) , 20.1.12(p.177) , 20.1.15(p.178) , and 20.1.16(p.179) we have the following table:

Table 20.1.4: C S (β < 1 or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

(a) C S△ ◦ ◦
(b) C SN ◦ ◦
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a. C S △ occurs only for M:2[R][A]+ and M:2[P][A]+ (both are a selling model).

b. C S N occurs only for M:2[R][A]+ and M:2[P][A]+ (both are a selling model).

• Tom 20.1.4(p.160) (b3iii),

• Tom 20.1.16(p.172) (c2i2i),

• Tom 20.1.16(p.172) (c2i2ii).

20.2 Search-Enforced-Model 2: Q{M:2[E]} = {M:2[R][E], M̃:2[R][E],M:2[P][E], M̃:2[P][E]}

20.2.1 Theorems

As ones corresponding to Theorems 19.2.1(p.136) , 19.2.2(p.136) , and 19.2.3(p.136) , let us consider here the following three theorems:

Theorem 20.2.1 (symmetry[R→ R])) Let A {M:2[R][E]} holds on P ×F . Then A {M̃:2[R][E]} holds on P ×F where

A {M̃:2[R][E]} = SR→R̃[A {M:2[R][E]}]. (20.2.1)

Theorem 20.2.2 (analogy[R→ P]) Let A {M:2[R][E]} holds on P ×F . Then A {M:2[P][E]} holds on P ×F where

A {M:2[P][E]} = AR→P[A {M:2[R][E]}]. (20.2.2)

Theorem 20.2.3 (symmetry[P→ P]) Let A {M:2[P][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = SP→P̃[A {M:2[P][E]}]. (20.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:2[R][E]} = SR→R̃[SOE{M:2[R][E]}], (20.2.4)

SOE{M:2[P][E]} = AR→P[SOE{M:2[R][E]}], (20.2.5)

SOE{M̃:2[P][E]} = SP→P̃[SOE{M:2[P][E]}], (20.2.6)

corresponding to (19.2.4(p.136) ), (19.2.5(p.136) ), and (19.2.6(p.136) ). Then, for the same reason as in Chap. 15(p.111) it can be shown
that the equality

SOE{M̃:2[P][A]} = A R̃→P̃[SOE{M̃:2[R][A]}] (20.2.7)

holds (corresponding to (19.2.7(p.136) )) and that we have the following theorem, corresponding to Theorem 19.2.4(p.136) .

Theorem 20.2.4 (analogy [R̃→ P̃]) Let A {M̃:2[R][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = A R̃→P̃[A {M̃:2[R][E]}]. (20.2.8)

In fact, from the comparison of (I) and (II) and of (III) and (IV) in Table 6.4.4(p.41) it can be easily shown that (20.2.4(p.191) ) and
(20.2.6(p.191) ) hold; however, from the comparison of (I) and (III) in Table 6.4.4(p.41) we can immediately see that (20.2.5(p.191) )
does not always hold.

20.2.2 A Lemma

The following lemma provides the conditions on which whether each of Theorems 20.2.1(p.191) , 20.2.2(p.191) , and 20.2.3(p.191) holds
or not.

Lemma 20.2.1

(a) Theorem 20.2.1(p.191) always hold.

(b) Theorem 20.2.3(p.191) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 20.2.2(p.191) holds.

(d) Let a⋆ < ρ < b. Then Theorem 20.2.2(p.191) does not always hold.

• Proof (a,b) From the comparisons of (I) and (II) in Table 6.4.4(p.41) and that of (III) and (IV) in Table 6.4.4(p.41) we see that
(20.2.4(p.191) ) and (20.2.6(p.191) ) hold, hence Theorems 20.2.1(p.191) and 20.2.3 hold.

(c,d) From the comparison of (I) and (III) in Table 6.4.4(p.41) we see that (20.2.5(p.191) ) does not always hold, hence it
follows that Theorem 20.2.2(p.191) does not always hold. The proofs for the two assertions (c,d) are the same as those of
Lemma 20.1.1(p.153) (c,d).

20.2.3 M:2[R][E]
20.2.3.1 Preliminary

From (6.4.28(p.41) ) and (5.1.8(p.25) ) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 0. (20.2.9)
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20.2.3.2 Analysis

20.2.3.2.1 Case of β = 1 and s = 0

� Tom 20.2.1 (�� A {M:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof Let β = 1 and s = 0. Then, since K (x) = λT (x) · · · ((1)) from (5.1.4(p.25) ), we have K (x) ≥ 0 · · · ((2)) for any x due to

Lemma 10.1.1(p.55) (g).

(a) From (6.4.28(p.41) ) and (2) we obtain Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then, since b ≤ V0 from (6.4.27(p.41) ), we have b ≤ Vt−1 for t > 0 from (a), hence L (Vt−1) = 0 for t > 0
from Lemma 10.2.1(p.57) (d), thus Vt = βVt−1 for t > 0 from (20.2.9(p.191) ). Then, since Vt = βVt−1 for τ ≥ t > 0, we have
Vτ = βVτ−1 = β2Vτ−2 = · · · = βτV0 , hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ ∥ (see Preference Rule 7.2.1(p.45) ).

(c) Let ρ < b. Then V0 < b · · · ((3)) from (6.4.27(p.41) ). Let Vt−1 < b. Then, since Vt < K (b) + b from (6.4.28(p.41) ) and

Lemma 10.2.2(p.57) (h), we have Vt < βb−s = b from (10.2.7 (2) (p.57) ) and the assumptions “β = 1 and s = 0”. Hence, by induction
Vt−1 < b for t > 0, so L (Vt−1) > 0 for t > 0 from Lemma 10.2.1(p.57) (d). Accordingly, Vt− βVt−1 > 0 for t > 0 from (20.2.9(p.191) )
or equivalently Vt > βVt−1 for t > 0. Then, since Vt > βVt−1 for τ ≥ t > 0, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0,
hence t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

20.2.3.2.2 Case of β < 1 or s > 0

Let us define

S8
⃝s N } ∥ } △ } N = { For any τ > 0 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N,

(2) } ndOITt•τ+1⟨t•τ ⟩ △,

(3) } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( } ndOITτ>t•τ+1⟨t•τ ⟩ N)).
}.

Remark 20.2.1 S8 is the same as S2(p.137) except that the inequalities of τ > 1, t•τ > 1, and t•τ ≥ τ > 1 in S2 changes into
τ > 0, t > 0, and t•τ ≥ τ > 0 respectively in S8.

� Tom 20.2.2 (�� A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let ρ ≤ a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true. 7→ →}N

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true. 7→ →}N
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2. Let (λβµ− s)/δ > a.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N
ii. Let b < 0 ((κ < 0)) . Then S8

⃝s N } ∥ } △ } N is true. 7→ →}N
• Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (6.4.27(p.41) ) and K (ρ) > 0 due to

Lemma 10.2.2(p.57) (j1). Since V1 = K (ρ) + ρ · · · ((3)) from (6.4.28(p.41) ) with t = 1, we have V1 − V0 = V1 − ρ = K (ρ) > 0,

hence V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, due to Lemma 10.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1 from
(6.4.28(p.41) ). Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0. Note again (4) . Suppose Vt−1 < Vt. If
λ < 1, from Lemma 10.2.2(p.57) (f) we have Vt < K(Vt) + Vt = Vt+1. If a < ρ, then a < V0 from (6.4.27(p.41) ), hence a < Vt−1 for
t > 0 due to the nondecreasing of Vt, so from Lemma 10.2.2(p.57) (g) we have Vt < K(Vt) + Vt = Vt+1. Therefore, whether λ < 1
or a < ρ, by induction we have Vt−1 < Vt for t > 0, i.e., Vt is strictly increasing in t ≥ 0. Consider a sufficiently large M > 0
with ρ ≤ M and b ≤ M , hence from (6.4.27(p.41) ) we have V0 ≤ M . Suppose Vt−1 ≤ M . Then, from Lemma 10.2.2(p.57) (e) we
have Vt ≤ K(M)+M = βM − s due to (10.2.7 (2) (p.57) ), hence Vt ≤M due to the assumptions “β ≤ 1 and s ≥ 0”. Accordingly,
by induction Vt ≤M for t ≥ 0, i.e., Vt is upper bounded in t. Hence Vt converges to a finite V as t→∞. Thus V = K(V ) + V
from (6.4.28(p.41) ), hence K(V ) = 0, so V = xK due to Lemma 10.2.2(p.57) (j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0 from (6.4.27(p.41) ), we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for
t > 0 due to Corollary 10.2.1(p.57) (a), thus Vt − βVt−1 ≤ 0 for t > 0 from (20.2.9(p.191) ) or equivalently Vt ≤ βVt−1 for t > 0.
Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , hence t∗τ = 0 for τ > 0, i.e.,

• dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL · · · ((5)). Then V0 < xL · · · ((6)) from (6.4.27(p.41) ), hence L (V0) > 0 · · · ((7)) due to

Corollary 10.2.1(p.57) (a).

(c1) Since V1 − βV0 = L (V0) > 0 from (20.2.9(p.191) ) with t = 1 and (7) , we have V1 > βV0, hence t∗1 = 1, i.e.,
⃝s dOITs1⟨1⟩ N · · · ((8)). Below let τ > 1 · · · ((9)).

(c2) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then δ = λ from (10.2.1(p.56) ) and xL = xK · · · ((10 ))
from Lemma 10.2.3(p.58) (b), hence K ( xL ) = K (xK ) = 0 · · · ((11 )).

(c2i) Let a < ρ. Then a < V0 from (6.4.27(p.41) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK . Then,
from (6.4.28(p.41) ) and Lemma 10.2.2(p.57) (g) we have Vt < K (xK )+ xK = xK . Hence, by induction Vt−1 < xK for t > 0. Then,
since Vt−1 < xL for t > 0 due to (10) , we have L (Vt−1) > 0 for t > 0 from Lemma 10.2.1(p.57) (e1), hence for the same reason
as in the proof of Tom 20.2.1(p.192) (c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii) Let ρ ≤ a, hence V0 ≤ a · · · ((12 )) from (6.4.27(p.41) ). Then, from (3) and (10.2.7 (1) (p.57) ) we have V1 = λµ−s+(1−λ)ρ.

(c2ii1) Let (λµ − s)/λ ≤ a. Then xK = (λµ − s)/λ ≤ a · · · ((13 )) from Lemma 10.2.2(p.57) (j2). Hence K (a) ≤ 0 from

Lemma 10.2.2(p.57) (j1). Note (12) . Suppose Vt−1 ≤ a. Then, from (6.4.28(p.41) ) and Lemma 10.2.2(p.57) (e) we have Vt ≤ K (a)+a ≤
a, hence by induction Vt−1 ≤ a for t > 0. Accordingly, from (6.4.28(p.41) ) and (10.2.7 (1) (p.57) ) we have Vt = λµ − s + (1 −
λ)Vt−1 · · · ((14 )) for t > 0.

(c2ii1i) Let λ = 1. Then, we have xK = µ − s from (13) and Vt = µ − s for t > 0 from (14) , hence Vt = xK for t > 0,
so Vt−1 = xK for t > 1. Accordingly, Vt−1 = xL for t > 1 due to (10) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, hence
Vt − βVt−1 = 0 for t > 1 from (20.2.9(p.191) ) or equivalently Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we have
Vτ = βVτ−1 · · · = βτ−1V1 for τ > 1. From this and (4) we have Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1
for τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from Lemma 10.2.2(p.57) (f) and
(11) . Accordingly, by induction Vt−1 < xL for t > 0, hence L (Vt−1) > 0 for t > 0 from Lemma 10.2.1(p.57) (e1). Thus, for the
same reason as in the proof of Tom 20.2.1(p.192) (c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii2) Let (λµ − s)/λ > a. Then xK > (λµ − s)/λ > a from Lemma 10.2.2(p.57) (j2), hence xL > a from (10) . Note (6) .
Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from
Lemma 10.2.2(p.57) (h) and (11) . Accordingly, by induction Vt−1 < xL · · · ((15 )) for t > 0, hence L (Vt−1) > 0 for t > 0 due to

Lemma 10.2.1(p.57) (e1). Consequently, for the same reason as in the proof of Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.
(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((16 )). Then, since a < V0 from (6.4.27(p.41) ), we have a < Vt−1 for t > 0 due to (a).

(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((17 )) from Lemma 10.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from (6.4.28(p.41) ) and Lemma 10.2.2(p.57) (g) we have Vt < K (xK ) + xK = xK . Accordingly, by induction Vt−1 < xK for t > 0,
hence Vt−1 < xL for t > 0 due to (17) . Therefore, since L (Vt−1) > 0 for t > 0 from Corollary 10.2.1(p.57) (a), for the same reason
as in the proof of Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((18 )) from Lemma 10.2.3(p.58) (c ((d))). Note (6) . Suppose Vt−1 < xL for all

t > 0, hence V ≤ xL . Now, since V = xK due to (a), we have xL < V due to (18) , which is a contradiction. Hence, it is
impossible that Vt−1 < xL for all t > 0. In addition, from (6) and the strict increasingness of Vt due to (a), it follows that
there exists t•τ > 0 such that
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V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · .
from which we have

Vt−1 < xL , t•τ ≥ t > 0, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (20.2.10)

Hence, we have

L (Vt−1) > 0 · · · ((19 )), t•τ ≥ t > 0 (due to Corollary 10.2.1(p.57) (a))

L (Vt•τ ) ≤ 0 · · · ((20 )), (due to Corollary 10.2.1(p.57) (a))

L (Vt−1) = ((< 0))† · · · ((21 )), t > t•τ + 1 (due to Lemma 10.2.1(p.57) (d((e1))))

• Let t•τ ≥ τ > 0. Then L (Vt−1) > 0 · · · ((22 )) for τ ≥ t > 0 from (19) . Hence, for the same reason as in

Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 0. Accordingly, S8(1) is true. Now, since Vt−βVt−1 > 0 for τ ≥ t > 0

from (20.2.9(p.191) ) and (22) , we have Vt > βVt−1 for τ ≥ t > 0, hence

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0.

Accordingly, when τ = t•τ , we have

Vt•τ > βVt•τ−1 > · · · > βt•τV0 · · · ((23 ))

• Let τ = t•τ + 1. From (20.2.9(p.191) ) with t = t•τ + 1 and (20) we have Vt•τ+1 − βVt•τ = L (t•τ ) ≤ 0, hence Vt•τ+1 ≤ βVt•τ .

Accordingly, from (23) we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τ+1V0 · · · ((24 )),

thus t∗t•τ+1 = t•τ , i.e., } ndOITt•τ+1⟨t•τ ⟩ △, so that S8(2) is true.

• Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (21) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (20.2.9(p.191) ), hence

from (24) we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+2V0

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ
> β4Vt•τ−1 > · · · > βt•τ+3V0.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<))

βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0. · · · ((25 ))

◦ Let s = 0. Then (25) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0,

hence t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 7.2.1(p.45) ), hence S8(3) is true.

◦ Let s > 0. Then (25) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0, (20.2.11)

hence t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t◦⟩ N, hence S8(3) is true.

(c3ii) Let ρ ≤ a, hence V0 ≤ a from (6.4.27(p.41) ). Then, from (3) and (10.2.7 (1) (p.57) ) we have V1 = λβµ− s+ (1− λ)βρ.

(c3ii1) Let (λβµ− s)/δ ≤ a. Then xK = (λβµ− s)/δ ≤ a · · · ((26 )) from Lemma 10.2.2(p.57) (j2(p.58) ). Hence V1 = δ xK + (1−
λ)βρ · · · ((27 )).

(c3ii1i) Let λ = 1, hence δ = 1 from (10.2.1(p.56) ). Thus, from (26) and (27) we have xK = βµ − s ≤ a and V1 = xK ≤
a · · · ((28 )).

(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK · · · ((29 )) due to Lemma 10.2.3(p.58) (c ((d))). Note (28) . Suppose Vt−1 = xK .

Then, from (6.4.28(p.41) ) we have Vt = K (xK ) + xK = xK . Accordingly, by induction Vt−1 = xK for t > 1, hence Vt−1 < xL

for t > 1 due to (29) , thus L (Vt−1) > 0 for t > 1 from Corollary 10.2.1(p.57) (a). Hence, from (7) we obtain L (Vt−1) > 0 for
t > 0. Accordingly, for almost the same reason as in the proof of Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 10.2.3(p.58) (c ((d))), we have V1 ≥ xL from (28) , hence
Vt−1 ≥ xL for t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 10.2.1(p.57) (a), we have L (Vt−1) ≤ 0
for τ ≥ t > 1, thus Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (20.2.9(p.191) ), i.e., Vt ≤ βVt−1 for τ ≥ t > 1. Hence Vτ ≤ βVτ−1 ≤
· · · ≤ βτ−1V1 · · · ((30 )). Now, from (6.4.27(p.41) ), (4) , (28) , and (29) we have ρ = V0 < V1 = xK < xL , hence L(ρ) > 0 from

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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Corollary 10.2.1(p.57) (a). In addition, from (3) and (6.4.27(p.41) ) we have V1−βV0 = V1−βρ = K(ρ)+ρ−βρ = K(ρ)+(1−β)ρ =
L(ρ) > 0 from (5.1.8(p.25) ), hence V1 > βV0. Accordingly, from (30) we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0 for
τ > 1, hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

(c3ii1ii) Let λ < 1.

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((31 )) from Lemma 10.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from Lemma 10.2.2(p.57) (f) we have Vt < K (xK ) + xK = xK . Hence, by induction Vt−1 < xK for t > 0, so Vt−1 < xL

for t > 0 due to (31) . Accordingly, since L (Vt−1) > 0 for t > 0 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof
of Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((32 )) from Lemma 10.2.3(p.58) (c ((d))). Note (6) . Assume that Vt−1 < xL

for all t > 0, hence V ≤ xL due to (a). Now, since V = xK from (a), we have the contradiction xL < V from (32) . Hence, it
is impossible that Vt−1 < xL for all t > 0. From this and the strict increasingness of Vt due to (a), it follows that there exists
t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we have S8 ⃝s N } ∥ } △ } N .
(c3ii2) Let (λβµ− s)/δ > a · · · ((33 )). Then xK > (λβµ− s)/δ > a from Lemma 10.2.2(p.57) (j2).

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 due to (a).

2. Let λ = 1, hence δ = 1 from (10.2.1(p.56) ), so βµ− s > a from (33) . Now K (x) ≥ βµ− s− x for any x from (10.2.4(p.57) ) or
equivalently K (x) + x ≥ βµ− s for any x, so V1 ≥ βµ− s > a from (3) . Accordingly Vt−1 > a for t > 1 due to (a). Note
(4) . Suppose Vt−1 < Vt. Then, from Lemma 10.2.2(p.57) (g) we have Vt < K (Vt) + Vt = Vt+1. Accordingly, by induction we
have Vt−1 < Vt for t > 0, i.e., Vt is strictly increasing in t ≥ 0.

From the above, whether λ < 1 or λ = 1, we see that Vt is strictly increasing in t > 0.

(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((34 )) from Lemma 10.2.2(p.57) (c ((d))). From the above strict increasingness

of Vt in t ≥ 0 and (a) we have Vt−1 < V = xK for t > 0, hence Vt−1 < xL for t > 0 from (34) . Thus, since L (Vt−1) > 0 for
t > 0 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 20.2.1(p.192) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((35 )) from Lemma 10.2.3(p.58) (c ((d))). Note (6) . Suppose Vt−1 < xL for all

t > 0, hence V ≤ xL . Now, since V = xK from (a), we have xL < V from (35) , which is a contradiction. Accordingly, it is
impossible that Vt−1 < xL for all t > 0. From this, (6) , and the above strict increasingness of Vt in t ≥ 0 it follows that there
exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we can immediately see that the assertion holds true.

� Tom 20.2.3 (�� A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof Let β < 1 or s > 0 and let ρ = xK . Hence V0 = ρ = xK · · · ((1)) from (6.4.27(p.41) ).

(a) Note (1) . Suppose Vt−1 = xK . Then, from (6.4.28(p.41) ) we have Vt = K (xK ) + xK = xK . Hence, by induction
Vt = xK = ρ for t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK from Lemma 10.2.3(p.58) (b).
Accordingly, since Vt−1 = xL for t > 0 from (a), we have L (Vt−1) = L ( xL ) = 0 for t > 0, hence for the same reason as in the
proof of Tom 20.2.1(p.192) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then, since xL > xK from Lemma 10.2.3(p.58) (c ((d)), we have xL > xK = Vt−1 for t > 0 from
(a), hence L (Vt−1) > 0 for t > 0 due to Corollary 10.2.1(p.57) (a), thus for the same reason as in the proof of Tom 20.2.1(p.192) (c)
we obtain ⃝s dOITsτ>0⟨τ⟩ N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK from Lemma 10.2.3(p.58) (c ((d)). Hence, since xL ≤ xK = Vt−1 for t > 0 from (a),
we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 10.2.1(p.57) (a), hence Vt − βVt−1 ≤ 0 for t > 0 from (20.2.9(p.191) ) or equivalently
Vt ≤ βVt−1 for t > 0. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , thus t∗τ = 0
for τ > 0, i.e., dOITτ>0⟨0⟩△.



196

S9
⃝s △ •△ •N = { For any τ > 0 there exists t• > 0 such that

(1) • dOITdτ=1⟨0⟩ ∥ ( • dOITdτ=1⟨0⟩ N),

(2) ⃝s dOITsτ>t• ⟨τ⟩ △ or • dOITdτ>t• ⟨0⟩ △,

(3) • dOITdt•≥τ>1⟨0⟩ △ (( • dOITdt•≥τ>1⟨0⟩ N)).
}

� Tom 20.2.4 (�� A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to a finite V = xK as to→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) . 7→ →•ddN
ii. Let b > 0 ((κ > 0)). Then S9

⃝s △ •△ •N is true. 7→ →•ddN
• Proof Let β < 1 or s > 0 and let ρ > xK . Then V0 > xK · · · ((1)) from (6.4.27(p.41) ) and K (ρ) < 0 · · · ((2)) from

Lemma 10.2.2(p.57) (j1). From (6.4.28(p.41) ) with t = 1 and from (6.4.27(p.41) ) we have V1 − V0 = K (V0) = K (ρ) < 0, hence
V1 < V0 · · · ((3)). In addition, from (20.2.9(p.191) ) with t = 1 we have V1 − βV0 = L (V0) = L (ρ) · · · ((4)) from (6.4.27(p.41) ).

(a) Note (3) , hence V0 ≥ V1. Suppose Vt−1 ≥ Vt. Then, from (6.4.28(p.41) ) and Lemma 10.2.2(p.57) (e) we have Vt ≥
K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. Let λ < 1. Note again (3) .
Suppose Vt−1 > Vt. Then, from Lemma 10.2.2(p.57) (f) we have Vt > K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 > Vt for
t > 0, i.e., Vt is strictly decreasing in t ≥ 0. Note (1) , hence V0 ≥ xK . Suppose Vt−1 ≥ xK . Then, from (6.4.28(p.41) ) and
Lemma 10.2.2(p.57) (e) we have Vt ≥ K (xK ) + xK = xK . Hence, by induction Vt−1 ≥ xK · · · ((5)) for t > 0, i.e., Vt is lower

bounded in t. Thus, it follows that Vt converges to a finite V as t→∞. Hence, since V = K(V )+V from (6.4.28(p.41) ), we have
K(V ) = 0, thus V = xK due to Lemma 10.2.2(p.57) (j1).

(b) Let ρ < xL . Then, since V0 < xL from (6.4.27(p.41) ), we have Vt−1 < xL for t > 0 due to (a). Therefore, since
L (Vt−1) > 0 for t > 0 from Corollary 10.2.1(p.57) (a), for the same reason as in the proof of Tom 20.2.1(p.192) (c) we obtain
⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = xL · · · ((6)). Then, since L (ρ) = L ( xL ) = 0, we have V1 − βV0 = 0 from (4) or equivalently V1 = βV0 · · · ((7)),
hence • dOITd1⟨0⟩ ∥. Below, let τ > 1. Now, since V1 = K (ρ) + ρ < ρ from (6.4.28(p.41) ) with t = 1 and (2) , we have Vt−1 < ρ

for t > 1 from (a), hence Vt−1 < xL for t > 1 due to (6) , so L (Vt−1) > 0 for t > 1 from Corollary 10.2.1(p.57) (a). Accordingly,
since L (Vt−1) > 0 for τ ≥ t > 1, we have Vt − βVt > 0 for τ ≥ t > 1 due to (20.2.9(p.191) ) or equivalently Vt > βVt for τ ≥ t > 1,
from which we have Vτ > βVτ−1 > · · · > βτ−1V1. Hence, from (7) we have

Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0.

Accordingly, we obtain t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let xL < ρ · · · ((8)), hence xL < V0 · · · ((9)) from (6.4.27(p.41) ). Thus, if s = ((>)) 0, then L (V0) = ((<)) 0 · · · ((10 )) from

Lemma 10.2.1(p.57) (d((e1))), hence V1 − βV0 = ((<)) 0 from (4) or equivalently V1 = ((<)) βV0 · · · ((11 )).

(d1) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then L (V0) < 0 from (10) , hence V1 < βV0 · · · ((12 ))
from (20.2.9(p.191) ). Now, since xL = xK due to Lemma 10.2.3(p.58) (b), from (5) we have Vt−1 ≥ xL for t > 0, hence L (Vt−1) ≤ 0
for t > 0 due to Lemma 10.2.1(p.57) (e1), thus Vt−βVt−1 ≤ 0 for t > 0 from (20.2.9(p.191) ). Then, since Vt−βVt−1 ≤ 0 for τ ≥ t > 0,
we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 .

Hence we have t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ △.
(d2) Let β < 1 and s = 0 ((s > 0)) .

(d2i) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK due to Lemma 10.2.3(p.58) (c ((d))). Hence, from (5) we have Vt−1 ≥ xL for
t > 0, hence L (Vt−1) ≤ 0 for t > 0 due to Corollary 10.2.1(p.57) (a), so Vt − βVt−1 ≤ 0 for t > 0 from (20.2.9(p.191) ). Then, since
Vt − βVt−1 ≤ 0 for τ ≥ t > 0, we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 .

Due to (11) the inequality can be rewritten as

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 ,

hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .
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(d2ii) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((13 )) from Lemma 10.2.3(p.58) (c ((d))). Hence, from (3) and (9) and from

the nonincreasingness of Vt and the convergency of Vt to V = xK due to (a) we see that there exists t• > 0 such that

V0 > V1 ≥ V2 ≥ · · · ≥ Vt•−1 ≥ xL > Vt• ≥ Vt•+1 ≥ · · · → xK · · · ((14 ))

or equivalently V0 > xL , Vt−1 ≥ xL for t• ≥ t > 1, and xL > Vt−1 for t > t•. Hence, we have

L (Vt−1) > 0, t > t•, due to Corollary 10.2.1(p.57) (a),

L (Vt−1) ≤ 0, t• ≥ t > 1, due to Corollary 10.2.1(p.57) (a),

L (V0) = ((<)) 0 due to Lemma 10.2.1(p.57) (d((e1))).

Hence, from (20.2.9(p.191) ) we have

Vt > βVt−1 · · · ((15 )), t > t•, Vt ≤ βVt−1 · · · ((16 )), t• ≥ t > 1, V1 = ((<)) βV0 · · · ((17 )).

⟨A⟩ Let τ = 1. Then, since V1 = ((<)) βV0 due to (17) , we have • dOITdτ=1⟨0⟩ ∥ ( • dOITdτ=1⟨0⟩ N), hence (1) of S9 holds.

⟨B⟩ Let t• ≥ τ > 1. Then, since Vt ≤ βVt−1 for τ ≥ t > 1 from (16) , we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1,
hence

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 · · · ((18 )), t• ≥ τ > 0,

from (17) or equivalently

Iττ ≤ Iτ−1
τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((19 )), t• ≥ τ > 0.

Thus t∗τ = 0 for t• ≥ τ > 0, i.e., • dOITdt•τ≥τ>1⟨0⟩ △ (( • dOITdt•τ≥τ>1⟨0⟩ N)), hence (2) of S9 holds. Now, from (18) with
τ = t• we have

Vt• ≤ βVt•−1 ≤ · · · ≤ βt•−1V1 = ((<)) βt•V0 · · · ((20 )).

⟨C⟩ Let τ > t• (> 0), hence τ > 1. From (15) with τ ≥ t > t• we have

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt•τ · · · ((21 )), τ > t•.

Combining (21) and (20) leads to

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt• ≤ βτ−t•+1Vt•−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0, τ > t•,

or equivalently

Iττ > Iτ−1
τ > Iτ−2

τ > · · · > It
•+1

τ > It
•

τ ≤ It
•−1

τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((22 )), τ > t•.

Hence we have ⃝s dOITsτ>t• ⟨τ⟩ or • dOITdτ>t• ⟨0⟩ , thus (3) of S9 holds.



198

20.2.3.3 Market Restriction

20.2.3.3.1 Positive Restriction

20.2.3.3.1.1 Case of β = 1 and s = 0

� Pom 20.2.1 (A {M:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 20.2.1(p.192) due to Lemma 17.4.4(p.118) .

20.2.3.3.1.2 Case of β < 1 or s > 0

� Pom 20.2.2 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let a ≤ ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N.IvsD

2. Let λβµ < s. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

ii. Let ρ < a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let βµ ≤ s. Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let λβµ < s. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

2. Let (λβµ− s)/δ > a.

i. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let λβµ < s. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a).

(a-c2ii2) The same as Tom 20.2.2(p.192) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only
(c3i1,c3ii1i1,c3ii1ii1,c3ii2i) of Tom 20.2.2(p.192) .

(c4-c4ii2ii) Let β < 1 and s < 0. Then, due to (2) it suffices to consider only
(c3-c3ii2ii) of Tom 20.2.2(p.192) with κ.

� Pom 20.2.3 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t > 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ △.
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• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a).

(a,b) The same as Tom 20.2.3(p.195) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 20.2.3(p.195) .

(d,d2) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (c1,c2) of Tom 20.2.3(p.195) .

� Pom 20.2.4 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N for τ > 1.

(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.196) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ N.

ii. Let λβµ > s. Then S9(p.196) ⃝s △ •△ •N is true (see Numerical Example 6(p.219) )

• Proof Suppose a > 0. Then b > a > 0 · · · ((1)). We have κ = λβµ− s · · · ((2)) from Lemma 10.3.1(p.59) (a).

(a-d1) The same as Tom 20.2.4(p.196) (a-d1).

(d2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (d2ii) of Tom 20.2.4(p.196) .

(d3,d3ii) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (d2i,d2ii) of Tom 20.2.4(p.196) with κ.

20.2.3.3.2 Mixed Restriction

Omitted.

20.2.3.3.3 Negative Restriction

Omitted.

20.2.4 M̃:2[R][E]
Due to Lemma 20.2.1(p.191) (a), we see that the following Tom’s 20.2.5(p.199) – 20.2.8(p.200) can be obtained by applying SR→R̃ (see
(18.0.1(p.130) )) to Tom’s 20.2.1(p.192) – 20.2.4(p.196) (see Theorem 20.2.1(p.191) ).

20.2.4.1 Analysis

20.2.4.1.1 Case of β = 1 and s = 0

� Tom 20.2.5 (�� A {M̃:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.2.1(p.192) .

20.2.4.1.2 Case of β < 1 or s > 0

� Tom 20.2.6 (�� A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.
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2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

2. Let (λβµ+ s)/δ < b.
i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.2.2(p.192) .

� Tom 20.2.7 (�� A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.2.3(p.195) .

� Tom 20.2.8 (�� A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)).

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

ii. Let a < 0 ((κ̃ < 0)). Then S9
⃝s △ •△ •N is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 20.2.4(p.196) .

20.2.4.2 Market Restriction

20.2.4.2.1 Positive Restriction

20.2.4.2.1.1 Case of β = 1 and s = 0

� Pom 20.2.5 (A {M̃:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 20.2.5(p.199) due to Lemma 17.4.4(p.118) .

20.2.4.2.1.2 Case of β < 1 or s > 0

� Pom 20.2.6 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ ⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let b ≥ ρ. Then ⃝s dOITsτ ⟨τ⟩ N.
ii. Let ρ > b.
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1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then we have S8(p.192) ⃝s N } ∥ } △ } N .
4. Let β < 1 and s > 0.

i. Let b > ρ. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

2. Let (λβµ+ s)/δ < b. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then κ̃ = s · · · ((3)) from Lemma 12.6.6(p.83) (a).

(a-c2ii2) The same as Tom 20.2.6(p.199) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb from (10.2.2 (1) (p.56) ), hence
λβµ ≥ δb ≥ λb due to (2) , so βµ ≥ b, which contradicts [3(p.118) ]. Thus, it must be that (λβµ + s)/δ < b. From this it suffices
to consider only (c3i2,c3ii2ii) of Tom 20.2.6(p.199) .

(c4-c4ii2) Let β < 1 and s > 0. Then it suffices to consider only
(c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of Tom 20.2.2(p.192) with κ.

� Pom 20.2.7 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a).

(a,b) The same as Tom 20.2.7(p.200) (a,b).

(c) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 20.2.7(p.200) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c2) of Tom 20.2.7(p.200) with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.

� Pom 20.2.8 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 12.6.6(p.83) (a).

(a-d1) The same as Tom 20.2.8(p.200) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 20.2.8(p.200) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 20.2.8(p.200) (d2i) with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.

20.2.4.2.2 Mixed Restriction

Omitted.

20.2.4.2.3 Negative Restriction

Omitted.

20.2.5 M:2[P][E]
20.2.5.1 Preliminary

From (6.4.33(p.41) ) and from (5.1.21(p.26) ) and (5.1.20(p.26) ) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 1. (20.2.12)

From (6.4.32(p.41) ) we have

V1 − βV0 = V1 − βρ = λβmax{0, a− ρ} − s. (20.2.13)
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20.2.5.2 Analysis

20.2.5.2.1 Case of β = 1 and s = 0

Let β = 1 and s = 0. Then, from (20.2.12(p.201) ) and (5.1.20(p.26) ) we have

Vt − βVt−1 = λT (Vt−1) ≥ 0, t > 1, (20.2.14)

due to Lemma 13.2.1(p.93) (g). From (6.4.32(p.41) ) we have

V1 = λmax{0, a− ρ}+ ρ (20.2.15)

= max{ρ, λa+ (1− λ)ρ}. (20.2.16)

20.2.5.2.1.1 Case of ρ ≤ a⋆

In this case, Theorem 20.2.2(p.191) holds due to Lemma 20.2.1(p.191) (c). Hence, Proposition 20.2.1 below can be derived by applying
AR→P (see (18.0.5(p.130) )) to Tom 20.2.1(p.192) .

Proposition 20.2.1 (ρ ≤ a⋆) Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by analogy Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) The same as Tom 20.2.1(p.192) (a).

(b) Since (b,c) of Tom 20.2.1(p.192) have none of a and µ, even if AR→P is applied the two assertions, no change occurs
(see Lemma 13.6.1(p.99) ). However, since ρ ≤ a⋆ < a < b due to the assumption ρ ≤ a⋆ and Lemma 13.2.1(p.93) (n), it follows that
only (c) of Tom 20.2.1(p.192) holds.

20.2.5.2.1.2 Case of b ≤ ρ

In this case, Theorem 20.2.2(p.191) holds due to Lemma 20.2.1(p.191) (c). Hence, Proposition 20.2.2 below can be derived by applying
AR→P (see (18.0.5(p.130) )) to Tom 20.2.1(p.192) .

Proposition 20.2.2 (b ≤ ρ) Assume b ≤ ρ. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy Assume b ≤ ρ. Let β = 1 and s = 0.

(a) The same as Tom 20.2.1(p.192) (a).

(b) Due to the assumption b ≤ ρ, only (b) of Tom 20.2.1(p.192) holds.

20.2.5.2.1.3 Case of a⋆ < ρ < b

In this case, Theorem 20.2.2(p.191) does not always hold due to Lemma 20.2.1(p.191) (d). Hence, Proposition 20.2.3 below must be
directly proven.

Proposition 20.2.3 (a⋆ < ρ < b) Assume a⋆ < ρ < b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β = 1 and s = 0. Then L (x) = K (x) = λT (x) ≥ 0 · · · ((2)) for any x from

(5.1.20(p.26) ) and (5.1.21(p.26) ) and from Lemma 13.2.1(p.93) (g). Since V0 < b from (1) and (6.4.31(p.41) ), we have L (V0) = λT (V0) =
λT (ρ) > 0 · · · ((3)) from (2) and Lemma 13.2.1(p.93) (g). Then, since ρ < b and a < b, from (20.2.16(p.202) ) we obtain V1 <

max{b, λb+(1−λ)b} = max{b, b} = b. Suppose Vt−1 < b. Then, since a⋆ < b from (1) , we have Vt < K (b)+ b from (6.4.33(p.41) )
and Lemma 13.2.3(p.96) (h), hence Vt < βb − s from (13.2.12 (2) (p.96) ), so Vt−1 < b due to the assumption “β = 1 and s = 0”.
Accordingly, by induction Vt−1 < b for t > 1, hence T (Vt−1) > 0 · · · ((4)) for t > 1 from Lemma 13.2.1(p.93) (g). Thus Vt−βVt−1 > 0

for t > 1 from (20.2.14(p.202) ) or equivalently Vt > βVt−1 for t > 1. Then, since Vt > βVt−1 for τ ≥ t > 1, we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)), τ > 1.

In addition, from (2) we have L (Vt−1) = λT (Vt−1) > 0 · · · ((6)) for t > 1 due to (4) , so L(Vt−1) > 0 for t > 0 due to (3) .

(a) From (20.2.15(p.202) ) and (6.4.31(p.41) ) we have V1 − V0 = V1 − ρ = λmax{0, a − ρ} ≥ 0, hence V1 ≥ V0 · · · ((7)). From

(6.4.33(p.41) ) with t = 2 we have V2 − V1 = K (V1) > 0 due to (6) with t = 2, hence V2 > V1, so V2 ≥ V1 · · · ((8)). Suppose

Vt ≥ Vt−1. Then from (6.4.33(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt+1 = K (Vt) + Vt ≥ K (Vt−1) + Vt−1 = Vt. Hence, by
induction Vt ≥ Vt−1 for t > 1. From this and (7) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing in t ≥ 0.
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(b) Let a ≤ ρ, hence V1 = λmax{0, a− ρ}+ ρ = ρ from (6.4.32(p.41) ), so V1 < b due to (1) . Then, since V1 − βV0 = V1 − V0 =
ρ− ρ = 0, we have V1 = βV0 · · · ((9)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. Then, from (5) and (9) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 = βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ < a. Then, since V1 = λ(a− ρ) + ρ due to (6.4.32(p.41) ), we have V1 − βV0 = V1 − V0 = V1 − ρ = λ(a− ρ) > 0, i.e.,

V1 > βV0, hence t∗1 = 1 · · · ((10 )). Let τ > 1. Then, from (5) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0, τ > 1,

hence t∗τ = τ for τ > 1, hence ⃝s dOITsτ>1⟨τ⟩ N. From this and (10) we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

20.2.5.2.1.4 Integration of Propositions 20.2.1(p.202) -20.2.3(p.202)

� Tom 20.2.9 (A {M:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof (a) The same as Propositions 20.2.1(p.202) (a), 20.2.2(p.202) (a), and 20.2.3(p.202) (a).

(b) The same as Proposition 20.2.1(p.202) (b).

(c) The same as Proposition 20.2.2(p.202) (b).

(d-d2) The same as Proposition 20.2.3(p.202) (b,c).

Corollary 20.2.1 (M:2[P][E] ) Let β = 1 and s = 0. Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Lemma 20.2.9(p.203) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

20.2.5.2.2 Case of β < 1 or s > 0

20.2.5.2.2.1 Case of ρ ≤ a⋆

In this case, Theorem 20.2.2(p.191) holds due to Lemma 20.2.1(p.191) (c), hence Tom’s 20.2.10(p.203) –20.2.12(p.204) below can be derived
by applying AR→P (see (18.0.5(p.130) )) to Tom’s 20.2.2(p.192) –20.2.4(p.196) . In the proofs below, let us represent what results from
applying AR→P to a given Tom by Tom′ (see (20.1.42(p.168) )).

� Tom 20.2.10 (�� A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true.
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• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 20.2.2(p.192) . Then “a < ρ” in
Tom 20.2.2(p.192) (c2i,c3i) changes into “a⋆ < ρ” in the Tom′, which contradicts the assumption ρ ≤ a⋆. Accordingly, removing all
assertions with “a⋆ < ρ” from the Tom′ leads to Tom 20.2.10 above.

Corollary 20.2.2 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.10(p.203) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.2.11 (�� A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by analogy The same as Tom 20.2.3(p.195) due to Lemma 13.6.1(p.99) .

Corollary 20.2.3 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK . Then, the optimal price to propose is
given by zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 20.2.11(p.204) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.2.12 (�� A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .
ii. Let b > 0 ((κ > 0)). Then S9

⃝s △ •△ •N is true.

• Proof by analogy The same as Tom 20.2.4(p.196) due to Lemma 13.6.1(p.99) .

Corollary 20.2.4 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK . Then, the optimal price to propose zt is
nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.12(p.204) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

20.2.5.2.2.2 Case of b ≤ ρ

In this case, Theorem 20.2.2(p.191) holds due to Lemma 20.2.1(p.191) (c). Hence Tom’s 20.2.13-20.2.15 below can be derived by
applying AR→P to Tom’s 20.2.2(p.192) -20.2.4(p.196) .

� Tom 20.2.13 (�� A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b < 0 ((κ < 0)) . Then S8

⃝s N } ∥ } △ } N is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 20.2.2(p.192) . Then “ρ ≤ a” in
(c2ii,c3ii) of Tom 20.2.2(p.192) changes into “ρ ≤ a⋆ ” in the Tom′, hence ρ ≤ a⋆ < a < b due to
Lemma 13.2.1(p.93) (n), which contradicts the assumption b ≤ ρ. Accordingly, removing all assertions with “ρ ≤ a” from the Tom′

leads to Tom 20.2.13 above.

Corollary 20.2.5 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK . Then, the optimal price to propose zt is
nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.13(p.204) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .
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� Tom 20.2.14 (�� A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b < 0 ((κ < 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by analogy The same as Tom 20.2.3(p.195) due to Lemma 13.6.1(p.99) .

Corollary 20.2.6 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK . Then, the optimal price to propose is
given by zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 20.2.14(p.205) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

� Tom 20.2.15 (�� A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let b > 0 ((κ > 0)). Then S9
⃝s △ •△ •N is true.

• Proof by analogy Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK . In this case, even if AR→P is applied to Tom 20.2.4(p.196) , it
can be easily confirmed that no change occurs (see Lemma 13.6.1(p.99) ). However, if the condition ρ < xL is added, we encounter
the following contradiction. Then we have b ≤ ρ < xL · · · ((1)). Now, since 0 = L ( xL ) = λβT ( xL ) − s and T ( xL ) = 0 from

Lemma 13.2.1(p.93) (g), we have 0 = −s, hence s = 0, so we have xL = b due to Lemma 13.2.2(p.96) (d), which is a contradicts (1) .
Accordingly, the condition ρ < xL becomes impossible. This result implies that the assertion (b) with ρ ≥ xL in Tom 20.2.4(p.196)

must be omitted; accordingly, it follows that we have Tom 20.2.15 above.

Corollary 20.2.7 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK . Then, the optimal price to propose zt is
nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.15(p.205) (a) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

20.2.5.2.2.3 Case of a⋆ < ρ < b

In this case, Theorem 20.2.2(p.191) does not always hold due to Lemma 20.2.1(p.191) (d). Hence, Tom 20.2.16(p.206) below must be
directly proven. For explanatory convenience, let us define:

S10
⃝s △ •△ = { We have:

(1) Let λmax{0, a−ρ} < s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.
(2) Let λmax{0, a− ρ} ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ △. }

S11
⃝s △ ⃝s N } △ •△ = { There exists t•τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,

ii. } ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

ii. } ndOITτ>t•τ ⟨t
•
τ ⟩ △.

}
S12

⃝s △ ⃝s N } △ •△ •N = { There exists t•τ > 1 such that:
(1) If λβmax{0, a− ρ} < s, then

i. • dOITdt•τ≥τ>0⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. } ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
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S13
⃝s △ } △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then

i. • dOITdt•τ≥τ>1⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. } ndOITt•τ≥τ>1⟨1⟩ △,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

}
For convenience of reference, below let us copy (6.4.32(p.41) )

V1 = λβmax{0, a− ρ}+ βρ− s. (20.2.17)

� Tom 20.2.16 (�� A {M:2[P][E]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.
3. Let V1 < xL .

i. Let β = 1. Then S10
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then S10
⃝s △ •△ is true.

2. Let b = 0 ((κ = 0)) . If λβmax{0, a−ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.
3. Let b < 0 ((κ < 0)) . Then S11

⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 > xK .

1. Vt is nonincreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △. 7→ →•ddN
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) .

1. Let V1 < xL . Then S10
⃝s △ •△ is true.

2. Let V1 = xL . Then S12
⃝s △ ⃝s N } △ •△ •N is true. 7→ →•ddN

3. Let V1 > xL . Then S13
⃝s △ } △ •△ •N is true. 7→ →•ddN

ii. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a) If λβmax{0, a − ρ} ≤ s, then V1 ≤ βV0 from (20.2.13(p.201) ) or equivalently V1 ≤ βV0 · · · ((2)), hence t∗1 = 0, i.e.,

• dOITd1⟨0⟩ △ · · · ((3)), or else V1 > βV0 · · · ((4)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((5)). Below let τ > 1.

(b) Let V1 ≤ xK · · · ((6)), hence K (V1) ≥ 0 · · · ((7)) from Lemma 13.2.3(p.96) (j1).

(b1) From (6.4.33(p.41) ) with t = 2 we have V2 = K (V1) + V1 ≥ V1 due to (7) . Suppose Vt ≥ Vt−1. Then Vt+1 ≥
K (Vt−1) + Vt−1 = Vt from Lemma 13.2.3(p.96) (e), hence by induction Vt ≥ Vt−1 for t > 1, so Vt is nondecreasing in t > 0. Note
(6) . Suppose Vt−1 ≤ xK . Then, from (6.4.33(p.41) ) and Lemma 13.2.3(p.96) (e) we have Vt ≤ K (xK ) + xK = xK . Hence, by
induction Vt ≤ xK · · · ((8)) for t > 0, i.e., Vt is upper bounded in t, hence Vt converges to a finite V as t → ∞. Then, since

V = K(V )+V as τ →∞ from (6.4.33(p.41) ), we have V = K(V )+V , hence K(V ) = 0 thus V = xK from Lemma 13.2.3(p.96) (j1).

(b2) Let V1 ≥ xL . Then, since xL ≤ Vt−1 for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 13.2.1(p.96) (a),
thus L (Vt−1) ≤ 0 for τ ≥ t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1 from (20.2.12(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 · · · ((9)), τ > 1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, from (2) and (9) we have

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 ≤ βτV0 ,

hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ △..

(2) Let λβmax{0, a− ρ} > s. Then, from (4) and (9) we have

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0,

hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.
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(b3) Let V1 < xL · · · ((10 )).

(b3i) Let β = 1 · · · ((11 )), hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK · · · ((12 )) from

Lemma 13.2.4(p.97) (b), hence Vt−1 ≤ xL for t > 1 due to (8) . Accordingly, since Vt−1 ≤ xL for τ ≥ t > 1, we have
L (Vt−1) ≥ 0 for τ ≥ t > 1 from Lemma 13.2.2(p.96) (e1), hence Vt ≥ βVt−1 for τ ≥ t > 1 from (20.2.12(p.201) ), so

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 · · · ((13 )), τ > 1.

(A) Let λmax{0, a − ρ} < s, hence λβmax{0, a − ρ} < s due to (11) . Then V1 − βV0 < 0 · · · ((14 )) from (20.2.13(p.201) ) or

equivalently V1 < βV0 · · · ((15 )). Hence, from (13) we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 < βτV0 · · · ((16 )), τ > 1.

Thus, we have ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △, hence (1) of S10 is true.

(B) Let λmax{0, a−ρ} ≥ s, hence λβmax{0, a−ρ} ≥ s due to (11) . Then V1−βV0 ≥ 0 from (20.2.13(p.201) ) or equivalently
V1 ≥ βV0 from (20.2.13(p.201) ). Then, from (13) we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≥ βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ △, thus (2) of S10 holds.

(b3ii) Let β < 1 · · · ((17 )) and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((18 )) from Lemma 13.2.4(p.97) (c ((d))). Accordingly, from (8) we have

Vt−1 ≤ xK < xL for t > 1, hence L (Vt−1) > 0 for t > 1 from Corollary 13.2.1(p.96) (a), thus L (Vt−1) > 0 for τ ≥ t > 1.
Accordingly, since Vt > βVt−1 for τ ≥ t > 1 from (20.2.12(p.201) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((19 )) τ > 1.

(1) Let λβmax{0, a− ρ} < s. Then for the same reason as in (A) we have (1) of S10.

(2) Let λβmax{0, a− ρ} ≥ s. Then for the same reason as in (B) we have (2) of S10.

(b3ii2) Let b = 0 ((κ = 0)) . Then xL = xK from Lemma 13.2.4(p.97) (c ((d))). Accordingly, from (6) and (b1) we have Vt−1 ≤
xK for t > 1, hence Vt−1 ≤ xK = xL for τ ≥ t > 1. Therefore, from Corollary 13.2.1(p.96) (b) we have L (Vt−1) ≥ 0 · · · ((20 )) for

τ ≥ t > 1, hence Vt − βVt−1 ≥ 0 for τ ≥ t > 1 from (20.2.12(p.201) ) or equivalently Vt ≥ βVt−1 for τ ≥ t > 1, leading to

Vt ≥ βVt−1 ≥ · · · ≥ βt−1V1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (20.2.13(p.201) ), we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≤ βτV0 ,

hence ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △..

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (20.2.13(p.201) ), we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 > βτV0,

hence ⃝s dOITsτ>1⟨τ⟩ △.

(b3ii3) Let b < 0 ((κ < 0)) , hence xL < xK ≤ 0 · · · ((21 )) from Lemma 13.2.4(p.97) (c ((d))). Then, from (10) we have V1 <

xL < xK = V due to (b1). Accordingly, due to the nondecreasing of Vt it follows that there exists t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · .

Hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Therefore, from Corollary 13.2.1(p.96) (a) we have

L (Vt−1) > 0 · · · ((22 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((23 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 for τ ≥ t > 1 from (22) , we have Vt − βVt−1 > for τ ≥ t > 1 from (20.2.12(p.201) ) or
equivalently Vt > βVt−1 for τ ≥ t > 1, so

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((24 )).

(1) Let λβmax{0, a− ρ}ρ < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 < βτV0

from (24) , hence t∗τ = τ or t∗τ = 0 for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △. Accordingly (1i) of
S11 holds.
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(2) Let λβmax{0, a− ρ}ρ ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0

from (24) , hence t∗τ = τ , i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N. Accordingly (2i) of S11 holds.

◦ Let τ > t•τ . Since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (23) , we have Vt ≤ βVt−1 for τ ≥ t > t•τ from (20.2.12(p.201) ), hence

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ · · · ((25 )), τ > t•τ .

From (22) and (20.2.12(p.201) ) we have Vt > βVt−1 for t•τ ≥ t > 1, hence

Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((26 )).

From (25) and (26) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1. · · · ((27 ))

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 < βτV0 ,

Hence, we have t∗τ = t•τ or t∗τ = 0 for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △. Accordingly (1ii) of S11 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ), from (27) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 ≥ βτV0 ,

hence t∗τ = t•τ for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ △. Accordingly (2ii) of S11 holds.

(c) Let V1 > xK · · · ((28 )), hence K (V1) < 0 · · · ((29 )) due to Lemma 13.2.3(p.96) (j1).

(c1) From (6.4.33(p.41) ) with t = 2 we have V2 = K (V1) + V1 < V1 · · · ((30 )) due to (29) , hence V2 ≤ V1. Suppose Vt ≤ Vt−1.

Then, from Lemma 13.2.3(p.96) (e) we have Vt+1 = K (Vt) + Vt ≤ K (Vt−1) + Vt−1 = Vt. Hence, by induction Vt ≤ Vt−1 for t > 1,
i.e., Vt is nonincreasing in t > 0. Note (28) , hence V1 ≥ xK . Suppose Vt−1 ≥ xK . Then, since Vt ≥ K (xK ) + xK = xK from
Lemma 13.2.3(p.96) (e), by induction we have Vt ≥ xK · · · ((31 )) for t > 0, i.e., Vt is lower bounded in t, hence Vt converges to a

finite V . Then, we have V = xK for the same reason as in the proof of (b1).

(c2) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then, since xL = xK · · · ((32 )) from Lemma 13.2.4(p.97) (b),

we have Vt−1 ≥ xL for t > 1 from (31) . Accordingly L (Vt−1) ≤ 0 for t > 1 from Lemma 13.2.2(p.96) (e1), hence L (Vt−1) ≤ 0 for
τ ≥ t > 1, so Vt ≤ βVt−1 for τ ≥ t > 1 from (20.2.12(p.201) ), leading to Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1.

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 ,

hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ N.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0,

hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

(c3) Let β < 1 · · · ((33 )) and s = 0 ((s > 0)) .

(c3i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((34 )) from Lemma 13.2.4(p.97) (c ((d))).

(c3i1) Let V1 < xL , hence xL > Vt−1 for t > 1 from (c1). Accordingly, since L (Vt−1) > 0 for t > 1 from Corol-
lary 13.2.1(p.96) (a), we have Vt−βVt−1 > 0 for t > 1 due to (20.2.12(p.201) ) or equivalently Vt > βVt−1 for t > 1, hence Vt > βVt−1

for τ ≥ t > 1, leading to

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((35 )).

(1) Let λβmax{0, a− ρ} < s. Then for the same reason as in (A(p.207) ) we have (1) of S10.

(2) Let λβmax{0, a− ρ} ≥ s. Then for the same reason as in (B(p.207) ) we have (2) of S10.
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(c3i2) Let V1 = xL . Then, since V1 = xL > xK = V from (34) and (c1), there exists t•τ > 1 such that

V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

i.e., Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Hence, from Corollary 13.2.1(p.96) (a) we have

L (Vt−1) = L ( xL ) = 0 · · · ((36 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((37 )), t > t•τ .

Accordingly, from (20.2.12(p.201) ) we have Vt − βVt−1 = 0 for t•τ ≥ t > 1 and Vt − βVt−1 > 0 for t > t•τ or equivalently

Vt = βVt−1 · · · ((38 )), t•τ ≥ t > 1, Vt > βVt−1 · · · ((39 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, we have Vt = βVt−1 for τ ≥ t > 1 from (38) , leading to

Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((40 )).

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ = βVτ−1 = · · · = βτ−1V1 < βτV0 ,

hence t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, hence (1i) of S12 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ), we have

Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0

for t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥, hence (2i) of S12 holds.

From (40) with τ = t•τ we have

Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((41 )).

◦ Let τ > t•τ . Then, we have Vt > βVt−1 for τ ≥ t > t•τ from (39) , leading to

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((42 )).

From this and (41) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1.

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 < βτV0 ,

hence t∗τ = τ or t∗τ = 0 for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △, thus (1ii) of S12 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ), we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0

for τ > t•τ , hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence (2ii) of S12 holds.

(c3i3) Let V1 > xL · · · ((43 )). Then, since V1 > xL > xK = V from (34) and (c1), due to the nonincreasingness of Vt it

follows that there exists t•τ > 1 such that

V1 ≥ V2 ≥ · · · ≥ Vt•τ−1 > xL ≥ Vt•τ ≥ Vt•τ+1 ≥ · · · ,

from which Vt−1 > xL for t•τ ≥ t > 1 and xL ≥ Vt−1 for t > t•τ . Hence, from Corollary 13.2.1(p.96) (a) we have

L (Vt−1) ≤ 0 · · · ((44 )), t•τ ≥ t > 1, L (Vt−1) ≥ 0 · · · ((45 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then L (Vt−1) ≤ 0 for τ ≥ t > 1 from (44) , hence Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (20.2.12(p.201) ), we have
Vt ≤ βVt−1 for τ ≥ t > 1. Hence

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 · · · ((46 )).
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(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 ,

hence t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, so (1i) of S13 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0

for t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ △, hence (2i) of S13 holds.

From (46) with τ = t•τ we have

Vt•τ ≤ βVt•τ−1 ≤ · · · ≤ βt•τ−1V1 · · · ((47 )).

◦ Let τ > t•τ . Then L (Vt−1) ≥ 0 for τ ≥ t > t•τ from (45) , hence Vt − βVt−1 ≥ 0 for τ ≥ t > t•τ from (20.2.12(p.201) ) or
equivalently Vt ≥ βVt−1 for τ ≥ t > t•τ , leading to

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ .

Hence, from (47) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 · · · ((48 )).

(1) Let λβmax{0, a− ρ} < s. Since V1 − βV0 < 0 · · · ((49 )) from (20.2.13(p.201) ) or equivalently V1 < βV0 · · · ((50 )). Then, from
(48) and (50) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 < βτV0 .

hence Thus, we obtain ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (1ii) of S13 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then V1 − βV0 ≥ 0 from (20.2.13(p.201) ), hence V1 ≥ βV0. Then, from (48) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−2V2 ≤ βτ−1V1 ≥ βτV0.

Thus, we have ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (2ii) of S13 holds.

(c3ii) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 13.2.4(p.97) (c ((d))), we have V1 > xK ≥ xL from (28) , hence
Vt−1 ≥ xK ≥ xL for t > 1 due to (c1). Accordingly L (Vt−1) ≤ 0 for t > 1 from Corollary 13.2.1(p.96) (a), hence Vt − βVt−1 ≤ 0
for t > 1 from (20.2.12(p.201) ) or equivalently Vt ≤ βVt−1 for t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1, we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 · · · ((51 )).

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 ,

from (51) , hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ △.

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (20.2.13(p.201) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 > βτV0,

from (51) , hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

Corollary 20.2.8 (M:2[P][E] ) Assume a⋆ < ρ < b. Let β < 1 or s > 0. :

(a) Let xK ≥ V1. Then zt is nondecreasing in t > 0.

(b) Let xK < V1. Then zt is nonincreasing in t > 0.

• Proof Immediate from Tom 20.2.16(p.206) (b1,c1) and from (6.2.94(p.35) ) and Lemma 13.1.3(p.89) .

20.2.5.3 Market Restriction

20.2.5.3.1 Positive Restriction

20.2.5.3.1.1 Case of β = 1 and s = 0

� Pom 20.2.9 (A {M:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 20.2.9(p.203) due to Lemma 17.4.4(p.118) .
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20.2.5.3.1.2 Case of β < 1 or s > 0

20.2.5.3.1.2.1 Case of ρ ≤ a⋆

� Pom 20.2.10 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a⋆ < ρ, and converges to a finite V = xK as
t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.

i. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let s ≥ λβT (0). Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

ii. Let s > λβT (0). Then S8(p.192) ⃝s N } ∥ } △ } N is true

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let s > λβT (0). Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a-c2ii) The same as Tom 20.2.10(p.203) (a-c2ii).

(c3) Due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 20.2.10(p.203) .

(c4-c4ii2) Immediate from (2) and Tom 20.2.10(p.203) (c3-c3ii2) with κ due to (2) .

� Pom 20.2.11 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a,b) The same as Tom 20.2.11(p.204) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 20.2.11(p.204) .

(d-d2) Immediate from (2) and Tom 20.2.11(p.204) (c1,c2) with κ.

� Pom 20.2.12 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.196) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let s < λβT (0). Then S9(p.196) ⃝s △ •△ •N is true.
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• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a-d1) The same as Tom 20.2.12(p.204) (a-d1).

(d2) Due to (1) it suffices to consider only (d2ii) of Tom 20.2.12(p.204) .

(d3,d3ii) Immediate from (2) and Tom 20.2.12(p.204) (d2i,d2ii) with κ.

20.2.5.3.1.2.2 Case of b ≤ ρ

� Pom 20.2.13 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

ii. Let s > λβT (0). Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a-c2) The same as Tom 20.2.13(p.204) (a-c2).

(c3) Due to (1) it suffices to consider only (c3i) of Tom 20.2.13(p.204) .

(c4-c4ii) Immediate from (2) and Tom 20.2.13(p.204) (c3i,c3ii) with κ.

� Pom 20.2.14 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a,b) The same as Tom 20.2.14(p.205) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 20.2.14(p.205) .

(d-d2) Immediate from (2) and Tom 20.2.14(p.205) (c1,c2) with κ.

� Pom 20.2.15 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.196) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let s < λβT (0). Then S9(p.196) ⃝s △ •△ •N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a-c1) The same as Tom 20.2.15(p.205) (a-c1).

(c2) Due to (1) it suffices to consider only (c2ii) of Tom 20.2.15(p.205) .

(c3-c3ii) Immediate from (2) and Tom 20.2.15(p.205) (c2i,c2ii) with κ.

20.2.5.3.1.2.3 Case of a⋆ < ρ < b

� Pom 20.2.16 (A {M:2[P][E]+}) Suppose a > 0. Assume a⋆ ≤ ρ < a. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} < s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let xK ≥ V1.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = xK as t→∞
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2. Let xL ≤ V1. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.
3. Let xL > V1.

i. Let β = 1. Then S10(p.205) ⃝s △ •△ is true.

ii. Let β < 1 and s = 0. Then S10(p.205) ⃝s △ •△ is true.

iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then S10(p.205) ⃝s △ •△ is true.

2. Let s = λβT (0). If λβmax{0, a− ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △,
or else ⃝s dOITsτ>1⟨τ⟩ △.

3. Let s > λβT (0). Then S11(p.205) ⃝s △ ⃝s N } △ •△ is true.

(c) Let xK < V1.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △.
3. Let β < 1 and s = 0.

i. Let xL > V1. Then S10(p.205) ⃝s △ •△ is true.

ii. Let xL = V1. Then S12(p.205) ⃝s △ ⃝s N } △ •△ •N is true.

iii. Let xL < V1. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

4. Let β < 1 and s > 0.

i. Let s < λβT (0).

1. Let xL > V1. Then S10(p.205) ⃝s △ •△ is true.

2. Let xL = V1. Then S12(p.205) ⃝s △ ⃝s N } △ •△ •N is true.

3. Let xL < V1. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

ii. Let s ≥ λβT (0). If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβT (0)− s · · · ((2)) from (5.1.23(p.26) ).

(a-b3i) The same as Tom 20.2.16(p.206) (a-b3i).

(b3ii) Due to (1) it suffices to consider only (b3ii1) of Tom 20.2.16(p.206) .

(b3iii-b3iii3) The same as Tom 20.2.16(p.206) (b3ii1-b3ii3).

(c-c2) Immediate from (2) and Tom 20.2.16(p.206) (c-c2).

(c3-c3iii) Due to (1) it suffices to consider only (c3i1-c3i3) of Tom 20.2.16(p.206) .

(c4-c4ii) Immediate from (2) and Tom 20.2.16(p.206) (c3i-c3ii).

20.2.5.3.2 Mixed Restriction

Omitted.

20.2.5.3.3 Negative Restriction

Omitted.

20.2.6 M̃:2[P][E]
20.2.6.1 Preliminary

Since Theorem 20.2.3(p.191) holds due to Lemma 20.2.1(p.191) (b), we can derive A {M̃:2[P][E]} by applying SP→P̃ (see (18.0.3(p.130) ))
to A {M:2[P][E]}.

20.2.6.2 Analysis

20.2.6.2.1 Case of β = 1 and s = 0

� Tom 20.2.17 (�� A {M̃:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by symmetry Immediate from applying SP→P̃ to Lemma 20.2.9(p.203) .

Corollary 20.2.9 (M̃:2[P][E] ) Let β = 1 and s = 0. Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.17(p.213) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .
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20.2.6.2.2 Case of β < 1 or s > 0

20.2.6.2.2.1 Case of ρ ≥ b⋆

� Tom 20.2.18 (�� A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1.
i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a ≥ 0 ((κ̃ ≥ 0)) . Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.
i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N } ∥ } △ } N is true.

ii. Let (λβb+ s)/δ < b⋆.

1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.2.10(p.203) .

Corollary 20.2.10 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.18(p.214) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.2.19 (�� A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.2.11(p.204) .

Corollary 20.2.11 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 20.2.19(p.214) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.2.20 (�� A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let a < 0 ((κ̃ < 0)). Then S9
⃝s △ •△ •N is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 20.2.12(p.204) .

Corollary 20.2.12 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.20(p.214) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .
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20.2.6.2.2.2 Case of a ≥ ρ

� Tom 20.2.21 (�� A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a > 0 ((κ̃ > 0)) . Then S8

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from SP→P̃ to Tom 20.2.13(p.204) .†

Corollary 20.2.13 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.21(p.215) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.2.22 (�� A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a > 0 ((κ̃ > 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from SP→P̃ to Tom 20.2.14(p.205) .

Corollary 20.2.14 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 20.2.22(p.215) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

� Tom 20.2.23 (�� A {M:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .
ii. Let a < 0 ((κ̃ < 0)). Then S9

⃝s △ •△ •N is true.

• Proof by symmetry Immediate from SP→P̃ to Tom 20.2.15(p.205) .‡

Corollary 20.2.15 (M:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 20.2.23(p.215) (a) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

20.2.6.2.2.3 Case of b⋆ > ρ > a

By applying SP→P̃ in Theorem 20.2.3(p.191) , we see that S10(p.205) – 24.1.12 change as follows respectively:

S14
⃝s △ •△ = { We have:

(1) Let λmin{0, ρ− b} > −s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.
(2) Let λmin{0, ρ− b} ≤ −s. Then ⃝s dOITsτ>1⟨τ⟩ △. }

S15
⃝s △ ⃝s N } △ •△ = { There exists t•τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,
ii. } ndOITτ>t•τ ⟨t

•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,
ii. } ndOITτ>t•τ ⟨t

•
τ ⟩ △.

}
†S8 does not change by the application of the operation.
‡S9 does not change by the application of the operation.
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S16
⃝s △ ⃝s N } △ •△ •N = { There exists t•τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. • dOITdt•τ≥τ>0⟨0⟩ N,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. } ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
S17

⃝s △ } △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. • dOITdt•τ≥τ>1⟨0⟩ N,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t

⋆
τ ⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. } ndOITt•τ≥τ>1⟨1⟩ △,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t

⋆
τ ⟩ △.

}
Moreover, note that (20.2.17(p.206) ) can be changed into

V1 = λβmin{0, ρ− b}+ βρ+ s. (20.2.18)

� Tom 20.2.24 (�� A {M̃:2[P][E]}) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .†

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

3. Let V1 > x
L̃ .

i. Let β = 1. Then S14
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then S14
⃝s △ •△ is true.

2. Let a = 0 ((κ̃ = 0)) . If λβmin{0, ρ−b} > −s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.
3. Let a > 0 ((κ̃ > 0)) . Then S15

⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let β = 1. If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) .

1. Let V1 ≥ x
L̃ . Then S14

⃝s △ •△ is true.

2. Let V1 = x
L̃ . Then S16

⃝s △ ⃝s N } △ •△ •N is true.

3. Let V1 < x
L̃ . Then S17

⃝s △ } △ •△ •N is true.

ii. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof by symmetry Immediate from SP→P̃ to Tom 20.2.16(p.206) .

Corollary 20.2.16 (M̃:2[P][E] ) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then zt is nondecreasing in t > 0.

• Proof Immediate from Tom 20.2.24(p.216) (b1,c1) and from (6.2.111(p.36) ) and Lemma A3.3(p.297) .

†V1 = λβmin{0, b− ρ}+ βρ + s (see (6.4.25(p.41) )).
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20.2.6.3 Market Restriction

20.2.6.3.1 Positive Restriction

20.2.6.3.1.1 A {M̃:2[P][E]+}

20.2.6.3.1.1.1 Case of β = 1 and s = 0

� Pom 20.2.17 (A {M̃:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 20.2.17(p.213) due to Lemma 17.4.4(p.118) .

20.2.6.3.1.1.2 Case of β < 1 or s > 0

20.2.6.3.1.1.2.1 Case of ρ ≥ b⋆

� Pom 20.2.18 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then S8
⃝s N } ∥ } △ } N is true.

4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ ⟨1⟩ △.

2. Let λ < 1. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

ii. Let (λβb+ s)/δ < b⋆. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0 · · · ((1)), hence b⋆ > b > a > 0 · · · ((2)) from Lemma 14.6.1(p.107) (n). Then we have κ̃ = s · · · ((3)) from

Lemma 14.6.6(p.108) (a).

(a-c2ii) The same as Tom 20.2.18(p.214) (a-c2ii).

(c3) Let β < 1 and s = 0, hence κ̃ = 0 due to (3) . Assume (λβb+s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from
(10.2.2 (1) (p.56) ), hence λβb ≥ δb⋆ ≥ λb⋆ due to (2) , so βb ≥ b⋆, which contradicts [7(p.118) ]. Thus it must be that (λβb+s)/δ < b⋆.
From this it suffices to consider only (c3ii2) of Tom 20.2.18(p.214) .

(c4-c4ii) Let β < 1 and s > 0. Then κ̃ > 0 from (3) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 20.2.18(p.214) with κ.

� Pom 20.2.19 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Let a > 0 · · · ((1)), then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a) The same as Tom 20.2.19(p.214) (a).

(b) Let β = 1. Then we have Tom 20.2.19(p.214) (a). Let β < 1. Then, if s = 0, due to (1) it suffices to consider only (c2)
of Tom 20.2.19(p.214) and if s > 0, then κ̃ > 0 from (2) , hence it suffices to consider only (c2 of Tom 20.2.19(p.214) . Thus, whether
s = 0 or s > 0, we have the same result.

� Pom 20.2.20 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
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(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N).

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 14.6.6(p.108) (a).

(a-d1) The same as Tom 20.2.20(p.214) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 20.2.20(p.214) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 20.2.20(p.214) . Thus, whether s = 0 or s > 0, we have the same result.

20.2.6.3.1.1.2.2 Case of a ≥ ρ

� Pom 20.2.21 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1. Then S8(p.192) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a-c2) The same as Tom 20.2.21(p.215) (a-c2).

(c3) If s = 0, due to (1) it suffices to consider only (c3ii) of Tom 20.2.21(p.215) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c3ii) of Tom 20.2.21(p.215) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 20.2.22 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then we have • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 14.6.6(p.108) (a).

(a) The same as Tom 20.2.22(p.215) (a).

(b) The same as Tom 20.2.22(p.215) (b).

(c) Let β < 1. If s = 0, due to (1) it suffices to consider only (c2) of Tom 20.2.22(p.215) . If s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (c2) of Tom 20.2.22(p.215) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 20.2.23 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and let s = 0(s > 0). Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N).

• Proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 14.6.6(p.108) (a).

(a,b) The same as Tom 20.2.23(p.215) (a,b).

(c) Let ρ < x
L̃ .

(c1) Let β = 1. Then we have • dOITdτ>0⟨0⟩ △ from Tom 20.2.23(p.215) (c1).

(c2) Let β < 1. If s = 0, then due to (2) it suffices to consider only (c2i) of Tom 20.2.23(p.215) and if s > 0, then κ̃ > 0 due
to (2) , hence it suffices to consider only (c2i) of Tom 20.2.23(p.215) . Thus, whether s = 0 or s > 0, we have the same result.

20.2.6.3.1.1.2.3 Case of b⋆ > ρ > a

� Pom 20.2.24 (A {M̃:2[P][E]+}) Suppose a > 0. Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmax{0, ρ− b} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .†

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≥ x
L̃ . If λβmax{0, ρ− b} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

3. Let V1 > x
L̃ .

†V1 = λβmin{0, b− ρ}+ βρ + s (see (6.4.25(p.41) )).
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i. Let β = 1. Then S14(p.215) ⃝s △ •△ is true.

ii. Let β < 1. Then S15(p.215) ⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. If λβmax{0, ρ− b} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0. Then κ̃ = s · · · ((2)) due to Lemma 14.6.6(p.108) (a).

(a-b3i) The same as Tom 20.2.24(p.216) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii3) of Tom 20.2.24(p.216) and if s > 0, then κ̃ > 0
due to (2) , hence it suffices to consider only (b3ii3) of Tom 20.2.24(p.216) . Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Tom 20.2.24(p.216) (c1).

(c2) If β = 1, then it suffices to consider only (c2) of Tom 20.2.24(p.216) and if β < 1, whether s = 0 or s > 0, it suffices to
consider only (c3ii) of Tom 20.2.24(p.216) . Accordingly, whether β = 1 or β < 1, we have the same result.

20.2.6.3.2 Mixed Restriction

Omitted.

20.2.6.3.3 Negative Restriction

Omitted.

20.2.6.4 Numerical Calculation

Numerical Example 6 (A {M:2[R][E]+} (selling model) This example is for the assertion in
Pom 20.2.4(p.199) (d3ii) in which a > 0, ρ > xK , ρ > xL , β < 1, s > 0, and λβµ > s. As an example let a = 0.01, b = 1.00,
λ = 0.7, β = 0.98, s = 0.1, and ρ = 0.5.† where xL = 0.462767 and xK = 0.439640. The symbols • in the figure below shows
the optimal initiating times t∗15 ≥ τ ≥ 1 (see the t∗τ -column in the table of Figure 20.2.2(p.219) below).
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Graphs of Itτ = βτ−tVt with 15 ≥ τ > 0 and τ ≥ t ≥ 0

t Vt ∆βVt t∗τ

0 0.5000000
1 0.4766162 −0.0133838 1
2 0.4619911 −0.0050927 1
3 0.4530367 +0.0002854 1
4 0.4476274 +0.0036514 1
5 0.4443866 +0.0057117 1
6 0.4424547 +0.0069558 1
7 0.4413065 +0.0077009 7
8 0.4406253 +0.0081449 8
9 0.4402216 +0.0084088 9
10 0.4399825 +0.0085653 10
11 0.4398410 +0.0086581 11
12 0.4397572 +0.0087130 12
13 0.4397076 +0.0087456 13
14 0.4396783 +0.0087648 14
15 0.4396609 +0.0087762 15

∆βVt = Vt − βVt−1

Figure 20.2.2: Graphs of Itτ = βτ−tVt for 15 ≥ τ ≥ 2 and τ ≥ t ≥ 1

Scaling up the graphs for τ = 6 and τ = 7 in the above figure, we have the figure below. This figure demonstrates that the
optimal initiating time shifts from 0 to 7 when the starting time changes from τ = 6 to τ = 7.
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Graphs of Itτ = βτ−tVt with τ = 6, 7

τ = 6

t β6−tVt

0 0.4429212
1 0.4308233
2 0.4261259
3 0.4263946
4 0.4299014
5 0.4354989
6 0.4424547

τ = 7

t β7−tVt

0 0.4340628
1 0.4222069
2 0.4176034
3 0.4178667
4 0.4213034
5 0.4267889
6 0.4336056
7 0.4413065

Figure 20.2.3: Graphs of Itτ = βτ−tVt for τ = 6 and τ = 7

†We have ρ = 0.5 > 0.462767 = xL , β = 0.98 < 1, and s = 0.1 > 0. Since µ = (0.01 + 1.00)/2 = 0.505, we have λβµ = 0.7 × 0.98 × 0.505 =
0.34634 > 0.1 = s. Thus the condition of this assertion is confirmed.
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20.2.6.5 Conclusion 4 (Search-Enforced-Model 2)

� The assertion systems A {M/M̃:2[R][E]} of the quadruple-asset-trading-models for Model 2 on the total market F

Q⟨M :2[E]⟩ = {M:2[R][E], M̃:2[R][E],M:2[P][E], M̃:2[P][E]}
are given by

A {M:2[R][E]}
↓

Tom’s 20.2.1(p.192) , 20.2.2(p.192) , 20.2.3(p.195) , 20.2.4(p.196) ,

A {M̃:2[R][E]}
↓

Tom’s 20.2.5(p.199) , 20.2.6(p.199) , 20.2.7(p.200) , 20.2.8(p.200) ,

A {M:2[P][E]}
↓

Tom’s 20.2.9(p.203) , 20.2.10(p.203) , 20.2.11(p.204) , 20.2.12(p.204) , 20.2.13(p.204) , 20.2.14(p.205) , 20.2.15(p.205) , 20.2.16(p.206) ,

A {M̃:2[P][E]}
↓

Tom’s 20.2.17(p.213) , 20.2.18(p.214) , 20.2.19(p.214) , 20.2.20(p.214) , 20.2.21(p.215) , 20.2.22(p.215) , 20.2.23(p.215) , 20.2.24(p.216) ,

� The assertion systems A {M/M̃:2[R][E]+} of the quadruple-asset-trading-models on the positive market F+

Q⟨M :2[E]⟩+ = {M:2[R][E]+, M̃:2[R][E]+,M:2[P][E]+, M̃:2[P][E]}+
are given by

A {M:2[R][E]+}
↓

Pom’s 20.2.1(p.198) , 20.2.2(p.198) , 20.2.3(p.198) , 20.2.4(p.199) ,

A {M̃:2[R][E]+}
↓

Pom’s 20.2.5(p.200) , 20.2.6(p.200) , 20.2.7(p.201) , 20.2.8(p.201) ,

A {M:2[P][E]+}
↓

Pom’s 20.2.9(p.210) , 20.2.10(p.211) , 20.2.11(p.211) , 20.2.12(p.211) , 20.2.13(p.212) , 20.2.14(p.212) , 20.2.15(p.212) , 20.2.16(p.212) ,

A {M̃:2[P][E]+}
↓

Pom’s 20.2.17(p.217) , 20.2.18(p.217) , 20.2.19(p.217) , 20.2.20(p.217) , 20.2.21(p.218) , 20.2.22(p.218) , 20.2.23(p.218) , 20.2.24(p.218) ,

� Closely looking into all the assertion systems above leads to the following conclusions.

C1. Mental Conflict

On F+, we have:

a. Let β = 1 and s = 0.

1. The opt-R-price Vt in M:2[R][E] (selling model) is nondecreasing in t N
a

as in Figure 7.3.1(p.47) (I), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

2. The opt-P-price zt in M:2[P][E] (selling model) is nondecreasing in t N
b

as in Figure 7.3.1(p.47) (I), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

3. The opt-R-price Vt in M̃:2[R][E] (buying model) is nonincreasing in t H
c

as in Figure 7.3.1(p.47) (II), hence we have the
normal conflict (see Remark 7.3.1(p.47) ).

4. The opt-P-price zt in M̃:2[P][E] (buying model) is nonincreasing in t as in Figure 7.3.1(p.47) (II), hence we have the

normal conflict (see Remark 7.3.1(p.47) ),H
d

.

· Na ← Tom 20.2.1(p.192) (a)

· Nb ← Corollary 20.2.1(p.203)

· Hc ← Tom 20.2.5(p.199) (a)

· Hd ← Corollary 20.2.9(p.213) .

b. Let β < 1 or s > 0.

1. The opt-R-price Vt in M:2[R][E] (selling model) is nondecreasing in t N
a

, constant ∥
a

, or nonincreasing in t H
a

as in
Figure 7.3.2(p.48) (I), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

2. The opt-P-price zt in M:2[P][E] (selling model) is nondecreasing in t N
b

, constant ∥
b

, or nonincreasing in t H
b

as in
Figure 7.3.2(p.48) (I), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).
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3. The opt-R-price Vt in M̃:2[R][E] (buying model) is nondecreasing in t N
c

, constant ∥
c

, or nonincreasing in t H
c

as in
Figure 7.3.2(p.48) (II), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

4. The opt-P-price zt in M̃:2[P][E] (buying model) is nondecreasing in t N
d

, constant ∥
d

, or nonincreasing in t H
d

as in
Figure 7.3.2(p.48) (II), hence we have the abnormal conflict (see Remark 7.3.2(p.48) ).

· Na ← Tom 20.2.1(p.192) (a), 20.2.2(p.192) (a).
∥a ← Tom 20.2.3(p.195) (a)).
Ha ← Tom 20.2.4(p.196) (a).

· Nb ← Corollary 20.2.1(p.203) , 20.2.2(p.204) , 20.2.5(p.204) ,20.2.8(p.210) (a).
∥b ← Corollary 20.2.3(p.204) , 20.2.6(p.205) .
Hb ← Corollary 20.2.4(p.204) , 20.2.7(p.205) , 20.2.8(p.210) (b).

· Nc ← Tom 20.2.8(p.200) (a).
∥c ← Tom 20.2.7(p.200) (a).
Hc ← Tom 20.2.5(p.199) (a), 20.2.6(p.199) (a).

· Nd ← Corollary 20.2.12(p.214) , 20.2.15(p.215) , 20.2.16(p.216) (b).
∥c ← Corollary 20.2.11(p.214) , 20.2.14(p.215) .
Hd ← Corollary 20.2.9(p.213) , 20.2.10(p.214) , 20.2.13(p.215) , 20.2.16(p.216) (a).

The above results can be summarized as below.

A. If β = 1 and s = 0, then, on F+, whether selling problem or buying problem and whether R-model or P-model, we
have the normal mental conflict, which coincides with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

B. If β < 1 or s > 0, then, on F+, whether selling problem or buying problem and whether R-model or P-model, we
have the abnormal mental conflict, which does not coincide with expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

On F+, we have:

a. Let β = 1 and s = 0. Then we have:

Pom 20.2.5(p.200) ∼ Pom 20.2.1(p.198) (A {M̃:2[R][E]}+ ∼ A {M:2[R][E]}+),
Pom 20.2.17(p.217) ∼ Pom 20.2.9(p.210) (A {M̃:2[P][E]}+ ∼ A {M:2[P][E]}+).

b. Let β < 1 or s > 0. Then we have:

Pom 20.2.6(p.200) |∼ Pom 20.2.2(p.198) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.7(p.201) |∼ Pom 20.2.3(p.198) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.8(p.201) |∼ Pom 20.2.4(p.199) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.18(p.217) |∼ Pom 20.2.10(p.211) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.19(p.217) |∼ Pom 20.2.11(p.211) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.20(p.217) |∼ Pom 20.2.12(p.211) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.21(p.218) |∼ Pom 20.2.13(p.212) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.22(p.218) |∼ Pom 20.2.14(p.212) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.23(p.218) |∼ Pom 20.2.15(p.212) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 20.2.24(p.218) |∼ Pom 20.2.16(p.212) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)

The above results can be summarized as below.

A. Let β = 1 and s = 0. Then the symmetry is always inherited (see C2a(p.221) ).

B. Let β < 1 or s > 0. Then the symmetry always collapses (see C2b(p.221) ).

C3. Analogy

a. On F+, for any β ≤ 1 and s ≥ 0 we have:

Pom 20.2.9(p.210) ◃▹| Pom 20.2.1(p.198) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.10(p.211) ◃▹| Pom 20.2.2(p.198) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.11(p.211) ◃▹ Pom 20.2.3(p.198) (A {M̃:2[R][E]}+ ◃▹ A {M:2[R][E]}+) · · · (∗)
Pom 20.2.12(p.211) ◃▹| Pom 20.2.4(p.199) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.17(p.217) ◃▹| Pom 20.2.5(p.200) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.18(p.217) ◃▹| Pom 20.2.6(p.200) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.19(p.217) ◃▹| Pom 20.2.7(p.201) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.20(p.217) ◃▹| Pom 20.2.8(p.201) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.21(p.218) ◃▹| Pom 20.2.6(p.200) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 20.2.22(p.218) ◃▹ Pom 20.2.7(p.201) (A {M̃:2[R][E]}+ ◃▹ A {M:2[R][E]}+) · · · (∗∗)
Pom 20.2.23(p.218) ◃▹| Pom 20.2.8(p.201) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
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The above results can be summarized as below.

A. The analogy collapses except (∗) and (∗∗).

C4. Optimal initiating time (OIT)

On F+, we have:

a. Let β = 1 and s = 0. Then, from

Pom 20.2.1(p.198) , Pom 20.2.5(p.200) , Pom 20.2.9(p.210) , Pom 20.2.17(p.217) ,

we obtain the following table.

Table 20.2.3: Possible OIT on F+ (β = 1 and s = 0)

A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

b. Let β < 1 or s > 0. Then, from

Pom 20.2.4(p.199) , Pom 20.2.12(p.211) , Pom 20.2.15(p.212) , Pom 20.2.16(p.212) , Pom 20.2.24(p.218) ,

Pom 20.2.2(p.198) , Pom 20.2.3(p.198) , Pom 20.2.4(p.199) , Pom 20.2.6(p.200) , Pom 20.2.8(p.201) ,

Pom 20.2.10(p.211) , Pom 20.2.11(p.211) , Pom 20.2.13(p.212) , Pom 20.2.14(p.212) , Pom 20.2.16(p.212) ,

Pom 20.2.18(p.217) , Pom 20.2.20(p.217) , Pom 20.2.23(p.218) , Pom 20.2.16(p.212) , Pom 20.2.21(p.218) ,

Pom 20.2.7(p.201) , Pom 20.2.19(p.217) , Pom 20.2.22(p.218) , Pom 20.2.22(p.218) ,

we obtain the following table:

Table 20.2.4: Possible OIT on F+ (β < 1 or s > 0)

A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △ ◦ ◦ ◦ ◦
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ N }N ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN ◦ ◦ ◦ ◦

c. The table below is the list of the occurrence rates of⃝⃝s , } , and•dd on F (see Tom’s 20.2.1(p.192) (�� ), 20.2.2(p.192) (��
), 20.2.3(p.195) (�� ), 20.2.4(p.196) (�� ), 20.2.3(p.202) (�� ), and 20.2.16(p.206) (�� )).

Table 20.2.5: Occurance rates of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
41.4%/ 29 24.3%/ 17 34.3%/ 24

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd ∥ •dd △ •dd N
− possible possible possible possible possible possible possible possible

–%/ – 12.9%/ 9 28.5%/ 20 5.7%/ 4 14.3%/ 10 4.3%/ 3 5.7%/ 4 21.5%/ 15 7.1%/ 5

C5. Null-time-zone and deadline-engulfing

From Table 20.2.5(p.222) above we see that on F :

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).
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b. As a whole we have ⃝⃝s , } , and•dd occur at 41.4%, 24.3%, and 34.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 7.2.1(p.45) .

2. }∥ is possible (5.7%).

3. •dd∥ is possible (5.7%).

4. ⃝⃝s △ is possible (12.9%).

5. }△ is possible (14.3%).

6. •dd△ is possible (21.5%).

7. ⃝⃝s N is possible (28.5%).

8. } N is possible (4.3%).

• Tom 20.2.2(p.192) (c3i2,c3ii1ii2,c3ii2i).

9. •dd N is possible (7.1%).

• Tom 20.2.4(p.196) (d2i,d2ii).

• Tom 20.2.16(p.206) (c2,c3i2,c3i3).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 58.6% (= 24.3% + 34.3%).

B. }N strictly causing the null-time-zone is possible at 4.3%.

C. •ddN strictly causing the null-time-zone are possible at 7.1%, i.e., the deadline-engulfing is possible.

20.3 Conclusions of Model 2
Conclusions 3(p.187) and 4(p.220) can be summed up as below.

C1. Mental Conflict

On F+, from C1A(p.189) and C1B(p.189) and from C1A(p.221) and C1B(p.221) . we have:

A. If β = 1 and s = 0, then, on F+, whether search-Allowed-model or search-Enforced-model, whether selling prob-
lem or buying problem, and whether R-model or P-model, we have the normal mental conflict, which coincides with
expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

B. If β < 1 or s > 0, then, on F+, whether search-Allowed-model or search-Enforced-model, whether selling problem or
buying problem, and whether R-model or P-model, we have the abnormal mental conflict, which does not coincide with
expectations in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

On F+, we have:

a. If β = 1 and s = 0, the symmetry is always inherited (see C2A(p.189) and C2A(p.221) ).

b. if β < 1 or s > 0, the symmetry always collapses (see C2B(p.189) and C2B(p.221) ).

C3. Analogy

On F+, we have:

a. For any β ≤ 1 and s ≥ 0, the analogy collapse (see C3A(p.189) and C3A(p.222) ) except (∗) and (∗∗) of C3(p.221) .

C4. Optimal Initiating Time (OIT)

a. Let β = 1 and s = 0. Then we have ⃝⃝s N and•dd ∥ on F+ (see Tables 20.1.1(p.189) and 20.2.3(p.222) ).

b. Let β < 1 or s > 0.

1. For sA-model we have ⃝⃝s N, } ∥, and•dd ∥ (see Table 20.1.2(p.190) ).

2. For sE-model we have ⃝⃝s △,⃝⃝s N, } ∥, } △, } N,•dd ∥,•dd △, and•dd N (see Table 20.2.4(p.222) ).

c. Joining Tables 20.1.3(p.190) and 20.2.5(p.222) produces the following table:

Table 20.3.1: Occurence rates of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
44.2%/ 58 23.0%/ 30 32.8%/ 43

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− possible possible possible possible possible possible possible possible

–%/ – 6.8%/ 9 37.4%/ 49 13.2%/ 17 7.5%/ 10 2.3%/ 3 17.5%/ 23 11.5%/ 15 3.8%/ 5
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C5. Null-time-zone and deadline-engulfing

On F+, from Table 20.3.1(p.223) above we see that:

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole, we have ⃝⃝s , } , and•dd at respectively 44.2%, 23.0%, and 32.8% where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 7.2.1(p.45) .

2. }∥ is possible (13.2%).

3. •dd∥ is possible (17.5%).

4. ⃝⃝s △ is possible (6.8%).

5. }△ is possible (7.5%).

6. •dd△ is possible (11.5%).

7. ⃝⃝s N is possible (37.4%).

8. }N is possible (2.3%).

• Tom 20.2.2(p.192) (c3i2,c3ii1ii2,c3ii2i).

9. •ddN is possible (3.8%).

• Tom 20.2.4(p.196) (d2i,d2ii).

• Tom 20.2.16(p.206) (c2,c3i2,c3i3).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 55.8% (= 23.0% + 32.8%).

B. }N and•ddN strictly causing the null-time-zone are possible at 2.3% and 3.8% respectively.



Chapter 21

Analysis of Model 3

21.1 Reduction

Definition 21.1.1 (reduction)

(a) If it is always optimal to reject the intervening quitting penalty price ρ in Model 3, then it follows that Model 3 is
substantively reduced to Model 2 in which the ρ is not defined, schematized as

Model 3 � Model 2. (21.1.1)

Let us represent this model reduction as the model-running-back; in other words, Model 3 in “downstream” runs back to
Model 2 in “upstream”.

(b) Let us define

Acceptt≥0(ρ) ◃ Stop
def
= {Accept the intervening quitting penalty price ρ at any given time point on t ≥ 0 }

and stop the process}. (21.1.2)

Let us represent the reduction of this optimal decision rule (odr) as odr 7→Acceptt≥0(ρ) ◃ Stop.

(c) Let us schematize the above two reductions as

Reduction

{
model reduction → model-running-back (� )

odr reduction → odr 7→ Acceptt≥0(ρ) ◃ Stop ( 7→)
(21.1.3)

Lemma 21.1.1 Let Acceptt≥0(ρ) ◃ Stop holds. Then

(a) Let β = 1. Then we have•dd ∥ for any ρ.

(b) Let β < 1 and ρ < 0. Then we have•dd N.
(c) Let β < 1 and ρ = 0. Then we have•dd ∥.

(d) Let β < 1 and ρ > 0. Then we have ⃝⃝s N.
(e) Let ρ ≥ 0. Then we have ⃝⃝s △.
• Proof If Acceptt≥0(ρ) ◃ Stop holds, then we have Vt = ρ for t > 0 from (6.4.38(p.41) ), (6.4.44(p.41) ), (6.4.52(p.41) ), and (6.4.58(p.41) ),

we have Itτ = βτ−tρ for t > 0 from (7.2.4(p.44) ).

(a) Let β = 1. Then β0ρ = β1ρ = · · · = βτρ = ρ for any ρ, hence Iττ = Iτ−1
τ = · · · = I0τ = ρ, so t∗τ = 0, i.e.,•dd∥.

(b) Let β < 1 and ρ < 0. Then β0ρ < β1ρ < · · · < βτρ, hence Iττ < Iτ−1
τ < · · · < I0τ , so t∗τ = 0, i.e.,•ddN.

(c) Let β < 1 and ρ = 0. Then β0ρ = β1ρ = · · · = βτρ = 0, hence Iττ = Iτ−1
τ = · · · = I0τ , so t∗τ = τ = 0, i.e.,•dd∥.

(d) Let β < 1 and ρ > 0. Then β0ρ > β1ρ > · · · > βτρ, hence Iττ > Iτ−1
τ > · · · > I0τ , so t∗τ = τ , i.e., ⃝⃝s N.

(e) Let ρ ≥ 0. Then β0ρ ≥ β1ρ ≥ · · · ≥ βτρ for any 0 < β ≤ 1, hence Iττ ≥ Iτ−1
τ ≥ · · · ≥ I0τ , so t∗τ = τ , i.e., ⃝⃝s △.

21.2 Search-Allowed-Model 3: Q{M:3[A]} = {M:3[R][A], M̃:3[R][A],M:3[P][A], M̃:3[P][A]}
21.2.1 Theorems

As ones corresponding to Theorems 12.5.1(p.80) , 13.3.1(p.98) , and 14.5.1(p.106) let us consider the following three theorems:

Theorem 21.2.1 (symmetry[R→ R̃]) Let A {M:3[R][A]} holds on P ×F . Then A {M̃:3[R][A]} holds on P ×F where

A {M̃:3[R][A]} = SR→R̃[A {M:3[R][A]}]. (21.2.1)

Theorem 21.2.2 (analogy[R→ P]) Let A {M:3[R][A]} holds on P ×F . Then A {M:3[P][A]} holds on P ×F where

A {M:3[P][A]} = AR→P[A {M:3[R][A]}]. (21.2.2)
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Theorem 21.2.3 (symmetry(P→ P̃]) Let A {M:3[P][A]} holds on P ×F . Then A {M̃:3[P][A]} holds on P ×F where

A {M̃:3[P][A]} = SP→P̃[A {M:3[P][A]}]. (21.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:3[R][A]} = SR→R̃[SOE{M:3[R][A]}], (21.2.4)

SOE{M:3[P][A]} = AR→P[SOE{M:3[R][A]}], (21.2.5)

SOE{M̃:3[P][A]} = SP→P̃[SOE{M:3[R][A]}], (21.2.6)

corresponding to (12.5.34(p.77) ), (13.2.4(p.93) ), and (14.5.4(p.106) ). Now, from the comparison of (I) and (II) and of (III) and (IV) in
Table 6.4.5(p.41) it can be easily shown that (21.2.4(p.226) ) and (21.2.6(p.226) ) hold. However, from the comparison of (I) and (III)
in Table 6.4.5(p.41) we can immediately see that (21.2.5(p.226) ) does not always hold, hence it follows that also Theorem 21.2.2(p.225)

does not always hold.

21.2.2 A Lemma

The following lemma determines if Theorem 21.2.2(p.225) holds by testing whether or not each of (21.2.5(p.226) ) is true.

Lemma 21.2.1

(a) Theorem 21.2.1(p.225) always hold.

(b) Theorem 21.2.3(p.226) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 21.2.2(p.225) holds.

(d) Let a⋆ < ρ < b. Then Theorem 21.2.2(p.225) does not always hold.

• Proof Almost the same as the proof of Lemma 20.1.1(p.153) .

21.2.3 M:3[R][A]

� Tom 21.2.1 (�� A {M:3[R][A]})

(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[R][A] �M:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof From (6.4.39(p.41) ) with t = 1 and (6.4.37(p.41) ) we have U1 = max{K (V0)+ρ, βV0)} = max{K (ρ)+ρ, βρ} · · · ((1)), hence
U1 − ρ = max{K (ρ),−(1− β)ρ} · · · ((2)). From (6.4.38(p.41) ) with t = 1 we have V1 ≥ ρ = V0. Then, from (6.4.39(p.41) ) with t = 2

and Lemma 10.2.2(p.57) (e) we have U2 = max{K (V1) + V1, βV1} = max{K (V0) + V0, βV0} = U1. Suppose Ut−1 ≥ Ut−2, hence
from (6.4.38(p.41) ) we have Vt−1 = max{ρ, Ut−1} ≥ max{ρ, Ut−2} = Vt−2. Then, from (6.4.39(p.41) ) we have Ut ≥ max{K (Vt−2) +
Vt−2, βVt−2} = Ut−1 due to Lemma 10.2.2(p.57) (e). Thus, by induction we have Ut ≥ Ut−1 for t > 1, i.e., we have that Ut is
nondecreasing in t > 0 · · · ((3)).

(a) Let ρ ≤ xK or ρ ≤ 0. Suppose ρ ≤ xK , hence K (ρ) ≥ 0 · · · ((4)) from Corollary 10.2.2(p.58) (b). Then, from (1) we have

U1 ≥ K (ρ) + ρ ≥ ρ. Hence Ut ≥ ρ for t > 0 due to (3) . Suppose ρ ≤ 0, hence −(1 − β)ρ ≥ 0. Then, noting (4) , from (2) we
have U1 − ρ ≥ 0, i.e., U1 ≥ ρ, so Ut ≥ ρ for t > 0 due to (3) . Accordingly, whether ρ ≤ xK or ρ ≤ 0, we have Ut ≥ ρ for t > 0,
meaning that it is always optimal to reject the intervening quitting penalty price ρ for any t > 0. This fact is the same as the
event “ the intervening quitting penalty price ρ does not exist on any time t > 0 ”; in other words, it follows that M:3[R][A] is
substantially reduced to M:2[R][A] which has not an intervening quitting penalty price ρ, i.e., M:3[R][A] �M:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0 · · · ((5)), hence K (ρ) ≤ 0 · · · ((6)) from Corollary 10.2.2(p.58) (a) and −(1 − β)ρ ≤ 0. Then, since

U1 − ρ ≤ 0 from (2) , we have U1 ≤ ρ · · · ((7)). Suppose Ut−1 ≤ ρ. Then Vt−1 = ρ from (6.4.38(p.41) ), hence from (6.4.39(p.41) ) we

have Ut = max{K (ρ) + ρ, βρ} = U1 ≤ ρ due to (1) and (7) . Accordingly, by induction Ut ≤ ρ for t > 0, meaning that it is
always optimal to accept the intervening quitting penalty price ρ at all time t ≥ 0 and stop the process. Hence we have odr 7→
Acceptt≥0(ρ) ◃ Stop.

21.2.4 M̃:3[R][A]

� Tom 21.2.2 (�� A {M̃:3[R][A]})

(a) Let ρ ≥ x
K̃ or ρ ≥ 0. Then M̃:3[R][A] � M̃:2[R][A].

(b) Let ρ ≥ x
K̃ and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by symmetry Immediately from applying SR→R̃ (see (18.0.1(p.130) )) to Tom 21.2.1(p.226) due to
Lemma 21.2.1(p.226) (a).
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21.2.5 M:3[P][A]
21.2.5.1 Case of ρ ≤ a⋆ or b ≤ ρ

� Tom 21.2.3 (�� A {M:3[P][A]}) Assume ρ ≤ a⋆ or b ≤ ρ. Then:

(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[P][A] �M:2[P][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by analogy The same as Tom 21.2.1(p.226) due to Lemma 13.6.1(p.99) .

21.2.5.2 Case of a⋆ < ρ < b

� Tom 21.2.4 (�� A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β = 1 and s = 0. Then M:3[P][A]� M:2[P][A].

• Proof by analogy Assume a⋆ < ρ < b and let β = 1 and s = 0. Then, from (5.1.21(p.26) ) we have K (x) = λT (x) ≥ 0 · · · ((1))
for any x due to Lemma 13.2.1(p.93) (g). From (6.4.45(p.41) ) we have U1 ≥ βρ = ρ. Suppose Ut−1 ≥ ρ. Then, from (6.4.44(p.41) )
we have Vt−1 = Ut−1 ≥ ρ, hence from (6.4.46(p.41) ) we obtain Ut ≥ βVt−1 = Vt−1 ≥ ρ. Thus, by induction Ut ≥ ρ for t > 0.
Accordingly, for the same reason as in the proof of Tom 21.2.1(p.226) (a) we have M:3[P][A] �M:2[P][A].

� Tom 21.2.5 (�� A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s or −(1− β)ρ ≥ 0. Then M:3[P][A] � M:2[P][A].
(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0.

1. Let τ = 1. Then we have odr 7→ Accept1(ρ) ◃ Stop.
†

2. Let τ > 1. Then:

i. Let ρ ≤ xK . Then M:3[P][A] �M:2[P][A]
ii. Let ρ ≥ xK . Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

†

• Proof Assume a⋆ < ρ < b. Let β < 1 or s > 0. From (6.4.45(p.41) ) we have

U1 − ρ = max{λβmax{0, a− ρ} − (1− β)ρ− s,−(1− β)ρ} · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s or −(1 − β)ρ ≥ 0, hence U1 − ρ ≥ 0 from (1) or equivalently U1 ≥ ρ · · · ((2)).
Then, since V1 = U1 · · · ((3)) from (6.4.44(p.41) ) with t = 1, from (6.4.46(p.41) ) with t = 2 we have U2 = max{K (V1) + V1, βV1} =
max{K (U1) + U1, βU1} · · · ((4)). Hence, from (2) , Lemma 13.2.3(p.96) (e), and (5.1.21(p.26) ) we have

U2 ≥ max{K (ρ) + ρ, βρ}

= max{λβT (ρ)− (1− β)ρ− s+ ρ, βρ}

= max{λβT (ρ) + βρ− s, βρ}.

Then, from Lemma 13.2.1(p.93) (h) we have U2 ≥ max{λβmax{0, a − ρ} + βρ − s, βρ} = U1 due to (6.4.45(p.41) ). Suppose
Ut−1 ≥ Ut−2, so Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from (6.4.44(p.41) ). Hence, from (6.4.46(p.41) ) and
Lemma 13.2.3(p.96) (e) we have Ut ≥ max{K (Vt−2) + Vt−2, βVt−2} = Ut−1. Accordingly, by induction Ut ≥ Ut−1 for t > 1, i.e.,
Ut is nondecreasing in t > 0. Hence, from (2) we have Ut ≥ ρ for t > 0. Therefore, for almost the same reason as in the proof
of Tom 21.2.1(p.226) (a) we have M:3[P][A]�M:2[P][A].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0 · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. Then (6) implies that it is optimal to accept the intervening quitting penalty price ρ at t = 1 and stop the
process, i.e., odr 7→ Accept1(ρ) ◃ Stop.

(b2) Let τ > 1. Due to (6) we have V1 = ρ from (6.4.44(p.41) ) with t = 1, hence U2 = max{K (ρ) + ρ, βρ} · · · ((7)) from

(6.4.46(p.41) ) with t = 2.

(b2i) Let ρ ≤ xK . ThenK (ρ) ≥ 0 from Lemma 13.2.3(p.96) (j1), hence from (7) we have U2 ≥ K (ρ)+ρ ≥ ρ. Suppose Ut−1 ≥ ρ,
hence Vt−1 = Ut−1 = ρ from (6.4.44(p.41) ). Then, from (6.4.46(p.41) ) and Lemma 13.2.3(p.96) (e) we have Ut ≥ max{K (ρ) + ρ, βρ} ≥
K (ρ) + ρ ≥ ρ. Accordingly, by induction we have Ut ≥ ρ for t > 1. Thus the assertion holds for the same reason as in the proof
of Lemma 21.2.1(p.226) (a).

(b2ii) Let ρ ≥ xK , hence K (ρ) < 0 from Lemma 13.2.3(p.96) (j1). Then, from (7) we have U2 ≤ max{ρ, βρ} · · · ((8)). If β < 1,

then ρ ≥ 0 from (5) , hence U2 ≤ max{ρ, ρ} = ρ and if β = 1, then U2 ≤ max{ρ, ρ} = ρ. Accordingly, whether β < 1 or
β = 1, we have U2 ≤ ρ for t > 0. Suppose Ut−1 ≤ ρ, hence Vt−1 = ρ from (6.4.44(p.41) ). Then, from (6.4.46(p.41) ) we have
Ut = max{K (ρ) + ρ, βρ} = U2 ≤ ρ. Accordingly, by induction we have Ut ≤ ρ for t > 1. Hence, from (6) we have Ut ≤ ρ for
t > 0. Thus, for the same reason as in the proof of Tom 21.2.1(p.226) (b) it follows that the assertion holds.

†In this case, we have four possibilities for the optimal initiating time (OIT):•dd∥,•ddN, ⃝⃝s N, and ⃝⃝s △.
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21.2.6 M̃:3[P][A]
21.2.6.1 Case of ρ ≥ b⋆ or a ≥ ρ

� Tom 21.2.6 (�� A {M̃:3[P][A]}) Assume ρ ≥ b⋆ or a ≥ ρ.

(a) Let ρ ≥ x
K̃ or ρ ≥ 0. Then M̃:3[P][A] � M̃:2[P][A].

(b) Let ρ ≤ x
K̃ and ρ ≤ 0. Then we have odr 7→ Acceptτ (ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.3(p.130) )) due to Lemma 21.2.1(p.226) (b).

21.2.6.2 Case of b⋆ > ρ > a

� Tom 21.2.7 (�� A {M̃:3[P][A]}) Assume b⋆ > ρ > b. Let β = 1 and s = 0. Then M̃:3[P][A] � M̃:2[P][A].

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.3(p.130) )) due to Lemma 21.2.1(p.226) (b).

� Tom 21.2.8 (�� A {M̃:3[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ 0 or (1− β)ρ ≥ 0. Then M̃:3[P][A] �M̃:2[P][A].
(b) Let −λβmin{0, ρ− b}+ (1− β)ρ < s and (1− β)ρ < 0.

1. Let τ = 1. Then we have odr 7→ Accept1(ρ) ◃ Stop.

2. Let τ > 1.

i. Let ρ > x
K̃ . Then M̃:3[P][A] � M̃:2[P][A].

ii. Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.3(p.130) )) due to Lemma 21.2.1(p.226) (b).

21.2.7 Conclusion 5 (Search-Allowed-Model 3)

Model 3 (search-Allowed-model) is reduced to either of the following two cases (see (21.1.3(p.225) )):

Case A M/M̃:3[R/P][A] � M/M̃:2[R/P][A] where

1. M:3[R][A] � rM:2[R][A]; see Tom 21.2.1(p.226) (a),

2. M̃:3[R][A] � rM̃:2[R][A]; see Tom 21.2.2(p.226) (a),

3. M:3[P][A] � rM:2[P][A]; see Tom 21.2.3(p.227) (a), 21.2.4(p.227) , and 21.2.5(p.227) (a,b2i),

4. M̃:3[P][A] � rM̃:2[P][A]; see Tom 21.2.6(p.228) (a), 21.2.7(p.228) , and 21.2.8(p.228) (a,b2i).

Case B odr 7→ Acceptt≥0(ρ) ◃ Stop where

1. For M:3[R][A], see Tom 21.2.1(p.226) (b),

2. For M̃:3[R][A], see Tom 21.2.2(p.226) (b),

3. For M:3[P][A], see Tom 21.2.3(p.227) (b),21.2.5(p.227) (b1,b2ii),

4. For M̃:3[P][A], see Tom 21.2.6(p.228) (b),21.2.8(p.228) (b1.b2ii).

21.3 Search-Enforced-Model 3: Q{M:3[E]} = {M:3[R][E], M̃:3[R][E],M:3[P][E], M̃:3[P][E]}

21.3.1 Preliminary

As the ones corresponding to Theorems 21.2.1(p.225) , 21.2.2(p.225) , and 21.2.3(p.226) let us consider the following three theorems:

Theorem 21.3.1 (symmetry[R→ R]) Let A {M:3[R][E]} holds on P ×F . Then A {M̃:3[R][E]} holds on P ×F where

A {M̃:3[R][E]} = SR→R̃[A {M:3[R][E]}]. (21.3.1)

Theorem 21.3.2 (analogy[R→ P]) Let A {M:3[R][E]} holds on P ×F . Then A {M:3[P][E]} holds on P ×F where

A {M:3[P][E]} = AR→P[A {M:3[R][E]}]. (21.3.2)

Theorem 21.3.3 (symmetry[P→ P])) Let A {M:3[P][E]} holds on P ×F . Then A {M̃:3[P][E]} holds on P ×F where

A {M̃:3[P][E]} = SP→P̃[A {M:3[P][E]}]. (21.3.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:3[R][E]} = SR→R̃[SOE{M:3[R][E]}], (21.3.4)

SOE{M:3[P][E]} = AR→P[SOE{M:3[R][E]}], (21.3.5)

SOE{M̃:3[P][E]} = SP→P̃[SOE{M:3[P][E]}], (21.3.6)

corresponding to (21.2.4(p.226) ), (21.2.5(p.226) ), and (21.2.6(p.226) ). Now, from the comparison of (I) and (II) and of (III) and (IV) in
Table 6.4.6(p.41) it can be easily shown that (21.3.4(p.228) ) and (21.3.6(p.228) ) hold. However, from the comparison of (I) and (III) in
Table 6.4.6(p.41) we can immediately see that (21.3.5(p.228) ) does not hold, hence it follows that also Theorem 21.3.2(p.228) does not
always hold.
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21.3.2 A Lemma
Lemma 21.3.1

(a) Theorem 21.3.1(p.228) always hold.

(b) Theorem 21.3.3(p.228) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 21.3.2(p.228) holds.

(d) Let a⋆ < ρ < b. Then Theorem 21.3.2(p.228) does not always hold.

• Proof Almost the same as the proof of Lemma 20.1.1(p.153) .

21.3.3 M:3[R][E]

� Tom 21.3.1 (�� A {M:3[R][E]})
(a) Let ρ ≤ xK . Then M:3[R][E] �M:2[R][E].
(b) Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

†

• Proof From (6.4.53(p.41) ) with t = 1 and (6.4.51(p.41) ) we have U1 = K (ρ) + ρ · · · ((1)) and from (6.4.52(p.41) ) with t = 1 we have

V1 ≥ ρ = V0. Then, from (6.4.53(p.41) ) with t = 2 and Lemma 10.2.2(p.57) (e) we have U2 = K (V1) + V1 ≥ K (ρ) + ρ = U1. Suppose
Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from (6.4.52(p.41) ). Then from (6.4.53(p.41) ) we have Ut = K (Vt−1) + Vt−1 ≥
K (Vt−2) + Vt−2 = Ut−1 due to Lemma 10.2.2(p.57) (e) Thus, by induction we have Ut ≥ Ut−1 for t > 1, i.e., Ut is nondecreasing
in t > 0 · · · ((2)).

(a) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Corollary 10.2.2(p.58) (b). Then, from (1) we have U1 ≥ ρ. Hence Ut ≥ ρ for t > 0 due
to (2) . Accordingly, for almost the same reason as in the proof of Tom 21.2.1(p.226) (a) we have M̃:3[R][E] � M̃:2[R][E].

(b) Let ρ ≥ xK , hence K (ρ) ≤ 0 · · · ((3)) from Corollary 10.2.2(p.58) (a). Then, from (1) we have U1 ≤ ρ. Suppose Ut−1 ≤ ρ.

Then Vt−1 = ρ from (6.4.52(p.41) ), hence from (6.4.53(p.41) ) we have Ut = K (ρ) + ρ ≤ ρ due to (3) . Accordingly, by induction
Ut ≤ ρ for t > 0, so we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop for the same reason as in Tom 21.2.1(p.226) (b).

21.3.4 M̃:3[R][E]

� Tom 21.3.2 (�� A {M̃:3[R][E]}) For any β ≤ 1 and s ≥ 0 we have :

(a) Let ρ ≤ x
K̃ . Then M̃:3[R][E] � M̃:2[R][E].

(b) Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SR→R̃ (see (18.0.1(p.130) )) due to Lemma 21.3.1(p.229) (a).

21.3.5 M:3[P][E]
21.3.5.1 Case of ρ ≤ a⋆ or b ≤ ρ

In this case, we can use Lemma 21.3.1(p.229) (c) to prove Tom 21.3.3(p.229) below.

� Tom 21.3.3 (�� A {M:3[P][E]}) Assume ρ ≤ a⋆ or b ≤ ρ.

(a) Let ρ ≤ xK . Then M:3[P][E] �M:2[P][E].
(b) Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by analogy The same as Tom 21.3.1(p.229) due to Lemma 13.6.1(p.99) .

21.3.5.2 Case of a⋆ < ρ < b

In this case, Tom’s 21.3.4(p.229) and 21.3.5(p.229) below must be directly proven due to Lemma 21.3.1(p.229) (d).

� Tom 21.3.4 (�� A {M:3[P][E]}) Assume a⋆ < ρ < b and let β = 1 and s = 0. Then we have M:3[P][E] � M:2[P][E].
• Proof Suppose a⋆ < ρ < b and let β = 1 and s = 0. From (5.1.21(p.26) ) we have K (x) = λT (x) ≥ 0 · · · ((1)) for any x due

to Lemma 13.2.1(p.93) (g). Now, from (6.4.59(p.41) ) we have U1 = λmax{0, a − ρ} + ρ ≥ ρ due to max{0, a − ρ} ≥ 0. Suppose
Ut−1 ≥ ρ. Then, since Vt−1 = Ut−1 due to (6.4.58(p.41) ), from (6.4.60) we have Ut = K (Ut−1) + Ut−1 ≥ Ut−1 due to (1) , hence
Ut ≥ ρ. Accordingly, by induction Ut ≥ ρ for t > 0, implying that it is optimal to reject the intervening quitting penalty price
ρ for any t > 1. Thus, for almost the same as in the proof of Tom 21.2.1(p.226) (a) we have M:3[P][E] � M:2[P][E].

� Tom 21.3.5 (�� A {M:3[P][E]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s. Then M:3[P][E] � M:2[P][E].
(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s.

†In this case, we have four possibilities for the optimal initiating time (OIT):•dd∥,•ddN, ⃝⃝s N, and ⃝⃝s △ (see Lemma 21.1.1(p.225) ).
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1. Let τ = 1. Then we have odr 7→ Acceptt=1(ρ) ◃ Stop.

2. Let τ > 1. Then

i. Let ρ ≤ xK . Then M:3[P][E] � M:2[P][E].
ii. Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof Suppose a⋆ < ρ < b. Let β < 1 or s > 0. From (6.4.59(p.41) ) we have

U1 − ρ = λβmax{0, a− ρ} − (1− β)ρ− s · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s, hence U1 ≥ ρ · · · ((2)) from (1) . Then, since V1 = U1 · · · ((3)) from (6.4.58(p.41) )

with t = 1, we have U2 = K (U1) + U1 · · · ((4)) from (6.4.60(p.41) ) with t = 2. Hence, from (2) , Lemma 13.2.3(p.96) (e), and

(5.1.21(p.26) ) we have U2 ≥ K (ρ) + ρ = λβT (ρ)− (1− β)ρ− s+ ρ = λβT (ρ) + βρ− s. Then, from Lemma 13.2.1(p.93) (h) we have
U2 ≥ λβmax{0, a − ρ} + βρ − s = U1 due to (6.4.59(p.41) ). Suppose Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from
(6.4.58(p.41) ). Then, from Lemma 13.2.3(p.96) (e) we have Ut ≥ K (Vt−2) + Vt−2 = Ut−1. Accordingly, by induction Ut ≥ Ut−1

for t > 1, i.e., Ut is nondecreasing in t > 0. Hence, from (2) we have Ut ≥ ρ for t > 0, implying that it is optimal to reject
the intervening quitting penalty price ρ for any t > 1. Therefore, for the same as in the proof of Tom 21.2.1(p.226) (a) we have
M:3[P][E] � M:2[P][E].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. Now (6) implies that it is optimal to accept the intervening quitting penalty price ρ at the starting time
t = 1 and the process stops, hence we have odr 7→ Acceptt=1(ρ) ◃ Stop.

(b2) Let τ > 1. Now, due to (6) we have V1 = ρ from (6.4.58(p.41) ) with t = 1, thus U2 = K (ρ) + ρ · · · ((7)) from (6.4.60(p.41) )

with t = 2.

(b2i) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Lemma 13.2.3(p.96) (j1). Then, from (7) we have U2 ≥ ρ. Suppose Ut−1 ≥ ρ, hence
Vt−1 = Ut−1 from (6.4.58(p.41) ). Then, from (6.4.60(p.41) ) and Lemma 13.2.3(p.96) (e) we have Ut = K (Ut−1)+Ut−1 ≥ K (ρ)+ρ ≥ ρ.
Hence, by induction Ut ≥ ρ for t > 1, implying that it is optimal to reject the intervening quitting penalty price ρ for any t > 1.
Thus, for almost the same as in the proof of Lemma 21.2.1(p.226) (a) we have M:3[P][E] � M:2[P][E].

(b2ii) Let ρ ≥ xK . Then K (ρ) ≤ 0 · · · ((8)) from Lemma 13.2.3(p.96) (j1). Hence U2 ≤ ρ from (7) . Suppose Ut−1 ≤ ρ, hence

Vt−1 = ρ from (6.4.58(p.41) ). Then, from (6.4.60(p.41) ) we have Ut = K (ρ) + ρ ≤ ρ · · · ((9)) due to (8) . Thus, by induction Ut ≤ ρ

for t > 1. From this and (6) we have Ut ≤ ρ for t > 0, hence we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop for the same reason as in the
proof of Tom 21.2.1(p.226) (b) we have that the assertion holds.

21.3.6 M̃:3[P][E]
21.3.6.1 Case of ρ ≥ b⋆ or a ≥ ρ

� Tom 21.3.6 (�� A {M̃:3[P][E]}) Assume ρ ≥ b⋆ or a ≥ ρ and let β ≤ 1 and s ≥ 0.

(a) Let ρ ≥ x
K̃ . Then M̃:3[P][E] �M̃:2[P][E].

(b) Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.2(p.130) )) to Tom 21.3.3(p.229) .

21.3.6.2 Case of b⋆ > ρ > a

� Tom 21.3.7 (�� A {M̃:3[P][E]}) Assume b⋆ > ρ ≥ b and let β = 1 and s = 0. Then M̃:3[P][E] 7→M̃:2[P][E].

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.2(p.130) )) to Tom 21.3.4(p.229) .

� Tom 21.3.8 (�� A {M̃:3[P][E]}) Assume b⋆ > ρ > a and let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ s. Then M̃:3[P][E] �M̃:2[P][E].
(b) Let −λβmin{0, ρ− b}+ (1− β)ρ ≤ s.

1. Let τ = 1. Then we have odr 7→ Acceptt=1(ρ) ◃ Stop.

2. Let τ > 1. Then

i. Let ρ > x
K̃ . Then M̃:3[P][E] �M̃:2[P][E]

ii. Let ρ ≤ x
K̃ . Then odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (18.0.2(p.130) )) to Tom 21.3.5(p.229) .
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21.3.7 Conclusion 6 (Search-Enforced-Model 3)

This model (search-Enforced-model) is reduced to either of the following two cases (see (21.1.3(p.225) )):

Case A M/M̃:3[R/P][E] � M/M̃:2[R/P][E] where

1. M:3[R][E] � rM:2[R][E]; see Tom 21.3.1(p.229) (a),

2. M̃:3[R][E] � rM̃:2[R][E]; see Tom 21.3.2(p.229) (a),

3. M:3[P][E] � rM:2[P][E]; see Tom 21.3.3(p.229) (a), 21.3.4(p.229) , and 21.3.5(p.229) (a,b2i),

4. M̃:3[P][E] � rM̃:2[P][E]; see Tom 21.3.6(p.230) (a), 21.3.7(p.230) , and 21.3.8(p.230) (a,b2i).

Case B odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop where

1. For M:3[R][E], see Tom 21.3.1(p.229) (b),

2. For M̃:3[R][E], see Tom 21.3.2(p.229) (b),

3. For M:3[P][E], see Tom 21.3.3(p.229) (b),21.3.5(p.229) (b1,b2ii),

4. For M̃:3[P][E], see Tom 21.3.6(p.230) (b),21.3.8(p.230) (b1,b2ii).

21.4 Conclusions of Model 3
This model (whether search-Enforced-model or search-Allowed-model) is reduced to either of the following two cases (see Con-
clusions 5 (p.228) and 6 (p.231) ):

C1. M/M̃:3[R/P][A/E] � M/M̃:2[R/P][A/E].
C2. odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.
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Chapter 22

Conclusions of Part 3 (No-Recall-Model)

Below is the summary of Sections 19.3(p.151) , 20.3(p.223) , and 21.4(p.231) .

22.1 Models 1/2

C1. Mental Conflict

Here the adverb “always” means “whether search-Allowed-model or search-Enforced-model, whether selling model or buying
model, and whether R-model or P-model”. Then, C1(p.151) and C1(p.223) can be rewritten as follows.

a. Model 1. On F+,

Let β ≤ 1 and s ≥ 0. Then we always have the normal mental conflict, which coincides with expectations in
Examples 1.4.1(p.5) - 1.4.4(p.6) .

b. Model 2. On F+,

1. Let β = 1 and s = 0. Then we always have the normal mental conflict, which coincides with expectations in
Examples 1.4.1(p.5) - 1.4.4(p.6) .

2. Let β < 1 or s > 0. Then we always have the abnormal mental conflict, which does not coincide with expectations
in Examples 1.4.1(p.5) - 1.4.4(p.6) .

C2. Symmetry

a. On F+:

1. Let β = 1 and s = 0. Then, for Models 1/2 the symmetry is inherited (see C2b(p.151) and C2a(p.223) ).

2. Let β < 1 or s > 0. Then the symmetry may collapse for Model 1 (see C2c(p.151) ) and always collapse for Model 2
(see C2b(p.223) ).

C3. Analogy

a. Model 1. On F+:

1. Let β = 1 and s = 0. Then the analogy is inherited (see C5b3(p.151) ).

2. Let β < 1 or s > 0. Then analogy is may collapses (see C3c(p.151) ).

b. Model 2. On F+:

1. For any β ≤ 1 and s ≥ 0, the analogy may collapse (see C3a(p.223) ).

C4. Optimal Initiating Time (OIT)

On F+:

a. Let β = 1 and s = 0.

1. For Model 1, only ⃝⃝s N is possible (see Tables 19.1.1(p.135) and 19.2.1(p.149) ).

2. For Model 2, only ⃝⃝s N and•dd ∥ are possible (see Tables 20.1.1(p.189) and 20.2.3(p.222) ).

3. What is remarkable here is that •dd ∥ (deadline-engulfing) occurs even in the simplest case of “β = 1 and s = 0”
(see C4a(p.223) ).

b. Let β < 1 or s > 0.

1. For Model 1, ⃝⃝s N, }∥, }△, }N,•dd∥, and•dd△ are possible (see Tables 19.1.2(p.135) and 19.2.2(p.150) ).

2. For Model 2, ⃝⃝s △,⃝⃝s N, } ∥, } △, } N,•dd ∥,•dd △, and•dd N are possible (see Tables 20.1.2(p.190) and 20.2.4(p.222) ).
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c. Joining Tables 19.3.1(p.151) and 20.3.1(p.223) produces the following table:

Table 22.1.1: Occurance rates of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
44.4%/ 68 22.2%/ 34 33.4%/ 51

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− possible possible possible possible possible possible possible possible

–%/ – 5.9%/ 9 38.6%/ 59 12.4%/ 19 7.2%/ 11 2.6%/ 4 19.0%/ 29 11.1%/ 17 3.2%/ 5

C5. Null-time-zone and deadline-engulfing

From Table 22.1.1(p.234) above, we see that on F :

a. See Remark 7.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole, we have ⃝⃝s , } , and•dd at 44.4%, 22.2%, and 33.4% respectively where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 7.2.1(p.45) .

2. }∥ is possible (12.4%).

3. •dd∥ is possible (19.0%).

4. ⃝⃝s △ never occur (5.9%).

5. }△ is possible (7.2%).

6. •dd△ is possible (11.1%).

7. ⃝⃝s N is possible (38.6%) (see Remark 7.2.2(p.45) ),

8. }N is possible(2.6%).

◦ Tom 19.2.2(p.137) (c2iii2)

◦ Tom 20.2.2(p.192) (c3i2,c3ii1ii2,c3ii2i).

9. •ddN is possible (3.2%).

◦ Tom 20.2.4(p.196) (d2i,d2ii).

◦ Tom 20.2.16(p.206) (c2,c3i2,c3i3).

The following three are especially noteworthy findings:

A. } and•dd causing the null-time-zone occur at 55.6% (= 22.2% + 33.4%).

B. •dd causing the deadline-engulfing occurs at 33.4%.

C. } N and•dd N causing the deadline-engulfing occurs at 2.6% and 3.2% respectively.

D. •dd ∥ causing the deadline-engulfing occurs even in the simplest case of “β = 1 and s = 0” (see C4a3(p.233) ).

C6. C S (Conduct Skip) (see Def. 2.2.1(p.12) and Remark 7.2.1(p.44) )

It is only for M:2[R][A]+ and M:2[P][A]+ with β < 1 or s > 0 (see Table 20.1.4(p.190) ) that we have observed C S . It is usual
to assume that once conducting a search is optimal, it will become optimal to continue conducting the search afterward.
However, we demonstrated that this expectation does not always hold. In other words, it can become optimal to skip the
search after initially continuing it for a while.

22.2 Models 3

C9. Reduction

Model 3 is reduced to the following two cases (see Section 21.4(p.231) ):

a. model-running-back M/M̃:3[R/P][A/E] � M/M̃:2[R/P][A/E].
b. odr-reduction odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.
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Chapter 23

Definitions of Models

23.1 Future Subjects�� ���� ��F.S. 1 (future subject) In the recall-model with R-mechanism it suffices to memorize only the best of prices which have
been rejected so far. Against this, in the recall-model with P-mechanism it is hard to define the best price itself. For this reason,
in this chapter we exclude the application of the integrated-theory to the latter model, which is left as a subject to be tackled in
the future (see F2(p.288) ).

For convenience of reference, below let us copy Table 3.2.2(p.18) where represents the model excluded for the above
reason.

Table 23.1.1: The 24 recall-models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A] , rM̃:1[P][A] }
Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E] , rM̃:1[P][E] }

Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A] , rM̃:2[P][A] }
Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E] , rM̃:2[P][E] }

Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A] , rM̃:3[P][A] }
Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E] , rM̃:3[P][E] }

23.2 Model 1
23.2.1 Search-Enforced-Model 1: Q{rM:1[E]} = {rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E]}

23.2.1.1 rM:1[R][E]
This is the most basic model of the selling model with recall, which is identical to M:1[R][E] (see Section 4.1.1.1.1(p.21) ) except
that the price to be accepted is the best among the prices rejected so far.

23.2.1.2 rM̃:1[R][E]
This is the most basic model of the buying model with recall, which is the same as M̃:1[R][E] (see Section 4.1.1.1.2(p.22) ) except
that the price to be accepted is the best of prices rejected so far.

23.2.2 Search-Allowed-Model 1: Q{rM:1[A]} = {rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A]}

This is the same model as the one described in Section 23.2.1(p.237) , except that the search is allowed.

23.3 Model 2
This model is defined by adding the terminal quitting penalty price ρ to Model 1 as described in Section 23.2(p.237) .

23.4 Model 3
This model is defined by adding the intervening quitting penalty price ρ to Model 2 as described in Section 23.3(p.237) .

23.5 Best Price

Definition 23.5.1 (best price)

(a) In the selling model M (buying model M̃) let us refer to the highest y of buying prices (the highest y of selling prices)
which have been offered and rejected as the best price y.

(b) By Acceptt⟨y⟩ (Rejectt⟨y⟩) let us denote “Accept (Reject) the best price y at time t”.

Remark 23.5.1 When the process initiates at a given time t, there exist no best price since no search activity is conducted
before that.
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Chapter 24

Systems of Optimality Equations

For this model we consider only R-model (see
�� ��F.S 1(p.237) ).

24.1 Model 1
24.1.1 Search-Allowed-Model 1

24.1.1.1 rM:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (24.1.1)

vt(y) = max{y, Vt(y)}, t > 0, (24.1.2)

V1 = βE[ξ]− s = βµ− s, (24.1.3)

Vt = max{βE[vt−1(ξ)]− s, βVt−1} t > 1, (24.1.4)

where Vt(y) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = max{βE[vt−1(max{ξ, y})]− s, βvt−1(y)}, t > 0. (24.1.5)

The system of optimality equations of this model is given by

SOE{rM:1[R][A]} = {(24.1.1(p.239) )− (24.1.5(p.239) )}. (24.1.6)

For convenience let us define
V0(y) = y. (24.1.7)

Then (24.1.2(p.239) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (24.1.8)

From (24.1.4(p.239) ) and (24.1.5(p.239) ) with t = 1 we have respectively

V1(y) = max{βE[max{ξ, y}]− s, βy} (24.1.9)

= max{K (y) + y, βy} (from (5.1.10(p.25) ) with λ = 1) (24.1.10)

= max{L (y) + βy, βy} (from (5.1.9(p.25) )). (24.1.11)

= max{L (y), 0}+ βy. (24.1.12)

Let us here define

St = β(E[vt−1(ξ)]− Vt−1)− s, t > 1. (24.1.13)

Then, (24.1.4(p.239) ) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 1, (24.1.14)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 1. (24.1.15)

More strictly

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (24.1.16)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.1.17)

St > (<) 0 ⇒ ConducttN (SkiptN). (24.1.18)
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Furthermore let us define

St(y) = β(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (24.1.19)

Then (24.1.5(p.239) ) can be rewritten as

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (24.1.20)

implying that
St(y) ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (24.1.21)

More strictly
St(y) ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (24.1.22)

St(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.1.23)

St(y) > (<) 0 ⇒ ConducttN (SkiptN). (24.1.24)

From the comparison of the two terms within { } in the right-hand side of (24.1.2(p.239) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt
†

}
t > 0 (24.1.25)

24.1.1.2 rM̃:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (24.1.26)

vt(y) = min{y, Vt(y)}, t > 0, (24.1.27)

V1 = βE[ξ] + s = βµ+ s, (24.1.28)

Vt = min{βE[vt−1(ξ)] + s, βVt−1} t > 1, (24.1.29)

where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = min{βE[vt−1(min{ξ, y})] + s, βvt−1(y)}, t > 0. (24.1.30)

The system of optimality equations of this model is given by

SOE{rM̃:1[R][A]} = {(24.1.26(p.240) )− (24.1.30(p.240) )}. (24.1.31)

For convenience let us define
V0(y) = y. (24.1.32)

Then (24.1.27(p.240) ) holds for t ≥ 0, i.e.,

vt(y) = min{y, Vt(y)}, t > 0. (24.1.33)
Let us define

S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 1. (24.1.34)

Then (24.1.29(p.240) ) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 1, (24.1.35)

implying that
S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), t > 1. (24.1.36)

More strictly
S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (24.1.37)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.1.38)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (24.1.39)

Let us define

S̃t(y) = β(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (24.1.40)

Then (24.1.30(p.240) ) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (24.1.41)

implying that
S̃t(y) ≤ (≥) 0 ⇒ Conductt (Skipt), t > 0. (24.1.42)

More strictly
S̃t(y) ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (24.1.43)

S̃t(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.1.44)

S̃t(y) < (>) 0 ⇒ ConducttN (SkiptN). (24.1.45)

†The symbol “ / ” means “or”, i.e., “CONDUCTt or SKIPt”.
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From the comparison of the two terms within { } in the right-hand side of (24.1.27(p.240) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (24.1.46)

24.1.2 Search-Enforced-Model 1

24.1.2.1 rM:1[R][E]
This is the most basic model with recall [44,Sak1961], the system of optimality equations of which is given as below. By vt(y)
(t ≥ 0) and Vt (t > 0) let us denote the maximum total expected present discounted profit from initiating the process at time t
with the best price y and with no best price respectively, expressed as

v0(y) = y, (24.1.47)

vt(y) = max{y, Vt(y)}, t > 0, (24.1.48)

Vt = βE[vt−1(ξ)]− s, t > 0, (24.1.49)

where Vt(y) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = βE[vt−1(max{ξ, y})]− s, t > 0. (24.1.50)

The system of optimality equations of this model is given by

SOE{rM:1[R][E]} = {(24.1.47(p.241) )− (24.1.50(p.241) )}. (24.1.51)

For convenience let us define
V0(y) = y. (24.1.52)

Then (24.1.48(p.241) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (24.1.53)

From (24.1.49(p.241) ) and (24.1.50(p.241) ) with t = 1 we have respectively

V1 = βE[ξ]− s = βµ− s, (24.1.54)

V1(y) = βE[max{ξ, y}]− s (24.1.55)

= K (y) + y (from (5.1.10(p.25) ) with λ = 1) (24.1.56)

= L (y) + βy (from (5.1.9(p.25) )). (24.1.57)

From the comparison of the two terms within { } in the right-hand side of (24.1.48(p.241) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (24.1.58)

24.1.2.2 rM̃:1[R][E]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (24.1.59)

vt(y) = min{y, Vt(y)}, t > 0, (24.1.60)

Vt = βE[vt−1(ξ)] + s, t > 0, (24.1.61)

where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = βE[vt−1(min{ξ, y})] + s, t > 0. (24.1.62)

The system of optimality equations of this model is given by

SOE{rM̃:1[R][E]} = {(24.1.59(p.241) )− (24.1.62(p.241) )}. (24.1.63)

For convenience let us define

V0(y) = y. (24.1.64)

Then (24.1.60(p.241) ) holds for t ≥ 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (24.1.65)

From the comparison of the two terms within { } in the right-hand side of (24.1.60(p.241) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (24.1.66)
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24.2 Mode 2
24.2.1 Search-Allowed-Model 2

24.2.1.1 rM:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (24.2.1)

vt(y) = max{y, Vt(y)}, t > 0, (24.2.2)

V0 = ρ, (24.2.3)

Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (24.2.4)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (24.2.5)

The system of optimality equations of this model is given by

SOE{rM:2[R][A]} = {(24.2.1(p.242) )− (24.2.5(p.242) )}. (24.2.6)

For convenience let us define
V0(y) = ρ. (24.2.7)

Then (24.2.2(p.242) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0, (24.2.8)

From (24.2.4(p.242) ) and (24.2.5(p.242) ) with t = 1 we have respectively

V1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} (24.2.9)

= max{K(ρ) + ρ, βρ} (see (5.1.10(p.25) )) (24.2.10)

= max{L(ρ) + βρ, βρ} (see (5.1.9(p.25) )) (24.2.11)

= max{L(ρ), 0}+ βρ, (24.2.12)

V1(y) = max{λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}} (24.2.13)

= max{λβE[max{ξ,max{y, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{K (max{y, ρ}) + max{y, ρ}, βmax{y, ρ}} (see (5.1.10(p.25) )) (24.2.14)

= max{L (max{y, ρ}) + βmax{y, ρ}, βmax{y, ρ}} (see (5.1.9(p.25) )) (24.2.15)

= max{L (max{y, ρ}), 0}+ βmax{y, ρ}. (24.2.16)

Now let us define
St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (24.2.17)

Then, (24.2.4(p.242) ) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (24.2.18)
implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (24.2.19)

More strictly
St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (24.2.20)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.2.21)

St > (<) 0 ⇒ ConducttN (SkiptN). (24.2.22)
In addition, let us define

St(y) = λβ(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (24.2.23)

Then (24.2.5(p.242) ) can be rewritten as, for any y,

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (24.2.24)
implying that

St(y) ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (24.2.25)

More strictly St(y) ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (24.2.26)

St(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.2.27)

St(y) > (<) 0 ⇒ ConducttN (SkiptN). (24.2.28)

From the comparison of the two terms within { } in the right-hand side of (24.2.2(p.242) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (24.2.29)
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24.2.1.2 rM̃:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (24.2.30)

vt(y) = min{y, Vt(y)}, t > 0, (24.2.31)

V0 = ρ, (24.2.32)

Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (24.2.33)

where Vt(y) (t > 0) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (24.2.34)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][A]} = {(24.2.30(p.243) )− (24.2.34(p.243) )}. (24.2.35)

For convenience, let us define

V0(y) = ρ. (24.2.36)

Then (24.2.31(p.243) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (24.2.37)

Let us define

S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (24.2.38)

Then (24.2.33(p.243) ) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (24.2.39)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (24.2.40)

More strictly

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (24.2.41)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.2.42)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (24.2.43)

In addition, let us define

S̃t(y) = λβ(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (24.2.44)

Then (24.2.34(p.243) ) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (24.2.45)

implying that

S̃t(y) ≤ (≥) 0 ⇒ Conductt (Skipt), t > 0. (24.2.46)

More strictly

S̃t(y) ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (24.2.47)

S̃t(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (24.2.48)

S̃t(y) < (>) 0 ⇒ ConducttN (SkiptN). (24.2.49)

From the comparison of the two terms within { } in the right-hand side of (24.2.31(p.243) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (24.2.50)



244

24.2.2 Search-Enforced-Model 2

24.2.2.1 rM:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (24.2.51)

vt(y) = max{y, Vt(y)}, t > 0, (24.2.52)

V0 = ρ, (24.2.53)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0, (24.2.54)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (24.2.55)

The system of optimality equations of this model is given by

SOE{rM:2[R][E]} = {(24.2.51(p.244) )− (24.2.55(p.244) )}. (24.2.56)

For convenience, let us define
V0(y) = ρ. (24.2.57)

Then (24.2.52(p.244) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (24.2.58)

From (24.2.54(p.244) ) and (24.2.55(p.244) ) with t = 1 we have respectively

V1 = λβE[max{ξ, ρ}] + (1− λ)βρ− s

= K(ρ) + ρ (from (5.1.10(p.25) )) (24.2.59)

= L(ρ) + βρ (from (5.1.9(p.25) )), (24.2.60)

V1(y) = λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s

= λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s

= K (max{y, ρ}}) + max{y, ρ} (from (5.1.10(p.25) )) (24.2.61)

= L (max{y, ρ}}) + βmax{y, ρ} (from (5.1.9(p.25) )). (24.2.62)

From the comparison of the two terms within { } in the right-hand side of (24.2.52(p.244) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0 (24.2.63)

24.2.2.2 rM̃:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (24.2.64)

vt(y) = min{y, Vt(y)}, t > 0, (24.2.65)

V0 = ρ, (24.2.66)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (24.2.67)

where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (24.2.68)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][E]} = {(24.2.64(p.244) )− (24.2.68(p.244) )}. (24.2.69)

For convenience, let us define
V0(y) = ρ. (24.2.70)

Then (24.2.65(p.244) ) holds for t ≥ 1, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (24.2.71)

From the comparison of the two terms within { } in the right-hand side of (24.2.65(p.244) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0 (24.2.72)
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24.3 Mode :3

24.3.1 Search-Allowed-Model 3

24.3.1.1 rM:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (24.3.1)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (24.3.2)

V0 = ρ, (24.3.3)

Vt = max{ρ, Ut}, t > 0. (24.3.4)

where Ut(y) in (24.3.2(p.245) ) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as

Ut(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (24.3.5)

where Ut in (24.3.4(p.245) ) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (24.3.6)

The system of optimality equations of this model is given by

SOE{rM:3[R][A]} = {(24.3.1(p.245) )− (24.3.6(p.245) )}. (24.3.7)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (24.3.8)

Then (24.3.2(p.245) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (24.3.9)

24.3.1.2 rM̃:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (24.3.10)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (24.3.11)

V0 = ρ, (24.3.12)

Vt = min{ρ, Ut}, t > 0, (24.3.13)

where Ut(y) in (24.3.11(p.245) ) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (24.3.14)

and where Ut in (24.3.13(p.245) ) is the minimum total expected present discounted cost from rejecting ρ, expressed as

Ut = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (24.3.15)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][A]} = {(24.3.10(p.245) )− (24.3.15(p.245) )}. (24.3.16)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (24.3.17)

Then (24.3.11(p.245) ) and (24.3.13(p.245) ) hold for t ≥ 0 instead of t > 0 , i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (24.3.18)
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24.3.2 Search-Enforced-Model 3

24.3.2.1 rM:3[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0)let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ}, (24.3.19)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (24.3.20)

V0 = ρ, (24.3.21)

Vt = max{ρ, Ut}, t > 0. (24.3.22)

where Ut(y) in (24.3.20(p.246) ) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as

Ut(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (24.3.23)

and where Ut in (24.3.22(p.246) ) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0. (24.3.24)

The system of optimality equations of this model is given by

SOE{rM:3[R][E]} = {(24.3.19(p.246) )− (24.3.24(p.246) )}. (24.3.25)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (24.3.26)

Then (24.3.20(p.246) ) and (24.3.22(p.246) ) hold for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (24.3.27)

24.3.2.2 rM̃:3[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (24.3.28)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (24.3.29)

V0 = ρ, (24.3.30)

Vt = min{ρ, Ut}. (24.3.31)

where Ut(y) in (24.3.29(p.246) ) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (24.3.32)

and where Ut in (24.3.31(p.246) ) is the minimum total expected present discounted cost from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (24.3.33)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][E]} = {(24.3.28(p.246) )− (24.3.33(p.246) )}. (24.3.34)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (24.3.35)

Then (24.3.29(p.246) ) and (24.3.31(p.246) ) hold for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (24.3.36)
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24.4 Reservation Value
⟨a⟩ t-reservation-value (no-recall-model).

Consider the selling model with no recall. Here recall (7.2.3(p.44) ), i.e.,

w ≥ (≤) Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩), (24.4.1)

meaning that the reservation value of the model is given by Vt, which depends on t. Then we say that Vt is the t-dependent
reservation-value or t-reservation-value for short.

⟨b⟩ t-reservation-value (recall-model).

Consider the selling model with recall. Here, by At(y) let us represent the profit from accepting the best price y at a
given time t, so At(y) = y, and by Rt(y) the profit from rejecting the best price y at a given time t, so Rt(y) = Vt(y)
(see (24.1.48(p.241) )). Here let us define

ARt(y)
def
= At(y)− Bt(y) = y − Vt(y). (24.4.2)

Then suppose that there exists y∗
t such that

ARt(y) ≥ (≤) 0⇔ y ≥ (≤) Vt(y)⇔ y ≥ (≤) y∗
t ⇒ Acceptt⟨y⟩ (Rejectt⟨y⟩) (see (24.1.58(p.241) )), (24.4.3)

implying that the reservation value of the model is given by y∗
t , which depends on t. Then we say that y∗

t is the
t-reservation-value.

⟨c⟩ c-reservation-value.

If Vt and y∗
t are constant in t, then we say that each of Vt and y∗

t is the constant reservation-value or the c-reservation-value
for short.

24.5 Systems of Optimality Equations
Below are the systems of optimality equations for the 12 models.

rM:1[R][A] → Section 24.1.1.1(p.239) , rM̃:1[R][A] → Section 24.1.1.2(p.240) ,

rM:1[R][E] → Section 24.1.2.1(p.241) , rM̃:1[R][E] → Section 24.1.2.2(p.241) ,

rM:1[R][A] → Section 24.2.1.1(p.242) , rM̃:1[R][A] → Section 24.2.1.2(p.243) ,

rM:1[R][E] → Section 24.2.2.1(p.244) , rM̃:1[R][E] → Section 24.2.2.2(p.244) ,

rM:1[R][A] → Section 24.3.1.1(p.245) , rM̃:1[R][A] → Section 24.3.1.2(p.245) ,

rM:1[R][E] → Section 24.3.2.1(p.246) , rM̃:1[R][E] → Section 24.3.2.2(p.246) ,
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Chapter 25

Analysis of Model 1

25.1 Search-Allowed-Model 1

25.1.1 rM:1[R][A]
25.1.1.1 Lemmas

25.1.1.1.1 Preliminary

Lemma 25.1.1 (rM:1[R][A]) We have ⃝s dOITsτ>0⟨τ⟩ △.

• Proof Since Vt ≥ βVt−1 for t > 1 from (24.1.4(p.239) ), we have Vt ≥ βVt−1 for τ ≥ t > 1, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVτ−2,
· · · , V2 ≥ βV1, leading to Vτ ≥ βVτ−1 ≥ β2Vτ−1 ≥ · · · ≥ βτ−1V1. Thus, we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ △.

Lemma 25.1.2 (rM:1[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0 respectively.†

(c) Vt is nondecreasing in t > 0.

• Proof (a) v0(y) is nondecreasing in y from (24.1.1(p.239) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreasing
in y from (24.1.5(p.239) ), hence vt(y) is nondecreasing in y from (24.1.8(p.239) ). Accordingly, by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is nondecreasing in y for t > 0 from (24.1.5(p.239) ). In
addition, V0(y) is nondecreasing in y from (24.1.7(p.239) ), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0

(b) Clearly v1(y) ≥ y = v0(y) for any y from (24.1.2(p.239) ) with t = 1 and (24.1.1(p.239) ). Suppose vt−1(y) ≥ vt−2(y) for
any y. Then, from (24.1.5(p.239) ) we have Vt(y) ≥ max{βE[vt−2(max{ξ, y})] − s, βvt−2(y)} = Vt−1(y) for any y. Hence, from
(24.1.8(p.239) ) we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is nondecreasing in t ≥ 0 for any
y. Since vt−1(y) is nondecreasing in t > 0 for any y, it follows that Vt(y) is nondecreasing in t > 0 for any y from (24.1.5(p.239) ).

(c) From (24.1.4(p.239) ) with t = 2 we have V2 ≥ βE[v1(ξ)]− s. In addition, since v1(ξ) ≥ ξ for any ξ from (24.1.2(p.239) ) with
t = 1, we have V2 ≥ βE[ξ] − s = βµ − s = V1 due to (24.1.3(p.239) ). Suppose Vt−1 ≥ Vt−2. Now, since Vt−1(ξ) ≥ Vt−2(ξ) from
(b), we have vt−1(ξ) = max{ξ, Vt−1(ξ)} ≥ max{ξ, Vt−2(ξ)} = vt−2(ξ) for any ξ due to (24.1.8), hence from (24.1.4(p.239) ) we
have Vt ≥ max{βE[vt−2(ξ)]− s, βVt−2} = Vt−1. Thus, by induction Vt ≥ Vt−1 for t > 1, i.e., Vt is nondecreasing in t > 0.

Since 1 = E[1] = E[I(ξ > y) + I(ξ ≤ y)], we can rewrite (24.1.19(p.240) ) as follows.

St(y) = β
(
E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− vt−1(y)(E[I(ξ > y) + I(ξ ≤ y)])

)
− s

= β
(
E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− E[vt−1(y)I(ξ > y) + vt−1(y)I(ξ ≤ y)]

)
− s

= βE[(vt−1(max{ξ, y})− vt−1(y))I(ξ > y) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y)]− s, t > 0. (25.1.1)

Note here that

max{vt−1(ξ)− vt−1(y), 0} = max{vt−1(ξ)− vt−1(y), 0}(I(ξ > y) + I(ξ ≤ y))

= max{vt−1(ξ)− vt−1(y), 0}I(ξ > y) + max{vt−1(ξ)− vt−1(y), 0}I(ξ ≤ y).

Now, due to Lemma 25.1.2(p.249) (a), if ξ > y, then vt−1(ξ) ≥ vt−1(y) or equivalently vt−1(ξ) − vt−1(y) ≥ 0 and if ξ ≤ y, then
vt−1(ξ) ≤ vt−1(y) or equivalently vt−1(ξ)− vt−1(y) ≤ 0. Hence we have

†From (24.1.10(p.239) ) and (24.1.7(p.239) ) we have V1(y) − V0(y) = max{K(y),−(1 − β)y}. Let xK < y and β < 1. Then K(y) < 0 due
to Lemma 10.2.2(p.57) (j1) and −(1 − β)y < 0 for a y > 0, hence V1(y) − V0(y) < 0, i.e., V1(y) < V0(y). Thus Vt(y) does not become
nondecreasing in t ≥ 0 for any y.
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max{vt−1(ξ)− vt−1(y), 0} = (vt−1(ξ)− vt−1(y))I(ξ > y).

Thus (25.1.1(p.249) ) can be rewritten as

St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (25.1.2)
Then, we have

S1(y) = βE[max{v0(ξ)− v0(y), 0}]− s

= βE[max{ξ − y, 0}]− s (← (24.1.1(p.239) ))

= βT (y)− s (← (5.1.1(p.25) ))

= L(y) (← (5.1.3(p.25) ) with λ = 1). (25.1.3)

Lemma 25.1.3 (rM:1[R][A])
(a) St(y) is nonincreasing in y for t > 0.
(b) St(y) ≤ L(y) for any t > 0 and y.
(c) Let xL ≤ y. Then St(y) ≤ 0 for t > 0.

• Proof (a) Immediate from (25.1.2(p.250) ) and Lemma 25.1.2(p.249) (a).

(b) First, (25.1.2(p.250) ) can be rewritten as

St(y) = βEmax{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ) + max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s

= βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] + βE[max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s · · · ((1)).
Next, we have:

◦ Let y ≤ ξ · · · ((2)).† Now v0(ξ)− v0(y) = ξ − y ≤ ξ − y from (24.1.1(p.239) ). Suppose

vt−1(ξ)− vt−1(y) ≤ ξ − y · · · ((3)) (induction hypothesis).

From (24.1.8(p.239) ) we have
vt(ξ)− vt(y) ≤ max{ξ − y, Vt(ξ)− Vt(y)} · · · ((4)).

Then, from (24.1.5(p.239) ) we have

Vt(ξ)− Vt(y) = max
{
βEξ′ [vt−1(max{ξ′, ξ})]− s, βvt−1(ξ)

}
−max

{
βEξ′ [vt−1(max{ξ′, y})]− s, βvt−1(y)

}‡

≤ max{βEξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], β(vt−1(ξ)− vt−1(y))}

= βmax{Eξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], vt−1(ξ)− vt−1(y)}.
Here from (3) we have

vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y}) ≤ max{ξ′, ξ})−max{ξ′, y} ≤ max{0, ξ − y}.

From this and (3) we obtain

Vt(ξ)− Vt(y) ≤ βmax{Eξ′ [max{0, ξ − y}], ξ − y}

= βmax{max{0, ξ − y}, ξ − y}

= βmax{ξ − y, 0}.
In addition, since ξ − y ≥ 0 due to (2) , we have

Vt(ξ)− Vt(y) ≤ β(ξ − y) ≤ ξ − y.

Hence, from (4) we have vt(ξ)− vt(y) ≤ ξ − y. Accordingly, by induction it follows that vt(ξ)− vt(y) ≤ ξ − y for t ≥ 0,
so vt−1(ξ)− vt−1(y) ≤ ξ − y for t > 1. Thus we have

βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] · · · ((5)).

◦ Let ξ < y. Then vt−1(ξ) ≤ vt−1(y) from Lemma 25.1.2(p.249) (a) or equivalently vt−1(ξ) − vt−1(y) ≤ 0 = max{ξ − y, 0},
hence

βE[max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)] ≤ βE[max{max{ξ − y, 0}, 0}I(ξ < y)]

= βE[max{ξ − y, 0}I(ξ < y)] · · · ((6)).
From (1) and from (5) and (6) we have

St(y) ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] + βE[max{ξ − y, 0}I(ξ < y)]− s

= βE[max{ξ − y, 0}(I(y ≤ ξ) + I(ξ < y))]− s

= βE[max{ξ − y, 0}]− s

= βT (y)− s (see (5.1.1(p.25) ))

= L(y) (see (5.1.3(p.25) )).

(c) If xL ≤ y, then L(y) ≤ 0 from Corollary 10.2.1(p.57) (a), hence St(y) ≤ 0 from (b).

†Note here that this inequality means a group of all pairs (ξ, y) satisfying this inequality itself. Hence, if max{ξ′, y} ≤ max{ξ′, ξ}, the
pair (max{ξ′, y},max{ξ′, ξ}) is also an element of the group.

‡ Eξ′ represent the expectation as to ξ′.
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25.1.1.1.2 Case of s = 0

Lemma 25.1.4 (rM:1[R][A]) Let s = 0. Then St(y) ≥ 0 for all y and t > 0.

• Proof If s = 0, from (25.1.2(p.250) ) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for all y and t > 0.

25.1.1.1.3 Case of β = 1 and s > 0

Lemma 25.1.5 (rM:1[R][A]) Let β = 1 and s > 0.

(a) Let y ≥ xK . Then y = Vt(y) for t ≥ 0.

(b) Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

(c) y ≤ Vt(y) for any y and t > 0.

• Proof Let β = 1 and s > 0.

(a,b) Evident for t = 0 from (24.1.7(p.239) ). Suppose that y ≥ (≤) xK ⇒ y = (≤) Vt−1(y) (induction hypothesis).

◦ Let y ≥ xK , hence K(y) ≤ 0 · · · ((1)) from Lemma 10.2.2(p.57) (j1). Due to the induction hypothesis we have vt−1(y) =

y · · · ((2)) from (24.1.2(p.239) ). Then, from Lemma 25.1.3(p.250) (b) we have St(y) ≤ L(y) = T (y)− s = K(y) from (5.1.3(p.25) ))

and (5.1.4(p.25) ) due to the assumptions β = 1 and λ = 1, so St(y) ≤ 0 due to (1) . Hence, from (24.1.20(p.240) ) we have
Vt(y) = βvt−1(y) = vt−1(y), thus Vt(y) = y from (2) . This completes the induction.

◦ Let y ≤ xK , hence K(y) ≥ 0 · · · ((3)) from Lemma 10.2.2(p.57) (j1). From (24.1.5(p.239) ) we have

Vt(y) ≥ E[vt−1(max{ξ, y})] − s. Since vt−1(max{ξ, y}) ≥ max{ξ, y} for any ξ and y from (24.1.8(p.239) ), we get Vt(y) ≥
E[max{ξ, y}] − s = K(y) + y from (5.1.10(p.25) ) with β = 1 and λ = 1. Thus, we obtain Vt(y) ≥ y due to (3) . This
completes the induction.

(c) Immediate from (a,b).

25.1.1.1.4 Case of β < 1 and s > 0

25.1.1.1.4.1 Case of κ > 0

Lemma 25.1.6 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ > 0.

(a) Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ xK . Then xK ≥ Vt(y) ≥ y for t ≥ 0.

• Proof Let β < 1 and s > 0 and let κ > 0. Then, from Lemma 10.2.3(p.58) (d) we have xL > xK > 0 · · · ((1)).

(a,b) The two assertions are evident for t = 0 from (24.1.7(p.239) ). Suppose that

y ≥ (≤) xK ⇒ y ≥ Vt−1(y) · · · ((2)) (y ≤ Vt−1(y) ≤ xK · · · ((3))) (induction hypothesis),

hence y ≥ (≤) xK ⇒ vt−1(y) = y · · · ((4)) (vt−1(y) = Vt−1(y) · · · ((5))) from (24.1.2(p.239) ).

◦ Let y ≥ xK · · · ((6)), hence 0 < y · · · ((7)) due to (1) . Then vt−1(y) = y · · · ((8)) due to (4) .

1. Let xL ≥ y (≥ xK ) · · · ((9)). Then L(y) ≥ 0 · · · ((10 )) due to Lemma 10.2.1(p.57) (e1) and K(y) ≤ 0 · · · ((11 )) due to

Lemma 10.2.2(p.57) (j1). Now, since St(y) ≤ L(y) · · · ((12 )) for any y from Lemma 25.1.3(p.250) (b), from (24.1.20(p.240) ) and

from (12) , (4) , and (10) we have Vt(y) ≤ max{L(y), 0}+ βy = L(y) + βy = K(y) + y ≤ y due to (5.1.9(p.25) ) and (11) .

2. Let y ≥ xL (> xK ) · · · ((13 )), hence L(y) ≤ 0 · · · ((14 )) due to Lemma 10.2.1(p.57) (e1). Then we have St(y) ≤ L(y) ≤
0 · · · ((15 )) from Lemma 25.1.3(p.250) (b), hence from (24.1.20(p.240) ) we have Vt(y) = βvt−1(y) = βy ≤ y due to (4) and (7) .

From the above, if y ≥ xK , then whether for xL ≥ y or for y ≥ xL , we have y ≥ Vt(y) for t ≥ 0. This completes the
induction, i.e., it follows that (a) holds.

◦ Let y ≤ xK · · · ((16 )), hence K(y) ≥ 0 · · · ((17 )) from Lemma 10.2.2(p.57) (j1). Since Vt(y) ≥ βE[vt−1(max{ξ, y})] − s

from (24.1.5(p.239) ) and since vt−1(max{ξ, y}) ≥ max{ξ, y} from (24.1.8(p.239) ), we have Vt(y) ≥ βE[max{ξ, y})] − s =
K(y) + y from (5.1.10(p.25) )) with λ = 1, hence Vt(y) ≥ y due to (17) . Since max{ξ, y} ≤ max{ξ, xK } for any ξ due
to (16) , from Lemma 25.1.2(p.249) (a) we have vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((18 )) for any ξ. Furthermore, since

max{ξ, xK } ≥ xK for any ξ, due to (2) we have Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any ξ, hence from (24.1.8(p.239) ) we
have vt−1(max{ξ, xK }) = max{ξ, xK } for any ξ, so from (18) we have vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ. In addi-
tion, since vt−1(y) = Vt−1(y) ≤ xK due to (5) and (3) , from (24.1.5(p.239) ) we have Vt(y) ≤ max{βE[max{ξ, xK }]−s, β xK },
hence from (5.1.10(p.25) ) with λ = 1 we have Vt(y) ≤ max{K(xK ) + xK , β xK } = max{xK , β xK } = xK since xK > 0 due
to (1) . This completes the induction.
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25.1.1.1.4.2 Case of κ ≤ 0

Lemma 25.1.7 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ ≤ 0.

(a) Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

• Proof Let β < 1 and s > 0 and let κ ≤ 0. Then, from Lemma 10.2.3(p.58) (d) we have xL ≤ xK ≤ 0 · · · ((1)). Due to

(24.1.7(p.239) ) the two assertions clearly hold for t = 0. Suppose that y ≥ (≤) 0 ⇒ Vt−1(y) ≤ (≥) y (induction hypothesis), hence
vt−1(y) = y (vt−1(y) = Vt−1(y)).

(a) Let y ≥ 0 · · · ((2)). Then, since xL ≤ y from (1) , we have St(y) ≤ 0 for t > 0 due to

Lemma 25.1.3(p.250) (c). Therefore, from (24.1.14(p.239) ) we obtain Vt(y) = βVt−1(y), hence due to the induction hypothesis we
have Vt(y) ≤ βy ≤ y due to β < 1 and (2) . This completes the induction.

(b) Let y ≤ 0 · · · ((3)). Now, since Vt(y) ≥ βvt−1(y) from (24.1.5(p.239) ) and since vt−1(y) ≥ y from (24.1.8(p.239) ), we have

Vt(y) ≥ βy ≥ y due to β < 1 and (3) . This completes the induction.

25.1.1.2 Analysis

� Tom 25.1.1 (�� A {rM:1[R][A]})
(a) Let s = 0. Then rM:1[R][A] # rM:1[R][E].
(b) Let s > 0.

1. We have ⃝s dOITsτ>0⟨τ⟩ △.†

2. ♣Let β = 1. Then y ≤ Vt(y) for any y and t ≥ 0.

3. Let β < 1.

i. Let κ > 0.

1. ♠Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

ii. Let κ ≤ 0.

1. ♢Let y ≥ 0 (i.e., F+). Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ 0 (i.e., F−). Then y ≤ Vt(y) for t ≥ 0.

• Proof (a) Let s = 0. Then, from Lemma 25.1.4(p.251) we have St(y) ≥ 0 for all y and t > 0, hence it is optimal to Conductt
for all y and t > 0 due to (24.1.21(p.240) ). This fact implies that rM:1[R][A] which is originally a search-Allowed-model migrates
( # ) over to rM:1[R][E] (see Def. 11.2.3(p.63) ) which is a search-Enforced-model.

(b) Let s > 0.

(b1) The same as Lemma 25.1.1(p.249) .†

(b2) The same as Lemma 25.1.5(p.251) (c).

(b3) Let β < 1.

(b3i-b3i2) The same as Lemma 25.1.6(p.251) .

(b3ii-b3ii2) The same as Lemma 25.1.7(p.252) .

25.1.1.3 Flow of Optimal Decision Rules

♣ Flow-ODR 1 (rM:1[R][A]) (Accept0(y) ◃ Stop) Let s > 0 and β = 1 (see Tom 25.1.1(p.252) (♣b2)) or let s > 0, β < 1, κ ≤ 0,
and y ≤ 0 (see Tom 25.1.1(p.252) (♣b3ii2) (F−)). Then, the inequality y ≤ Vt(y) for any t and y means that even if the process is
initiated at any time t, it is optimal to reject the best price y at that time. Accordingly, it follows that each time a price ξ is
proposed, the current best price y continues to be enlarged to y

def
= max{y, ξ}, and the process terminates by accepting the best

price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 2 (rM̃:1[R][A]) (c-reservation-price) From Tom 25.1.1(p.252) (♠ b3i1,♠b3i2)
and (24.1.25(p.240) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by xK , which is constant in t.

♢ Flow-ODR 3 (rM:1[R][A]) (Acceptt∗τ (y) ◃ Stop) Let s > 0, β < 1, κ ≤ 0, and y ≥ 0 (see Tom 25.1.1(p.252) (♢b3ii1) (F+)). Then

the inequality y ≥ Vt(y) for t ≥ 0 implies that when the process initiates at the optimal initiating time t∗τ , it is optimal to accept
the best price y at that time and stop the process.

†Note that we have ⃝s dOITsτ>0⟨τ⟩ △ also for any s ≥ 0.
†This is true also for s = 0.
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Definition 25.1.1 (reduction) In Tom 25.1.1(p.252) (a) we demonstrated an example that a search-Allowed-model migrates over
to a search-Enforced-model, represented as

rM:1[R][A] # rM:1[R][E]. (25.1.4)

Accordingly, adding “model-migration” and “odr-Accept/Stop” to “model-running-back” and
“ odr-Accept/Stop” in (21.1.3(p.225) ), we have

Reduction

 model reduction

{
model-running-back ( �)

model-migration ( # )

odr reduction
{
odr-Accept/Stop ( 7→ )

(25.1.5)

25.1.1.4 Market Restriction

25.1.1.4.1 Positive Restriction

� Pom 25.1.1 (A {rM:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then rM:1[R][A]+ # rM:1[R][E]+.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let β = 1. Then we have odr 7→ Accept0(y) ◃ Stop.

3. Let β < 1.

i. Let βµ > s. Then we have c-reservation-price.

ii. Let βµ ≤ s. Then we have • dOITdτ>0⟨1⟩ ∥ → →•dd
• Proof Suppose a > 0, hence it suffices to consider y such that 0 < a < y < b · · · ((1)). Then κ = βµ − s · · · ((2)) from

Lemma 10.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 25.1.1(p.252) (a).

(b) Let s > 0.

(b1) The same as Tom 25.1.1(p.252) (b1).

(b2) Evident from Tom 25.1.1(p.252) (b2) and ♣ Flow-ODR 1.

(b3) Let β < 1.

(b3i) Let βµ > s, hence κ > 0 due to (2) . Thus, it suffices to consider
only Tom 25.1.1(p.252) (♠b3i1,♠b3i2), hence we have ♣ Flow-ODR 2.

(b3ii) Let βµ ≤ s, hence κ ≤ 0 · · · ((3)) due to (2) . In this case, due to (1) it suffices to consider only

Tom 25.1.1(p.252) (♢ b3ii1). Then, since it suffices to consider ξ such that 0 < a < ξ < b, we have ξ ≥ Vt−1(ξ) for t > 1, hence
vt−1(ξ) = ξ from (24.1.8(p.239) ). Thus, from (24.1.4(p.239) ) we have Vt = max{βE[ξ] − s, βVt−1} = max{βµ − s, βVt−1} =
max{κ, βVt−1} for t > 1. First V1 = βµ − s = κ ≤ 0 from (24.1.3(p.239) ) and (3) or equivalently V1 = β0κ ≤ 0. Suppose
Vt−1 = βt−2κ ≤ 0. Then Vt = max{κ, ββt−2κ} = max{κ, βt−1κ} = βt−1κ ≤ 0 due to (3) . Thus by induction we have
Vt = βt−1κ ≤ 0 for t > 1. Accordingly, we have Vt − βVt−1 = βt−1κ − ββt−2κ = βt−1κ − βt−1κ = 0, hence Vt = βVt−1 for
t > 1. Accordingly, we get Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , i.e., t

∗
τ = 1 for τ > 1 or equivalently • dOITdτ>1⟨1⟩ .

25.1.1.4.2 Mixed Restriction

Omitted.

25.1.1.4.3 Negative Restriction

Omitted.

25.1.2 rM̃:1[R][A]
25.1.2.1 Preliminary

For almost the same reason as in Section 25.2.2.1(p.261) it can be confirmed that SOE{rM̃:1[R][A]} (see
(24.1.31(p.240) )) is symmetrical to SOE{rM:1[R][A]} (see (24.1.6(p.239) )). Hence it follows that Scenario[R](p.75) can be applied also to
A {rM:1[R][A]}.

25.1.2.2 Derivation of A {rM̃:1[R][A]}

� Tom 25.1.2 (�� A {rM̃:1[R][A]})
(a) Let s = 0. Then rM̃:1[R][A] # rM̃:1[R][E].
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. ♣Let β = 1. Then y ≥ Vt(y) for t ≥ 0 and any t.

3. Let β < 1.

i. Let κ̃ < 0.
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1. ♠Let y ≤ x
K̃ . Then y ≤ Vt(y) for t ≥ 0.

2. ♠Let y ≥ x
K̃ . Then y ≥ Vt(y) for t ≥ 0.

ii. Let κ̃ ≥ 0.

1. ♢Let y ≤ 0 (i.e., F−). Then y ≤ Vt(y) for t ≥ 0.

2. ♣Let y ≥ 0 (i.e., F+). Then y ≥ Vt(y) for t ≥ 0.

• Proof by symmetry Immediate from applying SR→R̃ (see in (18.0.1(p.130) )) to Tom 25.1.1(p.252) .

25.1.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 4 (rM:1[R][A]) (Accept0(y) ◃ Stop) Let s > 0 and β = 1 (see Tom 25.1.2(p.253) (♣b2)) or let s > 0, β < 1, κ̃ ≤ 0,
and y ≤ 0 (see Tom 25.1.2(p.253) (♣b3ii2) (F+)). Then, the inequality y ≥ Vt(y) for any t and y means that even if the process is
initiated at any time t, it is optimal to reject all prices proposed. Accordingly, it follows that each time a price ξ, the current
best price y continues to be reduced to y

def
= max{y, ξ} (min{y, ξ}), and the process terminates by accepting the best price y at the

deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 5 (rM̃:1[R][A]) (c-reservation-price) From Tom 25.1.2(p.253) (♠ b3i1,♠b3i2) and
(24.1.46(p.241) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by x
K̃ , which is constant in t.

♢ Flow-ODR 6 (rM:1[R][A]) (Acceptt(y) ◃ Stop) Let s > 0, β < 1, κ̃ ≥ 0, and y ≤ 0
(see Tom 25.1.2(p.253) (♢b3ii1) (F−)). Then the inequality y ≤ Vt(y) for t ≥ 0 implies that when the process initiates at the optimal
initiating time t∗τ , it is optimal to accept the best price y at that time and stop the process.

25.1.2.4 Market Restriction

25.1.2.4.1 Positive Restriction

� Pom 25.1.2 (A {rM̃:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then rM̃:1[R][A]+ # rM̃:1[R][E]+.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. We have odr 7→ Accept0(y) ◃ Stop.

• Proof Suppose a > 0. Below consider only y with 0 < a ≤ y ≤ b, hence y ≥ 0 · · · ((1)). Moreover, since κ̃ = s from

Lemma 12.6.6(p.83) (a), we have κ̃ ≥ 0 · · · ((2)) for any s ≥ 0.

(a) The same as Tom 25.1.2(p.253) (a).

(b) Let s > 0.

(b1) The same as Tom 25.1.2(p.253) (b1).

(b2) If β = 1, then y ≥ Vt(y) for t ≥ 0 from Tom 25.1.2(p.253) (b2). If β < 1, then due to (2) and (1) it suffices to consider
only Tom 25.1.2(p.253) (♣ b3ii2), hence we have y ≥ Vt(y) for t ≥ 0. Accordingly, whether β = 1 or β < 1, we have y ≥ Vt(y) for
t ≥ 0. Thus, it follows that we have Accept0(y) ◃ Stop (♣ Flow-ODR 4).

25.1.2.4.2 Mixed Restriction

Omitted.

25.1.2.4.3 Negative Restriction

Omitted.

25.1.3 Conclusion 7 (Search-Allowed-Model 1)

� The assertion systems A of the quadruple-asset-trading-models on the total market F

Q{rM:1[A]} = {rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A]}
are given by

A {rM:1[R][A]} A {rM̃:1[R][A]}
↓ ↓

Tom’s 25.1.1(p.252) , 25.1.2(p.253) ,
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� The assertion systems A of the quadruple-asset-trading-models on the positive market F+

Q{rM:1[A]}+ = {rM:1[R][A]+, rM̃:1[R][A]+, rM:1[P][A]+, rM̃:1[P][A]+}
are given by

A {rM:1[R][A]+} A {rM̃:1[R][A]+}
↓ ↓

Pom’s 25.1.1(p.253) , 25.1.2(p.254) ,

� Closely looking into all the assertion systems above leads to the conclusions below.

C1 We have A {rM̃:1[R][A]}+ |∼ A {rM:1[R][A]}+.
C2 We have rM/M̃:1[R][A]+ # rM/M̃:1[R][E]+.
C3 We have odr 7→ Accept0(y) ◃ Stop for rM/M̃:1[R][A]+.
C4 We have ⃝⃝s △ for rM/M̃:1[R][A]+.
C5 We have•dd ∥ for rM:1[R][A]+.
C6 We have c-reservation-price for rM:1[R][A]+.

C1 Compare Pom 25.1.2(p.254) and Pom 25.1.1(p.253) .

C2 See Pom 25.1.1(p.253) (a) and Pom 25.1.2(p.254) (a).

C3 See Pom 25.1.1(p.253) (b2) and Pom 25.1.2(p.254) (b2).

C4 See Pom 25.1.1(p.253) (b1) and Pom 25.1.2(p.254) (b1).

C5 See Pom 25.1.1(p.253) (b3ii).

C6 See Pom 25.1.1(p.253) (b3i).

25.2 Search-Enforced-Model 1

25.2.1 rM:1[R][E]
Below let us define

Vt
def
= Vt − βVt−1, t > 1. (25.2.1)

25.2.1.1 Some Lemmas

Lemma 25.2.1 (rM:1[R][E])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0† respectively for any y.

(c) Vt is nondecreasing in t > 0.

• Proof (a) v0(y) is nondecreasing in y from (24.1.47(p.241) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreas-
ing in y from (24.1.50(p.241) ), hence vt(y) is nondecreasing in y from (24.1.48(p.241) ). Thus, by induction vt(y) is nondecreasing in
y and t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (24.1.50(p.241) ).
In addition, V0(y) is nondecreasing in y from (24.1.52(p.241) ), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0.

(b) Clearly v1(y) ≥ y = v0(y) for any y from (24.1.48(p.241) ) with t = 1 and (24.1.47(p.241) ). Suppose vt−1(y) ≥ vt−2(y) for
any y. Then, from (24.1.50(p.241) ) we have Vt(y) ≥ βE[vt−2(max{ξ, y})] − s = Vt−1(y) for any y. Hence, from (24.1.48(p.241) )
we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) ≥ vt−1(y) for t > 0 and any y, i.e., vt(y)
is nondecreasing in t ≥ 0 for any y. Accordingly, since vt−1(y) ≥ vt−2(y) for t > 1 and any y, from (24.1.50(p.241) ) we have
Vt(y) ≥ βE[vt−2(y)]− s = Vt−1(y) for t > 1 and any y, hence Vt(y) is nondecreasing in t > 0 for any y.

(c) We have vt−1(y) is nondecreasing in t > 0 for any y due to (b), hence Vt is nondecreasing in t > 0 from (24.1.49(p.241) ).

Lemma 25.2.2 (rM:1[R][E])
(a) Let xK ≤ y. Then Vt(y) ≤ y for t ≥ 0.

(b) Let y ≤ xK . Then y ≤ Vt(y) ≤ xK for t ≥ 0.

• Proof ‡ (a) Let xK ≤ y. Then K (y) ≤ 0 · · · ((1)) from Corollary 10.2.2(p.58) (a). Now, from (24.1.52(p.241) ) we clearly have

V0(y) ≤ y. Suppose Vt−1(y) ≤ y, hence vt−1(y) = y from (24.1.48(p.241) ). Then, since xK ≤ y ≤ max{ξ, y} for any ξ, we have
vt−1(max{ξ, y}) = max{ξ, y}. Accordingly, from (24.1.50(p.241) ) we have Vt(y) = βE[max{ξ, y}] − s = K (y) + y · · · ((2)) due to

(5.1.10(p.25) ) with λ = 1, hence Vt(y) ≤ y due to (1) . This completes the induction.

(b) Let y ≤ xK · · · ((3)). ThenK (y) ≥ 0 · · · ((4)) from Corollary 10.2.2(p.58) (b). Now, from (24.1.53(p.241) ) we have vt−1(max{ξ, y}) ≥
max{ξ, y} for any t > 0, ξ, and y, hence from (24.1.50(p.241) ) and (5.1.10(p.25) ) with λ = 1 we have Vt(y) ≥ β[max{ξ, y}] − s =

†It cannot be always guaranteed that V1(y) ≥ V0(y). For example, let β < 1 or s > 0 and let y > xK . Then, from (24.1.56(p.241) ) and
(24.1.52(p.241) ) we have V1(y)− V0(y) = K(y) < 0 due to Lemma 10.2.2(p.57) (j1), i.e., V1(y) < V0(y).

‡Although (a) and (b) are already proven in [44,Sakaguchi,1961], we anew prove herein the two by using properties of the underlying
function K (x).
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K(y) + y for t > 0, so Vt(y) ≥ y for t > 0 due to (4) . In addition, since V0(y) ≥ y from (24.1.52(p.241) ), it follows that
Vt(y) ≥ y for t ≥ 0. Now, since max{ξ, y} ≤ max{ξ, xK } for any ξ due to (3) , from Lemma 25.2.1(p.255) (a) we have
vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((5)) for any ξ and t > 0. Since xK ≤ max{ξ, xK } for any ξ, due to (a) we have

Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any ξ and t > 0, hence vt−1(max{ξ, xK }) = max{max{ξ, xK }, Vt(max{ξ, xK })} =
max{ξ, xK } for any ξ and t > 0 from (24.1.53(p.241) ), so from (5) we have vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ and t > 0.
Thus, from (24.1.50(p.241) ) and (5.1.10(p.25) ) with λ = 1 we have Vt(y) ≤ βE[max{ξ, xK }]− s = K (xK ) + xK = xK for t > 0.

Since Vt(y) is nondecreasing in t > 0 from Lemma 25.2.1(p.255) (b) and is upper bounded in t from
Lemma 25.2.2(p.255) (a,b), it converges to a finite V (y) as t → ∞, hence so also do vt(y), Vt, and Vt (see (25.2.1(p.255) )). Then,
defining these limits by v(y), V , and V, from (24.1.50(p.241) ), (24.1.48(p.241) ), (24.1.49(p.241) ), and (25.2.1(p.255) ) we have:

V (y) = βE[v(max{ξ, y})]− s, (25.2.2)

v(y) = max{y, V (y)}, (25.2.3)

V = βE[v(ξ)]− s, (25.2.4)

V = (1− β)V. (25.2.5)

Lemma 25.2.3 (rM:1[R][E])

(a) Let xK ≤ y. Then V (y) ≤ y.

(b) Let y ≤ xK . Then y ≤ V (y) ≤ xK .

• Proof Immediate from Lemma 25.2.2(p.255) .

Lemma 25.2.4 (rM:1[R][E]) Let β < 1.

(a) Let y ≤ xK . Then V (y) = xK .

(b) v(y) = max{y, xK } for any y.

(c) V = xK .

(d) Let κ > (= (<)) 0. Then V > (= (<)) 0.

• Proof Let β < 1.

(a) Let y ≤ xK · · · ((1)). Now, (25.2.2(p.256) ) can be rewritten as

V (y) = βE[v(max{ξ, y})I(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((2)).

If xK < ξ, then y < ξ from (1) , hence xK < ξ = max{ξ, y}. Thus, from Lemma 25.2.3(p.256) (a) we have V (max{ξ, y}) ≤
max{y, ξ} = ξ, so from (25.2.3(p.256) ) we have v(max{ξ, y}) = max{max{ξ, y}, V (max{ξ, y})} = max{y, ξ} = ξ due to .
Therefore, (2) can rewritten as

V (y) = βE[ξI(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((3)).

In addition, since v(max{ξ, y}) = max{max{ξ, y}, V (max{ξ, y})} from (25.2.3(p.256) ) for ξ and y, we can rewrite (3) as

V (y) = βE[ξI(xK < ξ)] + βE[max{max{ξ, y}, V (max{ξ, y})}I(ξ ≤ xK )]− s. · · · ((4))

To prove (a) it suffices to show the following two:

1. Any given function V ′(y) = xK · · · ((5)) with y ≤ xK is a solution of the functional equation (4) , i.e.,

V ′(y) = βE[ξI(xK < ξ)] + βE[max{max{ξ, y}, V ′(max{ξ, y})}I(ξ ≤ xK )]− s. · · · ((6))

To prove this, first let us show that substituting the equality V ′(y) = xK with y ≤ xK for the r.h.s. of (6) yields xK ,
hence, as a result, its l.h.s. becomes equal to xK , i.e., V ′(y) = xK , implying that (5) is a solution of the functional equation
(6) . Below let us show this.

Let ξ ≤ xK . Then max{y, ξ} ≤ max{ xK , xK } = xK · · · ((7)) due to (1) , hence V ′(max{y, ξ}) = xK due to (5) .

Consequently, we get

r.h.s of (6) = βE[ξI(xK < ξ)] + βE[ xK I(ξ ≤ xK )]− s

= βE[max{ξ, xK }I(xK < ξ)] + βE[max{ξ, xK }I(ξ ≤ xK )]− s

= βE[max{ξ, xK }]− s

= K(xK ) + xK (See (5.1.10(p.25) )) with λ = 1

= xK .

Accordingly, it follows that V ′(y) = xK with y ≤ xK is a solution of the functional equation (4) .
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2. The solution is unique Suppose there exists another solution Z(y) with y ≤ xK where V ′(y) ̸= Z(y) for at least one

y ≤ xK . Then, let z(y)
def
= max{y, Z(y)} · · · ((8)) with y ≤ xK (see (25.2.3(p.256) )). Accordingly, we have (see (3) )

Z(y) = βE[ξI(xK < ξ)] + βE[z(max{ξ, y})I(ξ ≤ xK )]− s. · · · ((9))

Hence, from (3) and (9) we have

|V ′(y)− Z(y)| =
∣∣βE[(v′(max{ξ, y})− z(max{ξ, y}))I(ξ ≤ xK )]

∣∣
≤ βE[

∣∣v′(max{ξ, y})− z(max{ξ, y})
∣∣I(ξ ≤ xK )]. · · · ((10)).

Now, in general

|v′(y)− z(y)| = |max{y, V ′(y)} −max{y, Z(y)}| ≤ max{0, |V ′(y)− Z(y)|} = |V ′(y)− Z(y)|

for any y, hence we have ∣∣v′(max{ξ, y})− z(max{ξ, y})
∣∣ ≤ ∣∣V ′(max{ξ, y})− Z(max{ξ, y})

∣∣ · · · ((11 )).
for any y and ξ. Thus, from (10) we have

|V ′(y)− Z(y)| ≤ βE[
∣∣V ′(max{ξ, y})− Z(max{ξ, y})

∣∣I(ξ ≤ xK )] · · · ((12 )).

Let ν = maxy≤xK |V ′(y) − Z(y)| · · · ((13 )) where ν > 0 · · · ((14 )), hence |V ′(y) − Z(y)| ≤ ν · · · ((15 )) for y ≤ xK . If ξ ≤ xK ,

then max{ξ, y} ≤ max{xK , xK } = xK · · · ((16 )), hence |V ′(max{ξ, y})−Z(max{ξ, y})| ≤ ν due to (15) . Accordingly, from

(12) we have

|V ′(y)− Z(y)| ≤ βE[νI(ξ ≤ xK )] = βνE[I(ξ ≤ xK )] = βν Pr{ξ ≤ xK } = βνF (xK ).

Thus, we have ν ≤ βνF (xK ) · · · ((17 )) due to the definition (13) . In addition, since βνF (xK ) ≤ βν due to F (xK ) ≤ 1, we

have ν ≤ βν from (17) , leading to the contradiction 1 ≤ β due to (14) . Accordingly, the solution of (4) must be unique.
Since the original V (y) satisfy (4) , it eventually follows that V (y) = xK with y ≤ xK must be the unique solution of (4) .

(b) If xK ≤ y, from Lemma 25.2.3(p.256) (a) and (25.2.3(p.256) ) we have v(y) = y = max{y, xK }. If y ≤ xK , then from
Lemma 25.2.3(p.256) (b) and (25.2.3(p.256) ) we have v(y) = V (y) and from (a) we have V (y) = xK , hence it follows that v(y) =
V (y) = xK = max{y, xK }. Thus, whether xK ≤ y or y ≤ xK , we have v(y) = max{y, xK }.

(c) Since v(ξ) = max{ξ, xK } for any ξ due to (b), from (25.2.4(p.256) ) we have V = βE[max{ξ, xK }]−s = K(xK )+ xK = xK

(see (5.1.10(p.25) )).

(d) Let κ > (= (<)) 0. Then, since xK > (= (<)) 0 due to Lemma 10.3.1(p.59) (b), from (c) we have V > (= (<)) 0, hence
the assertion becomes true from (25.2.5(p.256) ).

Here, let us define
ℓt(y)

def
= vt(y)− βvt−1(y), t > 0. (25.2.6)

Then, from (25.2.1(p.255) ) and (24.1.49(p.241) ) we have

Vt = βE[vt−1(ξ)]− s− β(βE[vt−2(ξ)]− s) (25.2.7)

= βE[vt−1(ξ)− βvt−2(ξ)]− (1− β)s (25.2.8)

= βE[ℓt−1(ξ)]− (1− β)s, t > 1. (25.2.9)

Here, for any y let us define
A(y)

def
= ℓ2(y)− ℓ1(y). (25.2.10)

Lemma 25.2.5 (rM:1[R][E])

(a) Let xK ≤ y. Then A(y) = 0.

(b) Let y ≤ xK . Then A(y) is nondecreasing in y.

(c) A(y) ≤ 0 for any y.

• Proof (a) Let xK ≤ y. Then V2(y) ≤ y and V1(y) ≤ y from Lemma 25.2.2(p.255) (a), hence from (24.1.53(p.241) ) we have
v2(y) = v1(y) = y. In addition, v0(y) = y from (24.1.47(p.241) ). Thus, since ℓ2(y) = v2(y) − βv1(y) = (1 − β)y and ℓ1(y) =
v1(y)− βv0(y) = (1− β)y, we have A(y) = 0 · · · ((1)).

(b) Let y ≤ xK · · · ((2)). Now, from Lemma 25.2.2(p.255) (b) with t = 1, 2 and (24.1.48(p.241) ) with t = 1, 2 we have

v1(y) = V1(y) = βE[max{ξ, y}]− s (see (24.1.55(p.241) )) (25.2.11)

= K (y) + y (see (5.1.10(p.25) ) with λ = 1), (25.2.12)

v2(y) = V2(y) = βE[v1(max{ξ, y})]− s (see (24.1.50(p.241) ) with t = 2). (25.2.13)

Hence, we have
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ℓ1(y) = v1(y)− βv0(y) = v1(y)− βy (see (24.1.47(p.241) )),

ℓ2(y) = v2(y)− βv1(y) = βE[v1(max{ξ, y})]− s− βv1(y),

from which we obtain

A(y) = βE[v1(max{ξ, y})]− s− (1 + β)v1(y) + βy,

which can be rewritten as

A(y) = βE[v1(max{ξ, y})I(ξ < xK ) + v1(max{ξ, y})I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy. (25.2.14)

If ξ < xK , due to (2) we have max{ξ, y} ≤ max{xK , xK } = xK , hence from (25.2.12(p.257) ) we have

v1(max{ξ, y}) = K (max{ξ, y}) + max{ξ, y}. (25.2.15)

If xK ≤ ξ, then since xK ≤ ξ ≤ max{ξ, y} for any y, from Lemma 25.2.2(p.255) (a) we have V1(max{ξ, y}) ≤ max{ξ, y}, hence
from (24.1.48(p.241) ) with t = 1 we obtain

v1(max{ξ, y}) = max{ξ, y}. (25.2.16)

Accordingly, from (25.2.14(p.258) ), (25.2.15(p.258) ), and (25.2.16(p.258) ) we have

A(y) = βE[
(
K (max{ξ, y}) + max{ξ, y}

)
I(ξ < xK ) + max{ξ, y}I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}(I(ξ < xK ) + I(xK ≤ ξ))]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}]− s− (1 + β)v1(y) + βy†

= βE[K (max{ξ, y})I(ξ < xK )] + βE[max{ξ, y}]− s − (1 + β)v1(y) + βy. (25.2.17)

Using (25.2.11(p.257) ), we can rewrite the above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )] + v1(y)− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK )]− β(v1(y)− y). (25.2.18)

Furthermore, since v1(y)− y = K(y) due to (25.2.12(p.257) ), we can rewrite (25.2.18(p.258) ) above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )]− βK (y)

= βE[K (max{ξ, y})I(ξ < xK )−K (y)]

= βE[B(ξ, y)] (25.2.19)

where
B(ξ, y)

def
= K (max{ξ, y})I(ξ < xK )−K (y). (25.2.20)

Now we have:

1 Let xK ≤ ξ. Then, since I(ξ < xK ) = 0, we have B(ξ, y) = −K(y), which is nondecreasing in y ≤ xK from
Lemma 10.2.2(p.57) (b).

2 Let ξ < xK . Then, since I(ξ < xK ) = 1, we have B(ξ, y) = K (max{ξ, y}) − K (y) for y ≤ xK . Thus, if y ≤ ξ, then
B(ξ, y) = K (ξ)− K (y), which is nondecreasing in y ≤ ξ due to Lemma 10.2.2(p.57) (b) and if ξ < y, then since ξ < xK due
to (2) , we have I(ξ < xK ) = 1, hence B(ξ, y) = K (y)− K (y) = 0 for y ≤ xK , which can be regarded as nondecreasing in
y > ξ. Therefore, whether y ≤ ξ or ξ < y it follows that B(ξ, y) is nondecreasing in y ≤ xK .

From the above two results, whether xK ≤ ξ or ξ < xK it follows that B(ξ, y) is nondecreasing in y ≤ xK . Hence, from
(25.2.19(p.258) ) we see that A(y) is nondecreasing in y ≤ xK .

(c) Immediate from (a,b) and the fact that A(y) is continuous on (−∞,∞).

Lemma 25.2.6 (rM:1[R][E])
(a) ℓt(y) is nonincreasing in t > 0 for any y.

(b) Vt is nonincreasing in t ≥ 1.

• Proof (a) From Lemma 25.2.5(p.257) (c) and (25.2.10(p.257) ) we have ℓ2(y) ≤ ℓ1(y) for any y. Suppose that ℓt−1(y) ≤ ℓt−2(y)
for any y (induction hypothesis).

1. Let xK ≤ y. Then, since Vt(y) ≤ y for t ≥ 0 due to Lemma 25.2.2(p.255) (a), we have Vt−1(y) ≤ y for t ≥ 1, hence vt(y) = y
for t ≥ 0 and vt−1(y) = y for t ≥ 1 from (24.1.53(p.241) ). Thus, from (25.2.6(p.257) ) we have ℓt(y) = (1 − β)y for t ≥ 1, hence
ℓt−1(y) = (1 − β)y for t ≥ 2, so ℓt(y) = ℓt−1(y) for t ≥ 2, thus ℓt(y) ≤ ℓt−1(y) for t ≥ 2. Accordingly, it follows that ℓt(y)
is nonincreasing in t ≥ 1 or equivalently in t > 0 on xK ≤ y.

†I(ξ < xK ) + I(xK ≤ ξ) = 1.
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2. Let y ≤ xK . Then, since y ≤ Vt(y) for t ≥ 0 and y ≤ Vt−1(y) for t > 0 from Lemma 25.2.2(p.255) (b), we have vt(y) = Vt(y)
for t ≥ 0 and vt−1(y) = Vt−1(y) for t ≥ 1 from (24.1.53(p.241) ), hence from (25.2.6(p.257) ) and (24.1.50(p.241) ) we have

ℓt(y) = Vt(y)− βVt−1(y)

= βE[vt−1(max{ξ, y})]− s− β
(
βE[vt−2(max{ξ, y})]− s

)
= βE[vt−1(max{ξ, y})− βvt−2(max{ξ, y})]− (1− β)s

= βE[ℓt−1(max{ξ, y})]− (1− β)s, t ≥ 1.

Thus, we have

ℓt−1(y) = βE[ℓt−2(max{ξ, y})]− (1− β)s, t ≥ 2.

Here, since ℓt−1(max{ξ, y}) ≤ ℓt−2(max{ξ, y}) due to the induction hypothesis, we have

ℓt(y) ≤ βE[ℓt−2(max{ξ, y})]− (1− β)s = ℓt−1(y), t > 1.

Accordingly, by induction we have ℓt(y) ≤ ℓt−1(y) for t ≥ 2 on y ≤ xK , i.e., ℓt(y) is nonincreasing in t ≥ 1 on y ≤ xK .

From the above two results, whether xK ≤ y or y ≤ xK it follows that ℓt(y) is nonincreasing in t > 0.

(b) Immediate from (a(p.258) ) and (25.2.9(p.257) ).

25.2.1.2 Analysis

From (24.1.49(p.241) ) with t = 2 we have

V2 = βE[v1(ξ)]− s

= βE[max{ξ, V1(ξ)}]− s (see (24.1.48(p.241) ) with t = 1)

= βE[max{ξ, K (ξ) + ξ}]− s (see (24.1.56(p.241) ) with y = ξ)

= βE[max{0, K (ξ)}+ ξ]− s

= βE[max{0, K (ξ)}] + βE[ξ]− s

= βE[max{0, K (ξ)}] + βµ− s.

Then (25.2.1(p.255) ) with t = 2 can be rewritten as

V2 = V2 − βV1

= βE[max{0, K (ξ)}] + βµ− s− β(βµ− s) (see (24.1.54(p.241) ))

= βE[max{0, K (ξ)}] + (1− β)(βµ− s)

= βE[max{0, K (ξ)}I(ξ < xK ) + max{0, K (ξ)}I(xK ≤ ξ)] + (1− β)(βµ− s).

Due to Corollary 10.2.2(p.58) (a) we have K (ξ) > 0 for ξ < xK and K (ξ) ≤ 0 for xK ≤ ξ, hence we have

V2 = βE[K (ξ)I(ξ < xK )] + (1− β)(βµ− s). (25.2.21)

Let us define

S18 ⃝
s N } △ } N = { For any τ > 1 there exists t•τ (t◦τ ≥ t•τ > 1) such that

⃝s dOITst•τ≥τ>1⟨τ⟩ N, } ndOITt◦τ≥τ>t•τ ⟨t
•
τ ⟩ △, and } ndOITτ>t•τ ⟨t

•
τ ⟩ N. }

� Tom 25.2.1 (�� A {rM:1[R][E]}) For any τ > 1 :

(a) We have:

1. ♣Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △.
(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.

2. Let βµ− s < 0 and βµ− s < a. Then • dOITdτ>1⟨1⟩ N.
3. Let βµ− s < 0 and βµ− s ≥ a (hence a < 0).

i. Let V2 ≤ 0. Then • dOITdτ>1⟨1⟩ △.
ii. Let V2 > 0.

1. Let κ ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.
2. Let κ < 0. Then we have S18(p.259) ⃝s N } △ } N . 7→ →}N
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• Proof Since λ = 1 is assumed in the model, we have δ = 1 (See (10.2.1(p.56) )), hence (λβµ − s)/δ = βµ − s · · · ((1)) and

K (a) = βµ− s− a · · · ((2)) from (10.2.4 (1) (p.57) ).

(a1,a2) The same as Lemma 25.2.2(p.255) (a,b).

(b) Let β = 1. Then, from (25.2.1(p.255) ) we have Vt = Vt − βVt−1 = Vt − Vt−1 for t > 1, hence Vt ≥ 0 for t > 1 due
to Lemma 25.2.1(p.255) (c) or equivalently Vt ≥ βVt−1 for t > 1. Thus, since Vt ≥ βVt−1 for τ ≥ t > 1, we have Vτ ≥ βVτ−1,
Vτ−1 ≥ βVτ−2, · · · , V2 ≥ βV1, hence Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1, so t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ △.

(c) Let β < 1.

(c1) Let βµ− s ≥ 0, hence V1 ≥ 0 from (24.1.54(p.241) ). Then Vt ≥ Vt−1 ≥ V1 ≥ 0 for t > 1 from
Lemma 25.2.1(p.255) (c). Hence, from (25.2.1(p.255) ) we have Vt = Vt − βVt−1 ≥ Vt−1 − βVt−1 = (1 − β)Vt−1 ≥ 0 for t > 1. Then,
since Vt ≥ βVt−1 for t > 1, for the same reason as in the proof of (b) we have ⃝s dOITsτ ⟨τ⟩ △.

(c2) Let βµ− s < 0 · · · ((3)) and βµ− s < a. Then, from (2) we have K (a) < 0, hence xK < a from Lemma 10.2.2(p.57) (j1).

Below it suffices to consider only y ∈ [a, b] such that xK < a ≤ y. Then, since Vt(y) ≤ y for t ≥ 0 from Lemma 25.2.2(p.255) (a), we
have vt(y) = y for t ≥ 0 from (24.1.53(p.241) ), hence vt−1(y) = y for t > 0, so from (25.2.6(p.257) ) we have ℓt(y) = vt(y)−βvt−1(y) =
y − βy = (1 − β)y for t > 0. Accordingly, since ℓt−1(ξ) = (1 − β)ξ for t > 1 and ξ ∈ [a, b], from (25.2.9(p.257) ) we obtain
Vt = Vt − βVt−1 = βE[(1− β)ξ]− (1− β)s = β(1− β)E[ξ]− (1− β)s = β(1− β)µ− (1− β)s = (1− β)(βµ− s) < 0 for t > 1
due to (3) . Then, since Vt < βVt−1 for t > 1, we have Vt < βVt−1 for τ ≥ t > 1. Accordingly, since Vτ < βVτ−1, Vτ−1 < βVτ−2,
· · · , V2 < βV1, we have Vτ < βVτ−1 < β2Vτ−2 < · · · < βτ−1V1 , hence t∗τ = τ for τ > 1, i.e., • dOITdτ>1⟨1⟩ N.

(c3) Let βµ − s < 0 · · · ((4)) and βµ − s ≥ a, hence a < 0. Then, since K (a) ≥ 0 from (2) , we have a ≤ xK · · · ((5)) from

Lemma 10.2.2(p.57) (j1).

(c3i) Let V2 ≤ 0. Then, since Vt ≤ 0 for t > 1 from Lemma 25.2.6(p.258) (b), we have Vt ≤ 0 for τ ≥ t > 1. Hence,
since Vτ − βVτ−1 ≤ 0 for τ ≥ t > 1 from (25.2.1(p.255) ), we have Vτ ≤ βVτ−1 for τ ≥ t > 1. Accordingly, since Vτ ≤ βVτ−1,
Vτ−1 ≤ βVτ−2, · · · , V2 ≤ βV1, we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 , so t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ △.

(c3ii) Let V2 > 0 · · · ((6)).

(c3ii1) Let κ ≥ 0. Then V ≥ 0 due to Lemma 25.2.4(p.256) (d). Hence, from (6) and
Lemma 25.2.6(p.258) (b) we have Vt ≥ 0 for t > 1, hence we obtain ⃝s dOITsτ>1⟨τ⟩ △ for the same reason as in the proof of (c1).

(c3ii2) Let κ < 0. Then V < 0 due to Lemma 25.2.4(p.256) (d). Hence, from (6) , and
Lemma 25.2.6(p.258) (b) it follows that there exist t◦τ and t•τ (t◦τ ≥ t•τ > 1) such that

V2 ≥ · · · ≥ Vt•τ−1 ≥ Vt•τ > 0 ≥ Vt•τ+1 ≥ Vt•τ+1 ≥ · · · ≥ Vt◦τ > Vt◦τ+1 ≥ · · ·
or equivalently

Vt > 0 · · · (1∗), t•τ ≥ t > 1, 0 ≥ Vt · · · (2∗), t◦τ ≥ t > t•τ , 0 > Vt · · · (3∗), t > t◦τ .

[1] Let t•τ ≥ τ > 1. Then, since Vt > 0 for τ ≥ t > 1 due to (1∗), for almost the same reason as in the proof of (b) we have
Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((7)), hence t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N · · · ((8)). From (7) with τ = t•τ we

have
Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1.

[2] Since Vt•τ+1 ≤ 0 due to (2∗), we have Vt•τ+1 ≤ βVt•τ from (25.2.1(p.255) ). Hence

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((9)),

so t∗t•τ+1 = t•τ or equivalently } ndOITt•τ+1⟨t•τ ⟩ △ · · · ((10 )). Since Vt•τ+2 ≤ 0 due to (2∗), we have Vt•τ+2 ≤ βVt•τ+1. Hence,

from (9) we have

Vt•τ+2 ≤ βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1,

so t∗t•τ+2 = t•τ or equivalently we have } ndOITt•τ+2⟨t•τ ⟩ △ · · · ((11 )). Similarly we obtain } ndOITt•τ+3⟨t•τ ⟩ △ · · · ((12 )),
} ndOITt•τ+4⟨t•τ ⟩ △ · · · ((13 )), · · · . Since Vt◦τ ≤ 0 due to (2∗), we have Vt◦τ ≤ βVt◦τ−1. Hence

Vt◦τ ≤ βVt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ > βt◦τ−t•τ+1Vt•τ−1 > · · · > βt◦τ−1V1 · · · ((14 )),

so t∗t◦τ = t•τ or equivalently } ndOITt◦τ ⟨t
•
τ ⟩ △ · · · ((15 )). Hence, from (10) , (11) , (12) , (13) , · · · , (15) we have } ndOITt◦τ≥τ>t•τ ⟨t

•
τ ⟩ △

· · · ((16 )).

[3] Since Vt◦τ+1 < 0 due to (3), we have Vt◦τ+1 < βVt◦τ , hence from (14) we get

Vt◦τ+1 < βVt◦τ ≤ β2Vt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ ≤ βt◦τ−t•τ+1Vt•τ > βt◦τ−t•τ+2Vt•τ−1 > · · · > βt◦τV1,

so t∗t• + 1 = t•τ or equivalently } ndOITt◦τ+1⟨t•τ ⟩ N. Similarly, since Vt◦τ+2 < 0, we have } ndOITt◦τ+3⟨t•τ ⟩ N. In general, we

have } ndOITτ>t◦τ ⟨t
•
τ ⟩ N · · · ((17 )).

From [1]-[3] above we see that (8) , (16) , and (17) can be summarized as S18(p.259) ⃝s N } △ } N .
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25.2.1.3 Flow of Optimal Decision Rules

♣ Flow-ODR 7 (rM:1[R][E]) (c-reservation-price) From Tom 25.2.1(p.259) (♣ a1,♣ a2) and
(24.1.58(p.241) ) we have the following decision rule for τ ≥ t > 0 :

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and the search is conducted

Namely, the optimal reservation value is given by xK , which is constant in t.

Definition 25.2.1 (myopic property) c-reservation-price implies that the optimal decision of any point in time t > 1 is
identical to that of time 1 at which the process terminates a period hence, i.e., the deadline, implying that the optimal decision
is the same as “behave as if the process terminates a period hence”, called the myopic property .

25.2.1.4 Market Restriction

25.2.1.4.1 Positive Restriction

� Pom 25.2.1 (A {rM:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price (♣ Flow-ODR 7).

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △
(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △
2. Let βµ− s < 0. Then • dOITdτ>1⟨1⟩ N

• Proof Suppose a > 0 · · · ((1)). Then κ = βµ− s from Lemma 10.3.1(p.59) (a).

(a) Clear from Lemma 25.2.1(p.259) (♣a1,♣a2) and ♣ Flow-ODR 7.

(b) The same as Tom 25.2.1(p.259) (b).

(c) Let β < 1.

(c1) The same as Tom 25.2.1(p.259) (c1).

(c2) Let βµ− s < 0. Then, since βµ− s < a due to (1) , we have Tom 25.2.1(p.259) (c2).

25.2.1.4.2 Mixed Restriction

Omitted.

25.2.1.4.3 Negative Restriction

Omitted.

25.2.2 rM̃:1[R][E]
25.2.2.1 Symmetry of SOE{rM:1[R][E]} and SOE{rM̃:1[R][E]}
Here let us show that SOE{rM̃:1[R][E]} (see (24.1.63(p.241) )) is symmetrical to SOE{rM:1[R][E]} (see (24.1.51(p.241) )), which is a
necessary condition under which A {rM̃:1[R][E]} can be derived by applying SR→R̃ (see (18.0.1(p.130) )) to A {rM:1[R][E]} given by
Tom 25.2.1(p.259) .

1. For convenience of reference, below let us copy (24.1.47(p.241) )-(24.1.50(p.241) ):

(1∗): v0(y) = y, (2∗): vt(y) = max{y, Vt(y)}, (3∗): Vt = βE[vt−1(ξ)]− s,

(4∗): Vt(y) = βE[vt−1(max{ξ, y})]− s. Then we have

SOE{rM:1[R][E]} = {(1∗), (2∗), (3∗), (4∗)}.

2. Applying the reverse operation R to the above four equalities yields:

(1∗)′ : −v̂0(−ŷ) = −ŷ, (2∗)′ : −v̂t(−ŷ) = max{−ŷ,−V̂t(−ŷ)} = −min{ŷ, V̂t(−ŷ)}, (3∗)′ : −V̂t = βE[−v̂t−1(−ξ̂)]− s,

(4∗)′ : −V̂t(−ŷ) = βE[−v̂t−1(max{−ξ̂,−ŷ})]− s = βE[−v̂t−1(−min{ξ̂, ŷ})]− s,

which can be rearranged as:

(1∗)′: v̂0(−ŷ) = ŷ, (2∗)′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′: V̂t = βE[v̂t−1(−ξ̂)] + s,

(4∗)′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ̂, ŷ})] + s. Then we have

R[SOE{rM:1[R][E]}] = {(1∗)′, (2∗)′, (3∗)′, (4∗)′}.
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3. We have E[v̂t−1(−ξ̂)] = E[v̂t−1(ξ)] =
∫∞
−∞ v̂t−1(ξ)f(ξ)dξ =

∫∞
−∞ v̂t−1(ξ)f̌(ξ̂)dξ (see Lemma 12.3.1(p.72) (a): the appli-

cation of the correspondence replacement operation CR). Let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then E[v̂t−1(−ξ̂)] =

−
∫ −∞
∞ v̂t−1(−η)f̌(η)dη =

∫∞
−∞ v̂t−1(−η)f̌(η)dη = Ě[v̂t−1(−η)] · · · (�). Similarly we have

E[v̂t−1(−min{ξ̂, ŷ})] = Ě[v̂t−1(−min{η, ŷ})]. Hence (1∗)′ - (4∗)′ can be rewritten as:

(1∗)′′: v̂0(−ŷ) = ŷ, (2∗)′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′: V̂t = β Ě[v̂t−1(−η)] + s,

(4∗)′′: V̂t(−ŷ) = β Ě[v̂t−1(−min{η, ŷ})] + s, so we have

CRR[SOE{rM:1[R][E]}] = {(1∗)′′, (2∗)′′, (3∗)′′, (4∗)′′}.

4. Let us replace f̌(η) by f(η) in (�) (see Lemma 12.3.3(p.73) (a); the application of the identity replacement operation IR).
Then, (�) can be rearranged as Ě[v̂t−1(−η)] =

∫∞
−∞ v̂t−1(−η)f(η)dη =

∫∞
−∞ v̂t−1(−ξ)f(ξ)dξ† = E[v̂t−1(−ξ)]. Similarly

Ě[v̂t−1(−min{η, ŷ})] + s = E[v̂t−1(−min{ξ, ŷ})] + s. Accordingly (1∗)′′ - (4∗)′′ can be rewritten as;

(1∗)′′′: v̂0(−ŷ) = ŷ, (2∗)′′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ, ŷ})] + s. Then we have

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′, (2∗)′′′, (3∗)′′′, (4∗)′′′}.

5. Since (1∗)′′′ - (4∗)′′′ hold for any given y ∈ (−∞,∞), they holds also for ŷ ∈ (−∞,∞), hence (1∗)′′′ - (4∗)′′′ hold for ˆ̂y ∈
(−∞,∞). Accordingly, since ˆ̂y = y, it follows that they hold also for any given y. Thus, we obtain the following:

(1∗)′′′′: v̂0(−y) = y, (2∗)′′′′: v̂t(−y) = min{y, V̂t(−y)}, (3∗)′′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′′: V̂t(−y) = βE[v̂t−1(−min{ξ, y})] + s. Then we have

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′′, (2∗)′′′′, (3∗)′′′′, (4∗)′′′′}. (25.2.22)

6. Note here that SOE{rM̃:1[R][E]} can be given by (24.1.59(p.241) )-(24.1.62(p.241) ), i.e.,

(1∗)′′′′′: v0(y) = y, (2∗)′′′′′: vt(y) = min{y, Vt(y)}, (3∗)′′′′′: Vt = βE[vt−1(ξ)] + s,

(4∗)′′′′′: Vt(y) = βE[vt−1(min{ξ, y})] + s. Then we have

SOE{rM̃:1[R][E]} = {(1∗)′′′′′, (2∗)′′′′′, (3∗)′′′′′, (4∗)′′′′′}. (25.2.23)

7. From (1∗)′′′′ and (1∗)′′′′′ we have v̂0(−y) = y = v0(y) for any y, i.e., (1∗)′′′′ = (1∗)′′′′′ for t = 0. Suppose v̂t−1(−y) = vt−1(y)
for any y. Thus (3∗)′′′′ = (3∗)′′′′′. Then, from (4∗)′′′′ we have V̂t(−y) = βE[vt−1(min{ξ, y})] + s = Vt(y), so (4∗)′′′′ =
(4∗)′′′′′for any y. Hence, from (2∗)′′′′ we have v̂t(−y) = min{y, Vt(y)} = vt(y), so (2∗)′′′′ = (2∗)′′′′′. Accordingly, by induction
v̂t−1(−y) = vt−1(y) for any t > 0, so (1∗)′′′′ = (1∗)′′′′′. Thus it follows that (25.2.22(p.262) ) is identical to (25.2.23(p.262) ), so we
have

SOE{rM̃:1[R][E]} = IRCRR[SOE{rM:1[R][A]}] = SR→R̃[SOE{rM:1[R][A]}] (see (12.5.30(p.77) )),

meaning that SOE{rM̃:1[R][E]} is symmetrical to SOE{rM:1[R][E]}

25.2.2.2 Derivation of A {rM̃:1[R][E]}
As it was demonstrated that SOE{rM̃:1[R][E]} is symmetrical to SOE{rM:1[R][E]}, we see that A {rM̃:1[R][E]} can be obtained by
applying Scenario[R](p.75) to A {rM:1[R][E]} given by Tom 25.2.1(p.259) . Before conducting its application, let us apply SR→R̃ to V2

given by (25.2.21(p.259) ). First let us apply the reverse operation R to V2 given by (25.2.21(p.259) ). Here note that (25.2.21(p.259) ) is
expressed as

V2 = β
∫∞
−∞ K (ξ)I(ξ < xK )f(ξ)dξ + (1− β)(−βµ+ s).

Hence we have

R[V2] = V̂2 = −V2 = β
∫∞
−∞−K (ξ)I(−ξ > −xK )f(ξ)dξ + (1− β)(−βµ+ s)

= β
∫∞
−∞ K̂ (ξ)I(ξ̂ > x̂K )f(ξ)dξ + (1− β)(βµ̂+ s) · · · (∗).

Then, applying the replacement η = ξ̂ = −ξ (hence dη = −dξ), µ̂ = µ̌, K̂ (ξ) = ˇ̃K (ξ̂), and x̂K = xˇ̃K (see
Lemma 12.3.1(p.72) (b,e,h)) to (∗) leads to

R[V2] = −β
∫ −∞
∞

ˇ̃K (ξ̂)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (η)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dx+ (1− β)(βµ̌+ s) (without loss of generality)

Since the above replacement means the application of CR to R[V2], i.e., CRR[V2] = R[V2], we have

CRR[V2] = β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dξ + (1− β)(βµ̌+ s).

†without loss of generality
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Furthermore, applying the identity replacement operation IR to this (see Lemma 12.3.3(p.73) (e,h)) yields

IRCRR[V2] = β
∫∞
−∞ K̃ (ξ)I(ξ > x

K̃ )f(ξ)dξ + (1− β)(βµ+ s))

= βE[K̃ (ξ)I(ξ > x
K̃ )] + (1− β)(βµ+ s).

Noting (12.5.30(p.77) ), we can rewrite the above as

Ṽ2
def
= SR→R̃[V2] = βE[K̃ (ξ)I(ξ > x

K̃ )] + (1− β)(βµ+ s).

Then we have the following Tom.

� Tom 25.2.2 (�� A {rM̃:1[R][E]})
(a) We have :

1. ♣Let y ≤ x
K̃ . Then y ≤ Vt(y) for t ≥ 0.

2. ♣Let y ≥ x
K̃ . Then y ≥ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △.
(c) Let β < 1.

1. Let βµ+ s ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.

2. Let βµ+ s > 0 and βµ+ s > b. Then • dOITdτ>1⟨1⟩ N.
3. Let βµ+ s > 0 and βµ+ s ≤ b (hence b > 0).

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △.
ii. Let Ṽ2 < 0.

1. Let κ̃ ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.
2. Let κ̃ > 0. Then we have S18(p.259) ⃝s N } △ } N .

• Proof by symmetry Immediately obtained from applying SR→R̃ to Tom 25.2.1(p.259) .

25.2.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 8 (rM̃:1[R][E]) (c-reservation-price) From Tom 25.2.2(p.263) (♣ a1,♣ a2) and
(24.1.66(p.241) ) we have the following decision rule for τ ≥ t > 0.

y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (25.2.24)

Namely, the optimal reservation value is given by x
K̃ , which is constant in t.

25.2.2.4 Market Restriction

25.2.2.4.1 Positive Restriction

� Pom 25.2.2 (A {rM̃:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △
(c) Let β < 1.

1. Let βµ+ s > b. Then • dOITdτ>1⟨1⟩ N
2. Let βµ+ s ≤ b.

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △
ii. Let Ṽ2 < 0.

1. Let s = 0. Then ⃝s dOITsτ>1⟨τ⟩ △
2. Let s > 0. Then we have S18(p.259) ⃝s N } △ } N

• Proof Suppose a > 0. Then µ > a > 0, hence βµ > 0, so βµ + s > 0 · · · ((1)) for any s ≥ 0. Then κ̃ = s from

Lemma 12.6.6(p.83) (a).

(a) Clear from Lemma 25.2.2(p.263) (♣a1,♣a2) and ♣ Flow-ODR 8.

(b) The same as Tom 25.2.2(p.263) (b).

(c) Let β < 1.

(c1) Let βµ+ s > b. Then, due to (1) we have Tom 25.2.2(p.263) (c2).

(c2-c2ii2) Let βµ+ s ≤ b. Then, due to (1) we have Tom 25.2.2(p.263) (c3i-c3ii2).
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25.2.2.4.2 Mixed Restriction

Omitted.

25.2.2.4.3 Negative Restriction

Omitted.

25.2.3 Conclusion 8 (Search-Enforced-Model 1)

� The assertion systems A of the quadruple-asset-trading-models the total market F

Q{rM:1[E]} = {rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E]}

are given by

A {rM:1[R][E]} A {rM̃:1[R][E]}
↓ ↓

Tom’s 25.2.1(p.259) , 25.2.2(p.263) ,

� The assertion systems A of the quadruple-asset-trading-models for Model 1 on the positive market F+

Q{rM:1[E]}+ = {rM:1[R][E]+, rM̃:1[R][E]+, rM:1[P][E]+, rM̃:1[P][E]+}

are given by

A {rM:1[R][E]+} A {rM̃:1[R][E]+}
↓ ↓

Pom’s 25.2.1(p.261) , 25.2.2(p.263) ,

� Closely looking into all the assertion systems above leads to the conclusions below.

C1. We have A {rM̃:1[R][E]}+ |∼ A {rM:1[R][E]}+.
C2. We have ⃝⃝s △N for rM/M̃:1[R][E]+.
C3. We have }△N for rM̃:1[R][E]+.
C4. We have•dd△N for rM/M̃:1[R][E]+.
C5. We have c-reservation-price for rM/M̃:1[R][E]+.

C1 Compare Pom 25.2.2(p.263) and Pom 25.2.1(p.261) .

C2 See Pom 25.2.1(p.261) (b,c1) and Pom 25.2.2(p.263) (b,c2ii1,c2ii2).

C3 See Pom 25.2.2(p.263) (c2ii2).

C4 See Pom 25.2.1(p.261) (c2) and Pom 25.2.2(p.263) (c1,c2i).

C5 See Pom 25.2.1(p.261) (a) and Pom 25.2.2(p.263) (a).



Chapter 26

Analysis of Model 2

26.1 Search-Allowed-Model 2

26.1.1 rM:2[R][A]
26.1.1.1 Preliminary

Let us define

V ⋄
t (y)

def
= Vt(y)− y, t ≥ 0, (see (24.2.7(p.242) ) and (24.2.5(p.242) )) (26.1.1)

v⋄t (y)
def
= vt(y)− y = max{0, V ⋄

t (y)}, t ≥ 0, (see (24.2.8(p.242) )) (26.1.2)

where

V ⋄
0 (y) = V0(y)− y = ρ− y (see (24.2.7(p.242) )), (26.1.3)

v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (24.2.1(p.242) )). (26.1.4)

Then, from (24.2.5(p.242) ) we have

V ⋄
t (y) = max{λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s, β(v⋄t−1(y) + y)} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s, βv⋄t−1(y) + βy} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y) + y, βv⋄t−1(y) + βy} − y (see (5.1.10(p.25) ))

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y), βv⋄t−1(y)− (1− β)y}, t > 0. (26.1.5)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 for t ≥ 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t > 0. (26.1.6)

If multiple solutions exist, it is defined to be the smallest of them. Let us define

Vt
def
= Vt − βVt−1, t > 0. (26.1.7)

Then, from (24.2.12(p.242) ) and (24.2.3(p.242) ) we have

V1 = V1 − βV0 = max{L(ρ), 0}. (26.1.8)

From (24.2.1(p.242) ) and (24.2.3(p.242) ) we have v0(ξ)− V0 = max{ξ, ρ} − ρ = max{ξ − ρ, 0}, hence from
(24.2.17(p.242) ) with t = 1 we get

S1 = λβE[v0(ξ)− V0]− s

= λβE[max{ξ − ρ, 0}]− s

= λβT (ρ)− s = L(ρ) (see (5.1.1(p.25) ) and (5.1.3(p.25) )). (26.1.9)

Now (24.2.23(p.242) ) can be rewritten as

St(y) = λβE[(vt−1(max{ξ, y})− vt−1(y))]− s

= λβE[(vt−1(max{ξ, y})− vt−1(y))I(y < ξ) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ)]− s. (26.1.10)

265
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From (24.2.1(p.242) ) we have v0(ξ) − v0(y) = max{ξ, ρ} −max{y, ρ} ≤ max{ξ − y, 0} for any ξ and y, hence from (26.1.10(p.265) )
with t = 1 we have

S1(y) = λβE[(v0(ξ)− v0(y))I(y < ξ)]− s ≤ λβE[max{ξ − y, 0}I(y < ξ)]− s.

Then, since max{ξ − y, 0} ≥ 0 and I(y < ξ) ≤ 1, we get max{ξ − y, 0}I(y < ξ) ≤ max{ξ − y, 0}, hence

S1(y) ≤ λβE[max{ξ − y, 0}]− s (26.1.11)

= λβT (y)− s = L(y) (see (5.1.1(p.25) ) and (5.1.3(p.25) )). (26.1.12)

26.1.1.2 Preliminary

Lemma 26.1.1 (rM:2[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) V ⋄
t (y) is nonincreasing in y for t ≥ 0.

• Proof (a) Clearly v0(y) is nondecreasing in y from (24.2.1(p.242) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y)
is nondecreasing in y from (24.2.5(p.242) ), hence vt(y) is nondecreasing in y from (24.2.8(p.242) ). Thus by induction vt(y) is
nondecreasing in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0
from (24.2.5(p.242) ). In addition, since V0(y) can be regarded as nondecreasing in y from (24.2.7(p.242) ), it follows that Vt(y) is
nondecreasing in y for t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (26.1.3(p.265) ). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (26.1.2(p.265) ). In addition, since K (y) and −(1− β)y are both nonincreasing in y (see Lemma 10.2.2(p.57) (b)), it follows
from (26.1.5(p.265) ) that V ⋄

t (y) is also nonincreasing in y. Thus, by induction V ⋄
t (y) is also nonincreasing in y for t ≥ 0.

If y < (≥) ξ, then vt−1(ξ) ≥ (≤) vt−1(y) for t > 0 due to Lemma 26.1.1(p.266) (a) or equivalently vt−1(ξ)− vt−1(y) ≥ (≤) 0 for
t > 0. Then, since

max{vt−1(ξ)− vt−1(y), 0}

= max{vt−1(ξ)− vt−1(y), 0}I(y < ξ) + max{vt−1(ξ)− vt−1(y), 0}I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ) + 0× I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ),

we can rewrite (26.1.10(p.265) ) as

St(y) = λβE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (26.1.13)

Lemma 26.1.2 (rM:2[R][A]) Let β = 1 or s = 0.

(a) Let β = 1. Then y ≤ Vt(y) for any y and t > 0.

(b) Let s = 0. Then St(y) ≥ 0 for any y and t > 0.

• Proof (a) If β = 1, from (24.2.5(p.242) ) and (24.2.2(p.242) ) we have Vt(y) ≥ βvt−1(y) = vt−1(y) ≥ y for any y and any t > 0.

(b) If s = 0, from (26.1.13(p.266) ) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for any y and t > 0.

Lemma 26.1.3 (rM:2[R][A]) Let β < 1 and s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) = −∞ for t > 0.

(c) The solution y⋄
t exists for t > 0 such that

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0.

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0.

• Proof Let β < 1 and s > 0.

(a) Obviously V ⋄
0 (y) → ∞ as y → −∞ from (26.1.3(p.265) ). Suppose V ⋄

t−1(y) → ∞ as y → −∞. Then v⋄t−1(y) → ∞ as
y → −∞ from (26.1.2(p.265) ). Hence, from (26.1.5(p.265) ) we have V ⋄

t (y) → ∞ as y → −∞ due to the facts that K(y) → ∞ as
y = −∞ due to (10.2.4 (1) (p.57) ) and that −(1− β)y →∞ as y → −∞. Thus, by induction V ⋄

t−1(y)→∞ as y → −∞ for t ≥ 0,
i.e., limy→−∞ V ⋄

t (y) =∞ for t ≥ 0.

(b) Evidently v⋄0(y) → 0 as y → ∞ from (26.1.4(p.265) ). Suppose v⋄t−1(y) → 0 as y → ∞. Noting that K(y) → −∞ as
y → ∞ from (10.2.5 (2) (p.57) ) and that −(1 − β)y → −∞ as y → ∞, from (26.1.5(p.265) ) we have V ⋄

t (y) → −∞ for t ≥ 0 as
y →∞. Hence, from (26.1.2(p.265) ) we have v⋄t (y)→ 0 as y →∞. Thus, by induction v⋄t (y)→ 0 for any t ≥ 0 as y →∞, hence
v⋄t−1(y)→ 0 for any t > 0 as y →∞. Then, for the same reason as just above we have V ⋄

t (y)→ −∞ for t > 0 as y →∞, i.e.,
limy→∞ V ⋄

t (y) = −∞ for t > 0.

(c) From (a,b) and Lemma 26.1.1(p.266) (b) we see that there exists the solution y⋄
t , and then clearly we have ≥ (≤) y⋄

t ⇒
V ⋄
t (y) ≤ (≥) 0 ⇔ Vt(y) ≤ (≥) y for t > 0 from (26.1.1(p.265) ).
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Lemma 26.1.4 (rM:2[R][A]) Let β < 1 and s > 0.

(a) Let y ≤ 0. Then Vt(y) ≥ y for t > 0.

(b) Let y > 0.

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0,

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0

where y⋄
t ≥ 0 for t > 0.

• Proof Let β < 1 and s > 0. Since V1(y) ≥ K(max{y, ρ}) +max{y, ρ} for any y from (24.2.14(p.242) ) and since max{y, ρ} ≥ y
for any y, we obtain V1(y) ≥ K(y) + y · · · ((1)) for any y due to Lemma 10.2.2(p.57) (e).

(a) Let y ≤ 0 · · · ((2)). Since Vt(y) ≥ βvt−1(y) for t > 0 from (24.2.5(p.242) ) and since vt−1(y) ≥ y for t > 0 from (24.2.2(p.242) ),

we have Vt(y) ≥ βvt−1(y) ≥ βy for t > 0. Then, since βy ≥ y due to (2) , we have Vt(y) ≥ y for t > 0.

(b) Let y > 0 · · · ((3)).

(b1,b2) The same as Lemma 26.1.3(p.266) (c1,b1).

26.1.1.3 Analysis

� Tom 26.1.1 (�� A {rM:2[R][A]})

(a) Let s = 0. Then rM:2[R][A] # rM:2[R][E].
(b) Let β = 1.

1. ♣We have y ≤ Vt(y) for any y and t ≥ 0.

2. We have the future-subject
�� ���� ��F.S. 2 (the conditions for ⃝⃝s , } , and•dd )

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.

2. ♣Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

3. Let y ≥ 0.

i. ♠Let y ≥ y⋄
t . Then Vt(y) ≤ y for t ≥ 0.

ii. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

• Proof (a) Let s = 0. Then, from Lemma 26.1.2(p.266) (b) we see that it is always optimal to Conductt the search due
to (24.2.25(p.242) ), implying that rM:2[R][A], which is originally a search-Allowed-model, is substantially reduced to rM:2[R][E],
which is a search-Enforced-model. In other words, rM:2[R][A] migrates to rM:2[R][E], represented as rM:2[R][A] # rM:2[R][E]
(see Def. 11.2.3(p.63) ).

(b) Let β = 1.

(b1) The same as Lemma 26.1.2(p.266) (a).

(b2) The subject of future study——

(c) Let β < 1 and s > 0.

(c1) From (24.2.4(p.242) ) we have Vt ≥ βVt−1 for τ ≥ t > 0, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVt−2, · · · , V1 ≥ βV0, so
Vτ ≥ βVτ−1 ≥ β2Vt−2 ≥ · · · ≥ βτV0. Accordingly, we have t∗τ = τ for τ ≥ 0, i.e., ⃝s dOITsτ≥0⟨τ⟩ △.

(c2) The same as Lemma 26.1.4(p.267) (a).

(c3-c3ii) The same as Lemma 26.1.4(p.267) (b-b2).

26.1.1.4 Flow of Optimal Decision Rules

♣ Flow-ODR 9 (rM:2[R][A]) (Accept0(y) ◃ Stop) Let β = 1. Then, the inequality y ≤ Vt(y) for any y and t ≥ 0 (see Tom 26.2.2(p.274) (♣a1))
means that even if the process is initiated at any time t, it is optimal to reject the best price y at that time. Accordingly, it
follows that each time a price ξ is proposed, the current best price y continues to be enlarged to y

def
= max{y, ξ}, and the process

terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 10 (rM:2[R][A]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 26.1.1(p.267) (♠c3i,♠c3ii) and (24.2.29(p.242) ) we have the following relations for τ ≥ t ≥ 0:

y ≥ y⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
(26.1.14)

Namely, the optimal reservation value is given by y⋄
t , which is constant in t.
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26.1.1.5 Market Restriction

26.1.1.5.1 Positive Restriction

� Pom 26.1.1 (A {rM:2[R][A]}+) Suppose a > 0.

(a) Let s = 0. Then rM:2[R][A]+ # M:2[R][E]+.
(b) Let β = 1.

1. We have odr 7→ Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 2(p.267) (the conditions for ⃝⃝s , } , and•dd ).

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ → → ⃝⃝s
2. We have t-reservation-price.

• Proof Suppose a > 0. Then it suffices to consider only y with y > a > 0.

(a) The same as Tom 26.1.1(p.267) (a).

(b) Let β = 1.

(b1) Clear from ♣ Flow-ODR 9.

(b2) The subject of future study ——

(c) Let β < 1 and s > 0.

(c1) The same as Tom 26.1.1(p.267) (c1).

(c2) Clear from Tom 26.1.1(p.267) (♠c3i,♠c3ii).

26.1.1.5.2 Mixed Restriction

Omitted.

26.1.1.5.3 Negative Restriction

Omitted.

26.1.2 rM̃:2[R][A]

26.1.2.1 Derivation of A {rM̃:2[R][A]}
For almost the same reason as in Section 25.2.2.1(p.261) it can be confirmed that SOE{rM̃:2[R][A]} (see
(24.2.35(p.243) )) is symmetrical to SOE{rM:2[R][A]} (see (24.2.6(p.242) )). This results implies that applying SR→R̃ (see (18.0.1(p.130) ))
to Tom 26.1.1(p.267) for rM:2[R][E] (selling model) yields lemmas for rM̃:2[R][E] (buying model).

� Tom 26.1.2 (�� A {rM̃:2[R][A]})
(a) Let s = 0. Then rM̃:2[R][A] # rM̃:2[R][E].
(b) Let β = 1.

1. ♣ We have y ≥ Vt(y) for t ≥ 0.

2. We have the same unsolved subject as
�� ��F.S 2(p.267) .

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.
2. ♣ Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

3. Let y ≤ 0.

i. ♠ Let y ≤ ỹ⋄
t . Then y ≤ Vt(y) for t ≥ 0.

ii. ♠ Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

• Proof by symmetry Obtained by applying SR→R̃ to Tom 26.1.1(p.267) .

26.1.2.2 Flow of Optimal Decision Rules

♣ Flow-ODR 11 (rM:2[R][A]) (Accept0(y) ◃ Stop) Let β = 1 (see Tom 26.1.2(p.268) (♣b1)). Then, the inequality y ≥ Vt(y) for
any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y at that time.
Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be reduced to y

def
= min{y, ξ},

and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 12 (rM:2[R][A]) (t-reservation-price) Let β < 1 and s > 0 and let y ≤ 0. Then, from
Tom 26.1.2(p.268) (♠c3i,♠c3ii) and (24.2.50(p.243) ) we have the following relations for τ ≥ t ≥ 0:

y ≤ ỹ⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
. (26.1.15)

Namely, the optimal reservation value is given by ỹ⋄
t , which is constant in t.
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26.1.2.3 Market Restriction

26.1.2.3.1 Positive Restriction

� Pom 26.1.2 (A {rM̃:2[R][E]+}) Suppose a > 0.

(a) Let s = 0. Then rM̃:2[R][A]+ # rM̃:2[R][E]+.
(b) Let β = 1.

1. ♣We have odr 7→ Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 2(p.267) .

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △ → → ⃝⃝s
2. ♣We have odr 7→ Accept0(y) ◃ Stop.

• Proof Suppose a > 0. Then it suffices to consider only y > a > 0.

(a) The same as Tom 26.1.2(p.268) (a).

(b) Let β = 1.

(b1) Immediate from Tom 26.1.2(p.268) (♣b1) and ♣ Flow-ODR 11(p.268) .

(b2) The subject of future study ——

(c) Let β < 1 and s > 0.

(c1) The same as Tom 26.1.2(p.268) (c1).

(c2) Immediate Tom 26.1.2(p.268) (♣c2) and ♣Flow-ODR 9.

26.1.2.3.2 Mixed Restriction

Omitted.

26.1.2.3.3 Negative Restriction

Omitted.

26.1.3 Conclusion 9 (Search-Allowed-Model 2)

� The assertion systems A {M:2[R][A]} of the quadruple-asset-trading-models on the total market F

Q{rM:2[A]} = {rM:2[R][A], rM̃:2[R][A], rM:2[P][A], rM̃:2[P][A]}

are given by

A {rM:2[R][A]}
↓

Tom’s 26.1.1(p.267)

A {rM̃:2[R][A]}
↓

Tom’s 26.1.2(p.268)

� The assertion systems A {M:2[R][A]+} of the quadruple-asset-trading-models on the positive market F+

Q{rM:2[A]}+ = {rM:2[R][A]+, rM̃:2[R][A]+, rM:2[P][A]+, rM̃:2[P][A]+}
are given by

A {rM:2[R][A]+}
↓

Pom’s 26.1.1(p.268)

A {rM̃:2[R][A]+}
↓

Pom’s 26.1.2(p.269)
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� Closely looking into all the assertion systems above leads to the conclusions below.

C1 We have A {rM̃:2[R][A]}+ |∼ A {rM:2[R][A]}+.
C2 We have rM/M̃:2[R][A]+ # rM/M̃:2[R][E]+.
C3 We have ⃝⃝s △ for rM/M̃:2[R][A]+.
C4 We have odr 7→Accept0(y) ◃ Stop for rM/M̃:2[R][A]+ (i.e.,•dd ).

C5 We have t-reservation-price for rM:2[R][A]+.
C6 We have the future subject

�� ��F.S 2.

C1 Compare Pom 26.1.2(p.269) and Pom 26.1.1(p.268) .

C2 See Pom 26.1.1(p.268) (a) and Pom 26.1.2(p.269) (a).

C3 See Pom 26.1.1(p.268) (c1) and Pom 26.1.2(p.269) (c1).

C4 See Pom 26.1.1(p.268) (b1) and Pom 26.1.2(p.269) (b1,c2).

C5 See Pom 26.1.1(p.268) (c2).

C6 See Pom 26.1.1(p.268) (b2) and Pom 26.1.2(p.269) (b2).

26.2 Search-Enforced-Model 2

26.2.1 rM:2[R][E]

26.2.1.1 Preliminary

Let us define
v⋄t (y) = vt(y)− y, t ≥ 0, (26.2.1)

V ⋄
t (y) = Vt(y)− y, t ≥ 0. (26.2.2)

Then, from (24.2.58(p.244) ) we have

v⋄t (y) = max{0, V ⋄
t (y)} ≥ 0, t ≥ 0, (26.2.3)

where

v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (24.2.51(p.244) )), (26.2.4)

V ⋄
0 (y) = V0(y)− y = ρ− y (see (24.2.57(p.244) )) (26.2.5)

Furthermore, from (24.2.55(p.244) ) we have

V ⋄
t (y) = λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y) + y − y t > 0 (← (5.1.10(p.25) ))

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y), t ≥ 0. (26.2.6)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t ≥ 0. (26.2.7)

If multiple solutions exist, it is defined to be the smallest of them.

26.2.1.2 Lemmas

Lemma 26.2.1 (rM:2[R][E])

(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) V ⋄
t (y) is nonincreasing in y for t ≥ 0.

• Proof (a) v0(y) is nondecreasing in y from (24.2.51(p.244) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreas-
ing in y from (24.2.55(p.244) ), hence vt(y) is also nondecreasing in y from (24.2.58(p.244) ). Thus, by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (24.2.55(p.244) ).
In addition, since V0(y) can be regarded as nondecreasing in y from (24.2.57(p.244) ), it follows that Vt(y) is nondecreasing in y for
t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (26.2.4(p.270) ). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (26.2.3(p.270) ). Accordingly, from (26.2.6(p.270) ) and Lemma 10.2.2(p.57) (b)) we see that V ⋄

t (y) is also nonincreasing in y.
This completes the induction.

Lemma 26.2.2 (rM:2[R][E]) Let β = 1 and s = 0. Then Vt(y) ≥ y for any y and t > 0.
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• Proof Let β = 1 and s = 0, henceK(y) = λT (y) from (5.1.4(p.25) ). Then, from (26.2.6(p.270) ) we have V ⋄
t (y) = λE[v⋄t−1(max{ξ, y})]+

(1 − λ)v⋄t−1(y) + λT (y) for t ≥ 0. Now, for any ξ and y we have that v⋄t−1(max{ξ, y}) ≥ 0 and v⋄t−1(y) ≥ 0 for t > 0 from
(26.2.3(p.270) ) and that T (y) ≥ 0 due to Lemma 10.1.1(p.55) (g), hence it follows that V ⋄

t (y) ≥ 0 for any y and t > 0 or equivalently
Vt(y) ≥ y for any y and t > 0 from (26.2.2(p.270) ).

Lemma 26.2.3 (rM:2[R][E]) Let β < 1 or s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) < 0 for t > 0.

(c) The sequence y⋄
1 , y

⋄
2 , · · · exists where

y ≤ (≥) y⋄
t ⇒ V ⋄

t (y) ≥ (≤) 0. (26.2.8)

• Proof Let β < 1 or s > 0.

(a) We have V ⋄
0 (y) → ∞ as y → −∞ from (26.2.5(p.270) ). Suppose V ⋄

t−1(y) → ∞ as y → −∞. Then v⋄t−1(y) → ∞ as
y → −∞ from (26.2.3(p.270) ). In addition, since K(y) → ∞ as y = −∞ due to (10.2.4 (1) (p.57) ), from (26.2.6(p.270) ) we see that
V ⋄
t (y)→∞ as y → −∞. This completes the induction.

(b) We have v⋄0(y) → 0 as y → ∞ from (26.2.4(p.270) ). Suppose v⋄t−1(y) → 0 as y → ∞. Then, the first and second terms
of the right-hand side of (26.2.6(p.270) ) converge to 0 as y → ∞. In addition, due to (10.2.5 (2) (p.57) ), if β = 1, then s > 0 due
to the assumption “β < 1 or s > 0”, hence K(y) = −s < 0 for any y and if β < 1, then K(y) → −∞ < 0 as y → ∞,
so limy→∞ K(y) < 0 whether β = 1 or β < 1. Hence, it follows that limy→∞ V ⋄

t (y) < 0. Thus, from (26.2.3(p.270) ) we have
v⋄t (y) → 0 as y → ∞. Hence, by induction we have v⋄t (y) → 0 as y → ∞ for t ≥ 0. Accordingly, since v⋄t−1(y) → 0 as y → ∞
for t > 0, for quite the same reason as the above we have limy→∞ V ⋄

t−1(y) < 0 for t > 0.

(c) Immediate from (a,b) and Lemma 26.2.1(p.270) (b).

Lemma 26.2.4 (rM:2[R][E]) Let ρ ≤ xK . Then for any y ∈ [a, b] we have :

(a) vt(y) and Vt(y) are nondecreasing in t ≥ 0.

(b) vt(y) and Vt(y) converges to finite v(y) and V (y) respectively as t→∞.

(c) V ⋄
t (y) is nondecreasing in t ≥ 0.

(d) y⋄
t is nondecreasing in t > 0.

(e) Vt is nondecreasing in t ≥ 0.

• Proof Let ρ ≤ xK and consider only y ∈ [a, b] · · · ((1)). Then K(ρ) ≥ 0 · · · ((2)) from Corollary 10.2.2(p.58) (b).

(a) Since max{y, ρ} ≥ ρ for any y, from (24.2.61(p.244) ) and Lemma 10.2.2(p.57) (e) we have V1(y) ≥ K(ρ) + ρ ≥ ρ · · · ((3)) due

to (2) . Hence, from (24.2.52(p.244) ) with t = 1 we have v1(y) = max{y, V1(y)} ≥ max{y, ρ} = v0(y) for any y from (24.2.51(p.244) ).
Suppose vt−1(y) ≥ vt−2(y) for any y. Then, from (24.2.55(p.244) ) we have Vt(y) ≥ λβE[vt−2(max{ξ, y})]+ (1−λ)βvt−2(y)− s =
Vt−1(y) for any y. Hence, from (24.2.58(p.244) ) we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is
nondecreasing in t ≥ 0 for any y. Then vt−1(y) is nondecreasing in t > 0 for any y, hence Vt(y) is nondecreasing in t > 0 for any
y from (24.2.55(p.244) ). From (3) and (24.2.57(p.244) ) we have V1(y) ≥ V0(y). Accordingly, it follows that Vt(y) is nondecreasing in
t ≥ 0 for any y.

(b) Below let us consider only y ∈ [a, b] and ξ ∈ [a, b]†; in addition, consider a sufficiently large M > 0 such that b ≤ M
and ρ ≤ M . Then we have V0(y) ≤ M from (24.2.57(p.244) ). Suppose Vt−1(y) ≤ M · · · ((4)) for any y ∈ [a, b], hence from

(24.2.52(p.244) ) we have vt−1(y) ≤ max{M,M} = M . Then, since max{ξ, y} ≤ max{M,M} = M and max{ξ, y} ∈ [a, b], we have
Vt−1(max{ξ, y}) ≤ M due to (4) . Thus, from (24.2.52(p.244) ) we have vt−1(max{ξ, y}) = max{max{ξ, y}, Vt−1(max{ξ, y})} ≤
max{M,M} = M . Hence, from (24.2.55(p.244) ) we have Vt(y) ≤ λβE[M ]+(1−λ)βM−s = λβM+(1−λ)βM−s = βM−s ≤M ,
i.e., Vt(y) is upper bounded in t. Accordingly, due to (a) it follows that Vt(y) converge to a finite V (y) as t→∞.

(c) Immediate from (26.2.2(p.270) ) and (a).

(d) Evident from Lemma 26.2.1(p.270) (b), Lemma 26.2.4(p.271) (c), and Lemma 26.2.3(p.271) (c) (see Figure A 7.2(p.314) (I)).

(e) From (24.2.59(p.244) ) and (2) we have V1 ≥ ρ = V0 from (24.2.53(p.244) ). Suppose Vt−1 ≥ Vt−2. Since vt−1(ξ) ≥ vt−2(ξ) for
any ξ due to (a), from (24.2.54(p.244) ) we have Vt ≥ λβE[vt−2(ξ)] + (1− λ)βVt−2 − s = Vt−1. This completes the induction.

Lemma 26.2.5 (rM:2[R][E]) Let β < 1 or s > 0.

(a) Let y ≥ y⋄
t . Then y ≥ Vt(y) for t > 0.

(b) Let y ≤ y⋄
t . Then y ≤ Vt(y) for t > 0.

• Proof The same as Lemma 26.2.3(p.271) (c) and (26.2.2(p.270) ).

†a ≤ y ≤ b ≤M and a ≤ ξ ≤ b ≤M .
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From (24.2.63(p.244) ) and the two inequalities in Tom 26.2.5(p.271) (a,b) we have the following decision rule:

y ≥ y⋄
t ⇒ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
(26.2.9)

26.2.1.3 Analysis

� Tom 26.2.1 (�� A {rM:2[R][E]})
(a) Let β = 1 and s = 0.

1. ♣We have y ≤ Vt(y) for any y and t ≥ 0.

2. We have the future subject
�� ���� ��F.S. 3 (the conditions for ⃝⃝s , } , and•dd ).

(b) Let β < 1 or s > 0.

1. ♠Let y ≥ y⋄
t . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

3. We have the future subject
�� ���� ��F.S. 4 (the conditions for ⃝⃝s , } , and•dd ).

• Proof (a) Let β = 1 and s = 0.

(a1) The same as Lemma 26.2.2(p.270) .

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1,b2) The same as Lemma 26.2.5(p.271) .

(b3) The subject of future study——

26.2.1.4 Flow of Optimal Decision Rules

♣ Flow-ODR 13 (rM:2[R][E]) (Accept0(y) ◃ Stop) Let β = 1 and s = 0 (see Tom 26.2.1(p.272) (♣a1)). Then, the inequality y ≤
Vt(y) for any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y
at that time. Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be enlarged to
y

def
= max{y, ξ}, and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 14 (rM:2[R][E]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 26.2.1(p.272) (♠b1,♠b2)
and (24.1.25(p.240) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≥ y⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by y⋄
t , which is constant in t.

26.2.1.5 Market Restriction

26.2.1.5.1 Positive Restriction

� Pom 26.2.1 (A {rM:2[R][E]}+) Suppose a > 0.

(a) Let β = 1 and s = 0.

1. We have Accept0(y) ◃ Stop (see ♣Flow-ODR 13).

2. We have the same unsolved subject as
�� ��F.S 3(p.272) .

(b) Let β < 1 or s > 0.

1. We have t-reservation-price (see ♣Flow-ODR 14).

2. We have the same unsolved subject as
�� ��F.S 4(p.272) .

• Proof Suppose a > 0.

(a) Let β = 1 and s = 0.

(a1) Obvious from Tom 26.2.1(p.272) (♣a1).

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1) Evident from Tom 26.2.1(p.272) (♠b1,♠b2).

(b2) The subject of future study——

26.2.1.5.2 Mixed Restriction

Omitted.

26.2.1.5.3 Negative Restriction

Omitted.
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26.2.2 rM̃:2[R][E]
26.2.2.1 Preliminary

Let us define
ṽ⋄t (y) = vt(y)− y, t ≥ 0, (26.2.10)

Ṽ ⋄
t (y) = Vt(y)− y, t ≥ 0. (26.2.11)

Then, from (24.2.71(p.244) ) we have

ṽ⋄t (y) = min{0, Ṽ ⋄
t (y)}, t ≥ 0. (26.2.12)

By ỹ⋄
t let us denote the solution of the equation Ṽ ⋄

t (y) = 0, t > 0, it exists, i.e.,

Ṽ ⋄
t (ỹ⋄

t ) = 0. (26.2.13)

If multiple solutions exist, it is defined to be the largest of them. Now, we have

ṽ⋄0(y) = min{0, ρ− y} (← (24.2.64(p.244) )), (26.2.14)

Ṽ ⋄
0 (y) = ρ− y (← (24.2.70(p.244) )). (26.2.15)

Lemma 26.2.6 (rM̃:2[R][E]) We have ỹ⋄
t = ŷ⋄

t (= −y⋄
t ) for t > 0 (see (26.2.7(p.270) ) for y⋄

t ).

• Proof First, note that (24.2.68(p.244) ) can be rewritten as follows.

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f(ξ)dξ + (1− λ)βvt−1(y) + s, t > 0.

Next, replacing f(ξ) in the above expression by f̌(ξ̂) (see (12.1.9(p.70) )) leads to

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(min{−ξ̂,−ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ̂, ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s, t > 0.

Then, let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, the above expression can be rearranged as

Vt(y) = −λβ
∫ −∞
∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f̌(ξ)dξ + (1− λ)βvt−1(y) + s (without loss of generality).

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f(ξ)dξ + (1− λ)βvt−1(y) + s (see (12.1.11(p.70) )).

Applying the reverse operation R to the above expression yields

−V̂t(−ŷ) = −λβ
∫∞
−∞ v̂t−1(−max{ξ, ŷ})f(ξ)dξ − (1− λ)βv̂t−1(−ŷ) + s

= −λβE[v̂t−1(−max{ξ, ŷ})]− (1− λ)βv̂t−1(−ŷ) + s, t > 0.

Multiplying the above expression by −1 yields

V̂t(−ŷ) = λβE[v̂t−1(−max{ξ, ŷ})] + (1− λ)βv̂t−1(−ŷ)− s, t > 0. · · · ((1)).

Now, since (1) holds for any y with −∞ < y <∞, it holds also for ŷ since ∞ > ŷ > −∞ or equivalently −∞ < ŷ <∞, hence
we have

V̂t(−ˆ̂y) = λβE[v̂t−1(−max{ξ, ˆ̂y})] + (1− λ)βv̂t−1(−ˆ̂y)− s, t > 0. · · · ((2)).

Since ˆ̂y = y, we can rewrite (2) as

V̂t(−y) = λβE[v̂t−1(−max{ξ, y})] + (1− λ)βv̂t−1(−y)− s · · · ((3)).

◦ Below let us temporarily represent the symbols “v” and “V ” used in rM:2[R][E] in Section 24.2.2.1(p.244) by “z” and “Z”
respectively. Then (24.2.51(p.244) ), (24.2.52(p.244) ), (24.2.57(p.244) ), and (24.2.55(p.244) ) can be rewritten as respectively

z0(y) = max{y, ρ} · · · ((4)),

zt(y) = max{y, Zt(y)} · · · ((5)), t > 0,

Z0(y) = ρ · · · ((6)),

Zt(y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s · · · ((7)), t > 0.

In addition, let Z⋄
t (y)

def
= Zt(y)−y · · · ((8)) and z⋄t (y)

def
= zt(y)−y = max{0, Z⋄

t (y)}. Then we have Z⋄
t (y

⋄
t ) = 0 and zt(y

⋄
t )−y⋄

t = 0

(see (26.2.7(p.270) )).
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◦ Since V0(y) = ρ · · · ((9)) from (24.2.70(p.244) ), we have −V̂0(−ŷ) = −ρ̂, hence V̂0(−ŷ) = ρ̂. Since the equality holds for any

y ∈ (−∞,∞) and any ρ ∈ (−∞,∞), so also does for ŷ ∈ (−∞,∞) and ρ̂ ∈ (−∞,∞). Hence since V̂0(−ˆ̂y) = ˆ̂ρ, we have
V̂0(−y) = ρ · · · ((10 )).

◦ From (10) and (6) we have V̂0(−y) = ρ = Z0(y). Suppose V̂t−1(−y) = Zt−1(y). Then, from (24.2.71(p.244) ) we have

vt−1(y) = min{−ŷ,−V̂t−1(−ŷ)} = −max{ŷ, V̂t−1(−ŷ)} = −max{ŷ, Zt−1(ŷ)} = −zt−1(ŷ)

due to (5) . Hence, since v̂t−1(y) = zt−1(ŷ), we have

v̂t−1(−y) = v̂t−1(ŷ) = zt−1(ˆ̂y) = zt−1(y),

hence, since v̂t−1(−max{ξ, y}) = zt−1(max{ξ, y}). Accordingly, (3) can be rewritten as

V̂t(−y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s = Zt(y) (see (7) ).

Hence, since −Vt(−y) = Zt(y), we have Vt(−y) = −Zt(y). Since the equality holds for any y ∈ (−∞,∞), so also does for
ŷ ∈ (−∞,∞), hence Vt(−ŷ) = −Zt(ŷ), so Vt(y) = −Zt(ŷ). Now, from (26.2.13(p.273) ) and (26.2.11(p.273) ) we have

0 = Ṽt(ỹ
⋄
t ) = Vt(ỹ

⋄
t )− ỹ⋄

t = −Zt(ˆ̃y
⋄
t )− ỹ⋄

t = −Zt(ˆ̃y
⋄
t ) + ˆ̃y⋄

t = −(Zt(ˆ̃y
⋄
t )− ˆ̃y⋄

t ) = −Z⋄
t (ˆ̃y

⋄
t )

due to (8) or equivalently Z⋄
t (ˆ̃y

⋄
t ) = 0. Hence, we have y⋄

t = ˆ̃y⋄
t by definition, or equivalently ˆ̃y⋄

t = y⋄
t , so −ỹ⋄

t = y⋄
t , hence

ỹ⋄
t = −y⋄

t = ŷ⋄
t .

26.2.2.2 Derivation of A {rM̃:2[R][E]}
For almost the same reason as in Section 25.2.2.1(p.261) it can be confirmed that SOE{rM̃:2[R][E]} (see (24.2.69(p.244) )) is symmet-
rical to SOE{rM:2[R][E]} (see (24.2.56(p.244) )). This results implies that applying SR→R̃ (see (18.0.1(p.130) )) to Tom 26.2.1(p.272) for
rM:2[R][E] yields lemmas for rM̃:2[R][E].

� Tom 26.2.2 (�� A {rM̃:2[R][E]})

(a) Let β = 1 and s = 0.

1. ♣We have y ≥ Vt(y) for t ≥ 0 and any y.

2. We have the same unsolved subject as
�� ��F.S 3(p.272) .

(b) Let β < 1 or s > 0.

1. ♠Let y ≤ ỹ⋄
t . Then Vt(y) ≥ y for t ≥ 0.

2. ♠Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

3. We have the same unsolved subject as
�� ��F.S 4(p.272) .

• Proof by symmetry Immediate from applying SR→R̃ (see (18.0.1(p.130) )) to Tom 26.2.1(p.272) .

From (24.2.63(p.244) ) and the two inequalities in Tom 26.2.5(p.271) (a,b) we have the following decision rule:

y ≤ ỹ⋄
t ⇒ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
(26.2.16)

26.2.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 15 (rM:2[R][E]) (Accept0(y) ◃ Stop) Let β = 1 and s = 0 (see Tom 26.2.2(p.274) (♣a1)). Then, the inequality y ≤
Vt(y) for any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y
at that time. Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be reduced to
y

def
= min{y, ξ}, and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 16 (rM:2[R][E]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 26.2.2(p.274) (♠b1,♠b2)
and (24.1.25(p.240) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≤ ỹ⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by ỹ⋄
t , which is constant in t.
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26.2.2.4 Market Restriction

26.2.2.4.1 Positive Restriction

� Pom 26.2.2 (A {rM̃:2[R][E]}+) Assume a > 0.

(a) Let β = 1 and s = 0.
1. ♣We have Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 3(p.272) .

(b) Let β < 1 or s > 0.
1. ♠We have t-reservation-price.

2. We have the same unsolved subject as
�� ��F.S 4(p.272) .

• Proof Suppose a > 0.

(a) Let β = 1 and s = 0..

(a1) Obvious from Tom 26.2.2(p.274) (♣a) and ♣Flow-ODR 15.

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1) Evident from Tom 26.2.2(p.274) (♠b1,♠b2) and ♠Flow-ODR 16.

(b2) The subject of future study——

26.2.2.4.2 Mixed Restriction

Omitted.

26.2.2.4.3 Negative Restriction

Omitted.

26.2.3 Conclusion 10 (Search-Enforced-Model 2)

� The assertion systems A {M:2[R][E]} of the quadruple-asset-trading-models on the total market F

Q{rM:2[E]} = {rM:2[R][E], rM̃:2[R][E], rM:2[P][E], rM̃:2[P][E]}
are given by

A {rM:2[R][E]}
↓

Tom’s 25.2.21(p.259)

A {rM̃:2[R][E]}
↓

Tom’s 26.2.2(p.274)

� The assertion systems A {M:2[R][E]+} of the quadruple-asset-trading-models on the positive market F+

Q{rM:2[E]}+ = {rM:2[R][E]+, rM̃:2[R][E]+, rM:2[P][E]+, rM̃:2[P][E]+}
are given by

A {rM:2[R][E]+}
↓

Pom’s 26.2.1(p.272)

A {rM̃:2[R][E]+}
↓

Pom’s 26.2.2(p.275)

� Closely looking into all the assertion systems above leads to the conclusions below.

C1 We have A {rM̃:2[R][E]}+ ∼ A {rM:2[R][E]}+.
C2 We have odr 7→ Accept0(y) ◃ Stop for rM/M̃:2[R][E]+ (i.e.,•dd ).

C3 We have t-reservation-price for rM/M̃:2[R][E]+.
C4 We have the same unsolved subject as

�� ��F.S 3(p.272) and
�� ��F.S 4(p.272) for rM/M̃:2[R][E]+.

C1 Compare Pom 26.2.2(p.275) and 26.2.1(p.272) .

C2 See Pom 26.2.1(p.272) (a1) and Pom 26.2.2(p.275) (a1).

C3 See Pom 26.2.1(p.272) (b1) and Pom 26.2.2(p.275) (b1).

C4 See Pom 26.2.1(p.272) (a2,b2) and Pom 26.2.2(p.275) (a2,b2).
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Chapter 27

Analysis of Model 3

27.1 Search-Allowed-Model 3

Lemma 27.1.1 We have

(a) vt(y) is nondecreasing in t ≥ 0 for any y.

(b) Let ρ ≤ 0. Then Ut is nondecreasing in t ≥ 0.

(c) Let ρ ≥ xK and ρ ≥ 0. Then Ut ≤ ρ for t ≥ 0 and vt(y) ≤ max{y, ρ} for t ≥ 0.

• Proof (a) From (24.3.2(p.245) ) with t = 1 and (24.3.1(p.245) ) we have v1(y) ≥ max{y, ρ} = v0(y) for any y. Suppose vt−1(y) ≥
vt−2(y) for any y. Then, from (24.3.5(p.245) ) we have

Ut(y) ≥ max{λβE[vt−2(max{ξ, y})] + (1− λ)βvt−2(y)− s, βvt−2(y)} = Ut−1(y)

for any y, so from (24.3.2(p.245) ) we have vt(y) ≥ max{y, ρ, Ut−1(y)} = vt−1(y) for any y. Thus, by induction we have vt(y) ≥
vt−1(y) for any y and t > 0. Accordingly, it follows that vt(y) is nondecreasing in t ≥ 0.

(b) Let ρ ≤ 0. From (24.3.6(p.245) ) with t = 1 and (24.3.3(p.245) ) we have U1 ≥ βV0 = βρ ≥ ρ = U0 from (24.3.8 (2) (p.245) ).
Suppose Ut ≥ Ut−1. Then, since vt−1(ξ) ≥ vt−2(ξ) for any ξ from (a) and since Vt ≥ max{ρ, Ut−1} = Vt−1 from (24.3.4(p.245) ),
we have

Ut ≥ max{λβE[vt−2(ξ)] + (1− λ)βVt−2 − s, βVt−2} = Ut−1

from (24.3.6(p.245) ). This completes the induction.

(c) Let ρ ≥ xK and ρ ≥ 0 · · · ((1)). Then, we have K(ρ) ≤ 0 · · · ((2)) from Corollary 10.2.2(p.58) (a) and we have K(max{y, ρ}) ≤
0 · · · ((3)) for any y due to max{y, ρ} ≥ ρ ≥ xK . Clearly, we have U0 ≤ ρ from (24.3.8 (2) (p.245) ) and v0(y) ≤ max{y, ρ} for any y

from (24.3.1(p.245) ). Suppose Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} · · · ((4)) for any y, hence Vt−1 = ρ from (24.3.4(p.245) ). Then, from

(24.3.6(p.245) ) we have

Ut ≤ max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ}

from (5.1.10(p.25) ), hence Ut ≤ max{ρ, βρ} = ρ due to (2) and (1) . Since vt−1(max{ξ, ρ}) ≤ max{ξ, ρ} for any ξ and y due to
(4) , from (24.3.5(p.245) ) we have

Ut(y) ≤ max{λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{K(max{y, ρ}) + max{y, ρ}, βmax{y, ρ}}

from (5.1.10(p.25) ). Hence Ut(y) ≤ max{max{y, ρ}, β{max{y, ρ}} = max{y, ρ} due to (3) and max{y, ρ} ≥ ρ ≥ 0 for any y.
Accordingly, from (24.3.2(p.245) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} = max{y, ρ}. This complete the inductions.

� Tom 27.1.1 (�� A {rM:3[R][A]})
(a) Let ρ ≤ xK or ρ ≤ 0. Then we have rM:3[R][A] � rM:2[R][A].
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have ⃝⃝s △ where odr 7→ Acceptτ (ρ) ◃ Stop.

• Proof From (24.3.6(p.245) ) with t = 1, (24.3.1(p.245) ), and (24.3.3(p.245) ) we have

U1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} · · · ((1))
due to (5.1.10(p.25) ).

(a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((2)) from Corollary 10.2.2(p.58) (b). Since vt−1(ξ) ≥ max{ξ, ρ} for any ξ and t > 0 from

(24.3.2(p.245) )) and since Vt ≥ ρ for t > 0 from (24.3.4(p.245) )), from
(24.3.6(p.245) )) and (5.1.10(p.25) ) we have
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Ut ≥ max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} ≥ K(ρ) + ρ ≥ ρ

for any t > 0 due to (2) . Let ρ ≤ 0, hence −(1− β)ρ ≥ 0. From (1) we have U1 − ρ = max{K(ρ),−(1− β)ρ} ≥ 0, so U1 ≥ ρ;
accordingly, we have Ut ≥ ρ for t > 0 from Lemma 27.1.1(p.277) (b). Consequently, whether ρ ≤ xK or ρ ≤ 0, it follows that
Ut ≥ ρ for t > 0. This fact means that “Reject the intervening quitting penalty price ρ for all t > 0”, implying “Behave as if
there does not exist the intervening quitting penalty price ρ”; in other words, it eventually follows that rM:3[R][A] is reduced to
the model without the intervening quitting penalty price ρ, i.e., rM:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 27.1.1(p.277) (c), meaning “Accept the intervening
quitting penalty price ρ and the process stops” for τ ≥ t > 0; in other words, we have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ τ > 0
(see (21.1.2(p.225) )). The proof of ⃝⃝s △ is the same as the proof of Tom 27.2.1(p.278) (b2) for ρ ≥ 0.

27.1.1 rM̃:3[R][A]
In the same way as in Section 25.2.2.1(p.261) we can easily verify that SOE{rM̃:3[R][A]} = SR→R̃[SOE{rM:3[R][A]}] (see (24.3.16(p.245) )
and (24.3.7(p.245) )). Hence, we can apply SR→R̃ (see (18.0.1(p.130) )) to Tom 27.1.1(p.277) , yielding the following Tom (see Lemma 12.10.1(p.87) ).

� Tom 27.1.2 (�� A {rM̃:3[R][A]})
(a) Let ρ ≥ x

K̃ or ρ ≥ 0. Then we have rM̃:3[R][A] �rM̃:2[R][A].
(b) Let ρ ≤ x

K̃ and ρ ≤ 0. Then we have ⃝⃝s △ where odr 7→ Acceptt(ρ) ◃ Stop.

27.1.2 Conclusion 11 (Search-Allowed-Model 3)

The following two cases are possible:

C1. We have rM/M̃:3[R][A] �rM/M̃:2[R][A].
C2. We have odr 7→ Acceptτ (ρ) ◃ Stop where ⃝⃝s △ for rM/M̃:3[R][A].

C1 See Tom 27.1.1(p.277) (a) and Tom 27.1.2(p.278) (a).

C2 See Tom 27.1.1(p.277) (b) and Tom 27.1.2(p.278) (b).

27.2 Search-Enforced-Model 3

27.2.1 rM:3[R][E]
Lemma 27.2.1 Let ρ ≥ xK . Then Ut ≤ ρ and vt(y) ≤ max{y, ρ} for any y and t ≥ 0.

• Proof Let ρ ≥ xK , hence max{y, ρ} ≥ ρ ≥ xK for any y. Then, from Corollary 10.2.2(p.58) (a) we have K(ρ) ≤ 0 · · · ((1)) and
K(max{y, ρ}) ≤ 0 · · · ((2)) for any y. Now U0 ≤ ρ from (24.3.26 (2) (p.246) ) and v0(y) ≤ max{y, ρ} for any y from (24.3.19(p.246) ). Sup-

pose Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} for any y, hence Vt−1 = ρ from (24.3.22(p.246) ) and vt−1(max{ξ, y}) ≤ max{max{ξ, y}, ρ}
for any ξ and y. Then, from (24.3.24(p.246) ) we have

Ut ≤ λβE[max{ξ, ρ}] + (1− λ)βρ− s = K(ρ) + ρ

due to (5.1.10(p.25) ), hence Ut ≤ ρ due to (1) . In addition, from (24.3.23(p.246) ) we have

Ut(y) ≤ λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s

= λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s

= K(max{y, ρ}) + max{y, ρ}

from (5.1.10(p.25) ), hence Ut(y) ≤ max{y, ρ} from (2) . Accordingly, from (24.3.20(p.246) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} =
max{y, ρ}. This complete the inductions.

� Tom 27.2.1 (�� A {rM:3[R][E]})
(a) Let ρ ≤ xK . Then we have rM:3[R][E] � rM:2[R][E].
(b) Let ρ ≥ xK .

1. We have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t ≥ 0.

2. Let ρ ≥ 0 (ρ ≤ 0). Then we have ⃝⃝s △ (•dd△).
• Proof (a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((1)) from Corollary 10.2.2(p.58) (b). Since Vt−1 ≥ ρ for t > 0 from (24.3.22(p.246) ))

and since vt−1(y) ≥ max{y, ρ} for any y, ρ, and t > 0 from (24.3.20(p.246) )), from (24.3.24(p.246) )) we have

Ut ≥ λβE[max{ξ, ρ}] + (1− λ)βρ− s = K(ρ) + ρ, t > 0

from (5.1.10(p.25) ), hence Ut ≥ ρ for t > 0 from (1) . This fact means that “Reject the intervening quitting penalty price ρ for
all t > 0”, implying “Behave as if there does not exist the intervening quitting penalty price ρ”; in other words, it follows that
rM:3[R][E] is reduced to the model without the intervening quitting penalty ρ”, i.e., rM:2[R][E].
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(b) Let ρ ≥ xK .

(b1) Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 27.2.1(p.278) , meaning that “Always accept the intervening quitting
penalty ρ and the process stops” is optimal for τ ≥ t > 0; in other words, we have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t > 0 (see
(21.1.2(p.225) )). Then since Vt = ρ for τ ≥ t ≥ 0 from (24.3.22(p.246) ), we have Itτ = βτ−tVt = βτ−tρ for τ ≥ t ≥ 0 from (7.2.4(p.44) ).

(b2) If ρ ≥ 0, then since β0ρ ≥ β1ρ ≥ · · · ≥ βτρ, we have Iττ ≥ Iτ−1
τ ≥ · · · ≥ I0τ , hence ⃝s dOITsτ ⟨τ⟩ △ and if ρ ≤ 0, then

since β0ρ ≤ β1ρ ≤ · · · ≤ βτρ, we have Iττ ≤ Iτ−1
τ ≤ · · · ≤ I0τ , hence • dOITdτ ⟨0⟩ △.

27.2.2 rM̃:3[R][E]
In the same way as in Section 25.2.2.1(p.261) we can easily verify that SOE{rM̃:3[R][E]} = SR→R̃[SOE{rM:3[R][E]}] (see (24.3.34(p.246) )
and (24.3.25(p.246) )). Hence we can apply SR→R̃ to Tom 27.2.1(p.278) , yielding the following Tom.

� Tom 27.2.2 (�� A {rM̃:3[R][E]})
(a) Let ρ ≥ x

K̃ . Then we have rM̃:3[R][E] � rM̃:2[R][E].
(b) Let ρ ≤ x

K̃ .

1. We have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t ≥ 0.

2. If ρ ≤ 0 (ρ ≥ 0), then we have ⃝⃝s △ (•dd△).
27.2.3 Conclusion 12 (Search-Enforced-Model 3)

The following three cases are possible:

C1. We have rM/M̃:3[R][E] � rM/M̃:2[R][E].
C2. We have odr 7→ Acceptτ (ρ) ◃ Stop if ρ ≥ 0 (i.e., ⃝⃝s △) and Accept0(ρ) ◃ Stop if ρ < 0 (i.e.,•dd△).
C1 See Tom 27.2.1(p.278) (a) and Tom 27.2.2(p.279) (a).

C2 See Tom 27.2.2(p.279) (b1,b2).
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Chapter 28

Conclusion of Part 4 (Recall-Model)

For details, see Conclusions 7 (p.254) , 8 (p.264) , 9 (p.269) , 10 (p.275) , 11 (p.278) , and 12 (p.279) .

28.1 Models 1/2

C1. Myopic Property

a. For rModel 1 we have the c-reservation-price (see C6(p.255) and C5(p.264) ), which yields myopic property. This property
mental conflict (see Def. 25.2.1(p.261) ).

b. For rModel 2 we have the t-reservation-price (see C5(p.270) and C3(p.275) ).

c. It was already shown in [44,Sak1961] that rModel 1 (sE-model) has the myopic property (c-reservation-price). After
that, any variations have not been posed and examined to date. For this reason, we have continued to think as if this
property is a general one for all recall models. However, we demonstrated above that this property does not hold in
rModel 2, i.e., it follows that this is not always a property holding for all recall-models.

C2. Symmetry

a. For rModel 1, the symmetry collapses for both sA-model (see C1(p.255) ) and sE-model (see C1(p.264) ).

b. For rModel 2, the symmetry collapses for sA-model (see C1(p.270) ) but is inherited for sE-model (see C1(p.275) ).

C3. Optimal Initiating Time

For rModel 1 (recall model) with a more complicated structure than Model 1 (no-recall-model), at the beginning we imagined
that it would be rather difficult to mathematically (analytically) examine conditions for ⃝⃝s , } , and •dd . However,
fortunately we succeeded in finding out the conditions for ⃝⃝s (see C4(p.255) and C2(p.264) ), for } (see C3(p.264) ), and for •dd
(see C5(p.255) and C4(p.264) ). What should be noted here is that also }N and•ddN (strictness) exist (see C3(p.264) and C4(p.264) ).

C4. Future study

In rModel 2 we did not succeed in finding out the conditions for } and•dd . Mathematical examinations of these conditions
are left as a future study (see

�� ��F.S 2(p.267) ,
�� ��F.S 3(p.272) , and

�� ��F.S 4(p.272) ).

C5. Reduction

Model 1/2 is reduced to the following two cases (see Section 21.4(p.231) ):

a. mode-migration rM/M̃:1/2[R][A]+ # rM/M̃:1[R][E]+ (see C2(p.255) /C2(p.270) ).

b. odr-reduction odr 7→ Accept0(y) ◃ Stop for sA-model 1/2 (see C3(p.255) /C4(p.270) ).

28.2 Models 3

C6. Reduction

Model 3 is reduced to the following two cases (see Section 21.4(p.231) ):

a. model-running-back rM/M̃:3[R][A/E] � rM/M̃:2[R][A/E] (see C1(p.278) and C1(p.279) ).

b. odr-reduction odr 7→ Acceptτ (ρ) ◃ Stop (see C2(p.278) and C2(p.279) ).
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Chapter 29

General Overview of This Paper

29.1 List of Conclusions
Below we summarize the conclusions presented in Chaps. 8(p.49) , 18(p.129) , 22(p.233) , and 28(p.281) .

29.1.1 Conclusion of Part 1 (Introduction)

The contents of Chap. 8(p.49) can be summarized as follows.

C1. Two motives This study was initiated by the two naive motives (see Section 1.2(p.3) ).

C2. Philosophical background The philosophical foundation of this paper roots in the concept of “decision theory as physics”
(see Section 1.3(p.4) ), which supports all aspects of this study.

C3. Time concepts All physical phenomena are not alien to the time concepts. This physical recognition inevitable led us to
the existence of the following five time points; recognizing time tr, starting time τ , initiating time ti, stopping time ts, and
deadline td (see H1(p.8) and Section 7.1(p.43) ).

C4. Optimal initiating time The best of conceivable initiating times is called the optimal initiating time (OIT), represented by
t∗τ (tr ≥ ti ≥ τ) (see (7.2.5(p.44) )). If t∗τ = τ , then it is denoted by ⃝⃝s (degeneration to the starting time), if ts > t∗τ > 0,
then } (non-degeneration), and if t∗τ = 0, then•dd (degeneration to the deadline) (see Section 7.2.4.3(p.45) ).

C5. Null-Time-Zone and Deadline-Engulfing The introduction of the optimal initiating time yields the concepts of the null-
time-zone (see Sections 7.2.4.5(p.46) ) and the deadline-engulfing (see 7.2.4.6(p.46) ), which are the most significant discoveries
in this study. This fact suggests the need for the comprehensive re-examination of conclusions in nearly all conventional
studies that have been conducted by many researchers so far.

C6. Structured-unit-of-models In Section 1.4(p.4) we provided an overview for the four kinds of asset trading problems, referred
to as the quadruple-asset-trading-problems. In addition, we defined a set consisting of the six kinds of quadruple-asset-
trading-problems, called the structured-unit-of-problems (see Section 3.3(p.18) ). Our key focus in this paper is not on analyzing
each model independently but on clarifying the interconnectedness among these problems.

C7. Assumptions Among the eleven assumptions in Section 2.2(p.11) , the three, A5(p.12) , A7(p.12) , and A11(p.13) , are unique in the
sense that they opened a new dimensions in the theory of decision processes.

C8. Discount factor While a selling problem is framed as a profit maximization problem, a buying problem is a cost min-
imization problem. Although the managerial and economical implications of the discount factor for profit have been
well-documented in many standard textbooks, a persuasive explanation of the implication for cost is not found. In this
paper, we offered a novel viewpoint for this situation (see Section 2.3(p.13) ).

C9. Underlying function The underlying functions T , L, K, and L defined in Chap. 5(p.25) are essential for analyzing all the
models discussed in this paper. While the function T has been defined and used in existing literature so far, the other three
functions are first introduced in this paper.

C10. Mental conflict As illustrated in Examples 1.4.1(p.5) -1.4.4(p.6) , the normal mental conflict experienced by a leading trader
(see Remark 7.3.1(p.47) ) can be intuitively understood. However, the abnormal mental conflict (see Remark 7.3.2(p.48) ) is hard

to immediately grasp; it is possible in fact as presented in C1b2(p.233) .

29.1.2 Conclusion of Part 2 (Integrated Theory)

The contents of Chap. 18(p.129) can be summarized as follows.

C11. Two preliminary steps

a. Proofs of assertions on underlying functions The first preliminary step in constructing the integrated theory is to prove
assertions on underlying functions (see Chap. 10(p.55) ).

b. Proofs of four theorems The second preliminary step is to prove the following theorems:
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◦ symmetry theorems Theorems 12.5.1(p.80) (SR→R̃) and 12.8.1(p.87) (S R̃→R),

◦ analogy theorems Theorems 13.3.1(p.98) (AR→P) and 13.3.2(p.98) (AP→R),

◦ symmetry theorems Theorems 14.5.1(p.106) (S P→P̃) and 14.5.2(p.107) (S P̃→P),

◦ analogy theorems Theorems 15.1.1(p.112) (A R̃→P̃) and 15.1.2(p.112) (A P̃→R̃).

For more details, see C1b1(p.129) -C1b4(p.129) .

C12. Integrated theory The integrated theory (see Chap. 16(p.115) ) is constructed through a dual-directional connection of the
above eight theorems, which is schematized as in Figure 16.2.1(p.115) . The integrated theory is not always versatile, which
has the following two weak points.

a. Market restriction The integrated theory is constructed on the premise that the price ξ is defined on ξ ∈ (−∞,∞),
implying that the price ξ can become negative, which is irrational from a practical standpoint. To avoid this irrationality,
the price must be defined on ξ ∈ (0,∞). We refer to the restriction of (−∞,∞) to (0,∞) as the market restriction

(see Chap. 17.2(p.117) ). This restriction leads to the collapse of symmetry and analogy (see C2a2(p.233) , C3a2(p.233) , and

C3b1(p.233) ).

b. Symmetry and analogy among SOE’s As stated in Section 16.3.1(p.116) , the integrated theory has a limitation that
the symmetrical and analogical relationships must hold over all SOE’s. In fact, the analogical relationships collapse
for Models 2/3 (see Table 6.4.3(p.41) - Table 6.4.6(p.41) ), implying that the analogy theorem cannot be applied. See
Section 20.1.5(p.166) for the treatment of the case where the analogy theorem cannot be applied.

C13. Summary of operations For convenience of reference, we listed the above eight operations in C3(p.130) .

29.1.3 Conclusion of Part 3 (No-Recall-Model)

The contents of Chap. 22(p.233) can be summarized as follows.

C15. Mental Conflict It is only for Model 2 with β < 1 and s > 0 that we have the abnormal mental conflict (see C1b2(p.233) ).

For all other cases we have the normal mental conflict (see C1a(p.233) and C1b1(p.233) ).

C16. Symmetry On F+, for Models 1/2, the symmetry is inherited only when β = 1 and s = 0 (see C2a1(p.233) ). When β < 1

or s > 0, it may collapses for Model 1 and always collapses for Model 1 (see C2a2(p.233) ).

C17. Analogy On F+, it is only for Model 1 with β = 1 and s = 0 that the analogy is inherited (see C3a1(p.233) ); it is may

collapses for all other cases (see C3a2(p.233) and C3b1(p.233) ).

C18. Optimal initiating time ⃝⃝s , } , and•dd are all possible for Models 1/2 with any β ≤ 1 and s ≥ 0 (see C4(p.233) ). What is

remarkable here is that•dd ∥ (deadline-engulfing) occurs even in the simplest case of “β = 1 and s = 0” (see C4a3(p.233) ).

C19. Null-time-zone and deadline-engulfing For Models 1/2, } and•dd causing the null-time-zone occur at a rather high rate

of 55.6% (see C5A(p.234) ) and•dd causing the dead-engulfing occur at a rather high rate of 33.4% (see C5B(p.234) ).

C20. C S (Conduct Skip) It is only for M:2[R][A]+ and M:2[P][A]+ with β < 1 or s > 0 that this rare event becomes possible

(see C6(p.234) ).

C21. Reduction Model 3 is reduced to the following two cases (see C9(p.234) ):

a. model-running-back M/M̃:3[R/P][A/E] � M/M̃:2[R/P][A/E].
b. odr-reduction odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

29.1.4 Conclusion of Part 4 (Recall-Model)

The contents of Chap. 28(p.281) can be summarized as follows.

C23. Myopic property It is only for rModel 1 that we have c-reservation-price (see C1a(p.281) ), leading to the myopic property

(see Def. 25.2.1(p.261) and C1c(p.281) ). For Model 2 we have t-reservation-price (see C1b(p.281) ). See C1c(p.281) for further
interesting suggestions.

C24. Symmetry For rModel 1, the symmetry collapses for both sA-model and sE-model (see C2a(p.281) ). For rModel 2, it collapses

for sA-model but is inherited for sE-model (see C2b(p.281) ).

C25. Optimal initiating time It is only for rM:1[R][E] (see Tom 25.2.1(p.259) ) that the analytical discussions for ⃝⃝s , } , and •dd
become possible (see C3(p.281) ).

C26. Future studies In rModel 2 we did not succeed in finding out the conditions for } and•dd . Mathematical examinations
of these conditions are left as a future study (see

�� ��F.S 2(p.267) ,
�� ��F.S 3(p.272) , and

�� ��F.S 4(p.272) ).

C27. Reduction The same as C5(p.281) and C6(p.281) .

reduction =


model-migration rM/M̃:1/2[R][A]+ # rM/M̃:1[R][E]+ for Model 1/2 (see C5a(p.281) , C6a(p.281) )

model-running-back rM/M̃:3[R][A/E] � rM/M̃:2[R][A/E] for Model 3 (see C5b(p.281) )

odr-reduction odr 7→Accept0(y) ◃ Stop for Model 1/2/3 (see C6b(p.281) )
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29.2 Final Main Points of This Paper
The conclusions in Section 29.1(p.283) are what we finally reached in this paper. The most essential points which indwell within
these conclusions are summarized as below.

P1. Philosophical Background

On March 31, 1966, the original theme of this paper was proposed by my (Ikuta, the first author of this paper) academic
supervisor Prof. Shizuo Senju who has PhD (Eng.) (see the episode in the title page p.i.). Enlightened by his thought
background, before long, I also obtained PhD (Eng.) under his research guidance, and more than 20 years later since then,
Kang (the second author of this paper) obtained PhD (Mgt. Sci.&Eng.) under my research guidance. In time, we who have
the above background found ourself down the middle of the philosophy of “decision theory as physics” (see Section 1.3(p.4) ).
This philosophical background exerted considerable influence on the whole writing of this paper; in other words, it is no
exaggeration to say that this study would not complete at all without it.

P2. Quadruple-Asset-Trading-Problems

A trading problem can be classified into the following four types: a selling problem and a buying problem, each of which
can be categorized as a problem with a reservation price mechanism (where the counter trader proposes the trading price)
and a problem with a posted price mechanism (where the leading trader proposes the trading price). Let us refer to the
group of the four problems as the quadruple-asset-trading-problems (see Section 1.4.5(p.7) ). While these problems have been
treated one-by-one and independently so far without touching upon any relationships each other, in the present paper we
aim to clarify the interconnectedness among these problems.

P3. Two Motives

This study was triggered by the following two naive motives (see Section 1.2(p.3) ):

Motive 1: Is a buying problem always symmetrical to a selling problem ?

Motive 2: Does a general theory integrating quadruple-asset-trading-problems exist ?

P4. Integrated Theory

We have unknowingly assumed, without strong evidence, that the existence of the symmetrical relationship between selling
problem and buying problem is enough predictable, and in fact we succeeded in theoretically proving it in the process
of constructing the integrated theory. In this theory we derived the two symmetry theorems (Theorems 12.5.1(p.80) and
12.8.1(p.87) ), which connect the above two problems by the operation defined by (12.5.29(p.77) ). On the other hand, at
the earlier stage of this study, we did not anticipate at all the existence of a relationship between trading problem with
R-mechanism and trading problem with P-mechanism. However, through countless arrangements and rearrangements, as if
solving a jigsaw puzzle, we noticed similarities between the above two problems and finally reached Lemmas 10.1.1(p.55) and
13.2.1(p.93) , which are connected by the operation defined by (13.2.1(p.93) ). This fact led to the derivation of the two analogy
theorems (Theorems 13.3.1(p.98) and 13.3.2(p.98) ) combining the above two problems. Finally we reached the conclusion that
the integrated theory that we aimed to construct is given by the structure schematized by the quadrangular bi-directional
connection of the above four theorems (see Figure 16.2.1(p.115) ). This accomplished the aim of the objective in Motive 2(p.3) .

P5. Collapse of Symmetry and Analogy

When we started this study, we were grappling with the conflict between mathematical thinking and physical thinking;
“Should the price ξ be defined on which of (−∞,∞) and (0,∞)”. It goes without saying that defining on (−∞,∞) makes
the mathematical treatment easier than on (0,∞). For this reason we tried to construct the integrated theory on (−∞,∞)
and fortunately succeeded in the construction of the integrated theory under this premise. However, it should be defined
on (0,∞) in the usual transaction market of the actual world so that a negative price does not occur. Then, we brought
the solution to this problem by formulating the methodology of transforming results obtained on (−∞,∞) into ones on
(0,∞), i.e., the market restriction (see Chap. 17(p.117) ). However, the market restriction naturally leads to the possibility that
the symmetry and analogy which are guaranteed under the integrated theory constructed on (−∞,∞) may collapse. In
Parts 3(p.131) we demonstrated that the collapse occurs in fact. Thus, it follows that the answer to the question in Motive 1(p.3)

is “No!”.

P6. Null-Time-Zone and Deadline-Engulfing

Our physical recognition in E1(p.285) led, as its inevitable result, to the time concepts of recognizing time, starting time,
initiating time, stopping time, and deadline (see Section 7.1(p.43) ), and the concept of the “initiating time” inevitably yields
the concept of “optimal initiating time” (see (7.2.5(p.44) )). Then, we found out that there exists the three types of optimal
initiating time, the starting time (⃝⃝s ), unregenerate time (} ), and the deadline (•dd ) (see Section 7.2.4.3(p.45) ), and
that } and •dd led us to the two unexpected phenomena, null-time-zone (see Section 7.2.4.5(p.46) ) and deadline-engulfing
(see Section 7.2.4.6(p.46) and Alice 4(p.46) ). The two phenomena are the most significant discoveries in this paper in the sense
that they strongly press for the comprehensive re-examination of almost all results obtained in conventional researches in
which the concept of initiating time has not been introduced. Now, we see from Table 22.1.1(p.234) that } and•dd causing
the above two singular properties are not rare; in fact it can occur at the rather high occurrence rates of 22.2% and 33.4%
respectively. What is furthermore amazing is that the strictly optimal initiating times, }N and•ddN, are possible although

at the very small occurrence rates of 2.6% and 3.2% (see Example 7.2.1(p.46) and C5C(p.234) ). What is moreover striking is

that both }N and•ddN are possible even in the simplest case of β = 0 and s = 0 (see Example 7.2.2(p.46) and C5D(p.234) ).
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P7. Discount Factor

Presumably, this paper will be the first to define the concepts of profit and cost through the third concept of fund. To be
honest, we have always found certain inconsistencies in conventional approaches to profit and cost where clear definitions
are often lacking. Despite the extensive discussions about the discount factor for profit, it is surprising that the discount
factor for cost has been addressed so infrequently. We believe this oversight stems from a misguided assumption that the
buying problem is of little importance, as it is merely considered the inverse of the selling problem. This assumption implies
that the buying problem can be fully explained by simply reversing the signs of the variables, parameters, constants, etc.,
defined in the selling problem. However, we emphasize here that this paper demonstrates that the two problems are not
inversely related at all.

This study ends with bespeaking the above seven points today, December 11, 2024.



Chapter 30

Future Study

30.1 Different Variations

30.1.1 No-Recall-Model

Below are variations of models defined in Section 4.1(p.21) .

V1. Limited search budget [23,Iku1992] This model involves a limited total budget allocated for search activities. The
challenge lies in determining how to distribute this limited budget among search activities at every time point throughout
the planning horizon.

V2. Price mechanism switching [16,Ee2006] [14,Ee2004] This model allows for the switching of price mechanisms between
R-mechanism and P-mechanism at each time point during the planning horizon.

V3. Several search areas [24,Iku1995] For instance, consider Tokyo, Kyoto, and Osaka as potential areas where the leading-
trader can search for counter-traders. Then, if the leading-trader is in Tokyo today, the decision arises tomorrow whether
to stay in Tokyo or to move to which of Kyoto and Osaka.

V4. Uncertain deadline [17,Eem2009] In Example 1.4.1(p.5) , the return home date is not yet definite; it could be imminent or
one week later, or the directive itself might be rescinded.

30.1.2 Recall-Model

Below are variations of models defined in Section 4.2(p.23) .

V5. Uncertain recall [22,Iku1988] This is the model in which the recall of counter-traders once rejected is uncertain.

V6. Costly recall [30,Kan1999],[31,Kan2005] This is the model in which some cost must be paid to recall counter-traders once
rejected.

V7. Reserved recall [42,Sai1998],[43,Sai1999] This is the model in which the availability of recall can be reserved by paying
some deposit

30.1.3 Others

In addition to the above variations, in the future we will have other variations. For examples:

V8. Multiple assets model This is the model in which multiple assets are traded. In the model, the optimal decision rule
depends on the number of assets remaining not yet being traded.

V9. Lasting effect of search activity This is the model in which the effect of the search activity that was taken at a certain
point in time lasts for a while. The simplest case is that its effect disappears with a given probability p at the next point
in time; hence it lasts with the probability 1− p.

...

30.2 Future Subjects

F1. Further variations

In Section 30.1(p.287) we presented 9 variations of the basic models of asset trading problems. For each variation there exists
one structured-unit-of models consisting of 24 models (see Section 3.3(p.18) ), hence it follows that we have 216 = 9 × 24 in
all. Furthermore, the following different mixed variations can be considered:

◦ Model with several search areas and limited search budget

◦ Model with uncertain deadline and mechanism switching

◦ Model with limited search budget, uncertain deadline, and mechanism switching

◦ Model with several search areas, limited search budget, uncertain deadline, and mechanism switching
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◦ Model with recall, several search areas, limited search budget, uncertain deadline, and mechanism switching

◦ Model with uncertain recall, uncertain deadline, and mechanism switching
...

Hence, it follows that the number of variations becomes astronomical. In dealing with the vast amount of these variations,
the integrated theory will become a powerful tool; analyzing them without this theory would be nearly impossible.

F2. See
�� ��F.S 1(p.237)

In Part 4(p.235) we applied the integrated theory to the recall-model with R-mechanism where it suffices to memorize only the
best of once-rejected prices. However, in the recall-model with P-mechanism, we face the difficulty of determining which
of the once-rejected prices should be memorized. This problem remains as one of the most perplexing unsolved subjects of
study.

F3. See
�� ��F.S 2(p.267) ,

�� ��F.S 3(p.272) , and
�� ��F.S 4(p.272)

In the recall-model, it is remained as an unsolved problems how to analytically examine the conditions on which each of
⃝⃝s , } , and•dd occur. This is one of the most challenging study subjects in this paper.

F4. Numerical Experiment

In general, numerical calculation involves computing a given expression by substituting numerical values for constants,
parameters, variables, · · · related to its expression. In this paper, we performed numerical calculations from two distinct
perspectives. One is to reconfirm results that have already been proven, the other is to exemplify expectations that
are difficult to prove mathematically. We refer to the former as the numerical example and the latter as the numerical
experiment, i.e.,

numerical calculation =

{
numerical example,

numerical experiment.

Throughout the paper we have:

Numerical Example’s 1(p.126) , 2(p.126) , 3(p.127) , 4(p.147) , 5(p.187) , and 6(p.219)

Numerical Experiment 1(p.316) .

When confronting such problems as presented in F1(p.287) -F3(p.288) that are analytically difficult to address, the only method-
ology available will presumably be numerical experiments.
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A1 Direct Proof of Underlying Functions of Type R
In this appendix we provide the direct proofs for all lemmas in Section 12.6(p.81) in which they were proven by using Theo-
rem 12.5.1(p.80) (symmetry theorem).

A1.1 A {T̃R }
For convenience of reference, below let us copy Lemma 12.6.1(p.81) .

Lemma A1.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x strictly increasing on (−∞, b].

(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).

(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).

(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

(n) b > µ.

• Proof First, for any x and y let us prove the following two inequalities:

−(x− y)F (y) ≥ T̃ (x)− T̃ (y) ≥ −(x− y)F (x) · · · ((1)),

(x− y)(1− F (y)) ≥ T̃ (x) + x− T̃ (y)− y ≥ (x− y)(1− F (x)) · · · ((2)).

Then, let T̃ (x, y)
def
= E[(ξ − x)I(ξ < y)] for any x and y.‡ Since 1 ≥ I(ξ < y) ≥ 0 and since min{ξ − x, 0} ≤ 0 and

min{ξ − x, 0} ≤ ξ − x, we have min{ξ − x, 0} ≤ min{ξ − x, 0}I(ξ < y) ≤ (ξ − x)I(ξ < y), hence from (5.1.11(p.25) ) we get
T̃ (x) ≤ E[(ξ − x)I(ξ < y)] = T̃ (x, y). Accordingly, for any x and y we have

T̃ (x)− T̃ (y) ≤ T̃ (x, y)− T̃ (y) = E[(ξ − x)I(ξ < y)]− E[(ξ − y)I(ξ < y)] = −(x− y)E[I(ξ < y)].

Since I(ξ ≥ y) + I(ξ < y) = 1, we have T̃ (x)− T̃ (y) ≤ −(x− y)(E[1− I(ξ ≥ y)]) = −(x− y)(1− E[I(ξ ≥ y)]). Then, since

E[I(ξ ≥ y)] =
∫∞
−∞ I(ξ ≥ y)f(ξ)dξ =

∫∞
y

1× f(ξ)dξ =
∫∞
y

f(ξ)dξ = Pr{ξ > y} = 1− Pr{ξ ≤ y} = 1− F (y),

‡If a given statement S is true, then I(S) = 1, or else I(S) = 0.
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we have T̃ (x)− T̃ (y) ≤ −(x− y)F (y), hence the far left inequality of (1) holds. Multiplying both sides of the inequality by −1
leads to −T̃ (x) + T̃ (y) ≥ (x− y)F (y) or equivalently T̃ (y)− T̃ (x) ≥ −(y − x)F (y). Then, interchanging the notations x and y
yields T̃ (x)− T̃ (y) ≥ −(x− y)F (x), hence the far right inequality of (1) holds. (2) is immediate from adding x− y to (1) . Let
us note here that T̃ (x) defined by (5.1.11(p.25) ) can be rewritten as

T̃ (x) = E[min{ξ − x, 0}I(b ≥ ξ)] + E[min{ξ − x, 0}I(ξ > b)]. · · · ((3))

= E[min{ξ − x, 0}I(ξ ≥ a)] + E[min{ξ − x, 0}I(a > ξ)]. · · · ((4)).

(a,b) Immediate from the fact that min{ξ − x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for any given ξ.

(c) Let x > y > a. Then, since −(x − y) < 0 and F (y) > 0 due to (2.2.1 (2,3) (p.13) ), we have −(x − y)F (y) < 0, hence
0 > T̃ (x)− T̃ (y) from (1) , i.e., T̃ (y) > T̃ (x), so T̃ (x) is strictly decreasing on (a,∞) · · · ((5)). Suppose T̃ (a) = T̃ (x) for any x > a,

hence x − a > 0. Then, for any sufficiently small ε > 0 such that x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence
T̃ (a) = T̃ (x) < T̃ (a+ ε) ≤ T̃ (a) due to (5) and (b), which is a contradiction. Thus it must be that T̃ (a) ̸= T̃ (x) for any x > a,
i.e., T̃ (a) > T̃ (x) or T̃ (a) < T̃ (x) for any x > a. Since the latter is impossible due to (b), it follows that T̃ (a) > T̃ (x) for any
x > a. From this and (5) it eventually follows that T̃ (x) is strictly decreasing on [a,∞) instead of (a,∞).

(d) Evident from the fact that T̃ (x) + x = E[min{ξ, x}] from (5.1.11(p.25) ) and that min{ξ, x} is nondecreasing in x for any
ξ.

(e) Let b > x > y, hence F (x) < 1 due to (2.2.1 (1,2) (p.13) ). Then, since (x− y)(1− F (x)) > 0, we have T̃ (x) + x > T̃ (y) + y
from (2) , i.e., T̃ (x) + x is strictly increasing on (−∞, b) · · · ((6)). Suppose T̃ (b) + b = T̃ (x) + x for any x < b. Then, for any

sufficiently small ε > 0 such that b− x > ε we have x < x+ ε < b, hence T̃ (b) + b = T̃ (x) + x < T̃ (x+ ε) + x+ ε ≤ T̃ (b) + b due
to (6) and (d), which is a contradiction. Thus, T̃ (x) + x ̸= T̃ (b) + b for x < b, i.e., T̃ (x) + x > T̃ (b) + b or T̃ (x) + x < T̃ (b) + b
for x < b. Since the former is impossible due to (d), it must be that T̃ (x) + x < T̃ (b) + b for x < b. From this and (6) it follows
that T̃ (x) + x is strictly increasing on (−∞, b].

(f) Let x ≥ b. If b ≥ ξ, then x ≥ ξ, hence min{ξ − x, 0} = ξ − x, and if ξ > b, then f(ξ) = 0 due to (2.2.3 (3) (p.13) ). Thus,
from (3) we have T̃ (x) = E[(ξ − x)I(b ≥ ξ)] + 0 = E[(ξ − x)I(b ≥ ξ)] + E[(ξ − x)I(ξ > b)] = E[(ξ − x)(I(b ≥ ξ) + I(ξ >
b))] = E[ξ − x] = µ − x,† hence the former half is true. Then, since T̃ (b) = µ − b or equivalently T̃ (b) + b = µ, if b > x, from
(e) we have T̃ (x) + x < T̃ (b) + b = µ, hence T̃ (x) < µ− x, so the latter half is true.

(g) Let a ≥ x. If ξ ≥ a, then ξ ≥ x, hence min{ξ − x, 0} = 0 and if a > ξ, then f(ξ) = 0 due to (2.2.3 (1) (p.13) ), hence

E[min{ξ − x, 0}I(a > ξ)] = 0. Accordingly, we have T̃ (x) = 0 from (4) , hence the latter half is true. Let x > a. Then, since
T̃ (x) < T̃ (a) from (c) and since T̃ (a) = 0 from the fact stated just above, we have T̃ (x) < 0 for x > a, hence the former half is
true.

(h) From (f) we have T̃ (x) ≤ µ−x for any x and from (g) we have T̃ (x) ≤ 0 for any x, thus it follows that T̃ (x) ≤ min{0, µ−x}
for any x.

(i) From (5.1.11(p.25) ) we have T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)]. If a > 0, then 0 ≤ ξ, hence min{ξ, 0} = 0,
so T̃ (0) = E[0] = 0, and if b < 0, then ξ < 0, hence min{ξ, 0} = ξ, so T̃ (0) = E[ξ] = µ.

(j) If β = 1, then βT̃ (x) + x = T̃ (x) + x, hence the assertion is true from (d).

(k) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (d).

(l) Let x > y and b > y. If x ≥ b, then T̃ (x) + x ≥ T̃ (b) + b > T̃ (y) + y due to (d,e), and if b > x, then b > x > y, hence
T̃ (x) + x > T̃ (y) + y due to (e).

(m) From (5.1.11(p.25) ) we have

λβT̃ (λβµ+ s) + s = λβE[min{ξ − λβµ− s, 0}] + s

= E[min{λβξ − (λβ)2µ− λβs, 0}] + s

= E[min{λβξ − (λβ)2µ+ (1− λβ)s, s}],

which is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) Evident from (2.2.2(p.13) ).

A1.2 A {L̃R }, A {K̃R }, A {L̃R }, and κ̃R

From (5.1.13(p.25) ) and (5.1.14(p.25) ) and from Lemma A1.1(p.289) (f) we obtain, noting (10.2.1(p.56) ),

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),

< λβµ+ s− λβx on (−∞, b) · · · (2),
(A 1.1)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),

< λβµ+ s− δx on (−∞, b) · · · (2).
(A 1.2)

†I(b ≥ ξ) + I(ξ > b) = 1.
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In addition, from (5.1.14(p.25) ) and Lemma A1.1(p.289) (g) we have

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 1.3)

hence we obtain
K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 1.4)

Then, from (A1.2 (1) (p.290) ) and (A 1.3 (2) (p.291) ) we get

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),

βx+ s on (−∞, a] · · · (2).
(A 1.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (5.1.14(p.25) ) and (5.1.13(p.25) ), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 1.6)

Lemma A1.2 (A {L̃R })
(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

• Proof (a-c) Immediate from (5.1.13(p.25) ) and Lemma A1.1(p.289) (a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A1.1(p.289) (g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for
x > a, hence x

L̃ = a by the definition of x
L̃ (see Section 5.2(p.27) (b)), so x

L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by
contraposition. In addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.

(e) Let s > 0.

(e1) From (A1.1 (1) (p.290) ) and from λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such that x ≥ b. In
addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A1.1(p.289) (g). Hence, from (c) it follows that x

L̃ uniquely exists.
The inequality x

L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβµ + s)/λβ ≥ (<) b, from (A1.1(p.290) ) we have L̃ ((λβµ + s)/λβ) = (<) λβµ + s − λβ(λβµ + s)/λβ = 0, hence
x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b from (e1).

Corollary A 1.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof (a) “⇒” is immediate from Lemma A1.2(p.291) (d,e1). “⇐” is evident by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 or equivalently x
L̃ = x ⇒ L̃ (x) = 0, hence x

L̃ = x ⇒
L̃ (x) ≤ 0. Accordingly, it follows that x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A1.3 (A {K̃R })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K̃ (x) + x is strictly increasing on (−∞, b].

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.
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• Proof (a-c) Immediate from (5.1.14(p.25) ) and Lemma A1.1(p.289) (a-c).

(d) Immediate from (5.1.14(p.25) ) and Lemma A1.1(p.289) (b).

(e) From (5.1.14(p.25) ) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion holds from Lemma A1.1(p.289) (d).

(f) Obvious from (1) and Lemma A1.1(p.289) (d).

(g) Clearly from (1) and Lemma A1.1(p.289) (e).

(h) Let x > y and b > y. If x ≥ b, then K̃ (x) + x ≥ K̃ (b) + b > K̃ (y) + y due to (e,g), and if b > x, then b > x > y, hence
K̃ (x) + x > K̃ (y) + y due to (g). Thus, whether x ≥ b or b > x, we have K̃ (x) + x > K̃ (y) + y

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (5.1.14(p.25) ), from Lemma A1.1(p.289) (g) we have K̃ (x) = 0 for
a ≥ x and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (see Section 5.2(p.27) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0.
The inverse holds by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (A 1.3 (2) (p.291) ). If β < 1, then K̃ (x) > 0 for any sufficiently small x < 0 with x ≥ a and if s > 0, then, whether
β < 1 or β = 1, we have K̃ (x) > 0 for any sufficiently small x < 0 with x ≤ a. Hence, whether β < 1 or s > 0, we have
K̃ (x) > 0 for any sufficiently small x < 0 with x ≤ a.

• Next note (A 1.2 (1) (p.290) ). Then, since δ > 0 from (10.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) < 0 for any
sufficiently large x > 0 with x ≥ b.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution x
K̃ is unique from (d).

◦ Let s > 0. If β < 1, the solution x
K̃ is unique for the reason just above. If β = 1, we have K̃ (a) = s > 0 from (A1.3 (2) (p.291) ),

hence x
K̃ > a due to (c), so K̃ (x) is strictly decreasing on the neighbourhood of x = x

K̃ due to (c), thus the solution x
K̃

is unique. Therefore, whether β < 1 or β = 1, it follows that the solution x
K̃ is unique.

◦ Hence, whether β < 1 or s > 0, it follows that the solution x
K̃ is unique.

From all the above, whether β < 1 or s > 0, it eventually follows that the solution x
K̃ uniquely exists.

(j2) Let (λβµ + s)/δ ≥ (<) b. Then, from (A1.2 (1(2)) (p.290) ) we have K̃ ((λβµ + s)/δ) = (<) λβµ + s − δ(λβµ + s)/δ = 0,
hence x

K̃ = (<) (λβµ+ s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0 from (5.1.17(p.25) ), hence x
K̃ < (= (>)) 0 from (j1).

Corollary A 1.2 (A {K̃R})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 due to Lemma A1.3(p.291) (i,j1). The inverse holds by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 or equivalently x
K̃ = x ⇒ K̃ (x) = 0, hence x

K̃ = x ⇒
K̃ (x) ≤ 0. Accordingly, it follows that x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Lemma A1.4 (A {L̃R /K̃R })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (>)) 0.

• Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A1.2(p.291) (d) and x

K̃ = a from
Lemma A1.3(p.291) (i), hence x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A1.6 (1) (p.291) ), hence x
K̃ = x

L̃ from Lemma A1.3(p.291) (j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A1.2(p.291) (d).

◦ If a < 0, then x
L̃ < 0, hence K̃ ( xL̃ ) > 0 from (A1.6 (1) (p.291) ), hence x

L̃ < x
K̃ from Lemma A1.3(p.291) (j1), and if a = (>) 0,

then x
L̃ = (>) 0, hence K̃ ( xL ) = (<) 0 from (A1.6 (1) (p.291) ), so x

L̃ = (>) x
K̃ from

Lemma A1.3(p.291) (j1). Accordingly, we have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first
relation “⇔ ” holds.

◦ If a < 0, from (5.1.17(p.25) ) we have K̃ (0) = λβT̃ (0) < 0 due to Lemma A1.1(p.289) (g), hence x
K̃ < 0 · · · ((2)) from Lemma A1.3(p.291) (j1),

and if a = (>) 0, from (5.1.17(p.25) ) we have K̃ (0) = λβT̃ (0) = 0 due to Lemma A1.1(p.289) (g), hence x
K̃ = 0 from Lemma A1.3(p.291) (j1)

or equivalently x
K̃ = (=) 0. Accordingly, we have the second relation “⇒ ”.
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(d) Let β < 1 and s > 0. Now, since κ̃ = K̃ (0) from (5.1.17(p.25) ), if κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0, thus
x
K̃ < (= (>)) 0 · · · ((3)) from Lemma A1.3(p.291) (j1). Accordingly L̃ ( xK̃ ) < (= (>)) 0 from (A1.6 (2) (p.291) ), hence x

L̃ < (= (>) x
K̃

from Lemma A1.2(p.291) (e1). Thus “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. The last “⇒” is immediate
from (3) .

Lemma A1.5 (A {L̃R })

(a) L̃ (s) is nondecreasing in s and strictly increasing in s if λβ < 1.

(b) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(c) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

• Proof (a) From (5.1.15(p.25) ) and (5.1.13(p.25) ) we have L̃ (s) = L̃ (λβµ+ s) = λβT̃ (λβµ+ s) + s · · · ((1)), hence the assertion

holds from Lemma A1.1(p.289) (m).

(b) Let λβµ ≤ a. Then, from (1) we have L̃ (0) = λβT̃ (λβµ) = 0 · · · ((2)) due to Lemma A1.1(p.289) (g).

(b1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (2) or equivalently L̃ (λβµ + s) ≥ 0 due to (1) , hence
x
L̃ ≥ λβµ+ s from Corollary A 1.1(p.291) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L̃ (s) > L̃ (0) = 0 · · · ((3)) due to (2) or equivalently L̃ (λβµ + s) > 0,

hence x
L̃ > λβµ+ s from Lemma A1.2(p.291) (e1).

(c) Let λβµ > a. From (1) we have L̃ (0) = λβT̃ (λβµ) < 0 due to Lemma A1.1(p.289) (g). Noting (A 1.1 (1) (p.290) ), for any
sufficiently large s > 0 such that λβµ + s ≥ b and λβµ + s > 0 we have L̃ (s) = L̃ (λβµ + s) = λβµ + s − λβ(λβµ + s) =
(1− λβ)(λβµ+ s) ≥ 0. Accordingly, due to (a) it follows that there exists the solution sL̃ > 0 of L̃ (s) = 0. Then L̃ (s) < 0 for
s < sL̃ and L̃ (s) ≥ 0 for s ≥ sL̃ or equivalently L̃ (λβµ + s) < 0 for s < sL̃ and L̃ (λβµ + s) ≥ 0 for s ≥ sL̃ . Hence, from
Corollary A 1.1(p.291) (a) we get x

L̃ < λβµ+ s for s < sL̃ and x
L̃ ≥ λβµ+ s for s ≥ sL̃ .

Lemma A1.6 (κ̃R) We have:

(a) κ̃ = s if a > 0 and κ̃ = λβµ+ s if b < 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof (a) Immediate from (5.1.16(p.25) ) and Lemma A1.1(p.289) (i).

(b) Let β < 1 or s > 0. Then, if κ̃ < (= (>)) 0, we have K̃ (0) < (= (>)) 0 from (5.1.17(p.25) ), hence x
K̃ < (= (>)) 0 from

Lemma A1.3(p.291) (j3). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A2 Direct Proof of Underlying Functions of Type P
A2.1 A {TP }
For convenience of reference, below let us copy Lemma 13.2.1(p.93) .

Lemma A2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) + x is nondecreasing on (−∞,∞).

(e) T (x) + x is strictly increasing on [a⋆,∞).

(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(h) T (x) ≥ max{0, a− x} on (−∞,∞).

(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) a⋆ < a.
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A2.2 A {LP }, A {KP }, A {LP }, and κP

Noting Lemma A2.1(p.293) (f), from (5.1.20(p.26) ) and (5.1.21(p.26) ) we obtain

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(A 2.1)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2).

(A 2.2)

In addition, from (5.1.21(p.26) ) and Lemma A2.1(p.293) (g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),
= −(1− β)x− s on [b,∞) · · · (2),

(A 2.3)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (A 2.4)

Then, from (A2.2 (1) (p.294) ) and (A 2.3 (2) (p.294) ) we get

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2).

(A 2.5)

Since K (x) = L (x)− (1− β)x from (5.1.21(p.26) ) and (5.1.20(p.26) ), if xL and xK exist, then

K (xL) = −(1− β) xL · · · (1), L (xK) = (1− β)xK · · · (2). (A 2.6)

Lemma A2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ > (≤) a⋆.

• Proof (a-c) Immediate from (5.1.20(p.26) ) and Lemma A2.1(p.293) (a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), from Lemma A2.1(p.293) (g) we have L (x) > 0 for x < b and L (x) = 0 for
b ≤ x, hence xL = b by the definition of xL (see Section 5.2(p.27) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by
contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.

(e) Let s > 0.

(e1) From (A2.1 (1) (p.294) ) and from λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that x ≤ a⋆. In
addition, we have L (b) = λβT (b)− s = −s < 0 from Lemma A2.1(p.293) (g). Hence, from (a,c) it follows that xL uniquely exists.
The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβa − s)/λβ ≤ (>) a⋆, from (A2.1 (1(2)) (p.294) ) we have L ((λβa − s)/λβ) = (>) λβa − s − λβ(λβa − s)/λβ = 0,
hence xL = (>) (λβa− s)/λβ from (e1).

Corollary A 2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma A2.2(p.294) (d,e2). “⇐” is evident by contraposition.

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 or equivalently xL = x ⇒ L (x) = 0, hence xL = x ⇒
L (x) ≥ 0. Accordingly, it follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma A2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a⋆,∞).
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(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof (a-c) Immediate from (5.1.21(p.26) ) and Lemma A2.1(p.293) (a-c).

(d) Immediate from (5.1.21(p.26) ) and Lemma A2.1(p.293) (b).

(e) From (5.1.21(p.26) ) we have K (x)+x = λβT (x)+βx− s = λβ(T (x)+x)+ (1−λ)βx− s · · · ((1)), hence the assertion holds

from Lemma A2.1(p.293) (d).

(f) Obvious from (1) and Lemma A2.1(p.293) (d).

(g) Clearly from (1) and Lemma A2.1(p.293) (e).

(h) Let x < y and a⋆ < y. If x ≤ a⋆, then K(x) + x ≤ K(a⋆) + a⋆ < K(y) + y due to (e,g). If a⋆ < x, then a⋆ < x < y,
hence K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a⋆ or a⋆ < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (5.1.21(p.26) ), from Lemma A2.1(p.293) (g) we have K (x) = 0 for
b ≤ x and K (x) > 0 for x < b, so that xK = b due to the definition in Section 5.2(p.27) (a). Hence xK > (≤) x⇒ K (x) > (=) 0.
The inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (A 2.3 (2) (p.294) ). If β < 1, then K (x) < 0 for any sufficiently large x > 0 with x ≥ b and if s > 0, then, whether
β < 1 or β = 1, we have K (x) < 0 for any sufficiently large x > 0 with x ≥ b. Hence, whether β < 1 or s > 0, we have
K (x) < 0 for any sufficiently large x > 0 with x ≥ b.

• Next note (A 2.2 (1) (p.294) ). Then, since δ > 0 from (10.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) > 0 for any
sufficiently small x < 0 with x ≤ a⋆.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution xK is unique from (d).

◦ Let s > 0. If β < 1, the solution xK is unique for the reason just above. If β = 1, we have K (b) = −s < 0 from
(A2.3 (2) (p.294) ), hence xK < b due to (c), so K (x) is strictly decreasing on the neighbourhood of x = xK due to (c), thus
the solution xK is unique. Therefore, whether β < 1 or β = 1, it follows that the solution xK is unique.

◦ Hence, whether β < 1 or s > 0, it follows that the solution xK is unique.

From all the above, whether β < 1 or s > 0, it eventually follows that the solution xK uniquely exists.

(j2) Let (λβa− s)/δ ≤ (>) a⋆. Then, from (A2.2 (1(2)) (p.294) ) we have K ((λβa− s)/δ) = (>) λβa− s− δ(λβa− s)/δ = 0,
hence xK = (>) (λβa− s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (5.1.24(p.26) ), hence xK > (= (<)) 0 from (j1).

Corollary A 2.2 (A {KP})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof (a) Clearly xK > (≤) x⇒ K (x) > (≤) 0 due to Lemma A2.3(p.294) (i,j1). The inverse holds by contraposition.

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 or equivalently xK = x ⇒ K (x) = 0, hence xK = x ⇒
K (x) ≥ 0. Accordingly, it follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Lemma A2.4 (A {LP /KP })
(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (<)) 0.

• Proof (a) If β = 1 and s = 0, then xL = b from Lemma A2.2(p.294) (d) and xK = b from
Lemma A2.3(p.294) (i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K (xL) = 0 from (A2.6 (1) (p.294) ), hence xK = xL from
Lemma A2.3(p.294) (j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma A2.2(p.294) (d).

◦ If b > 0, then xL > 0, hence K ( xL ) < 0 from (A2.6 (1) (p.294) ), so xL > xK from Lemma A2.3(p.294) (j1), and if b = (<) 0,
then xL = (<) 0, hence K ( xL ) = (>) 0 from (A2.6 (1) (p.294) ), so xL = (<) xK from Lemma A2.3(p.294) (j1). Accordingly, we
have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first relation “⇔ ” holds.
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◦ If b > 0, from (5.1.24(p.26) ) we haveK (0) = λβT (0) > 0 due to Lemma A2.1(p.293) (g), hence xK > 0 · · · ((2)) from Lemma A2.3(p.294) (j1),

and if b = (<) 0, from (5.1.24(p.26) ) we haveK (0) = λβT (0) = 0 due to Lemma A2.1(p.293) (g), hence xK = 0 from Lemma A2.3(p.294) (j1)
or equivalently xK = (=) 0. Accordingly, we have the second relation “⇒ ”.

(d) Let β < 1 and s > 0. Now, from (5.1.24(p.26) ) and (5.1.23(p.26) ), if κ > (= (<)) 0, then K (0) > (= (<)) 0, thus
xK > (= (<)) 0 from Lemma A2.3(p.294) (j1). Accordingly L (xK ) > (= (<)) 0 from (A2.6 (2) (p.294) ), hence
xL > (= (<)) xK from Lemma A2.2(p.294) (e1).

Lemma A2.5 (A {LP })
(a) L (s) is nonincreasing in s and is strictly decreasing in s if λβ < 1.

(b) Let λβa ≥ b.

1. xL ≤ λβa− s.

2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(c) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

• Proof (a) From (5.1.22(p.26) ) and (5.1.20(p.26) ) we have L (s) = L (λβa − s) = λβT (λβa − s) − s, hence the assertion holds
from Lemma A2.1(p.293) (m).

(b) Let λβa ≥ b. Then, from (5.1.22(p.26) ) and (5.1.20(p.26) ) we have L (0) = L (λβa) = λβT (λβa) = 0 · · · ((1)) due to

Lemma A2.1(p.293) (g).

(b1) Since s ≥ 0, from (a) we have L (s) ≤ L (0) = 0 due to (1) or equivalently L (λβa− s) ≤ 0, hence xL ≤ λβa− s from
Corollary A 2.1(p.294) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L (s) < L (0) = 0 due to (1) or equivalently L (λβa − s) < 0, thus
xL < λβa− s from Lemma A2.2(p.294) (e1).

(c) Let λβa < b. From (5.1.22(p.26) ) we have L (0) = λβT (λβa) > 0 due to Lemma A2.1(p.293) (g). Noting (A 2.1 (1) (p.294) ), for
any sufficiently large s > 0 such that λβa − s ≤ a⋆ and λβa − s < 0 we have L (s) = L (λβa − s) = λβa − s − λβ(λβa − s) =
(1− λβ)(λβa− s) ≤ 0. Accordingly, due to (a) it follows that there exists the solution sL > 0 of L (s) = 0. Then L (s) > 0 for
s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβa − s) > 0 for s < sL and L (λβa − s) ≤ 0 for s ≥ sL . Hence, from
Corollary A 2.1(p.294) (a) we get xL > λβa− s for s < sL and xL ≤ λβa− s for s ≥ sL .

Lemma A2.6 (A {κP}) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof (a) Immediate from (5.1.23(p.26) ) and Lemma A2.1(p.293) (i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (5.1.24(p.26) ), hence xK > (= (<)) 0 from
Lemma A2.3(p.294) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A3 Direct Proof of Underlying Functions of T̃ype P
A3.1 A {T̃P }
Lemma A3.1

(a) Let x ≤ a. Then z(x) = a

(b) Let a < x. Then a < z(x) < x.

(c) z(x) ≤ b for any x.

• Proof (a) Let x ≤ a. If a < z · · · (II), then x < z, hence p̃(z)(z − x) > 0 due to (5.1.41 (2) (p.27) ), and if z ≤ a · · · (I), then
p̃(z)(z − x) = 0 due to (5.1.41 (1) (p.27) ) (see Figure A 3.1(p.296) below). Hence z(x) = a due to Def. 5.1.2(p.27) .

-
a
•◦ z

-z ≤ a

(I)
� a < z

(II)

Figure A 3.1: Case x ≤ a

(b) Let a < x. If x ≤ z · · · (III), then p̃(z)(z− x) ≥ 0, if a < z < x · · · (II), then p̃(z)(z− x) < 0 due to (5.1.41 (2) (p.27) ), and if
z ≤ a · · · (I), then p̃(z)(z − x) = 0 due to (5.1.41 (1) (p.27) ) (see Figure A 3.2(p.297) below). Hence, z(x) is given by z on a < z < x,
i.e., a < z(x) < x.
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-
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-z ≤ a

(I)
-� a < z < x

(II)
� x ≤ z

(III)

Figure A 3.2: Case a < x

(c) Assume that z(x) > b for a certain x. Then, since p̃(z(x)) = 1 = p̃(b) due to (5.1.42 (2) (p.27) ), from (5.1.38(p.27) ) we have
T̃ (x) = z(x)− x > b− x = p̃(b)(b− x) ≥ T̃ (x), which is a contradiction. Hence, it must be that z(x) ≤ b for any x.

Corollary A 3.1 a ≤ z(x) ≤ b for any x.

• Proof Evident from Lemma A3.1(p.296) .

Lemma A3.2 p̃(z) is nondecreasing on (−∞,∞) and strictly increasing in z ∈ [a, b].

• Proof The former half is immediate from (5.1.31(p.26) ). For a ≤ z′ < z ≤ b we have p̃(z)− p̃(z′) = Pr{ξ ≤ z}−Pr{ξ ≤ z′} =
Pr{z′ < ξ ≤ z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.2.3 (2) (p.13) )), hence p(z) > p(z′), i.e., p(z) is strictly increasing on [a, b].

Lemma A3.3 z(x) is nondecreasing on (−∞,∞).

• Proof From (5.1.38(p.27) ), for any x and y we have

T̃ (x) = p̃(z(x))(z(x)− x)

= p̃(z(x))(z(x)− y)− (x− y)p̃(z(x))

≥ T̃ (y)− (x− y)p̃(z(x))

= p̃(z(y))(z(y)− y)− (x− y)p̃(z(x))

= p̃(z(y))
(
z(y)− x+ (x− y)

)
− (x− y)p̃(z(x))

= p̃(z(y))(z(y)− x) + (x− y)(p̃(z(y))− p̃(z(x)))

≥ T̃ (x) + (x− y)(p̃(z(y))− p̃(z(x))).

Hence 0 ≥ (x − y)(p̃(z(y)) − p̃(z(x))). Let x > y. Then 0 ≥ p̃(z(y)) − p̃(z(x)) or equivalently p̃(z(x)) ≥ p̃(z(y)) · · · ((1)). Since

a ≤ z(x) ≤ b and a ≤ z(y) ≤ b from Corollary A 3.1(p.297) , if z(x) < z(y), then p̃(z(x)) < p̃(z(y)) from Lemma A3.2(p.297) , which
contradicts (1) . Hence, it must be that z(x) ≥ z(y), i.e., z(x) is nondecreasing in x ∈ (−∞,∞).

Lemma A3.4

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(e) T̃ (x) ≤ b− x on (−∞,∞).

(f) T̃ (x) + x is nondecreasing on (−∞,∞).

(g) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(h) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(i) T̃ (x) ≤ min{0, b− x} for any x ∈ (−∞,∞).

(j) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

• Proof (a,b) Immediate from the fact that p̃(z)(z − x) in (5.1.32(p.26) ) is continuous and nonincreasing in x ∈ (−∞,∞) for
any z.

(c) Let x′ > x > a. Then z(x) > a from Lemma A3.1(p.296) (b). Accordingly, since p̃(z(x)) > 0 due to (5.1.41 (2) (p.27) ) and
since z(x)− x > z(x)− x′, from (5.1.38(p.27) ) we have T̃ (x) = p̃(z(x))(z(x)− x) > p̃(z(x))(z(x)− x′) ≥ T̃ (x′), i.e., T̃ (x) is strictly
decreasing on (a,∞) · · · ((1)). Assume T̃ (a) = T̃ (x) for a given x > a, so x − a > 0. Then, for any sufficiently small ε > 0 such

that x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence T̃ (a) = T̃ (x) < T̃ (a + ε) ≤ T̃ (a) due to the strict unceasingness
shown just above and the nonincreasingness in (b), which is a contradiction. Thus, since T̃ (x) ̸= T̃ (a) for any x > a, we have
T̃ (x) < T̃ (a) or T̃ (x) > T̃ (a) for any x > a. However, the latter is impossible due to (b), hence only the former holds, i.e.,
T̃ (x) < T̃ (a) for any x > a. From this and (1) it eventually follows that T̃ (x) is strictly decreasing on [a,∞) instead of on
(a,∞).

(d) Let x ≤ a. Then, since z(x) = a from Lemma A3.1(p.296) (a), we have p̃(z(x)) = 0 due to (5.1.41 (1) (p.27) ), hence
T̃ (x) = p̃(z(x))(z(x)− x) = 0 on (−∞, a], so T̃ (a) = 0. Let x > a. Then, from (c) we have T̃ (x) < T̃ (a) = 0, i.e., T̃ (x) < 0 on
(a,∞).

(e) From (5.1.32(p.26) ) and (5.1.42 (2) (p.27) ) we see that T̃ (x) ≤ p̃(b)(b− x) = b− x for any x on (−∞,∞).
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(f) For x′ < x we have, from (5.1.38(p.27) ),

T̃ (x) + x = p̃(z(x))(z(x)− x) + x

= p̃(z(x))z(x) + (1− p̃(z(x)))x

≥ p̃(z(x))z(x) + (1− p̃(z(x)))x′

= p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

hence it follows that T̃ (x) + x is nondecreasing in x on (−∞,∞),

(g) If β = 1, then βT̃ (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Since T̃ (x) ≤ b−x for any x from (e) and T̃ (x) ≤ 0 for any x from (d), we have T̃ (x) ≤ min{0, b−x} for any x ∈ (−∞,∞).

(j) From (5.1.32(p.26) ) we have

λβT̃ (λβb+ s) + s = λβminz p̃(z)(z − λβb− s) + s

= min
z

p̃(z)(λβz − (λβ)2b− λβs) + s.
Then, for s > s′ we have

λβT̃ (λβb+ s) + s− λβT̃ (λβb+ s′)− s′

= minz p(z)(λβz − (λβ)2b− λβs)−minz p(z)(λβz − (λβ)2b− λβs′) + (s− s′)

≥ minz −p(z)λβ(s− s′) + (s− s′)†

≥ minz −(s− s′)λβ + (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= −(s− s′)λβ + (s− s′)

= (s− s′)(1− λβ) ≥ (>) 0 if λβ ≤ (<) 1.

Hence, since λβT̃ (λβb+ s) + s ≥ (>) λβT̃ (λβb+ s′) + s′ if λβ ≤ (<) 1, it follows that λβT̃ (λβb+ s) + s is nondecreasing in s
and strictly increasing in s if λβ < 1.

Let us define

h̃(z) = p̃(z)(z − b)/(1− p̃(z)), z < b,

h̃⋆ = infz<b h̃(z),

Below, for any x let us define the following successive four assertions:

A1(x) = ⟨⟨ z(x) < b ⟩⟩,

A2(x) = ⟨⟨ T̃ (b, x) > T̃ (z′, x, ) for at least one z′ < b ⟩⟩,

A3(x) = ⟨⟨ b− h̃(z′) > x for at least one z′ < b ⟩⟩,

A4(x) = ⟨⟨ supz<b{b− h̃(z)} > x ⟩⟩.
Proposition A3.1 For any x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

• Proof Letting T̃ (z, x)
def
= p̃(z)(z − x), we can rewrite (5.1.32(p.26) ) as T̃ (x) = minz T̃ (z, x) = T̃ (z(x), x) (see (5.1.38(p.27) )).

1. Let A1(x) be true for any x. Suppose T̃ (b, x) ≤ T̃ (z′, x) for all z′ < b. Then the minimum of T̃ (z, x) is attained at z = b
(see Def. 5.1.2(p.27) ), i.e., z(x) = b, which contradicts A1(x). Hence it must be that T̃ (b, x) > T̃ (z′, x) for at least one z′ < b,
thus A2(x) becomes true. Accordingly, we have A1(x) ⇒ A2(x). Suppose A2(x) is true for any x. Then, if z(x) = b, we
have T̃ (b, x) > T̃ (z′, x) ≥ T̃ (x) = T̃ (z(x), x) = T̃ (b, x), which is a contradiction, hence it must be that z(x) < b due to
Lemma A3.1(p.296) (c); accordingly, we have A2(x)⇒ A1(x). Thus, it follows that we have A1(x)⇔ A2(x) for any given x.

2. Since p̃(b) = 1 from (5.1.42 (2) (p.27) ), for z′ < b we have

T̃ (b, x)− T̃ (z′, x)

= p̃(b)(b− x)− p̃(z′)(z′ − x)

= b− x− p̃(z′)(z′ − x)

= b− x− p̃(z′)(b− x+ z′ − b)

= b− x− p̃(z′)(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))
(
b− x− p̃(z′)(z′ − b)/(1− p̃(z′))

)
= (1− p̃(z′))(b− x− h̃(z′))

= (1− p̃(z′))(b− h̃(z′)− x).

Accordingly, noting 1 > p̃(z′) due to (5.1.42 (1) (p.27) ), we immediately see that A2(x)⇔ A3(x) for any given x.

†min a(x)−min b(x) ≥ min{a(x)− b(x)}.
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3. Let A3(x) be true for any x. Then clearly A4(x) is also true, i.e., A3(x) ⇒ A4(x). Let A4(x) be true for any x. Then
evidently b− h̃(z′) > x for at least one z′ < b, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows that
A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma A3.5

(a) −∞ < h̃⋆ < 0.

(b) x̃⋆ = b− h̃⋆ > b.

(c) x̃⋆ > (≤) x⇔ z(x) < (=) b.

(d) b⋆ > b.

• Proof (a) For any infinitesimal ε > 0 such that a < a + ε < b · · · (II) we have 0 < p̃(a + ε) < 1 from (5.1.41 (2) (p.27) ) and
(5.1.42 (1) (p.27) ), hence, h̃(a+ ε) = p̃(a+ ε)(a+ ε− b)/(1− p̃(a+ ε)) < 0. If z ≤ a · · · (I), then p̃(z) = 0 due to (5.1.41 (1) (p.27) ),
hence h̃(z) = 0 for z ≤ a. From the above we have h̃⋆ < 0 (finite) or h̃⋆ = −∞.

-
a
•◦

b
◦• z

-z ≤ a

(I)
-� a < z < b

(II)
� b ≤ z

(III)

?
h̃(a+ ε) < 0

Figure A 3.3: h̃(z) = 0 for z ≤ a and h̃(a+ ε) < 0

Assume that h̃⋆ = −∞. Then, there exists at least one z′ on a < z′ < b such that h̃(z′) ≤ −N for any given N > 0. Hence, if the
N is given by M/

¯
f (see (2.2.4(p.13) )) with any M > 1, i.e., N = M/

¯
f , we have h̃(z′) ≤ −M/

¯
f , so p̃(z′)(z′−b)/(1−p̃(z′)) ≤ −M/

¯
f .

Hence, noting (5.1.31(p.26) ), we have

p̃(z′)(z′ − b) ≤ −(1− p̃(z′))M/
¯
f = −(1− Pr{ξ ≤ z′})M/

¯
f = −Pr{z′ < ξ}M/

¯
f · · · (∗)

where Pr{z′ < ξ} =
∫ b

z′ f(w)dw ≥
∫ b

z′
¯
fdw = (b− z′)

¯
f . Accordingly, since p̃(z′)(z′ − b) ≤ −(b− z′)

¯
fM/

¯
f = (z′ − b)M , we have

p̃(z′) ≥M > 1 due to z′ − b < 0, which is a contradiction. Hence, it must follow that h̃⋆ > −∞.

(b) Since A1(x)⇒ A4(x) due to Proposition A3.1, we can rewrite (5.1.40(p.27) ) as

x̃⋆ = sup{x
∣∣ supz<b{b− h̃(z)} > x}

= supz<b{b− h̃(z)} · · · ((1))

= b− infz<b h̃(z) = b− h̃⋆ > b

due to (a), hence (b) holds.

(c) Let x̃⋆ > x, hence supz<b{b − h̃(z)} > x from (1) , so z(x) < b due to A4(x) ⇒ A1(x). Let x̃⋆ ≤ x, hence supz<b{b −
h̃(z)} ≤ x from (1) . Now, since supz<b{b − h̃(z)} ≤ x ⇒ z(x) ≥ b due to the contraposition of A4(x) ⇔ A1(x), we obtain
z(x) = b due to Lemma A3.1(p.296) (c).

(d) First note T̃ (x) ≤ p̃(z′)(z′ − x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a < b − ε we
have p̃(b− ε) > 0 from (5.1.41 (2) (p.27) ), hence T̃ (b) ≤ p̃(b− ε)(b− ε− b) = −p̃(b− ε)ε < 0, so adding b to the both sides of this
inequality yields T̃ (b) + b < b, so T̃ (x) + x ≤ T̃ (b) + b < b for x ≤ b due to Lemma A3.4(p.297) (f). Accordingly, if b⋆ ≤ b, we have
T̃ (b⋆) + b⋆ ≤ T̃ (b) + b < b, hence from Lemma A3.4(p.297) (a) we have T̃ (b⋆ + ε) + b⋆ + ε < b for any sufficiently small ε > 0, so
T̃ (b⋆ + ε) < b− (b⋆ + ε), which contradicts the definition of b⋆ (see (5.1.39(p.27) )). Therefore, it must follow that b⋆ > b.

Lemma A3.6

(a) T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).

(c) T̃ (0) = b if b⋆ < 0 and T̃ (0) = 0 if a > 0.

(d) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

• Proof (a) From (5.1.38(p.27) ) we have

T̃ (x) + x = p̃(z(x))(z(x)− x) + x = p̃(z(x))z(x) + (1− p̃(z(x)))x. · · · ((1))

◦ Let x̃⋆ > x. Then z(x) < b from Lemma A3.5(p.299) (c), hence p̃(z(x)) < 1 due to (5.1.42 (1) (p.27) ), so 1 − p̃(z(x)) > 0. If
x > x′, from (1) we have

T̃ (x) + x > p̃(z(x))z(x) + (1− p̃(z(x)))x′ = p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

i.e., T̃ (x) + x is strictly increasing on (−∞,∞), hence understandably so also on (−∞, b⋆].
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◦ Let x̃⋆ ≤ x. Then z(x) = b from Lemma A3.5(p.299) (c), hence p̃(z(x)) = 1 from (5.1.42 (2) (p.27) ), so T̃ (x) = p̃(z(x))(z(x)−x) =
b− x · · · ((2)). Suppose b⋆ > x̃⋆. Then, since b⋆ > b⋆ − 2ε > x̃⋆ for an infinitesimal ε > 0, we have b⋆ > b⋆ − ε > x̃⋆ + ε > x̃⋆

or equivalently x̃⋆ < b⋆ − ε; accordingly, due to (2) we obtain T̃ (b⋆ − ε) = b− (b⋆ − ε) · · · ((3)). Now, due to (5.1.39(p.27) ) we

have T̃ (b⋆ − ε) < b − (b⋆ − ε), which contradicts (3) . Accordingly, it must be that x̃⋆ ≥ b⋆. Let x′ < x < b⋆. Then, since
x̃⋆ > x, we have z(x) < b Lemma A3.5(p.299) (c), hence p̃(z(x)) < 1 due to (5.1.42 (1) (p.27) ) or equivalently 1 − p̃(z(x)) > 0.
Thus, from (1) we have

T̃ (x) + x > p̃(z(x))z(x) + (1− p̃(z(x)))x′ = p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

implying that T̃ (x) + x is strictly increasing on (−∞, b⋆) · · · ((4)). Now let us assume T̃ (b⋆) + b⋆ = T̃ (x) + x for any

x < b⋆. Then, for any sufficiently small ε > 0 such that b⋆ − x > 2ε > 0 we have x < x + ε < b⋆ − ε < b⋆, hence
T̃ (b⋆) + b⋆ = T̃ (x) + x < T̃ (x+ ε) + x+ ε ≤ T̃ (b⋆) + b⋆ due to (4) and Lemma A3.4(p.297) (f), which is a contradiction. Thus,
T̃ (x) + x ̸= T̃ (b⋆) + b⋆ for x < b⋆, i.e., T̃ (x) + x > T̃ (b⋆) + b⋆ or T̃ (x) + x < T̃ (b⋆) + b⋆ for x < b⋆; however, the former is
impossible due to the nondecreasing in Lemma A3.4(p.297) (f), hence it follows that T̃ (x) + x < T̃ (b⋆) + b⋆ for x < b⋆. From
this and (4) it inevitably follows that T̃ (x) + x is strictly increasing on (−∞, b⋆] instead of (−∞, b⋆).

Accordingly, whether x̃⋆ > x or x̃⋆ ≤ x, it follows that T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) Due to (5.1.39(p.27) ) we have T̃ (x) < b− x for x < b⋆, i.e., T̃ (x) < b− x on (−∞, b⋆), hence the latter half is true. Since
T̃ (x) ≤ b − x on (−∞,∞) due to Lemma A3.4(p.297) (e), we have T̃ (x) + x ≤ b · · · ((5)) on (−∞,∞). Suppose T̃ (b⋆) + b⋆ < b.

Then, for an infinitesimal ε > 0 we have T̃ (b⋆ + ε) + b⋆ + ε < b due to Lemma A3.4(p.297) (a), i.e., T̃ (b⋆ + ε) < b − (b⋆ + ε),
which contradicts the definition of b⋆ (see (5.1.39(p.27) )). Consequently, it must be that T̃ (b⋆) + b⋆ = b · · · ((6)) or equivalently

T̃ (b⋆) = b− b⋆. Let x > b⋆. Then, from Lemma A3.4(p.297) (f) we have T̃ (x) + x ≥ T̃ (b⋆) + b⋆ = b. From this and (5) it must be
that T̃ (x) + x = b on (b⋆,∞), hence T̃ (x) = b− x on (b⋆,∞). From this and (6) it follows that T̃ (x) = b− x on [b⋆,∞). Hence
the former half is true.

(c) Let b⋆ < 0. Then, since 0 ∈ [b⋆,∞), we have T̃ (0) = b from the former half of (b). Now we have T̃ (0) = minz p̃(z)z · · · ((7))
from (5.1.32(p.26) ). Let a > 0. Then, if z ≤ a, we have p̃(z)z = 0 from (5.1.41 (1) (p.27) ) and if z > a (> 0), then p̃(z)z > 0 from
(5.1.41 (2) (p.27) ). Hence it follows that T̃ (0) = 0 due to (7) .

(d) Let x > y and b⋆ > y. If x ≥ b⋆, then T̃ (x) + x ≥ T̃ (b⋆) + b⋆ > T̃ (y) + y due to Lemma A3.4(p.297) (f) and (a), and if
b⋆ > x, then b⋆ ≥ x > y, hence T̃ (x)+x > T̃ (y)+y due to (a). Thus, whether x ≥ b⋆ or b⋆ > x, we have T̃ (x)+x > T̃ (y)+y.

All the results obtained above (see Lemmas A3.1(p.296) -A 3.6(p.299) ) can be complied into Lemma A3.7(p.300) below.

Lemma A3.7 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞) ← ← Lemma A3.4(p.297) (a)

(b) T̃ (x) is nonincreasing on (−∞,∞) ← ← Lemma A3.4(p.297) (b)

(c) T̃ (x) is strictly decreasing on [a,∞) ← ← Lemma A3.4(p.297) (c)

(d) T̃ (x) + x is nondecreasing on (−∞,∞) ← ← Lemma A3.4(p.297) (f)

(e) T̃ (x) + x is strictly increasing on (−∞, b⋆] ← ← Lemma A3.6(p.299) (a)

(f) T̃ (x) = b− x on [b⋆,∞) and T (x) < b− x on (−∞, b⋆) ← ← Lemma A3.6(p.299) (b)

(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a] ← ← Lemma A3.4(p.297) (d)

(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞) ← ← Lemma A3.4(p.297) (i)

(i) T̃ (0) = b if b⋆ < 0 and T (0) = 0 if a > 0 ← ← Lemma A3.6(p.299) (c)

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma A3.4(p.297) (g)

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma A3.4(p.297) (h)

(l) If x > y and b⋆ > y, then T (x) + x > T (y) + y ← ← Lemma A3.6(p.299) (d)

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1 ← ← Lemma A3.4(p.297) (j)

(n) b⋆ > b ← ← Lemma A3.5(p.299) (d)

A3.2 A {L̃P }, A {K̃P }, A {L̃P }, and κ̃P

From (5.1.33(p.27) ) and (5.1.34(p.27) ) and from Lemma A3.7(p.300) (f) we obtain, noting (10.2.1(p.56) ),

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(A 3.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(A 3.2)

In addition, from (5.1.34(p.27) ) and Lemma A3.7(p.300) (g) we have

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 3.3)
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hence we obtain

K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 3.4)

Then, from (A3.2 (1) (p.300) ) and (A 3.3 (2) (p.300) ) we get

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(A 3.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (5.1.34(p.27) ) and (5.1.33(p.27) ), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 3.6)

Lemma A3.8 (L̃P )

(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

• Proof (a-c) Immediate from (5.1.33(p.27) ) and Lemma A3.7(p.300) (a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A3.7(p.300) (g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for x > a,
hence x

L̃ = a by definition (see Section 5.2(p.27) (b)), so x
L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by contraposition. In

addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

(e1) From (A3.1 (1) (p.300) ) and the assumption of λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such
that x > b⋆. In addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A3.7(p.300) (g). Hence, from (a,c) it follows that x

L̃

uniquely exists. The inequality x
L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβb + s)/λβ ≥ (<) b⋆, from (A3.1(p.300) ) we have L̃ ((λβb + s)/λβ) = (<) λβb + s − λβ(λβb + s)/λβ = 0, hence
x
L̃ = (<) (λβb+ s)/λβ from (e1).

Corollary A 3.2 (L̃P )

(a) x
L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.

(b) x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
L̃ < (≥) x⇒ L̃ (x) < (≥) 0 from Lemma A3.8(p.301) (d,e1). The inverse is true by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 ≤ 0 or equivalently x
L̃ = x ⇒ L̃ (x) ≤ 0, hence it fol-

lows that x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A3.9 (K̃P )

(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly increasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on (−∞, b⋆].

(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x
K̃ = (<) (λβb+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.



302

• Proof (a-c) Evident from (5.1.34(p.27) ) and Lemma A3.7(p.300) (a-c).

(d) Evident from Lemma A3.7(p.300) (b) and (5.1.34(p.27) ).

(e) From (5.1.34(p.27) ) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion is immediate from Lemma A3.7(p.300) (d).

(f) Evident from (1) and Lemma A3.7(p.300) (d).

(g) Evident from (1) and Lemma A3.7(p.300) (e).

(h) Let x > y and b⋆ > y. If x ≥ b⋆, then K̃ (x) + x ≥ K̃ (b⋆) + b⋆ > K̃ (y) + y due to (e,g), and if b⋆ > x, then b⋆ > x > y,
hence K̃ (x) + x > K̃ (y) + y due to (g).

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (5.1.34(p.27) ), from Lemma A3.7(p.300) (g) we have K̃ (x) = 0 for
a ≥ x and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (See Section 5.2(p.27) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0.
The inverse is immediate by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) First note (A 3.3 (2) (p.300) ). Then, if β = 1, then s > 0, hence K̃ (x) = s > 0 for any x ≤ a and if β < 1, then K̃ (x) > 0
for any sufficiently small x < 0 such that x < a. Hence, whether β = 1 or β < 1 (for any 0 < β ≤ 1), we have K̃ (x) > 0 for
any sufficiently small x. Next, for any sufficiently large x > 0 such that x ≥ b⋆, from (A3.2 (1) (p.300) ) we have K̃ (x) < 0 since
to δ > 0 due to (10.2.2 (1) (p.56) ). Hence, it follows that there exists the solution x

K̃ for any 0 < β ≤ 1. Let β < 1. Then, the
solution is unique due to (d). Let β = 1, hence s > 0. Then, since K̃ (a) = s > 0 from (A3.3 (2) (p.300) ), we have x

K̃ > a, hence
K̃ (x) is strictly decreasing on the neighbourhood of x = x

K̃ due to (c), implying that the solution x
K̃ is unique. Therefore, for

any 0 < β ≤ 1 the solution is unique. Thus, the latter half is immediate.

(j2) Let (λβb + s)/δ ≥ (<) b⋆. Then, from (A3.2 (1(2)) (p.300) ) we have K̃ ((λβb + s)/δ) = (<) λβb + s − δ(λβb + s)/δ = 0,
hence x

K̃ = (<) (λβb+ s)/δ due to (j1). Its inverse is also true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0 from (5.1.37(p.27) ), hence x
K̃ < (= (>)) 0 from (j1).

The corollary below is used when it is not specified whether s > 0 or s = 0.

Corollary A 3.3 (K̃P )

(a) x
K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.

(b) x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 due to Lemma A3.9(p.301) (i,j1). The inverse is immediate by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 ≤ 0, hence it follows that x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Lemma A3.10 (L̃P/K̃P )

(a) Let β = 1 and s = 0. Then x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (>)) 0.

• Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A3.8(p.301) (d) and x

K̃ = a from Lemma A3.9(p.301) (i), hence
x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A3.6 (1) (p.301) ), hence x
K̃ = x

L̃ from
Lemma A3.9(p.301) (j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A3.8(p.301) (d). Suppose a < 0. Then, since x

L̃ < 0, we have

K̃ (xL̃ ) > 0 from (A3.6 (1) (p.301) ), hence x
K̃ > x

L̃ from Lemma A3.9(p.301) (j1). Furthermore, from (5.1.37(p.27) ) and (5.1.36(p.27) )
we have K̃ (0) = λβT̃ (0) < 0 due to Lemma A3.7(p.300) (g), hence x

K̃ < 0 from Lemma A3.9(p.301) (j1). Suppose a = (>) 0. Then,
since x

L̃ = (>) 0 from (1) , we have K̃ (xL̃ ) = (<) 0 due to (A 3.6 (1) (p.301) ), hence x
L̃ = (>) x

K̃ from Lemma A3.9(p.301) (j1).
Furthermore, from (5.1.37(p.27) ) and (5.1.36(p.27) ) we have K̃ (0) = λβT̃ (0) = 0 due to Lemma A3.7(p.300) (g), hence x

K̃ = (=) 0
from Lemma A3.9(p.301) (j1).

(d) Let β < 1 and s > 0. Since κ̃ = K̃ (0) from (5.1.37(p.27) ), if κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0, hence x
K̃ < (= (>)) 0

from Lemma A3.9(p.301) (j1). Accordingly L̃ (xK̃ ) < (= (>)) 0 from (A3.6 (2) (p.301) ), so x
L̃ < (= (>)) x

K̃ from Lemma A3.8(p.301) (e1).

Lemma A3.11 (L̃P )

(a) L̃ (s) is nondecreasing in s.

(b) If λβ < 1, then L̃ (s) is strictly increasing in s.

(c) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(d) Let λβb > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.
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• Proof (a,b) From (5.1.35(p.27) ) and (5.1.33(p.27) ) we have L̃ (s) = λβT̃ (λβb+ s)+ s · · · ((1)), hence the assertions are true from

Lemma A3.7(p.300) (m).

(c) Let λβµ ≤ a. Then, from (1) we have L̃ (0) = λβT̃ (λβb) = 0 · · · ((2)) due to Lemma A3.7(p.300) (g).

(c1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (2) or equivalently L̃ (λβb + s) ≥ 0, hence x
L̃ ≥ βb + s from

Corollary A 3.2(p.301) (a).

(c2) Let s > 0 and λβ < 1. Then, from (b) we have L̃ (s) > L̃ (0) = 0 due (2) , hence L̃ (λβb+ s) > 0, so x
L̃ > λβb+ s from

Lemma A3.8(p.301) (e1).

(d) Let λβb > a. From (1) we have L̃ (0) = λβT̃ (λβb) < 0 due to Lemma A3.7(p.300) (g). Noting (A 3.1 (1) (p.300) ), for any
sufficiently large s > 0 such that λβb + s ≥ b⋆ and λβb + s > 0 we have L̃ (s) = L̃ (λβb + s) = λβb + s − λβ(λβb + s) =
(1− λβ)(λβb+ s) ≥ 0. Accordingly, due to (a) it follows that there exists a sL̃ > 0 where L̃ (s) < 0 for s < sL̃ and L̃ (s) ≥ 0
for s ≥ sL̃ , or equivalently, L̃ (λβb+ s) < 0 for s < sL̃ and L̃ (λβb+ s) ≥ 0 for s ≥ sL̃ . Hence, from Corollary A 3.2(p.301) (a) we
have x

L̃ < βb+ s for s < sL̃ and x
L̃ ≥ βb+ s for s ≥ sL̃ .

Lemma A3.12 (A {κ̃P}) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof (a) Immediate from (5.1.36(p.27) ) and Lemma A3.7(p.300) (i).

(b) Let β < 1 or s > 0. Then, if κ̃ > (= (<)) 0, we have K̃ (0) > (= (<)) 0 from (5.1.37(p.27) ), hence x
K̃ > (= (<)) 0 from

Lemma A3.9(p.301) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A4 Direct Proof of Assertion Systems
A4.1 A {M̃:1[R][A]}
Since K̃ (x) + (1− β)x = L̃ (x) for any x due to (5.1.14(p.25) ) and (5.1.13(p.25) ), from (6.4.4(p.41) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0}, t > 1. (A 4.1)

Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1), hence

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.2)

2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.3)
Now, from (6.4.4(p.41) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.4)

Finally, from (A4.1(p.303) ) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (SkiptN)
†. (A 4.5)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.22) (b)) and that

λ = 1 · · · (1) (see A2(p.22) ), δ = 1 · · · (2) (see (10.2.1(p.56) )). (A 4.6)

� Tom A4.1 (A {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (5.1.14(p.25) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma A1.1(p.289) (g), hence from (6.4.4(p.41) ) and (1) we have
Vt = min{T̃ (Vt−1) + Vt−1, Vt−1} = min{T̃ (Vt−1), 0}+ Vt−1 = T̃ (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1) + V1, we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from
Lemma A1.1(p.289) (d) we have Vt ≥ T̃ (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

(b) Since V1 = µ from (6.4.3(p.41) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b > a, from (2) we have Vt >
T̃ (a) + a = a due to Lemma A1.1(p.289) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence Vt−1 > x

L̃ for t > 1 due to
Lemma A1.2(p.291) (d), thus L̃ (Vt−1) < 0 for t > 1 due to Lemma A1.2(p.291) (e1)), so L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from

(A4.1(p.303) ) we obtain Vt − βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1. Accordingly Vτ < βVτ−1 < · · · < βτ−1V1,
hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.5(p.303) ).

Let us define

S19 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
†See Section 6.1(p.29) .
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� Tom A4.2 (A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S19(p.303) ◦N ∗∥ is true.

• Proof Let β < 1 or s > 0. Note here (A 4.6 (1,2) (p.303) ).

(a) Since x
K̃ ≤ (βµ + s)/δ = βµ + s = V1 due to Lemma A1.3(p.291) (j2) and (6.4.3(p.41) ), we have K̃ (V1) ≤ 0 due to

Lemma A1.3(p.291) (j1), hence V2 − V1 ≤ 0 from (A4.4(p.303) ), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from (6.4.4(p.41) ) and
Lemma A1.3(p.291) (e) we have Vt ≥ min{K̃ (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing
in t > 0. Consider a sufficiently small M < 0 such that βµ + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose Vt−1 ≥ M . Then,
from Lemma A1.3(p.291) (e) and (A 1.5 (2) (p.291) ) we have Vt ≥ min{K̃ (M) + M,βM} = min{βM + s, βM} ≥ min{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥ M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.4.4(p.41) ) we have V = min{K̃ (V ) + V, βV }, hence 0 = min{K̃ (V ),−(1− β)βV }. Thus, since
K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A1.3(p.291) (j1).

(b) Let βµ ≤ a · · · ((1)). Then x
L̃ ≥ βµ + s = V1 from Lemma A1.5(p.293) (b1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for

t > 1 from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 1.1(p.291) (a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1.

Hence, from (A4.3(p.303) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ .
Hence t∗τ = 1 for τ > 1 (see Preference Rule 7.2.1(p.45) ), i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βµ > a.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” of the lemma. Then (λβµ+s)/δ = µ+s · · · ((3)) due
to (2) and (A 4.6 (1,2) (p.303) ). In addition, since x

L̃ = x
K̃ · · · ((4)) from Lemma A1.4(p.292) (b), we have K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let µ+ s ≥ b. Then x
L̃ = x

K̃ = µ+ s = V1 from (4) , Lemma A1.3(p.291) (j2), (3) , and (6.4.3(p.41) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to Lemma A1.2(p.291) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let µ+ s < b. Then x
L̃ = x

K̃ < µ+ s = V1 < b from (4) , Lemma A1.3(p.291) (j2), and (6.4.3(p.41) ), hence b > Vt−1 for
t > 1 from (a). Suppose Vt−1 > x

L̃ , hence L̃ (Vt−1) < 0 from
Lemma A1.2(p.291) (e1). Then, from (A4.2(p.303) ), Lemma A1.3(p.291) (g), and (5) we have Vt > K̃ ( xL̃ ) + x

L̃ = x
L̃ . Accordingly,

by induction Vt−1 > x
L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from

Lemma A1.2(p.291) (e1). Thus, for the same reason as in the proof of Tom A4.1(p.303) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and
ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A1.4(p.292) (c ((d))). Now, since x
K̃ ≤ βµ + s due

to Lemma A1.3(p.291) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (6.4.3(p.41) ). Suppose x

K̃ ≤ Vt−1. Then, from
Lemma A1.3(p.291) (e) we have Vt ≥ min{K̃ ( xK̃ ) + x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction
Vt−1 ≥ x

K̃ for t > 1, hence Vt−1 > x
L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.291) (a). Hence, for

the same reason as in the proof of Tom A4.1(p.303) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A1.4(p.292) (c ((d))).

(c2ii1) Let βµ + s ≥ b. Then, x
K̃ = βµ + s = V1 from Lemma A1.3(p.291) (j2) and (6.4.3(p.41) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.2(p.303) ) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.3(p.303) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βµ + s < b. Then, since V1 < b from (6.4.3(p.41) ), we have Vt−1 < b for t > 1 due to (a). In addition, we have
x
K̃ < βµ + s = V1 from Lemma A1.3(p.291) (j2). Suppose x

K̃ < Vt−1, hence x
L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0 due

to Lemma A1.2(p.291) (e1), from (A4.2(p.303) ) and Lemma A1.3(p.291) (g) we have Vt > K̃ ( xK̃ ) + x
K̃ = x

K̃ . Hence, by induction
x
K̃ < Vt−1 for t > 1, thus x

L̃ < Vt−1 for t > 1 due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.291) (a),
for the same reason as in the proof of Tom A4.1(p.303) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A1.4(p.292) (c ((d))).
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(c2iii1) Let βµ+ s ≥ b or sL̃ ≤ s. First, let βµ+ s ≥ b. Then, since x
K̃ = βµ+ s = V1 from

Lemma A1.3(p.291) (j2), we have x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next, let sL̃ ≤ s. Then, since x
L̃ ≥ βµ + s due to

Lemma A1.5(p.293) (c), we have x
L̃ ≥ V1 from (6.4.3(p.41) ). Accordingly, whether βµ + s ≥ b or sL̃ ≤ s, we have x

L̃ ≥ V1, so
x
L̃ ≥ Vt−1 for t > 1 due to (a). Hence, since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 1.1(p.291) (a), for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βµ+s < b · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A1.5(p.293) (c) we have x
K̃ < x

L̃ < βµ+s = V1 · · · ((10 )),
hence K̃ (V1) < 0 · · · ((11 )) from Lemma A1.3(p.291) (j1). In addition, since V1 < b due to (9) and (6.4.3(p.41) ), we have Vt−1 < b for

t > 0 from (a). Now, from (A4.4(p.303) ) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from (6.4.4(p.41) )
and Lemma A1.3(p.291) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) , so V1 ≥ x
L̃ . Assume that Vt−1 ≥ x

L̃ for all t > 1, hence V ≥ x
L̃ .

Now, from (8) and V ≤ x
K̃ in (a) we have the contradiction of V ≤ x

K̃ < x
L̃ ≤ V . Hence, it is impossible that Vt−1 ≥ x

L̃ for
all t > 1, implying that there exists t•τ > 1 such that

V1 > V2 > · · · > Vt•τ−1 > x
L̃ ≥ Vt•τ > Vt•τ+1 > Vt•τ+2 > · · · , (A 4.7)

from which

Vt−1 > x
L̃ , t•τ ≥ t > 1, x

L̃ ≥ Vt−1, t > t•τ . (A 4.8)

Therefore, from Corollary A 1.1(p.291) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t•τ ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.1(p.303) (b) we have ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S19(p.303) (1) is true.

2. Let τ > t•. First, let τ ≥ t > t•τ . Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ from
(A4.3(p.303) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).

Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.1(p.303) ) we have Vt − βVt−1 < 0 for t•τ ≥ t > 1, i.e., Vt < βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ < βVt•τ−1 < β2Vt•τ−2 < · · · < βt•τ−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ < βτ−t•τ+1Vt•τ−1 < βτ−t•τ+2Vt•τ−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 7.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ ∥ for τ > 1. In addition, we have

ConducttN for t•τ ≥ t > 1 due to (12) and (A 4.5(p.303) ). Hence S19(p.303) (2) is true.

A4.2 A {M:1[P][A]}
Since K (x) + (1− β)x = L (x) for any x due to (5.1.21(p.26) ) and (5.1.20(p.26) ), from (6.4.6(p.41) ) we have

Vt − βVt−1 = max{L (Vt−1), 0} ≥ 0, t > 1. (A 4.9)

Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (A 4.10)

2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.11)

Now, from (6.4.6(p.41) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (A 4.12)

Finally, from (A4.9(p.305) ) we see that

L (Vt−1) > (<) 0⇒ ConducttN (SkiptN). (A 4.13)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.22) (b)) and that

λ = 1 · · · (1) (see A2(p.22) ), δ = 1 · · · (2) (see (10.2.1(p.56) )). (A 4.14)

� Tom A4.3 (A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.
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• Proof Let β = 1 and s = 0. Then, from (5.1.21(p.26) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma A2.1(p.293) (g), hence from (6.4.6(p.41) ) and (1) we have
Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma A2.1(p.293) (d) we have Vt ≤ T (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Since V1 = a from (6.4.5(p.41) ), we have V1 < b. Suppose Vt−1 < b. Then, noting a⋆ < a < b due to Lemma A2.1(p.293) (n),
from (2) we have Vt < T (b) + b = b due to Lemma A2.1(p.293) (c,g). Accordingly, by induction Vt−1 < b for t > 1, hence
L (Vt−1) > 0 for t > 1 due to Lemma A2.2(p.294) (d), so L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.9(p.305) ) we obtain

Vt − βVt−1 > 0 for τ ≥ t > 1, i.e., Vt > βVt−1 for τ ≥ t > 1. Accordingly Vτ > βVτ−1 > · · · > βτ−1V1, hence t∗τ = τ for τ > 1,
i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.13(p.305) ).

Let us define

S20 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.4 (A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S20(p.306) ◦N ∗∥ is true.

• Proof Let β < 1 or s > 0. First note (A 4.14(p.305) )

(a) Since xK ≥ (λβa − s)/δ = βa − s = V1 due to Lemma A2.3(p.294) (j2) and (6.4.5(p.41) ), we have K (V1) ≥ 0 due to
Lemma A2.3(p.294) (j1), hence V2 − V1 ≥ 0 from (A4.12(p.305) ), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (6.4.6(p.41) ) and
Lemma A2.3(p.294) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing
in t > 0. Consider a sufficiently large M > 0 such that βa − s ≤ M and b ≤ M , hence V1 ≤ M . Suppose Vt−1 ≤ M . Then,
from Lemma A2.3(p.294) (e) and (A 2.5 (2) (p.294) ) we have Vt ≤ max{K (M) +M,βM} = max{βM − s, βM} ≤ max{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤ M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.4.6(p.41) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since
K (V ) ≤ 0, we have V ≥ xK from Lemma A2.3(p.294) (j1).

(b) Let βa ≥ b · · · ((1)). Then xL ≤ βa − s = V1 from Lemma A2.5(p.296) (b1) with λ = 1 and δ = 1, hence xL ≤ Vt−1 for

t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary A 2.1(p.294) (a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1.

Hence, from (A4.11(p.305) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ ,
hence t∗τ = 1 for τ > 1 due to Preference Rule 7.2.1(p.45) , i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βa < b.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption“β < 1 or s > 0” of the lemma. Then (λβa− s)/δ = a− s · · · ((3))
due to (2) and (A 4.14 (2) (p.305) ). In addition, since xL = xK · · · ((4)) from Lemma A2.4(p.295) (b), we have K ( xL ) = K (xK ) =

0 · · · ((5)).

(c1i) Let a− s ≤ a⋆. Then xL = xK = a− s = V1 from (4) , Lemma A2.3(p.294) (j2), (3) , and (6.4.5(p.41) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma A2.2(p.294) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let a− s > a⋆. Then xL = xK > a− s = V1 > a⋆ from (4) , Lemma A2.3(p.294) (j2), and (6.4.5(p.41) ), hence a⋆ < Vt−1

for t > 1 from (a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from
Lemma A2.2(p.294) (e1). Then, from (A4.10(p.305) ), Lemma A2.3(p.294) (g), and (4) we have Vt < K ( xL )+ xL = K (xK )+ xL = xL .
Accordingly, by induction Vt−1 < xL for t > 1, hence L (Vt−1) > 0 for t > 1 from Lemma A2.2(p.294) (e1). Thus, for the same
reason as in the proof of Tom A4.3(p.305) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConducttN for τ ≥ t > 1.
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(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((6)) from Lemma A2.4(p.295) (c ((d))). Now, since xK ≥ βa − s due

to Lemma A2.3(p.294) (j2) with λ = 1 and δ = 1, we have xK ≥ V1 from (6.4.5(p.41) ). Suppose xK ≥ Vt−1. Then, from
Lemma A2.3(p.294) (e) we have Vt ≤ max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by
induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (6) , thus L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.294) (a).
Hence, for the same reason as in the proof of Tom A4.3(p.305) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and conducttN for τ ≥ t > 1.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((7)) from Lemma A2.4(p.295) (c ((d))).

(c2ii1) Let βa − s ≤ a⋆. Then, xK = βa − s = V1 from Lemma A2.3(p.294) (j2) and (6.4.5(p.41) ). Suppose Vt−1 = xK , hence
Vt−1 = xL from (7) , thus L (Vt−1) = L ( xL ) = 0. Then, from (A4.10(p.305) ) we have Vt = K (xK ) + xK = xK . Accordingly, by
induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 due to (7) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have
Vt = βVt−1 for t > 1 from (A4.11(p.305) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βa−s > a⋆. Then, since V1 > a⋆, we have Vt−1 > a⋆ for t > 1 due to (a). In addition, we have xK > βa−s = V1

from Lemma A2.3(p.294) (j2) and (6.4.5(p.41) ). Suppose xK > Vt−1, hence xL > Vt−1 from (7) . Then, since L (Vt−1) > 0 due to
Corollary A 2.1(p.294) (a), from (A4.10(p.305) ) and Lemma A2.3(p.294) (g) we have Vt < K (xK ) + xK = xK . Hence, by induction
xK > Vt−1 for t > 1, thus xL > Vt−1 for t > 1 due to (7) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.294) (a),
for the same reason as in the proof of Tom A4.3(p.305) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((8)) from Lemma A2.4(p.295) (c ((d))).

(c2iii1) Let βa− s ≤ a⋆ or sL ≤ s. First, let βa− s ≤ a⋆. Then, since xK = βa− s = V1 from
Lemma A2.3(p.294) (j2), we have xL < V1 from (8) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βa − s due to
Lemma A2.5(p.296) (c), we have xL ≤ V1 and (6.4.5(p.41) ). Accordingly, whether βa − s ≤ a⋆ or sL ≤ s, we have xL ≤ V1, so
xL ≤ Vt−1 for t > 1 due to (a). Hence, since L (Vt−1) ≤ 0 for t > 1 from Corollary A 2.1(p.294) (a), for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βa − s > a⋆ · · · ((9)) and s < sL . Then, from (8) and Lemma A2.5(p.296) (c) we have xK > xL > βa − s =

V1 · · · ((10 )), hence K (V1) > 0 · · · ((11 )) from Lemma A2.3(p.294) (j1). In addition, since V1 > a⋆ due to (9) , we have Vt−1 > a⋆ for

t > 0 from (a). Now, from (A4.12(p.305) ) and (11) we have V2−V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from (6.4.6(p.41) )
and Lemma A2.3(p.294) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt

is strictly increasing in t > 0. Note that V1 < xL due to (10) . Assume that Vt−1 ≤ xL for all t > 1, hence V ≤ xL . Now,
from (8) and V ≥ xK due to (a) we have the contradiction V ≥ xK > xL ≥ V . Hence, it is impossible that Vt−1 ≤ xL for
all t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · , (A 4.15)

from which
Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt−1, t > t•τ . (A 4.16)

Therefore, from Corollary A 2.1(p.294) (a) we have L (Vt−1) > 0 · · · ((12 )) for t•τ ≥ t > 1 and L (Vt−1) ≤ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.3(p.305) (b) we have ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S20(p.306) (1) is true.

2. Let τ > t•τ . Firstly, let τ ≥ t > t•τ . Then, since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ
from (A4.11(p.305) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).

Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.9(p.305) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1, i.e., Vt > βVt−1 for t• ≥ t > 1,
hence

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 7.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ ∥ for τ > t•τ . In addition, we have

ConducttN for t• ≥ t > 1 due to (12) and (A 4.13(p.305) ). Hence S20(p.306) (2) is true.

A4.3 A {M̃:1[P][A]}
Since K̃ (x) + (1− β)x = L̃ (x) due to (5.1.34(p.27) ) and (5.1.33(p.27) ), from (6.4.8(p.41) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0} ≤ 0, t > 1. (A 4.17)

Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1) or equivalently

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.18)
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2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.19)

Now, from (6.4.8(p.41) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.20)

Finally, from (A4.17(p.307) ) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (Skipt). (A 4.21)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.22) (b)) and that

λ = 1 · · · (1) (see A2(p.22) ), δ = 1 (see (10.2.1(p.56) )). (A 4.22)

� Tom A4.5 (A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (5.1.34(p.27) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma A3.7(p.300) (g), hence from (6.4.8(p.41) ) and (1) we have Vt = min{T̃ (Vt−1)+Vt−1, Vt−1} = T̃ (Vt−1)+Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1)+V1 from (2) , we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from (2) and Lemma A3.7(p.300) (d)
we have Vt ≥ T̃ (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

(b) Since V1 = b from (6.4.7(p.41) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b⋆ > b > a due to Lemma A3.7(p.300) (n),
from (2) we have Vt > T̃ (a) + a = a due to Lemma A3.7(p.300) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence
L̃ (Vt−1) < 0 for t > 1 due to Lemma A3.8(p.301) (d), thus L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.17(p.307) ) we obtain

Vt − βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1. Accordingly Vτ < βVτ−1 < · · · < βτ−1V1, hence t∗τ = τ for τ > 1,
i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.21(p.308) ).

Let us define

S21 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.6 (A {M̃:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ > 1⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆ and s < sL̃ . Then S21 ◦N ∗△ is true.

• Proof Let β < 1 or s > 0. First note (A 4.22 (1,2) (p.308) ).

(a) Since x
K̃ ≤ (βb + s)/δ = βb + s = V1 due to Lemma A3.9(p.301) (j2) and (6.4.7(p.41) ), we have K̃ (V1) ≤ 0 due to

Lemma A3.9(p.301) (j1), hence V2 − V1 ≤ 0 from (A4.20(p.308) ), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from (6.4.8(p.41) ) and
Lemma A3.9(p.301) (e) we have Vt ≥ min{K̃ (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing
in t > 0. Consider a sufficiently small M < 0 such that βb + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose Vt−1 ≥ M . Then,
from Lemma A3.9(p.301) (e) and (A 3.5 (2) (p.301) ) we have Vt ≥ min{K̃ (M) + M,βM} = min{βM + s, βM} ≥ min{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥ M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (6.4.8(p.41) ) we have V = min{K̃ (V ) + V, βV }, hence 0 = min{K̃ (V ),−(1− β)βV }. Thus, since
K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A3.9(p.301) (j1).

(b) Let βb ≤ a · · · ((1)). Then x
L̃ ≥ βb+s = V1 from Lemma A3.11(p.302) (c1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for t > 1

from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 3.2(p.301) (a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1. Hence,
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from (A4.19(p.308) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus, we have Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ ,
hence t∗τ = 1 for τ > 1, i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1 due to Preference Rule 7.2.1(p.45) .

(c) Let βb > a.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” of the lemma. Then, we see that (λβb +

s)/δ = b + s · · · ((3)) due to (2(p.309) ) and (A 4.22(p.308) ). In addition, since x
L̃ = x

K̃ · · · ((4)) from Lemma A3.10(p.302) (b), we have

K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let b + s ≥ b⋆. Then x
L̃ = x

K̃ = b + s = V1 from (4) , Lemma A3.9(p.301) (j2, (3) , and (6.4.7(p.41) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to
Corollary A 3.2(p.301) (a). Hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let b + s < b⋆. Then x
L̃ = x

K̃ < b + s = V1 < b⋆ from (4) , Lemma A3.9(p.301) (j2), and (6.4.7(p.41) ), hence b⋆ > Vt−1

for t > 1 from (a). Suppose Vt−1 > x
L̃ , hence L̃ (Vt−1) < 0 from

Corollary A 3.2(p.301) (a). Then, from (A4.18(p.307) ), Lemma A3.9(p.301) (g), and (5) we have Vt > K̃ ( xL̃ ) + x
L̃ = x

L̃ . Accordingly,
by induction Vt−1 > x

L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from
Corollary A 3.2(p.301) (a). Thus, for the same reason as in the proof of Tom A4.5(p.308) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and
ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A3.10(p.302) (c ((d))). Now, since x
K̃ ≤ βb + s due

to Lemma A3.9(p.301) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (6.4.7(p.41) ). Suppose x

K̃ ≤ Vt−1. Then, from
Lemma A3.9(p.301) (e) we have Vt ≥ min{K̃ ( xK̃ ) + x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction
Vt−1 ≥ x

K̃ for t > 1, hence Vt−1 > x
L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.301) (a). Hence, for

the same reason as in the proof of Tom A4.5(p.308) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A3.10(p.302) (c ((d))).

(c2ii1) Let βb + s ≥ b⋆. Then, x
K̃ = βb + s = V1 from Lemma A3.9(p.301) (j2) and (6.4.7(p.41) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.18(p.307) ) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.19(p.308) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βb+ s < b⋆. Then, since V1 < b⋆ from (6.4.7(p.41) ), we have Vt−1 < b⋆ for t > 1 due to (a). In addition, we have
x
K̃ < βb + s = V1 from Lemma A3.9(p.301) (j2). Suppose x

K̃ < Vt−1, hence x
L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0 due

to Corollary A 3.2(p.301) (a), from (A4.18(p.307) ) and Lemma A3.9(p.301) (g) we have Vt > K̃ ( xK̃ ) + x
K̃ = x

K̃ . Hence, by induction
x
K̃ < Vt−1 for t > 1, thus x

L̃ < Vt−1 for t > 1 due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.301) (a),
for the same reason as in the proof of Tom A4.5(p.308) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A3.10(p.302) (c ((d))).

(c2iii1) Let βb+ s ≥ b⋆ or sL̃ ≤ s. First let βb+ s ≥ b⋆. Then, since x
K̃ = βb− s = V1 from

Lemma A3.9(p.301) (j2), we have x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next let sL̃ ≤ s. Then, since x
L̃ ≥ βb + s due to

Lemma A3.11(p.302) (d), we have x
L̃ ≥ V1. Accordingly, whether βb + s ≥ b or sL̃ ≤ s, we have x

L̃ ≥ V1, thus x
L̃ ≥ Vt−1 for

t > 1 due to (a). Hence, since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 3.2(p.301) (a), for the same reason as in the proof of (b) we
obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βb + s < b⋆ · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A3.11(p.302) (d) we have x
K̃ < x

L̃ < βb + s =

V1 · · · ((10 )), hence K̃ (V1) < 0 · · · ((11 )) from Lemma A3.9(p.301) (j1). In addition, since V1 < b⋆ due to (9) , we have Vt−1 < b⋆

for t > 0 from (a). Now, from (A4.20(p.308) ) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from
Lemma A3.9(p.301) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) . Assume that Vt−1 ≥ x
L̃ for all t > 1, hence V ≥ x

L̃ due to
(a). Then, from (8) and V ≤ x

K̃ due to (a) we have the contradiction of V ≤ x
K̃ < x

L̃ ≤ V . Hence, it is impossible that
Vt−1 ≥ x

L̃ for all t > 1, implying that there exists t•τ > 1 such that

V1 > V2 > · · · > Vt•τ−1 > x
L̃ ≥ Vt•τ > Vt•τ+1 > Vt•τ+2 > · · · , (A 4.23)

from which
Vt−1 > x

L̃ , t•τ ≥ t > 1, x
L̃ ≥ Vt−1, t > t•τ . (A 4.24)

Therefore, from Corollary A 3.2(p.301) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t•τ ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.5(p.308) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1. Hence S21(p.308) (1) is true.

2. Let τ > t•τ . Firstly, let τ ≥ t > t•τ . Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ
from (A4.19(p.308) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).
Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.17(p.307) ) we have Vt−βVt−1 < 0 for t•τ ≥ t > 1, i.e., Vt < βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ < βVt•τ−1 < β2Vt•τ−2 < · · · < βt•τ−1V1 · · · ((16 )).
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From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ < βτ−t•τ+1Vt•τ−1 < βτ−t•τ+2Vt•τ−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 7.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ for τ > t•τ . In addition, we have

ConducttN for t•τ ≥ t > 1 due to (12) and (A 4.21(p.308) ). Hence S21(2) is true.

A5 Optimal Initiating Time of Markovian Decision Processes
This section defines the optimal initiating time (OIT) for Markovian decision processes (MDP) [21,Howard,1960][40,Ross], which
can be regarded as the most general model of decision processes.

A5.1 Standard Definition of Markovian Decision Processes

A 5.1.1 Maximization MDP

Let the process be in a state i at a time t (see Figure 2.2.1(p.11) ), and if an action x is taken at that time, then a reward r(i, x)
can be obtained and the present state i changes into j at the next time t− 1 with a known probability p(j|i, x). By vt(i) let us
denote the maximum of the total expected present discounted profit gained over a given planning horizon starting from a time
t in a state i. Then we have

vt(i) = maxx

{
r(i, x) + β

∑
j p(j|i, x)vt−1(j)

}
, t > 0, (A 5.1)

where v0(i) is a profit specified for a reason inherent in the process; in many cases, v0(i) = maxx r(i, x). Let us call the decision
process the maximization MDP.

A5.1.2 Minimization MDP

This is the inverse of the maximization MDP where if an action x is taken at a given time t in a state i, a cost c(i, x) must be
paid. By vt(i) let us denote the minimum of the total expected present discounted cost over a given planning horizon from
starting a time t in a state i. Then we have

vt(i) = minx

{
c(i, x) + β

∑
j p(j|i, x)vt−1(j)

}
, t > 0, (A 5.2)

where v0(i) is a cost specified for a reason inherent in the process; in many cases, v0(i) = minx c(i, x). Let us call the decision
process the minimization MDP.

A5.2 Optimal Initiating Time

A5.2.1 Initiating State i◦

Assume that a common state i◦ is defined for any given initiating time t ≥ 0, and let us define

Vt
def
= vt(i◦), t ≤ τ. (A 5.3)

A5.2.2 Relationship between V[τ ] and Vβ[τ ] (see Section 7.2.4.2(p.45) )

In this section, by using some examples, let us demonstrate that the monotonicity of

V[τ ] = {Vτ , Vτ−1, Vτ−2, · · · , Vtqd} (original sequence)

is not always inherited to

Vβ[τ ] = {Vτ , βVτ−1, β
2Vτ−2, · · · , βτVtqd} (β-adjusted sequence).

Below let

V[τ ] → · · · · ·
Vβ[τ ] → ◦ ◦ ◦ ◦ ◦

t∗τ → • (optimal initiating time)



311

� Example A5.1 (maximization MDP) Suppose V[τ ] is strictly increasing in t where

Vτ > Vτ−1 > Vτ−2 > · · · > V0 > 0.

In this case, as seen in Figure A 5.1(p.311) below, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0 > 0, i.e., the monotonicity of V[τ ]

is inherited to Vβ[τ ] where the optimal initiating time is given by t∗16 = 16 (⃝⃝s ).
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Figure A 5.1: Inheritance of monotonicity

� Example A5.2 (maximization MDP) Suppose V[τ ] is strictly increasing in t where

Vτ > βVτ−1 > Vτ−2 > · · · > Vτ−t′ > 0 > Vτ−t′−1 > · · · > V0.

In this case, as seen in Figure A 5.2(p.311) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 16 (⃝⃝s ).
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Figure A 5.2: Collapse of monotonicity

� Example A5.3 (maximization MDP) Suppose V[τ ] is strictly decreasing in t where

0 < Vτ < βVτ−1 < Vτ−2 < · · · < V0.

In this case, as seen in Figure A 5.3(p.311) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 6, i.e., unregenerate (} ).
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Figure A 5.3: Collapse of monotonicity
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� Example A5.4 (minimization MDP) Suppose V[τ ] is strictly decreasing in t where

0 < Vτ < βVτ−1 < · · · < Vτ−t′ < 0 < Vτ−t′−1 < · · · < V0.

In this case, as seen in Figure A 5.4(p.312) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 16 (⃝⃝s ).

0

0

-
16

V16

β0V16·•

15

V15

β1V15

·◦

14

V14

β2V14

·◦

13

V13

β3V13

·◦

12

V12

β4V12

·◦

11

V11

β5V11

·◦

10

V10

β6V10

·◦

9

V9

β7V9

·◦

8

V8

β8V8

·◦

7

V7

β9V7·◦

6

V6

β10V6

·◦

5

V5

β11V5

·
◦

4

V4

β12V4

·
◦

3

V3

β13V3

·

◦

2

V2

β14V2

·

◦

1

V1

β15V1

·

◦

0

V0·

◦β16V0

t∗16 = 16

⃝⃝s

Figure A 5.4: Collapse of monotonicity

A6 Calculation of Solutions xK, xL, and sL

The following lemma is used to numerically calculate the solutions xK, xL, and sL (see Section 5.2(p.27) ).

Lemma A6.1 ( xK , xL , sL )

(a) min{a, (λβµ− s)/δ} ≤ xK ≤ max{b, 0}.
(b) min{a, (λβµ− s)/λ} ≤ xL ≤ b.

(c) 0 ≤ sL ≤ λβµ−min{a, 0}.

• Proof (a)

◦ Let x ≤ a · · · ((1)). Now, from (10.2.4 (1) (p.57) ) we have K (x) = δ
(
(λβµ − s)/δ − x

)
, hence K (x) ≥ 0 for x ≤ (λβµ − s)/δ.

From this and (1) we have K (x) ≥ 0 for x ≤ min{a, (λβµ− s)/δ}, hence K (min{a, (λβµ− s)/δ}) ≥ 0.

1. Let K (min{a, (λβµ− s)/δ}) > 0. Then min{a, (λβµ− s)/δ} < xK · · · ((2)) due to Corollary 10.2.2(p.58) (a).

2. Let K (min{a, (λβµ− s)/δ}) = 0.

· If β = 1 and s = 0, then min{a, (λβµ− s)/δ} ≥ xK due to Lemma 10.2.2(p.57) (i). Since min{a, (λβµ− s)/δ} ≤ a <
b = xK from Lemma 10.2.2(p.57) (i), we have min{a, (λβµ− s)/δ} = xK .

· If β < 1 or s > 0, then min{a, (λβµ− s)/δ} = xK due to Lemma 10.2.2(p.57) (j1).

Accordingly, whether “β = 1 and s = 0” or “β < 1 or s > 0”, we have min{a, (λβµ− s)/δ} = xK · · · ((3)).
Thus, from (2) and (3) we have min{a, (λβµ− s)/δ} ≤ xK · · · ((4)).

◦ Let b ≤ x · · · ((5)). Now, from (10.2.5 (2) (p.57) ) we have K (x) ≤ 0 for 0 ≤ x. From this and (5) we have K (x) ≤ 0 for

max{b, 0} ≤ x, hence 0 ≥ K (max{b, 0}). Accordingly, we have xK ≤ max{b, 0} · · · ((6)) due to Corollary 10.2.2(p.58) (a).

From (4) and (6) the assertion becomes true.

(b)

◦ Let x ≤ a · · · ((7)). Now, from (10.2.3 (1) (p.57) ) we have L (x) = λβ
(
(λβµ−s)/λβ−x

)
, hence L (x) ≥ 0 for x ≤ (λβµ−s)/λβ.

From this and (7) we have L (x) ≥ 0 for x ≤ min{a, (λβµ− s)/λβ}, hence L (min{a, (λβµ− s)/λβ}) ≥ 0.

1. Let L (min{a, (λβµ− s)/λβ}) > 0. Then min{a, (λβµ− s)/λβ} < xL · · · ((8)) due to Corollary 10.2.1(p.57) (a).

2. Let L (min{a, (λβµ− s)/λβ}) = 0.

· If s = 0, then min{a, (λβµ−s)/λβ} ≥ xL due to Lemma 10.2.1(p.57) (d). Since min{a, (λβµ−s)/λβ} ≤ a < b = xL

from Lemma 10.2.1(p.57) (d), hence min{a, (λβµ− s)/λβ} = xL .

· If s > 0, then min{a, (λβµ− s)/λβ} = xL due to Lemma 10.2.1(p.57) (e1).

Accordingly, whether s = 0 or s > 0, we have min{a, (λβµ− s)/λβ} = xL · · · ((9)).

Thus, from (8) and (9) we have min{a, (λβµ− s)/λβ} ≤ xL · · · ((10 )).

◦ Let b ≤ x · · · ((11 )). Then, from (5.1.3(p.25) ) and Lemma 10.1.1(p.55) (g) we have L (x) = −s ≤ 0, hence 0 ≥ L (b). Accordingly,

due to Corollary 10.2.1(p.57) (a) we have xL ≤ b · · · ((12 )).
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From (10) and (12) the assertion becomes true.

(c) From (5.1.5(p.25) ) and (5.1.3(p.25) ) we have L (0) = L (λβµ) = λβT (λβµ) ≥ 0 · · · ((13 )) due to

Lemma 10.1.1(p.55) (g). Now, for a sufficiently large s > 0 such that λβµ−s ≤ a and λβµ−s ≤ 0 · · · ((14 )) we have s ≥ λβµ−a and

s ≥ λβµ, hence s ≥ max{λβµ − a, λβµ} = λβµ +max{−a, 0} = λβµ −min{a, 0} · · · ((15 )). Then, from (5.1.5(p.25) ), (5.1.3(p.25) ),

and Lemma 10.1.1(p.55) (f) we have

L (s) = λβT (λβµ− s)− s = λβ(µ− λβµ+ s)− s = λβµ− λβ(λβµ− s)− s = (1− λβ)(λβµ− s).

Hence, since 1 ≥ λβ, due to (14) we have L (s) ≤ 0 for s ≥ λβµ−min{a, 0} due to (15) , so L (λβµ−min{a, 0}) ≤ 0. From this
and (13) we have L (0) ≥ 0 ≥ L (λβµ−min{a, 0}), hence due to Lemma 10.2.4(p.59) (a) we have 0 ≤ sL ≤ λβµ−min{a, 0}.

A6.1 Calculation of Solutions x
K̃, x

L̃ , and sL̃

Lemma A6.2 ( xK̃ , xL̃ , sL̃ )

(a) max{b, (λβµ+ s)/δ} ≥ x
K̃ ≥ min{a, 0}.

(b) max{b, (λβµ+ s)/λβ} ≥ x
L̃ ≥ a.

(c) 0 ≤ sL̃ ≤ −λβµ+max{b, 0}.

• Proof Applying the operation R to Lemma A6.1(p.312) leads to

⟨a⟩ min{−â, (−λβµ̂− s)/δ} ≤ − x̂K ≤ max{−b̂, 0}.
⟨b⟩ min{−â, (−λβµ̂− s)/λ}β ≤ − x̂L ≤ −b̂.
⟨c⟩ 0 ≤ sL ≤ −λβµ̂−min{−â, 0}.

The above can be rewritten as below:

⟨a⟩ −max{â, (λβµ̂+ s)/δ} ≤ − x̂K ≤ −min{b̂, 0}.
⟨b⟩ −max{â, (λβµ̂+ s)/λ}β ≤ − x̂L ≤ −b̂.
⟨c⟩ 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

The above can be rewritten as below:

⟨a⟩ max{â, (λβµ̂+ s)/δ ≥ x̂K ≥ min{b̂, 0}.
⟨b⟩ max{â, (λβµ̂+ s)/λ}β ≥ x̂L ≥ b̂.

⟨c⟩ 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

Applying the operation CR (see Lemma 12.3.1(p.72) (b,g,h,i) to the above yields

⟨a⟩ max{b̌, (λβµ̌+ s)/δ} ≥ xˇ̃K ≥ min{ǎ, 0}.
⟨b⟩ max{b̌, (λβµ̌+ s)/λ}β ≥ xˇ̃L ≥ ǎ.

⟨c⟩ 0 ≤ sˇ̃L ≤ −λβµ̌+max{b̌, 0}.

Finally, applying the operation IR (see Lemma 12.3.3(p.73) (b,g,h,i), we obtain (a)-(c) of this lemma.
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A7 Others
A 7.1 Monotonicity of Solution

Proposition A7.1 In general, for the solution xt of a given equation gt(x) = 0 we have:

CaseA Let gt(x) is nondecreasing in x for all t.

(I) If gt(x) is nondecreasing in t for all x, then xt is nonincreasing in t.

(II) If gt(x) is nonincreasing in t for all x, then xt is nondecreasing in t.

CaseB Let gt(x) is nonincreasing in x for all t.

(III) If gt(x) is nondecreasing in t for all x, then xt is nondecreasing in t.

(IV) If gt(x) is nonincreasing in t for all x, then xt is nonincreasing in t.

• Proof Evident from Figures A 7.1(p.314) and A7.2(p.314) below:

(I)

x
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• • •
xt′′′ xt′′← xt
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0 x
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Figure A 7.1: CaseA: gt(x) is nondecreasing in x

(III)

0 x

gt(x) is nondecreasing in t (III)

• • •
xt

′ → xt
′′ →xt

′′′
gt′′′ (x)↑
gt′′ (x)↑
gt′ (x)

(IV)

0 x

gt(x) is nonincreasing in t (IV)

• • •
xt

′′′← xt
′′ ←xt

′
gt′ (x)↓
gt′′ (x)↓
gt′′′ (x)

Figure A 7.2: CaseB: gt(x) is nonincreasing in x

A7.2 Uniform Probability Density Function

For given a and b such as −∞ < a < b <∞ let consider the uniform probability density function:

f(x) =


0, x < a,

1/(b− a), a ≤ x ≤ b,

0, b < x,

(A 7.1)

where the expectation is µ = 0.5(a+ b). Then we have:

T (x) =


0.5(a+ b)− x, x ≤ a, · · · (1),

0.5(b− x)2/(b− a), a ≤ x ≤ b, · · · (2),

0, b ≤ x, · · · (3),

(A 7.2)

where (1) and (3) are immediate from Lemma 10.1.1(p.55) (f,g). Let a ≤ x ≤ b · · · (2). Then, from (5.1.2(p.25) ) we have:

T (x) =
∫ b

a
max{ξ − x, 0}(b− a)−1dξ

=
∫ b

x
(ξ − x)(b− a)−1dξ

= (b− a)−1
∫ b−x

0
ηdη (η = ξ − x) = 0.5(b− x)2/(b− a).
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A7.3 Graphs of TR (x)

From Lemma 10.1.1(p.55) (b,f,g) one immediately sees that TR (x) can be depicted as in Figure A 7.3(p.315) (I) below. Similarly,
from Lemma 10.2.2(p.57) (b, (10.2.4 (1) (p.57) ), and (10.2.5 (2) (p.57) )) we immediately see that KR (x) can be depicted as in Fig-
ure A 7.3(p.315) (II) below.

ba

a

µ−
x

TR (x)

(I)

ba

λβµ−
s−

δx

KR (x)

(II)

−(1− β)x− s
−(1− β)b− s

Figure A 7.3: Graph of TR (x) and KP (x)

A7.4 Graph of TP (x)

From Lemma 13.2.1(p.93) (b,f,g) we immediately see that TP (x) can be depicted as in Figure A 7.4 below.

ba

a

a⋆

a−
x

TP (x)

Figure A 7.4: Graph of TP (x)

Here note that a⋆ < a (see Lemma 13.2.1(p.93) (n)).

When f(x) is the uniform distribution function (see (A 7.1(p.314) )), we can obtain the a⋆ as below. Then we have:

p(z) = 1 for z ≤ a from (5.1.28 (1) (p.26) ),

p(z) =
∫ b

z
f(ξ)dξ =

∫ b

z
1/(b− a)dξ = (b− z)/(b− a) for a ≤ z ≤ b from (5.1.18(p.26) ),

p(z) = 0 for b ≤ z from (5.1.29 (2) (p.26) ).

Hence we get

T (z, x)
def
= p(z)(z − x) =


z − x, z ≤ a · · · ((1)),
(b− z)(z − x)/(b− a), a ≤ z ≤ b · · · ((2)),
0, b ≤ z · · · ((3)).

Then (5.1.19(p.26) ) can be expressed as

T (x) = max
z

T (z, x) = T (z(x), x) · · · ((4)).
Here let us define

g∗(z, x) = (b− z)(z − x)/(b− a), z, x ∈ (−∞,∞),

which is a quadratic expression of z for any given x. By z∗(x) let us denote z attaining the maximum of g∗(z, x) for a given
x ∈ (−∞,∞). Then clearly

z∗(x) = (b+ x)/2 · · · ((5)).

Note that g∗(z, x) can be depicted as the three possible smooth curves (dotted curve) in Figure A 7.5(p.316) below, depending on
a value that z∗(x) takes on, i.e.,

z∗(x) ≤ a · · · (i)

a ≤ z∗(x) ≤ b · · · (ii)

b ≤ z∗(x) · · · (iii)

Accordingly, noting (1) - (3) , we see that T (z, x) can be depicted as the three possible broken curves (bold curve), each of which
has the line z − x with the angle 45◦ on z ≤ a and the horizontal line (z-axis) on b ≤ z.
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Figure A 7.5: Graph of g∗(z, x) (smooth curve) and T (z, x) (broken curve)

Here note that the T (z, x) is given by the broken curve (see (1) - (3) ) and that z maximizing the broken curve is given by z(x)
(see (4) ). Then, from (5) and Figure A 7.5(p.316) we see that

1. Let z∗(x) ≤ a · · · (1), i.e., (b+ x)/2 ≤ a, hence x ≤ 2a− b. Then, by definition we have

z(x) = a · · · ((6)), x ≤ 2a− b.

Hence, from (4) and (1) we have T (x) = T (a, x) = a− x · · · ((7)) on x ≤ 2a− b.

2. Let a < z∗(x) ≤ b · · · (2), i.e., a < (b+ x)/2 ≤ b, hence 2a− b < x ≤ b. Then, by definition we have

z(x) = z∗(x) = (b+ x)/2 > a · · · ((8)), 2a− b < x ≤ b.

Hence, from (4) and (2) we have

T (x) = T (z∗(x), x) = (b− z∗(x))(z∗(x)− x)/(b− a) = (b− x)2/4(b− a), 2a− b < x ≤ b.

Now, since

m(x)
def
= T (x)− a+ x = ((b− x)2 − 4(b− a)(a− x))/4(b− a),

we have
m′(x) = (x− 2a+ b)/2(b− a) > 0, 2a− b < x ≤ b,

hence m(x) is strictly increasing on 2a−b < x ≤ b. In addition to the fact, since it can be easily confirmed that m(2a−b) = 0,
it follows that m(x) > 0 on 2a−b < x ≤ b, hence m(x) = T (x)−a+x > 0 on 2a−b < x ≤ b or equivalently T (x) > a−x · · · ((9))
on 2a− b < x ≤ b.

3. Let b ≤ z∗(x) · · · (3), i.e., b ≤ (b+ x)/2, hence b ≤ x. Then, by definition we have

z(x) = b > a · · · ((10 )), b ≤ x.

Hence T (x) = T (b, x) = 0 from (4) , hence T (x) = 0 ≥ b− x > a− x · · · ((11 )) on b ≤ x.

Collecting up (7) , (9) , and (11) , we have

T (x)


= a− x, x ≤ 2a− b,

> a− x, 2a− b < x ≤ b,

> a− x, b ≤ x.

(A 7.3)

Accordingly, noting (5.1.26(p.26) ) and Figure A 7.4(p.315) , from (A7.3(p.316) ) we immediately see that

a⋆ = 2a− b · · · (1). (A 7.4)

Similarly, collecting up (6) , (8) , and (10) , we have

z(x)


= a, x ≤ 2a− b,

> a, 2a− b < x ≤ b,

> a, b ≤ x.

(A 7.5)

Accordingly, noting (5.1.27(p.26) ), we immediately see that

x⋆ = 2a− b · · · (2). (A 7.6)

Numerical Experiment 1 (Discontinuity of z(x) (Dr.Mong Shan Ee)) z(x) is not always continuous in x = x⋆; in fact we can
demonstrate a numerical example in which z(x) is not continuous in x = x⋆. For example let us consider F (w) with f(w) such
that f(w) ≈ 0.05701 on [0.1, 0.599], f(w) is a triangle on [0.599, 0.7] with its maximum at w = 0.6, and f(w) ≈ 0.06982 on
[0.7, 3.0]. Then we have z(x) ≈ 0.599 for x ≤ 0.48568 and z(x) ≈ 1.7 for x < 0.48568, i.e., z(x) is discontinuous at x = 0.48568.
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A7.5 Economic Implications of Market Partition

The three restricted markets defined in Section 17.2(p.117) implies the following:

◦ Positive market F+ In an asset trading problem in the real world, the price is usually positive, i.e., the problem is defined
on the positive market F+, called the input market in the sense that all goods are first input in the market.

◦ Mixed market F± For example, suppose you must waste a piece of well-worn furniture, say a book cabinet, sofa bed and
so on. For such a good, normally the two kinds of receiving-sides (buyers) may appear: One who pays some money on the
ulterior motive that some profit might be obtained by reselling it and the other who requires some money for the reason
that some cost may be incurred for its disposal. This market can be regarded as a market in which the positive market and
the negative market are mixed; let us call the market the secondhand market .

◦ Negative market F− The trading problem in A3.5(p.18) is defined on this market; let us call the market the junk market .

Remark A7.1 (life of durable goods) A new durable good (automobile, house furnishings, TV and so on) is first placed
on the positive market F+ (input market), deteriorates year by year, a while later is drove to the mixed market F± (second-
hand market), before long moves into the negative market F− (junk market), and then finally is recycled or dumped. This
deterioration flow implies that the probability density functions of price transfers from right to left as seen in Figure A 7.6(p.317)

below.
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0
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f(w)

⇐=

a b

F+
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f(w)

⇐=

a b
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Figure A 7.6: Deterioration transition of goods (life of goods)
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♡
Many decision theories discussed by researchers have traditionally been framed as mathematical theories. In contrast, this paper
approaches “decision” as a subject of study within the natural sciences (see Section 1.3(p.4) ). It is important to note that some
researchers may have objections to this viewpoint. However, one should recognize that the truth of mathematics resides within
mathematics itself, and the truth of physics resides within physics; there is no direct relationship between these two types of
truth. To illustrate, physicists sometimes refer to the term “mathematics” as “arithmetic”, using it merely as a tool, akin to
how carpenters use hammers. While a good hammer is necessary for building a good structure, it would be a mistake to think
that a good structure cannot be built without a good hammer. As Albert Einstein famously stated:

As far as the laws of mathematics refer to reality, they are not certain,

and as far as they are certain, they do not refer to reality.

— Albert Einstein —

♢

This paper, which began with a proposition by Dr. Professor Shizuo Senju on March 31, 1966

concludes with this apothegm on December 11, 2024.
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