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Abstract
How have stars, planets, and the materials that make up our life evolved in the Universe? A clue to

this mystery is supermassive black holes (BHs) which are several billion times as massive as the sun. This
is because the powerful radiation produced in the vicinity of supermassive BHs induces enormous changes
in interstellar matter such as atoms, molecules, and solid particles. However, the formation process of
supermassive BHs is still unknown, and understanding this process is one of the most important issues in
modern astronomy.

There is a proposal that supermassive BHs are formed via a process in which the low-mass BHs (seed
BHs) wandering in galaxies grow into supermassive BHs by swallowing the surrounding gas. However, the
growth rate of the seed BHs, which determines whether this idea is true or not, is not precisely known. This
is because the interaction between radiation and matter, as well as gravity, must be investigated. When the
seed BHs attract surrounding matter, a rotating disk is formed, generating strong and anisotropic radiation
due to the release of gravitational energy. This causes ionization of the surrounding gas, dissociation of
molecules, and sublimation of solid particles, and the force acting when photons are absorbed by matter
induces the mixing of interstellar matter. Therefore, to understand the formation process of supermassive
BHs, it is necessary to investigate how wandering seed BHs swallow matter by solving the forces due
to gravity and radiation with consideration of the chemical evolution of interstellar matter caused by
radiation.

To clarify the formation process of supermassive BHs, we perform three-dimensional radiation hydro-
dynamics simulations, solving gravity, radiation, hydrodynamics, and non-equilibrium chemical reactions
together. This is the first simulation in the world that takes into account the anisotropic radiation pro-
duced by the accretion disks around wandering BHs and the sublimation process of solid particles. Our
results show that near the rotation axis of the accretion disk, interstellar matter moves away from the
BH, while matter is efficiently swallowed into the BH along the disk surface. Around the rotation axis,
the plasma regions appear. Interstellar matter, originally composed of neutral atoms and molecules, is
photoionized by the strong ultraviolet radiation from the disk. The strong radiation force acting on the
solid particles in the interstellar matter (1000 times larger than that of gas) induces flows away from the



BH. When solid particles sublimate, plasma gas is swallowed by the BH even near the rotation axis of the
disk. This is because the luminosity of the accretion disk is smaller than the Eddington luminosity for
electron scattering, and plasma gas is almost unaffected by the radiation force. The amount of plasma gas
accreted from the sublimation region near the rotation axis is roughly one-tenth of the amount accreted
from near the disk surface. In the region along the disk plane, the effect of radiation is weak, and the
matter is efficiently swallowed by the BH due to gravity. As a result, the amount of matter swallowed
by the BH is about one-hundredth of the previous theoretical prediction that does not consider radiation
feedback. This result is obtained by assuming the typical density of the molecular cloud (104 cm−3). We
also found that in high-density conditions (! 106 cm−3), where the effect of radiation is diminished due
to the self-shielding effect of radiation by interstellar matter, the seed BHs could swallow a large amount
of matter and grow rapidly.

As described above, we have succeeded in quantitatively clarifying for the first time in the world the
effect of wandering seed BHs on the evolution of the surrounding interstellar medium and growth rate of
BHs under more realistic conditions that take anisotropic radiation and dust sublimation into account.
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Chapter 1

Supermassive Black Holes

Supermassive black holes (BHs) are known to be ubiquitous in the center of galaxies. These are con-
sidered the important objects that have had significant impacts on the evolution history of objects and
matter via radiation and gas ejections that bring energy and momentum (feedback). However, the
standard formation scenario has not yet been established. The formation history of supermassive BHs
remains a bottleneck in understanding the evolution history of astronomical objects and matter.

1.1 Compact objects
The compact object is the generic term for neutron stars (NSs) and black holes (BHs). 1 These are
born at the final phase of stellar evolution. Their size per mass is smaller than that of normal objects,
and they have a strong gravitational field.

The NSs are thought to be formed via the core-collapse of relatively small objects with a mass of
8 − 30M⊙. The NSs are sustained by the degeneracy pressure of neutrons and typically have a mass of
1 − 2M⊙. The upper limit of the NS mass is determined by the force balance between gravity and the
degenerate pressure (Tolman-Oppenheimer-Volkoff limit). If the NSs gain mass via mass accretion from
the donor star and their mass exceeds this, the NSs would collapse into the BHs. The typical radius of
the NSs is 10 km, which is larger than rs of the NSs, 3 − 6 km.

Stellar-mass BHs are thought to be formed when a progenitor with a mass of ! 30M⊙ goes through
a supernova explosion. One of the most important characteristic radii of the BHs is the event horizon
radius. If the BHs do not rotate, it is called the Schwarzschild radius and is defined as follows:

rs = 2GM

c2 , (1.1)

where, c, G, and M are the speed of light, the gravitational constant, and the mass of BHs, respectively.
This radius can be roughly understood as the position where photons are bound by the gravity of the
BHs and cannot escape. In addition to the stellar-mass BHs, different types of BHs exist in the Universe
(see Table 1.1). Supermassive BHs and intermediate-mass BHs are more massive than the stellar-mass
BHs. The supermassive BHs have a mass of ! 106M⊙, and the intermediate-mass BHs have a mass
in the middle range, 100M⊙ " M " 106M⊙. The definitions of this mass range vary slightly in the
literature, as no strict definition exists.

1In general, this definition also includes white dwarfs, but we omit them in this paper.
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Table 1.1: Types of black holes

Name Mass Location Formation mechanism
stellar-mass BHs ∼ 10M⊙ anywhere gravitational collapse of stars
intermediate-mass BHs 102−6M⊙ anywhere? gravitational collapse of massive stars

runaway collision in star cluster
merging with other BHs

supermassive BHs ! 106M⊙ center of galaxies accretion onto IMBHs
merging with other IMBHs

1.2 Supermassive black holes
Supermassive BHs, whose mass is estimated to be several billion times larger than that of the sun,
are universally located at the center of galaxies. Observations suggest a strong correlation between
the mass of the supermassive BHs, MBH, and the mass of the galactic bulge, Mbuldge, as shown below
(Marconi & Hunt, 2003):

MBH
Mbuldge

∼ 0.001. (1.2)

This means that supermassive BHs and galaxies are co-evolving interacting with each other. Therefore,
understanding the formation process of supermassive BHs is also important for understanding galaxy
formation. However, the formation process of supermassive BHs is still not well understood.

Recent observations suggest that even in the early universe (redshift; z ! 6), the supermassive BHs
exist. About 20 years ago, quasar observation project by SDSS (Sloan Digital Sky Survey) first confirmed
the existence of supermassive BHs in the universe about a billion years after the Big Bang (z ∼ 6).
Since then, observations have progressed, and recently, HSC (Hyper Suprime-Cam) detected more than
100 quasars at redshifts of 6 or more. Figure 1.1 summarizes 196 observed bright quasars in the early
Universe with redshift z ≥ 6 (Inayoshi et al., 2020, as a recent review). The presence of supermassive
BHs with a mass exceeding ! 107M⊙ before the universe was a few hundred million years old represents
an intriguing puzzle.

In summary, there are three observational factors that are important for building a theoretical model
of the formation process of a supermassive black hole: (1) its location at the center of a galaxy, (2) its
mass correlation with the bulge mass of the host galaxy, and (3) its formation time in a few hundred
million years.

1.3 Formation process of supermassive black holes
Supermassive BHs may be formed via either the gas accretion process onto low-mass BHs (seed BHs)
or the BH-BH merger process, or both processes (see Figure 1.2). As discussed in the previous section,
the observational results require a theoretical model in which supermassive BHs form in a few Gyr, but
it takes time for the mass to increase by many orders of magnitude. For example, if the initial BH
mass is 10M⊙, the seed BHs cannot grow into a supermassive BHs in a few Gyr, even if it grows by
gas accretion at the Eddington rate (see black solid lines in Figure 1.1). Therefore, many researchers
suggest that supermassive BHs grow up from the heavier seed BHs. In the next subsection, we present
the formation scenarios of seed BHs that are currently considered as the most likely scenarios: the first
star scenario and the supermassive star scenario.
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Figure 1.1: Summary of observed supermassive BHs at z ! 6 with different quasar surveys. Black curves
show the Eddington limited growth curves of seed BHs with initial masses of 10M⊙ (lower-curve) and 100M⊙
(upper-curve) at z = 35, where the radiation efficiency is set to 0.1. Cited from Inayoshi et al. (2020).

1.3.1 Formation process of seed BHs
The first star scenario for the formation process of supermassive BHs is that the seed BHs formed by
the gravitational collapse of the first star evolve into the supermassive BHs. Hydrodynamic simulations
based on cosmological initial conditions revealed the formation process of the first star which originated
in primordial density fluctuations, and the typical mass of the first star is estimated to be ∼ 102M⊙

with an upper limit of ∼ 103M⊙. The initial growth of the seed BHs originating from the first stars is
expected to proceed mainly by gas accretion. This is because the merging of the seed BHs would cause
the BHs to escape from the mini halo of the early universe, where the escape velocity is " 10 km/s,
into intergalactic space so that further growth cannot be expected.

It has been proposed that primordial (metal-free) gas clouds exposed to strong ultraviolet radiation
from nearby galaxies in the early universe could produce supermassive stars with masses as high as
105M⊙. Supermassive stars are supposed to form when hydrogen molecules are completely photodis-
sociated by strong ultraviolet radiation and Lyα cooling becomes effective. In the supermassive star
scenario, the BHs with a mass of 105M⊙ formed by the gravitational collapse of a supermassive star
(Direct Collapse BH) are seed ones and grow into the supermassive BHs via gas accretion or/and BH-
BH merger. The timescale in this mechanism is relatively short since the seed is very heavy. However,

3



Figure 1.2: Image of the formation process of a supermassive BHs.

it is unclear how much of the environment exposed to powerful ultraviolet radiation can be realized.

1.3.2 Growth process of seed BHs
How do the seed BHs, which are born via the scenario introduced above, subsequently grow into the
supermassive BHs? As shown on the right side of Figure 1.2, during the formation of the hierarchical
structure of the Universe, the seed BHs are expected to swallow the surrounding gas while wandering in
the interstellar medium (see Section 1.3.2). The seed BHs are inferred to be wandering in the interstellar
medium mainly because of four reasons: the anisotropic supernova explosion, the galactic merger, the
gravitational recoil, and the three-body slingshots. 2 We will explain this below.

Wandering BHs driven in the supernova explosion

As described in Section 1.1, stellar-mass BHs and NSs are formed by supernova explosions that occur at
the end of the life of stars. Thus, these compact objects are widespread where stars exist. However, they
do not stay where the supernova explosion occurred all the time. This is because when the supernova
explosions occur asymmetrically, the compact objects start to float in the interstellar medium due to its
recoil. In fact, observational results suggest that the NSs are floating in the interstellar medium at speeds
as high as 100 km/s. Figure 1.3 shows an X-ray image of the Puppis A supernova remnant, created using
data from the ROentgen SATellite (ROSAT). 3 The two insets imaged by Chandra in Figure 1.3 show
the bright X-ray structures, whose origin is ejecta. The white and yellow arrows represent the ejecta
found in visible and the intrinsic motion vectors of the NSs measured in X-rays. The yellow elliptical
region is the center of the explosion estimated from the eigenmotion vector. The observational results
indicate that the ejecta and NSs are recoiling by the hydrodynamic kick. This can be inferred from the
observational results that the positions of the NS and the ejecta are symmetrical across the position of

2Where is the compact objects?
Considering that compact objects form in supernova explosions, we can suppose that they exist in any region where star formation

occurs. So, do compact objects exist only in star-forming regions? The answer is no. This is because a compact objects does
not continue to stay in the location where it was born. In this chapter, we introduce some of the mechanisms that drive compact
objects to start wandering.

3The ROSAT was launched on June 1, 1990. This enabled us to conduct survey observations of X-ray sources by imaging
telescopes for the first time.
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Figure 1.3: X-ray image of the Puppis A supernova remnant. This is created using data from the ROSAT High
Resolution Image. The two insets imaged by Chandra X-ray Observatory show the bright X-ray structures,
whose origin is ejecta. The white and yellow arrows represent the ejecta found in visible and the intrinsic motion
vectors of the neutron star measured in X-rays, respectively. The yellow elliptical region is the explosion center
estimated from the eigenmotion vector. Cited from JAXA arxiv first half of 2012.

the supernova explosion and their directions of motion are opposite (yellow and white arrows pointing
in opposite directions in Figure 1.3). The left panel of Figure 1.4 shows the kick velocities of NSs (filled
circles) and velocities of the center of ejecta mass (open boxes) obtained by analysis of observational
data (cited by Katsuda et al., 2018), and the right panel shows the relative position for the sites that
occurred supernova explosion. These figures reveal that the NSs float by the hydrodynamic kick due to
the supernova explosions, with speeds of more than 100 km/s. We note that the hydrodynamic kicks
occur only when the supernova explosions occur asymmetrically.

Figure 1.5 illustrates the momentum balance between the NS and the ejecta and indicates how the
hydrodynamic kicks occur (cited by Scheck et al., 2006). The orange rings indicate the dense shells
behind the shocks. In the case of a spherical explosion (left panel), the momentum of the NSs and
the ejecta are zero, and the NSs remain where they were originally born. On the other hand, if one
hemisphere expands later than the other (right panel), the gas has net momentum in the direction of
the faster-expanding hemisphere. Based on the momentum conservation law, this also means that the
NSs are in motion. The BHs formed via supernova explosions could float by the same mechanism as
described so far.

Wandering BHs driven by galactic merger

The galactic merger is also thought to induce the wandering BHs (see recent reviews, e.g. Untzaga et al.,
2024). Figure 1.6 shows schematic diagram of the three different formation mechanisms of wandering
BHs caused by galactic merger. First, we introduce "disrupted wandering BHs" (see top line). The
small satellite galaxies containing BHs begin to infall into more massive dark matter halos (light yellow
region) at some period in their lifetimes. In this process, the satellite galaxies cannot withstand the tidal
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Figure 1.4: Left panel shows that kick velocity of NSs (filled circles) and velocities of center of ejecta mass (open
boxes) obtained by analysis of observation data, and right panel shows the relative position for explosion sites.
Cited from Katsuda et al. (2018).

force exerted by the massive dark matter halos, and then the cold gas (stellar) component is stripped
away and accumulates in the hot atmosphere (interstellar medium) surrounding the main galaxy. Then,
the BHs of the satellite galaxies (including central BHs and wandering BHs) are left in the massive
dark matter halos as wandering BHs. This is called "Disrupted wandering BHs". Once the "disrupted"
BHs are wandering in massive galaxies, it is expected to fall into the center of massive galaxies due
to dynamical friction caused by the interstellar components: the dark matter, the stars, the hot gas,
etc. (see Equation 32 in Izquierdo-Villalba et al. (2020)). We note, however, that there is a possibility
that the wandering BHs could accelerate rather than decelerate (Toyouchi et al., 2020; Ogata et al.,
2024). Second, we introduce "paring BHs" (see middle line). Similar to the disrupted wandering BHs,
the pairing wandering BHs are originally hosted in the satellite galaxies. However, unlike the disrupted
wandering BHs, the satellite galaxies withstand the tidal force exerted by the massive galaxies and
merge with it. In this process, the BHs of satellite galaxies are deposited in the galactic remnant disk
which is newly formed by the merging of satellite galaxies and massive galaxies. The differences between
the model of disrupted wandering BHs and paring wandering BHs would appear in such things as the
falling time to the galactic center (because of the different places to start wandering: the dark matter
halos and the remnant galactic disks).

Wandering BHs driven by gravitational recoil

The next wandering model is a gravitational recoil type of wandering BHs (Recoiled wandering BHs).
A schematic view of the formation of such wandering BHs is shown in the last line in Figure 1.6.
Here we explain in the context of galactic mergers, but this model can be realized for any system in
which two BHs in the binary system merge. In the context of galactic mergers, the wandering BHs
of this type follow the same formation path as the pairing wandering BHs. After the satellite galaxies
overcome the tidal force exerted by the dark matter halos, they merge with the massive galaxies and
the BHs originating from the satellite ones wander as the pairing wandering BHs. Subsequently, the
two BHs merge. If the merging two BHs have different masses, the binary BHs receive the recoil due
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Figure 1.5: Schematic figure of the momentum balance between the NS and the ejecta. Most of the mass of
the ejecta is concentrated in a dense shell (light-colored ring) behind the shock wave. In the case of a spherical
explosion (left panel), the momentum of the NSs and the ejecta is zero. If one hemisphere expands later than
the other, the gas has net momentum in the direction of the hemisphere that expands faster. The NSs are
always accelerated in the opposite direction, i.e., the slow one (right panel). Cited from Scheck et al. (2006).

to the asymmetric emission of gravitational waves during the merger. The studies of gravitational wave
emission indicate that the kick velocities of the binary BHs resulting from gravitational recoil can be
larger than the escape velocity of the host galaxies, and when this happens, the binary BHs would be
ejected from the center of the galaxies and deposited in the dark matter halo (again) enveloping the
galaxies.

Wandering BHs driven by three-body slingshots

Finally, we introduce the wandering mechanism, the scattering process due to three-body interactions
(ex. the two BHs in the binary system and the other intruder BH). When BHs or galaxies containing
BHs merge, the BHs do not collide head-on with each other. They rather approach and pass through
each other repeatedly. This is called "two-body scattering". If another object approaches while two-body
scattering is occurring, the object receives kinetic energy from the two BHs and is kicked away, and the
two BHs lose potential energy and get closer to each other. This is called the "slingshot". Such ejection
phenomena of BHs due to three-body (two BHs + approching BH system) interactions investigated by
numerical simulations (e.g. Samsing et al., 2022). They revealed that a gravitational wave event with a
high eccentric orbit, named GW190521, can be explained by the three-body interaction of BHs in the flat
gas disk (see Figure 1.7). Moreover, recent observations have suggested the existence of supermassive
BHs wandering in the intergalactic gas, driven by the three-body interaction (van Dokkum et al., 2023).
Their analysis indicates that the BH is floating at speeds as fast as 1600km/s. We note, however, that
this scenario is predicted from the observational data of the gas filaments and not from directly observed
BHs.

The accretion phenomenon of the wandering BHs that are born via the mechanism explained above
is commonly referred to as Bondi-Hoyle-Lyttleton accretion (more details in Section 2). The growth
process of the wandering BHs into the supermassive BHs via Bondi-Hoyle-Lyttleton accretion is not
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Figure 1.6: Schematic diagram of the three different formation scenario of the wandering BHs obtained by
L-galaxies. Each row represents types of wandering BHs, and the columns show, from left to right, the steps
show the steps BHs go through until wandering. Cited from Untzaga et al. (2024).

well understood. This is because the radiation emitted from the accretion disk around the seed BHs (see
Section 1.3.3) induces changes in the composition and spatial distribution of the surrounding matter,
which complicates the problem.

1.3.3 Accretion disks around compact objects
Accretion disks are disk-like accretion flows that form around gravitational objects such as the BHs,
protostars, NSs, and white dwarfs as shown in Figure 1.8. When the gas having angular momentum
is attracted to the seed BHs by gravity, disk-like structures, i.e. accretion disks, are formed around it.
The accretion disks brightly illuminate due to the energy conversion from gas heated up via friction
to radiation. The seed BHs are also expected to have the accretion disks. Therefore, to clarify the
formation process of the supermassive BHs via Bondi-Hoyle-Lyttleton accretion onto the seed BHs, it
is necessary to quantitatively understand how gas accretion proceeds under the radiation feedback as
well as gravity. Here, we explain the fundamental physics of the accretion disks.

The accretion disks can be classified into three types with different disk thicknesses, H, and optical
depths depending on the mass accretion rate onto disk (Ṁdisk) normalized by the Eddington value,
ṀE (see figure 1.9). Shakura et al. (1973) proposed a basic model of the accretion disks called the
alpha disk model or standard accretion disk model. In their model, the radiative cooling and viscous
heating are balanced, resulting in a geometrically thin disk. The standard disk is thought to be formed
when Ṁdisk ∼ ṀE. 4 Advection energy transport in the accretion disks has been studied since the late
1980s (see, e.g., Ichimaru et al., 1977; Abramowicz et al., 1988; Narayan et al., 1994; Abramowicz et al.,
1994). The situation in which the advective cooling dominates over the radiative cooling in the accretion
disks is called Advective Dominated Accretion Flows (ADAFs). Consideration of such cooling is essential

4We note that the standard accretion disk model was soon extended to the relativistic version by Novikov & Thorne (1973).
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Figure 1.7: Schematic figure of the merger of BHs caused by three-body gravitational slingshots in a gas disk
around a supermassive BHs. Cited from Samsing et al. (2022).

to understand the accretion disks with very high mass accretion rates and with extremely low mass
accretion rates. The ADAFs that are optically thick are called slim disk and appear when the mass
accretion rate exceeds the Eddington rate, Ṁdisk ≫ ṀE (Abramowicz et al., 1988; Watarai et al., 2000).
The reason advective cooling dominates over radiative cooling is that the optical depth inside the
accretion disks is too large for the photon to escape from the disks before it is swallowed by the BHs,
which is called photon trapping (e.g., Katz, 1977; Begelman, 1978; Ohsuga et al., 2002). The gradient
force of the radiation pressure in the vertical direction increases because the photon trapping leads to
the accumulation of photons, resulting in the enhancement of radiation energy (pressure) within the
disk; thus the geometrically thick disk is formed. In contrast, optically thin accretion flows are known
as Radiatively Inefficient Accretion Flows (RIAFs), which are formed when the condition, Ṁdisk ≪ ṀE,
is satisfied (Ichimaru et al., 1977; Narayan et al., 1994; Abramowicz et al., 1994). In this model, the gas
temperature in the disk is high because the radiative cooling does not work efficiently due to the low
gas density of the disk. Thus, the RIAFs can reproduce high-energy emissions such as observed in the
hard state of the galactic X-ray binary system. The scale height of the disks is determined by the force
balance between vertical gravity and vertical gradient force of gas pressure, resulting in a geometrically
thin disk. The numerical simulations confirm the presence of these three types of accretion disks (see
Figure 1.8).

In the following, we briefly introduce the properties of the three models of accretion disks, focusing
on the standard disk model that we will treat in this study.

Standard accretion disk model

The standard disk model was proposed by Shakura et al. (1973). In this model, there are three charac-
teristics: optically thick, geometrically thin, and bright (but not exceeding the Eddington luminosity).
First, we explain the basic equations (continuity equation, momentum equation, energy equation, and
equation of state). Cylindrical coordinates (r,ϕ, z) with the z-axis perpendicular to the plane of the
accretion disks are adopted. The following assumptions are used to establish the basic equations:

9



Figure 1.8: Three states of the accretion disk. Models A, B, and C represent the simulation results of slim disk,
standard disk, and RIAF. The accretion disk is colored by normalized gas density. BH is located in the center
of the accretion disk.

Cited from Ohsuga et al. (2009).

• The disks are steady, ∂/∂t → 0.

• The disks are axisymmetrical, ∂/∂ϕ → 0.

• The disks are geometrically thin, H ≪ r. Here, H denotes the scale height of the disks.

• The gravitational field consists of a BH, and the self-gravity of the disk is ignored.

• The gas in the disks does a Keplerian rotation.

• Hydrostatic equilibrium holds in the vertical direction of the disks.

• The disks are optically thick in the vertical direction of the disks.

• The angular momentum of the gas is transported outward via the α-viscosity, at which the viscous
stress tensor is adopted as Trϕ = αp. Here, p is the total pressure, and α is in 0 ≤ α ≤ 1.

• The gas in the disks emits blackbody radiation.

• The viscous heating rate and radiative cooling rate are balanced.

Mass conservation law

Now consider a ring of width ∆r at radius r (see Figure 1.10). The density integrated in the direction
perpendicular to the ring surface is defined as surface density Σ,

Σ ≡
∫ H

−H
ρdz = 2ρH. (1.3)

Using surface density, the mass of the each ring is expressed as 2πr∆rΣ. The time variation of the mass
of the ring can be calculated by subtracting the mass leaving the ring from the mass entering the ring

10



Figure 1.9: Summary of three accretion disk models. Cited from Ohsuga et al. (2009) with some modification.

in unit time,
∂

∂t
(2πr∆rΣ) = (−vr2πrΣ)r+∆r − (−vr2πrΣ)r ≈ ∆r

∂Ṁ

∂r
∂Σ
∂t

= 1
2πr

∂Ṁ

∂r
, (1.4)

where vr is the radial component of the gas velocity and Ṁ ≡ −2πrΣvr is mass accretion rate. Here,
a minus sign means that the gas is moving in the direction of the origin. In this model, ∂/∂t → 0 is
assumed, thus above equation is described as below,

Ṁ = −2πrΣvr = constant. (1.5)

This equation means that, in this model, the mass accretion rate is always constant at each radius r.

Equation of motion in r direction: Keplerian rotation

The equation of motion in r direction can be written as shown below: 5

v2
ϕ

r
= GM

r2 , (1.6)

where vϕ is rotational component of the velocity. Solving this equation for vϕ, we get,

vϕ =
√

GM

r
. (1.7)

5In the standard disk model, the pressure gradient force in the radial direction is assumed to be sufficiently smaller than gravity
in the radial direction (dP/ρdr ≪ GM/r2). Furthermore, we suppose that the radial component of the velocity, vr, is sufficiently
smaller than the velocity in the rotational direction, vϕ. With these two assumptions, the gravity due to the central celestial object
and the centrifugal force due to the rotational motion of the gas are balanced at each radius in the radial direction (Keplerian
motion).
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Figure 1.10: Imaged figure of a standard disk cross section. Red arrows indicate mass flux.

We can see that this is proportional to r−1/2. Thus, the gas at the inner edge of the disk has a higher
speed than the gas at the outer edge. This difference in rotational speed at each radius r generates
viscous stress.

Equation of motion in z direction: hydrostatic equilibrium

The equation of motion in z direction can be written under the assumption as mentioned above:

1
ρ

dP

dz
= GMz

(r2 + z2)3/2 . (1.8)

Here, P denotes the total pressure, which consists of gas pressure and radiation pressure. Considering
the geometrically thin nature (r ≫ z), we can approximate Equation 1.8 as shown below,

1
ρ

dP

dz
∼ GMz

r3 . (1.9)

Replacing dP/dz on the left hand side by P/H, 6 and transforming using P = ρc2
s and Ω = vϕ/r =

GM/r3, we obtain the scale height:

H = cs/Ω. (1.10)

Equation of motion in ϕ direction: angular momentum conservation

The equation of motion in ϕ direction is as follows:

ρ
vr

r

d

dr
(ρvϕ) = 1

r2
∂

∂r

(
r2trϕ

)
. (1.11)

Here, trϕ is the rϕ component of the viscous stress tensor, which means the ϕ component of the viscous
stress per unit area acting on a plane perpendicular to the r direction, and proportional to the velocity
gradient in the r direction:

trϕ = η
(
∂vϕ

∂r
− vϕ

r

)

= ηr
dΩ
dr

. (1.12)

6dP/dz ∼ [P (equatorialplane) − P(disksurface)]/H ∼ P/H. Here, we assume that the pressure at the disk surface (z = H) is
zero, P (disksurface) = 0.
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Here, η is the kinetic viscosity, which is the coefficient imposed only by the density dependence. 7 Mul-
tiplying both sides of the momentum equation in the ϕ direction (Equation 1.11) by r2 and integrating
in the vertical direction yields,

rΣvr
d

dr
(rvϕ) = d

dr

(
η̃r3 dΩ

dr

)

= d

dr

(
r2Trϕ

)
, (1.13)

where Trϕ (=
∫

trϕdz) is the viscous stress tensor integrated into the vertical direction and η̃ (=
∫
ηdz)

is the kinematic viscosity integrated into the vertical direction. Equation 1.13 can be easily integrated
in the radial direction since rΣvr on the left side of Equation 1.13 is constant based on Equation 1.3,

−Ṁ

2π rvϕ = r2Trϕ + C, , (1.14)

where C is the integration constant.
In this model, the viscous stresses does not act at the inner edge side of the accretion disk rin.

Applying this condition to Equation 1.14, we obtain C = −(Ṁ/2π)rinvϕ(rin). Substituting this into
Equation 1.14, we obtain below equation,

−Ṁ

2π (rvϕ − rinvϕ (rin)) = r2Trϕ. (1.15)

Since rvϕ is angular momentum at each radius, thus this equation means the transport of angular
momentum. The negative sign indicates that angular momentum is transported from the inner edge
side of the disk toward the outside (in the opposite direction of the gas flow).

Furthermore, considering the Keplerian rotation of the gas in the disk, Equation 1.15 can finally be
expressed as follows:

νΣ = Ṁ

3π

(
1 −

√
rin
r

)
(1.16)

For rin, it is common to apply the radius of the innermost stable circular orbit. Assuming a Shwartzschild
BHs, rin = 3rs. In the case of the Kerr BHs, the effect of the spinning of the BHs causes the inner edge
radius to be smaller (when the direction of BH spinning coincides with the direction of disk rotation)
or larger (when the direction of BH spinning and the direction of disk rotation are opposite).

Energy equation

In the standard disk model, radiative cooling (cooling rate Q−
rad) and viscous heating (heating rate Q+

rad)
are assumed to be balanced at each radius of the disk.

Q+
vis = Q−

rad. (1.17)

The heating rate per unit area Q+
vis is given as a function of the viscous stress tensor integrated in the

vertical direction Trϕ and the gradient of the angular velocity Ω,

Q+
vis =

∫ H

−H
ηr2

(
dΩ
dr

)2
dz

= 9
4νΣΩ2 = −3

2TrϕΩ. (1.18)
7viscous stress increases with density and velocity gradient
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Substituting Ω = vϕ/r =
√

GM/r3 and Equation 1.16, we obtain Q+
vis as a function of r,

Q+
vis = 3GMṀ

4πr3

(
1 −

√
rin
r

)
. (1.19)

Assuming that the accretion disk is optically thick, a temperature gradient is induced from the disk
equatorial plane to the disk surface, and the radiation diffuses in response to the temperature gradient.
Thus, Q−

rad is expressed as follows,

Q−
rad =

∫ H

−H

(

−4acT 3

3κρ
dT

dz

)

dz

= 8acT 2
c

3τ , (1.20)

where a, Tc, and τ are the radiation constant, the gas temperature at equatorial plane of the disk, and
the optical depth.

Note that, because of the assumption that the disk is optically thick, energy is emitted as black-
body radiation corresponding to temperature at the disk surface. Therefore, defining the disk surface
temperature by Teff , Q−

rad can also be written using the Stefan-Boltzmann law,

Q−
rad = 2σT 4

eff . (1.21)

Here, σ represents the Stefan-Boltzmann constant. The coefficient of 2 means radiation from both sides
of the disk surface. Comparing Equations 1.20 and 1.21, the following relation exists between Tc and
Teff :

Teff = 16T 4
c

3τ . (1.22)

Equation of state

The equation of state is

P = Rgas
µ̄

ρTc + aT 4
c

3 , (1.23)

where Rgas and µ̄ mean the gas constant and average molecular weight, respectively. The second term
on the right-hand side represents the radiation pressure in the blackbody radiation field. The factor 1/3
is due to the assumption that radiation is isotropic and homogeneous. Integrating Equation 1.23 in the
vertical direction, we obtain,

Π = Rgas
µ̄

ΣTc + 1
3aT 4

c 2H, (1.24)

where Π (=
∫

Pdz) is the total pressure integrated into the vertical direction.

Opacity

In the standard disk model, the gas opacity is defined as

κ = κes + κff , (1.25)
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Figure 1.11: Basic equations of standard disk model.

where κes is the opacity of electron scattering, and κff is the opacity of free-free absorption. κes is
independent of frequency and temperature,

κes = 0.4[cm2g−1]. (1.26)

On the other hand, κff has frequency and temperature dependence, but using the frequency-averaged
Kramers’ equation, only the temperature dependence remains.

κff ∼ 6.24 × 1022ρT −7/2[cm2g−1] (1.27)

Since κff ∝ T −7/2, free-free absorption is important up to roughly ∼ 106K, and electron scattering
becomes dominant at higher temperatures. The optical depth is

τ =
∫

(κes + κff) ρdz = (κes + κff) ρH. (1.28)

Viscous model

The rϕ component of the viscous stress tensor trϕ appeared in the equations of motion, which included
the kinetic viscosity η. Although the disk viscosity is recently thought to be magnetic origin, in the
standard disk model, following assumption is introduced:

trϕ = ηr
dΩ
dr

= −αP. (1.29)

This equation follows the physical intuition that the friction between gases increases as the pressure P

increases. The proportionality constant α is also called the viscosity parameter and is considered to
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Figure 1.12: Images of the standard disk model (left) and the advection-dominated model (right).

have a value of 0 < α ≤ 1 based on theoretical speculation and results of numerical simulations when
viscosity is considered to be of magnetic turbulent origin.

Short summary of standard disk model

Finally, we summarize the standard disk model as follows. The number of unknown variable is 10; the
gas density ρ, surface density Σ, scale height H, radial velocity vr, sound speed cs, angular velocity Ω,
total pressure P , gas temparture T , optical depth τ , and kinematic viscosity ν. The number of the basic
equations is also 10 as summarised in the Figure 1.11. Since the number of equations and the number
of variables are the same, and since all of the basic equations are algebraic equations, the solutions can
be obtained algebraically. To solve these equations, we need to decide the three parameters; the BH
mass M , accretion rate Ṁ , and viscosity parameter α. Since the equation of state and the opacity
equation involve a summation formula, the solution is obtained by separating the cases (see reference
book; Kato et al., 2008).

1.3.4 Advection-dominated disk model
The standard disk model was first proposed, but many astronomical objects have been found that
this model cannot explain well. In the standard disk model, the assumptions that radiative cooling
works efficiently is introduced, so the temperature of the disk around a stellar-mass BHs is theoretically
predicted to be about tens of millions of Kelvin. However, X-ray observations have found gas with
extremely high temperatures, reaching several billion Kelvin. These observations cannot be explained
by the standard disk model, and new disk models are needed.

A model capable of addressing the brightness and temperature of accretion disks that cannot be
explained by the standard thin disk model has been developed, termed "Advection Dominated Accretion
Flow" (ADAF). In this model, the effect of advection is incorporated, although advection is not effective
in the standard disk model since the radial velocity and vertical velocity are negligibly small compared to
the rotational velocity. By incorporating the radial flow of energy, this model can explain observational
phenomena such as extremely hot disks or exceptionally bright disks. Herein, we elucidate why the
inclusion of advection enables theoretical explanations for these observational facts.

The ADAFs are divided into two categories: super-Eddington accretion disks, where the mass accre-
tion rate exceeds the Eddington accretion rate, and Radiatively Inefficient Accretion Flows (RIAFs),
where the mass accretion rate is much lower than the Eddington rate. If the mass accretion rate is
extremely low, as in RIAF, efficient cooling does not occur and the disk becomes thickened, dominated
by gas pressure. Conversely, in the case of high accretion rates, the disk expands mainly due to radiation
pressure.
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Super-Eddington accretion model (Slim disk model)

Abramowicz et al. (1988) proposed the concept of a super-Eddington accretion disk, also known as
a slim disk. In this model, the inclusion of advection effects enabled the theoretical reproduction of
a geometrically thick structure for the disk. Additionally, optical thickness is assumed to be much
larger than unity is assumed. The fundamental equations for this model are as follows. It should be
noted that in our simulations, we employ only the standard thin disk as a subgrid model related to the
geometric structure of the accretion disk (for the angular distribution of radiation). Therefore, detailed
explanations of the equations are omitted.

1. Continuity equation
Same as standard disk model (Equation 1.3).

2. Equation of motion

vr
dvr

dr
=

v2
ϕ

r
− GM

r2 − 1
ρ

dP

dr
(1.30)

The advection term on the left-hand side and the pressure gradient force term in the third term
on the right-hand side are neglected in the standard disk model.

3. Angular momentum equation
Same as standard disk model (Equation 1.16).

4. Equation of hydrostatic equilibrium
Same as standard disk model (Equation 1.8).

5. Energy equation
By introducing advection cooling, which represents the transfer of the energy in the radial direction,
as Q−

adv, energy equation is obtained as

Q+
vis = Q−

rad + Q−
adv, (1.31)

Here, we introduce the advection parameter f (advection parameter) and rewritten Equation 1.31
as follows:

Q−
rad = (1 − f)Q+

vis (1.32)

When the advection parameter f is zero, there is only radiative cooling, which leads back to the
standard disk model. Conversely, when f = 1, radiative cooling is zero and the cooling mechanism
is entirely advection. Advection cooling corresponds to the difference between the energy flowing
in from the outside and the energy flowing out to the inside.

As can be seen from the basic equations shown above, the energy transfer to the central object occurs
when the advection effect is introduced. In this model, such phenomenon is called as photon trapping by
which a large number of photons repeatedly collide with gas particles, and are swallowed into the central
black hole instead of escaping from the disk. In other words, the radiation energy is swallowed into the
BH together with the gas. Although the radiative efficiency is low because of the photon trapping, the
slim disk shines brighter than the standard disk model due to its large mass accretion rate.
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RIAF model

The RIAF model is proposed by Ichimaru et al. (1977) and Narayan et al. (1994), and the mass accretion
rate is the smallest among the three models. The density of the flow is very small. Therefore, unlike
the super-Eddington disk model and standard disk model, photons are less likely to be produced inside
the disk, resulting in a lower luminosity of the disk (the mechanism of photon generation, such as
bremsstrahlung, is less likely to occur). Since the radiative cooling is very inefficient, the gas of the flow
becomes very hot. From the above, a faint and extremely high temperature disk emerge when the mass
accretion rate is much smaller than the Eddington rate.
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Chapter 2

Accretion onto the Wandering Black
Holes

As already explained in Chapter 1, recent observations and simulations suggest that the compact objects
are universally wandering in the interstellar medium. This process is important for understanding the
formation process of the supermassive BHs. Here, we briefly review the accretion physics around such
wandering compact objects from the theoretical aspects.

2.1 Hoyle-Lyttleton accretion
Accretion onto the wandering gravitational objects was first investigated by Hoyle & Lyttleton (1939).
Therefore, the phenomenon in which gravitational objects wandering in the interstellar medium gain
mass due to swallowing the surrounding gas by its gravity is called "Hoyle-Lyttleton accretion". The
gravity of the objects gathers the gas into the wake, which is accreted. They derive the accretion rate
with some assumptions as follows:

• The spatial distribution of matter around the gravitational object is uniform at infinity.

• Consider only the gravity of the objects (self gravity of the surrounding matter is ignored)

• The gas pressure is ignored (assuming supersonic motion)

• When the matter collides at the wake, the momentum perpendicular to the collision axis (accretion
axis) is assumed to be zero. This corresponds to not considering the dissipation process of thermal
energy near the accretion axis.

• To judge whether accretion occurs or not by comparing the velocity of the material after the
component that is perpendicular to the accretion axis is set to zero (i.e., the axial velocity) with
the escape velocity.

Considering the above assumptions, the ballistic trajectories of the particle (matter) are solved in
the Lagrangian manner. In the following, we refer to Edgar’s excellent review of the Hoyle-Lyttleton
accretion (Edgar, 2004). First of all, we consider a streamline with a collision parameter ζ (see Figure
2.1). Here, the polar coordinate (R,ϕ, θ) is applied, and a particle is assumed to flow in from infinity at
velocity v∞ along the negative direction of the z-axis. In other words, the rest frame of the gravitational
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Figure 2.1: Sketch of the Bondi–Hoyle–Lyttleton accretion geometry. Cited from Edgar (2004).

objects is employed. The time development equations in the radial (R) and polar (θ) directions are,
d2R

dt2 − R
(

dθ

dt

)2
= −GM

R2 (2.1)

R2 dθ

dt
= ζv∞. (2.2)

Since only a central force acts on the matter, Equation 2.2 implies that angular momentum around the
axis of ϕ = 0 (the axis perpendicular to the paper surface) is conserved. Thus, we define the right-
hand side of Equation 2.2 as the constant h. Furthermore, introducing u = R−1, Equation 2.1 can be
rewritten as follows:

d2u

dθ2 + u = GM

h2 . (2.3)

Assuming A, B, and C are arbitrary constants, the general solution of Equation 2.3 is u = A cos θ +
B sin θ + C. When we substitute this solution into Equation 2.3, C = GM/h2 can be obtained. The
constants A and B can be obtained by giving the boundary conditions. The boundary conditions at
infinity (θ → π) are set as follows:

u → 0 (2.4)
dR

dt

(
= −h

du

dθ

)
→ −v∞. (2.5)

Equation 2.4 represents that θ → π corresponds to the position at infinity, and Equation 2.5 represents
that the velocity at infinity is −v∞. The minus sign means that the motion direction of a matter is
inward in the radial direction, i.e., a matter at infinity flows in the direction toward the gravity object.
Applying these boundary conditions to Equation 2.3 leads to arbitrary constants A = GM/h2 and
B = −v∞/h. Therefore, the general solution of Equation 2.3 is

u = GM

h2 (1 + cos θ) − v∞

h
sin θ. (2.6)

This is the solution for the ballistic trajectories of the matter in the Hoyle-Lyttleton accretion phe-
nomenon. Next, let’s consider situations when the matter reaches the accretion axis (θ = 0). Substi-
tuting θ = 0 into Equation 2.6, we can obtain the position of the matter on the accretion axis:

u = 2GM

h2 (2.7)

→ 1
R

= 2GM

h2 . (2.8)
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Matter is recognized to be bound by the central object at the accretion axis when the following condition
is satisfied:

1
2v2

∞ − GM

R
< 0. (2.9)

Substituting the general solution (Equation 2.8) on the accretion axis into this accretion condition
(Equation 2.9), we obtain

ζ <
2GM

v2
∞

≡ RHL, (2.10)

which is defined as the critical impact parameter, Hoyle–Lyttleton radius RHL. Equation 2.10 means
that when ζ has a value less than 2GM/v2

∞, the matter can accrete onto gravitational object. The mass
accretion rate is therefore

ṀHL = πR2
HLρ∞v∞

= 4πρ∞G2M2

v3
∞

, (2.11)

which is known as the Hoyle–Lyttleton accretion rate ṀHL. The velocity and density distribution of
matter was obtained by Bisnovatyi-Kogan et al. (1979). The solutions obtained by solving the orbital
equation (Equation 2.2, 2.1) are as follows:

vR = −

√

v2
∞ + 2GM

R
− ζ2v2

∞
R2 (2.12)

vθ = r∞v∞

R
(2.13)

R = ζ2v2
∞

GM (1 + cos θ) + ζv2
∞ sin θ . (2.14)

The density ρ can be obtained by solving the continuous equation under the condition of axisymmetric
steady state:

ρ = ρ∞r2
∞

R sin θ (2ζ − R sin θ) . (2.15)

2.2 Bondi-Hoyle accretion
Bondi & Hoyle (1944) extended the argument of Hoyle & Lyttleton (1939) to take into account the
accretion columns formed downstream due to collisions of matter. Here, the accretion column repre-
sents the wake region near the accretion axis at θ = 0. In this section, we present the contents of
Bondi & Hoyle (1944).

First, the mass flux injected into the region [R, R + dR] of the accretion column is as follows (Figure
2.2):

ρ∞v∞ ·
[
π (ζ + dζ)2 − πζ2

]
=
[
2πζdζ + π (dζ)2

]
· ρ∞v∞

∼ 2πζdζρ∞v∞. (2.16)

Here, we made an approximation that ignores the second-order terms of dζ when shifting from the first
line to the second one. From the orbital equation of Hoyle-Lyttleton flows (Equation 2.14), the position
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Figure 2.2: Sketch of the Bondi–Hoyle accretion geometry.

of the matter material when it arrives at the accretion axis（θ = 0) is as follows:

Rθ=0 = ζ2v2
∞

2GM
(2.17)

Differentiating both sides of this by ζ yields

dR

dζ
= ζv2

∞
GM

→ dζ = GM

ζv2
∞

dR. (2.18)

Substituting this into Equation 2.16, we obtain the mass flux injected into the region [R, R + dR] of the
accretion column as follows

2πζdζ · ρ∞v∞ = 2πGMρ∞

v∞
dR

= ΛdR, (2.19)

where the mass per unit time and length Λ is defined as below,

Λ ≡ 2πGMρ∞

v∞
, (2.20)

which is independent on R. The momentum flux in the θ direction through the region [R, R + dR] is

Λ · vθ=0 · 1
2πS

= Λ 1
2πS

√
2GM

R
, (2.21)

where vθ=0 represents the theta-component of the velocity at the accretion axis. Also, s is the radius
of the circular cross-section when the accretion column is cut perpendicularly to the accretion axis at
z = R. In the right hand side of this equation, we substitute the general solution described by Equation
2.13 into vθ=0.

Here, we consider a scenario where the balance between the thermal pressure exerted from the inside
of the accretion column and the ram pressure exerted by matters flowing into the accretion column at
the velocity vθ=0 is assumed. This is a first-order approximation under the condition that the size of
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the accretion column is constant in time. Based on this assumption, we obtain the following expression
for the pressure inside the accretion column using Equation 2.21:

Ps ≈ Λ
2πs

√
2GM

R
. (2.22)

To compare the gas pressure gradient force with the gravity, we consider a part of the accretion
column enclosed by the cross-sections at distances R and R + dR. The pressure gradient force acting
on the matter in this region can be expressed as follows,

d(πs2Ps) = Λ
√

GM

2 d
(

s√
R

)
. (2.23)

Next, we estimate the gravity acting on the matter. The timescale for the matter to accrete from
the collision point on the accretion axis, Rθ=0 (Equation 2.17), to the central gravitational object is
Rθ=0/v∞. If this timescale is multiplied by the mass accretion rate ṀHL (Equation 2.11) and divided
by the length of the accretion column, the mass per unit length of the accretion column, m, is obtained:

m ≈ Rθ=0
v∞

1
Rθ=0

ṀHL = ΛGM

v3
∞

(2.24)

From this, we can estimate the gravity acting on the matter in the tiny width dR on the accretion
column as follows:

Fgr = GMmdR

R2 . (2.25)

We assume that the accretion column is approximately conical in shape (ds/s ≈ dR/R). Using this ap-
proximation and Equations 2.23 and 2.25, the pressure gradient force and gravity can be approximately
expressed as follows:

d(πs2Ps) ∼ Λ
√

GM

2
s

R2/3 dR, (2.26)

Fgr ∼ ΛG2M2

v3
∞

· dR

R2 . (2.27)

The Hoyle-Lyttleton radius is given by R ∼ GM/v2
∞, and it is considered that the matter in the

accretion column within this distance accretes onto the wandering BHs. Here, we assume that the
geometric thickness of the accretion column is much smaller than this Hoyle-Lyttleton radius, i.e., the
accretion column is geometrically thin (s ≪ R). Under this assumption, it is clear that the pressure
gradient force is significantly smaller than the gravity (see Equation 2.26 and 2.27).

Assuming the average velocity of the matter in the accretion column is v, we can establish the mass
conservation law and momentum one in the accretion column using the previously introduced variables
m (Equation 2.24) and Λ (Equation 2.20),

d

dR
(mv) = Λ, (2.28)

d

dR
(mv2) = ΛvR − GMm

R2

= Λ
√

v2
∞ + 2GM

r
−
(2GM

rv∞

)2
− GMm

R2

= Λ
√

v2
∞ + vθv∞ − v2

θ − GMm

R2

= Λv∞ − GMm

R2 . (2.29)
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In the second equality of Equation 2.29, we substitute the analytical solution for vR (Equation 2.12), and
in the final equality, an approximation is made by setting the velocity in the direction perpendicular to
the accretion axis to zero (vθ = 0) on the accretion column. Hereafter, we introduce the dimensionless
variables defined as follows for velocity v, distance R, and mass m:

ν ≡ v

v∞
, (2.30)

χ ≡ R

GM/v2
∞

, (2.31)

µ ≡ m

ΛGM/v3
∞

. (2.32)

The dimensionless parameter χ = 2 corresponds to the Hoyle-Lyttleton radius RHL. Substituting these
dimensionless variables into Equations 2.28 and 2.29, we obtain the dimensionless mass conservation
law and momentum conservation law in the accretion column;

d

dχ
(µν) = 1, (2.33)

d

dχ
(µν2) = 1 − µ

χ2 . (2.34)

Integrating Equation 2.33 with respect to χ, we obtain:

µν = χ− α, (2.35)

where α means integral constant. Since µ represents scaled mass and is always positive, ν changes sign
at χ = α based on Equation 2.35. Therefore, α denotes the stagnation point, where the matter that
satisfies the condition χ < α accretes.

Based on the above discussion, we estimate the accretion rate including the structure of the accretion
column using α. Substituting Equation 2.35 into the momentum conservation equation (Equation 2.34),
we obtain:

ν
dν

dχ
= ν(1 − ν)

χ− α
− 1
χ2 . (2.36)

To understand the general behavior of this equation, we set the three boundary conditions:

• ν → 1 at χ → ∞ (velocity is v∞ at infinity)

• ν = 0 at χ = α (velocity is zero at the stagnation point)

• dν/dχ > 0 in any region (velocity is a monotonic function)

The first and second conditions can be satisfied for any value of α, but the last condition limits on α. To
understand this, we introduce a new dimensionless variable, ξ ≡ χ/α. Substituting this into Equation
2.36, we obtain,

ν
dν

dξ
= ν(ν − 1)

ξ − 1 − 1
αξ2 . (2.37)

When dν/dξ = 0 is satisfied, Equation 2.37 can be discribed as

ν2 − ν + 1
αξ2 (ξ − 1) = 0. (2.38)
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Figure 2.3: The regions where dν changes sign, as dictated dξ by Equation 2.39. Left panel shows curves where
dν = 0 for α > 1. Right panel shows curves where dν = 0 for α < 1. In the regions marked ’a’, the derivative is
dξ greater than zero. It is less than zero in the‘ b’regions. Cited from Edgar (2004) with some modification.

Solving this using the solution formulas for the quadratic equation, we obtain

ν = 1
2 ±

√
1
4 − 1

αξ2 (ξ − 1). (2.39)

Since ν represents the dimensionless quantity related to velocity, it should take real values. Then,
we consider in what cases the discriminant expression becomes zero. From Equation 2.39, solving the
discriminant of the quadratic equation with respect to ξ, we obtain the following:

ξ = 2
α

(1 ±
√

1 − α). (2.40)

This shows that ξ changes its behavior with α = 1. Therefore, we plot the equation 2.39 by dividing
the case α > 1, α < 1. Figure 2.3 cited from Edgar (2004) shows the region where the sign of dν/dξ

changes (see Equation2.39). Considering the stable flows, the solution of ν should be monotonically
increasing and should stay within the region marked ’a’ (red region in Figure 2.3) as ξ changes. This is
only possible when α > 1. When α = 1, undoing the dimensionless variables, we get χ = 1, indicating
that the stagnation point is halfway between the gravitational object and the Hoyle-Lyttleton radius.
This means that the minimum accretion rate is 0.5ṀHL. Furthermore, Bondi & Hoyle (1944) showed
that there is no unique stationary solution when α > 2. Based on the above discussion, Bondi & Hoyle
(1944) suggested that the mass accretion rate is about half of the Hoyle-Lyttleton accretion rate ṀHL
(Equation 2.11), by including the downstream accretion column.

2.3 Bondi accretion
In the discussions by Hoyle & Lyttleton (1939) and Bondi & Hoyle (1944), it was assumed that the gas
pressure could be neglected compared to the pressure due to the motion of the gas flow (ram pressure).
Bondi (1952) investigated spherically symmetric accretion onto point-like gravitational objects consid-
ering the gas pressure, under the assumption that dynamical effect (ram pressure) could be neglected.
In this section, we briefly outline the content of Bondi (1952).
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Figure 2.4: Sketch of the Bondi accretion geometry.

In Bondi (1952), They set the rest frame of a gravitational object with mass M . The gravitational
object is immersed in the medium with uniform density ρ∞, uniform pressure p∞ and zero velocity at
infinity. Additionally, the motion of the matter is steady and spherically symmetric. Neglecting the
increase in mass of the gravitational object due to the accretion, the gravitational field remains constant
for time. They assume that the relation between pressure p and density ρ follows the polytropic relation
everywhere and at all times,

p

p∞
=
(
ρ

ρ∞

)γ

, (2.41)

where γ represents the polytropic index, which is a constant given by 1 < γ < 5
3 . Under these assump-

tions, the continuity equation becomes as follows:

4πr2ρ∞v = Ṁ = constant, (2.42)

where Ṁ is accretion rate. The Bernoulli equation (equation of motion in integral form) is,

v2

2 +
∫ p

p∞

dp

ρ
− GM

r
= constant = 0. (2.43)

Here, the first term of the left hand side represents the kinetic energy of the fluid, the second term rep-
resents the enthalpy, and the third term represents the gravitational potential energy, respectively. The
last equation arises from the boundary condition that the matter is stationary at infinity. Applying the
polytropic relation (Equation 2.41) to the equation of motion (Equation 2.43), we obtain the following:

v2

2 + γ

γ − 1
p∞

ρ∞

[(
ρ

ργ−1
∞

− 1
)]

= GM

r
. (2.44)

Here, we define the sound speed as cs = γp∞/ρ∞, and introduce the following dimensionless quantities
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for r, v, and ρ:

x ≡ r

xGM/cs
(2.45)

y ≡ v

cs
(2.46)

z ≡ ρ

ρ∞
(2.47)

Using these dimensionless variables, the continuity equation (Equation 2.41) and the equation of motion
(Equation 2.43) can be rewritten as follows:

x2yz = λ, (2.48)
1
2y2 + zγ−1 − 1

γ − 1 = 1
x

, (2.49)

where λ is introduced as

Ṁ = 4πλG2M2ρ∞
c3

s
. (2.50)

From the definition of λ, we can see that it is a dimensionless parameter that determines the accretion
rate. To solve Equations 2.48 and 2.49, we introduce the following variables:

u = yz−(γ−1)/2. (2.51)

Substituting this into the continuity equation (Equation 2.48) and solving for y and z, we obtain the
following:

y = u2/(γ−1)
(
λ

x2

)(γ−1)/(γ+1)
(2.52)

z =
(
λ

x2u

)2/(γ−1)
. (2.53)

(2.54)

Then, the equation of motion (Equation 2.49) becomes:

1
2u4/(γ+1)

(
λ

x2

)2(γ−1)/(γ+1)
+ 1
γ − 1

(
λ

x2u

)2(γ−1)/(γ+1)
= 1

x
+ 1
γ − 1 . (2.55)

Multiplying each term of this equation by (x2/λ)2(γ−1)/(γ+1) and sorting of terms, we obtain:

f(u) = λ−2(γ−1)/(γ+1)g(x), (2.56)

where f(x) and g(x) are defined as:

f(u) = u4/(γ+1)
(1

2 + 1
γ − 1

1
u2

)
(2.57)

g(x) = x4(γ−1)/(γ+1)

γ − 1 + x−(5−3γ)/(γ+1). (2.58)

By examining the functions f and g, we can determine u as a function of λ and x. First, we assume
1 < γ < 3

5 . Under this assumption, since f and g are sums of positive and negative powers of variables,
each of them has a minimum value. When u = umin = 1, f(u) takes the following minimum value:

fmin = γ + 1
2(γ − 1) . (2.59)
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Figure 2.5: This table gives the value λc for a few values γ. Cited from Bondi (1952).

Also, when x = xmin = (5 − 3γ)/4, g(x) takes the following minimum value:

gmin = γ + 1
4(γ − 1)

(5 − 3γ
4

)(5−3γ)/(γ+1)
. (2.60)

The quantity x represents a dimensionless variable denoting distance, ranging from the surface of the
central object to infinity. For instance, for the Sun, the value of x at its surface is approximately 5×10−6.
Therefore, since x reaches the value xmin over a physically significant interval, at some point within that
interval, the right-hand side of Equation 2.56 become of the same order as λ−2(γ−1)/(γ+1)gmin. However,
as f cannot reach a minimum value lower than fmin, λ cannot exceed a critical value λc defined by as
follows (see Table 2.5):

λc =
(

gmin
fmin

)(γ+1)/2(γ−1)

=
(1

2

)(γ+1)/2(γ−1) (5 − 3γ
4

)−(5−3γ)/2(γ−1)
. (2.61)

Based on the above considerations, Bondi (1952) concluded that in the case of spherically symmetric
accretion taking into account gravity and pressure, the accretion rate Ṁ cannot exceed the following
value:

ṀB = 4πλcG2M2ρ∞

c3
s

. (2.62)

In general, this is called Bondi accretion rate.

2.4 Bondi-Hoyle-Lyttleton accretion
Based on Hoyle & Lyttleton (1939) and Bondi & Hoyle (1944), Bondi (1952) proposed the following
interpolation equation as the accretion rate of the wandering gravitational objects:

ṀBHL = 2πG2M2ρ∞

(c2
∞ + v2

∞)3/2 , (2.63)

where c∞ is the sound speed at infinity. 1 When c∞ ≪ v∞ (the condition where gas pressure can
be neglected), it matches the Hoyle-Lyttleton accretion rate (Equation 2.9). We note that numerical
simulations performed by Shima et al. (1985) indicate that a factor of 2 is needed in the formula proposed
by Bondi (1952) (Equation 2.63): 2

ṀBHL = 4πG2M2ρ∞

(c2
∞ + v2

∞)3/2 . (2.64)

1The subscripts are based on the definitions in each literature: cs = c∞
2Hoyle-Lyttleton accretion and Bondi-Hoyle-Lyttleton accretion are often defined ambiguously. In general, the case in which the

gas pressure can be ignored is called Hoyle-Lyttleton accretion, and the case in which the gas pressure is can be ignored is called
Bondi-Hoyle-Lyttleton accretion.
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Figure 2.6: Left panel: density contours of Bondi–Hoyle–Lyttleton flows obtained by hydrodynamics simulations.
The flow with mach number of M = 1.4 is incident from the left. The specific heat ratio is γ = 5/3. The
contours represent the gas density spaced over logarithmically. The dotted line indicates Hoyle-Lyttleton radius
ζHL. Right panel: velocity field. The position of the bow shock is shown by a dotted line. Cited from Edgar
(2004).

So far, we outlined a basic overview of the accretion mechanism of wandering gravitational objects.
However, many simplifications have been made in the discussion, e.g., the effects of the fluid (gas pressure
gradient forces) outside of the accretion column have not been considered. Hydrodynamics simulations
that take into account the gravity of the central object successfully reproduced the accretion rate. On
the other hand, the density and velocity structures derived analytically (e.g. Bisnovatyi-Kogan et al.,
1979) are different from the results of hydrodynamics simulations.

Figure 2.6 shows the density structure (top) and velocity structure (bottom) from hydrodynamics
simulations performed by Edgar (2004). These results are for a Mach number µ = 1.4, a radius of
gravitational object 0.1RHL, and a specific heat ratio γ = 3/5. The density contours show that the
shock waves form upstream of the flows (x < 0). The velocity structure indicates that after passing
through the shock front (represented by the dashed line), the velocities decrease (the length of the
streamlines correspond to the magnitude of the velocities). Furthermore, unlike the analytical solution
by Bisnovatyi-Kogan et al. (1979) (Equation 2.15), the flows almost radially toward the gravitational
object at downstream of the shock.

To summarize, the inclusion of hydrodynamic effects, such as shock waves, results in density and
velocity structures that differ significantly from the analytical solution. However, hydrodynamics
simulations have shown that the mass accretion rate nearly consistent with the analytical predic-
tions by Hoyle & Lyttleton (1939) and Bondi (1952) (Equation 2.64) (see Figure 7 in Edgar, 2004).
Thus, despite the simplifications in the discussions by Hoyle & Lyttleton (1939), Bondi (1952), and
Bisnovatyi-Kogan et al. (1979), their predictions for the mass accretion rate are reproduced even when
hydrodynamics effects are taken into account.

2.5 Bondi-Hoyle-Lyttleton accretion considering radiation feedback
In the classical Bondi-Hoyle-Lyttleton accretion proposed by Bondi (1952), the radiation from the
central objects is not taken into account. However, considering the realistic situation where the seed
BHs are wearing the accretion disks, the complex accretion structures are thought to appear due to the
anisotropic radiation generated there. The increase in the sound speed of the gas near the BHs due
to X-ray and UV heating (Ostriker et al., 1976, 2010; Cowie et al., 1978; Bisnovatyi-Kogan et al., 1979;
Krolik et al., 1983; Vitello et al., 1984; Wandel et al., 1984), and the acceleration of gas and dust away
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Figure 2.7: Left panel: Schematic image of the ionized and neutral regions for D-type and R-type case. Right
panel: Schematic image of the ionized and neutral regions for M-type case. In this case, the dense shell appears
in front of the I-front.

from the BHs by radiation pressure (Shapiro et al., 1973; Ostriker et al., 1976; Begelman et al., 1985;
Ricotti et al., 2008), are responsible for this phenomenon. Indeed, the maximum accretion rate that
can be achieved in most cases is the Eddington rate because of these radiation feedbacks.

In this section, we summarize the fundamentals and recent studies of the accretion process of wan-
dering BHs considering the radiative feedback from the accretion disk.

2.5.1 Park & Ricotti 2013
Two-dimensional axisymmetric hydrodynamics simulations by Park & Ricotti (2013) showed that a
comet-like ionized region is formed around the wandering BHs in the interstellar medium when radiative
feedback is taken into account. Furthermore, they successfully reproduce their results on accretion rates
by combining the classical Bondi-Hoyle-Lyttleton accretion model with an ionization front model (D-
type, R-type). In this section, we review their work. Hereafter, we refer to Park & Ricotti (2013) as
PR13.

In their model, Bondi-Hoyle-Lyttleton accretion occurs within the ionized region, i.e., the Bondi-
Hoyle-Lyttleton radius is assumed to exist within the ionized region (see left panel of Figure 2.10) 3.
Therefore, assuming that the ionized gases come along parallel to the accretion axis (that is, ignoring
complex motions), the mass accretion rate in PR13 can be expressed as follows:

ṀPR13 = 4π G2M2ρII
(v2

II + c2
II)3/2 , (2.65)

where ρII, cII and vII denote the gas density in the ionized region, sound speed in the ionized region,
and gas velocity in ionized region. From Equation 2.65, it can be seen that physical quantities in the
ionized region are needed to model the accretion rate of wandering BHs under radiation feedback. First,
we introduce the density and velocity jump conditions across the ionization front (I-front).

Jump conditions across the I-front

The propagation of the ionization front (I-front) is considered here as a one-dimensional problem.
Applying the rest frame of the I-front, the physical quantities in the neutral region are denoted as gas
velocity vI, gas pressure pI, gas density ρI, and gas temperature TI. The physical quantities in the ionized

3This assumption fails when the density is very high or the black hole mass is large (more details later).
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region are denoted as vII, pII, ρII, and TII, respectively. The jump conditions for mass and momentum
conservation on the I-front are as follows:

ρIvI = ρIIvII (2.66)
ρIv

2
I + pI = ρIIv

2
II + pII. (2.67)

Assuming isothermal system both in the ionized region and in the neutral region, the sound speed can be
expressed as cI =

√
pI/ρI and cII =

√
pII/ρII. Substituting this into Equation 2.67, we obtain following

equation:

ρI(v2
I + c2

I ) = ρII(v2
II + c2

II). (2.68)

Solving Equations 2.66 and 2.67 simultaneously yields the following solution:

ρII
ρI

= vI
vII

=
v2

I + c2
I ±

√
(v2

I + c2
I )2 − 4v2

I c2
II

2c2
II

(2.69)

≡ ∆(±) (vI, cI, cII) . (2.70)

In order for Equation 2.69 to have a real solution, the below conditions are needed:

vI # vR ≡ cII +
√

c2
II − c2

I (2.71)

vI $ vD ≡ cII −
√

c2
II − c2

I (2.72)

In generally, the I-fronts with vI < vD and vI > vR are called D-type and R-type, respectively. Since
there is a relation, cII ≫ cI (typically cII ∼ O(10)km/s, cI ∼ O(1)km/s), vR and vD can be approximated
as

vR ≈ 2cII (2.73)

vD ≈ c2
I

2cII
≪ 1km/s. (2.74)

R-type I-front

In the case with vI > vR ∼ 2cII, the gas can directly reach the I-front with vI = v∞ and ρI = ρ∞ because
the shock wave does not appear in front of the I-front (more details later). The I-front becomes R-type
(i.e., the minus sign is taken in Equation 2.69), and the density and velocity within the ionized region
are given as shown below:

ρII,R = ∆(−) (vI, cI, cII) ρI, (2.75)

vII,R = vI
∆(−) (vI, cI, cII)

, (2.76)

∆(−) =
v2

I + c2
I −

√
(v2

I + c2
I )2 − 4v2

I c2
II

2c2
II

(2.77)

≈ v2
I

2c2
II

(

1 −
√

1 − 4c2
II

v2
I

)

(cII ≫ cI). (2.78)

In this R-type model, the density jump and velocity jump is weak, since ∆(−) takes a maximum value
of 2 (cI ≪ cII) at vI = vR and approaches unity as vI increases.
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The accretion rate of R-type case can be estimated applying the density and velocity inside the ionized
region obtained above to the classical Bondi–Hoyle– Lyttleton formula (Equation 2.65):

ṀR = 4πG2M2ρII,R
(
v2

II,R + c2
II

)3/2 (2.79)

= 4πG2M2∆(−) (vI, cI, cII) ρI
((

vI
∆(−)(vI,cI,cII)

)2
+ c2

II

)3/2 (2.80)

≈ 4πG2M2ρI

(v2
I + c2

II)
3/2 (cII ≫ cI, vI ≫ vR ∼ 2cII) (2.81)

D-type I-front

In the case with vI < vD ∼ c2
I /(2cII) ≪ cI, the I-front becomes D-type (i.e., the plus sign is taken in

Equation 2.69), and the density and velocity within the ionized region are given as described below:

ρII,D = ∆(+) (vI, cI, cII) ρI, (2.82)

vII,D = vI
∆(+) (vI, cI, cII)

, (2.83)

∆(+) =
v2

I + c2
I +

√
(v2

I + c2
I )2 − 4v2

I c2
II

2c2
II

(2.84)

≈ c2
I

2c2
II

(

1 +
√

1 − 4v2
I c2

II
c4

I

)

(cII ≫ cI). (2.85)

In this D-type model, the density jump and velocity jump is large, since ∆(+) takes a value of vI/cII (cI ≪
cII) at vI = vD and becomes larger as vI decreases.

The accretion rate of D-type case can be estimated applying the density and velocity inside the ionized
region obtained above to the classical Bondi–Hoyle– Lyttleton formula (Equation 2.65): Lyttleton
formula (Equation 2.65) as

ṀD = 4πG2M2ρII,D
(
v2

II,D + c2
II

)3/2 (2.86)

= 4πG2M2∆(+) (vI, cI, cII) ρI
((

vI
∆(+)(vI,cI,cII)

)2
+ c2

II

)3/2 . (2.87)

M-type I-front

In the case where (vD < cI <) vI < vR, the jump conditions in Equation 2.69 cannot be satisfied. Thus,
the extra structures should be taken into account. In this range, it is known that a shock forms ahead
of the I-front. The dense shell is composed between the shock and the I-front (see left panel of Figure
2.7). The I-front becomes the D-type because the gas transitions to below vD in front of the I-front due
to two effects. Firstly, the velocities are reduced by (vI/cI)2 while the densities increase by the same
factor due to the isothermal shock. Secondly, the tangentially diverging motion is expexted to slow
down the gas in the shell 4. In PR13, the I-front is assumed critical D-type (i.e., vsh = vD). Therefore,

4This process is discussed in Sugimura & Ricotti (2020)
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Figure 2.8: The accretion rate for PR13 model normalized by Eddington accretion rate defined as ṀE =
LE/(ηc2), where we assume radiative effiency η = 0.1. The left panel shows the dependence of the accretion
rate on BH mass or gas density, while the right panel shows the dependence on sound speed.

the velocity inside the ionized region is given by

vII,M = vsh
∆(+) (vsh, csh, cII)

(2.88)

= vD
∆(+) (vD, csh, cII)

(vsh = vD) (2.89)

≈ cII (csh ≪ cII) . (2.90)

Here, we assume that the total gas pressure ptot = ρ(v2 + c2
s ), which is the sum of the ram pressure

pram = ρv2 and the thermal pressure pth = ρc2
s , remains constant across both the shock and the I-

front. It also remains constant within the shocked shell, where the flow is subsonic, because ptot is
approximately equal to pth and pth is conserved due to the nearly constant pressure. Using Equation
2.90 and ptot = ρI(v2

I + c2
I ), we can determine the density inside the ionized region:

ρII,M = ρI
(
v2

I + c2
I
)

2c2
II

. (2.91)

The accretion rate of M-type case can be estimated applying the density and velocity inside the
ionized region obtained above to the classical Bondi–Hoyle– Lyttleton formula (Equation 2.65):

ṀM = 4πG2M2ρII,M
(
v2

II,M + c2
II

)3/2 (2.92)

= 4πG2M2ρI
(
v2

I + c2
I
)

2c2
II

((
vsh

∆(−)(vsh,csh,cII)

)2
+ c2

II

)3/2 (2.93)

≈ πG2M2ρI
(
v2

I + c2
I
)

√
2c5

II
(csh ≪ cII) . (2.94)

Here, to estimate the accretion rate of wandering BHs under the radiation feedback, we used the density
ρII and velcity vII in the ionized region. In summary, the accretion rate under the condition that the
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Figure 2.9: The accretion rate for PR13 model limited by Eddington accretion rate. The accretion rate is
normalized by Eddington accretion rate defined as ṀE = LE/(ηc2), where we assume radiative efficiency
η = 0.1. The left panel shows the dependence of the accretion rate on BH mass or gas density, while the right
panel shows the dependence on sound speed.

size of the ionized region is smaller than the Bondi-Hoyle-Lyttleton radius can be expressed as follows:

ṀRFB = 4πG2M2ρII

(v2
II + c2

II)
3/2

⎧
⎪⎨

⎪⎩

ṀD vI < vD
ṀM vD < vI < vR
ṀR vI > vR

. (2.95)

The classical Bondi-Hoyle-Lyttleton accretion predicts that the accretion rate decreases monotonically
as the velocity of the BHs relative to the ambient gas increases. However, under the radiative feedback,
the accretion rate shows a very different dependence on the relative velocity. Figure 2.8 shows the
accretion rate normalized by Eddington rate of PR13 model as described by Equation 2.95. The left
panel shows the dependence of the accretion rate on the BH mass or the gas density, while the right panel
shows the dependence on the sound speed. In the D-type regime, the accretion rate decreases steeply as
the velocity of the BHs relative to the ambient gas increases. The accretion rate is approximately three
orders of magnitude smaller than that of no radiation feedback case (ex. vI = 1 km/s and cI ∼ 10 km/s
case in right panel). Interestingly, as the BH motion becomes faster and the bow-shock (and dense
shell) is formed (M-type regime), the accretion rate increases as the velocity increases. This result is
definitely different from that predicted from the classical Bondi-Hoyle-Littleton model. In the R-type
regime, the accretion rate decreases monotonically as a function of relative velocity. This sense is nearly
consistent with the classical Bondi–Hoyle–Lyttleton solution shown as a dashed line in Figure 2.8. In
this high-velocity regime, the shocks are not formed, and the flows are weakly affected by radiative
feedback.

2.5.2 Park and Ricotti model + radiation force
In PR13, the accretion rate is dramatically smaller due to the radiation feedback than that of the
classical model. The PR13 model is valid for cases where the accretion rate is less than the Eddington
rate, because the Eddington rate is considered the upper limit due to the prevention of accretion by
radiation pressure.
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Figure 2.10: The relation between the size of the ionized region and the Bondi-Hoyle-Lyttleton radius. The left
and right figures are for the cases where the surrounding medium is rarefied and dense, or where the BH mass
is small and large.

Figure 2.9 is the same as Figure 2.8, but the Eddington accretion rate for dusty gas is set as the
upper limit of the accretion rate. Here, the upper limit of the accretion rate is set to be LE,dg =
4πcGM/(κes +κd), where LE,dg is the Eddington luminosity for dusty gas, κes is the electron scattering
opacity, and κd is the absorption opacity by the dusty gas for the UV range. A metallicity of 0.1Z⊙

and a radiative efficiency of η = 0.1 are assumed. This figure shows that over a wide velocity range, the
accretion rate is limited by the Eddington limit.

2.5.3 Ionized region vs. Gravitaional region
Recently, Inayoshi et al. (2016) proposed quantitatively the condition for the supercritical accretion in
spherically symmetric systems considering the strong radiation from the BHs with luminosity L ∼ LE. If
the size of the ionized region surrounding the BHs is smaller than the gravitaional radius (Bondi radius,
Bondi-Hoyle-Lyttleton radius), the ionized region collapses by intense inflows that consist of neutral
gas, and thus the accretion system transitions to an isothermal Bondi accretion. Thus, the relation
between the gravitational radius and the size of the ionized region is important for understanding the
evolution of BHs. Here, we introduce the transition criterion.

Ionized region for Bondi-Hoyle-Lyttleton accretion

Here, we explain the Strömgren radius, which is one of the key physical quantities when studying the
effect of radiation feedback on accretion phenomena of wandering BHs. When the interstellar medium
is exposed to UV light produced by luminous objects, the matter is photoionized. Since the cooling and
heating rates of the ionized gas are different from those of neutral gas, it is important to estimate how
far the ionized region extends, measured from the BHs, in order to determine the accretion rate to the
BHs. The location of the boundary between the ionized and neutral regions is called the Strömgren
radius, after Bengt Strömgren, who first studied it.
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The Strömgren radius can be roughly estimated from the balance between the number of ionizing
photons injected into the interstellar medium from the luminous object per unit time and the number of
recombined atoms of ionizing photons per unit time. First, the number of ionizing photons Ṅion injected
into the interstellar medium from the luminous source per unit time is

Ṅion =
∫

Lν

hν
dν ∼ L

⟨hν⟩ , (2.96)

where Lν is the luminosity at frequency ν, hν is the energy per photon, L is the bolometric luminosity,
and ⟨hν⟩ is the average energy per ionizing photon. Since the photoionization of the gas is caused by
the UV light, the integration range is in the UV range. The last approximation holds when the SED is
mainly composed of UV light. Next, the number of atoms that recombine per unit time Ṅrec is

Ṅrec = 4π
3 R3

II,stnenIIα, (2.97)

where RII,st, ne, nII, and α indicate the Strömgren radius, number density of electron in the ionized
region, number density of ionized gas, and recombination rate per unit time. If the interstellar medium is
fully ionized, ne = nII. Thus, the number of atoms that recombine per unit time is Ṅrec = 4πR3

II,stn
2
IIα/3.

Assuming that Equation 2.96 and 2.97 are equal, we can obtain the Strömgren radius as follows:

RII,st =
(

3Ṅion
4πn2

IIα

)1/3

. (2.98)

Previously, we introduce the size of the ionized region (Strömgren radius) by implicitly assuming
that the surrounding interstellar medium is static. In the case of the Bondi-Hoyle-Lyttleton accretion
mechanism, the effect of the inflow of neutral gas into the ionized region should be considered. However,
it is difficult to discuss the size of the ionized region by including at once the effects of both recombination
and incoming neutral gas. Thus, for simplicity, the size of the ionized region is estimated in two ways:
the balance between the ionization rate and the recombination rate within the ionized region (Strömgren
radius), and the balance between the ionization rate and the inflow rate of neutral gas across the I-front
(see more details, Sugimura & Ricotti, 2020). We define the former (Strömgren radius) as RII,st and
later as RII,flow. We adopt the size of the ionized region determined by the smaller between RII,st and
RII,flow.

In the following, we estimate the size of the ionized region using the flow rate of the neutral gas. The
balance between the number of ionizing photons injected from the luminous object per unit of time and
the number of neutral gas flowing in from outside the ionized region per unit of time is expressed as
follows,

Ṅion = 4πR2
II,flownIvI. (2.99)

Sorting this out for RII,flow, and further using the conservation law of the number of particles at RII,flow
is nIIvII = nIvI, we obtain:

RII,flow =
(

Ṅion
4πnIIvII

)1/2

. (2.100)

From Equation 2.100, we see that the larger velocity of the gas coming in from outside the ionized
region, vI, the smaller the size of inoized region, RII,flow.

Here, we estimate the condition RII,st > RII,flow, which determines the size of the ionized region by the
inflow of neutral gas from the outside, to see the critical velocity. First, let the temperature of the ionized
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region be TII = 4 × 104K and the frequency-averaged energy of the ionizing photons be ⟨hν⟩ = 41eV.
Assuming that the photons emitted during recombination to the ground state ionize the immediately
surrounding neutral gas (case-B recombination), the recombination rate of ionized hydrogen atoms,
α ≡ αB, excluding recombination to the ground state, is roughly inversely proportional to temperature
and described as below (Ferland et al., 1992):

αB = 2.6 × 10−13
(

TII
104K

)−0.85
cm3s−1. (2.101)

The injection rate of ionizing photons per unit time is given by Ṅion ∼ L/ < hν >, where the luminosity
L is related to the energy conversion efficiency η by L = ηṀc2. The Eddington luminosity for dusty
gas is used as L. To estimate the inflow rate of the neutral gas, we assume the R-type solution, which
is solution for high-velocity cases. Solving for the condition RII,st > RII,flow with respect to the velocity
vI, we obtain the following result:

RII,st > RII,flow
(

3Ṅion
4πn2

IIα

)1/3

>

(
Ṅion

4πnIvI

)1/2

v4
II

vI
>
α2nIṄion

36π
v3

I
∆(−)4 >

α2nILE,dg
36π⟨hν⟩

vI >

(
α2cGMnI∆(−)4

9(κes + κdust)⟨hν⟩

)1/3

∼ 371
(

nIM

108M⊙cm−3

)1/3
km/s. (2.102)

For example, when the BH mass M = 104M⊙ and the number density of neutral gas nI = 104cm−3, if
the neutral gas has a velocity greater than 370km/s, the size of the ionized region must be estimated
using RII,flow. Conversely, if the velocity of the neutral gas is 370km/s or lower, the inflow of neutral
gas does not affect the size of the ionized region. 5

The size of ionized region vs. classical Bondi-Hoyle-Lyttleton radius

To estimate the transition criterion, RBHL > RII,st, we use the classical Bondi-Hoyle-Lyttleton radius
RBHL and the size of ionized region described by Equation 2.98:

RBHL > RII,st

→ 2GM

(v2
I + c2

I ) >

(
3Ṅion

4πn2
IIαB

)1/3

→ 8G3M3

(v2
I + c2

I )3 >
12c4

IILE,dg
4πn2

I (c2
I + v2

I )2αB⟨hν⟩

MnI >

(
3cc4

II
(
v2

I + c2
I
)

2G2αB⟨hν⟩ (κes + κdust)

)1/2

. (2.103)

5Here, we adopt the Eddington luminosity for dusty gas to evaluate the Ṅion. We note that, if the luminosity is more smaller
than this value, the velocity range in which the effect of Inflow becomes effective is smaller than the value in Equation 2.102.
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Figure 2.11: The figure shows the line where the Bondi-Hoyle-Lyttleton radius is equal to the size of the
ionization region, with the product of the BH mass and gas density on the vertical axis and the relative velocity
between the BHs and surrounding gas on the horizontal axis. The difference between the left and right figures
is whether the Eddington luminosity is applied to electron scattering (left panel) or the Eddington luminosity
is applied to dusty gas (rigth panel) when estimating the size of the ionized region.

We suppose that the system is in a quasi-steady state where the momentum flux is conserved across the
ionization front, namely 2nIIc2

II = nI(c2
I + v2

I ).
Figure 2.11 shows Equation 2.103. From this figure, we see that massive BHs and extremely dense

environments may lead to the collapse of ionized regions as predicted by Inayoshi et al. (2016) and
classical Bondi-Hoyle-Lyttleton accretion could be realized.

2.5.4 Effects of dust grains on Bondi-Hoyle-Lyttleton accretion flow
Dust grains in the Universe

Interstellar dust grains consist of solid particles with size on the order of a few micrometers, existing
within the interstellar medium. In our galaxy, the composition of dust grains is primarily carbon C and
silicon Si, and the ratio of dust mass to the total mass of the interstellar gas, accounting for abundance,
is suggested to be approximately 0.01. The composition and abundance of the dust grains depend on
various physical processes such as condensation formation of the gas and destruction by the shock waves.
We first introduce the formation process of the dust grains.

How is dust grain formed?

The formation of the solid phase (dust grains) from the gaseous phase occurs through the formation
of stable nuclei by collision and deposition of atoms and molecules and their growth. The composition
of the dust grains in the interstellar medium consists of heavy elements. Therefore, it is believed that
dust grains are formed in the regions abundant with heavy elements. The promising dust formation
sites in space are“ in the stellar winds of Asymptotic Giant Branch (AGB) stars”which evolved from
stars with initial masses less than 10 times that of the Sun, and“ in the ejecta" which ejected during
the gravitational collapse of the massive stars. In the early universe with redshifts greater than 6, the
contribution of AGB stars to the dust supply is expected to be small. This is because most low-mass
stars are unable to outgrow the main sequence and become AGB stars within the cosmic age of less
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Figure 2.12: The grain size distribution of each dust species: (a) is the initial distribution before destruction,
and (b) is the distribution of the surviving dust after destruction. Cited from Nozawa et al. (2007).

than 1 billion years (z ∼ 6). Therefore, the main formation site of dust grains in the early universe is
in the ejecta by supernova explosions which is the final stage of massive stars with short lifetimes. The
mechanism of dust formation in the ejecta model is as follows. As the gases expand outward during a
supernova explosion, the gas temperature decreases. When the temperature of the gas drops to around
103K, the heavy element gas becomes supersaturated, leading to the condensation and formation of
dust grains.

The left panel of Figure 2.12 shows the simulation results of size distribution of the dust grains in
ejecta generated by supernova explosions (Nozawa et al., 2007). The horizontal axis represents the
radius of the dust grains, and the vertical axis represents the mass spectrum. From the left panel, we
can see that the size of the dust grains formed via supernova explosions range from a few angstroms to a
few micrometers, varying depending on the dust compositions. The size variation for each composition
of the dusts strongly depends on the relative abundance of heavy elements. For example, since the
abundance of Al is relatively small compared to other heavy elements, it is expected that the average
radius of Al2O3 dust, which utilizes Al as a material, is also small. The size of dust grains composed
of relatively abundant atoms such as Si and Fe is larger (around 0.1µm) compared to that of the dust
grains composed of other materials. Such geometric sizes of the dust grains are crucial when considering
the extinction process of the dust grains, as will be discussed in next subsection.

Destruction of dust grains

For several hundred days after a supernova explosion, dust grains are formed through the condensation
process described in Section 2.5.4. However, not all of such the dust grains is released directly into
interstellar space. Dust destruction occurs due to the shock waves.

Initially, the shock waves propagate outward from the supernova explosion. As these shock waves
propagate outward, they decelerate due to interactions with the surrounding gas. When the decelerated
ejecta and additional ejecta coming from the interior collide, the reverse shock waves are generated.
These reverse shock waves lead to the destruction of the dust grains.

From a microscopic perspective, dust destruction by shock waves involves a phenomenon called sput-
tering, where atoms are ejected from the surface of the dust grains. As a result of the sputtering,
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Figure 2.13: Erosion rate of each dust species caused by sputtering calculated for the metallicity of Z = 10−4Z⊙.
Cited from Nozawa et al. (2006).

the radius of the dust grains gradually decrease. Figure 2.13, cited from Nozawa et al. (2006), shows
this process. We can see that the reduction in dust radius due to the sputtering is effective at gas
temperatures T ! 105K. Moreover, at temperatures T ! 107K, the rate of radius reduction does not
significantly depend on the dust composition or gas temperature, with a erosion rate of 10−6yr−1cm3.
Considering the initial dust radius to be approximately ∼ 0.1µm (refer to the left panel of Figure 2.12),
this implies that the dust radius becomes zero on a timescale of around ∼ 107yr.

Furthermore, the mass spectrum distribution of dust radii after the progress of dust destruction by
shock waves is represented in the right panel of Figure 2.12 (Nozawa et al., 2007). Comparing the mass
spectrum distribution after dust destruction by shock waves (right panel of Figure 2.12) with the mass
spectrum distribution at the time of dust formation (left panel of Figure 2.12), it is clear that dust
grains with small radius of 10−4 ∼ 10−2µm has significantly decreased due to destruction. Therefore,
based on the results from Nozawa et al. (2007), it can be inferred that the typical radius of dust grains
released into interstellar space is ! 0.1µm.

As seen thus far, the distribution of dust in interstellar space undergoes significant changes due to
dust destruction by shock waves. A more quantitative representation of the decrease in total dust mass
compared to its formation is depicted in Figure 2.14 (Nozawa et al., 2007). Examining this figure, when
the number density of surrounding interstellar gas is 0.1cm−3, it becomes apparent that approximately
80% of the dust formed in the ejecta survives. Conversely, in cases where the interstellar gas density
is higher, between 10% − 30% of the dust survives. The decrease in the total mass of surviving dust
grains with increasing gas density can be attributed to the faster penetration of reverse shock waves as
the gas density increases, leading to higher efficiency of sputtering.

Photon absorption by dust grains

In the dusty gas, where dust grains and gases coexist, photons with energies in the UV range are
absorbed by the dust grains and scattered by electrons in the gas. In this section, we introduce the
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Figure 2.14: Total mass of survived dust for the various progenitor masses, Mpr. Each solid line represents the
gas number density. Cited from Nozawa et al. (2006).

opacity κdg of dusty gas.
First, we set some parameters for dust grains with reference to Nozawa et al. (2007) and Yajima et al.

(2017):

• Geometric radius of dust grain: adust = 0.1µm = 10−5cm

• Cross section of dust absorption: σdust = Qabsπa2
dustcm2

• Absorption coefficient to geometrical cross section: Qabs = 1

• Opacity for UV photons: κdust = σdust
mdust

= σdust
ρs4πa3

dust/3 = 3Qabs
4adustρs

= 2.8 × 104Qabsg−1cm2

• Dust-to-gas mass ratio: fdg = 0.01

Here, mdust is the mass of the dust and ρs is the solid density of the dust. The dust radius adust is
reasonable because the average radius of the dust after experiencing a reverse shock shock wave is adust ∼
0.1µm in the simulation of dust formation from a supernova explosion by Nozawa et al. (2007). The dust
absorption cross section σdust is defined by multiplying the geometric cross section estimated using the
dust radius adust (assuming the dust is spherical) by a factor less than 1 called the absorption coefficient
Qabs. From Draine et al. (1984), when the wavelength of the incident electromagnetic wave is smaller
than ∼ 2πadust, the absorption coefficient is Qabs ∼ 1. The dust-to-gas mass ratio fdg is proportional
to the metallicity. Observations of nearby galaxies show that for Z⊙, fdg ∼ 0.01 (Draine et al., 2007).

Applying the above parameters, the opacity κdg of dusty-gas is obtained as follows. We sum each
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absorption cross-section of gas and dust with the weight of their abundance,

κdg = ngasσT + ndustσdust
ρgas + ρdust

=
σT

mgas
+ ndustσdust

ρgas

1 + fdg
= σT

mgas
(1 + fdg) + σdust

mdust
fdg(1 + ρdust)

≃ σT
mgas

+ fdg
σdust
mdust

= κes + fdgκdust = 0.4 + 280Qabs g−1cm3, (2.104)

where σT is the cross section of electron scattering and κes = 0.4g−1cm3 is the opacity of electron
scattering. Also, in the fourth equality, we made an approximation that ignores fdg and ρdust as small
compared to 1. From Equation 2.104, the ratio of dusty gas opacity to electron scattering opacity is
κdg/κes ∼ 1000 if Qabs ∼ 1. Therefore, the radiation force on dust becomes about 1000 times stronger
than that on gas, and the structure of the Bondi-Hoyle-Lyttleton accretion flow is expected to differ
significantly depending on the presence or absence of dust.

Sublimation of dust grains

When wandering BHs are wearing by accretion disks, the dust (solid particle) is heated by the radiation
emitted from the accretion disks and evaporates into a gas. This process is called the dust sublimation.
If the dust sublimation radius (the boundary between the region where dust is sublimated and the
region where dust is not sublimated) is inside the Bondi-Hoyle-Lyttleton radius, it is necessary to
perform Bondi-Hoyle-Lyttleton scale simulations considering dust sublimation process. This is because
the radiation force acting on the dust is enormously greater than the radiation force acting on the gas,
and thus the presence/absence of dust is expected to have a significant effect on the accretion rate.
Conversely, if the dust sublimation radius exists outside of the Bondi-Hoyle-Lyttleton region, it is not
necessary to consider the presence of dust for the Bondi-Hoyle-Lyttleton scale simulations. Therefore,
here we estimate the size of the region where dust is heated and sublimated by the luminous accretion
disk and compare it to the Bondi-Hoyle-Lyttleton radius.

We suppose that the dust emits blackbody radiation. The equation for the balance between the
radiation flux absorbed by the dust and the radiation flux re-emitted by the dust is as follows:

Qabs
L

4πR2
subl

= QemitσSBT 4
subl, (2.105)

where Rsubl is sublimation radius, Tsubl is sublimation temperature, σSB is Stefan-Boltzmann constant,
L is luminosity of radiation source, Qabs is dimensionless absorption coefficient, Qemit is dimensionless
emission coefficient, respectively. The Qabs and Qemit are generally normalized by its geometric cross
section πa2

d:

Qabs = σabs
πa2

d
, Qemit = σemit

πa2
d

. (2.106)

Here, σabs and σemit are the effective cross sections which the dust absorbs and re-emits photons. Since
σabs and σemit , as well as Qabs and Qemit, depend on the wavelength of the radiation incident on the
dust. Solving Equation 2.105 for the sublimation radius,

Rsubl =
(

Qabs
Qemit

L

4πσSBT 4
subl

)1/2

. (2.107)
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Figure 2.15: Metallicity dependence of the gas number density and gas temperature around a moving
intermediate-mass BH. The panels show snapshots for the medalists Z = 0,Z = 0.01Z⊙, and Z = 0.1Z⊙
models from the left- to right-hand panels. The arrows represent the velocity vectors of the gas. Cited from
Toyouchi et al. (2020).

We would like to know where the dust sublimation radius Rsubl is located relative to the Hoyle-Lyttleton
radius RBHL, so we calculate the ratio,

Rsubl
RBHL

=
(

Qabs
Qemit

L

4πσSBT 4
subl

)1/2

× (v2
I + c2

I )
2GM

=
(

Qabs
Qemit

c(v2
I + c2

I )2

4GMσSBT 4
subl

)1/2

∼ 10−4 Q1/2
abs

Q1/2
emit

(
M

104M⊙

)−1/2 ( Tsubl
103 K

)−2
⎛

⎝

√
v2

I + c2
I

20 km/s

⎞

⎠

2

(2.108)

Here, the Eddington luminosity LE,dg for dusty-gas is applied as the luminosity L. The sublimation
temperature of the dust is assumed to be Tsubl = 1000K. This value is not significantly inconsistent with
the estimated sublimation temperatures given by Barvainis et al. (1987), which are about 1500−1900K
for graphite and abou1000 − 1400K for silicate.

We can see that Rsubl ≪ RBHL is satisfied. Therefore, it is important to consider the dust sublimation
process when studying the Bondi-Hoyle-Lyttleton accretion with radiation.

Simulations of wandering BHs in the dusty-gas

Toyouchi et al. (2020) investigate the Bondi-Hoyle-Lyttleton accretion flow considering dust grains and
isotropic radiation field. Figure 2.15 shows the distributions of the number density of the hydrogen and
the gas temperature. Each panel shows the different models for the metallicities of Z = 0, 0.01, 0.1Z⊙.
It clear that, in the all models, an ionized region elongated downstream. Additionally, the dense
shell appears in the upstream side of the I-front. These features are generally consistent with PR13
(see Section 2.5.1). In the model of Z = 0, there are two thermal structures: warm region (104K,
yellow region) and the hot region (T ∼ 5 × 104K, red region). On the other hand, in the model of
Z = 0.01, 0.1Z⊙, the cold region (T ∼ 102K, blue region) appears around the warm region. In the cold
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Figure 2.16: Velocity field (upper color contour) and the ratio of radiation force to gravity (lower color contour)
of the isotropic model (left panel) and anisotropic model (right panel). The yellow lines overlaid in velocity
distribution show the streamlines. Cited from Ogata et al. (2021).

region, the gas is in a thermal equilibrium state where heating by the background radiation and metal-
line cooling are balanced. In addition, only in the model of Z = 0.01Z⊙, the thermal structure along
the boundary between the cold and warm regions appears (T ∼ 103K, light-blue and green regions).
The temperature in this region is determined by the balance between photoionization heating and Ly
α cooling, because the gas is partly ionized by X-ray photons leaking from the ionized region. Such a
double-layered temperature structure outside of the ionized region disappears for the higher metallicity
Z = 0.1Z⊙. In the high-metallicity case, metal cooling is much more efficient, and as a result, a sharp
transition between the cold and hot region occurs. The kinetic structure is common in all models.
Figure 2.15 also shows the velocity distribution. We can see that the velocities increase after crossing
the I-front (v ∼ 50 km s−1 in the ionized region, black arrows). The gas is accelerated because of the
thermal pressure in the ionized region. They also show the time evolution of mass accretion rates onto
the wandering BHs. For Z = 0, the mass accretion rates converge to ∼ 10 per cent of the Eddington
value evaluated from the electron scsattering. This result also showed in Park & Ricotti (2013). For
Z = 0.01, 0.1Z⊙, the accretion rates are smaller for higher metallicities. This is because the higher the
metallicities, the more efficiently radiation force acts on the dust.

Ogata et al. (2021) investigates Bondi-Hoyle-Lyttleton accretion flows in dusty gas, taking into ac-
count the anisotropy of the radiation field due to the accretion disk. As a first step to investigate the
effect of anisotropic radiation field on the dynamics around a wandering black hole, they focused on the
situation where the relative velocity between the BH and srrouding gas is sufficiently larger than the
sound speed. They developed a particle-like radiation dynamics code that simplifies the hydrodynamic
effects. This is pioneering work that deals simultaneously with the gravity of the wandering black hole,
the anisotropic radiation produced by the accretion disk, and the attenuation process of radiation by
the solid particles in the interstellar medium. Our previous simulations simulations show that around
the axis of rotation of the disk, the solid particles, which are greatly affected by the radiation (1000
times larger than the gas), move away from the BH, while in the direction along the disk surface, the
matter is hardly affected by the radiation and is eventually swallowed into the BH. They also found that
when the attenuation by solid particles is effective (e.g., when the density of the interstellar medium is
large), the region where the radiation force is effective is drastically shrunk, and the matter is swallowed
into the BH from almost all directions.

Ogata et al. (2021) revealed the effect of anisotropic radiation produced by a accretion disk on the
distribution of matter around a fast-moving BH. However, since they employed a particle method that
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Figure 2.17: Comparison of previous research and this study.

simplified fluid effects (gas pressure gradient force, ram pressure) and chemical reaction processes (ion-
ization of atoms, dissociation of molecules, sublimation of solid particles), it is necessary to investigate
the material distribution and compositional more realistically.

2.6 Position and purpose of this research
So far, we reviewed the theoretical and observational properties of the wandering BHs, including the
recent numerical simulations of the accretion flows onto wandering BHs. Wandering BHs exist all over
the universe and their origin is diverse. In this study, we focus on intermediate-mass BHs in order
to contribute to the understanding of the formation process of supermassive BHs. The strengths of
this study compared to recent previous studies on Bondi-Hoyle-Lyttleton accretion are summarized in
Table 2.17. The strengths of this study are that the Bondi-Hoyle-Lyttleton accretion onto a black
hole accretion disk, one of the universal phenomena in the universe, is investigated in terms of (i)an
anisotropic radiation field produced by the black hole accretion disk, (ii)sublimation of interstellar dust
by strong radiation from the accretion disk, and (iii) hydrodynamics effects associated with i and ii.

As mentioned above, the previous study by Toyouchi et al. (2020) assume isotropic radiation field, in
which case the gas accretion rate decreases significantly compared to the classical Bondi-Hoyle-Lyttleton
rate due to radiation feedback in all directions. However, the radiation field is expected to be anisotropic
due to the geometry of the accretion disk that forms around the BH. Furthermore, the disk wind is
expected to shield ionizing photons from the vicinity of the BH, which would also cause the radiation
field to be anisotropic. In such a case, the region where feedback is effective and the region where
accretion proceeds could be separated and accretion could proceed efficiently. Hence, one of the goals
of this study is to establish a theoretical model of gas accretion onto wandering BHs under anisotropic
radiation feedback.

Second, the dust in the interstellar medium is speculated to be heated and sublimated by the strong
radiation from black hole accretion disks or other luminous sources. Interstellar dust is affected by radi-
ation force that is 1000 times greater than that of gas, and thus the flow structure could be significantly
different in regions where the dust sublimates compared to regions where the dust does not sublimate.
However, there is no radiation hydrodynamics simulation of wandering BHs that takes into account the
dust sublimation process. We implement dust sublimation into the simulation code and investigate the
effect of dust sublimation on the evolution of wandering BHs.

Finally, we investigate the effect of the hydrodynamics in the system assuming anisotropic radiation
from the accretion disk and the sublimation process of the dust (i and ii). In the previous study
Ogata et al. (2021), although anisotropic radiation from the accretion disk was taken into account, the
calculations were performed assuming a system with a large Mach number (the speed of wandering
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BHs relative to the sound speed of the surrounding matter), and thus hydrodynamics effects were not
considered. However, if the ultraviolet photons emitted from the accretion disk generate an ionized
region around the black hole, the gas pressure gradient force is expected to become dominant over the
gravity and radiation forces near the boundary between the ionized and neutral regions, where the
temperature and density are very different from each other. Therefore, it is important to perform the
simulations of wandering BHs with accretion disks that include gas pressure gradient forces.

From the above, (i) anisotropic radiation field, (ii) dust sublimation process, and (iii) hydrodynamics
effect are important effects in accretion phenomena onto wandering BHs. This is because understanding
the accretion phenomenon on wandering BHs leads to the clarification of the formation process of
supermassive BHs, which is one of the most important issues in astronomy. We have succeeded for the
first time in the world in a three-dimensional radiation hydrodynamics simulations that incorporates all
three of these elements. We describe our simulation method and results in detail below.
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Chapter 3

Radiation Hydrodynamics Simulations

As previously mentioned, the intermediate-mass BHs with accretion disks have strong gravity and
radiation fields. In addition, the composition of the interstellar medium around BHs significantly
changes due to the interactions between matter and photons and matter and matter (chemical reaction).
Therefore, Radiation HydroDynamics (RHD) simulations considering the chemical reaction are required
to model the flow structure around the intermediate-mass BHs wandering in the dusty gas. This chapter
introduces the basic equations and simulation method of RHD.

3.1 Fundamental of RHD simulations
First, we outline the basic structure and properties of typical RHD simulations.

3.1.1 Structure of RHD code
RHD can be understood as a multilayered problem: radiation which propagates over long distances,
fluid which propagates over medium distances, and atomic processes on a microscopic scale. Figure 3.1
shows the structure of the typical RHD code. Numerical methods have been developed independently for
each of the three components: Hydrodynamics part, Radiative Transfer part, and Atomic Process part.
Most RHD codes adopt a coupled calculation scheme in which the governing equations corresponding
to each part are solved by different methods and physical quantities are exchanged between each part.

Hydrodynamics part

In the hydrodynamics part, the hydrodynamic equations in which the interaction term with radiation
is added are solved. For example, if the fluid is a non-viscous and compressible one, the radiation
hydrodynamics equations are expressed as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1)

∂ (ρv)
∂t

+ ∇ · (ρv ⊗ v + PI) = ρf , (3.2)
∂ (ρE)
∂t

+ ∇ · [(ρE + P )v] = ρf · v + Γ − Λ, (3.3)

where ρ, v, P , E = |v|2/2+(γ−1)−1P/ρ, f , Γ, and Λ represent density, velocity, pressure, total energy
(kinetic energy + thermal energy), radiation force, heating rate, and cooling rate. The additional
terms to the hydrodynamics equations are radiation force in the right hand side of equation of motion
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Figure 3.1: Structure of RHD code.The radiation hydrodynamics code is categorized into three major parts,
and physical quantities are exchanged between each of the three parts.The physical quantities in brackets in
the figure are used if a transformation of the inertial system is required (e.g. relativistic system).

(Equation 3.2), the power due to radiation pressure, and heating and cooling rate caused by interaction
between radiation and matter in the right hand side of energy equation (Equation 3.3). These terms
can be obtained by solving the equation of the radiation transfer and chemical reaction.

Radiation transfer part

In the radiation transfer part, the radiation transfer equation governing the specific radiation intensity
Iν(r, t, ν, l) is solved to obtain the physical quantities related to radiation. The specific radiation in-
tensity depends on the position r, time t, frequency ν, and direction of propagation. The radiation
transfer equation can be derived from the Boltzmann equation for the distribution function of photons
and described as follows:

1
c

∂Iν

∂t
+ (l · ∇)Iν = jν − ανIν + σν

∫

4π
[Iν(r, t, ν, l′)φ(l′, l) − Iν(r, t, ν, l)φ(l, l′)] dΩ′, (3.4)

where, c and l = (sin θ cosϕ, sin θ sinϕ, cos θ)T is speed of light and direction cosine vector. Here,
jν [erg cm−3 s−1 Hz−1 sr−1], αν [cm−1], σν [cm−1] represent the emissivity, absorption coefficient, and
scattering coefficient. φ(l′, l) is the scattering probability density from direction l′ to direction l, which
is 1/4π for isotropic scattering. Thus, when the scattering occurs isotropically, the radiation transfer
equation become

1
c

∂Iν

∂t
+ (l · ∇)Iν = jν − (αν + σν)Iν + σνJν , (3.5)

where Jν is the mean radiation intensity defined as

Jν ≡ 1
4π

∮
IνdΩ. (3.6)

In the case of the general radiation transfer equation (Equation 3.4), there is a scattering term with
an integral of the radiation specific intensity, thus the equation is a differential-integral system. Fur-
thermore, the radiation specific intensity has seven variables (time1, position3, direction2, frequency1),
making the radiation transfer equation very difficult to solve. The above considerations require a tech-
nique to solve the radiation transfer equation with some simplification. Therefore, the researchers need
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Table 3.1: Comparison of calculation methods for radiative transfer
Moment scheme Ray tracing Monte Carlo

computational cost low high medium
anisotropic field poor fine fine
time dependence available N/A available
opaque field fine medium poor

∗The evaluation here is based on the basic idea of each method. Note
that we do not consider new improvements in each method.

to know the various approximation and their application range for each astronomical problem (see
Section 3.1.2).

The quantities associated with the radiation, radiation energy density Erad, radiation flux Frad, and
radiation pressure tensor Prad are introduced as moments in the direction of propagation of the radiation
specific intensity as shown below:

Erad =
∫ ∞

0

∫

4π

1
c

Iν(r, t, ν, l)dΩdν (3.7)

Frad =
∫ ∞

0

∫

4π
Iν(r, t, ν, l)lidΩdν (3.8)

Prad =
∫ ∞

0

∫

4π

1
c

Iν(r, t, ν, l)liljdΩdν. (3.9)

Atomic Process part

In the atomic process part, we solve for the interaction between photon and matter. Photon absorption
and emission have the effect of heating and cooling the matter. Thus, in order to self-consistently imple-
ment these interactions, we evolve along with them the thermal energy density ε of the matter and the
abundances of the species that interact with the photons. The set of non-equilibrium thermochemistry
equations solved in the typical RHD code consists of:

∂(ysnH)
∂t

= ysnHRs(ρ, T, Iν), (3.10)
∂ε

∂t
= Γ(ρ, T, ys) − Λ(ρ, T, ys), (3.11)

where nH is the number density of hydrogen, ys = ns/nH is the fractional abundance of the s-th specie,
and Rs is the chemical reaction rate of the s-th specie. The chemical reaction rates depend on the
radiation specific intensity, gas density, and temperature. The cooling and heating rates are functions
of the gas density, temperature, and fractional abundance of each chemical specie.

3.1.2 Various methods for solving the radiative transfer equation
Here we present some typical methods for solving the radiation transfer equation.

Monte Carlo method

The Monte Carlo method is one of the oldest methods for solving radiation transfer equations. In
this method, the evolution of the radiation field is tracked by randomly generating photons, which are
repeatedly given stochastic events. In general, the Monte Carlo schemes reduce the computational cost
by sampling the radiation field, both in the angular and frequency dimensions, into photon packets that
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are emitted and traced away from the source. In general, Monte Carlo methods control computational
cost by sampling the radiation field in both the angular and frequency dimensions into photon packets,
which are then emitted and tracked from the source. An advantage of the Monte Carlo approach to
tracking individual photon packets is that it allows for keeping track of the scattering of photons. Note
that, if the mean free path is used as the collision interval in the optically thick case, the photons can
hardly travel through space under the limited computational resources. Therefore, the Monte Carlo
method is suitable for optically thin cases.

Ray tracing method

The solving method in which the radiation transfer equation is integrated along the photon path from
the radiation source toward the point where the solution is needed is called the ray tracing method.
In this method, various calculation methods have been proposed. The simplest solution is to cast rays
from each radiation source to each cell (or volume element) and sum up the optical depth at each
endpoint. With the optical depths in hand, Iν is known everywhere and the rates of various chemical
reaction processes, heating and cooling can be calculated. While this method has the advantage of being
simple and easy to parallelize (each radiation source calculation is independent of the other), there is
a lot of redundancy, since any cell that is close to a radiation source is traversed by many rays cast
to further-lying cells, and is thus queried many times for its contribution to the optical depth. Thus,
this method requires more computational cost than other methods. Note that this method is useful for
systems where scattering can be neglected because of the difficulty in dealing with scattering.

Moment-based method

The radiation transfer equation is a differential-integral equation with seven independent variables. As
previously mentioned, this equation is solved using methods such as the Monte Carlo method or ray-
tracing method. Since those methods are computationally expensive, various approximate methods
have been developed. One prominent approach is to reduce the angular dimensions by taking the
angular moments of the radiation transfer equation. The equations taking the directional moments of
the radiation transfer equation are described as:

∂Erad,ν

∂t
+ ∇ · Frad,ν = jν − cανErad,ν (3.12)

1
c

∂Frad,ν

∂t
+ c∇ · Prad,ν = −(αν + σν)Frad,ν . (3.13)

Intuitively this can be thought of as switching from a beam description to that of a field or a fluid,
where the individual beams are replaced with a bulk that represents an average of all the photons
crossing a given volume element in space. This infers useful simplifications: two angular dimensions
are eliminated from the problem (which means significantly reducing the computational cost compared
to the non-moment-based schemes) and the equations take the form of conservation laws, such as the
Euler equations of hydrodynamics. The former is, in other words, this method is not good at capturing
anisotropy. The directionality is largely lost in the moment approximation and the radiation becomes
somewhat diffusive, which is generally a good description in the optically thick limit, where the radiation
scatters a lot, but not in the optically thin regime where the radiation is free-streaming. The latter
indicates that we can solve radiation with numerical methods designed for hydrodynamics. Note that
the computational cost is independent of the number of radiation sources since radiation is not tracked
individually from each source, but only added to the external field.
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These methods are summarized in Table 3.1. For a given astronomical problem, we need to select an
appropriate calculation method that takes into account the degree of optical depth, the importance of
scattering, the importance of calculation accuracy, and the limitation of calculation resources.

3.1.3 Solving method of moment-based equations
Here, we introduce the solution method of the moment equations (Equations 3.12, 3.13). The moment
equations have fewer dimensions than the original radiation transfer equation as they lack the directional
vector. However, in exchange, the number of unknown variables increases from Iν to Erad,ν , Frad,ν , and
Prad,ν . For three unknown variables, the solutions cannot be obtained with only two moment-based
equations (Equations 3.12, 3.13). If higher order moments are considered to increase the number of
equations, new unknown variables are introduced and the system of equations cannot be closed. To
address this problem, we introduce a closure relation as following section.

Eddington Approximation

The moment-based equations are implicitly assumed isotropy of the radiation field, since they are in-
tegrated over all solid angles. We then introduce the mean specific radiation intensity Jν again (see Equa-
tion 3.6), assuming that the radiation field is completely isotropic. The K-integral, Kν [erg s−1 cm−2 Hz−1 sr−1],
which is averaged over all solid angles of the second-order moments (radiation pressure) is given by

Kν ≡ 1
4π

∫
Iν cos θ2dΩ

= Jν

4π

∫ 2π

0
dφ
∫ π

0
sin θ cos θ2dθ

= 1
3Jν . (3.14)

From the definition, there are relations between Jν and Erad,ν , Jν = cErad,ν/4π, and between Kν and
Prad,ν , Kν = cPrad,ν/4π, so Equation 3.14 can be rewritten as

Prad,ν = 1
3Erad,ν . (3.15)

The method that closes the moment-based equations using Equation 3.14 (or Equation 3.15) by assuming
that the radiation field is "nearly" isotropic, is called the Edington approximation.

I explain why I emphasize the word "nearly" here. Let’s relax the assumption of complete isotropy
of the radiation field and assume that the radiation field has a component proportional to cos θ(≡ µ).
We consider a system of infinite parallel-plate atmospheres for simplification. In that system, specific
radiation intensity having the angular dependence can be described as I(z, µ) = aν(z) + bν(z)µ. The
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mean specific intensity Jν and the K-integral are given by:

Jν ≡ 1
4π

∫
(aν(z) + bν(z)µ)dΩ

= aν

4π

∫ 2π

0
dφ
∫ π

0
sin θdθ

= aν (3.16)

Kν ≡ 1
4π

∫
(aν(z) + bν(z)µ) cos θ2dΩ

= aν

4π

∫ 2π

0
dφ
∫ π

0
sin θ cos θ2dθ

= 1
3aν = 1

3Jν (3.17)

This equation shows that the relation Kν = 1
3Jν (or Pν = 1

3Eν) also holds even when the radiation in-
tensity has a linear component proportional to µ. Therefore, the Eddington approximation is applicable
if the radiation field is "nearly" isotropic.

Generalizing the above discussion to three dimensions, the Eddington approximation can be expressed
as

Prad,ν = 1
3Erad,νI. (3.18)

To summarize so far, the Eddington approximation (Equation 3.18) is a good approximation if the
radiation field is nearly isotropic. In a system that is optically thick, the radiation field is isotropic. 1

This is because in such a system, the mean free path of a photon is sufficiently short, and the photon is
expected to diffuse randomly as it is repeatedly absorbed and scattered by the material. Therefore, for
optically thick systems, the Eddington approximation based on isotropy of the radiation field is a good
closure relation.

In many astronomical phenomena, optically thin and optically thick regions coexist. In optically thin
systems, the radiation field is not isotropic. This is because photons are hardly absorbed or scattered,
and go straight as a free stream. In such a system, Frad,ν = cErad,ν = cPrad,ν is expected to hold. Based
on this idea, the Eddington approximation is extended as follows so that it can be used in optically thin
systems:

Prad,ν = Erad,νDrad,ν . (3.19)

Eddington tensor Drad,ν becomes 1/3 for optically thick systems and 1 for optically thin systems. As
to satisfy these conditions for the optically thick/thin limit, the Eddington tensor is defined by the
flux-limited diffusion approximation and the M1 method, described in the following sections.

Flux-limited diffusion approximation

The flux-limited diffusion (FLD) approximation is based on an extended version of the diffusion approx-
imation for the radiation flux and the Eddington approximation for the radiation pressure. Therefore,
as for moment-based equations, we solve only the zeroth-order equation related to the radiation energy
density.

1Note that optically thick (thin) is not the same sense as isotropic (anisotropic) radiation field.
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The FLD method assumes a diffusion process in the optically thick limit. The radiation flux can be
obtained by adopting the Fick’s law,

Frad,ν = − c

3(κν + σν)ρ∇Erad,ν . (3.20)

To handle the radiation flux in optically thin systems, in which Frad,ν = cErad,ν is realized,the radiation
flux by Fick’s law (Equation 3.20) is extended as follows:

Frad,ν = − cλν

(κν + σν)ρ∇Erad,ν . (3.21)

The λν introduced here is called the flux limiter, and this is a function that varies in the range 0 $
λν $ 1/3.

The radiation pressure Prad,ν can be obtained by applying Eddington approximation (Equation 3.19).
The Eddington tensor Drad,ν = DFLD,ν is expressed as follows:

DFLD,ν = 1 − χFLD,ν

2 I + 3χFLD,ν − 1
2 nFLD ⊗ nFLD (3.22)

nFLD ≡ ∇Eν

|Eν | , (3.23)

where nFLD is unit vector in the gradient direction of the radiative energy density. The Eddington
factor χFLD,ν is,

χFLD,ν = λν + λ2
νR2

ν (3.24)

Rν = |∇Erad,ν |
κνρErad,ν

. (3.25)

The various methods for determining the flux limiter λν have been proposed. For example, Levermore et al.
(1981) introduced λν as described below:

λν = 2 + Rν

6 + 3Rν + R2
ν

. (3.26)

In the optically thick limit (Rν → 0), we obtain λν → 1/3 and nFLD → 1/3. In the optically thin limit
(Rν → ∞), we obtain λν → 1/Rν and nFLD → 1 − 1/Rν .

M1 closure

In the M1 closure method, we obtain Erad,ν and Frad,ν by solving both the zeroth- and first-order
moment-based equations. The radiation pressure tensor Prad,ν is obtained by applying the Eddington
approximation (Equation 3.19). The Eddington tensor Drad,ν = DM1,ν is expressed in the same form
as in the FLD method as shown below:

DM1,ν = 1 − χM1,ν

2 I + 3χM1,ν − 1
2 nM1 ⊗ nM1. (3.27)

Unlike the FLD method, the direction of the unit vector nM1 is defined using the direction of the
radiation flux,

nM1 = Frad,ν

|Frad,ν | . (3.28)
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Figure 3.2: Left panel: distribution of the radiation energy density obtained by solving the Boltzmann’s equa-
tion. Right panel: same as the left panel but using the M1 closure method. In this case, unphysical radiation
collision occurs. Cited from Asahina et al. (2020)

The Eddington factor χM1,ν is obtained by

χM1,ν = 3 + 4ξ2
ν

5 + 2
√

4 − 3ξ2
ν

, ξν = |Frad,ν |
cErad,ν

. (3.29)

This approximation is accurate in the optically thick and optically thin limit as well as the FLD method:
ξν → 0, DM1,ν → 1

3 (optically thick limit), ξν → 1, DM1,ν → 1 (optically thin limit).
The M1 closure method is more accurate than the FLD method because the radiation flux can be

obtained by solving the first-order moment-based equation. However, the M1 closure method cannot
track the radiation accurately when fluxes from different directions collide. The right panel of Figure
3.2 cited from Asahina et al. (2020) shows the distribution of the radiation energy density obtained by
M1 closure method, and left panel shows the one obtained by solving a grid-based Boltzmann Equation.
We can see that unphysical radiation collision occurs in M1 closure method. If several radiation sources
are distributed, the above effects need to be taken into account. In this study, there is only one radiation
source, so this is not an important issue.

3.2 RHD simulations in SFUMATO-M1

In this study, we perform three-dimensional radiation hydrodynamics simulations with SFUMATO-M1
(Fukushima & Yajima, 2021). This code is based on SFUMATO-RT (Sugimura & Ricotti, 2020), which
is the modified version of SFUMATO (Matsumoto, 2007; Matsumoto et al., 2015). In SFUMATO-M1, the
module with the M1-closure technique is adapted instead of the adoptive ray- tracing solver developed
in Sugimura & Ricotti (2020). We further include the anisotropic radiation field and dust sublimation
for the current purpose (see Figure 3.3). In this section, we introduce the basic equations and solving
method of RHD simulations in SFUMATO-M1.
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Figure 3.3: Flowchart of RHD simulation code SFUMATO-M1.

3.2.1 Overview of simulation process in SFUMATO-M1

First of all, we outline the simulation process performed in SFUMATO-M1. Each simulation process is
described in detail in the following sections.

Figure 3.3 shows the flowchart of simulation process in SFUMATO-M1. First, we set the outer boundary
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condition. In our simulations, the size of the simulation box is set to be sufficiently larger than the
Bondi-Hoyle-Lyttleton radius and the size of the ionized region. The boundary conditions are given
as inflow-boundary and free-boundary (see Section 4.2.1 for more details). The next step is to refine
cells. In our simulations, since the nested grid continues to be employed for all of the simulation time,
the refinement is done only once in the initial step (see Section 3.2.2). Note that in a typical AMR
code, the cell is refined applying the refinement condition at every time step. Next, we set the initial
distribution of the physical quantities of the fluid (density, velocity, temperature, and pressure). Then,
sink particle is incorporated so that it is present at the maximum refinement level. The size of the sink
particle is set to be smaller than the size of the dust sublimation region. In our simulations, we generate
a sink particle only at the beginning of the simulation and do not add new sink particles thereafter.
The procedure up to this point is carried out in the initial step. After finishing the initial setup, the
time interval for solving the radiation hydrodynamics equations, ∆t, is set (see Section 3.2.4). Then,
we solve the radiation hydrodynamics equations without the source term (hydrodynamics part). The
next step is setting the radiation source (BH accretion disk) which is the source term in the radiation
transfer equations. We prepare the radiation source based on the BH accretion disk theory (see Section
4.2.3 and 4.2.4). Finally, we set the time interval ∆tRT, which is defined based on the speed of light
(see Section 3.2.7), and solve the equations of radiation transfer and the chemical reaction (radiation
transfer part and atomic process part). Then, we can estimate the radiation force and cooling and
heating rate, and we can calculate the radiation hydrodynamics equations (equation of motion and
energy equation) including source term. Since the time step of radiation transfer part is smaller than
that of the hydrodynamics part, the calculation of the radiation transfer part and the atomic process
part is repeated until it catches up with the 1-step of the hydrodynamics part (sub-step routine).

3.2.2 Adaptive mesh refinement method
The AMR method applied in this code is a powerful technique for simulations of the mesh schemes to
require a high dynamic range. The grids of differing resolutions can realize local high-resolution. In a
typical AMR code, a finer grid is inserted and its location is changed according to the given refinement
conditions (see Section 3.2.2).

Refinement conditions

In SFUMATO-M1, which is a simulation code that has developed in the field of star formation, the Jeans
condition is employed as a refinement condition; the blocks are refined when the Jeans length (πc2

s /Gρ)1/2

is shorter than 4-16 (user can set the numbers) times of cell width. In our simulations, we do not adopt
the Jeans condition since we do not consider the self-gravity.

We apply the nested grid approach. In the nested grid approach, the grids are refined adaptively,
while the sizes and positions of the sub-grids are fixed. Therefore, the problems in which this method
can be applied are limited to ones in which the object requiring fine grid resolution is located in the
center of the computational domain. The reason for applying this approach in our simulations is that
the rest frame of the BH is is adopted, and the BH is always centered for the all simulation time. This
approach also has the advantage of being less computationally expensive than a typical AMR code
because it does not need to check whether the refinement condition is satisfied at each time step.
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Figure 3.4: Schematic figure of the grid refinement process. The thick and thin lines represent the boundaries
of the blocks and the cells, respectively. In this figure, Each block consists of 83 = 512 cells. The block which
satisfies the refinement condition is refined into 8 child blocks (right panel). Cited from Matsumoto (2007).

Grid Refinement

We adopt a self-similar block-structured grid. In each block, there are Nx × Ny × Nz cells. Here, Nx,
Ny, and Nz represent the number of cells in the x-, y-, and z-directions, and each block has the same
number of cells. In our simulations, we set the number of cells to Nx = Ny = Nz = 8. The number of
cells in a block is fixed, but the cell width depends on the grid level. Thus, the blocks are self-similar.
Figure 3.4 shows a schematic diagram of a block-structured grid. A block with the same number of cells
(N = 8) as in our simulation is shown.

When a refinement condition is satisfied for some cells, the block including these cells is divided into
8 child (fine) blocks. Furthermore, each cell in the parent (coarse) block is also divided into 8 child cells
(see Figure 3.4). Thus, the cell width of the child grid is half of the parent one, and this means that the
refinement ratio is two. In a typical AMR code, the coarser the grid, the smaller the numbers labeled.
In this code, the most coarse-grid level is labeled l = 0, and the most fine-grid level is labeled l = lmax.
As explained above, the l-th grid-level has a 2l times higher spatial resolution than that of the most
coarse grid level. Such a layer-structure is managed by the octree structure, with the parent block links
with 8 child blocks. Also, a block links with its neighboring blocks. Every time the grid is refined, these
lists are reconstructed (Note that in our simulations, the number of levels is fixed from the beginning
to the end of the calculation).

Conservative variables of the parent cells

After child cells are generated, we need to estimate the conservative variables of its. Using the the
conservative variables of the parent cells UH

I,J,K , we obtain those of the child cells Uh
i,j,k. In this code,

linear interpolation with a slope limiter is employed,

Uh
i,j,k = UH

I,J,K + ∇UH ·
(
rh

i,j,k − rH
I,J,K

)
, (3.30)
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Figure 3.5: Re-fluxing procedure at the interface between coarse (l-th level) and fine (l + 1-th level) cells. Cited
from Matsumoto (2007).

where rh
i,j,k and rH

I,J,K are the position vectors in the direction of the centers of the child and parent
cells, respectively. The gradient in the parent cells is limited as follows:

∇UH =

⎛

⎜⎜⎜⎝

minmod
(
∂xUH

I+1/2,J,K, ∂xUH
I−1/2,J,K

)

minmod
(
∂yUH

I,J+1/2,K, ∂yUH
I,J−1/2,K

)

minmod
(
∂zUH

I,J,K+1/2, ∂zUH
I,J,K−1/2

)

⎞

⎟⎟⎟⎠ . (3.31)

In the refinement process, this interpolation method conserves the conservative variables,
∫

ΩH
I,J,K

UH(r)dr =
∫

ΩH
I,J,K

Uh(r)dr, (3.32)

where ΩH
I,J,K is the zone of a parent cell.

Re-fluxing at the interfaces between fine and coarse cells

To ensure that conservation laws satisfied, and to maintain consistency between the fine and coarse grid-
levels during time development, the re-fluxing procedure is adopted. In Figure 3.5, re-fluxing procedure
at the interface between fine and coarse cells is shown. Gray surfaces of coarse and fine cells are tangent
to each other. The conservative quantity UH , is integrated in time using the numerical flux of the coarse
cells, FH , and the Uh is also integrated in time using the numerical flux of the fine cells, Fh. The
following relation must be satisfied to conserve between coarse and fine cells,

FH∆SH =
∑

surface
Fh∆Sh. (3.33)

Here the sum of the right-hand side is the sum of the four fine cells neighboring the coarse cell. The
areas of the gray surfaces of coarse and fine cells, ∆SH and ∆Sh , are introduced as follows;

∆SH =
∑

surface
∆Sh. (3.34)

In general, without any considering, Equation 3.33 is not satisfied completely when integrating over
time. Therefore, UH is corrected as follows,

UH,new = UH − 1
∆V H

(
∑

n

∑

surface
Fh,n∆Sh∆th,n − FH∆SH∆tH

)

. (3.35)
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Here ∆V H denotes the volume of the coarse cells. The subscript n is the subcycle (time interval) of the
fine level during which the coarse level advances one step:

∆tH =
∑

n

∆th,n . (3.36)

We explain the details of time interval in the Section 3.2.4.

3.2.3 Setting of sink particle
Due to the limitation of computational resources, the AMR method cannot refine the grids infinitely,
so it is necessary to stop the refinement at some point. The sink particle is introduced to make this
compromise. Inside the sink particle, the accurate calculation is given up.

Assume that the sink particle is not a point mass and has an extent of radius rsink. This radius is
called the sink radius, and the inside of the sphere whose radius is the sink radius is called the sink
region. In SFUMATO-M1, which has been used in the context of star formation, a check for the generation
of a sink particle is carried out at every time step of the hydrodynamics calculation. A sink particle is
generated at the center of cell i(s), j(s), k(s) when all of the following conditions are satisfied:

• Gas density of the cell exceeds the threshold (ρi(s),j(s),k(s) > ρsink)

• Gas is falling into the cells
This condition requires that all three eigenvalues of the symmetric component
(1/2) (∂vl/∂rm + ∂vm/∂rl)i(s),j(s),k(s) of the tensor of velocity gradient in cell i(s), j(s), k(s), must

be negative. Here, the subscripts l, m = 1, 2, 3 denote the x, y, z components. 2

• Cells have minimum gravitational potential

• Gases within the sink region are gravitationally bound
This means that the total energy in the sink region is negative:

∫

|r−ri(s),j(s),k(s)|<rsink

[1
2ρ
(
v − vi(s),j(s),k(s)

)2
+ P

γ − 1

]
dV − 3GMsink

5rsink
< 0 (3.37)

Msink =
∫

|r−ri(s),j(s),k(s)|<rsink
ρdV. (3.38)

The integrals in Equation 3.37 and 3.38 represent volume integrals within the sink region, but in
the simulation, the integrand values in each cell are summed.

• Sink regions do not overlap with other sink particles

So far, we introduced the general method of generating the sink particles incorporated in SFUMATO-M1.
In our simulations, only one sink particle (black hole + accretion disk system) is generated at the center
of the simulation box at the start of the simulation. Note that no additional sink particles are generated
as the time evolution.

The accretion process in the sink region

Sink particles accrete gas in the sink region. There are several ways of gas accretion, such as the
method that gas is accreted equally from every cell in the sink region, or the method that gas is

2The condition that the divergence of velocity is negative, (∇ · v)i(s),j(s),k(s) < 0, is not enough.
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weighted according to distance from the center of the sink region and more gas is accreted from cells
that are closer to the center of the sink region. In our simulations, we adopt the former method. In this
method, the density exceeding the threshold ρsink in the sink region is accreted to the sink particles.

ρacc(r) = max (ρ(r) − ρsink, 0) , (3.39)
ρnew(r) = ρ(r) − ρacc = min (ρ(r), ρsink) , (3.40)

∆Msink =
∫

|r−rsink|<rsink
ρacc(r)dV. (3.41)

Here ρacc is the gas density undergoing mass accretion, ρnew is the gas density after accretion, ∆Msink
is the mass increase of sink particles, and rsink is the position of sink particles.

Sink particles accrete not only mass but also momentum. The momentum increase of the sink particle
∆psink and the velocity after mass accretion vnew

sink can be calculated as follows,

∆psink =
∫

|r−rsink|<rsink
ρacc(r)v(r)dV, (3.42)

vnew
sink = Msinkvsink + ∆psink

Msink + ∆Msink
, (3.43)

where Msink and vsink are the mass and velocity of the sink particle before accretion, respectively. The
gas velocity is not changed by mass accretion. This is because the momentum of the mass accreting gas
is proportional to ρacc. Sink particles also accrete energy, but for the same reason, accretion does not
change the internal energy per unit mass of gas.

So far, we introduced the accretion process implemented in SFUMATO-M1. In our simulations, the
increase in the mass of sink particle due to mass accretion is taken into account. Note that the mass
increase over the computation time is negligibly small relative to the initial mass. Also, our simulations
do not consider changes in the momentum of the sink particle. For all times in the simulation, the sink
particles remain stationary at the origin (and do not change the momentum of the surrounding gas).

Gravity acting on gas by sink particles

The gravity induced by the sink particle on the gas is a point source, but the gravity is softened to
avoid extremely large acceleration of the gas in the vicinity of the sink particle.

In SFUMATO, the gravity produced by point sources (sink particles) is expressed as (Matsumoto et al.,
2015):

g =

⎧
⎨

⎩
−GMsink

r−rsink
|r−rsink|3 (|r − rsink| ≥ rsink)

−GMsink
r−rsink

r3
sink

(|r − rsink| < rsink)

In the outside of the sink region, this gravity equals that of the point source; in the inside of the sink
region, it is proportional to the distance from the sink particle.

3.2.4 Setting time interval
The time-marching proceeds in units at the grid-level. In this code, two modes of time-marching are
incorporated: an adaptive (left panel of Figure 3.6) and a synchronous time-step mode (right panel of
Figure 3.6). Which mode is used depends on whether the gas is non-self-gravitational or self-gravitational
(w/o radiation transfer or w/ radiation transfer). The adaptive time-step mode is appropriate for non-
self-gravitational gases or w/o radiation transfer, and is based on the method of Berger & Colella (1989).
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Figure 3.6: The methods of time interval in SFUMATO-M1.

In this mode, a coarser grid has a longer time step than a finer grid. In contrast, the synchronous mode
is appropriate for self-gravitational gases or w/ radiation-transfer, and every grid-level has the same
time step. This is because evolution on the fine grid affects the detached coarse grid immediately due
to self-gravity or radiation, and so the same time step must to be chosen for every grid-level. In our
simulations, we take into account the radiation, thus we adopt the synchronous time-step mode.

Figure 3.6 shows the order in which the grid-levels proceed for the adaptive time-step mode and
synchronous time-step mode schematically. The numbers associated with the thick arrows denote the
order of time-marching. Coarser grid-levels precede finer grid-levels.

In the adaptive time-step mode, the fine grid-level undergoes several sub-cycles until the time level of
the fine grid-level is synchronized with that of the coarse grid-level. The time step of a finer grid-level,
∆th, is given by

∆th = ∆tH

2n
, (3.44)

where n is defined as

n = min
(
m ∈ N|∆tH/2m ≤ ∆th

CFL
)

. (3.45)

where ∆th
CFL denotes the time step calculated directly by the CFL condition at the fine grid-level, and

∆tH denotes the time step at the coarser grid-level.
In the synchronous time-step mode, a common time step ∆t is used at all grid-levels, and is given by

∆t = min
0≤l≤lmax

(
∆tl

CFL
)

, (3.46)

where ∆tl
CFL denotes the time stepcalculated by the CFL condition at grid-level l.
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3.2.5 Governing equations in SFUMATO-M1
Basic equations of hydrodynamics (+radiation)

Using Cartesian coordinates, the basic equations of hydrodynamics based on the mass conservation law,
momentum conservation law, and energy conservation law can be expressed as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.47)

∂ (ρv)
∂t

+ ∇ · (ρv ⊗ v + PI) = ρ (g + f) , (3.48)
∂ (ρE)
∂t

+ ∇ · [(ρE + P )v] = ρ (g + f) · v + Γ − Λ. (3.49)

The total energy E is defined as

E = |v|2

2 + (γ − 1)−1 P

ρ
. (3.50)

Barotropic and isothermal equations of state are also implemented in the this code. In these equations
of state, P is expressed as a function of ρ:

P = ρkBTg
µmp

, (3.51)

where kB, Tg, µ, and mp means Boltzmann constant, gas temperature, average molecular weight, and
proton mass.

Basic equations of radiation transfer

In this code, we do not consider the contribution of scattering process of photons. Thus, radiation
trasnfer equation is discribed as

1
c

∂Iν

∂t
+ n · ∇Iν = jν − ανIν . (3.52)

In order to obtain the zero-th and first moment equations, we integrate radiation transfer equation
(Equation 3.52) over all solid angles, 3

∂Erad
∂t

+ ∇ · Frad = Srad − αEc̃Erad (3.53)
1
c̃

∂Frad
∂t

+ c̃∇ · Prad = −αFFrad, (3.54)

where Srad is the source term, and αE and αF are the absorption coefficient weighted radiation energy
density and radiation flux. Note that we have removed the frequency subscript, since these equations
is solved independently for each frequency bins over the time-step. c̃ indicates the reduced light speed
(e.g. Rosdahl et al., 2013). In the Section 3.2.7, we discuss the specific methods for solving the radiation
transfer equations and limiting the speed of light in more detail.

In the momentum-based method, the radiation pressure tensor is defined with the Eddington tensor
Drad and the radiation energy density Erad. If we solve the Equation 3.52, we can obtain the accurate
values of Eddington tensor. However, solving it directly is computationally expensive. Therefore, we
apply the M1 closure scheme.

3In Equation 3.53 and 3.54, we adopt the reduced speed of light approximation. Accurately, Erad on the right-hand side of
Equation 3.53 is defined by cErad/c̃. However, considering that the source function on the right-hand side is not related to the
light speed limit, we assume the original value cErad/c̃ to be Erad.
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Basic equation of chemical reaction

We take into account the chemical networks of 11 species as explained in Section 3.2.8. The number
density of the s-th specie is calculated as

∂(ysnH)
∂t

+ ∇ · (ysnHv) = ysnHRs. (3.55)

Conservative form of basic equations

The basic equations 3.47-3.49 and 3.53-3.54 can be summarized as

∂U
∂t

+ ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
= S, (3.56)

where U is a vector of conservative variables, Fx, Fy, and Fz are numerical fluxes, and S is the source
term vector. The form of equation (3.56) is called conservative form. In this form, we can solve the
basic equations with guaranteeing the law of mass conservation, energy conservation, and momentum
conservation if there is no external force.

For our simulations, the vectors in Equation 3.56 are expressed by

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρvx

ρvy

ρvz

ρE

Erad
Frad,x/c2

Frad,y/c2

Frad,z/c2

ysnH

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.57)

Fx =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρvxvx + P

ρvxvy + P

ρvxvz + P

ρHvx

Frad,x

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,xnM1,x
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,xnM1,y
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,xnM1,z
)

ysnHvx

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.58)
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Fy =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx + P

ρvyvy + P

ρvyvz + P

ρHvy

Frad,y

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,ynM1,x
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,ynM1,y
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,ynM1,z
)

ysnHvy

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.59)

Fz =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvzvx + P

ρvzvy + P

ρvzvz + P

ρHvz

Frad,z

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,znM1,x
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,znM1,y
)

Erad
(

1−χM1
2 + 3χM1−1

2 nM1,znM1,z
)

ysnHvz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.60)

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ρ (gx + fx)
ρ (gy + fy)
ρ (gz + fz)

ρ (g + f) · v + Γ − Λ
Srad − αEc̃Erad

−1
c̃αFFrad,x

−1
c̃αFFrad,y

−1
c̃αFFrad,z
ysnHRs

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.61)

Here, H is enthalpy per unit of mass which is defined as

H = E + P

ρ
. (3.62)

3.2.6 Solving method for hydrodynamics part
We adopt the operator-splitting method to advance the time step ∆t, i.e., the hyperbolic part and the
source term in Equation 3.56 are solved separately:

∂U
∂t

= −∂Fx

∂x
− ∂Fy

∂y
− ∂Fz

∂z
, (3.63)

∂U
∂t

= S. (3.64)
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In the hydrodynamics part, we solve conservative form of governing equations without radiation transfer
equations, i.e. the conservative variables, the numerical fluxes, and the source term in hydrodynamics
part are described as below:

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρvx

ρvy

ρvz

ρE

ysnH

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.65)

Fx =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρvxvx + P

ρvxvy + P

ρvxvz + P

ρHvx

ysnHvx

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.66)

Fy =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx + P

ρvyvy + P

ρvyvz + P

ρHvy

ysnHvy

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.67)

Fz =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvzvx + P

ρvzvy + P

ρvzvz + P

ρHvz

ysnHvz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.68)

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ρ (gx + fx)
ρ (gy + fy)
ρ (gz + fz)

ρ (g + f) · v + Γ − Λ
ysnHRs

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.69)

In the hydrodynamics part, we solve Equation 3.63 with time interval ∆t evaluated from CFL condition.
Equation 3.64 is calculated in the radiation transfer part and the atomic process part with time interval
∆tRT (see section 3.2.7). In this section, we introduce the solving method for former equation.

First of all, we explain notation of discretization in this paper. The computational domain is divided
into cells, each of size ∆x×∆y×∆z. Each cell is labeled by (i, j, k) the indices of the cell in the x-, y-, and
z-directions, respectively. The location of the cell center is indicated by the position vector ri,j,k. The
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Figure 3.7: Schematic diagram of the calculation procedure for Godunov-type scheme.

conservative variables U , and the source term S are defined at the cell center, i.e., U i,j,k := U i,j,k (ri,j,k),
and Si,j,k := Si,j,k (ri,j,k). The numerical fluxes Fx, Fy, and Fz are defined at the cell surfaces with
normals in the x-, y-, and z-directions, respectively. For convenience, the notation of Fx, i ± 1/2, j, k :=
Fx (ri,j,k ± (∆x/2)x̂) is introduced, where x̂ denotes the unit vector in the x-direction. We introduce
the following notation to describe the spatial differences,

∂Qi+1/2,j,k

∂x
= Qi+1,j,k − Qi,j,k

∆x
(3.70)

∂Qi,j,k

∂x
= Qi+1/2,j,k − Qi−1/2,j,k

∆x
(3.71)

∂2Qi,j,k

∂x
= Qi+1,j,k − 2Qi,j,k − Qi−1,j,k

∆x2 . (3.72)

The differences in the y- and z-directions are expressed in a similar manner.
To integrate Equation 3.63, the numerical flux is obtained using the linearized Riemann solver in

this code (Roe, 1981). Roe method is one of the Godunov methods. For the Godunov method, when
solving the Riemann problem at the cell boundary, the exact solution is used as the solution to the
Riemann problem. However, the computational cost of this scheme is not small, as an iterative method
such as Newton’s method is required to find a solution to the Riemann problem. Therefore, several
methods have been proposed which use approximate solutions to the Riemann problem. One of these
is the Roe method. The Roe method is based on the idea of an upwind differences scheme 4. This is
the methods that assume an analytical solution to make the Riemann problem easier to compute. Such
an extension of the Godunov method using an approximate solution to the Riemann problem is called
a Godunov-type scheme (see Figure 3.7).

Godunov-type schemes are first-order accuracy in both space and time. In this code, the MUSCL
method and the midpoint method are incorporated to achieve second-order accuracy in both space
and time. The Godunov-type scheme is first-order accuracy in space because the spatial derivative
is approximated by the upwind difference and the physical quantity inside the cell is assumed to be
constant. The upwind difference is based on the forward and backward differences and thus is a first-

4Note that in the radiation transfer part, fluxes are evaluated using the HLL and GLF methods.
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order spatial accuracy 5. Even for upwind differences, if the physical quantities inside the cell are
approximated by a linear function, the spatial difference becomes second-order accuracy. This method
is generally called the MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) method.
Our code incorporates the MUSCL method. However, it is known to be unstable if only the spatial
difference is second-order accuracy and the time difference is left as first-order accuracy. Therefore, this
code incorporates the midpoint method to ensure the time accuracy is also second-order 6. The midpoint
method is a method that first advances time by half (predictor step) and then advances time using the
numerical flux of the half-advanced time (corrector step). This method is called the predictor-corrector
method.

In the predictor step, time is advanced from n to n + 1/2 steps with a forward difference of first-order
accuracy in time, and the physical quantities at n + 1/2 steps is obtained, i.e., Un

i,j,k is updated to
Un+1/2

i,j,k (see Figure 3.8):

Un+1/2
i,j,k = Un

i,j,k − ∆t

2
(
∂xFn

x,i,j,k + ∂yFn
y,i,j,k + ∂zFn

z,i,j,k

)
, (3.73)

where the superscript n denotes the time level, and ∆t = tn+1 − tn. The numerical flux Fn, which is
defined at the cell boundaries, is calculated using the primitive variables,

P =

⎛

⎜⎜⎜⎜⎜⎜⎝

ρ

vx

vy

vz

P

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.74)

The advantage of evaluating numerical fluxes using the primitive values P is that monotonicity is
guaranteed by the supplementation of density and pressure. When the supplementation is done by the
conservative variable U , the density and pressure could be negative.

In the corrector step, a spatially second-order numerical flux Fn+1/2 is obtained by applying MUSCL
extrapolation to the amplitudes of the eigenmodes, which are converted from Un+1/2. Using this flux,
Un

i,j,k is upadated to Un+1
i,j,k by a full time step,

Un+1
i,j,k = Un

i,j,k − ∆t
(
∂xFn+1/2

x,i,j,k + ∂yFn+1/2
y,i,j,k + ∂zFn+1/2

z,i,j,k

)
. (3.75)

Since central differences are used in time, the accuracy becomes second-order in time as well as in space
7.

5The forward difference and backward difference are
(

∂U
∂x

)

i
= Ui+1 − Ui

∆x
+ O(∆x),

(
∂U
∂x

)

i
= Ui − Ui−1

∆x
+ O(∆x).

6Another method for achieving second-order time accuracy is Heun’s method. In Heun’s method, time is advanced using a
trapezoidal formula. This method is often referred to as the Runge-Kutta method in the field of astrophysics. In this method, the
numerical fluxes of first-order accuracy in time are obtained in n and n + 1 steps, and these are averaged to obtain second-order
accuracy in time, i.e., unlike the midpoint method, fractional steps such as n + 1/2 do not appear. The time steps are all integer
steps.

7The central difference is
(

∂U
∂x

)

i
= Ui+1 − Ui−1

2∆x
+ O(∆x2).
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Figure 3.8: The predictor-corrector method.

3.2.7 Solving method for radiation transfer part
In the radiation transfer part, we solve the moment-based radiation transfer equations. As a result,
we can calculate the physical quantities related to radiation such as radiation force f , heating rate Γ,
cooling rate Λ (To be precise, Γ and Λ are obtained after solving the atomic process part). Thus, we can
calculate the source term of governing hydrodynamics equations. Moment-based radiation transfer with
M1-closure is applied for extreme ultraviolet (EUV), far-ultraviolet (FUV), and in-frared (IR) photons
(e.g. Rosdahl et al., 2013; Rosdahl & Teyssier, 2015; Kannan et al., 2019). In this section, we summrize
the details of the radiation transfer part of SFUMATO-M1, which is developed by Fukushima & Yajima
(2021).

Time-step of radiation transfer

The radiation transfer step is computationally expensive, so we use basic trick to speed up the calcu-
lation. In each iteration before the three radiation transfer steps ( Injection step, Transfer step, and
Thermochemistry step), we need to determine the length of the time-step ∆tRT:

∆tRT = CRT
∆x

3c̃
. (3.76)

where ∆x is the cell width in each level of the AMR grid, and CRT is Courant number which is adapted
CRT = 0.8 in this simulations. We relax the Courant condition by changing the speed of light to a
reduced light speed c̃ << c. Gnedin & Abel (2001) introduce this idea, generally called the reduced
speed of light approximation. In this approximation, reducing the speed of light, while keeping it faster
than the typical speed of hydrodynamics in the system, yield the correct solution at a much reduced
CPU cost. We split radiation transfer part from the hydrodynamics part. If the time-step in the
hydrodynamic part is larger than the that in the radiation transfer part ∆tRT, we calculate radiation
transfer as the subcycle steps. The sub-sycle ends when the integration time of the radiation transport
step is the same as the hydrodynamics part.

Although not applied in this calculation, there is another way to solve the radiation transport equa-
tion using an implicit rather than an explicit solution method. Solving implicitly ensures that the
computation is always stable, no matter how large the time step, and removes the coolant condition.
However, this does not imply that the calculation is accurate; in fact, some time step conditions are
necessary to maintain accuracy. Furthermore, such conditions usually have to be checked by trial and
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error. Such trial-and-error time-stepping is a global process that is very computationally expensive.
Thus, in our code, we do not apply the implicit method.

Computational procedure for EUV and FUV photons

In our simulations, we split the frequency into three parts, infrared photons (IR), far-ultraviolet (FUV;
11.6eV ≤ hν < 13.6eV), and extreme ultraviolet (EUV; 13.6eV ≤ hν ≤ 1keV) photons. First of all, we
describe the details of the computational methods for EUV and FUV bins.

In this code, we calculate transfer of the photon number density directly instead of equations 3.53 and
3.54 for EUV and FUV photons. 8 This is because it is convenience to calculate the photoionization
and the photodissociation rates which are evaluated by the number density of EUV and FUV photons
(Rosdahl et al., 2013). The equations of the photon number density and photon number flux are

∂Nγ

∂t
+ ∇ · Fγ = Ṅγ,∗ − ᾱc̃Nγ , (3.77)

∂Fγ

∂t
+ c̃2∇ · Pγ = −ᾱc̃Fγ . (3.78)

Here, Nγ , Fγ , and Ṅγ,∗ are the photon number density, the photon number flux, and the photon injection
rate by radiation source. The radiation pressure tensor Pγ is calculated from the M1 closure method
(see Equations ?? and 3.27). The frequency-averaged absorption coefficient ᾱ is given as

ᾱ = niσ̄i, (3.79)

where the frequency dependent cross-section σ̄i is defined as

σ̄i =
∫ ν2

ν1
4πJν
hν σi(ν)dν

∫ ν2
ν1

4πJν
hν dν

. (3.80)

Here, Jν is the mean intensity:

Jν = 1
4π

∫
IνdΩ = c̃

4πErad,ν . (3.81)

Each grid has four variables associated with radiation transfer equatinos (Nγ ,Fγ) for EUV and FUV
bins. Fukushima & Yajima (2021) adopt the operator-splitting method to advance the time-step ∆t

with reference to Rosdahl et al. (2013). Here, we introduce calculation step of moment-based radiation
transfer equations following three steps.
STEP1: Injection step

In this step, the photons emitted from the radiation sources are injected:

Nn+1
γ = Nn

γ + Ṅγ,∗∆tRT, (3.82)

where Ṅγ,∗ is the injection rate from the luminous sources and defined as:

Ṅγ,∗ = Si

∆V
. (3.83)

Here, Si is photon emissivity and ∆V is the volume of each cell. In this study, we assume the injection
rate with photon emissivity of EUV, FUV, and IR components is related to the mass accretion rate
onto the sink region.

8In contrast to the EUV and FUV cases where the photon number density is solved, the moment equations for radiation transfer
(Equation 3.53 and 3.54) are solved in the IR range (see Section 3.2.7).

69



STEP2: Transfer step
In this step, the photon propagation without the source and absorption terms in equations 3.77 and

3.78 are calculated,

∂Nγ

∂t
+ ∇ · Fγ = 0, (3.84)

∂Fγ

∂t
+ c̃2∇ · Pγ = 0. (3.85)

If we introduce the following variables,

U =

⎛

⎜⎜⎜⎜⎝

Nγ

Fγ,x/c̃2

Fγ,y c̃2

Fγ,z c̃2

⎞

⎟⎟⎟⎟⎠
, (3.86)

Fx =

⎛

⎜⎜⎜⎜⎜⎝

Fγ,x

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,xnM1,x

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,xnM1,y

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,xnM1,z

)

⎞

⎟⎟⎟⎟⎟⎠
, (3.87)

Fy =

⎛

⎜⎜⎜⎜⎜⎝

Fγ,y

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,ynM1,x

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,ynM1,y

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,ynM1,z

)

⎞

⎟⎟⎟⎟⎟⎠
, (3.88)

Fz =

⎛

⎜⎜⎜⎜⎜⎝

Fγ,z

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,znM1,x

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,znM1,y

)

Eγ

(
1−χM1

2 + 3χM1−1
2 nM1,znM1,z

)

⎞

⎟⎟⎟⎟⎟⎠
, (3.89)

these equations (Equation 3.84 and 3.85) are summarized as following form:

∂U
∂t

+ ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
= 0. (3.90)

In each time step, we solve the explicit formula of Equation 3.90:

UnRT+1 − Un
RT

∆tRT
+

FnRT
i+1/2 − FnRT

i−1/2
∆x

+
FnRT

j+1/2 − FnRT
j−1/2

∆y
+

FnRT
k+1/2 − FnRT

k−1/2
∆z

= 0, (3.91)

where nRT is the time step number in radiation transfer part, and i, j, and k are the indices of cells in
x-, y-, and z-directions. The inter-cell fluxes, for example Fn

i+1/2, are calculated using the flux between
the i-th cell and the (i + 1)-th cell. In this study, we adopt the global Global Lax-Friedrich (GLF)
scheme, in which the inter-cell fluxes are evaluated as:

(FGLF)nRT
i+1/2 = FnRT

i + FnRT
i+1

2 − c̃

2(UnRT
i+1 − UnRT

i ). (3.92)
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Figure 3.9: Comparison with the HLL (top) and GLF (bottom) flux functions. The distribution of the pho-
ton density obtained by 2D RAMSES-RT simulations (no photon–gas interaction) is plotted. Cited from
Rosdahl et al. (2013).

Incidentally, SFUMATO-M1 provides two options for solving the inter-cell flux, including Harten-Lax-van
Leer method (HLL) as well as GLF (Harten et al., 1983). In the HLL method, the inter-cell fluxes are
calculated as:

(FHLL)nRT
i+1/2 = λ+FnRT

i − λ−FnRT
i+1 + λ+λ−(UnRT

i+1 − UnRT
i )

λ+ − λ− , (3.93)

where λ+ and λ− are the maximum and minimum eigenvalues of the Jacobian ∂F/∂U ,

λ+ = max
(
0,λmax

i ,λmax
i+1
)

, (3.94)

λ− = min
(
0,λmin

i ,λmin
i+1
)

. (3.95)

The computation of these eigenvalues is rather time-consuming because we need them at each iteration
in a time step and at each interface of the mesh. However, since they only depend on two parameters,
the reduced flux frad (Equation 3.29) and the angle of incidence of the flux vector to the cell interface
θrad, they can be tabulated easily. We therefore decided to compute them once for a set of frad and θrad
and to interpolate the value needed. This method performs well because the eigenvalues have a smooth
behavior.

As can be seen from Equation 3.92 and 3.93, GLF corresponds to the replacement of the eigenvalue
of HLL by the speed of light (λ+ = c,λ− = −c). Therefore, GLF has the effect of making the radiative
transport more diffusive than that of HLL. Figure 3.9 cited from Rosdahl et al. (2013) shows that
comparison of radiation transfer with the HLL (top) and GLF (bottom) flux functions, using isotropic
radiation source and beams in 2D RAMSES-RT runs. From this figure, it is clear that beams are
better modelled with the HLL flux function than with the GLF one. On the other hand, the inherent
directionality in the HLL function results in radiation around isotropic sources which is noticeably
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asymmetric, due to the preference of the axis directions. Since the GLF function is better to follow the
isotropic radiation, we adopt the GLF function in this study.
STEP3: Thermochemistry step

Here, we solve for the interaction between photons and gas. This is done by solving Equation 3.77
and 3.78 with zero divergence and stellar injection terms.

3-1. First of all, we solve the energy equations and non-equilibrium chemistry. We estimate the pho-
toionization and photoheating rates of neutral hydrogen (RHI, Γ2), photodissociation rates of H2
and CO molecules (RH2 , RCO), and dust absorption rate of EUV, FUV, and IR photons.
EUV: In our code, the EUV photons are absorbed by neutral hydrogen and dust grains. The
total absorption coefficient is calculated by

ᾱ = ᾱHI + ᾱd. (3.96)

Here, we difine ᾱHI and ᾱd are the absorption coefficients for neutral hydrogen and dust grains.
Thease frequency-averaged absorption coefficient ᾱHI and ᾱd are given as Equation 3.79 and 3.80.
When we solve Equation 3.79 and 3.80, it is necessary to have information of the frequency depen-
dent cross-section of neutral hydrogen σHI(ν) and that of dust grains σd(ν). In this code, σHI(ν)
is given by Osterbrock & E. (1989) and σd(ν) is given by Laor et al. (1993).
The photoionization and photoheating rates (RHI, Γ2) are estimated as

RHI = σ̄HIc̃Nγ,EUV, (3.97)
Γ2 = nHIσ̄HIc̃Nγ,EUVγ̄HI (3.98)

where Nγ,EUV is the number density of EUV photons, and σ̄HI is frequency-mean cross section
given by Equation 3.80. Here, the heating rate per a hydrogen atom γ̄HI is calculated as

γ̄HI =
∫ ν2

ν1
4πJν
hν σHI(ν)[h(ν − νL)]dν

∫ ν2
ν1

4πJν
hν dν

. (3.99)

FUV: We calculate the photodissociation rates (RH2 , RCO) using FUV photon number density
Nγ,FUV,

Ri = fshield,iσic̃Nγ,FUV (i = H2, CO) . (3.100)

Here, the cross-sections of H2 and CO are estimated from the reaction rates referenced from
Draine & Bertoldi (1996) and Lee et al. (1996). The FUV photons are absorbed by dust grains.
We take the self-shielding factor fshield,i in Equation 3.100. In general, the self-shielding is evaluated
by the column density along the photon trajectory (Draine & Bertoldi, 1996). However, in the
moment method applied in this code, the photon trajectories can not be followed. Thus, to get
the self-shielding factor, we evaluate the column density only from local variables as

Ni = ni min (λJ, lSob) (i = H2, CO) , (3.101)

where lSob is the Sobolev length defined as

lSob = vth
dv/ds

, (3.102)
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λJ is the local Jeans length, vth is the thermal velocity of molecules, and dv/ds is the velocity
gradient. We obtain the self-shielding factor by applying above column density to formula for the
H2 given by Wolcott-Green & Haiman (2019) and for the CO given by Lee et al. (1996). Note
that, we overestimate the column density of Equation 3.101 in the static media. Hence, we adopt
the column density estimated with the local Jeans length as the upper limits of that estimated
with the local Sobolev length.

3-2. Next, we estimate the photon emission via recombination process and the photon absorption of
each frequency bins. The moment equations (Equations 3.77 and 3.78) without the transfer terms
are

∂Nγ

∂t
= Ṅγ,rec − ᾱc̃Nγ , (3.103)

∂Fγ

∂t
= −ᾱc̃Fγ , (3.104)

where Ṅγ,rec is the emissivity of the recombination process. We note that this term is included
only for EUV photon transfer and estimate it by following equation:

Ṅrec,γ = (kH1,A − kH1,B) nIIne∆tRT. (3.105)

Here, kH1,A and kH1,B mean the case-A and case-B recombination rates. These values are tabulated
in Table 3.11 cited from Fukushima & Yajima (2021).
We solve these equations (Equation 3.103 and 3.104) implicitly to avoid the photon number density
being negative as shown below:

NnRT+1
γ = 1

1 + ᾱc̃∆tRT

[
NnRT

γ + Ṅγ,rec∆tRT
]

, (3.106)

F nRT+1
γ = 1

1 + ᾱc̃∆tRT
F nRT

γ . (3.107)

Equations 3.106 and 3.107 are solved numerically using a partly semi-implicit Euler formulation, in
the sense that they are implicit in the photon density and flux but otherwise explicit (temperature
and the ion abundances, see Section 3.2.8).

In summary, for each frequency bins, we solve the set of equations 3.77-3.78 with an operator splitting
strategy, which involves decomposing the equations into three steps that are executed in sequence over
the same time-step ∆tRT, which has some pre-determined length. The steps are: [STEP1] Photon
injection step, where radiation from stellar and other radiation sources (other than gas recombinations)
is injected into the grid. This corresponds to the Ṅγ,∗ term in Equation 3.77. [STEP2] Photon transport
step, where photons are propagated in space. This corresponds to solving Equation 3.77-3.78 with the
right-hand side being equal to zero. [STEP3] Thermochemistry step, where the rest of the right-hand
side of Equation 3.77-3.78 is solved. This is where the photons and the gas couple, so here we evolve
not only the photon densities and fluxes, but also the ionization state and temperature of the gas (see
Section 3.2.8).

Computational procedure for IR photons

Second, we describe the details of the computational methods for IR bin. In contrast to the EUV and
FUV cases where the photon number density is solved, the moment equations for radiation transfer
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(Equation 3.53 and 3.54) are solved in the IR bin. Thus, each grid has four variables associated with
radiation transfer equatinos (Erad,Frad). In STEP 1 and STEP 2, we only need to replace (Nγ ,Fγ)
with (Erad,Frad). We explain only STEP 3 in this section.
STEP3: Thermochemistry step

The computational methods for thermochemical evolution and photon absorption in IR bins are
incorporated as described below.

3-1. First of all, we solve the energy equations and non-equilibrium chemistry.
Infrared photons are emitted from dust grains mainly as thermal radiation. In this code, the tem-
peratures of gas Tg and dust grains Td are calculated separately. We estimate the dust temperature
based on the energy equilibrium state among (1) energy transfer between gas and dust, (2) dust
thermal emission, (3) absorption of IR photons, and (4) absorption of EUV photons as

Cg(Td − Tg) + κd(Td)acT 4
d = κd(TIR)c̃EIR + EEUV, (3.108)

where Cg is the coefficient of the energy transfer which is given as (Hollenbach & McKee, 1979;
Omukai, 2000; Omukai et al., 2005)

Cg = 5.83 × 10−8nH

(
Tg

103K [1 − 0.8 exp (75K/Tg)]
)

. (3.109)

In Equation 3.108, EEUV = κd,EUVc̃EEUV means the absorption rate of dust for EUV photons. Here,
EIR and EEUV are the energy density of IR and EUV radiation. We prepare the pre-calculated
table of the plank opacity related to the absorption of IR radiation κd(TIR) and the dust thermal
emission κd(Td). This is the function of IR radiation temperature TIR and dust temperature Td,
and derived from the opacity table derived in Laor et al. (1993). In this code, we apply the these
opacity κd and the coefficient of the energy transfer Cg at Z = Z⊙ since the energy balance on a
single dust grain (Equation 3.108) is not related to the amount of dust grains.

3-2. Next, we estimate the photon emission via thermal emission process and the photon absorption
by dust grains. The zero-th moment equation (Equation 3.53) with out the transfer terms is

∂EIR
∂t

= ρ
[
κd(Td)acT 4

d − κd(TIR)c̃EIR
]

. (3.110)

Here, the radiation temperature TIR for IR range is only calculated from the IR radiation energy
density. However, in order to calculate dust temperature Td in the first term on the right-hand side
of Equation 3.110, we need to include irradiation from radiation sources and the energy transport
between the gas and dust grain. Thus, we adopt a semi-implicit scheme to solve Equation 3.110,
assuming the energy balance on dust grains. Equation 3.109 and 3.110 are then discredited as
follows

Cg(T nRT+1
d − T nRT

g ) + κd(T nRT
d )ac(T nRT+1

d )4 = κd(T nRT
IR )c̃EnRT+1

IR + EEUV (3.111)
EnRT+1

IR − EnRT
IR

∆tRT
= ρ

[
κd(T nRT

d )ac(T nRT+1
d )4 − κd(T nRT

IR )c̃EnRT+1
IR

]
. (3.112)

We assume that dust opacity is constant during the update phase of the infrared radiant energy
density because the sensitivity of opacity to dust temperature is lower than the T 4

d term. Equation
3.112 has a nonlinear term that makes it difficult to be solved, so we linearize this term as follows

(T nRT+1
d )4 = (T nRT

d + ∆Td)4

≃ (T nRT
d )4 + 4(T nRT

d )3∆Td, (3.113)
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where we define ∆Td = T nRT+1
d − T nRT

d . Substituting Equation 3.113 into 3.111, and using the
relation of Equation 3.108 at timestep nRT, the relation between ∆Td and ∆EIR = EnRT+1

IR − EnRT
IR

is obtained as

∆Td = κ0
d (T nRT

IR ) c̃

Cg + 4κ0
d (T nRT

d ) ac (T nRT
d )3 ∆EIR. (3.114)

Substituting Equation 3.113 and 3.114 into Equation 3.112, we obtain the rate of change of IR
energy density,

∆EIR =
ρ∆tRT

[
κd (T nRT

d ) ac (T nRT
d )4 − κd (T nRT

IR ) c̃EnRT
IR

]

[1 + ρ∆tRTκd (T nRT
IR ) c̃/ (1 + χ)] . (3.115)

Here, we define χ as

χ = 4κ0
d (T nRT

d ) ac (T nRT
d )3

Cg
. (3.116)

The first moment equation (Equation 3.54) with out the transfer terms is

∂FIR
∂t

= −ρκd(TIR)c̃FIR. (3.117)

We solve this equation explicitly as shown below:

F nRT+1
IR − F nRT

IR
∆tRT

= −ρκd(T nRT
IR )c̃F nRT

IR . (3.118)

Radiation force

To solve the basic equations for radiation hydrodynamics simulations (Equation 3.48 3.49), we need to
calculate the radiation force f . We evaluate it using the photon number flux Fγ in EUV and FUV bins,
and radiation flux F in IR bin,

f = yHIσ̄HI + σ̄d
c(1 + 4yHe)mp

(hν̄Fγ)EUV + σ̄d
c(1 + 4yHe)mp

(hν̄Fγ)FUV + κd(TIR)
c

FIR. (3.119)

Here, mp and hν̄ are proton mass and mean energy of EUV and FUV photons.

3.2.8 Solving method for atomic process part
Thermal update

The gas temperature is updated by solving

∂Tg
∂t

= (γ − 1)µmp
ρkB

(Γ − Λ) . (3.120)

Equation 3.120 is solved numerically using implicit formulation. The temperature is updated to 9

T nRT+1
g = T nRT

g + (γ − 1)µmp
ρkB

(
Γ(T nRT+1

g ) − Λ(T nRT+1
g )

)
∆tRT. (3.121)

9In the hydrodynamics part, we already have calculated gas density ρ = ρn+1.
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Figure 3.10: Thermal processes incorporated into SFUMATO-M1. Cited from Fukushima & Yajima (2021).

Here, T nRTg is a provisional value of gas temperature in the middle of the calculation, which is calculated
from equation of continuum and energy equation without advection and source term. We solve this
equation for T nRT+1

g using the Newton-Raphson method.
In Table 3.10, we summarize the cooling and heating processes applied in SFUMATO-M1 (Fukushima & Yajima,

2021). Line cooling of rovibrational transitions of H2 and metal line cooling of C+, CO, O, O+, and
O2+ are incorporated. The fitting function derived in Glover (2015) is adopted for line cooling caused
by rovibrational transitions in H2, and the escape probabilities are given in Fukushima et al. (2018).
The cooling rates for C+, O, O+, and O2+ are evaluated by solving the statistical equilibrium for each
energy level as in Fukushima et al. (2020). Since the ionization energies of O and H are nearly the same,
we assume that the ionization rate of O is the same as that of H. As in Fukushima et al. (2020), we
solve the equilibrium state between O+ and O2+. The energy transport between gas and dust grains is
a function of the dust temperature Td (Omukai et al., 2005).

Chemical reactions in SFUMATO-M1

In Table 3.11 (Fukushima & Yajima, 2021), we summarize the chemical reaction associated with H, H2,
H+, H– , H2

+, CO, C+, O, O+, O2+, and e (metal species: CO, C+, O, O+, O2+). In the SFUMATO-M1,
the chemical network is applied of Nelson & Langer (1997) for CO formation.

We take into account the chemical networks of 11 species as explained above. In the atomic process
part, we solve without advection term of Equation 3.55, 10

∂(ysnH)
∂t

= ysnHRs. (3.122)

Equation 3.122 is solved semi-implicitly:

(ysnH)nRT+1 = (ysnH)nRT + (ysnH)nRTRnRT+1
s ∆tRT. (3.123)

10In the hydrodynamics part, we solve Equation 3.55 including the advection term and not including the source term.
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Figure 3.11: Chemical reactions incorporated into SFUMATO-M1. Cited from Fukushima & Yajima (2021).
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Chapter 4

Accretion onto the Wandering Black
Holes: Effects of Dust Sublimation

We perform three-dimensional RHD simulations to study the effect of dust sublimation on the growth
rate of intermediate-mass BHs and flow structure. Although the radiation fields could be anisotopic
because the BHs have the accretion disks that produce the photons, as the first step, we focus on the
case that the radiation field is isotropic. Our results show that the accretion rate oscillates periodically,
in contrast to models that do not consider sublimation (Toyouchi et al., 2020). On the other hand, the
time-averaged accretion rate is about the Eddington accretion rate for the dusty gas, which is almost
the same as the model that does not consider sublimation. We examine the flow structures and growth
rates of the BHs in case the radiation field is anisotropic in Chapter 5.

4.1 Dust grains around the BHs
Dust grains are the solid matter in the interstellar medium less than a few micrometers in size. Such dust
grains absorb and scatter UV and visible photons from the luminous objects, and re-emit the photons
in the infrared wavelength range as thermal radiation, which significantly alters the spectral energy
distribution (SED) specific to the luminous objects. The dust grains also receive momentum from the
photons (radiation force). The radiation force acting on the dust grains are about 1000 times larger
than that of the gas in the interstellar medium. Thus the dust grains are predicted to have contributed
significantly to the diffusion of matter in space. In addition, since the beginning of this century (e.g.
Bertoldi et al., 2003; Priddey et al., 2003), it has been discovered that large amounts of interstellar
dust exist in distant galaxies with redshift larger than 5 (see Table 4.1). These observational results
suggest that the simulations that included the dust grains in the interstellar medium are necessary to
understand the evolution of intermediate-mass BHs in the early Universe.

The RHD simulations of wandering BHs, taking into account the radiation force acting on the dust
grains and the effect of attenuation of the radiation by the dust grains in the interstellar medium,
were performed by Toyouchi et al. (2020). They found that as metallicity changes, the growth rate of
intermediate-mass BHs changes significantly. It was also found that the temperature distribution and
the size of the ionized region also strongly depend on metallicity. This result indicates the need for
simulations including the dust grains to predict the accurate SED of intermediate-mass BHs wandering
in the early Universe.

However, previous simulations do not take into account the heating and sublimation processes of
the dust grains. The dust grains consist mainly of solid particles composed of heavy elements such
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Figure 4.1: Quasars at z > 5 observed with SCUBA (Submillimetre Common-User Bolometer Array). Cited
from Priddey et al. (2003).

as carbon, oxygen, silicon, magnesium, and iron. These elements are highly volatile and sublimate to
the gas phase easily with even the slightest heating. The temperature required for dust sublimation
is approximately ∼ 1000 − 1500 K. In fact, even around protoplanetary disks, there is observational
evidence of sublimation processes (e.g. Sakai et al., 2014). The accretion disks around the BHs produce
more powerful radiation than the protoplanetary disks, so it is expected that the dust sublimation
process can easily occur.

In the following, we estimate the size of the sublimation region around a wandering BH for our simu-
lations. If an active galactic nucleus (AGN) isotropically emits in the UV/optical, the dust sublimation
radius can be determined by the following equation:

κabs
L

4π × 4πR2
subl

= κplank
σSBT 4

d
π

→ Rsubl =
(

Lκabs
16πκplankσSBT 4

d

)1/2

∼ 5.52 × 10−3pc
(

L
LE,dg

) 1
2 ( Td

103 K

)−2
, (4.1)

where Rsubl and σSB denote the sublimation radius and Stefan-Boltzmann constant, respectively. We
apply the UV opacity of κabs = 280(Z/Z⊙) cm2g−1 (e.g. Yajima et al., 2017). Also, we apply the
thermal emission opacity of κplank = 5.880285 cm2g−1, assuming the dust sublimation temperature is
Td = 1000 K. In Equation 4.1, it is assumed that the radiation energy absorbed by the dust grains
(left hand side) is balanced with the energy re-emitted by the dust grains (right hand side). Note that,
in the re-radiation process, we assume that dust grains emit blackbody radiation. Substituting the
Eddington luminosity of dusty-gas, LE,d, for luminosity of the central object, L, the dust sublimation
radius is about 10−3 pc. The dust sublimation region is sufficiently larger than the typical size of the
BH accretion disk (∼ 10−5pc) so that the amount of matter supplied to the disk could be significantly
affected by dust sublimation.

4.2 Models and Method
We perform three dimentional RHD simulations to investigate the effect of dust sublimation on the
gas accretion process of wandering BHs. Specifically, we solve the dynamics of the flows around the
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Figure 4.2: Schematic figure of our simulation settings for isotropic radiation case.

Bondi-Hoyle-Lyttleton radius. That is, the inner side of the BH accretion disk is covered by a central
sink region, and ionizing photons are injected at in the sink region (see Figure 4.2).

4.2.1 Three-dimensional radiation hydrodynamics simulations
The simulation code used in this study is SFUMATO-M1 (see Section 3.2). We adopt a cubic computational
region, and perform the simulations with the Cartesian coordinate. The gas flows relative to a BH fixed
at the origin are simulated. We set the size of a simulation box of Rout = 12.6 pc, which is much larger
than the Bondi-Hoyle-Lyttleton radius and the size of the ionized region for the parameter range of our
simulations. The sink method is employed, and the sink radius is set to Rsink = 2.7 × 10−3 pc, which
is large enough to resolve the sublimation region of the dust. The BH grows due to mass accretion.
However, the increase in the BH mass is negligibly small in the elapsed time of our simulations. Also,
for simplicity, the acceleration of the BH, self-gravity of gas, and magnetic field are neglected.

We adopt the nested grid method to resolve the gas structures vicinity of the BH efficiently. In
our simulations, the maximum refinement level is lmax = 10, and the minimum cell size is ∆10 =
3.85 × 10−4 pc.

The flow-in boundary is assumed at the upwind side (x = −Rout), and the free boundary is assumed
at the other surface. The gases at the upwind side have the uniform distribution of the number density,
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Figure 4.3: The metallicity-dependent of thermal equilibrium temperatures of the gas. The equilibrium tem-
peratures at Z = 102Z⊙ are plotted as functions of number density of the gas, n∞, and surface density of the
star formation rate (solid lines). Cited from Toyouchi et al. (2019).

n∞, gas temperature T∞, positive x-direction velocity, v∞, and metallicity Z∞ = 0.1Z⊙ for the entire
computation time. In the inner boundary (sink region, < Rsink), the gas whose number density exceeds
the threshold number density, 10−1 cm−3, accretes to the sink region.

4.2.2 Cases examined

Table 4.1: Parameters and physical quantities for isotropic radiation model con-
sidering dust sublimation

Parameter MBH n∞ v∞ T∞ Z∞ L Lν

Unit [M⊙] [cm−3] [km s−1] [K] [Z⊙]
isoN4V20 104 104 20 180 0.1 Eq.4.2 ∝ ν−1.5

First of all, we describe the parameters of our simulations which is also presented in Ogata et al. (2024).
In our simulations, we set the following initial condition: the BH mass is MBH = 104M⊙, the gas number
density is n = 104 cm−3, the gas velocity is v = 20 km s−1, the gas temperature is T = 180 K, the
metallicity is Z = 0.1Z⊙. As boundary conditions at the upstream wind, we set the gas velocity in the
+x direction to v∞ = 20km s−1, the gas number density to n∞ = 104 cm−3, the gas temperature to
T∞ = 180 K, and the metallicity to Z∞ = 0.1Z⊙ (see Table 4.1). These conditions are continuously
injected at x = −Rout. At the other surface, the free boundary conditions are assumed.

From the standpoint that this study is the first step toward understanding the formation process of
supermassive BHs, we set the BH mass of 104M⊙, which is the typical mass of the seed BHs. The
gas velocity and gas number density are chosen in reference to numerical simulations that follow the
Milky Way-size galaxy mergers (Mayer et al., 2007, 2010). This is because once galaxies harboring
the seed BHs merge, the BHs are expected to drift in the remnant galaxy. The gas temperature
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Figure 4.4: Left panel: Relation between accretion rate and luminosity in our simulations (see also Watarai et al.,
2000). Right panel: Hard-state spectrum for M = 105M⊙ and Ṁ = ṀE compared to that for M = 108M⊙
and Ṁ = ṀE. Cited from Liu et al. (2003).

is set to the equilibrium value. The equilibrium temperature depends on the metallicity owing to
various cooling and heating processes by heavy elements in the gas and dust grains. 1 As heating
sources, the FUV and X-ray background from nearby star-forming regions are considered. The FUV
intensities and the X-ray background intensities are assumed to be proportional to GSFR, which denotes
the averaged surface density of the star formation rate, and it is normalized with the galactic value
ΣSFR = 0.1M⊙yr−1 kpc−2 (Wolfire et al., 1995) . Figure 4.3, cited from Toyouchi et al. (2019), shows
the gas equilibrium temperatures with metallicity Z = 10−2Z⊙ as functions of the number density of gas,
n∞, and GSFR. The intensities of FUV and X-ray background are assumed to be proportional to GSFR.
From this figure, we can see that the equilibrium temperature in the density range n∞ = 103 −106cm−3

is about ∼ 100 K with active star formation, which is widely expected for young gas-rich galaxies.
In our simulations, we assume an environment such that active star formation occurs as a result of
galaxy-galaxy mergers and apply that the background radiation is 100 times stronger than that in the
solar neighborhood. This correspond to the orange lines in Figure 4.3. Considering the gas density of
104cm−3 in our study, 180K is appropriate for the gas temperature.

4.2.3 Luminosity
In this simulation, the luminosity produced by the BH accretion disks, L, is determined as a function of
the accretion rate Ṁ evaluated at the internal boundary at each time step. We adopt a fitting equation
to model the luminosity (Watarai et al., 2000),

L =

⎧
⎨

⎩
2LE

[
1 + ln

(
Ṁ

2ṀE

)]
(Ṁ/ṀE > 2)

LE
Ṁ
ṀE

(otherwise)
, (4.2)

where LE (≡ 4πcGMBH/κes) and ṀE (≡ LE/ηc2) are the Eddington luminosity and Eddington accretion
rate. Here, η is the radiative efficiency, and the typical value is η = 0.1 for a thin disk around a non-
spinning BHs (standard disk model, Shakura et al., 1973). 2 Equation 4.2 is obtained by Watarai et al.

1We note that the gas density is fixed in this discussions: In general, the equilibrium temperature depends on the gas density.
2Note that this definition of ṀE is 10 times larger than that often used where the radiative efficiency η is not included, LE/c2).

To compare our results with the previous study, which do not include the dust sublimation process, we adopt the same definition

82



Figure 4.5: The distribution of gas number density in the case where dust sublimation is not taken into account
(left panel, cited from Toyouchi et al., 2020) and in the case where dust sublimation is taken into account (right
panel).

(2000) considering the appearance of the slim disk. In the case of low accretion rate (Ṁ/ṀE < 2), the
radiative efficiency is fixed at 10%, which is consistent with that of the standard disk model. In the
case of high accretion rate (Ṁ/ṀE > 2), the second term 2LE ln

(
Ṁ/2ṀE

)
represents the luminosity

from the innermost region of the accretion disk (slim disk), where the photon trapping reduces the
radiative efficiency. The first term 2LE represents the luminosity from the outer region of accretion
disk (standard thin disk). In the left panel of Figure 4.4, Equation 4.2 is plotted. The vertical axis is
luminosity normalized by the Eddington one, and the horizontal axis is the accretion rate normalized
by the Eddington one. We can see that the normalized luminosity does not exceed 10 in the range of
Ṁ/ṀE " 102.

4.2.4 Spectrum of the BH radiation
The SED is simply assumed to be a power law with Lν ∝ ν−α in the frequency range 11.2 eV < hν <

1 keV, where h and ν are planck constant and photon frequency, respectively. Here, we adopt the
power-law index of α = 1.5, corresponding to the SED of active galactic nuclei in the high accretion
state (Liu et al., 2003; Sazonov et al., 2004).

4.2.5 Chemical and thermal processes
We take into account the chemical network with 11 species: H, H+, He, He+, He2+, CO, C+, O,
O+, O2+, and e. The main thermal processes in this simulations are; photo-ionization heating of H,
photo-dissociation heating of H2, H2 formation heating, collisional ionization cooling of H, collisional
dissociation cooling of H2, recombination cooling of H+, excitation cooling of H, He+, free–free cooling
of H, Compton cooling by cosmic microwave background (CMB) photons, line-cooling of He2+, CO,
C+, O, O+, andO2+, and gas-grain heat transfer.

of ṀE including η as in the previous study.

83



Figure 4.6: Gas flow structure on a 1 pc scale for the isotropic radiation model (’isoN4V20’).Each panel shows
distributions of the gas number density (upper left), velocity (upper right), and ionization degree (lower right).
In the lower-left panel, we show the radiation force normalized by gravity in each cell. The white arrows
represent streamlines to the +x direction.

4.3 Result
Figure 4.5 shows the distribution of gas number density in the case where dust sublimation is not taken
into account (left panel, cited from Toyouchi et al., 2020) and in the case where dust sublimation is
taken into account (right panel). We see that the global flow structure is almost the same for models
with and without dust sublimation. An elongated ionized region appears downstream, and a dense shell
structure appears in front of the I-front. These features are generally consistent with previous results
obtained in two dimensional RHD simulations for primordial case (Park & Ricotti, 2013) and three
dimensional RHD simulations for dusty gas case (Toyouchi et al., 2020). We note that, such a shock
structure is formed if the relative velocity of the ambient gas to the I-front is between the critical values
of the D-type and R-type I-fronts (vD < v∞ < vR), as also shown in Park & Ricotti (2013). Inside the
shocked region, the gas slows to vD at the ionization front. If the velocity v∞ is higher than the critical
value for the R-type ionization front vR, the shock does not appear.

In the model, where the metallicity is set to 0.1Z⊙, metal cooling is so efficient that the warm region
(∼ 104K) does not extend outside the ionization region. As a result, a steep transition between cold
(∼ 102K) and hot (∼ 5 × 104K) medium occurs just before the upstream ionization front. The cold
region corresponds to the ambient gas in thermal equilibrium, achieved by the balance between cooling
of the metal line emission and heating by background radiation. The hot region is the ambient gas
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Figure 4.7: The time evolution of the mass accretion rate in the case where dust sublimation is not taken
into account (left panel, cited from Toyouchi et al., 2020) and in the case where dust sublimation is taken
into account (right panel). The black dashed line means the Eddington accretion rate for dusty gas ṀE,dg
(≡ κesṀE/(κes + κd)), where the dust opacity for UV light κd is given as κd = 2.8 × 102(Z/Z⊙) cm2 g−1.

of which temperature is determined by the balance between photoionization heating and Lyα cooling.
The global structure of the velocity profiles is also almost the same for models with and without dust
sublimation. The flow velocity gradually increases from 20km/s to around 50km/s after crossing the
dense upstream shell. This acceleration occurs because of the increase in thermal pressure inside the
ionization front caused by photoionization heating. We explain in detail in the following paragraphs.

Figure 4.6 shows distribution of gas number density (upper left), velocity (upper right), radiation
force normalized by gravity in each cell (lower left), and ionization degree (lower right) in the case
considering dust sublimation. The white arrows represent streamlines to the +x direction. We find
that an ionized region (nH+/nH ∼ 1) extends up to x ∼ 5 pc, and a dense shock shell is formed at the
upstream ionization front (x ∼ −0.5pc). The gas velocity gradually increases to ∼ 50 km s−1 in the
ionized region after passing through the dense shock shell. Such acceleration is caused by the thermal
pressure increased by ionization heating. Increasing the gas velocity and increasing the gas temperature
reduce the accretion rate since the Bondi-Hoyle-Lyttleton accretion rate decreases when the velocity
and temperature are high. The outward radiation force also woks to reduce the accretion rate. Thus,
the time-averaged accretion rate, 2 × 10−2ṀE, is three orders of magnitude smaller than the classical
Bondi-Hoyle-Lyttleton accretion rate ṀBHL.

Figure 4.7 shows the time evolution of the mass accretion rate. The black dashed line means the
Eddington accretion rate for dusty gas ṀE,dg (≡ κesṀE/(κes + κd)), where the dust opacity for UV
light κd is given as κd = 2.8 × 102(Z/Z⊙) cm2 g−1. In the isotropic radiation model, the accretion rate
oscillates periodically between 4.5 × 10−2ṀE and 1.8 × 10−3ṀE with a period of 5.5 × 10−4 Myr. The
time-averaged accretion rate is about 2 × 10−2ṀE (4.3 × 10−6M⊙ yr−1). The reason why the periodic
oscillation of the accretion rate occurs can be understood from Figure 4.8. This figure shows the time
evolution of flow structure and the radiation force normalized by gravity on the 10−2 pc scale in one
period of oscillation. The time evolution of the accretion rate is also plotted. From this figure, we can
see that the reason why the periodic oscillation of the accretion rate occurs due to the dust sublimation
as desclibed below.

• When the gas accretion rate Ṁ is less than ṀE,dg, the gravitational force overcomes the radiation
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Figure 4.8: Time evolution of the gas flow in one oscillation period for the isotropic radiation model (’isoN4V20’).
Each snapshot is the same as the bottom left panel in Figure 4.6. The black solid lines and filled gray circles
represent the dust sublimation and sink regions. The upper right panel shows the time evolution of the accretion
rate in one period of oscillation. The black filled circles mark the epochs for each snapshot 1-4.

force in the entire region. Gas accretes to the BH. The flow structures are similar to Bondi-Hoyle-
Lyttleton accretion as shown in Figure 4.8-1.

• As the accretion rate exceeds ṀE,dg, the radiation force deaccelerates gas (see Figure 4.8-2). Then,
the gas is accumulated around the sublimation region. In fact, the averaged gas density near the
sublimation radius in Figure 4.8-2 is approximately twice as large as in the case of Figure 4.8-1.
After that, the accretion rate also begins to decrease. The radiation force caused by dust grains is
inefficient inside the sublimation radius, and gas continues to accrete to the BH.

• As the accretion rate decreases to ṀE,dg, the gravitational force overcomes the radiation pressure
(see Figure 4.8-3). The accumulated gas accretes to the BH. Then the mass accretion rate increases
and peaks at ∼ 3ṀE,dg. This peak value is higher than the previous one because high-density
structures attenuate radiation. Indeed, the radiation flux near the sublimation radius at the first
peak was ∼ 50% of the analytical solution L/(4πR2) without attenuation, and ∼ 60% for the
second peak.

• The radiation force causes the outflow from the sublimation radius (see Figure 4.8-4). The gas
inside the sublimation regions can accrete the BH, but the amount of gas is limited. Then the
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Figure 4.9: The number density nH cm−3, radiation force fR, fR
EUV, fR

FUV normalized by gravity gR in Figure
4.8-2∗ (light-blue) and Figure 4.8-2 (pink). Here, fR and gray region means fR = fR

EUV +fR
FUV +fR

IR and region
of dust sublimation, respectively.

accretion rate dramatically decrease. After that, the gravitational force attracts the ambient gas
again. The flow structure returns to that of Figure 4.8-1.

Here we explain why the second of the two peaks appearing in the burst has a larger accretion rate
(luminosity). Figure 4.9 represents the number density (nH), ratio of radial component of total radiation
force to gravity (fR/|g|), ratio of radial component of radiation force doe to EUV to gravity (fR

EUV/|g|),
and ratio of radial component of radiation force doe to FUV to gravity (fR

FUV/|g|) as a function of the
distance from the intermediate-mass BH (R). The light-blue and pink mens the results at phase 4.8-2
(t ∼ 0.21715 Myr) and phase 4.8-2∗ (t ∼ 0.2174 Myr), respectively (see Figure 4.8). Phase 4.8-2 roughly
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corresponds to the first peak, while phase 4.8-2∗ is a little before the second peak. The accretion rate
in phase 4.8-2∗ is approximately equal to the accretion rate in phase 4.8-2.

It is found that the density is larger in the phase 4.8-2∗ than in phase 4.8-2 at slightly outside the
dust sublimation region. This difference in density produces a difference in radiation flux (radiation
force) through attenuation by absorption. Indeed, we find that the radiation force in the phase 4.8-2∗ is
slightly weaker than that in the phase 4.8-2. In phase 4.8-2, the accretion rate starts to decrease due to
radiation force, but in phase 4.8-2∗, the accretion rate continues to increase further due to the weaker
radiation force. Thus, the accretion rate (luminosity) is larger in second peak. Note that the main
component of radiation force is due to FUV. The gas density is high in phase 4.8-2∗ because relatively
large amount of gas that is not absorbed in the first peak remains around the BH. Conversely, the gas
density in phase 4.8-2 is low because a large amount of gas is swallowed in the second peak.

4.4 Discussion
4.4.1 Comparison with previous works
Our present work shows that the global flow structures are generally in agreement with the previous
results obtained by RHD simulations for the primordial cases. However, we find that the dust absorption
effects (radiation force acting on dust grains, attenuation UV light) significantly change the flow struc-
ture vicinity of sublimation radius and accretion rate, compared to primordial cases. One reason for the
such a small accretion rate may be due to the radiation force acting on the dust (see Toyouchi et al.,
2020) 3. Such an effect is incorporated in below equation:

LE,dg = κes
κes + κd

LE =
(

1 + 71
(

Z

10−1Z⊙

))−1
LE, (4.3)

where κes = 0.4 cm2 g−1 is the opacity of electron scattering, and κd = 280 cm2 g−1(Z/Z⊙). Since the
dust opacity is larger than the electron scattering value, the critical luminosity (Eddington luminosity)
become more stringent limits. We note that the accretion rate predicted by ṀE,dg = LE,dg/(ηc2) well
matches with the time-averaged accretion rate obtained by our simulations for Z = 0.1Z⊙.

It is also important to take into account the dust sublimation. The time-averaged accretion rate is
not much different between our simulation and the simulations by Toyouchi et al. (2020), but oscillation
of the accretion rate occurs only in our simulation. Since the situational setting is almost the same, the
cause of this difference is thought to be the treatment of dust sublimation.

4.4.2 The effect of dust sputtering
The destruction of dust in high-temperature gas occurs not only by sublimation but also by sputtering.
Sputtering is a physical process in which energetic particles (in this case mainly hydrogen ions) collide
with dust grains and flick off the atoms of the dust grain. If the collision is driven by the thermal
motion of the ions, it is called thermal sputtering; if it is caused by the fast relative motion of the
ions and the dust, it is called nonthermal sputtering. As atoms near the dust surface are lost one by
one due to sputtering, the radius of the dust grain becomes smaller and smaller. The reduction rate
of the dust radius due to sputtering depends on the quantities of the colliding ions, such as species,
energy, number density, and composition of the dust. The right panel of Figure 4.10 shows the thermal

3In other word, the BH gravity is effectively weakened by the outward force of the radiation pressure boosted by the presence
of dust grains within the ionized bubble(Ogata et al., 2021)
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Figure 4.10: left panel: Time scale for dust sputtering τsp normalized by dynamical time scale in the ion-
ized region (see Equation 4.5 and 4.6). Right panel: Thermal sputtering rates as a function of temper-
ature for iron, silicate, graphite, and H2O grains cited from Draine & Salpeter (1979). The dotted curve is
log10

[
n−1

H |da/dt|
] (

cm3Åyr−1) for radiative cooling of optically thin gas.

sputtering rates estimated for graphite, silicate grains, and iron grains for temperature 104 " T "
109 K (Draine & Salpeter, 1979). Draine & Salpeter (1979) calculate the sputtering rates, and it can
be approximated by

da

dt
≈ −1 × 10−6

1 + T −3
6

(
nH

cm−3

)
µm yr−1, (4.4)

where a is the radius of dust grains. Using this formula, we obtain a lifetime of dust grains,

τsp = a

|da/dt| ≈ 1 × 105
[
1 + T −3

6
] (a/0.1µm)

(nH/cm−3) yr. (4.5)

To see if sputtering is an important effect in the system of wandering BHs under the radiation feedback,
we compare it to the dynamical timescale τdyn,II in the ionized region, which is defined as

τdyn,II = RII
vII

. (4.6)

Here, RII and vII are the size of the ionized region and typical velocity of gas in the ionized region,
respectively. We estimate the size of an ionized region by Strömgren radius, and gas velocity in ionized
region by theoretical model of Park & Ricotti (2013). The gas velocity in the ionized region depends on
gas velocity in the neutral region at infinity. The left panel of Figure 4.10 shows the time scale of dust
sputtering normalized by dynamical time scale in the ionized region. We can see that the τsp ! τdyn,II
is satisfied for both M- and R-types. Therefore, we can ignore the effect of dust sputtering in our
simulations. Note that, we cannot assert that sputtering does not work because there is no more than
an order of magnitude difference between M-type and R-type (" 100 km/s).
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Chapter 5

Accretion onto the Wandering Black
Holes: Effects of Anisotropic Radiation
Feedback

In this paper, we study the effect of anisotropy of radiation filed produced by accretion disk on Bondi-
Hoyle-Lyttleton accretion flow. We have, for the first time, successfully performed three-dimensional
radiation hydrodynamics simulations of the gas accretion onto intermediate-mass BHs wandering in
the early Universe considering anisotropic radiation field. Additionally, the sublimation of the dust
grains caused by the radiation from the accretion disks around BHs is taken into consideration. We
found that the accretion rate and acceleration are ∼ 7 × 10−6 M⊙ yr−1 (0.6 per cent of the clas-
sical Bondi–Hoyle–Lyttleton rate) and ∼ 10−8 cm s−2 in environments with relatively high density
(∼ 104 cm−3) and low metallicity (0.1Z⊙). These results suggest that intermediate-mass BHs keep
floating in the galactic disk with insignificant mass growth. For extremely high density (! 106 cm−3),
as suggested by recent observations from the James Webb Space Telescope (JWST), the accretion rate
and acceleration rise significantly.

5.1 Anisotropic radiation field
Bondi-Hoyle-Lyttleton accretion flow was investigated through numerous hydrodynamics simulations
from the 1970s to the late 1990s (Hunt, 1971; Shima et al., 1985; Fryxell et al., 1988; Ho et al., 1989;
Matsuda et al., 1991; Ruffert et al., 1994, 1996), which showed that numerically obtained the accre-
tion rates are consistent with the analytical estimates of Hoyle & Lyttleton (1939) and Bondi & Hoyle
(1944). Subsequently, numerical simulations considering the radiation from the central object were
performed (Blondin et al., 1990; Taam et al., 1991; Milosavljevic et al., 2008; Park & Ricotti, 2012;
Park & Bogdanović, 2017; Sugimura & Ricotti, 2020; Toyouchi et al., 2020), showing that the accretion
rates are significantly reduced by radiation feedback e.g., the radiation force and ionization heating.

However, all those calculations assume isotropic radiation, whereas in reality the radiation from
the BH accretion disk should be anisotropic. The flow structure will be significantly altered in such
anisotropic radiation field. We can expect that the accretion rates can not decrease significantly because
the gas accretes through the region near the disk plane, where the radiation effect is relatively weak.
Although Bondi-Hoyle-Lyttleton accretion onto the compact objects under the anisotropic radiation field
produced by the accretion disk has been investigated in previous studies (Fukue, 1999; Hanamoto et al.,
2001; Ogata et al., 2021), the effect of fluid dynamics such as gas pressure gradient force has not been
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Figure 5.1: Schematic figure of our simulation settings for anisotropic radiation case.

taken into account. Therefore, radiation hydrodynamics simulation of Bondi-Hoyle-Lyttleton accretion
including an anisotropic radiation field is required.

5.2 Models and Method
We perform three dimensional RHD simulations to investigate the effect of anisotropic radiation feedback
on the gas accretion process of wandering BHs. Specifically, we solve the dynamics of the flow around
the Bondi-Hoyle-Lyttleton radius to determine the accretion rate onto the BHs and disk system. The
inner side of the BH accretion disk is covered by a central sink region, and ionizing photons are injected
at in the sink region (see Figure 5.1). The calculation setup is similar to the isotropic radiation model
introduced in Chapter 4. Therefore, in this section, we only introduce the angular distribution of the
radiation field and parameters that differ from the isotropic radiation model.
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5.2.1 Directional dependence of radiation field
We inject the extreme EUV and FUV photons at the sink region with the directional dependence as
described below. The number of photons injected per unit time in a single cell is given as

Ṅ j
ν = Ṅ sink

ν × Fj(Θ, R)
∑

k Fk(Θ, R) , (5.1)

where Ṅ sink
ν is the photon emissivity of the BH, and k and j are the cell numbers. The anisotopy factor

Fj(Θ, R) represents the direction dependence of the radiation as

Fj(Θ, R) =
{

1/R2 (isotropic radiation)
2 cos Θ/R2 (anisotropic radiation) . (5.2)

Here, the angle from the rotation axis of the disk to the center of each cell (Θ) is defined as

cos Θ = i · s = 1
R

(x cosψ + y sinψ cosϕ+ z sinψ sinϕ) , (5.3)

i = (cosψ, sinψ cosϕ, sinψ sinϕ), (5.4)

s = 1
R

(x, y, z) , (5.5)

where R(=
√

x2 + y2 + z2) is the distance of the origin, ϕ is the angle between y-axis and the disk
rotation axis projected onto yz-plane, and ψ is the angle between x-axis and the disk rotation axis,
respectively. We set ϕ = 0 in the present simulations.

We also solve the diffuse IR photons produced as the dust thermal emission. The energy absorbed
by the dust is reprocessed as thermal emission at IR wavelengths. If a interstellar medium around
wandering BHs is optically thick even for IR photons, the additional radiation pressure is exerted. This
further suppresses the accretion onto BHs. In RHD simulations performed by Toyouchi et al. (2019),
the radiative transfer is solved for both the direct ultraviolet lights emitted by an accretion disc and
the diffuse infrared (IR) lights thermally emitted by dust grains. Their results show that the radiative
force by the IR lights causes a strong feedback to regulate the mass accretion.

5.2.2 Cases considered

Table 5.1: Parameters and physical quantities for aisotropic radiation model

Parameter MBH n∞ v∞ T∞ Z∞ L Lν

Unit [M⊙] [cm−3] [km s−1] [K] [Z⊙]
edgeN4V20 104 104 20 180 0.1 Eq.4.2 ∝ ν−1.5

edgeN4V100 104 104 100 180 0.1 Eq.4.2 ∝ ν−1.5

edgeN6V20 104 106 20 180 0.1 Eq.4.2 ∝ ν−1.5

First of all, we describe the parameters of our simulations which is also presented in Ogata et al. (2024).
In our simulations, we set the BH mass to MBH = 104M⊙, gas number density to n = 104 cm−3, gas
velocity to v = 20 km s−1, gas temperature to T = 180 K, metallicity to Z = 0.1Z⊙ as an initial
condition. As boundary conditions, a gas with velocity v∞ = 20km s−1 in the +x direction, gas number
density n∞ = 104 cm−3, gas temperature T∞ = 180 K, and metallicity Z∞ = 0.1Z⊙ is continuously
injected at x = −Rout, and a free boundary is assumed for the other surface (see Table 4.1). Here, Rout
means the size of simulation box. Hereafter, we label each model according to the anisotropy factor
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Figure 5.2: A schematic picture of a gas flow around a BH. We show a case with an edge-on radiation field.
The BH floats in the interstellar medium (light gray). The black-filled circle represents the sink region. The
solid and dotted blue lines show streamlines that pass through or accrete to BH. The yellow and gray regions
present ionized and dust sublimation regions, respectively. The shocked region at the ionization front is painted
dark yellow. The shapes of ionized and dust sublimation regions are different in the models with isotropic and
pole-on radiation fields.

(Fj), the number density (n∞), and gas velocity (v∞) considered in each simulation. For example,
’edgeN4V20’ represents the simulation model with the anisotropic radiation field, n∞ = 104 cm−3, and
v∞ = 20 km s−1. We adopt 104M⊙ as the mass of the BHs, which is a typical value for intermediate-mass
BHs, from the standpoint that this study is the first step for understanding the formation process of
supermassive black holes. The gas velocity and gas number density are chosen in reference to numerical
simulations that follow the Milky Way-size galaxy mergers (Mayer et al., 2007, 2010). This is because
once galaxies harboring intermediate-mass BHs merge, the BHs are expected to drift in the remnant
galaxy. We additionally investigate the cases with high-velocity v∞ = 100 km s−1 and high-density
n∞ = 106 cm−3 only in the models with edge-on anisotropic radiation. Such high-density environments
would appear, for example, in merger remnant galaxies (e.g. Fiacconi et al., 2013; Lima et al., 2017).
Also, Katz et al. (2023) has been reported the presence of relatively dense gas, ! 104cm−3. The high-
velocity situation, v∞ ∼ 100 km s−1, might be realized when galaxy mergers occur (e.g. Mayer et al.,
2007).

In the present study, ψ = π/2 (edge-on) is mainly adopted (see Figure 5.1). The gas inflow direction
(−x direction) at the upstream boundary is perpendicular to the rotation axis of the disk in this model.
Such a situation appears naturally. The angular momentum vector of the gas injected from the upstream
boundary relative to the origin (BH) is perpendicular to the x-axis. Therefore, although the gas density
at the upstream boundary is assumed to be uniform in our simulations, if the density is non-uniform,
the total angular momentum vector of the gas will be perpendicular to the x-axis. Thus, the gas falling
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into the central region would form the accretion disk with the rotation axis perpendicular to the x-axis.
Even if the rotation axis of the accretion disk is not perpendicular to the x-axis at the beginning, it
should eventually become perpendicular to the x-axis since the gas in the initial disk is swallowed by
the BHs, and the supplied gas becomes main component of the disk. The pole-on situation (ψ = 0) is
realized only at the moment if the black hole happens to enter the gas cloud from the direction of the
rotation axis of the disk, but it is adopted in order to compare with the edge-on models.

5.3 Results
Before examining the numerical results in more detail, we overview the flow structure and the accretion
rates to BHs. Figure 5.2 schematically shows a flow structure around a BH. Ionizing photons emitted
from the accreting BH create an ionized region over several pc. The shock structure is formed upstream
(−x direction) if the relative velocity of the ambient gas to the ionization front is between the critical
values of the D-type and R-type ionization fronts (vD < v∞ < vR), as also shown in Park & Ricotti
(2013). Inside the shocked region, the gas slows to vD at the ionization front. If the velocity v∞ is
higher than the critical value for the R-type ionization front vR, the shock does not appear. Dust grains
are heated and sublimate close to the BH. In this region, radiation force cannot push out the gas, and
the gas tends to accrete to the BH. In the outer region, where the dust grains are not sublimated, the
gas is accelerated by radiation force and thermal pressure. Then it tends to pass through the ionized
region without falling into the BH.

Figure 5.3 shows the time evolution of the mass accretion rate. The black dashed line means the
Eddington accretion rate for dusty gas ṀE,dg (≡ κesṀE/(κes + κd)), where the dust opacity for UV
light κd is given as κd = 2.8 × 102(Z/Z⊙) cm2 g−1 (e.g. Yajima et al., 2017). As described before,
in the isotropic radiation model ’isoN4V20’, the accretion rate oscillates periodically between 4.5 ×
10−2ṀE and 1.8 × 10−3ṀE with a period of 5.5 × 10−4 Myr. The time-averaged accretion rate is
about 2 × 10−2ṀE (4.3 × 10−6 M⊙yr−1). The accretion bursts (rapid increase in accretion rate) occur
in the model ’edgeN6V20’ with a period of ∼ 0.01 Myr. The time-averaged accretion rate is about
2ṀE (4.2 × 10−4M⊙yr−1). Although it does not appear in the figure, model ’edgeN4V20’ also exhibits
accretion bursts at the interval with ∼ 0.15 Myr (we will discuss later). The time-averaged value in
this model, 2 × 10−2ṀE (4 × 10−6 M⊙yr−1), is slightly larger than the accretion rate shown in Fig. 5.3
because the bursts increase the time-averaged rate. The quasi-steady state is achieved in the models
’edgeN4V100’ and ’poleN4V20’, and the time-averaged rate is almost the same as in model ’edgeN4V20’.

5.3.1 Fiducial model
In the case of ’edgeN4V20’ (fiducial model), the accretion rate is almost constant for most of the time
(quiescent phase), but accretion bursts occur periodically (burst phase). Figure 5.4 presents the flow
structure in the meridian (z = 0) and equatorial (y = 0) planes in the quiescent phase. Although the
radiation field is anisotropic, the profiles of density and velocity on the ∼ 1 pc scale are almost similar
to that of the isotropic radiation model (see Figure 5.4-a). Also in this model, an ionized region extends
up to several pc. Around the surface of the dense shock shell, the gas pressure gradient force by the
high density and high temperature gas in the shell moves the gas away from the BH. Indeed, we find
that some gas moves away from the x-axis along the shell (see streamlines). The effect of anisotropic
radiation can be seen in Figure 5.4-b. It is found that the shape of the ionization region is like two
spheres glued together at the equatorial plane. The dense shock shell appears near the ionization front.
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Figure 5.3: Time evolution of mass accretion rates. The vertical axis is normalized by the Eddington accretion
rate ṀE estimated with the opacity of electron scattering. The gray and cyan lines show the models with
isotropic radiation (’isoN4V20’) and the pole-on radiation (’poleN4V20’). The magenta, green, and orange
lines represent the edge-on fiducial (’edgeN4V20’), high-velocity (’edgeN4V100’), and high-density models (’ed-
geN6V20’). The black dotted lines represent the Eddington accretion rate for dusty gas ṀE,dg.

The velocity and temperature of the gas that passes through the shell and enters the ionized region
rapidly increases by gas pressure gradient force and the ionization heating. These increases in velocity
and temperature work to reduce the rate of accretion by the Bondi-Hoyle-Lyttleton mechanism. We
find in Figure 5.4-c that the gas accretes mainly from the equatorial plane since the radiation force
is ineffective because BH irradiation is considerably weakened by absorption. In contrast, the strong
radiation force works to prevent gas accretion around the rotation axis of the disk. As a result, the
time-averaged accretion rate in the quiescent phase is much smaller than Bondi-Hoyle-Lyttleton rate
(∼ 0.3% of ṀBHL), and nearly comparable to Ṁdg.

The accretion bursts only increase the time-averaged accretion rate by about a factor of 2, and also
hardly affect acceleration at all. The bursts occur when part of the dense shock shell (near the x-axis)
flows into the sink. The dense shock shell is almost never moved due to the balance between the ram
pressure gradient force and the gas pressure gradient force in the quiescent phase. However, part of
the dense shock shell around the x-axis gradually moves inward due to the gravity of the BH and then
flows into the sink leading to the burst phase. The accretion rate of the burst phase is ∼ ṀE and about
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Figure 5.4: Same as Figure 4.6 but for the edge-on fiducial model (’edgeN4V20’). Each panel shows the flow
structure on (a)1 pc, (b)10−1 and (c)10−2 pc scales at t = 0.2 Myr (0.04 Myr before the next accretion burst).
Each column represents the flow structure in the meridian (xy-) and equatorial (xz-) planes from top to bottom.

half of the total accreting gas accretes during the burst phase. Due to the bursts, the time-averaged
accretion rate is approximately twice the accretion rate during the quiescent phase (see Figure 5.3).

The burst interval, ∼ 0.15Myr, can be understood approximately as follows. In the situation where
gas pressure and ram pressure are approximately balanced at the dense shock shell, the gravity begins to
pull the shell when the column number density of the shell (Nshell) exceeds n∞r2

shellv
2
∞/GMBH because
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the gravity, GMBHNshell/r2
shell, becomes larger than the ram pressure (gas pressure), n∞v2

∞:

GMBHNshell
r2

shell
> n∞v2

∞ (5.6)

→ Nshell >
n∞v2

∞r2
shell

GMBH
(5.7)

Since the distance of the dense shock shell from the BH, rshell, is about 0.5pc, the critical column number
density obtained from the above relation is ∼ 1023cm−2, which is roughly consistent with that the burst
in the present simulation. The timescale on which the column number density of the dense shock shell
reaches 1023cm−2 is approximately:

τburst = Nshell
n∞v∞

(5.8)

= n∞v2
∞r2

shell
GMBH

× 1
n∞v∞

= v∞r2
shell

GMBH
(5.9)

≈ 1.1 Myr
( v∞

20 km/s

)( rshell
0.5 pc

)2 ( MBH
104M⊙

)−1
. (5.10)

The timescale on which the burst occurs is determined by two factors: the timescale on which the
gravity becomes stronger (the timescale on which the column density of the dense shell increases), as
determined above (Equation 5.10), and the timescale on which the shell falls to the BH due to gravity
(dynamical timescale). The dynamical timescale is rshell/vff ∼

√
r3

shell/(2GMBH) ∼ 0.04 Myr. Therefore,
the timescale on which the column number density of the dense shock shell reaches 1023cm−2 (Equation
5.10) is longer than the dynamical timescale so the burst interval is determined by the former timescale.

5.3.2 High-velocity model
Figure 5.5 shows the flow structure in the model ’edgeN4V100’. The most noticeable difference from
the fiducial model is the absence of shock waves. This is because the relative velocity is largar than vR.
We also confirm that the density does not change so much at the ionization front. The density change
at the ionization front can be estimated analytically with the mass and momentum conservation laws
as ρII/ρ∞ ∼ v2

∞

(
1 −

√
1 − 4c2

s,II/v2
∞

)
/2c2

s,II under the condition cs,II ≫ c∞, where ρII, cs,II, and c∞

are the gas density of ionized gas and sound speeds of ionized and neutral gas (Spitzer et al., 1978). If
v∞ ≫ cs,II, then we obtain ρII ∼ ρ∞. We confirm in our simulations that the condition of v∞ ≫ cs,HII
is satisfied. The somewhat low-density region appears over several pc downstream (x > 0, y " 1 pc,
dark-purple in Fig. 5.5-a). This is because the gas is accelerated by radiation force and gas pressure
gradient force in the ionized region.

The radiation force does not affect the the motion of gas at distances within the Bondi-Hoyle-Lyttleton
radius from the x-axis so that the flow structure is similar to the classical Bondi Hoyle-Littleton accre-
tion. Figure 5.5-(b) shows the flow structure in the 10−2 pc scale. Around the disk rotation axis, the
radiation force is basically stronger than gravity, but only near the BH is it weaker than the gravity due
to sublimation of the dust grains. Since the Bondi-Hoyle-Lyttleton radius is around 9 × 10−3 pc, and
since the dust sublimation radius around the rotation axis is ∼ 7 × 10−3pc, the radiation force does not
affect the motion of gas at distances within the Bondi-Hoyle-Lyttleton radius from the x-axis. Thus,
a quasi-steady flow similar to Bondi Hoyle-Littleton accretion appears. The accretion rate is roughly
comparable to ṀBHL.
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Figure 5.5: Same as Figure 5.4 but for the edge-on high-velocity model (’edgeN4V100’). Each panel shows
the flow structure on (a) 1 pc and (b) 10−2 pc scales. The black solid lines in panel (b) represent the dust
sublimation regions.

5.3.3 Dense model
Model ’edgeN6V20’ differs from the fiducial model in that it produces more intense, shorter-interval
accretion bursts. Figure 5.6 shows the time evolution of the gas density distribution in the meridian
plane (z = 0) for the model ’edgeN6V20’. As shown in Figure 5.3, the accretion bursts occur periodically
in this model. The burst mechanism is similar to that of fiducial model (n∞ = 104 cm−3 model). In the
quiescent phase, the dense shock shell exists near the ionization front, and it gradually becomes denser.
After a while, the gravity causes part of the shell to reach the sink, and the burst phase begins (see
Fig.5.6-a). In the burst phase, the accretion rate exceeds the Eddington limit. However, the radiation
force is ineffective around the equatorial plane due to the attenuation of radiation and the thermal
pressure of inoized bubbles cannot push outward these dense gas. After the significant part of the dense
shock shell falls into the BH through the vicinity of the equatorial plane, it transitions to the quiescent
phase (see Fig.5.6-b). After that, the part of the burst shell falls into the BH, and the burst accretion
occurs again. The above process is repeated, resulting in periodic bursts. The interval of the accretion
burst, ∼ 0.01Myr, is much shorter than that of the fiducial model, ∼ 0.15Myr. This is because the rshell
in this model, ∼ 0.1 pc, is smaller than that of the fiducial model (it was shown in Section 5.3.1 that
the burst interval depends on the rshell).

At the burst phase, the radius of the ionized region, RII, is comparable to or slightly smaller than
the Bondi-Hoyle-Lyttleton radius, RBHL, at around the equatorial plane where gas mainly accretes. On
the other hand, we find RII > RBHL in regions other than the equatorial plane. This means that the
condition for super-Eddington accretion "RII < RBHL" (Inayoshi et al., 2016) is satisfied locally. The
effect of dust, which increases the radiation force and narrows the ionized region, on the condition for
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Figure 5.6: The flow structure on 10−1 pc scale for the edge-on high-density model (’edgeN6V20’). Each panel
shows the number density distribution in the equatorial (xy-) plane at (a) the burst and (b) quiescent phases.
We also show the mass accretion rates and the elapsed times in each panel.

super-Eddington accretion should be investigated in detail in the future.

Pole-on model

Figures 5.7-(a) and -(b) show the flow structure on a 1 pc and 10−2 pc scales of the pole-on radiation
model (’poleN4V20’). The flow structure is quasi-steady and axisymmetric with respect to the x-axis.
The structure on pc scale is almost the same as the fiducial model. The ionized region extends to several
pcs, and the dense shock shell is formed at the ionization front (see Fig.5.7-(a)). As shown in Fig. 5.7-
(b), this model also shows that gas accretion occurs mainly from near the equatorial plane (x = 0
plane), where the gravity is stronger than the radiation force. In addition, the gas that is attracted by
the gravity but does not fall into the BH reaches near the x-axis at the downstream region and then
flows out in the +x direction. Unlike the fiducial model, the vortex flows appear in the upstream region.
This is due to the radiation force pushing the gas in the −x direction.

5.4 Discussion
5.4.1 Comparison with previous works: Hydrodynamics effect
Here, we compare the present study with our previous work that investigated the Bondi-Hoyle-Lyttleton
accretion of dusty gas in an anisotropic radiation field without solving the hydrodynamics equations.
The accretion rate is 0.6% of ṀBHL in the model ’edgeN4V20’, while it is 20 − 30% for the model of the
previous work that have the same luminosity as that of the quiescent phase of model ’edgeN4V20’. We
explain why the accretion rate is smaller in the presence of hydrodynamic effects below.
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Figure 5.7: Same as Figure 5.4 but for the pole-on model (’poleN4V20’). Each panel shows the flow structure
on (a) 1 pc and (b) 10−2 pc scales. We only show the snapshot in the xy-plane due to the axisymmetry of flow.

Figure 5.8 shows the flow structure without (left panel, cited from Ogata et al., 2021) and with (right
panel) the hydrodynamics effect. In this figure, the BH is at the origin and the gas flows from the
left side. Upper panel shows the gas velocity distribution, and bottom panel shows the radiation force
normalized by gravity in each model.

Comparing the velocity distributions, it can be seen that both models have a region in common where
the velocity suddenly drops on the upstream side (white region in the left panel, dark purple region
in the right panel). In the model without hydrodynamics, the gas rapidly decelerates near the BH
(inside the Bondi-Hoyle-Lyttleton radius RHL) due to the immense radiation force acting on the dust
(see the light blue region in the lower panel of the left figure). In contrast, in the model considering
hydrodynamics, deceleration begins in the region where gravity dominates over radiation force (the blue
region in the lower panel of the right figure). This is because the incoming gas is subjected to gas
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Figure 5.8: The flow structure without (left panel, cited from Ogata et al., 2021) and with (right panel) the
hydrodynamics effect. In this figure, the BH is at the origin and the gas flows from the left side. Upper panel
shows the gas velocity distribution, and bottom panel shows the radiation force normalized by gravity in each
model.

pressure gradient force from the dense shell structure formed between the upstream ionized region and
the neutral region (see Section 5.3.1). Threfore, it is clear that forces other than radiation pressure also
significantly influence the structure of the accretion flow.

Figure 5.9 shows the three-dimensional structure of the density and streamlines for the ’edgeN4V20’
model. From this figure, we see that under the conditions of vD < v∞ < vR, there are primar-
ily three types of streamlines (A-C) around the wandering BH when hydrodynamics are considered:
(A)Streamlines surrounding the ionized region driven by gas pressure gradient force, (B)Streamlines
driven by gas pressure gradient force in the ionized region, (C)Streamlines driven by radiation force
around disk rotation axis in the ionized region. In the case where hydrodynamics effects are not con-
sidered, only streamline (C) appears. However, when hydrodynamics effect are taken into account, the
gas pressure gradient force causes the appearance of streamlines (A) and (B) in addition to (C). There-
fore, the reason why the accretion rate is smaller in the model that takes hydrodynamics into account
than in the model that does not take hydrodynamics into account is due to the outflow driven by the
gas pressure gradient force as shown in (A) and (B). This means that hydrodynamics calculations are
necessary, at least when shock is formed. Otherwise, the accretion rate would be overestimated.

5.4.2 Dynamical friction
Gravity by non-uniform gas distribution around the BHs and momentum transport to the BHs by gas
accretion induce acceleration of BHs. Figure 5.10 shows the acceleration in the x-direction ax(R) at the
elapsed time t = 8.5 × 10−2 Myr, which is calculated as

ax(R) =
∫ 4π

0

∫ R

Rsink

Gρx

R′3 dR′dΩ +
∫

Ssink
ρvxv · dSsink, (5.11)

where dΩ and dSsink are the solid angle and area vector. Here, a negative (positive) value of ax(R)
means that the BH accelerates in the upstream (downstream) direction and the velocity of BH relative
to the interstellar gas increases (decreases).
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Figure 5.9: The three-dimensional structure of the density and streamlines for the ’edgeN4V20’ model.

It is found that the acceleration ax(Rout) is about −10−8cm s−2 in the models with v∞ = 20 km s−1

and n∞ = 104 cm−3 (’isoN4V20’, ’poleN4V20’, and ’edgeN4V20’). This is mainly due to gravity from
the dense shock shell on the ionization front. This can be understood from the fact that the acceleration
suddenly increases at around the star marks (the positions of the ionization front) and becomes nearly
constant outside of them. In the model with the high-velocity v∞ = 100 km/s (’edgeN4V100’), we find
ax(Rout) ∼ 10−10cm s−2, which is consistent with the result of Ostriker (1999), in which the acceleration
of the central object of Bondi-Hoyle-Lyttleton flow has been evaluated. Positive acceleration is due to
the accretion of gas with positive momentum (ρvx > 0) onto the BH. Although the gas density outside
the sink in the upstream region is higher than that in the downstream, the negative acceleration due to
this density difference is smaller than the positive acceleration via the gas accretion. In the high-density
case (’edgeN6V20’), the acceleration in the burst phase is about ax(Rout) ∼ 10−7cm s−2, and we find
the gravity of the dense downstream gas induces the positive acceleration. Although the acceleration
becomes negative due to the gravity of the dense shock shell in the quiescent phase, time-averaged
acceleration is positive, ∼ 10−7cm s−2.

5.4.3 Evolution of Intermediate-mass BHs
In the following, we discuss the evolution of the mass and velocity of the intermediate-mass BHs (MBH ∼
104M⊙) wandering in early galaxies (z ! 6) using our results of model ’edgeN4V20’, ’edgeN4V100’, and
’edgeN6V20’. Here, we use a(Rout) at t ∼ 0.1Myr presented in Figure 5.10 instead of the time-averaged
value since the acceleration at larger distance (R !several pc) does not change with time as much.

In the case that the gas density is ∼ 104 cm−3, the IMBHs continue to float without significant mass
growth. For the model ’edgeN4V100’, the acceleration is ∼ 10−10 cm s−2 so that the timescale of the
slowdown is ∼ 3 Gyr. This is much longer than the age of the universe at z = 6 (∼ 900 Myr). This
implies that the speed of intermediate-mass BHs does not change so much. On the other hand, the
acceleration timescale of model ’edgeN4V20’, ∼ 6 Myr, is much shorter than the age of the universe
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Figure 5.10: Acceleration in the x-direction of BHs at t ∼ 8.5×10−2 Myr as a function of R. The solid (dotted)
lines mean that the acceleration is negative (positive) and the speed of the BHs increases (decreases). The line
colors are the same as in Figure 5.3. The star markers correspond to the positions of the ionization fronts.

at z = 6. Thus, if the initial velocity is relatively small, ∼ 10 km s−1, the intermediate-mass BHs will
continue to speed up until the velocity reaches several × 10 km s−1 where the acceleration timescale
becomes comparable to the age of the universe. The above discussion does not take into account the
change in the mass of the intermediate-mass BHs, but this is appropriate. In both model ’edgeN4V100’
and ’edgeN4V20’, the timescale of mass growth derived from the accretion rate (∼ 4 × 10−6 M⊙ yr−1)
is ∼ 2 Gyr, which is much longer than the age of the universe at z = 6. Thus, we conclude that the
intermediate-mass BHs continue to float at the velocity of ! several × 10 km s−1 without significant
mass growth.

For higher gas number densities (∼ 106 cm−3), intermediate-mass BHs would slow down and increase
in mass. Although we have not performed the simulations of high-density, high-velocity model (n∞ =
106 cm−3 and v∞ = 100km s−1 ), the classical Bondi-Hoyle-Lyttleton type flow is expected to emerge
because the flow structure in model ’edgeN4V100’ is similar to the Bondi-Hoyle-Lyttleton accretion
flow due to the small impact of radiation, and because the radiation impact is thought to be more
ineffective as the density is increased. Hence the accretion rate can be inferred from the classical
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Figure 5.11: Schematic figure of timescale on Bondi-Hoyle-Lyttleton accretion system. tBHL denotes Bondi-
Hoyle-Lyttleton timescale for the gas to reach the accretion axis, tff denotes the free-fall time for the gas to
travel from the accretion axis to the disk’s outer edge, and tvis is viscous timescale for the gas to be transported
from the accretion disk to the BH.

Bondi-Hoyle-Lyttleton accretion theory as ∼ 6 × 10−4M⊙yr−1, and the acceleration is evaluated to be
−4 × 10−8 cm s−2 based on the prediction of Ostriker (1999). The timescales of mass growth and
slowdown of intermediate-mass BHs are expected to be ∼ 20 Myr and ∼ 7 Myr, respectively. This
means that the relative velocity decrease faster than mass growth if the initial velocity is ∼ 100 km s−1.
This behavior is thought to continue even after the relative velocity drops to a few × 10 km s−1. This is
because that the slowdown is expected to be more pronounced due to the decrese of the velocity, while
the mass accretion rate remains the same. Indeed, in the model ’edgeN6V20’, the deceleration rate is
∼ 10−7 cm s−2 and the timescale of the slowdown, ∼ 0.4 Myr, is much shorter than the high-velocity
case. The accretion rate (timescale of the mass growth), for v∞ = 20km s−1 and 100km s−1 is almost
the same. Subsequently, a shift from Bondi-Hoyle-Lyttleton accretion to Bondi accretion might occur.
Bondi accretion in an anisotropic radiation from accretion disks around BHs has been investigated by
Sugimura et al. (2017), and the accretion rate has been reported to be 1% of the Bondi rate. Adopting
n∞ and T∞ as number density and temperature of the gas, the timescale of the mass growth is 16 Myr,
which is much shorter than the age of the universe. To sum up, the intermediate-mass BHs floating at
speeds of ∼ 10−100km s−1 rapidly slow down and grow. Eventually supermassive BHs may be formed.

In the present discussion, we only consider the interaction between a single BH and the surrounding
gas. To more accurately investigate the evolution of intermediate-mass BHs, it should be necessary to
consider their interactions with stars and other BHs.

5.4.4 Evolution of the direction of the disk rotational axis
In this research, we have adopted edge-on as the fiducial model. Here we demonstrate its versatility.

First, we consider the timescales for the entire Bondi-Hoyle-Lyttleton accretion mechanism, divided
by regions (see Figure 5.11). The overall time from the gravitational attraction process that starts near
the gravitational region to the accretion to the BH via the accretion disk is the sum of the Bondi-Hoyle-
Lyttleton time tBHL for the gas to reach the accretion axis, the time for the gas to travel from the
accretion axis to the disk edge tff , and the time for the gas to be transported from the accretion disk to
the BH, tvis (Figure5.11).
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First, the Bondi-Hoyle-Lyttleton time tHL for the gas to reach the accretion axis can be estimated
using the Bondi-Hoyle-Lyttleton radius RBHL as follows:

tHL = RBHL
v∞

= 2GM

v3
∞

∼ 8.4 × 101
(

M

104M⊙

)(
v∞

100km/s

)−3
yr (5.12)

Next, the time for the gas to travel from the accretion axis to the edge of the disk can be estimated
by tff , the time for the gas particles to fall freely due to gravity, considering that the density of the gas
is high at the accretion axis and that it is almost unaffected by radiation due to the shadow of the disk.
Suppose that the gas particle arrives at the position RBHL on the accretion axis, where it loses X = 0.1
times its initial momentum RHLv∞. In this case, tff is the following:

tff = RBHL
Xv∞

= 2GM

Xv3
∞

∼ 8.4 × 102
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104M⊙
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100km/s

)−3 ( X

0.1

)−1
yr (5.13)

Finally, the time for gas transport from the accretion disk to the BH can be evaluated in terms of the
viscosity time tvis (typical timescale in the disk radial direction), assuming a standard disk.

Radial velocity solution in the outer edge region of the standard disk model is discribed as below
(Kato et al., 2008):

|vr| = 5.4 × 105α4/5
vis m−1/5ṁ3/10r̂−1/4f−7/10

in cm s−1 (5.14)

m = M

M⊙
, ṁ = Ṁ

LEdd/c2 , r̂ = r

2GM/c2

fin = 1 − rin

r
.

we can estimate tvis using above solution,

tvis = RBHAD
|vr|

∼ 9.1 × 101
(
αvis
0.1

)− 4
5
(
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104M⊙

) 9
10
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100 km s−1

)− 8
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(

n∞

104 cm−3

)− 3
10
(
χ

0.1

) 5
2

yr, (5.15)

where RBHAD is the outer radius of the BH accretion disk, vr is the radial gas velocity of the standard
disk, and αvis is the viscosity parameter. The fin is a factor related to the boundary conditions, and
fin = 1 for simplicity. The outer edge radius of the accretion disk RBHAD is estimated from the angular
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Figure 5.12: Image showing the changing inclination of the disk rotation axis.

momentum conservation law as follows:

XRBHLv∞ = RBHADvK

= RBHAD

√
GM

RBHAD

→ RBHAD = X2R2
BHLv2

∞
GM

= X2 4GM

v2
∞

, (5.16)

where vK denotes the Keplerian rotation velocity. Here, the angular momentum of the gas arriving at
the accretion axis (x-axis) and accreting at the center is assumed to be X = 0.1 times v∞RBHL. The
X is a constant less than 1 and is a quantity that depends on the anisotropy of density or velocity
distribution. Also, in this study, the size of the accretion disk RBHAD must be sufficiently smaller
than the Bondi-Hoyle-Lyttleton scale RBHL since the accretion disk is treated as a point source. From
Equation 5.16, we can confirm that the condition RBHL ≫ RBHAD is satisfied if X " 10−1.

From the above discussion, the typical timescale tdisk on which the rotational axis of the accretion disk
around the intermediate mass BH changes is tdisk = tBHL + tff + tvis ∼ 103 yr. As discussed in section
5.4.4, the timescale for the mass and velocity evolution of intermediate-mass BHs is a few Myr-Gyr
from the simulation results of our fiducial model. The timescale of the disk change is much shorter
than the timescale of the evolution of intermediate-mass BHs. Therefore, in the evolution process of
intermediate-mass black holes, if the accretion phenomenon starts with the disk rotation axis orientation
not being edge-on, it is expected that edge-on will be realized soon (see Figure 5.12).
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Chapter 6

Future Issues

So far, we have investigated the dynamics of the accretion flows onto the wandering seed BHs considering
the anisotropic radiation that is expected to be generated by the accretion disks, and sublimation of dust
grains. In this section, we summarize the key issues that need to be addressed in the future to construct
a theory of accretion onto a wandering BHs and clarify the supermassive BHs formation process.

In this study, the density distribution of the ambient dusty gas is assumed to be uniform. In reality,
however, the interstellar medium is nonuniform, which could cause varying acceleration and accretion
rates of the BHs. Ruffert et al. (1997, 1999) have reported that nonuniformity causes flows orbiting
around the sink, which reduces the accretion rate. Recently, Lescaudron et al. (2022) suggested that
turbulent medium could slow down BHs using the three-dimensional magneto-hydrodynamics simula-
tions. In their simulations, the deceleration rate is tens of times higher than the analytical solution for
uniform density (Ostriker, 1999). However, if radiation is taken into account, the moving BHs could be
accelerated. Although Sugimura et al. (2018) calculated the accretion flows with angular momentum
onto a static BH, the such simulations for moving BHs, considering the radiation feedback, have not
yet been performed. These are important future work.

The handling of accretion disks around the BHs would also need to be modified. The direction of the
rotation axis of the disk is likely to be perpendicular to the direction of motion of the ambient gases
(edge-on). However, if the ambient gas is non-uniform, the gas accreting to the central region could have
random angular momentum. In that case, edge-on disk is not maintained. Furthermore, immediately
after the BHs encounter gas clouds, the situation is likely to be different from the edge-on case. In these
cases, the properties of the ionization front and dense shock shell could be different from the results of
the present work. To be realistic, the improvements mentioned above are needed.

In our simulations, we assume that the gas flowing into the sink region immediately accretes to the
BH and alters the luminosity. To be more precise, however, the luminosity should increase with a delay
of about the viscosity time. This time lag could not be ignored if the angular momentum of the accreting
gas is large. Clarifying these points is an important future work.

The spectral energy distribution (SED) of the accretion disks depend on mass accretion rates. In this
study, we assume the power-law SED. If the mass accretion rate is near or above the Eddington rate, the
SED of the accretion disk would be multi-temperature blackbody radiation (Kato et al., 2008). In these
case, X-ray is generated because of the Compton scattering by the high-temperature plasma around the
disk (Kawashima et al., 2012). On the other hand, if the mass accretion rate is much lower than the
Eddington rate, the SED widely distributes in the range between radio and gamma rays (Narayan & Yi,
1995; Manmoto et al., 1996; Yuan et al., 2003). Ionization and heating rates depend on the SED,
thus different SEDs could lead to different flow structures and accretion rates. Two-dimensional RHD
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simulations on Bondi scale considering the multi-temperature blackbody radiation model showed that
the critical gas densityin which the transition to super-Eddington accretion occurs is slightly reduced
compared to the power spectrum case (Takeo et al., 2018). This is because photoionization rate of the
accretion disk spectrum model is less efficient than that of the single power spectrum. We need to study
the Bondi-Hoyle-Lyttelton accretion considering more realistic SED.

In our simulations, the cosine function for the angular distribution of the radiation field produced by
the accretion disks is assumed. If the mass accretion rate is above the Eddington rate, the disk could
produce much stronger angular dependence (Watarai et al., 2005; Ohsuga et al., 2005). Conversely, if
the accretion rate is much lower than the Eddington rate, the angular dependence of the radiation
field is weak. The angular distribution also changes with time because of the precessional motion
of the accretion disk. The multidimensional simulations of the accretion disk are needed to obtain
more realistic models of the radiation field (Machida et al., 2000; Hawley & Krolik, 2001; Ohsuga et al.,
2009; Ohsuga & Mineshige, 2011). Two-dimensional RHD simulations around a static BH have been
performed with parameters such as the size of the shadow region (no-radiation feedback region) and
angular distribution of the anisotropic radiation field (e.g. Sugimura et al., 2017; Takeo et al., 2018).
Their study implies that the larger shadow size and the stronger anisotropy lead to a much higher mass
accretion rate. The study of the dependence of shadow size and anisotropy of radiation feedback in the
case of a moving BH remains a future task.

Outflow affects the gas flow around the BHs. Strong bipolar outflows have been observed around
compact objectswhose mass accretion rates are above the Eddington rate (e.g. Fabrika et al., 2004).
Jets have also been detected near many objects (e.g. Walker et al., 2018). The previous theoretical
studies of moving BHs showed that outflows push out the ambient gas, and accretion rate is reduced to
approximately 20−30% of the Bondi-Hoyle-Lyttleton accretion rate (e.g. Li et al., 2020; Bosch-Ramon,
2022). They suggested that acceleration rate is 40 − 80% smaller than that in the case of no outflow.
For further study on the impacts of outflow, we will include these effects in future works.
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Chapter 7

Summary and Conclusion

In the present work, we study the Bondi-Hoyle-Lyttleton accretion mechanism onto intermediate-
mass BHs (104M⊙) by three-dimensional radiation hydrodynamics simulations, taking into account
the anisotropic radiation field originating from the accretion disk. We consider the situation in which
the gas with relatively low metallicity (Z = 0.1Z⊙) flows in perpendicular to the rotation axis of the
accretion disk (parallel to the disk plane). We take into account the radiation force acting on the dusty
gas and decrease in the absorption coefficient due to the dust sublimation. The luminosity of the accre-
tion disk is supposed to increase with the mass accretion rate. Our major findings are summarized as
follows.

If the density of dusty gas is relatively high (∼ 104 cm−3) and the relative velocity between intermediate-
mass BHs and the gas is low (∼ 20 km s−1), time-averaged accretion rate is 0.6 % of the Bondi-Hoyle-
Lyttleton accretion rate (4 × 10−6M⊙yr−1). It is found that an ionized region like two spheres glued
together at the equatorial plane appears around the intermediate-mass BHs and the dense shock shell
is formed nearby the ionization front. The radiation force around the rotation axis of the disk works
to prevent gas accretion so that the gas mainly accretes through the disk equatorial plane. The gravity
of the dense shock shell accelerate the intermediate-mass BHs at ∼ 10−8cm s−2. Note that the accre-
tion rate periodically increases, but does not significantly affect the time-averaged accretion rate and
acceleration.

In the case of high relative velocity (∼ 100 km s−1), the accretion rate, 4 × 10−6M⊙yr−1, is approx-
imately equal to the Bondi-Hoyle-Lyttleton accretion rate. This is because the radiation force hardly
prevents the gas accretion. Even around the rotation axis of the disk, the radiation force is significantly
small due to the dust sublimation. The dense shock shell is not formed, and the intermediate-mass BHs
are decelerated due to the gas accretion.

When the gas density is extremely high (∼ 106 cm−3), the time-averaged accretion rate is 0.6 % of the
Bondi-Hoyle-Lyttleton accretion rate, ∼ 4×10−4M⊙yr−1. Due to the gravity by dense downstream gas,
the intermediate-mass BHs are decelerated although the dense shock shell is formed at the vicinity of the
ionization front. The accretion rate oscillates periodically as in the case of the density of ∼ 104 cm−3.
This is because when the surface density of the shell increases to a certain degree, part of the shell falls
due to the gravity of the intermediate-mass BHs. Periodic variations in accretion rate occur even when
the radiation is isotropic. This result differs from previous work, possibly because we have taken into
account dust sublimation.

Based on the present results, the intermediate-mass BHs are expected to continue floating in the
early galaxies (z ! 6) at the velocity of ! several × 10 km s−1 without significantly mass growth, if the
gas density of the galaxies is ∼ 104 cm−3. On the other hand, if the density of interstellar medium
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is extremely high, ∼ 106 cm−3, even the intermediate-mass BHs with the initial velocity of about
∼ 100 km s−1 will slow down due to momentum transport caused by the mass accretion. If the Bondi
accretion begins with decreasing the velocity, the intermediate-mass BHs could grow rapidly. This may
lead to the evolution from intermediate-mass BHs to supermassive BHs.
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Appendix A

Cooling Process

Cooling function and cooling process

The cooling function Λ
[
erg s−1cm−3] is the energy radiated per unit volume and unit time, and appears

as a source term on the right-hand side of the energy equation for the radiation hydrodynamics. The
cooling process depends on the composition ratio and temperature of the gas. In the following, we show
the typical cooling process and cooling function considered in our simulation.

Atomic cooling process

Cooling processes by atoms such as hydrogen and helium include line emission (bound-bound transition),
radiative recombination (free-bound transition), and collisional ionization (bound-free transition). In
addition, thermal bremsstrahlung by free electrons (free-free transition) and cooling by Compton scat-
tering are also important.

(i) Line emission
Cooling via line emission is the process of photon emission due to downward transitions between
energy levels (binding-binding transitions). Considering levels i and j (i > j), the cooling function
due to the line emission of atoms is as follows,

Λline =
∑

i

ni

∑

j<i

Aijhνij , (A.1)

where ni[cm−3], Aij [s−1], and hνij [erg] are number density of atoms, Einstein A coefficient (prob-
ability of transition from level i to j due to spontaneous emission), and energy difference between
levels ij. Equation A.1 for the cooling function due to line emission of atoms is consistent with our
intuition, which indicates that the larger the number density ni of atoms, the larger the cooling
rate.

(ii) Radiative recombination
Radiative recombination is a radiative phenomenon that occurs when a free electron with energy
kT recombines with an ion (free-bound transition). The reason why the recombination is labeled
"radiative" before the recombination is to distinguish it from the process of electron recombination
without radiative emission. The cooling function due to radiative recombination of atoms is as
follows,

Λrr =
∑

k

nenkα
rrkT, (A.2)
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Figure A.1: Schematic figure of basic cooling process in SFUMATO-M1.

where ne, nk, and αrr represent number density of electron, number density of ion, and recombina-
tion coefficient, respectively. Equation A.2 for the cooling function due to radiative recombination
of atoms is proportional to the number densities of electrons and ions, ne and nk, which are the
materials of recombination, and is also consistent with intuition.

(iii) Collisional ionization
Collisional ionization is the emission process when a free electron collides with an atom and excites
the atom (the bound-free transition). When the colliding free electron has higher energy than the
energy required to ionize the atom at level j, a photon with the energy that is the difference
between the energy of the free electron and the ionization energy of the j is emitted. The cooling
function due to collisional ionization of atoms is as follows,

Λci =
∑

j

nenjα
cihνT(j), (A.3)

where nj , αci, and hνT mean number density of atoms with energy level j, collisional ionization
coefficient, and energy of emitted photon (difference between energy of electron and ionization
energy), respectively.

(iv) Thermal bremsstrahlung
Thermal bremsstrahlung is a cooling process in which a free electron is decelerated by the Coulomb
interaction and emits a photon when it passes through the vicinity of an ion in a system in thermal
equilibrium (free-free transition). The cooling function due to thermal bremsstrahlung is as follows,

Λff = 32πe6

33/2hmec3

(2πkT

me

)1/2
gff
∑

i

Z2
i ni, (A.4)

where gff , Zi, and ni are gaunt factor (correction factor for quantum mechanics), ionic charge, and
number density of ion. Equation A.4 for the cooling function due to thermal bremsstrahlung is
proportional to Z2

i , which is consistent with the intuition that the stronger the charge, the greater
the deceleration and the greater the energy release.
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(v) Inverse Compton scattering
Inverse Compton scattering is a cooling process in which a fast-moving free electron collides with
a photon with a frequency in the visible or infrared region, and gives energy to the photon. The
cooling function resulting from inverse Compton scattering is as follows、

Λcomp = σTcEradne
4kT − 4kTrad

mec2 , (A.5)

where σT, Erad, T , and Trad are cross section of Thomson scattering, radiative energy density,
gas temperture, and radiation temperture. Equation A.5 for the cooling function due to inverse
Compton scattering is proportional to the electron density, which is the scattering material, and
the radiative energy density, thus this equation is also consistent with intuition. As can be seen
from the definition, the relationship kT > kTrad holds for the inverse Compton scattering process.
In the case of Compton scattering, this inverse relationship holds, so the sign of Equation A.5 of
the cooling function by inverse Compton scattering is inverted, i.e., it becomes a heating process.

To summarize, the cooling function of a gas composed of H and He as a function of gas temperature
T is shown in the right panel in Figure A.1 (Thoul & Weinberg, 1995). Here, the short dashed line
represents line emission of atoms, the long dashed line represents radiative recombination, the dotted
line represents collisional ionization, the thin solid line represents thermal bremsstrahlung, and the
thick solid line represents a cooling function that takes all these cooling processes into account. From
the overall cooling function in Figure A.1, we can see that line-cooling of H and He is responsible for
cooling for 104 −105K, radiative recombination and thermal bremsstrahlung for 105 −106K, and thermal
bremsstrahlung for ! 106K, respectively. This can be understood as follows: line-cooling, which is a
binding-binding transition of atoms that does not require ionized gas (free electrons), is dominant in
the low-temperature region, while cooling by free-free, in which ionized gas is the cooling material, is
dominant in the high-temperature region. We note that there are two temperature regions where the
cooling function has a negative slope with respect to temperature (near the region where line-cooling
is dominant). If the temperature drops in this region, it drops further and the temperature drop is
unstoppable. In other words, a thermally unstable region exists.

Molecular cooling process

Figure A.1 shows that the cooling function of atoms (H, He) is effective for ! 104K, and that cooling
by atoms is almost ineffective at temperatures below that. The cooling mechanism in this " 104K is
played by molecules and dust. In this section, we focus on molecular cooling processes.

(vi) Hydrogen molecule
Hydrogen molecules are isonuclear molecules and do not have a dipole moment. Therefore, al-
though line emission occurs due to rotational and vibrational transitions of the molecule, the
emission probability (Einstein A coefficient) is small. Figure A.2 shows the cooling function due
to rotational and vibrational transitions of molecular hydrogen (Susa & Umemura, 2004). It is
clear that the effect of cooling by rotational and vibrational transitions of the hydrogen molecule
is small.
The cooling function of a molecule due to electronic transitions is also basically expressed in the
same form as the equation for the cooling function of an atom (Equation A.1),

ΛH2 =
∑

i!2

∑

j<i

niAijhνij . (A.6)
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Figure A.2: H2 cooling functions induced by H-H2 collision are plotted against the temperature for two different
densities. Cited from Susa & Umemura (2004).

However, if the density of the gas is below a certain critical density (∼ 104cm−3 for hydrogen
molecular), spontaneous emission is responsible for deexcitation to an energy level, and collisional
processes are responsible for excitation. This means that the relation niAij ∼ njneCij holds, and
the cooling function due to molecular emission is

ΛH2 ∼
∑

i!2

∑

j<i

nenjCijhνij , (A.7)

where Cij is Einstein’s C coefficient, which represents the transition probability due to the collision
process.

Cooling process of heavy elements

Heavy elements occupy only a small fraction of the gas composition compared to hydrogen and helium
(∼ 0.01% for the solar composition). However, line-cooling by heavy elements plays an important
role in the cooling mechanism because of the large number of bound electrons present compared to
hydrogen and helium. The left side of Figure A.3 shows the cooling function including heavy elements
(in solar composition) expressed as a function of gas temperature (Sutherland & Dopita, 1993). This
figure shows that line-cooling of heavy elements (C,O,Ne,Fe) is the main cooling mechanism at 105−7K,
while free-free cooling is the dominant mechanism at ! 107K.

The amount of heavy elements also strongly depends on the cooling function. In the right side of
Figure A.3, the cooling function including heavy elements expressed as a function of gas temperature, is
shown for varying the ratio of Fe to H in the solar composition from 10−3 to 100.5 (Sutherland & Dopita,
1993). From this figure, it can be seen that for solar compositions, when the ratio of Fe toH is less than
10−3, the cooling function due to line-cooling including heavy elements matches the cooling function
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Figure A.3: Left panel: The upper panel shows the cooling function including the heavy elements. The lower
panels show the emission by species, selecting only the dominant species for clarity. Right panel: The cooling
functions as a function of plasma metallicity. The solid curves represent curve for different metallicities. Cited
from Sutherland & Dopita (1993) with some modification.

when only H and He are considered. In other words, below 10−3, line-cooling of heavy elements is hardly
effective.

Cooling process of dust thermal emission

At the temperature of 101 − 102K, the cooling mechanism by thermal radiation of dust is important.
The cooling function by thermal radiation of dust is as follows:

Λdust =
∫ ∫

πBν(ad, Td)4πa2
dQ(ad, ν)dnd

dad
daddν , (A.8)

where adis the geometric cross section of dust (0.1-1µm), nd is number density of dust grains, Td is
dust temperature, Bν(ad, Td) is Planck distribution function, Q(ad, ν) is the effective cross-section of
the dust.
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