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Abstract

Sports scheduling is the research region that concerns making a reasonable game sched-
ule, especially a round-robin tournament, for sports competitions. One of the important
factors in game scheduling is fairness. Based on the fairness of the schedule, the elements
of break, carry-over effect and travel distance are considered in this study. This thesis
investigates the creation of a fair schedule based on the rules of round-robin tournaments.
In this format, each match involves two teams, with one team playing at home and the
other away. Given the general advantage of home games, this study incorporates two con-
ditions to ensure fairness in the scheduling of home and away games for each team: 1)No
team is allowed to have more than two consecutive home or away games; 2)The difference
between the number of home games and away games for each team is 1 at the end of the
tournament.

First and foremost, developing feasible home-away tables for the teams is the core focus
of this thesis. This task is divided into two parts: constructing home-away tables with
the minimum number of breaks and another with the maximum number of breaks. The
space-sequence, combined with the concept of isomorphic home-away tables, is proposed.
This approach allows for the rapid classification of home-away tables with few breaks and
the identification of infeasible home-away tables. By constructing home-away patterns
with the largest and second largest number of breaks, we form feasible home-away tables
and determine the maximum number of breaks. This thesis establishes the upper bounds
for breaks, demonstrating that these bounds are tight for up to 36 teams. Secondly,
by using an integer programming model to calculate the carry-over effect (COE) value,
we propose an algorithm called the “successive method,” which minimizes both break
and COE values. Finally, the relationship between the break and traveling tournament
problem(TTP) is analyzed using various distance metrics.



ii

Contents

1 Introduction 1
1.1 The rules of the tournament games . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Important indicators and main problems . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The breaks and break number maximization or minimization prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The carry-over effect value and carry-over effect value minimization
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Distance minimization and the traveling tournament problem . . . . 6
1.3 The main research purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Break, home-away patterns and home-away tables 11
2.1 The relationship between home-away pattern and home-away table . . . . . 11

2.1.1 Home-away patterns and home-away tables . . . . . . . . . . . . . . 11
2.1.2 Important theorems about feasible HATs . . . . . . . . . . . . . . . 12

2.2 The Significance of Breaks in Sports Scheduling . . . . . . . . . . . . . . . . 14
2.2.1 The Significance of Breaks . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Why Minimizing Breaks is Sometimes Necessary . . . . . . . . . . . 14
2.2.3 Why Maximizing Breaks is Sometimes Necessary . . . . . . . . . . . 15

2.3 HATS under the restriction of break number . . . . . . . . . . . . . . . . . 15
2.3.1 The break setting conditions in this paper . . . . . . . . . . . . . . . 15
2.3.2 2c-HATs with few breaks . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 2c-HATs with the most breaks . . . . . . . . . . . . . . . . . . . . . 20

3 The feasible 2c-HATs with few breaks 22
3.1 Isomorphic 2c-HATs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Space-sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Feasible space-sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Enumeration of 2c-HATs with few breaks . . . . . . . . . . . . . . . . . . . 31

4 The feasible 2c-HATs with most breaks 35
4.1 The upper bound of tmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The total number of the 2c-HAPs having n′ − 1 breaks . . . . . . . . . . . . 36
4.3 The total number of the 2c-HAPs having n′ − 2 breaks . . . . . . . . . . . . 42
4.4 Formulation based on integer programming . . . . . . . . . . . . . . . . . . 44
4.5 Algorithm of finding maximum break 2c-HAT . . . . . . . . . . . . . . . . . 46



iii

5 Minimization of carry-over effect value under break constraints 49
5.1 Integer programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Modifications to the integer programming model . . . . . . . . . . . 51
5.1.2 Comparison of calculation results . . . . . . . . . . . . . . . . . . . . 53

5.2 Heuristic algorithm for minimizing carry-over effect value . . . . . . . . . . 55
5.2.1 Round swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Partial swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Successive method by enumerating home-away tables . . . . . . . . . . . . . 58

6 The travel distance minimization problem 62
6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Exact Approaches and Limitations . . . . . . . . . . . . . . . . . . . 64

6.2 The travel distance minimization problem under maximum breaks . . . . . 64
6.2.1 The integer programming model for the travel distance of a single

round robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Numerical results and investigation (the advantage of 2c-HAT in

moving distance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion and future work 69



iv

List of Figures

1.1 An example of a match schedule for a team in a home-and-away format
round-robin tournament. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Team relations in two consecutive rounds. . . . . . . . . . . . . . . . . . . . 5
1.3 A COE matrix for n teams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The balanced COE matrix when n is 8. . . . . . . . . . . . . . . . . . . . . 6
1.5 The difference between the two types of team1 ’s travel distance. . . . . . . 9

2.1 A HAP for one team when n is 8. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Two teams using the same HAP. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 A feasible HAT for 8 teams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 A schedule for the HAT in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . 13
2.5 An example for subset Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 HATs with different numbers of breaks. . . . . . . . . . . . . . . . . . . . . 17
2.7 An example of three consecutive away games in double round-robin tour-

nament. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 The enumeration of the HAPs with at most one break for n = 6. . . . . . . 18
2.9 Classification of HATs with few breaks. . . . . . . . . . . . . . . . . . . . . 19
2.10 The two 2c-HAPs with n′ − 1 and n′ − 2 breaks . . . . . . . . . . . . . . . . 20

3.1 Labels of 2c-HAPs in Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Example for isomorphic HATs. . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 The graph corresponding to the HATs in Figure 3.2. . . . . . . . . . . . . 24
3.4 An example of isomorphic HATs when n = 8. . . . . . . . . . . . . . . . . . 25
3.5 Space-sequence calculation process . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Illustration of the relationship between sr-mb-HAT and space-sequence. . . 26
3.7 Illustration of a sr-eq-HAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Example of a partial 2d-HAT with few breaks for proof of Theorem 9. . . . 28
3.9 Example of a partial 2c-HAT with few breaks for proof of Theorem 10. . . . 28
3.10 Example of a partial 2c-HAT with few breaks for proof of Theorem 11 . . . 30
3.11 Partial 2c-HAT with few break for proof of Theorem 14. . . . . . . . . . . . 32
3.12 An example of space-sequence when n = 10. . . . . . . . . . . . . . . . . . . 33

4.1 Generation Process of P ∗
H for n = 12 . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Generation Process of P ∗
H for n = 10 . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Delete columns holding the same H and A. . . . . . . . . . . . . . . . . . . 38
4.4 Example of set of 2c-HAPs {pl, pl+1, pl+2}, where l is odd. . . . . . . . . . . 38



v

4.5 Example of set of 2c-HAPs {pl, pl+1, pl+3, pl+4, pl+6}, where l is odd. . . . . 39
4.6 If 2c-HATs contains these four partial sets, then the 2c-HATs is not feasible. 40
4.7 Generation Process of P ∗∗

H for n = 6 . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Generation Process of P ∗∗

H for n = 8 . . . . . . . . . . . . . . . . . . . . . . 44
4.9 Computation time for finding a maximum break HAT . . . . . . . . . . . . 47

5.1 Comparison of COE values of two schedules. . . . . . . . . . . . . . . . . . 55
5.2 An example of round swap. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Example for type I of the partial swap along a directed cycle with 6 teams

a– f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Example for type I of the partial swap along an alternate cycle with 6 teams

a– f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Timetable and patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 The travel process of team 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 The circle distance between each pair of teams. . . . . . . . . . . . . . . . . 65
6.4 The linear distance between each pair of teams. . . . . . . . . . . . . . . . . 66



vi

List of Tables

3.1 The numbers of candidate HATs. . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Computing results for odd n′ . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Computing results for even n′ . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 The number of feasible HAP conbinations in N for even n′ . . . . . . . . . 48

5.1 Comparison of obtained COE values and computing time for IP calculation.
The columns of C.v. show the obtained COE values and the columns of
time show computing time in seconds. If the optimal COE values could not
be obtained within the time limit, 7200sec., its computing time is denoted
by “TU” and the gaps between the obtained upper and lower limits are
shown in parentheses below the COE value. A hyphen “–” means that we
could not find any feasible solution within the limited time. . . . . . . . . 54

5.2 Result of the heuristic algorithm of round/partial swaps. . . . . . . . . . . 57
5.3 The COE values of each candidate HAT. Each candidate HAT is represented

by the corresponding space-sequence. . . . . . . . . . . . . . . . . . . . . . . 60
5.4 The schedule table with minimum COE value when n is 12. . . . . . . . . . 61
5.5 Comparison of the obtained COE values by our IP model, successive method,
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Chapter 1

Introduction

Everyone can enjoy sports and participate in sporting events, regardless of age or gender.
International sports events foster exchange between nations, bring about peace, allow peo-
ple worldwide to enjoy sports, and simultaneously improve physical fitness and educational
levels. The successful hosting of the Tokyo Olympics exemplifies the importance of sports
in human life. The Olympics are a shared heritage of humanity, breaking down political,
religious, and racial barriers, and enhancing collective human awareness. Sports events not
only promote the development of sports and culture but also stimulate international co-
operation, economic growth, and technological advancement. Major sporting events have
a significant economic impact, driving advancements in manufacturing technologies and
sales strategies, boosting local tourism, and leading to the construction of sports venues,
thereby creating numerous job opportunities. Consequently, reasonable and effective plan-
ning is crucial for the success of sporting events. Failure to ensure an appropriate schedule
may result in significant dissatisfaction among spectators and irreversible pain and injury
to participants.

Teams and leagues aim to optimize their investments by developing well-structured
schedules that meet various criteria. Effective scheduling is crucial to maximize revenues,
enhance the appeal of games, and maintain the interest of both media and fans. Good
schedules can significantly impact the financial performance and on-field performance of
every team in a tournament, making the task of finding the best schedule complex due
to the involvement of multiple decision-makers, constraints, and objectives encompassing
logistics, organization, economics, and fairness.

The general problem of scheduling games in a tournament is the most extensively stud-
ied area in sports scheduling. It involves determining the dates and venues for each game.
Applications of this scheduling are commonly seen in sports such as football, baseball,
basketball, cricket, and hockey. However, there are other important scheduling problems
in sports, such as assigning referees to games, which also involve multiple objectives. By
utilizing mathematical models to solve sports scheduling problems, it is possible to effi-
ciently determine optimal game schedules. These models help shorten travel distances for
teams, allocate venues based on spectator numbers, and assist organizers in reasonably
condensing schedules during the coronavirus period.

Sports scheduling research can be divided into two main directions: practical ap-
plication and theoretical research. Practical applications have demonstrated that using



2

mathematical models to solve sports scheduling problems is both rigorous and efficient.
This field has garnered increasing attention from researchers in multidisciplinary areas,
including operations research, scheduling theory, graph theory, combinatorial optimiza-
tion, and applied mathematics. Various optimization techniques have been employed to
tackle challenges in sports scheduling and management. The complexity of these problems
necessitates the use of a range of exact and approximate approaches, including integer pro-
gramming (IP)([1, 2, 3, 4, 5, 6]), heuristic search and metaheuristics([7, 8, 9, 10, 11]), and
hybrid methods([12, 13, 14, 15, 16]).

The initial theoretical advancements in the field of sports scheduling can be traced
back to the 1980s, attributed to the work of De Werra[17]. Notably, De Werra utilized
concepts from graph theory to demonstrate specific results concerning the minimum num-
ber of breaks (consecutive matches with the same home-away situation) in round-robin
tournaments. In the same year, Russel[18] also showed a theoretical study from a different
perspective.

A large number of theoretical studies for sports scheduling consider a round-robin
tournament, i.e., each pair of two teams plays a match exactly once or twice. A round-
robin tournament where each team needs to play one match against other teams is known
as a single round robin, and a tournament where each team plays two matches against
other teams is known as a double round robin. In sports events that require many matches
to be held per season, the double round-robin mode is very common. Usually, a double
round-robin tournament repeats two periods, where one period consists of a single round-
robin schedule and the games scheduled in the second period follow exactly the same
as those in the first period. Such a double round-robin tournament schedule is called a
mirrored schedule.

According to Nemhauser and Trick[19], round-robin schedules can be categorized into
two types: temporally constrained and temporally relaxed. Temporally constrained sched-
ules, also referred to as compact schedules, have a number of available game rounds that
equals the number of games each team must play, plus any necessary byes for leagues
with an odd number of teams. This format is commonly adopted by many professional
football leagues in Europe and Latin America. Conversely, temporally relaxed schedules
offer more rounds than the minimum required, allowing each team to have multiple byes.
This scheduling approach is prevalent in professional leagues in North America, such as
the National Basketball Association (NBA) ([20, 21]) and the National Hockey League
(NHL) ([22, 23]). It is also utilized by numerous amateur sports leagues[24] and cricket
leagues in Australia, England, and New Zealand ([25, 26, 27]

Studies also show that it is very effective to utilize mathematical optimization in
large competitions for a great variety of real-world cases (Kendall et al.[28]; Ribeiro[29];
Durán[30]). Recently, van Bulck et al.[31] classified a wide variety of sports scheduling
problems as the conditions to be considered increased.

A single round-robin tournament of high quality is helpful for such a double round-
robin tournament. The thesis focuses on the theoretical research on single round-robin
tournament games. The remaining part of this chapter introduces the basic rules of
round-robin tournaments and the fairness criteria primarily considered in this thesis when
creating the tournament schedule.
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1.1 The rules of the tournament games

Research on sports scheduling began in the 1970s, with researchers from fields such as
mathematical programming, graph theory, and metaheuristics getting involved. The pri-
mary focus of sports scheduling research has been on round-robin tournaments, with the
most prominent being the home-and-away format. In a home-and-away format, each team
has a home venue, and each match is held at the home venue of one of the teams. Games
held at a team’s home venue are referred to as home games, while those held at the
opponent’s home venue are called away games.

Figure 1.1 provides an example of a home-and-away round-robin tournament schedule.
In this table, the opponent for team i on round s is indicated by the i-th row and s-th
column, with “@” representing away games. Suppose that there are n teams competing
with each other on a single round-robin tournament, i.e., each pair of two teams plays a
match exactly once. It is assumed that n is even and n ≥ 6. participates in one game at
every round. Thus, each round has exactly n/2 games, and a game schedule has n − 1
rounds. It is also assumed that each match is played at either home of the opposing team.

The quality of scheduling can be evaluated from various perspectives, including the
fairness of the match schedule, the burden on the players, the number of spectators,
TV broadcasting, and the distances teams have to travel. Creating high-quality schedules
involves addressing several challenges, each aimed at producing schedules of good “quality”
from these different perspectives.

Team Round 1 Round 2 Round 3 Round 4 Round 5

1 @6 @4 2 5 3
2 5 @3 @1 @4 6
3 @4 2 5 @6 @1
4 3 1 6 2 @5
5 @2 6 @3 @1 4
6 1 @5 @4 3 @2

Figure 1.1: An example of a match schedule for a team in a home-and-away format round-
robin tournament.

This thesis aims to study fair round-robin tournament schedules based on theories of
sports scheduling rather than actual games.

1.2 Important indicators and main problems

In order to create a fair competition schedule, many factors need to be considered. The
remainder of the introduction focuses on the indicators that influence the fairness of the
round-robin tournament schedule and the main problems.

1.2.1 The breaks and break number maximization or minimization prob-
lem

When a team has two consecutive home games or two consecutive away games, it is called
a “break.” Taking Figure 1.1 as an example, Team A plays away games in both Round 1
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and Round 2, so we refer to this two rounds as a break.
The balance of breaks is one important thing for making a fair tournament and the de-

mand for break numbers varies depending on different sports events. Due to the character-
istics of the round-robin tournament, it is not easy to increase or decrease the participating
teams once the game starts, and the game schedule will be arranged in advance. After all
competitions, the ranking will be calculated according to the results of all the matches. In
addition to the results of the two teams involved, each match of the cyclical match may
also affect the ranking of the other teams. Therefore, fairness is particularly important
when arranging the game schedule. The fairness of sports events can be cut from many
angles. For example, it is generally speaking that home games are advantageous to away
games. Thus, the number of home and away games played by each team at the end of
the season should be as balanced as possible. The imbalance of resting time between the
games of the tournament, which is concentrated in a short period of time, is sometimes
regarded as bringing unfairness. Therefore, making a game schedule that is well-balanced
and fair among teams in terms of various factors has been a topic of study. High-quality
scheduling can be evaluated from various perspectives, such as fairness of match schedules,
player workload, attendance, TV broadcasting, and team travel distance.

Numerous studies have been conducted to address these problems, which are classified
into two approaches: first-schedule then-break and first-break then-schedule. The former
finds good home and away patterns according to a given match schedule. To minimize
the break number, Regin [9] addressed this problem by adopting constraint programming.
Ensuring that games at each home field are evenly distributed, as well as minimizing the
discrepancy in consecutive home games and away games for each team after equalizing
them, are considered in Easton et al. [32]. Rasmussen and Trick [12] addressed the
problem by algorithm and integer programming. Miyashiro and Matsui [33] presented a
polynomial time for deciding whether home and away patterns with minimum breaks exist
according to the match schedule. These approaches offer advantages such as maintaining
fairness among teams, leading to extensive research in this area. On the other hand, the
first-break then-schedule problem finds a match schedule corresponding to a given set of
home and away patterns. In this case, we need to decide whether a given set of home and
away patterns is feasible, which is also known as the home-away acceptability judgment
problem. Bulck and Goossens [34] showed how Benders’ decomposition regulates the
home-away status of games in combination with variable neighborhood search regulating
the order of opponents and operates on actual instances.

Meanwhile, with the theorem on feasible home-away table of Miyashiro and Matsui
[33], the break maximization problem and the break minimization problem have been
theoretically proven to be equivalent problems, but the study of the break maximization
problem has not been as in-depth as that of the break minimization problem. Therefore,
the problem of finding a set of home and away patterns that maximizes the total number
of breaks under break constraints is also relevant to travel distance minimization.

1.2.2 The carry-over effect value and carry-over effect value minimiza-
tion problem

The concept of the carry-over effect (COE) is critical in understanding the fairness of
sports tournament scheduling. The COE describes the potential disadvantage a team
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faces when it plays against a strong opponent and then immediately plays against another
team in the subsequent round. The idea is that a team may be significantly fatigued after
facing a tough opponent, which could negatively impact their performance in the next
game, thereby giving an unintended advantage to their next opponent.

Figure 1.2 below illustrates this concept. Team C competes against team A in round
r and then against team B in round r+1. If Team A is particularly strong, Team C is
likely to be exhausted after the match in round r, which can affect its performance in the
subsequent round against Team B. Consequently, team B benefits from playing against a
potentially weakened Team C.

Figure 1.2: Team relations in two consecutive rounds.

From the viewpoint of fairness of the game schedules, the carry-over effect (COE) is
one of vital factors to be taken into account. The carry-over effect value (COE value),
proposed by Russell[18], is one of the measures to evaluate the fairness of the order of
games. The strength of each team is not the same. When a team competes with another
very strong team, they will inevitably hurt their vitality, which will affect the next game.
Therefore, the subsequent team that competes with the hurt team may benefit from it.
Such an affect is evaluated by the COE. When team l and team j compete in round r+1
after team l and team i compete in round r, team j will obtain a COE from team i. To
consider the COE, rounds are considered cyclically, i.e., the first round follows the last
round. Let cij be the number of COE given by team i to team j. Note that

∑
j cij is

constant, i.e., n− 1. Through this concept, we can calculate the COE matrix as shown in
Figure 1.3.

T/T 1 2 ... n

1 0 c12 ... c1n
2 c21 0 ... c2n
... ... ... ... ...
n cn1 ... ... 0

Figure 1.3: A COE matrix for n teams.

The desired schedule is that the numbers of COEs are balanced among all pairs of
teams. The degree of balance of the COE is usually measured by the COE value, defined
as

∑
i,j c

2
ij . It is clear that the lower bound of the COE value is n(n− 1)(Figure 1.4 shows
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the COE matrix which has the minimum COE value when n is 8.), and Russell[18] shows
the schedule achieving this minimum COE value when n is a power of two. Unless n is a
power of two, the exact minimum COE values are known only for limited small n.

T/T 1 2 3 4 5 6 7 8

1 0 1 1 1 1 1 1 1
2 1 0 1 1 1 1 1 1
3 1 1 0 1 1 1 1 1
4 1 1 1 0 1 1 1 1
5 1 1 1 1 0 1 1 1
6 1 1 1 1 1 0 1 1
7 1 1 1 1 1 1 0 1
8 1 1 1 1 1 1 1 0

Figure 1.4: The balanced COE matrix when n is 8.

Anderson [35] developed another construction method as a starter-based method and
showed a balanced schedule when the number of teams is 20 and 22. Beintema et al.
[36] show that completely balanced schedules exist for all n which are a power of 2 by
modifying Russell’s construction method in Russell [18] based on Galois fields. Since
then, many approaches have been developed to further improve the solution of the COE
value minimization problem, by constraint programming (Trick [37]; Henz et al. [10]), and
heuristic approaches (Miyashiro and Matsui [38]; Kidd [39]; Cao et al.[40]).

Meanwhile, Günneç and Demir [41] dealt with both breaks and COEs. They proposed
a method minimizing the COE value under some constraints for breaks. The purpose of
Chapter 5 is to improve solutions for their COE value minimization problem. In particular,
three types of home-away tables with few breaks are evaluated. First, the properties of
these home-away tables are investigated. According to operations that do not affect the
feasibility and COE value, home-away tables are classified into isomorphic groups, which
help to reduce the number of tables to be searched. Then, the COE value minimization
problem is solved by finding a feasible schedule that minimizes the COE value for each
table. To do this, an integer programming problem is adopted, which is shown in Günneç
and Demir[41], together with some valid inequalities, some of which are derived from
Miyashiro et al.[42] and Briskorn[2], to reduce the search space. As a result, the exact
optimal COE values are found for the small number of teams, no more than 12. In
addition, the upper bound of minimizing COE values is obtained for less than or equal to
20 teams.

1.2.3 Distance minimization and the traveling tournament problem

In distance minimization scheduling problems, each pair of teams is associated with a
distance (or time or cost), representing the travel distance between their home venues.
The objective is to create a schedule that minimizes the total distance traveled by all
teams. Typically, additional constraints related to travel are also imposed.

The traveling tournament problem (TTP), introduced in the seminal paper by Easton
et al. [32], is arguably the most iconic problem in this field. It is a challenging combina-
torial optimization problem in sports scheduling that encapsulates the critical aspects of
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creating timetables where traveling distances are a significant concern. They propose the
TTP as a benchmark problem for two primary reasons:

1. The problem has practical significance in modeling critical aspects of real sports
schedules.

2. The combination of feasibility and optimality, along with its relatively recent emer-
gence, makes the problem intriguing to both the operations research and constraint
programming communities.

Given an even number n of teams, distances dij between the home venues of teams i and
j for every i, j = 1, . . . , n (with dij = 0 if i = j), and two integer parameters L and U , and
L and U define the tradeoff between distance and pattern considerations. The TTP aims
to schedule a double round-robin tournament that minimizes the total distance traveled
by the teams while adhering to a set of constraints. The key assumptions include:

• Each team begins the tournament at home and must return home after its last away
game;

• No repeaters are allowed, meaning no two teams can play against each other in
consecutive rounds;

• Every sequence of consecutive home games played by any team consists of at least
L and at most U games;

• Every sequence of consecutive away games played by any team consists of at least L
and at most U games;

• The sum of the total traveling distance of each team has to be minimized.

When L = 1 and U = n− 1, a team’s travel may resemble that of a traveling salesman
tour. Conversely, for small values of U , teams must return home more frequently, resulting
in an increase in the total distance traveled.

Additionally, when a team plays two consecutive away games, it travels directly from
the site of the first opponent to that of the second.

Different problems also derive from the TTP, and these descriptions provide clear dis-
tinctions between different types of traveling tournament problems, each with its own
unique constraints and considerations. The TTP with Predefined Venues (TTPPV) vari-
ant introduces the additional constraint of predefined home venues for each game. In this
version, the schedule must respect the predetermined home locations, while still aiming
to minimize the total travel distance. This makes the problem more complex as it has to
accommodate fixed venues along with the original distance minimization and scheduling
constraints.

The Mirrored TTP (TTP-mirrored) variant features a mirrored schedule where the
second half of the tournament is a mirror image of the first half. This means that the
games played in round s are identical to those in round s+(n−1), providing a symmetric
structure to the schedule. This mirroring ensures that the no repeaters constraint is
automatically satisfied, as each pair of teams will face each other exactly once in the first
half and once in the mirrored second half.
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The TTP Non-Round-Robin (TTP-nonRR) variant does not adhere strictly to the
round-robin format, allowing for more flexibility in scheduling the games. This version
aims to minimize the travel distance while not being bound by the rigid structure of a
round-robin tournament. The flexibility in scheduling allows for potentially more opti-
mized travel paths, though it may lead to different competitive dynamics.

The TTP Relaxed (TTP-relaxed) variant relaxes some of the constraints present in
the standard TTP. In this version, teams may have more flexibility regarding the number
of consecutive home or away games they can play. Additionally, the number of avail-
able rounds might exceed the minimum required, permitting more byes and reducing the
strictness of the scheduling constraints. This relaxation can lead to more practical and
easier-to-manage schedules while still focusing on minimizing travel distances.

Some benchmark instances fall into specific special cases. One notable special case,
introduced by Easton et al. [32], is the TTP with the mirrored requirement, where the first
half of the schedule mirrors the second half with reversed venues. Another special case,
introduced by Nemhauser and Trick [19], assumes a constant travel distance between
any pair of cities. The exact solutions obtained so far suggest that these special cases
are not as challenging as the general problem. Urrutia and Ribeiro [43] addressed the
constant distance instances with the mirrored requirement for 4, 6, 8, 10, 12, and 16
teams. Fujiwara et al. [44] used a constructive method to provide optimal solutions for the
constant distance instances for n teams where n ≤ 50 and n ≡ 4 (mod 6). Additionally,
Rasmussen and Trick [12] utilized a Benders approach to solving all constant distance
instances for up to 16 teams, as well as constant distance instances with the mirrored
requirement for up to 18 teams. Irnich [45] based on a new compact IP formulation, the
traveling tournament problem is solved using branch and price. The network structure is
explicitly utilized, reducing the column-generation subproblem to a shortest path problem,
which is efficiently solved.

The Traveling Tournament Problem is also closely related to the minimum cost prob-
lem. Briskorn et al.[46] present a branch-and-price algorithm to find a feasible schedule for
a round-robin tournament with a minimum number of breaks and minimum total costs.
Computational results are presented for leagues with up to 12 teams.

As mentioned in the Introduction, the reduction of movement distance is often related
to the study of maximizing the number of breaks. Assuming that the distance between
venues is known, Figure 1.5 shows team 1 using two different home-away patterns. The
travel process of Team 1 in the left of the figure is 2 → 1 → 4 → 1 → 6 → 1, while the
other is 4 → 2 → 1 → 6 → 1. In the case on the left, team 1 has no breaks, while in the
case on the right, team 1 has two breaks. And it is not difficult to find that in comparison,
team 1 on the right has reduced the return trip from team 4’s home venue, and moved
directly from team 4’s home venue to team 2’s home venue, and then returned after the
games. We believe that the schedule in right hand will reduce the total travel distance
when the distance between the home venues of teams 2 and 4 is short.From this, we expect
that breaks will indeed affect the travel distance cost.

Under the restriction of prohibiting 3 or more consecutive home or away games, the
problem of maximizing breaks was first proposed by Russell and Leung [47] to reduce the
travel distance cost of teams in the American League. In the context of the traveling
tournament problem, the almost target schedule is the double round-robin tournament,
and at most three consecutive series of home and away games are allowed apart from
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Figure 1.5: The difference between the two types of team1 ’s travel distance.

the assumption of [47]. Urrutia and Riberio [43] discussed that the number of travels
and the number of breaks were related, break maximization and distance minimization
were used to derive lower bounds for the traveling tournament problem. Suzuka et al.
[48] gave a unified view to the three problems which are break maximization, and break
minimization and minimizing travel distance. A detailed review of research results on
minimizing travel trips with constant distance and maximizing breaks can be found in
Van Bulck and Goossens [49].

1.3 The main research purpose

Chapter 2 provides a foundational understanding of breaks, home-away patterns, and
home-away tables. It also introduces key theorems related to feasible home-away tables.
As the main focus of this doctoral dissertation, the study of feasible home-away tables is
divided into two parts: scenarios with fewer breaks, which are detailed in Chapter 3, and
scenarios with the maximum number of breaks, which are discussed in Chapter 4.

Specifying a feasible tournament schedule under the constraint of breaks presents sig-
nificant challenges. In Chapter 3, for the case of home-away tables with fewer breaks,
we introduce the concept of isomorphic home-away tables. Based on this concept, we
propose the use of space-sequence. This chapter provides a detailed explanation of how
space-sequence can be utilized to eliminate infeasible home-away tables and classify the
feasible ones. Compared to existing methods, the space-sequence based approach is more
efficient and faster.

In contrast, Chapter 4 addresses the challenge of finding home-away tables with the
maximum number of breaks. Initially, we construct home-away patterns that maximize
the number of breaks. However, these patterns alone are insufficient to form a feasible
home-away table. Therefore, we also construct patterns with the second most breaks. An
algorithm is proposed, resulting in an upper bound on the number of breaks for teams,
applicable for up to 36 teams.

Minimizing the carry-over effect (COE) value is another critical topic in sports schedul-
ing, yet there are relatively few studies that simultaneously consider both the COE value
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and the number of breaks. Chapter 5 is dedicated to achieving the minimum COE value
while also minimizing the number of breaks. We modify the original integer programming
model to enhance solution speed and propose an algorithm that combines the concepts
of space-sequence and isomorphic home-away tables to achieve lower COE values more
efficiently.

Chapter 6 explores the Traveling Tournament Problem (TTP) and examines the rela-
tionship between the number of breaks and the travel distance. This chapter delves into
the intricacies of how scheduling impacts the logistics of team travel. Finally, Chapter
7 presents the conclusions and discusses future research prospects. This chapter sum-
marizes the key findings of the dissertation and suggests potential directions for further
investigation in the field of sports scheduling.
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Chapter 2

Break, home-away patterns and
home-away tables

This chapter focuses on break, home-away pattern (HAP) and home-away table (HAT).
Different home and away situations determine the HAP, assign the HAP to each team,
and the HAPs of all teams constitute the HAT. When a HAT can form a schedule, it is
called a feasible HAT, and not all HATs are feasible. How to find a feasible HAT is an
important topic. The first section discusses the relationship between the break, HAP and
HAT. Then details how to find the feasible HAT with the minimum number of breaks and
the maximum number of breaks.

2.1 The relationship between home-away pattern and home-
away table

Suppose that there are n teams competing with each other in a single round-robin tour-
nament, i.e., each pair of two teams plays a match exactly once. It is assumed that n is
even and n ≥ 6. Each team participates in one game at every round. Thus, each round
has exactly n/2 games, and a game schedule has n − 1 rounds. It is also assumed that
each match is played at either home of the opposing team.

2.1.1 Home-away patterns and home-away tables

When a team participates in a game, it will either be playing at home or away. If one of
the two competing teams is playing at home, the other team must play away, and vice
versa. home-away pattern (HAP) is an n − 1 length sequence whose rth element implies
that the match of round r is played at home or away by one specified team. Figure 2.1 is a
HAP used by a team i when n is 8, where H represents the team playing a home game in
the current round, and A represents the team playing an away game in the current round.

A table consisting of a collection of n HAPs is called a home-away table (HAT).
A HAT is represented by a matrix with n rows corresponding to teams and n − 1

columns indexed by rounds, where element (i, r) implies home-away venues for teams i at
round r. A HAT is said to be feasible if there exists at least one round-robin tournament
schedule with which the HAT is consistent, i.e., two teams corresponding to a match in
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Team Round
1 2 3 4 5 6 7

i H A H A H A H

Figure 2.1: A HAP for one team when n is 8.

a round have opposite home-away venues in the HAT. If two teams are assigned to the
same HAP, these two teams will not be able to compete with each other. Figure 2.2 shows
two teams i and j using the same HAP. When two teams can play, if one team plays at
home, the other team must play away. Therefore, the “H” and “A” situations of the two
teams in the round where they can play cannot be consistent. If a HAT contains this
situation that prevents teams from forming competitions, then the HAT is infeasible. In
other words, each HAP can be contained only once in any feasible HAT.

Team Round
1 2 3 4 5 6 7

i H A H A H A H
j H A H A H A H

Figure 2.2: Two teams using the same HAP.

Thus, which HAP is assigned to a row of a HAT needs to be considered, so the rows
of the HAT are regarded to correspond to HAPs. Figure.2.3 shows a feasible HAT for
8 teams in which each row in the graph represents a HAP assigned to each team, and
Figure.2.4 is a schedule for this HAT.

Team Round
1 2 3 4 5 6 7

1 H A H A H A H
2 H H A H A H A
3 H A H H A H A
4 H A H A A H A
5 A H A H A H A
6 A A H A H A H
7 A H A A H A H
8 A H A H H A H

Figure 2.3: A feasible HAT for 8 teams.

2.1.2 Important theorems about feasible HATs

It is obvious that a feasible HAT needed to have the same numbers of homes and aways
for each round. Miyashiro et al.[42] discussed a necessary condition for feasible HATs.
For any subset Q of HAPs consisting of a HAT (i.e., a subset of rows in a HAT), the
number of homes (resp. aways) assigned in these rows at round r is denoted by H(Q, r)
(resp. A(Q, r)). Figure.2.5 is a case of a subset Q of three HAPs when n > 3. The



13

Team Round
1 2 3 4 5 6 7

1 6 @7 8 @5 3 @4 2
2 5 3 @4 6 @7 8 @1
3 7 @2 5 4 @1 6 @8
4 8 @5 2 @3 @6 1 @7
5 @2 4 @3 1 @8 7 @6
6 @1 @8 7 @2 4 @3 5
7 @3 1 @6 @8 2 @5 4
8 @4 6 @1 4 5 @2 3

Figure 2.4: A schedule for the HAT in Figure 2.3.

smaller value between H(Q, r) and A(Q, r) is shown in the last row. It is evident that
for two teams to play against each other, one team must have a home game while the
other must have an away game. Thus, the value “min” in the last row signifies the
maximum number of matches among the subset Q that can be scheduled in each round.
In this particular scenario, there are three HAPs assigned to three teams, where each
team requires a minimum of three matches. However, the total value of “min” is 2 in this
case. This indicates that a HAT containing the subset Q is infeasible, as there are at least
three teams that cannot play against each other. From this, we can deduce the following
Theorem1.

HAP Round
1 2 3 4 5 6 7 8 9

2 A H H A H A H A H
3 A H A A H A H A H
4 A H A H H A H A H

H(Q, s) 0 3 1 1 3 0 3 0 3
A(Q, s) 3 0 2 2 0 3 0 3 0
min 0 0 1 1 0 0 0 0 0

Figure 2.5: An example for subset Q.

Theorem 1 (Miyashiro et al.[42]) A feasible HAT satisfies that for any subset Q of
HAPs consisting of the HAT,

n−1∑

r=1

min{H(Q, r), A(Q, r)} ≥
|Q|(|Q| − 1)

2
. (2.1)

The number of matches among teams corresponding toQ at round r is limited by min{H(Q,
r), A(Q, r)} since a pair of teams can compete against when their home/away venues are
opposite. Therefore, the left side of Eq. (2.1) represented the possible number of matches
among teams corresponding to Q, which has not to be less than the requisite number
of matches among teams corresponding to Q represented by the right side. Miyashiro
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et al. [42]’s computational experiments demonstrated that when the number of teams is
less than or equal to 26, the proposed necessary condition is also a sufficient condition
for feasible 2c-HAT with few breaks, but sufficient conditions for feasible HATs are not
known.

2.2 The Significance of Breaks in Sports Scheduling

In sports scheduling, a break refers to a situation where a team has the same home or away
status for two consecutive rounds (i.e., two consecutive home games or two consecutive
away games). The number of breaks has significant implications for the fairness and
logistical costs of a tournament.

2.2.1 The Significance of Breaks

• Fairness: Fairness is crucial in a tournament. Too many consecutive home games
might give certain teams an unfair advantage, as home games usually come with
greater audience support and a familiar playing environment. Similarly, consecutive
away games might lead to increased fatigue for teams and add to their travel burden.
Therefore, a reasonable distribution of breaks ensures that all teams have a similar
home-away distribution throughout the season, enhancing the overall fairness of the
competition.

• Fitness Management: Frequent matches and continuous away travels can increase
player fatigue, affecting their performance and health. By controlling the number of
breaks, the physical condition of athletes can be better managed, reducing the risk
of injuries. For example, reducing the number of consecutive away games can help
teams recover their energy more effectively.

• Logistics and Costs: Managing the travel distance and frequency for teams is also
an important logistical consideration. The number of breaks is closely related to the
number of moves the team makes, and therefore also affects the travel cost. This is
particularly crucial in leagues that require long-distance travel.

2.2.2 Why Minimizing Breaks is Sometimes Necessary

• Fair Competition: Reducing the number of breaks ensures that all teams have
a balanced distribution between home and away games, preventing any team from
gaining an unfair competitive advantage due to excessive consecutive home or away
games.

• Fitness Recovery: Minimizing the number of breaks can help athletes have more
balanced time to rest and recover at home, thereby reducing the risk of fatigue and
injury.

• Audience Satisfaction: A balanced schedule can increase the excitement and
competitiveness of the games, preventing a decline in audience interest due to certain
teams having too many consecutive home or away games.
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2.2.3 Why Maximizing Breaks is Sometimes Necessary

• Special Scheduling Needs: In certain situations, such as venue availability or
scheduling needs for major events, maximizing breaks may be required. For example,
if a venue needs to undergo maintenance or host other major events, the tournament
schedule may need to be adjusted flexibly, resulting in some teams having consecutive
home or away games.

• Optimizing Travel Arrangements: In certain geographical conditions, maxi-
mizing breaks can reduce the total travel distance. For example, if travel between
certain game locations is very time-consuming and expensive, clustering these games
together can reduce the frequency and total cost of travel.

• Strategic Considerations: Some teams might choose to cluster their home or
away games at specific stages of the season based on their own situation, allowing
them to have better preparation or rest periods at other times.

In summary, the management of breaks plays a crucial role in sports scheduling. De-
pending on the specific needs and goals of the tournament, choosing to minimize or max-
imize breaks can help optimize the fairness of the competition, the physical management
of athletes, and logistical costs. In addition, since break is closely related to HAP, this
will help us construct HAP using break.

2.3 HATS under the restriction of break number

Different numbers of breaks correspond to different HATs. We separately analyze HATs
with few breaks and HATs with the maximum number of breaks. Some foundational
settings regarding breaks, HAP, and HAT will be introduced in this section.

2.3.1 The break setting conditions in this paper

We consider a single round robin tournament with an even number of teams n, whereby
each team plays against every other team exactly once. Since each team has one game per
round, the number of matches in each round is n/2, and there are n− 1 rounds in total.

Since home games are generally considered to be advantageous, in order to create
a fair game table, the number of home and away games of each team should not vary
greatly. Moreover, if consecutive home games are played, the audience for each game will
be correspondingly reduced, so many studies also set to avoid continuous home or away
games as much as possible (see, for example, [17, 50, 42, 51]).

If a team plays home or away games in both rounds r and r+1, the team is said to have
a break in round r+1. As discussed in Section 2.2, when a team plays at home, they receive
greater support and encouragement from their home audience. Additionally, players are
more accustomed to their home environment and conserve energy by not having to travel to
away venues. Therefore, home games are considered more advantageous compared to away
games. As a result, it is crucial to balance the number of home and away games for each
team and avoid an excessive number of consecutive home or away games. Consequently,
the following two conditions are applied in our study:
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• Condition 1: Home games or away games for three or more consecutive rounds are
prohibited. That is, breaks in consecutive rounds are not allowed.

• Condition 2: The difference between the number of home and away games of each
team is 1.

We call a HAP satisfying these conditions 2c-HAP and a HAT composed of 2c-HAPs
2c-HAT. Let break(p) be the number of breaks in HAP p. When a HAP consists entirely
of individual ’A’ or ’H’ sequences, the break(p) for that HAP is equal to 0. Since the first
round does not have a break, 0 ≤ break(p) ≤ n−2

2 = n
2 − 1 for any 2c-HAP p. (Note that

some research regards that a team has a break in the first round when the team plays the
same home or away games in the first and last round apart from our definition.)

Figurer 2.6 provides a more intuitive representation of the three HATs with different
numbers of breaks, all satisfying conditions 1 and 2. The HAT (a) with the minimum
number of breaks includes two 2c-HAPs with break(p) = 0, while all other HAPs have
only one break. Each 2c-HAP in the HAT (b) has exactly one break. The HAT (c)
represents a feasible configuration with the maximum number of breaks. The feasible 2c-
HATs with few breaks and 2c-HATs holding the most breaks will be introduced in Chapter
3 and Chapter 4.

2.3.2 2c-HATs with few breaks

From the viewpoint of fairness, it is important to consider consecutive home/away games
in HAPs. Sometimes, the fewer breaks the better. In this study, for 2c-HATs with few
breaks, three distinct classes of HATs are defined: mb-HAT, eq-HAT, and sr-HAT.

Theorem 2 (de Werra[17]) A feasible HAT for n teams has at least n − 2 breaks. In
addition, there exists a feasible HAT for n teams with exactly n− 2 breaks.

A 2c-HAT that has exactly n − 2 breaks is called a minimum-break HAT (mb-HAT).
Since all HAPs are different from each other in any HAT, there are at most two HAPs
without any breaks. Thus, in any mb-HAT, each HAP has at most one break. Accordingly,
the number of breaks among teams is approximately balanced, and the numbers of home
and away games are approximately balanced in each team. Since n breaks are evenly
distributed to each team, a 2c-HAT that each HAP had exactly one break is called equitable
(eq-HAT) (de Werra, 1980). Günneç and Demir[41] dealt with mb-HATs consisting of
HAPs in which no breaks were allowed in the second round and the last round. This
restriction avoids consecutive breaks in the first and second rounds of the next period,
which employs its mirrored schedule for a double round-robin tournament, i.e., the games
scheduled in the second period follow exactly the same order as those played in the previous
period but with exchanged venues. If a HAP has a break, the venues of the first round and
the last round are opposite since the number of rounds is odd. In this case, the first round
in the second period has to have a break. Thus, it is better to avoid breaks in the second
and last rounds. In tournaments, the outcome of the first match often sets the tone for
the entire event. Essentially, this suggests that consecutive away games can put a team at
a disadvantage, as the results of these early matches significantly influence the trajectory
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(a) A HAT with minimum number of breaks

(b) A HAT that each team has one break

(c) A HAT with maximum number of breaks

Figure 2.6: HATs with different numbers of breaks.
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of the tournament. This phenomenon becomes even more pronounced in double round-
robin tournaments, where matches follow a mirrored format—teams face each other twice,
once at home and once away. Any breaks at the beginning or end, could lead to teams
facing more than two consecutive home or away games, thereby amplifying the impact of
the scheduling on team performance. The figure 2.7 provides two examples in a double
round-robin tournament where three consecutive away games occur. In these examples,
rounds 8-14 are a mirror image of rounds 1-7. This phenomenon occurs because these two
teams have a break in either the second round or the last round. A 2c-HAT satisfying this
restriction, i.e., no break in the second and last rounds, is called a strong restricted HAT
(sr-HAT). A strong restricted and minimum-break HAT is denoted by sr-mb-HAT and a
strong restricted and equitable HAT by sr-eq-HAT.

Team Round
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 H H A H A H A A A H A H A H
2 H A H A H A A A H A H A H A

Figure 2.7: An example of three consecutive away games in double round-robin tourna-
ment.

These restrictions for HATs reduce the possible HAPs, although the number of all
HAPs is 2n−1. Clearly, the number of HAPs each of which has at most one break is
2(n− 1). Figure 2.8 illustrates all HAPs with at most one break when n is 6, totaling 10
HAPs. Among them, HAP 1 is a 2c-HAP without a break. Starting from HAP 2, from
the second round onwards, the break of each HAP moves back one round until the break
reaches the last round. HAPs 6-10 are the mirroring of HAP 1-5. Notably, mb-HATs
must include HAP 1 and HAP 6, while eq-HATs are unable to include HAP 1 and HAP
6. Additionally, sr-HATs should not contain HAPs(2, 5, 7, 10) with breaks in the second
and final rounds to satisfy the requirements. Moreover, the following property reduces the
number of possible combinations of HAPs for our considered HATs.

HAP Round
1 2 3 4 5

1 H A H A H
2 A A H A H
3 A H H A H
4 A H A A H
5 A H A H H
6 A H A H A
7 H H A H A
8 H A A H A
9 H A H H A
10 H A H A A

Figure 2.8: The enumeration of the HAPs with at most one break for n = 6.

Through Figure 2.9, we can more intuitively see the relationship between the classifi-
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(a) The 2c-HAPs with few breaks

(b) The types of HATs with few breaks

Figure 2.9: Classification of HATs with few breaks.
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cation of a few break HATs and HAPs. Any mb-HAT must contain HAP 1 and HAP n;
eq-HAT cannot contain HAP 1 and HAP n; sr-hat cannot contain HAP with a break in
the second round and the final round, that is, HAP 2, HAP n− 1, HAP n+ 1 and HAP
2n− 2.

Theorem 3 (de Werra[17]; Miyashiro et al.[42]) Any feasible mb-HAT and eq-HAT
consist of pairs of HAP and its complement, i.e., replacing home and away.

In order to obtain feasible mb-HATs (resp. sr-mb-HATs, sr-eq-HATs), this theorem implies
that we only consider all possible combinations of n/2 HAPs assigned a home game in
the last round, each of which, together with their complements, forms a candidate HAT.
Miyashiro et al.[42] showed that any mb-HAT satisfying Eq. (2.1) is feasible for n ≤ 26.
Although the formulation of Eq. (2.1) needs to verify its feasibility for any subset Q of
HAPs, Miyashiro et al.[42] proposed a polynomial time method to do this.

2.3.3 2c-HATs with the most breaks

The feasibility of a 2c-HAT with the maximum number of breaks also needs to be con-
sidered. When only considering HAPs with the largest number of breaks, it may not be
possible to form feasible HATs. Therefore, it becomes necessary to utilize HAPs with the
second-largest number of breaks.

We consider a single round robin tournament with an even number of teams n = 2n′

with n′ ≥ 2, whereby each team plays against every other team exactly once. Since each
team has one game per round, the number of matches in each round is n′, and there are
n − 1 rounds in total. Since the number of teams n is even, the number of rounds n − 1
is odd. Excluding one independent round, all pairs of rounds can form a break. It is easy
to understand that the maximum value of break(p) is n′ − 1. Therefore, the break(p) for
the 2c-HAP with the second largest number of breaks is n′ − 2. HAPs a and b in the
figure 2.10 represent examples of two types of 2c-HAPs, where bold text indicates the
rounds constituting a break.

HAP Round
1 2 3 4 5 6 7 8 9

a H A A H H A A H H
b H A A H H A A H A

Figure 2.10: The two 2c-HAPs with n′ − 1 and n′ − 2 breaks

The selection of these two types of HAPs impacts the total number of breaks in the
HATs, making the choice of the number of HAPs with the largest number of breaks crucial.
The objective of Chapter 4 is to identify the HAT with the maximum number of breaks
and assess its feasibility.

Let Bn denote the maximum number of breaks among feasible 2c-HATs for n teams.
The following theorem is known about Bn.

Theorem 4 (Russell et al.[47])
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• When n′ ≥ 3, any HAT consisting of n′ HAPs having n′ − 1 breaks is infeasible.
Thus,

Bn < n(n′ − 1)

• A feasible HAT is obtained from four 2c-HAPs having n′−1 breaks and n−4 2c-HAPs
having n′ − 2 breaks. Thus,

Bn ≥ 4(n′ − 1) + (n− 4)(n′ − 2)

We can obtain upper bound Bn ≤ n(n′ − 1) − 2 from the proof of [47], which conducts
the exact value of Bn for n′ = 3, i.e., B6 = 10. However, the gap of these upper and lower
bounds are larger when n′ is greater.

To obtain a better bound for Bn, it is key to determine how many 2c-HAPs having
n′ − 1 breaks can be contained in a feasible HAT. We denote the set of 2c-HAPs with
n′ − 1 breaks by P ∗. To find a size of a subset of P ∗ constructing feasible HATs, we use
a necessary condition for feasible HATs discussed in [42](Therorem 1).

To find actual feasible 2c-HATs with the maximum number of breaks, we employ the
method of match schedule construction by [19].
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Chapter 3

The feasible 2c-HATs with few
breaks

Chapter 3 primarily focuses on identifying feasible HATs with few breaks. Three distinct
classes of 2c-HATs with few breaks are defined(mb-HAT, eq-HAT, and sr-HAT) in Chapter
2. The concept of isomorphic HATs will be introduced in this chapter, along with the
proposal of a space-sequence, which aids in efficiently classifying 2c-HATs and eliminating
infeasible 2c-HATs.

3.1 Isomorphic 2c-HATs

It is known that mb-HATs and eq-HATs are essentially equivalent because any eq-HAT
can be obtained by cyclic rotation of rounds from a HAP with no break. However, in
the meaning of sr-HAT, sr-mb-HATs and sr-eq-HATs are distinguished. In the following,
three kinds of HATs: mb-HATs (eq-HATs), sr-mb-HATs, and sr-eq-HATs are considered.
Corresponding to HAPs constructing HATs we consider, i.e., mb-HATs (eq-HATs), sr-mb-
HATs and sr-eq-HATs, some notations are introduced.

Let P be the set of HAPs, each of which has at most one break, and PH(⊂ P) be the
set of HAPs assigned a home game in the last round. Since breaks occur from the second
round to the last round, the number of HAPs with one break is 2(n− 2). Because a HAP
with no breaks in PH is decided to be only one, |PH | = n− 1 holds. We denote the HAP
that belongs to PH and whose break at round r by pr. For convenience, we denote the
HAP with no break in PH by p1. In addition, the complement of pr, i.e., swaping home
and away in pr, is denoted by p̄r. Figure 3.1 shows the labels of HAPs in Figure 2.8.

The mb-HATs and eq-HATs are known as essentially equivalent because any eq-HAT
can be obtained by cyclic rotation of rounds from a round no breaks. When one HAT can
be obtained by cyclic rotations of a mb-HAT, we call these two HATs isomorphic. For
example, HATs displayed in Fig. 3.2 are isomorphic. In these HATs, “H” and “A” stand
for a home game and an away game, respectively. We can observe that HAP pr (resp. p̄r)
is changed to p̄r+1 (resp. pr+1) when the last round is moved to the first, where pn (resp.
p̄n) is interpreted as p̄1 (resp. p1) for convenience. All three HATs mentioned, HAT(a),
HAT(b), and HAT(c), are isomorphic HATs. However, HAT(a) and HAT(c) fall into the
category of mb-HATs, while HAT(b) is classified as an eq-HAT. Fig.3.3 represents a graph
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HAP Round
1 2 3 4 5

p1 H A H A H
p2 A A H A H
p3 A H H A H
p4 A H A A H
p5 A H A H H
p̄1 A H A H A
p̄2 H H A H A
p̄3 H A A H A
p̄4 H A H H A
p̄5 H A H A A

Figure 3.1: Labels of 2c-HAPs in Figure 2.8.

that corresponds to the HATs illustrated in Fig. 3.2. When the number of teams is 8, the
number of 2c-HAPs with few breaks is 14, which includes two 2c-HAPs without breaks (p1
and p̄1). In accordance with Theorem 3, the graph exclusively considers the partial PH
case, so 4 2c-HAPs need to be chosen from the 7 2c-HATs in PH when n is 8. Each vertex
in the graphs in Figure 3.3 represents a 2c-HAP in PH , and the gray vertices indicate the
utilized HAPs. Taking HAT(a) as an example, it uses p1, p2, p4, and p5. Therefore, the
points p1, p2, p4, and p5 on the circle of HAT(a) in Figure 3.3 are gray. By moving the
seventh round of HAT(a) to the first round, and shifting the original first to sixth rounds
one position back, HAT(b) is obtained. Corresponding to Figure 3.3, this is equivalent
to rotating the circle of HAT(a) one position to the right, while the 2c-HAP indices and
the positions of the gray vertices remain the same, resulting in the graph of HAT(b).
Similarly, by moving the last four columns of HAT(a) to the front and shifting the other
three columns four positions back, HAT(c) is obtained. Corresponding to Figure 3.3, this
is equivalent to rotating the graph of HAT(a) four positions to the right, with the gray
vertex initially at p1 moving to p5 (p2 to p6, p4 to p1, p6 to p2).

Together with Theorem 3, we obtain the following property.

Lemma 5 Let σ(i) represent an index of HAP in the PH chosen ith (i = 1, . . . , n/2), and
let Pσ = {pσ(i) | i = 1, . . . , n/2} and P̄σ = {p̄r | pr ∈ Pσ}. For any k = 1, . . . , n − 1, the
HAT constructing Pσ ∪ P̄σ is isomorphic to the HAT constructing Pσk ∪ P̄σk , where

σk(i) =

{
σ(i) + k (σ(i) + k ≤ n− 1)
σ(i) + k − (n− 1) (σ(i) + k > n− 1)

.

It is clear that we have n−1 isomorphic HATs for any HAT by cyclic rotations. Figure 3.4
is an example of isomorphic HATs when n = 8. After the first circle rotates once to become
the second circle and rotates six times to become the seventh circle, rotating seven times
will return it to its original state. Therefore, these seven circles are isomorphic HATs to
each other.
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HAT (a)

round
HAP 1 2 3 4 5 6 7

p1 H A H A H A H
p2 A A H A H A H
p4 A H A A H A H
p5 A H A H H A H
p̄1 A H A H A H A
p̄2 H H A H A H A
p̄4 H A H H A H A
p̄5 H A H A A H A

HAT (b)

round
HAP 1 2 3 4 5 6 7

p̄2 H H A H A H A
p̄3 H A A H A H A
p̄5 H A H A A H A
p̄6 H A H A H H A
p2 A A H A H A H
p3 A H H A H A H
p5 A H A H H A H
p6 A H A H A A H

HAT (c)

round
HAP 1 2 3 4 5 6 7

p5 A H A H H A H
p6 A H A H A A H
p̄1 A H A H A H A
p̄2 H H A H A H A
p̄5 H A H A A H A
p̄6 H A H A H H A
p1 H A H A H A H
p2 A A H A H A H

Figure 3.2: Example for isomorphic HATs. The HAT(b) is obtained by rotation of HAT(a)
where the last round is moved to the first. The HAT(c) is obtained from HAT(a) where
the fourth round is moved to the first.

HAT (a) HAT (b)

HAT (c)

Figure 3.3: The graph corresponding to the HATs in Figure 3.2.
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Figure 3.4: An example of isomorphic HATs when n = 8.

3.2 Space-sequences

The isomorphic 2c-HATs with few breaks share similar characteristics, aiding in the cal-
culation of various indicators, such as the Carry-Over Effect (COE) value. Building upon
this concept, a sequence called the space-sequence is proposed, which further facilitates the
analysis and classification of 2c-HATs with few breaks based on their isomorphism. The
space-sequence plays a crucial role in efficiently exploring the search space of 2c-HATs and
determining their feasibility. To understand the characteristics of feasible 2c-HATs with
few breaks and enumerate feasible 2c-HATs up to isomorphism, we introduce a notion
called space-sequences.

Definition 1 Let σ(i) represent an index of HAP in the PH chosen ith (i = 1, . . . , n/2)
and satisfy σ(i) < σ(i+ 1) for any i. For a set of HAPs Pσ = {pσ(i) | i = 1, . . . , n/2}, we
give a sequence (s1, . . . , sn/2), where

si =

{
σ(i+ 1)− σ(i)− 1 (i < n/2)
(n− 1)− σ(i) + σ(1)− 1 (i = n/2)

.

We call this sequence (s1, . . . , sn/2) space-sequence with respect to σ.

Figure 3.5 shows how we get the space-sequence. This space-sequence can be regarded as
a sequence of numbers, each of which represents the count of the number of unused HAPs
between the two used HAPs according to the cyclic order p1, . . . , pn−1. It is obvious that
the space-sequences of the isomorphic HATs are in a sequential shift or a reverse shift
relationship. For instance, the space-sequences corresponding to HATs (a) (b), and (c) in
Figure 3.2 are (0, 1, 0, 2), (0, 1, 0, 2), and (0, 2, 0, 1), respectively.

For any space-sequence (s1, . . . , sn/2), we have
∑n/2

i=1 si = (n − 1) − n/2 = n/2 − 1.
Conversely, for any n/2 length nonnegative integer sequence whose sum of elements is
equal to n/2 − 1, we construct a set of HAPs in PH containing p1. Therefore, there is
a one-to-one correspondence relation between such sequences (s1, . . . , sn/2) and 2c-HATs
containing p1.
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Figure 3.5: Space-sequence calculation process

Theorem 6 2c-HAT with few breaks is isomorphic to an sr-mb-HAT if and only if the
corresponding space-sequence contains two consecutive nonzero elements.

proof According to the definition of sr-mb-HATs, p2 and pn−1 are not selected, while p1
is selected. Thus, by rotating the space-sequence that satisfies the conditions of Theorem
6, we can obtain a sequence with s1 ≥ 1 and sn/2 ≥ 1.

On the other hand, assume that si and si+1 are nonzero in the space-sequence (s1, . . . , sn/2)
with respect to σ. We rotate the given HAT by moving the σ(i + 1) round to the first
round. As a result of this rotation, HAP pσ(i+1) becomes p1. Since pσ(i+1)−1 and pσ(i+1)+1

are not used in the given HAT, pn−1 and p2 are also not used in the rotated HAT, which
implies that the obtained HAT becomes sr-mb-HAT.

(a) space-sequence= (0, 1, 0, 2) (b) space-sequence= (1, 1, 0, 1)

Figure 3.6: Illustration of the relationship between sr-mb-HAT and space-sequence.

This property implies that the HATs shown in Figure. 3.2 are not isomorphic to sr-mb-
HAT. In Figure.3.6, the relationship between sr-mb-HAT and space-sequence is depicted.
Specifically, it is observed that regardless of the rotation of the graph in graph (a), it is
not possible to avoid selecting p2 and p7 without break when selecting p1. However, in
contrast, graph (b) demonstrates the feasibility of avoiding such a situation.

Theorem 7 A 2c-HAT with few breaks is isomorphic to an sr-eq-HAT if and only if the
corresponding space-sequence contains an element no less than 3.

proof According to the definition of sr-eq-HATs, p1, p2 and pn−1 cannot be selected, so
three consecutive unselected HAPs are necessary. When si ≥ 3 in the space-sequence, by
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rotating the given HAT by moving the σ(i) + 2 round to the first round, we obtain an
sr-eq-HAT.

space-sequence= (0, 0, 0, 3)

Figure 3.7: Illustration of a sr-eq-HAT.

Figure. 3.7 demonstrates that in order to construct an sr-eq-HAT for n = 8, the space-
sequence must contain a value greater than or equal to 3. This ensures the avoidance of
selecting p1, p2, and p7 simultaneously. Consequently, p3, p4, p5, and p6 must be selected
in this scenario. However, it is important to note that the sr-eq-HAT formed under these
conditions is infeasible, and the reasons will be further elucidated in the subsequent section.

3.3 Feasible space-sequence

We say that a space-sequence is feasible if the corresponding HAT is feasible. We now give
a property for feasible space-sequences. When we discuss the feasibility of space-sequences,
we use the following lemma together with Eq. (2.1) of Theorem 1.

Lemma 8 For a subset Q of 2c-HAPs with few breaks in PH , let qi and qj be the minimum
and maximum indices of HAPs in Q. Then we have

n−1∑

r=1

min{H(Q, r), A(Q, r)} =

qj−1∑

r=qi

min{H(Q, r), A(Q, r)}

proof Subsequences of HAPs in Q between the first round and the (qi − 1)th round
coincide with each other. The subsequences of HAPs in Q between the qj round and
the last round coincide with each other. Hence, for each of these rounds r, we have
min{H(Q, r), A(Q, r)} = 0.

Theorem 9 Any feasible space-sequence does not contain two consecutive 0s.

proof If si = si+1 = 0, then we have pσ(i+1) = pσ(i)+1 and pσ(i+2) = pσ(i)+2, where σ
represents an index of HAP. By applying Theorem 1 forQ = {pσ(i), pσ(i+1), pσ(i+2)}, LHS of



28

round
HAP 1 2 · · · σ(i)− 1 σ(i) σ(i) + 1 σ(i) + 2 · · ·
...

pσ(i) A H · · · A A H A · · ·
pσ(i)+1 A H · · · A H H A · · ·
pσ(i)+2 A H · · · A H A A · · ·

...

min{H(Q, r), A(Q, r)} 0 0 · · · 0 1 1 0 · · ·

Figure 3.8: Example of a partial 2d-HAT with few breaks for proof of Theorem 9. Note
that there exist cases where Hs and As are replaced by each other according to the parity
of σ(i). We can check that the LHS of Eq. (2.1) for Q = {pσ(i), pσ(i)+1, pσ(i)+2} is 2.

round
HAP · · · σ(i) − 1 σ(i) σ(i) + 9 · · ·
...

pσ(i) · · · A A H A H A H A H A H · · ·
pσ(i)+2 · · · A H A A H A H A H A H · · ·
pσ(i)+3 · · · A H A H H A H A H A H · · ·
pσ(i)+5 · · · A H A H A H H A H A H · · ·
pσ(i)+7 · · · A H A H A H A H H A H · · ·
pσ(i)+8 · · · A H A H A H A H A A H · · ·
pσ(i)+10 · · · A H A H A H A H A H A · · ·

...

min{H(Q, r), A(Q, r)} · · · 0 1 1 2 3 3 3 3 2 1 1 · · ·

Figure 3.9: Example of a partial 2c-HAT with few breaks for proof of Theorem
10. Note that there exist cases where Hs and As are replaced by each other ac-
cording to the parity of σ(i). We can check that the LHS of Eq. (2.1) for Q =
{pσ(i), pσ(i)+2, pσ(i)+3, pσ(i)+5, pσ(i)+7, pσ(i)+8, pσ(i)+10} is 20.

Eq. (2.1) is equal to min{H(Q, σ(i)), A(Q, σ(i))}+min{H(Q, σ(i)+1), A(Q, σ(i)+1)} = 2
(see Figure 3.8), which is less than the RHS of Eq. (2.1). Thus, the HAT is not feasible.

Theorem 9 implies that a feasible space-sequence has sn/2 > 0 when s1 = 0 because
two consecutive 0s are prohibited in any cyclic rotation of the space-sequence.

Theorem 10 Any feasible space-sequence has no proper subsequence(1, 0, 1, 1, 0, 1).

proof If the subsequence (1, 0, 1, 1, 0, 1) is contained, by applying Theorem 1 for

Q = {pσ(i), pσ(i)+2, pσ(i)+3, pσ(i)+5, pσ(i)+7, pσ(i)+8, pσ(i)+10},

LHS of Eq. (2.1) is equal to 20 (see Fig. 3.9), which is less than the RHS of Eq. (2.1).
Thus, the HAT is not feasible.

Theorem 11 Any feasible space-sequence has no proper subsequence, such as (1, 1, ...1︸ ︷︷ ︸
k

, 0,

1, 1, ..., 1︸ ︷︷ ︸
k

, 0) and (0, 1, 1, ...1︸ ︷︷ ︸
k

, 0, 1, 1, ..., 1︸ ︷︷ ︸
k

) for any k ≥ 0.
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proof Assume that a space-sequence has (1, 1, ...1︸ ︷︷ ︸
k

, 0, 1, 1, ..., 1︸ ︷︷ ︸
k

, 0) as its proper subse-

quence. Without loss of generality, a HAT containing of Qk = {p1, p3, . . . , p2k+1} ∪
{p2k+2, p2k+4. . . . , p4k+2} ∪ {p4k+3} is considered. By the induction hypothesis with re-
spect to k, we shall show that Qk does not satisfy Eq. (2.1) of Theorem 1.

When k = 0, we have shown that Eq. (2.1) is not satisfied for Q0 from Theorem 9.
It is assumed that Eq. (2.1) is not satisfied for Qk−1. By rotation of rounds, Eq.

(2.1) is not satisfied for Q̃k−1 = {p3, . . . , p2k+1} ∪ {p2k+2, p2k+4. . . . , p4k} ∪ {p4k+1} =

Qk \{p1, p4k+2, p4k+3}∪{p4k+1}. Additionally,
˜̃Qk−1 = Qk \{p1, p4k+3} = Q̃k−1\{p4k+1}∪

{p4k+2} is defined. Since each venue in p4k+1 and p4k+2 coincides with each other except
for the (4k + 1)th round and the subsequences of p1 and p4k+3 between the first round
and the (4k + 2)th round have opposite venues in each round (see Fig. 3.10), we have

min{H(Qk, r), A(Qk, r)} = min{H( ˜̃Qk−1, r), A( ˜̃Qk−1, r)}+ 1

= min{H(Q̃k−1, r), A(Q̃k−1, r)}+ 1, ∀r = 1, . . . , 4k, 4k + 2.

Since min{H(Q̃k−1, 4k+1), A(Q̃k−1, 4k+1)} = 0, then min{H( ˜̃Qk−1, 4k+1), A( ˜̃Qk−1, 4k+
1)} = 1, which implies that

min{H(Qk, 4k + 1), A(Qk, 4k + 1)} = min{H(Q̃k−1, 4k + 1), A(Q̃k−1, 4k + 1)}+ 2.

Thus, we have

n−1∑

r=1

min{H(Qk, r), A(Qk, r)}

=
4k+2∑

r=1

min{H(Qk, r), A(Qk, r)}

=
4k+2∑

r=1

min{H(Q̃k−1, r), A(Q̃k−1, r)}+ 4k + 3

=
n−1∑

r=1

min{H(Q̃k−1, r), A(Q̃k−1, r)}+ 4k + 3

<
(2k + 1)2k

2
+ 4k + 3 =

(2k + 3)(2k + 2)

2
=
|Qk|(|Qk| − 1)

2
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round
HAP 1 2 3 4 5 · · · 2k + 1 2k + 2 2k + 3 2k + 4 · · · 4k + 1 4k + 2 4k + 3 4k + 4 · · ·

p1 A H A H A · · · A H A H · · · A H A H · · ·
p3 H A A H A · · · A H A H · · · A H A H · · ·
p5 H A H A A · · · A H A H · · · A H A H · · ·
...

p2k+1 H A H A H · · · A H A H · · · A H A H · · ·
p2k+2 H A H A H · · · H H A H · · · A H A H · · ·
p2k+4 H A H A H · · · H A H H · · · A H A H · · ·

...
p4k+2 H A H A H · · · H A H A · · · H H A H · · ·
p4k+3 H A H A H · · · H A H A · · · H A A H · · ·

...

Figure 3.10: Example of a partial 2c-HAT with few breaks for proof of Theorem 11
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Corollary 12 Any feasible space-sequence does not contain any subsequence, which con-
sists of more than two 0s and several 1s.

proof Because of the feasibility of space-sequences, such a subsequence avoids two con-
secutive 0s. Thus, it contains a subsequence like as (0 1, . . . , 1︸ ︷︷ ︸

k

, 0, 1, . . . , 1︸ ︷︷ ︸
l

, 0). If k ≤ l, then

it contains (0, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 1, . . . , 1︸ ︷︷ ︸
k

), otherwise it contains (1, . . . , 1︸ ︷︷ ︸
l

, 0, 1, . . . , 1︸ ︷︷ ︸
l

, 0).

By applying these properties, we can enumerate HATs efficiently by avoiding infeasible
2c-HATs with few breaks . In the rest of this section, we prove that there are no feasible
sr-eq-HATs for n ≤ 14 and n = 18.

Theorem 13 When n ≤ 14, there is no feasible sr-eq-HAT.

proof From Theorem 7, the corresponding space-sequence for a feasible sr-eq-HAT
has an element si ≥ 3. Since a space-sequence (s1, . . . , sn/2) is given by distributing the
value of n/2− 1 into n/2 nonnegative integer values, we need no less than three 0s in the
sequence when it has si = 3. Corollary 12 implies that there are at least two elements
more than 1 when the sequence has at least three 0s. This means we need no less than
four 0s in the sequence. To avoid two consecutive 0s, there must be at least four nonzero
elements. Therefore, the length of the space-sequence is at least 8, which implies that
n ≥ 16 for feasible sr-eq-HATs.

Theorem 14 When n = 18, there is no feasible sr-eq-HAT.

proof As we discuss in the proof of Theorem 13, any space-sequence has to have at
least two elements more than 1 and four 0s when assuming that si ≥ 3. If the sequence
contains at least two elements no less than 3, we need five 0s, which is impossible when
n < 20 because we need five nonzero elements to avoid two consecutive 0s. Hence, the
sequence has one 3, one 2, four 0 s and three 1 s. The possible sequence prohibiting
consecutive 0s and patterns described in Theorem 11 is only (0, 1, 0, 2, 0, 1, 1, 0, 3) and its
cyclic rotation or inverse rotation. From this space-sequence, we obtain a set of HAPs
{p1, p2, p4, p5, p8, p9, p11, p13, p14}. Note that, although this HAT contains p2, a sr-eq-HAT
can be obtained by rotation from this HAT as shown in Theorem 7. We now consider Eq.
(2.1) in Theorem 1 for this set of HAPs. As we shown in Fig. 3.11, LHS is equal to 35,
which is a shortage for the number of games, i.e., RHS of Eq. (2.1).

3.4 Enumeration of 2c-HATs with few breaks

This section describes how to exhaustively enumerate non-isomorphic 2c-HATs with few
breaks and how to use space-sequence to classify these 2c-HATs. The process are shown
below.

Step 1 Enumerate all the number sequences that meet all the following conditions.

1 The first element in the sequence is 0.

2 The number of elements remaining in the sequence is n/2− 1.
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round
HAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

p1 H A H A H A H A H A H A H A H A H
p2 A A H A H A H A H A H A H A H A H
p4 A H A A H A H A H A H A H A H A H
p5 A H A H H A H A H A H A H A H A H
p8 A H A H A H A A H A H A H A H A H
p9 A H A H A H A H H A H A H A H A H
p11 A H A H A H A H A H H A H A H A H
p13 A H A H A H A H A H A H H A H A H
p14 A H A H A H A H A H A H A A H A H

min{H(Q, r), A(Q, r)} 1 2 2 3 4 4 4 4 3 3 2 2 1 0 0 0 0

Figure 3.11: Partial 2c-HAT with few break for proof of Theorem 14. We can check that
the LHS of Eq. (2.1) for Q = {p1, p2, p4, p5, p8, p9, p11, p13, p14} is 35.

3 The sum of all elements in the sequence is n/2− 1.

4 The sum of two consecutive elements in the sequence is greater than or equal
to 1.

5 The last element in the sequence is greater than or equal to 1.

Step 2 Combine theorems to delete infeasible space-sequences.

1 Since the first step already prevents consecutive zeros in the space-sequence,
the space-sequences related to Theorem 9 no longer need to be considered.

2 Based on Theorem 10, any feasible space-sequence cannot contain the subse-
quence (1, 0, 1, 1, 0, 1), so the related sequences need to be removed.

3 Based on Theorem 11, any feasible space-sequence has no proper subsequence,
such as (1, 1, ...1︸ ︷︷ ︸

k

, 0, 1, 1, ..., 1︸ ︷︷ ︸
k

, 0) and (0, 1, 1, ...1︸ ︷︷ ︸
k

, 0, 1, 1, ..., 1︸ ︷︷ ︸
k

) for any k ≥ 0, so

the related sequences need to be removed.

Step 3 Classify HATs based on theorems, with the main focus on determining the existence
of sr-mb-HAT and sr-eq-HAT.

1 In sr-mb-HAT, p1 without a break must be included, and the HAPs with breaks
in the second round(p2) and last round(pn−1) must not be included. To sat-
isfy both conditions, the space-sequence must contain at least two consecutive
elements greater than zero.

2 In sr-eq-HAT, p1, p2, and pn−1 must all be avoided, so the space-sequence must
contain at least one element greater than 3.

Since the space-sequence corresponding to the isomorphic 2c-HAT has the characteris-
tic of circulation, in order to avoid repeated calculations, the first element in the sequence
is fixed to 1(condition 1). From Theorem 9, it can be seen that a space-sequence containing
two consecutive 0s is infeasible, so in order to facilitate the subsequent calculations, this
operation is performed in step 1 first(conditions 4 and 5). If the length of the sequence
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reaches the expected length, it checks whether the sequence is valid (whether it meets the
conditions). If it is valid, it is added to the list of all sequences to be output. Otherwise,
continue adding numbers until all possible sequences are found. Then, we use Excel to
delete the infeasible space-sequence(Step 2 and Step 3).

Figure 3.12 provides an example when n equals 10. We enumerate all sequences that
satisfy the definition of the space-sequence, as shown in the second column of Figure 3.12.
Combining with Theorem 11, we conclude that sequences No. 1, 3, 4, and 7 in Figure 3.12
are not feasible. Furthermore, we can deduce that sequences No. 3 and 5 are isomorphic
HATs. It only takes a short time to enumerate the space-sequences for teams, so this
allows us to quickly identify feasible 2c-HATs with few breaks and classify them.

Figure 3.12: An example of space-sequence when n = 10.

Table 3.1 shows the number of non-isomorphic 2c-HATs with few breaks, which com-
pares the number of combinations to choose HAPs, the numbers of feasible HATs shown
in the columns of “# feasible”, and the numbers of non-isomorphic feasible HATs shown
in the columns of “# noniso”. In the “# feasible” column, we first enumerate all space-
sequences with n/2− 1 elements without restricting the first element to 0 and remove the
infeasible space-sequences. The remaining space-sequences corresponding to all HATs are
then verified using the IP model.

As shown in Table 3.1, the number of non-isomorphic feasible HATs is very small which
will play a role in calculating the COE value in Chapter 5.

Table 3.1: The numbers of candidate HATs.

mb-HATs sr-mb-HATs sr-eq-HATs
n Cn−2

n

2
−1 # feasible # non-iso. Cn−4

n

2
−1 # feasible # non-iso. Cn−4

n

2

# feasible # non-iso.

6 6 3 1 1 1 1 - - -
8 20 8 2 4 2 1 1 - -

10 79 10 2 15 5 2 6 - -
12 252 30 4 56 12 3 28 - -
14 924 49 5 210 29 5 120 - -
16 3,432 136 12 792 71 10 495 1 1
18 12,870 216 13 3,003 171 13 2,002 - -
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Identifying feasible Home-Away Tables HATs that satisfy specific break number con-
ditions is a complex task. In the case of a HAT with the minimum number of breaks,
Miyashiro et al. proved a theorem (Theorem 1) that leads to a polynomial-time algorithm
to check whether the given HAT satisfies the necessary conditions. On the other hand,
regarding the space-sequence, the order of the HAP is very important. This method uti-
lizes Theorem 1 to make use of the ordered HAP. Even with known necessary conditions
for feasible HATs, the challenge escalates as the number of teams increases, leading to an
exponential rise in computational complexity. This problem becomes particularly daunt-
ing in large-scale tournaments. The proposal of space-sequence significantly enhances the
process of categorizing 2c-HATs with few breaks. This method allows for rapid classifica-
tion and efficient elimination of infeasible solutions. The space-sequence framework also
facilitates the quick identification of non-isomorphic 2c-HATs, which is crucial for opti-
mizing the COE values. In summary, while the task of finding feasible HATs that meet
break number conditions is inherently difficult, the innovative use of space-sequence and
isomorphic HATs concepts provides a powerful toolset for tackling this challenge. These
methodologies offer a promising path forward in the quest for optimizing tournament
schedules, balancing fairness, and minimizing computational complexity. From the calcu-
lation results, we also know that when n is less than 18, if a HAT-related space-sequence
does not contain the sequence of Theorems 9, 10, 11 and Corollary 12, HAT is feasible.
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Chapter 4

The feasible 2c-HATs with most
breaks

The feasibility of a HAT with the maximum number of breaks is considered. When only
considering 2c-HAPs with the largest number of breaks, it may not be possible to form
feasible HATs. Therefore, it becomes necessary to utilize 2c-HAPs with the second-largest
number of breaks. The selection of these two types of HAPs impacts the total number of
breaks in the HATs, making the choice of the number of HAPs with the largest number of
breaks crucial. The objective of this chapter is to identify the 2c-HAT with the maximum
number of breaks and assess its feasibility.

4.1 The upper bound of tmax

We consider a single round robin tournament with an even number of teams n = 2n′ with
n′ ≥ 2, whereby each team plays against every other team exactly once in this chapter.
Since each team has one game per round, the number of matches in each round is n′, and
there are n− 1 rounds in total.

We denote the set of 2c-HAPs with n′ − 1 breaks by P ∗. To find a size of a subset of
P ∗ constructing feasible HATs, we use a necessary condition for feasible HATs discussed
in [42](Theorem 1).

Let Bn denote the maximum number of breaks among feasible 2c-HATs for n teams
and tmax represents the number of HAPs used from P ∗. We need to use as many
HAPs from P ∗ as possible to maximize the number of breaks. Let N = {N ⊆ P ∗ |∑n−1

r=1 min{H(Q, r), A(Q, r)} ≥ |Q|(|Q|−1)
2 , ∀Q ⊆ N} and tmax = maxN∈N |N |. Then, we

obtain an upper bound of Bn as follows from Theorem1,

Bn ≤ tmax (n
′ − 1) + (n− tmax )(n

′ − 2). (4.1)

Our contribution is to give a better upper bound for Bn by estimating tmax and to give
an exact value of Bn for n ≤ 36 by constructing actual feasible HATs. In the following
sections, we show Theorem15.

Theorem 15 (1) If n′ is even, we have

Bn ≤ t(n′ − 1) + (n− t)(n′ − 2), (4.2)
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with t = 2(4⌊n
′

7 ⌋ + ⌈
2(n′ mod 7)

3 ⌉), where n′ mod 7 represents the remainder and this in-
equality holds with equality when n′ ≤ 18.
(2) If n′ is odd, we have

Bn ≤ (n′ + 1)(n′ − 1) + (n′ − 1)(n′ − 2), (4.3)

and this inequality holds with equality when n′ ≤ 17.

To find actual feasible HATs, we employ the method of match schedule construction by
[19]. Firstly lists all the HAPs that meet the conditions, and uses these HAPs to form the
HAT. Then uses the integer programming model to judge whether it is feasible. The next
two sections describe the enumeration method of 2c-HAPs having at least n′ − 2 breaks
and discuss the properties of these 2c-HAPs.

4.2 The total number of the 2c-HAPs having n
′ − 1 breaks

Recall that P ∗ is the set of 2c-HAPs with n′ − 1 breaks. The set P ∗ can be divided into
the two sets, P ∗

H consisting of 2c-HAPs starting with home games, and P ∗
A consisting of

2c-HAPs starting with away games. For any HAP, its complement, i.e., replacing home
and away, keeps the number of breaks. Thus, the operation of complement gives one to
one relationship among P ∗

H and P ∗
A. Since, as long as P ∗

H can be enumerated, P ∗
A can be

obtained by taking complement them, the following enumeration object is only P ∗
H .

Theorem 16 The total number of the 2c-HAPs having n− 1 breaks is
(1) n, if n′ is even
(2) n′ + 1, if n′ is odd

proof (1) Let s = (s1, ..., sn) be an H-A sequence of length n, where

s4k+i =

{
H i = 1, 2
A i = 3, 4

, k = 0, ...,
n′

2
− 1,

i.e., it is obtained by repeating n′

2 times of subsequence (HHAA). In this sequence, the
number of Hs and the number of As are equal. Regarding H as a home game and A as an
away game, we have break(s) = n′. Therefore, by deleting an element of any break in the
sequence, a 2c-HAP of length n − 1 can be obtained. Thus, n′ pieces of 2c-HAPs in P ∗

H

can be created from the sequence s. By taking complement on these 2c-HAPs, n′ pieces
of 2c-HAPs in P ∗

A can be obtained.
Conversely, in the H-A sequence representing a 2c-HAP in P ∗

H , there is exactly one
singleH or A, although the remaining elements have two consecutiveHs or two consecutive
as. By adding H or A after such an element, the H-A sequence s can be obtained.
Therefore, all 2c-HAPs in P ∗

H can be constructed by the operation removing one element
in a break from s, and the number of 2c-HAPs is n. The process can be seen in Figure. 4.1.

(2) In the same way as (1), let s = (s1, ..., sn) be the H-A sequence of length n, where

s4k+i =

{
H i = 1, 2
A i = 3, 4

, k = 0, ...,
n′ − 1

2
.
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Figure 4.1: Generation Process of P ∗
H for n = 12

It is obtained by repeating n′−1
2 times of subsequence (HHAA) and by adding (HH) at

the end. Then, we have break(s) = n′, and the number of Hs is two more than As.
Therefore, a 2c-HAP of length n − 1 can be obtained by deleting the element H in the
round of break from s. By this way, n′+1

2 pieces of 2c-HAPs in P ∗
H can be made, and

n′+1
2 pieces of 2c-HAPs in P ∗

A can be obtained by taking complement to these 2c-HAPs.
We also know that all 2c-HAPs in P ∗

H is obtained in this way since there is a one-to-one
relationship between the break deleted from the H-A sequence s and the 2c-HAP in P ∗

H .
Thus, we obtain the number of 2c-HAPs, n′ + 1. The process can be seen in Figure. 4.2

Figure 4.2: Generation Process of P ∗
H for n = 10

From the operation obtained a 2c-HAP from an H-A sequence s discussed in the above
proof, we have the following property for 2c-HAPs in P ∗

H .

Corollary 17 In any 2c-HAP in P ∗
H , each game at 4k + 1 round is home and a game at

4k + 3 round is away for k = 0, . . . , ⌈n
′

2 ⌉ − 1.

We now discuss a property of 2c-HAPs having n′− 1 breaks in order to evaluate tmax .
Let pl be a 2c-HAP obtained by deleting the (2l)th element in the sequence s. We can
observe that, in addition to 4k + 1 round from Corollary 17, home games are assigned in
pl at 4k + 2 round for k ≤ l

2 − 1 and 4k + 4 round for k ≥ l
2 − 1.

We now consider the property of 2c-HAPs for even n′. Note that P ∗
H is given by

{pl | l = 1, . . . , n′} when n′ is even.

Lemma 18 Any set of 2c-HAPs containing pl, pl+1, pl+2 for any l = 1, . . . , n′ − 2 does
not form a feasible HAT.

proof By applying for Q = {pl, pl+1, pl+2}, the LHS of Eq. (2.1) is equal to min{H(Q,
2l), A(Q, 2l)} +min{H(Q, 2l + 2), A(Q, 2l + 2)} = 2 (see Figure. 4.4), which is less than
the RHS of Eq. (2.1), |Q|(|Q| − 1)/2 = 3. Thus, any HAT containing Q is not feasible.

This result shows that we can select at most ⌈23k⌉ 2c-HAPs from any k consecutive
seriese, which derives the upper bound of tmax , i.e., tmax ≤ 2⌈23n

′⌉. To obtain a tighter
upper bound, the following lemma shows prohibited longer patterns of 2c-HAPs for any
feasible HAT.
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round
p 1 2 3 4 5 6 7 8 9 10 11

1 H A A H H A A H H A A
2 H H A H H A A H H A A
3 H H A A H A A H H A A
4 H H A A H H A H H A A
5 H H A A H H A A H A A
6 H H A A H H A A H H A

(a)
Round

p 2 4 6 8 10

1 A H A H A
2 H H A H A
3 H A A H A
4 H A H H A
5 H A H A A
6 H A H A H

(b)

Figure 4.3: Delete columns holding the same H and A.

2l 2l + 4








pl H H · · · H A A H H A · · ·
pl+1 H H · · · H H A H H A · · ·
pl+2 H H · · · H H A A H A · · ·

Figure 4.4: Example of set of 2c-HAPs {pl, pl+1, pl+2}, where l is odd.

Lemma 19 Any set of 2c-HAPs containing each of the following sets does not form a
feasible HAT.

1. pl, pl+1, pl+3, pl+4, pl+6 for any l = 1, . . . , n′ − 6

2. pl, pl+1, pl+3, pl+5, pl+6, pl+8, pl+10, pl+11 for any l = 1, . . . , n′ − 11

3. pl, pl+1, pl+3, pl+5, pl+6, pl+9, pl+10, pl+12, pl+13 for any l = 1, . . . , n′ − 13

proof By applying for Q of Eq. (2.1) the set of 2c-HAPs in the statement, we check its
feasibility.

1. By applying forQ, the LHS of Eq. (1) is equal to
∑

l≤i<l+6min{H(Q, 2i), A(Q, 2i)} =
9 (see Figure. 4.5). It is less than the RHS of Eq. (1), |Q|(|Q| − 1)/2 = 10. Thus, any
HAT containing Q is not feasible.

2. By applying for Q of Eq. (2.1), the LHS is 26, and the RHS is 28. Thus, any HAT
containing Q is not feasible.

3. By applying for Q of Eq. (2.1), the LHS is 35, and the RHS is 36. Thus, any HAT
containing Q is not feasible.
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2l 2(l + 6)




















pl · · ·A A H H A A H H A A H H A · · ·
pl+1 · · ·H A H H A A H H A A H H A · · ·
pl+3 · · ·H A A H H A H H A A H H A · · ·
pl+4 · · ·H A A H H A A H A A H H A · · ·
pl+6 · · ·H A A H H A A H H A A H A · · ·

Figure 4.5: Example of set of 2c-HAPs {pl, pl+1, pl+3, pl+4, pl+6}, where l is odd.

Figure 4.6 provides a more intuitive examination of the subsets that cannot form
feasible 2c-HATs. The ”HAP” column enumerates all 2c-HAPs with the maximum number
of breaks, and black dots represent selected HAPs. If a 2c-HAT contains a subset matching
any of the four scenarios depicted in the figure, then that 2c-HAT is considered infeasible.
This will help us better understand the theorem presented below.

Theorem 20 For even n′, we have tmax ≤ 2(4⌊n
′

7 ⌋+ ⌈
2(n′ mod 7)

3 ⌉).

proof Let us consecutive 2c-HAPs in P ∗
H , p1, . . . , pn be divided into blocks containing

exactly seven consecutive series except for the last block that contains (n′ mod 7) 2c-
HAPs. Namely, each block is formed as {p7k+1, p7k+2, . . . , p7k+7} for k = 0, . . . , ⌊n

′

7 ⌋. We
call a block containing seven 2c-HAPs as full. Lemma 18 shows that we can select at most

five 2c-HAPs for a feasible HAT in each full block, and ⌈2(n
′ mod 7)

3 ⌉ 2c-HAPs from the
last block.

Assume that tmax > 2(4⌊n
′

7 ⌋+⌈
2(n′ mod 7)

3 ⌉). Then there exists a full block from which
we can select five 2c-HAPs. When we select five 2c-HAPs for a feasible HAT from a
full block, there is only one selection mode p7k+1, p7k+2, p7k+4, p7k+6, p7k+7 that satisfies
Lemma 18. To avoid including series prohibited by Lemma 19, only three HAPs can be
selected from the preceding and following full blocks. Hence, a possible case is when five
2c-HAPs are selected from each of odd-numbered full blocks, three 2c-HAPs from each of
even-numbered full blocks, and ⌊n

′

7 ⌋ is odd. Since n′ is even, (n′ mod 7) is not zero. If

⌊n
′

7 ⌋th block contains five 2c-HAPs, we can not choice ⌈2(n
′ mod 7)

3 ⌉) 2c-HAPs containing
no prohibited sequence from the last block.

We now turn to the case of odd n′, where P ∗
H can be represented by {p2l+1 | l =

0, . . . , n
′−1
2 }.

Theorem 21 For odd n′, we have P ∗ ∈ N and tmax = n′ + 1.

proof For any subset Q ⊆ P ∗, we will prove Eq. (2.1). Let Q̃ be the set of 2c-HAPs in
Q such that it complement is not contained in Q, and set |P ∗

H ∩ Q̃| = c1, |P
∗
A ∩ Q̃| = c0,

and |P ∗
H ∩ (Q \ Q̃)| = |P ∗

A ∩ (Q \ Q̃)| = c2. Notice that |Q| = c0 + c1 + 2c2 ≤ n′ + 1. Since

the number of home games is equal to the number of away games at each round in Q \ Q̃,
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Figure 4.6: If 2c-HATs contains these four partial sets, then the 2c-HATs is not feasible.
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i.e., H(Q \ Q̃, r) = A(Q \ Q̃, r) for any round r, we have

2n−1∑

r=1

min{H(Q, r), A(Q, r)}

=
2n−1∑

r=1

(min{H(Q̃, r), A(Q̃, r)}+H(Q \ Q̃, r))

=

2n−1∑

r=1

min{H(Q̃, r), A(Q̃, r)}+ (2n− 1)c2.

Without loss of generality, we assume that c1 ≥ c0. At 4k+1 round, we have min{H(Q̃, 4k+
1), A(Q̃, 4k + 1)} = c0 since every games are assigned to home in P ∗

H and every games

are assigned to away in P ∗
A. Similarly, we have min{H(Q̃, 4k + 3), A(Q̃, 4k + 3)} = c0 for

k = 0, . . . , n
′−1
2 . Thus, by summing up in odd rounds, we have

n−1∑

k=0

min{H(Q̃, 2k + 1), A(Q̃, 2k + 1)} = n′c0.

Next, we estimate min{H(P ∗
H∩Q̃, r), A(P ∗

H∩Q̃, r)} for even round r, instead of min{H(Q̃, r), A(Q̃, r)}.

Assume that P ∗
H ∩ Q̃ = {p2k1+1, p2k2+1, . . . , p2kc1+1}, with k1 < k2 < · · · < kc1 .

min{H(P ∗
H ∩ Q̃, 2k), A(P ∗

H ∩ Q̃, 2k)}

=





0 k < 2k1 + 1
1 2k1 + 1 ≤ k < 2k2 + 1
2 2k2 + 1 ≤ k < 2k3 + 1
...

⌊ c12 ⌋ − 1 2k⌊ c1
2
⌋−1 + 1 ≤ k < 2k⌊ c1

2
⌋ + 1

⌊ c12 ⌋ 2k⌊ c1
2
⌋ + 1 ≤ k < 2k⌈ c1

2
⌉+1 + 1

⌊ c12 ⌋ − 1 2k⌈ c1
2
⌉+1 + 1 ≤ k < 2k⌈ c1

2
⌉+2 + 1

...
1 2kc1−1 + 1 ≤ k < 2kc1 + 1
0 k ≥ 2kc1 + 1

To minimize
∑n−1

k=1 min{H(P ∗
H ∩ Q̃, 2k), A(P ∗

H ∩ Q̃, 2k)}, p2ki+1+1 = p2(ki+1)+1 for i =
1, . . . , c1 − 1. In this case, we have

n−1∑

k=1

min{H(P ∗
H ∩ Q̃, 2k), A(P ∗

H ∩ Q̃, 2k)} = 4(1 + 2 + · · ·+
c1 − 1

2
),

for odd c1 and

n−1∑

k=1

min{H(P ∗
H ∩ Q̃, 2k), A(P ∗

H ∩ Q̃, 2k)} = 4(1 + 2 + · · ·+ (
c1
2
− 1)) + 2

c1
2
,



42

for even c1, which implies that

n−1∑

k=1

min{H(Q̃, 2k), A(Q̃, 2k)}

≥
n−1∑

k=1

min{H(P ∗
H ∩ Q̃, 2k), A(P ∗

H ∩ Q̃, 2k)} ≥
c21 − 1

2
.

Therefore, we have

2n−1∑

r=1

min{H(Q, r), A(Q, r)}

=nc0 +
c21 − 1

2
+ (2n− 1)c2

≥
c0 + c1 + 2c2 − 1

2
c0 +

c1
2
c0 +

c1(c1 − 1)

2
+ 2(c0 + c1 + 2c2 − 1)c2 + c1c2

=
(c0 + c1 + 2c2)(c0 + c1 + 2c2 − 1)

2
=
|Q|(|Q| − 1)

2
.

Thus, we obtain the result of P ∗ ∈ N .
These properties about tmax , together with Eq. (4.1), derive the tighter upper bound

for B2n shown in Eqs. (4.2) and (4.3) in Theorem 15.

4.3 The total number of the 2c-HAPs having n
′ − 2 breaks

We next count of 2c-HAPs having n′ − 2 breaks. Let P ∗∗ be the set of such 2c-HAPs,
which is divided into two sets, P ∗∗

H consisting of 2c-HAPs starting with home games, and
P ∗∗
A consisting of 2c-HAPs starting with away games.

Theorem 22 The total number of the 2c-HAPs having n′ − 2 breaks is,

(1) 2

(n′

2 + 1

2

)(n′

2

1

)
+ 2

(n′

2 + 1

3

)
, if n′ is even

(2) 4

(n′+1
2

2

)(n′+1
2

1

)
, if n′ is odd

proof The proof starts from the case of (2) that n′ is odd. Create an H-A sequence
s = (s1, ..., sn+2) of length n+ 2, where

s4k+i =

{
H i = 1, 2
A i = 3, 4

, k = 0, ...,
n′ − 1

2
.

We have break(s) = n′ + 1, and the number of consecutive H breaks and consecutive A
breaks are both n′+1

2 . If one (HH) and two (AA) are selected and one round in each break
is deleted, it becomes a 2c-HAP with n − 2 breaks and one more H than A. Similarly,
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taking two (HH) and one (AA) and deleting one round in each break, it becomes a 2c-
HAP with n− 2 breaks and one more A than H. The number of selected combinations of
(HH) and (AA) is

(n′+1
2

1

)(n′+1
2

2

)
+

(n′+1
2

2

)(n′+1
2

1

)
= 2

(n′+1
2

1

)(n′+1
2

2

)
.

Thus, non-repetitive 2c-HAPs can be formed and the total number of 2c-HAPs becomes

to 4

(n′+1
2

2

)(n′+1
2

1

)
after taking complement.

Conversely, an H-A sequence corresponding to any 2c-HAP in P ∗∗
H always has three

rounds where Hs or As are not consecutive. If round with H is inserted after a round with
a non-consecutive H and a round with A is inserted after a round with a non-consecutive
A, this becomes the sequence s with a length of n′ + 2. Therefore, every 2c-HAP is
created by deleting three slots from s. Thus, we obtain the number of 2c-HAPs having
n′ − 2 breaks.

Figure 4.7: Generation Process of P ∗∗
H for n = 6

Back to (1) which creates an H-A sequence s = (s1, ..., sn+2) of length n+ 2. That is,

s4k+i =

{
H i = 1, 2
A i = 3, 4

, k = 0, ...,
n′

2
.

We have break(s) = n′ + 1, where the number of (HH) breaks is n′

2 + 1, and the number

of (AA) breaks is n′

2 . If two (HH) and one (AA) are selected and one round in each break
is deleted, it becomes a 2c-HAP with n′ − 2 breaks and one more H than A. Similarly,
taking three (HH) and deleting one round in each break, it becomes a 2c-HAP with n′−2
breaks and one more A than H. The number of selected combinations of (HH) and (AA)
is (n′

2 + 1

2

)(n′

2

1

)
+

(n′

2 + 1

3

)
.

Thus, non-repetitive 2c-HAPs can be formed and the total number of 2c-HAPs becomes

to 2

(n′

2 + 1

2

)(n′

2

1

)
+ 2

(n′

2 + 1

3

)
after taking complement. Since the all 2c-HAPs in P ∗∗

H

is obtained by this way, we obtain the number of 2c-HAPs.
The proofs of the Theorems 16 and 22 also provides a method enumerating 2c-HAP

having at least n′ − 2 breaks.
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Figure 4.8: Generation Process of P ∗∗
H for n = 8

4.4 Formulation based on integer programming

Recall that a HAT composed of 2c-HAPs is called a 2c-HAT. In this section, feasible
2c-HATs that maximizes the number of breaks are constructed by using an integer pro-
gramming model. The integer programming model in this chapter refers to the integer
programming model in [19] that handles minimizing the number of breaks.

Let T = {1, . . . , n} and R = {1, . . . , n − 1} represent the sets of teams and rounds,
respectively. The set of 2c-HAPs without any break number limitation is denoted by P̄ .

To formulate as an integer programming problem, we prepare four types of 0-1 vari-
ables for representing game schedule.

xip: When team i ∈ T uses HAP p ∈ P̄ , xip is 1; otherwise, it is 0.

yp: If HAP p ∈ P̄ is used, yp is 1; otherwise 0.

xijr: If team i ∈ T and team j ∈ T are playing in round r ∈ R, xijr is 1; otherwise, it
is 0.

hir: If team i ∈ T is playing at home in round r ∈ R, hir is 1; otherwise, it is 0.

We also use a parameter ξpr, which represents the match position of the corresponding
HAP. If HAP p ∈ P̄ is at home in round r ∈ R, it is 1; otherwise, it is 0.

The following integer programming model, called IPM, finds the maximum number of
breaks over 2c-HATs.
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(IPM) max
∑

p∈P̄

break(p)yp (4.4)

s.t.
∑

p∈P̄

xip = 1, i ∈ T (4.5)

∑

i∈T

xip = yp, p ∈ P̄ (4.6)

xijr = xjir, i, j ∈ T, r ∈ R (4.7)
∑

r∈R

xijr = 1, i, j ∈ T, i 6= j (4.8)

∑

j∈T\{i}

xijr = 1, i ∈ T, r ∈ R (4.9)

hir =
∑

p∈P̄

ξprxip, i ∈ T, r ∈ R (4.10)

xijr ≤ 2− (hir + hjr), i, j ∈ T, r ∈ R (4.11)

xijr ≤ (hir + hjr), i, j ∈ T, r ∈ R (4.12)
∑

i∈T

hir = n, r ∈ R (4.13)

Equation (4.4) is the objective function, which expresses the maximization of the num-
ber of breaks in the whole tournament.

Constraint (4.5) stipulates that each team can only be assigned to one HAP.

Constraint (4.6) represents that each used HAP is identified.

Constraint (4.7) means that if team i and team j are playing in round r, team j is
playing against i in round r.

Constraint (4.8) means that the same two teams will compete only once in all rounds,
and constraint (4.9) means that each team will compete only once in a round.

If team i is assigned HAP p, then its home-away field will be positioned the same as
the assigned HAP, and we restrict this with constraint (4.10).

Constraints (4.11) and (4.12) restrict the two teams that are both participating in the
home game or away game in a round are not able to play against each other.

Constraint (4.13) means that the number of home games and away games is equal in
any round r ∈ R.

The purpose of this IPM is to first allocate n 2c-HAPs ∈ P to n teams. Constraints
(4.5), (4.6) and (4.10) are used to complete this step. According to the HAT composed



46

of the selected HAPs, the teams are configured to compete in each round. Constraints
(4.7) (4.9), (4.11) and (4.12) play a role in this step. Finally, calculate the break number
for this feasible 2c-HAT and maximize it. However, the computing power of this IPM is
limited, so new algorithms need to be proposed.

4.5 Algorithm of finding maximum break 2c-HAT

When the listed 2c-HAPs are restricted to P ′(⊆ P̄ ) instead of P̄ in (IPM), we denote such a
restricted problem by (IPMP ′). The optimal value of (IPMP ′) gives a lower bound for Bn.
We consider the problem (IPMP ∗∪P ∗∗), i.e., the 2c-HAPs are restricted in P ∗∪P ∗∗ having
at least n− 2 breaks in (IPM). Even with this restriction of P ∗ ∪ P ∗∗, the problem takes
to be solved a long time when n is greater. Instead of solving (IPMP ∗∪P ∗∗) directly, we
reduce the size of (IPMP ∗∪P ∗∗) by setting used 2c-HAPs in P ∗ as N ∈ N , i.e., (IPMN∪P ∗∗)
and solve it for each N ∈ N as like the method of match schedule construction by [19].

The algorithm1 shows our procedure, which repeats checking, in the descending order
of size of N , whether each subset N ∈ N can be extended to feasible 2c-HAT by using
HAPs in P ∗∗. As for the initial t in the algorithm, when n is odd, tmax = n′ + 1, and

when n′ is even, the upper bound tub = 2(4⌊n
′

7 ⌋ + ⌈
2(n′ mod 7)

3 ⌉) is used. If the current
IPMN∪P ∗∗ is feasible, then the value of tfsb is t, if all the 2c-HATs composed of N ∈ N
with |N | = t are not feasible, then t−1, continue to solve for N ∈ N with |N | = t−1.The
algorithm returns a feasible 2c-HAT with tfsb(n

′ − 1) + (n− tfsb)(n
′ − 2) breaks.

algorithm1

1: Initialize t such as t ≥ tmax

2: repeat
3: for N ∈ N with |N | = t do
4: Solve (IPMN∪P ∗∗) adding constraint such that yp = 1 for p ∈ N
5: if the problem is feasible then
6: tfsb ← t
7: return
8: end if
9: end for

10: t← t− 1
11: until t ≤ 0
12: return infeasible

The integer programming problems were solved by using Gurobi 9.5.1 as an integer
programming (IP) solver. All computations were run on an AMD Ryzen 5 3600 processor
with 16.0 GB of RAM. The output of our algorithm are shown in Tables 4.1 and 4.2.

When 4 ≤ n ≤ 36, it can be seen that tmax and tfsb are the same, and the number of
breaks obtained is the maximum number of breaks Bn.

Figure 4.9 compares the computation time of our algorithm and of solving (IPMP ∗∪P ∗∗)
directly. These graphs do not draw when computing time is over 10,000 seconds for solving
(IPMP ∗∪P ∗∗) by the IP solver. When n′ is odd, our algorithm is also solve (IPMP ∗∪P ∗∗)
since P ∗ ∈ N . The difference of computation time is due to adding constraints yp = 1 for
p ∈ P ∗.
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Table 4.1: Computing results for odd n′

# teams (n) 6 10 14 18 22 26 30 34

tmax (= n′ + 1) 4 6 8 10 12 14 16 18
tfsb 4 6 8 10 12 14 16 18

# breaks 10 36 78 136 210 300 406 528

Table 4.2: Computing results for even n′

# teams (n) 4 8 12 16 20 24 28 32 36

tub 4 6 8 10 12 16 16 20 22
tfsb 4 6 8 10 12 16 16 20 22

# breaks 4 22 56 106 172 256 352 468 598

When n′ is even, the number of variables in (IPMN∪P ∗∗) solved in our algorithm is
reduced greatly from in (IPMP ∗∪P ∗∗), since tmax < n = |P ∗|. So, the computing time for
solving (IPMN∪P ∗∗) is expected shorter than for solving (IPMP ∗∪P ∗∗). Meanwhile, since
there are a lot of combinations of HAPs, the many iterations of our algorithm may be
needed. In fact, however, the algorithm terminates after a few iterations. This is because
that tmax = tfsb holds fortunately, and also because (IPMN∪P ∗∗) is feasible for most of
N ∈ N , which fact is shown in Table 4.3, where the second row shows the number of
N ∈ N with |N | = tmax and the third row shows the number of N ∈ N with |N | = tmax

and (IPMN∪P ∗∗) is feasible. Since the number of N achieved tmax is large for n = 28, we
have not checked the number of N so that (IPMN∪P ∗∗) is feasible.

n
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Figure 4.9: Computation time for finding a maximum break HAT

The problem of maximizing the number of breaks in sports scheduling has received rel-
atively less attention compared to the problem of minimizing breaks, thereby highlighting
its significance. In this chapter, we introduce a novel method for constructing 2c-HAPs
that possess the maximum number of breaks as well as those with the second-highest num-
ber of breaks. Leveraging the intrinsic properties of HAPs, we initially derive an upper
bound for tmax (Theorem 15). Utilizing these two types of HAPs, we propose an algorithm
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Table 4.3: The number of feasible HAP conbinations in N for even n′

# teams (n) 4 8 12 16 20 24 28 32 36

with |N | = tmax 1 4 36 144 1024 1 33124 16 36
feasible 1 2 30 130 1024 1 – 16 36

to form feasible HATs that achieve the maximum number of breaks. Our calculations re-
veal the maximum number of breaks for up to 36 teams, and we establish that this bound
holds true when the number of teams is less than 36. Through rigorous mathematical
proofs presented in this chapter, we showcase the elegance and effectiveness of employing
pure mathematical techniques to address challenges in sports scheduling. This approach
not only advances theoretical understanding but also underscores the practical utility of
mathematical solutions in optimizing tournament schedules.

So far, serving as the core of this thesis primarily presents the method of schedule
generation under the constraint of break numbers. By introducing the concepts of space-
sequence and isomorphic HAT, regularities are identified. Starting with HAPs, an effective
algorithm is proposed to generate feasible schedules, which are then validated.
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Chapter 5

Minimization of carry-over effect
value under break constraints

The COE value minimization problem finds a schedule for which the COE value is minimal.
Russell[18]proposed an algorithm for constructing a minimum COE value schedule when n
is a power of two. Meanwhile, some research developed heuristic algorithms for the problem
and improved the upper bounds of the COE value. Although constraint programming and
integer programming were employed to obtain the exact optimal COE value, it seemed
difficult to find the exact optimal COE values for large n in practical computational time.
Recently, Günneç and Demir[41] discussed the problem of creating a fair schedule by
minimizing the COE value over sr-mb-HATs. They solved it by integer programming and
by a heuristic algorithm. In Chapter 5, we focus on the COE value minimization problems
over mb-HATs, sr-mb-HATs, and sr-eq-HATs.

5.1 Integer programming model

Let T = {1, . . . , n} and R = {1, . . . , n− 1} represent the set of teams and rounds, respec-
tively. Recall that P is a set of HAPs, each of which has at most one break. For our
integer programming, we prepare four types of 0-1 variables for representing game sched-
ules and one type of 0-1 variable, and one continuous variable for representing COE values.

xip: IF team i ∈ T uses HAP p ∈ P, xip is 1; otherwise, it is 0.

yp : If HAP p ∈ P is used, yp is 1; otherwise 0.

xijr: If team i ∈ T and team j ∈ T are playing in round r ∈ R, xijr is 1; otherwise, it
is 0.

hir: If team i ∈ T is playing at home in round r ∈ R, hir is 1; otherwise, it is 0.

cijr : If team i ∈ T gives team j ∈ T a COE in round r ∈ R, i.e., team i and team j
compete with a same other team in round r and round r + 1,respectively, cijr is 1; other-
wise, it is 0.
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cij is the count that represents the sum of COEs from team i ∈ T to team j ∈ T . We
also use a parameter spr, which represents the match position of the corresponding mode.
If pattern p ∈ P is at home in round r ∈ R, it is 1; otherwise, it is 0.

The following integer programming model finds the minimum COE value over mb-
HATs. This integer programming model is essentially equivalent to one in Günneç and
Demir[41], where round n is regarded as the first round.

min
∑

i,j∈T

c2ij (5.1)

s.t.
∑

p∈P

xip = 1, i ∈ T (5.2)

∑

i∈T

xip = yp, p ∈ P (5.3)

xijr = xjir, i, j ∈ T, r ∈ R (5.4)

xiir = 0, i ∈ T, r ∈ R (5.5)
∑

r∈R

xijr = 1, i, j ∈ T, i 6= j (5.6)

∑

j∈T\{i}

xijr = 1, i ∈ T, r ∈ R (5.7)

hir =
∑

p∈P

xipspr, i ∈ T, r ∈ R (5.8)

xijr ≤ 2− (hir + hjr), i, j ∈ T, r ∈ R (5.9)

xijr ≤ (hir + hjr), i, j ∈ T, r ∈ R (5.10)

xilr + xjl(r+1) − 1 ≤ cijr, i, j, l ∈ T, r ∈ R (5.11)
∑

r∈R

cijr = cij , i, j ∈ T (5.12)

Equation (5.1) is the objective function, which expresses the minimization of the COE
value in the whole tournament.

Constraint (5.2) stipulates that each team can only be assigned to one HAP.

Constraint (5.3) represents that each used HAP is identified.

Constraint (5.4) and constraint (5.5) mean that if team i and team j are playing in
round r, team j is playing against i in round r, and teams cannot play against itself.

Constraint (5.6) means that the same two teams will compete only once in all rounds,
and constraint (5.7) means that each team will compete only once in a round.

If team i is assigned HAP p, then its home-away venue will be positioned the same as
the assigned HAP, and we restrict this with constraint (5.8).
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Constraints (5.9) and (5.10) restrict the two teams that are both participating in the
home game or away game in a round are not able to play against each other.

Constraint (5.11) means that after team l and team i compete in round r and team l
and team j compete in round r + 1, team j will obtain a COE from team i.

Constraint (5.12) expresses the total COE of two teams as the sum of their COE values
in each round.

The integer programming model first allocates n 2c-HAPs with few breaks to n teams.
Constraints (5.2), (5.3) and (5.8) complete this step. Matches are arranged for each team
in every round for the HAT composed of these selected n 2c-HAPs. Constraints (5.4) (5.7),
(5.9) and (5.10) complete this step. Finally, constraints (5.11) and (5.12) calculate the
COE cij between every two teams, and the objective function minimizes the COE value.

Günneç and Demir[41] also employ the constraint

yp = yp̄, p ∈ P (5.13)

which is derived from Property 1, and

yp1 = 1 (5.14)

for mb-HATs. We call this problem given by Eqs. (5.1) – (5.14) as ”GD model.” By
replacing P with P \ {p2, pn−1} in this problem, we find the minimum COE value over
sr-mb-HATs. When we find over sr-eq-HATs, we use yp1 = 0 instead of Eq. (5.14) for the
problem after replacing. However, the computational power of this integer programming
model is extremely limited and it needs to be further improved.

5.1.1 Modifications to the integer programming model

We now introduce additional valid inequalities for this problem and convert the original
nonlinear objective function to a linear function to improve the computational speed.

M1 To eliminate symmetry when teams are assigned to patterns, we impose a rule that
teams with smaller numbers are assigned to HAPs with smaller numbers, under the
assumption that teams 1 to n/2 use HAPs in PH :

r∑

q=1

xipq ≥
r∑

q=1

x(i+1)pq , i ∈ T, i+ 1 ≤ n/2, r ∈ R

r∑

q=1

x(i−1)p̄q ≥
r∑

q=1

xip̄q , i ∈ T, i− 1 ≥ n/2 + 1, r ∈ R.

∑

p∈PH

xip = 1, i = 1, . . . , n/2.
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M2 We add the condition for feasible HAT according to Theorem 1. Let Niqr be a
variable representing min{H(Qiq, r), A(Qiq, r)} for a set of HAPs Qiq = {pk | k =
i, i+1, . . . , i+ q− 1}. The following two constraints stand for Niqr ≤ H(Qiq, r) and
Niqr ≤ A(Qiq, r).

Niqr ≤

i+q−1∑

k=i

hkr, q = 3, . . . , n/2, i = 1, ..., n/2− q + 1, r ∈ R

Niqr ≤ q −

i+q−1∑

k=i

hkr, q = 3, . . . , n/2, i = 1, ..., n/2− q + 1, r ∈ R

The following equation corresponds to Eq. (2.1) for Qiq.

∑

r∈R

Niqr ≥
q(q − 1)

2
, q = 3, . . . , n/2, i = 1, ..., n/2− q + 1.

M3 According to the characteristics of HAPs, two teams assigned HAPs pk and ph
(k < h) can compete during the kth round to the (h − 1)th round. Similarly, if
HAPs p̄k and p̄h are assigned to two teams, these two teams can compete against
during the kth round to the (h− 1)th round. If HAPs pk and p̄h (k < h) or p̄k and
ph are assigned to two teams, their game can be placed in rounds excluding the kth
round to the (h − 1)th round. These restrictions can be expressed by the following
constraints.

h−1∑

r=k

xijr ≥ xipk + xjph − 1, i, j ∈ T, pk, ph ∈ PH , k < h

h−1∑

r=k

xijr ≥ xip̄k + xjp̄h − 1, i, j ∈ T, pk, ph ∈ PH , k < h

k−1∑

r=1

xijr +

n−1∑

r=h

xijr ≥ xipk + xjp̄h − 1, i, j ∈ T, pk, ph ∈ PH , k < h

k−1∑

r=1

xijr +
n−1∑

r=h

xijr ≥ xip̄k + xjph − 1, i, j ∈ T, pk, ph ∈ PH , k < h

M4 It is important to strengthen the relationship between the game and the COE. For
any team i, the COE can and can only be obtained from one team in each round r.
The same is true for any team j.

∑

j∈T\{i}

cijr = 1, i ∈ T, r ∈ R

∑

i∈T\{j}

cijr = 1, j ∈ T, r ∈ R
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When cijr = 1 and xilr = 1, the xjlr+1 must be 1. Similarly, when cijr = 1, if
xjlr+1 = 1, the xilr must be 1. These relations can be represented by the following
constraints.

cijr + xilr − 1 ≤ xjlr+1, i, j, l ∈ T, r ∈ R

cijr + xjlr+1 − 1 ≤ xilr, i, j, l ∈ T, r ∈ R

M5 To linearize the quadratic form in the objective function, we adopt continuous variabl
zijq with 0 ≤ zijq ≤ 1 for i, j ∈ T and q = 1, . . . , n− 1, and add the constraint

cij =
n−1∑

q=1

zijq, i, j ∈ T.

Then, objective function can be converted to piecewise linear function without using
cij by

min
∑

i,j∈T

n−1∑

q=1

(2q − 1)zijq.

This linearized technique is discussed in Itoi et al. [52] as efficient linearization of
quadratic objective functions, according to which zijr takes an integer value (1 or 0)
even if it is a continuous variable.

5.1.2 Comparison of calculation results

By solving this integer programming problem, we obtain the minimum COE values over
mb-HATs, over sr-mb-HATs and over sr-eq-HATs. The integer programming(IP) problem
was solved by using Gurobi 9.1.0 as an integer programming solver. All computations
were run on an Intel Core i5-8250U with 8.0 GB of RAM. The time limit to solve each
problem was fixed to 7200 seconds. Table 5.1 compares the results of the GD model and
our model that adds M1–M5 to the GD model. Variables other than xip and xijr are
changed to continuous variables because the calculation will be faster with fewer integer
variables. When n is 10 and the variables are integers, the solution time over sr-mb-HAT
to the optimal value is 530.23 seconds, which is greater than 460.52 seconds in Table 5.1.
When n is 12 and the variables are integers, the calculation result within 7200 seconds is
260, which is also greater than 258 in Table 5.1. As we observed in Theorem 13, there
is no feasible sr-eq-HAT for small n. The results are shown in Table 5.1, where “C.v.”
stands for the obtained COE values. If the optimum COE values could not be obtained
within the time limit, the gaps between the obtained upper and lower limits are shown
in parentheses below the COE value. A hyphen “–” means that we could not find any
feasible solution within the limited time. The computing time is shown in seconds in
the column of “time.” We could obtain the optimal COE values for n = 6, 8 and 10. In
these results, valid inequalities and linearized technique M1–M5 of our model are useful to
improve computing time. However, it is difficult to obtain the exact minimum COE values
when n becomes slightly large, although our valid inequalities may help greatly raise its
lower bounds.
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Table 5.1: Comparison of obtained COE values and computing time for IP calculation. The columns of C.v. show the obtained
COE values and the columns of time show computing time in seconds. If the optimal COE values could not be obtained within the
time limit, 7200sec., its computing time is denoted by “TU” and the gaps between the obtained upper and lower limits are shown
in parentheses below the COE value. A hyphen “–” means that we could not find any feasible solution within the limited time.

over mb-HATS over sr-mb-HATS over sr-eq-HATS
GD model our model GD model our model GD model our model
C.v. time C.v. time C.v. time C.v. time C.v. time C.v. tme

n (gap) (s) (gap) (s) (gap) (s) (gap) (s) (gap) (s) (gap) (s)

6 60 2.01 60 0.28 60 1.85 60 0.04 no feasible HAT

8 100 246.53 100 6.08 100 580.00 100 1.63 no feasible HAT

10 168 TU 168 871.7 168 TU 168 460.52 no feasible HAT
(69.5%) (83.5%)

12 394 TU 260 TU 264 TU 258 TU no feasible HAT
(92.2%) (40.8%) (98.6%) (36.1%)

14 – TU 402 TU – TU 382 TU no feasible HAT
(61.4%) (51.66%)

16 – TU 692 TU – TU 636 TU – TU 630 TU
(69.8%) (66.7%) (19.9%)
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5.2 Heuristic algorithm for minimizing carry-over effect value

In this section, we focus on constructing a heuristic algorithm, which is expected to get a
good solution more quickly than solving IP discussed in the previous section. Our heuristic
method is the basis of the local search discussed on [41]. We employ two neighborhood:
round swap and partial swap.

5.2.1 Round swap

Figure 5.1 shows the round swap without considering breaks. The COE value of schedule
(a) is 120. When we swap rounds 2, 3, and 4, and swap rounds 6 and 7, it becomes
schedule (b), and the COE value becomes 56. Compared with schedule (a), the COE
value of schedule (b) has been greatly reduced. Therefore, it’s apparent that by round
swap, it is possible to find a schedule with a smaller COE value.

(a) The COE value is 120.

(b) The COE value is 56.

Figure 5.1: Comparison of COE values of two schedules.

The round swap under breaks constraints, which is used in [41], exchanges all the games
in two rounds (See Figure. 5.2). After the round swap, the positions of home/away of each
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team will also change. Thus, it is necessary to decide whether the new schedule meets a
HAT consisting of home-away of patterns with the constraints of sr-mb-HAT. Miyashiro
and Mitsui[33] show polynomial time algorithms to find a HAT with n− 2 breaks and to
find an equitable HAT for a given timetable of a round-robin tournament.

Thus, we can judge whether a HAT consistent with the new schedule exists in O(n3).
If the new COE value becomes lower and the constraints are met, the result of the swap is
adopted, otherwise, the next swap will be carried out. Indeed, almost all results of round
swap failure to construct HATs.

Figure 5.2: An example of round swap.

5.2.2 Partial swap

The partial swap exchanges partial games in two rounds. We employ two types of partial
swaps. The type I of partial swap does not change its HAT. According to two rounds k, k′,
let Gk,k′ = (T,Ek ∪ Ek′) be the directed graph with the vertex set as the team set T and
the arc set Ek ∪Ek′ , where (i, j) ∈ Ek if teams i and j compete against at team j’s home.
Note that Gk,k′ consists of disjoint even length cycles. For a directed cycle C in Gk,k′ ,
all games in the directed cycle C exchange among round k and k′ without changing its
HAT (See Figure. 5.3). This swap makes the direction of C reverse in Gk,k′ . A cycle C in
Gk,k′ is called alternate if C is directed when the direction of all arcs in Ek′ are reversed.
All games in an alternate cycle C can also be exchanged among round k and k′ without
changing its HAT (See Figure. 5.4). For a cycle C not directed/alternate, all games in the
cycle C exchange among round k and k′ but it needs to update HAT according to it. We
call this exchange as type 2 of partial swap.

The framework is shown in Algorithm 2.
In our computing, we use as an initial feasible solution the feasible solution found

firstly in IP model with M1– M3.
The result is shown in Table 5.2, where RS, and PS stand for round swap and partial

swap, respectively. The result of only round swaps was slightly different from [41], which
implies that the results are influenced by initial feasible solutions. Combining partial
swaps, the values were improved a little.
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algorithm2

1: Find a feasible schedule and compute cij
2: repeat
3: for k, k′ ∈ R s.t. k < k′ do
4: exchange round k and round k′ ⊲ round swap
5: if the new COE value is smaller than the previous one and a feasible HAT

associated with the new table exists then ⊲ the swap is successful
6: update the schedule obtained by this swap
7: end if
8: end for
9: for k, k′ ∈ R s.t. k < k′ do

10: Find a cycle not alternate/directed in Gk,k′ and swap along the cycle ⊲ partial
swap type 2

11: if the new COE value is smaller than the previous one and a feasible HAT
associated with the new table exists then ⊲ the swap is successful

12: update the schedule obtained by this swap
13: end if
14: end for
15: for k, k′ ∈ R s.t. k < k′ do
16: Find an alternate/directed cycle in Gk,k′ and swap along the cycle ⊲ partial

swap type 1
17: if the new COE value is smaller than the previous one then ⊲ the swap is

successful
18: update the schedule obtained by this swap
19: end if
20: end for
21: until no successful swap occurs

Table 5.2: Result of the heuristic algorithm of round/partial swaps.

local search
# teams only RS RS+PS1 RS+PS1+PS2 best val. by IP

10 190 190 180 168
12 364 332 300 262
14 458 454 450 396
16 684 664 646 554
18 1042 932 932 884
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Figure 5.3: Example for type I of the partial swap along a directed cycle with 6 teams a–
f
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Figure 5.4: Example for type I of the partial swap along an alternate cycle with 6 teams
a– f

5.3 Successive method by enumerating home-away tables

The integer programming model for the COE value minimization problem determines both
an appropriate HAT and its tournament schedule. Because there are a large number of
possible HATs and their tournament schedules, their computing time tends to become so
long. To reduce its search space, we added M2 according to Theorem 1. The number of
candidate HATs over mb-HATs was discussed in Miyashiro et al.[42]. They showed that
the number of feasible mb-HATs is much less than the number of combinations that select
n/2 HAPs from P. Moreover, as we discuss in Section 2.1, we do not need to search for
several isomorphic HATs to find the minimum COE values. Table 3.1 shows the number
of candidate 2c-HATs with few breaks, which compares the number of combinations to
choose HAPs, the numbers of feasible HATs shown in the columns of “# feasible”, and
the numbers of nonisomorphic feasible HATs shown in the columns of “# noniso”. As
shown in Table 3.1, the number of nonisomorphic feasible HATs is very small.

Since the number of nonisomorphic HATs is small, we adopt a method to compute
minimum COE values for candidate HATs in order. To enumerate nonisomorphic HATs,
we use space-sequences. We list up all nonnegative integer sequences of length n/2 with
the sum of n/2−1 and delete a sequence if it contains a subsequence (0, 0), (1, 0, 1, 1, 0, 1),
(1, ..., 1, 0, 1, ..., 1, 0) and (0, 1, ..., 1, 0, 1, ..., 1). Then, we reserve only HATs as a candidate
HAT if it is lexicographically small among sequences obtained by cyclic rotation and
reverse rotation from itself to avoid duplication of isomorphic HATs.

For n ≤ 18, this enumeration can be done in a few seconds in our computer environment
described in the previous subsection. We then solve the integer programming problem to
find minimum COE values for each candidate HAT by using our model described in the
previous subsection. Since variables xip, yp and hir are specified according to a given HAT,
we solve the problem minimizing Eq.(2) subject to Eqs.(5.4)–(5.7), (5.9)–(5.12) and M3–
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algorithm3

1: enumerate non-isomorphic candidate HATs
2: set UB =∞ (upper bound for the COE value)
3: for each candidate HAT do
4: solve the IP model with the candidate HAT and with the constraints associated

with UB
5: if the objective value < UB then
6: update UB by the obtained objective value
7: end if
8: end for

M5. Table 5.3 displays the minimum COE values for each mb-HAT by solving this integer
programming problem. In order to facilitate understanding, table 5.4 is an example of
a schedule with minimum COE value when n is 12 and the underlined teams play away
games. From this result, we conjecture that the HAT corresponding to the space-sequence
(0, 1, 1, . . . , 1) gives the minimum COE value among mb-HATs and sr-mb-HATs. If this
is true, the minimum COE value over sr-mb-HATs is equivalent to the minimum COE
value over mb-HATs. Moreover, in our experiment, the computing time tended to be
short when a space-sequence contained numbers 2 and 3. Thus, a method for finding the
minimum COE value solves the problem for HATs in lexicographically decreasing order for
space-sequence, which outline is shown in Algorithm 3. We call this method as successive
method.

Table 5.5 shows the result of the successive method over sr-mb-HATs together with
our IP model described in the previous section and the results in Günneç and Demir[41]
of their heuristic algorithm. In addition, the result for sr-eq-HAT for n = 16 is shown.
Each result of our IP model and successive method is the tentative value when it could
not finished within a given time limit of 7200 sec. When the optimal value was obtained
within the limited time, an asterisk was added to the value in the table. Günneç and
Demir[41] obtained a solution for n = 18 by their heuristic algorithm in 23.9 min in their
environment. Although the computing time is approximately 5 times for n = 18, we
could improve the COE values for every n by no more than 18. Unfortunately, despite
enumerating mb-HATs, the time limit was reached while solving the problem for the first
HAT corresponding to (0, 1, 1, · · · , 1) when n ≥ 12. Nevertheless, the solution of successive
method can be improved the results of Günneç and Demir[41]. If there are no restrictions
on HATs, the minimum COE value is 240 for n = 16 (Russell[18]). Therefore, it can be
seen that the minimum COE value increases by adding the restriction for HATs. Moreover,
when n = 16, we took the tentative minimum value 526 of sr-mb-HAT as the upper bound
of the successive method to calculate the unique sr-eq-HAT, and it was infeasible. So we
know that when n = 16, the minimum COE value over sr-eq-HATs is larger than the
minimum COE value over mb-HATs/sr-mb-HATs, which implies the trade-off between
breaks and COE values.

Simultaneously considering break constraints and COE values is a novel and valuable
research topic. In this chapter, we investigate the minimum COE values for 2c-HATs
with a small number of breaks using two distinct methods. The first method employs a
heuristic algorithm based on graph theory that involves rounds swap, while the second
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Table 5.3: The COE values of each candidate HAT. Each candidate HAT is represented by the corresponding space-sequence.

n = 6 n = 8 n = 10 n = 12 n = 14 n = 16
C.v. C.v. C.v. C.v. C.v. C.v.

(0, 1, 1) 60 (0, 1, 1, 1) 100 (0, 1, 1, 1, 1) 168 (0, 1, 1, 1, 1, 1) 258 (0, 1, 1, 1, 1, 1, 1) 382 (0, 1, 1, 1, 1, 1, 1, 1) 526
(0, 1, 0, 2) 112 (0, 1, 1, 0, 2) 198 (0, 1, 1, 1, 0, 2) 264 (0, 1, 1, 1, 1, 0, 2) 384 (0, 1, 1, 1, 1, 1, 0, 2) 532

(0, 1, 1, 0, 1, 2) 278 (0, 1, 1, 1, 0, 1, 2) 396 (0, 1, 1, 1, 1, 0, 1, 2) 560
(0, 1, 0, 2, 0, 2) 296 (0, 1, 1, 0, 2, 0, 2) 412 (0, 1, 1, 1, 0, 2, 0, 2) 554

(0, 1, 0, 2, 0, 1, 2) 422 (0, 1, 1, 1, 0, 1, 2, 1) 572
(0, 1, 1, 1, 0, 1, 1, 2) 548
(0, 1, 1, 0, 2, 0, 1, 2) 560
(0, 1, 1, 0, 1, 2, 0, 2) 584
(0, 1, 0, 2, 1, 0, 1, 2) 566
(0, 1, 0, 2, 0, 2, 0, 2) 580
(0, 1, 0, 2, 0, 1, 1, 2) 580
(0, 1, 0, 2, 0, 1, 0, 3) 620
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Table 5.4: The schedule table with minimum COE value when n is 12.

Round
n 1 2 3 4 5 6 7 8 9 10 11

1 2 3 7 4 6 5 10 9 8 11 12
2 1 4 3 6 5 7 8 11 9 12 10
3 12 1 2 5 4 9 6 8 7 10 11
4 11 2 12 1 3 8 5 6 10 9 7
5 10 12 11 3 2 1 4 7 6 8 9
6 9 11 10 2 1 12 3 4 5 7 8
7 8 9 1 10 12 2 11 5 3 6 4
8 7 10 9 12 11 4 2 3 1 5 6
9 6 7 8 11 10 3 12 1 2 4 5
10 5 8 6 7 9 11 1 12 4 3 2
11 4 6 5 9 8 10 7 2 12 1 3
12 3 5 4 8 7 6 9 10 11 2 1

Table 5.5: Comparison of the obtained COE values by our IP model, successive method,
and heuristic algorithm by Günneç and Demir (2019) which is shown in the columns of
GD heuristic. Asterisks (*) mean the COE values are optimal. hyphen(-) implies that a
feasible solution could not obtained in a limited time.

sr-mb-HATs sr-eq-HATs
n our IP mode successive method GD heuristic our IP mode successive method

6 60* 60*
8 100* 100* 104
10 168* 168* 192
12 260 258 318
14 408 382 446
16 638 526 626 630 620
18 - 744 944
20 - 1172 - 1348

method introduces a new algorithm leveraging the concept that isomorphic HATs possess
identical COE values. Although the heuristic algorithm for swapping rounds did not
produce highly satisfactory results, identifying swappable rounds through graph theory
due to break constraints in HAPs is intriguing. This suggests that there is potential for
developing more effective heuristic algorithms in the future. Conversely, the successive
method based on isomorphic HATs has demonstrated promising results, achieving lower
COE values compared to previous studies.
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Chapter 6

The travel distance minimization
problem

This study aims to investigate the impact of break numbers on travel distance, employing
two different measures of travel distance to examine the results.

6.1 Description

The Traveling Tournament Problem (TTP) is a challenging combinatorial optimization
problem in sports scheduling that focuses on minimizing the total travel distance for
teams in a round-robin tournament. This problem is particularly important for profes-
sional sports leagues, where reducing travel can significantly cut costs and improve player
performance by reducing fatigue.

The TTP was first introduced by Easton et al.[32]. The original formulation involves
scheduling a double round-robin tournament such that the total distance traveled by all
teams is minimized, while satisfying a set of constraints. Since then, numerous researchers
have proposed various models and methods to address the TTP, including both exact and
heuristic approaches.

6.1.1 Mathematical Formulation

Let T = {1, . . . , n} and R = {1, . . . , 2(n − 1)} represent the set of teams and rounds in
a double round-robin tournament, respectively. Let dij denote the distance between the
home venues of teams i and j, for i, j ∈ T . When a team plays an away game, it is
assumed that the team travels from the home venue to the away court. When playing
consecutive away games, the team travels directly from one away venue to the next. Each
team starts the game at its home and must return to its home venue after the game.The
standard TTP involves the key component: Finding a schedule specifies which teams play
against each other in each round and where each game is played, and the schedule S has
the minimum total travel distance across all teams

The TTP must satisfy several constraints:

• Each team begins the tournament at home and must return home after its last away
game;
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• No repeaters are allowed, meaning no two teams can play against each other in
consecutive rounds;

• Every sequence of consecutive home games played by any team consists of at least
L and at most U games; L and U are integer parameters.

• Every sequence of consecutive away games played by any team consists of at least L
and at most U games;

• The sum of the total traveling distance of each team has to be minimized.

Timetable
Team Round

1 2 3 4 5 6 7 8 9 10

1 5 6 3 2 4 5 6 3 2 4
2 6 4 5 1 3 6 4 5 1 3
3 4 5 1 6 2 4 5 1 6 2
4 3 2 6 5 1 3 2 6 5 1
5 1 3 2 4 6 1 3 2 4 6
6 2 1 4 3 5 2 1 4 3 5

Patterns

Team Round
1 2 3 4 5 6 7 8 9 10

1 A H A A A H A H H H
2 H A H H H A H A A A
3 A H H H A H A A A H
4 H H A H H A A H A A
5 H A A A H A H H H A
6 A A H A A H H A H H

Figure 6.1: Timetable and patterns.

The timetable in Figure 6.1 represents a mirrored double round-robin schedule, with
the numbers in the table representing the teams. The patterns is the HAT correspond to
the timetable, and the number of patterns is determined by L and U . Let S denote the set
of slots in the first half of the timetable {1, . . . , n− 1}. Let P denote the set of patterns.
For each pattern j ∈ P and each s ∈ S, hjs is defined to be 1 if round s of pattern j is
1; otherwise, hjs is defined to be 0. For each t ∈ T and each j ∈ P , let dtj denote the
distance team t must travel if pattern j is assigned to team t. Note that the distance dtj
can be calculated given the timetable and the pattern. Then the Timetable Constrained
Distance Minimization Problem(TCDMP) for the given timetable can be formulated as
the following integer programming problem:

min
∑
t∈T

∑
j∈P

dtjxtj

s.t.
∑
j∈P

xtj = 1 ∀t ∈ T

∑
t∈{i1,i2}

∑
j∈P

hjsxtj = 1 ∀i1, i2 ∈ T, s ∈ S such that i1 < i2

xtj ∈ {0, 1} ∀t ∈ T, j ∈ P.
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The above formulation is a specialization of the formulation introduced by Rasmussen
and Trick [53] to the mirrored setting.

6.1.2 Exact Approaches and Limitations

Ribeiro and Urrutia [43] proposed an IP formulation that was able to solve small instances
of the problem optimally. However, these methods often struggle with larger instances due
to the exponential growth in the number of possible schedules.

For U = 1, it is easy to see that there is no solution for n > 2. In this case, the
only feasible HAP is alternating home and away. There are only two such sequences (one
beginning at home and one beginning away), so if there are more than 2 teams, two teams
will have the same sequence. Such teams, however, cannot play each other so no round
robin tournament is possible.

The classic TTP prioritizes distance minimization, thus relaxing the conditions on U .
However, as mentioned earlier, too many consecutive home or away games can lead to
unfair schedules. Nevertheless, an effective method to solve the minimum travel distance
when U = 2 has yet to be found. In the TTP, the double round-robin tournament is the
most commonly studied format. In a double round-robin tournament, the home and away
situations of the first half of the schedule mirror that of the second half, often resulting
in sequences of three consecutive home or away games. Consequently, in previous studies
addressing the double round-robin tournament, the upper bound U is typically set to 3. To
mitigate the occurrence of such sequences, the use of sr-HAT is required. Since Chapters
3 and 4 have already derived 2c-HATs under different break constraints, and 2c-HATs
satisfy the condition of U = 2, we will use these 2c-HATs to examine the relationship
between the number of breaks and travel distance in single round robin.

6.2 The travel distance minimization problem under maxi-
mum breaks

The concept of 2c-HATs and finding the maximum breaks over 2c-HATs has been intro-
duced to reduce the total travel distance to execute the tournament schedule while main-
taining fairness [47]. In this section, we investigate the effect of these break constraints of
HATs on the travel distance.

The problem of finding a tournament schedule minimizing the total travel distance is
called a traveling tournament problem [32]. Although the traveling tournament problem,
in general, assumes double round robin tournaments, we deal with the single round robin
considered in the previous section. The total travel distance considers the distance to go
to the game from the home field in the first round and to return to the home field after
the tournament. Table 6.1 and Figure 6.2 show the movement of teams 1 in a schedule
with 6 teams, and the travel process is 1→ 4→ 2→ 1→ 6→ 1 .

Table 6.1: The schedule of Team 1

Round 1 2 3 4 5

Opponent 4 2 3 5 6

Home/Away A A H H A
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Figure 6.2: The travel process of team 1.

To clarify the influence of the number of breaks, the distance between the home fields
of each pair of teams has previously been calculated by both the circular distance and the
linear distance that have regularity [37]. In the circular distance, the distance dij from
team i’s home field to team j’s home field is given by min{i− j, j − i+ 2n} for i > j. In
linear distance, dij is given by |i− j|. Examples of both two distance for n = 8 are shown
in the Figure 6.3 and Figure 6.4.

6.2.1 The integer programming model for the travel distance of a single
round robin

The traveling tournament problem for a single round-robin tournament can be formulated
as an integer programming problem by using two kinds of binary variables: x̃ijr represents
whether team i plays on team j’s home field in round r; zijr represents whether a team
goes from team i’s home to team j’s home just before round r. We recall that hir is

Figure 6.3: The circle distance between each pair of teams.
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Figure 6.4: The linear distance between each pair of teams.

also a binary variable representing whether a team i plays its home field in round r. For
convenience of notation, we give hi0 = hi(n) = 1 for any i ∈ T .

min
∑

i,j∈T
i 6=j

∑

r∈R∪{n}

dijzijr (6.1)

s.t.
∑

j∈T\{i}

(x̃ijr + x̃jir) = 1, i ∈ T, r ∈ R (6.2)

∑

r∈R

(x̃ijr + x̃jir) = 1, i, j ∈ T, i 6= j (6.3)

∑

j∈T\{i}

x̃jir = hir, i ∈ T, r ∈ R (6.4)

x̃li(r−1) + x̃ljr − 1 ≤ zijr, i, j, l ∈ T, r ∈ R, r 6= 1 (6.5)

hi(r−1) + x̃ijr − 1 ≤ zijr, i, j ∈ T, r ∈ R (6.6)

x̃ji(r−1) + hjr − 1 ≤ zijr, i, j ∈ T, r ∈ R ∪ {2n}, r 6= 1 (6.7)

Constraint (6.2) means that every team plays exactly one game in every round.

Constraint (6.3) means that every pair of two teams plays one game during the tour-
nament.

Constraint (6.4) stipulates the consistency of the home/away game.

Constraints (6.5)–(6.7) describe the travel of the teams, whether zijr is 1 when there
is a team l who plays in i’s home in round r − 1 and j’s home in round r, when team i
plays a home game in round r − 1 and in j’s home in round r, and when teams j play at
i’s home in round r − 1 and team j plays at home in round r.

When the home-away assignment is restricted to be according to 2c-HATs, we need
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additional constraints

hir + hi(r+1) + hi(r+2) ≤ 2, ∀i ∈ T, ∀r ∈ R, r 6= n− 2, n− 1

for Condition 1 and
n′ − 2 ≤

∑

r∈R

hir ≤ n′ − 1, ∀i ∈ T

for Condition 2.
When the number of breaks of 2c-HATs is restricted, we assign teams to the given

HAPs satisfying the break constraint to minimize the total travel distance rather than
adding constraints that express the number of breaks. The minimum value among the
candidate HATs is then found. For 2c-HATs with maximum breaks, we solve the integer
model together with IPMN∪P ∗∗ for N ∈ Nfsb . Instead of (6.2), we introduce constraints

∑

p∈N∪P ∗∗

xip = 1, i ∈ T

∑

i∈T

xip = 1, p ∈ N

hir =
∑

p∈N∪P ∗∗

ξprxip, i ∈ T, r ∈ R.

In addition, in contrast to (6.3), we add

∑

j∈T\{i}

x̃ijr = 1− hir, i ∈ T, r ∈ R

Let d(N∪P ∗∗) be the minimum travel distance forN∪P ∗∗. Then, we compute minN∈Nfsb
d(N∪

P ∗∗) by solving the integer programming problem repeatedly.
When we solve the traveling tournament problem on 2c-HATs with minimum breaks,

the candidate HATs can be obtained by applying the enumerating method in [51]. In
[51], the method enumerating all nonisomorphic HATs having the minimum breaks was
demonstrated, where HATs obtained by cyclic rotations of rounds and by inverse rotation
of rounds in a HAT were called isomorphic. In the traveling tournament problem, however,
the result might be different even for isomorphic HATs. Let Ñ be the set of candidate
HATs obtained by cyclic rotation of rounds from every nonisomorphic HAT enumerating
by the method in [51]. Then, we calculate minN∈Ñ d(N), where d(N) is the optimal value
of the integer model replacing N ∪ P ∗∗ by N .

6.2.2 Numerical results and investigation (the advantage of 2c-HAT in
moving distance)

Table 6.2 compares the minimum travel distances for three cases under 2c-HATs: the
2c-HAT without any break number constraints (2c-HAT), the 2c-HAT with the maximum
breaks (max bre. ), and the 2c-HAT with the minimum breaks, i.e., n − 2 breaks (min
bre.). The number with an asterisk is the optimal solution. When n is 10, although the
optimal solution is not obtained, the lower bound of 2c-HAT with the minimum breaks is
higher than the tentative solution of 2c-HAT with the minimum breaks during the solution
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Table 6.2: Minimum travel distance under 2c-HAT with difference breaks

circular distance linear distance
n 2c-HAT max bre. min bre. 2c-HAT max bre. min bre.

6 40* 40* 46* 48* 48* 56*
8 84* 84* 110* 104* 104* 138*
10 168 168 220 210 210 256

process. Although results are available for a small number of teams to compare the exact
minimum distances, maximizing the number of breaks helps minimize the travel distances.

The solution to the Traveling Tournament Problem is highly complex. From previous
studies and our computational experiments, we understand that the optimal solution can
only be found when the number of teams is very small. Therefore, identifying a HAT
initially can enhance efficiency slightly. To achieve an optimal solution, the classic TTP
problem often relaxes the restrictions on breaks, sometimes permitting three or more
consecutive home or away games, which might compromise fairness.

In this chapter, we primarily focus on 2c-HATs, which enforce strict break require-
ments. We not only investigate the circular distance, which is more commonly utilized
in previous studies, but also incorporate linear distance to examine 2c-HATs comprehen-
sively.
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Chapter 7

Conclusion and future work

This study studies the fair round-robin tournament schedule from three aspects, which are
the creation of feasible HAT under break constraints, the minimization of the COE value
under break constraints, and the impact of the number of breaks on the moving distance.
The conclusion in the three directions and future prospects will be discussed below.

First of all, the concepts and relationships of break, HAP and HAT are introduced.
Whether it is the HAT with the smallest number of breaks or the HAT with the largest
number of breaks, HAPs that meet the conditions for the number of breaks are first
constructed, and then the HAT is composed of HAPs and its feasibility is judged. For the
case where the number of breaks is the smallest, all HAPs with only one break or no break
are enumerated, and the composed HATs are divided into three categories: mb-HAT, sr-
HAT and eq-HAT. The sr-HAT can also be divided into sr mb-HAT and sr-eq-HAT in
detail. By proposing space-sequence, we proposed a method to find feasible HATs and
classify them more quickly and classified the teams under 18. From the results, we learned
that sr-mb-HAT only exists when the number of teams is 16. On the other hand, in order
to maximize the number of breaks, we first constructed two types of HAPs, including HAP
set P ∗ with the largest number of breaks and HAP set P ∗∗ with the second largest number
of breaks. We combined the two types of HAPs to find the largest number of HAPs in
P ∗ that can be contained in the HAT which means the upper bound of tmax. we built an
integer programming model and proposed the algorithm using iteratively the model. The
algorithm found permissible 2c-HATs for up to 36 teams with maximum breaks. Many
basic theories are proved in chapter 2, which greatly facilitates the production of feasible
HAT under the break number constraint. It is a future work to find the 2c-HAT with the
maximum number of breaks for a larger number of teams and to determine whether our
proposed upper bound on the number of breaks is tight when n is an even number.

Secondly, we dealt with the COE value minimization problem under restriction of
breaks, which is discussed in Günneç and Demir’s[41]. In Chapter 2, the concept of iso-
morphic HAT was proposed. Since when calculating COE, the first round is used to
calculate the COE of the last round, we can regard it as a cycle. The concept of isomor-
phic HAT greatly reduces the time to calculate the minimum COE value. The existing
integer programming model is very limited in calculating the COE value. While trying
the heuristic algorithm (partial transformation), we made six modifications to the integer
programming model and confirmed its effect with data calculation results. And the COE
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values of isomorphic HATs are the same. Therefor, when calculating the COE value, we
only need to calculate one of the isomorphic HATs. Since the HATs have been classified
and the heterogeneous HATs have been found in Chapter 2, we based on the improved
integer programming The model proposes an algorithm for heterogeneous HATs and ob-
tains COE value results for less than 20 teams. This method succeeded in improving the
COE values obtained by Günneç and Demir[41]. Future work will improve the COE value
calculation of each HAT. If our conjecture that space-sequence (0, 1, 1, · · · , 1) achieves the
minimum COE value is true, The COE value minimization problem over mb-HAT/sr-mb-
HAT can be solved by finding the minimum COE value for only that HAT. Therefore, it
is expected that it will efficiently solve the minimum COE value for the HAT correspond-
ing to (0, 1, 1, · · · , 1). In addition, without the break number restriction, more heuristic
algorithms can be considered, and research in this area is also need to be studied.

Finally, the travel distance of the HAT based on different break number limits is
calculated. By using the two different distance, it can be seen that the HAT with the
largest number of breaks does have the smallest moving distance. However, there are too
few teams to be counted. It is worth looking forward to more teams being counted, and
more different movement distances can be utilized.
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