
Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability
Modeling and Analysis

ERMESON ANDRADE, Federal Rural University of Pernambuco, Brazil, ORCID: 0000-0002-9614-4492

FUMIO MACHIDA, University of Tsukuba, Japan, ORCID: 0000-0001-8359-8535

Uncrewed Aerial Vehicles (UAVs) have been used in mission-critical scenarios such as Search and Rescue (SAR) missions. In such a
mission-critical scenario, flight autonomy is a key performance metric that quantifies how long the UAV can continue the flight with a
given battery charge. In a UAV running multiple software applications, flight autonomy can also be impacted by faulty application
processes that excessively consume energy. In this paper, we propose FA-Assure (Fight Autonomy assurance) as a framework to
assure the autonomy of a UAV considering faulty application processes through performability modeling and analysis. The framework
employs hierarchically-configured stochastic Petri nets (SPNs), evaluates the performability-related metrics, and guides the design of
mitigation strategies to improve autonomy. We consider a SAR mission as a case study and evaluate the feasibility of the framework
through extensive numerical experiments. The numerical results quantitatively show how autonomy is enhanced by offloading and
restarting faulty application processes.

CCS Concepts: • Computer systems organization → Dependable and fault-tolerant systems and networks.

Additional Key Words and Phrases: Autonomy, Hierarchical model, Search and rescue, Stochastic Petri nets, UAV

ACM Reference Format:
Ermeson Andrade and Fumio Machida. 2023. Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling
and Analysis. 1, 1 (August 2023), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The unmanned aerial vehicles (UAVs) market, commonly known as drones, is relatively new but is growing quickly.
UAVs have been used for various purposes in real-world, especially in mission-critical situations [33] like natural
disasters [10], public safety [22] and remote workplaces [5]. For remote monitoring and surveillance operations, UAVs
can collect data faster and more accurately than the traditional approach using satellite imagery. Compared with
manned aircraft, UAVs are more flexible and cheaper to acquire, maintain, and operate [28]. More importantly, they can
deal with potentially dangerous situations without human attendance.

As UAVs are flexibly designed and simpler to deploy, they were initially used mainly by the military in environments
that allow a relatively large margin for error. However, with the increased use of UAVs within the national airspace,
they have been required to operate at high availability levels that approach or exceed manned aircraft operations [8]. As
stated in [27], the failure of UAVs can often cause effects that range from inconvenience and irritation to severe impact
on society and on its environment. Therefore, reliability testing and assurance of UAVs are becoming a critical challenge
in the design, development, and operation of UAV-based systems. The flight controller is the most critical software

Authors’ addresses: Ermeson Andrade, Federal Rural University of Pernambuco, Recife, Brazil, ORCID: 0000-0002-9614-4492, ermeson.andrade@ufrpe.br;
Fumio Machida, University of Tsukuba, Tsukuba, Japan, ORCID: 0000-0001-8359-8535, machida@cs.tsukuba.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://orcid.org/0000-0002-9614-4492
https://orcid.org/0000-0001-8359-8535
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-9614-4492
https://orcid.org/0000-0001-8359-8535


2 Andrade et al.

in UAVs that receives sensor input data and navigates the device [9]. Recent studies discuss the reliability issues of
flight controllers since it directly impacts mission performance and safety [14, 16, 34, 36]. However, the reliability of
less critical software components, for example, application programs that may not directly impact the UAV control, has
been paid little attention. UAVs may have installed multiple application programs that can be vulnerable and subject to
frequent updates. It is a practical issue that a faulty application can lead to wrong or undesirable behavior, indirectly
threatening the UAV flight autonomy.

To address the issue, this study aims to analyze the impact of faulty application programs used in UAV systems
on their mission performance. As a UAV is a battery-powered device, flight autonomy is always constrained by the
battery charge. Evaluating autonomy-related metrics like the probability of running out of battery is essential for
mission-critical scenarios because they can measure how long a UAV can survive in the mission period. Similar to other
battery-powered devices, energy bugs [15] are a real concern for continuous system operation as they may induce
energy over-consumption and rapid battery discharge. Application behaviors in association with resource and energy
consumption need to be carefully investigated in the design and evaluation of UAV systems.

In this paper, we propose an autonomy assurance framework called FA-Assure for UAV systems in a mission-critical
scenario that is at risk of faulty applications impacting flight autonomy. We consider a high-workload process and a
software aging process as examples of faulty processes that potentially reduce the autonomy of a UAV indirectly by
excessively consuming resources. FA-Assure employs hierarchically-configured stochastic Petri nets to capture the
dynamics of application processes with recovery methods and to evaluate the performability-related metrics for given
environmental conditions. Quantitative performability evaluation allows us to derive the appropriate operation strategy
to mitigate faulty applications’ impact and maintain good performance and availability. Considering a SAR mission, we
conduct extensive numerical studies to show how the performability-related metric is evaluated using the hierarchical
models. As a SAR-based UAV is assisted by real-time image processing, the image processing application is likely the
heaviest process running on the UAV. Using fog computing infrastructure to accept computation offloading of image
processing tasks is a viable solution to improve the UAV performance and availability [17, 18]. While the quality of the
wireless network is critical for computation offloading, we show how the effectiveness of offloading is significantly
improved by redundant communication channels. Moreover, we derive a strategy to choose the computation offloading
mode and to restart faulty processes to meet the mission requirements through sensitivity analysis.

To summarize, the contributions of the work are as follows.

• The study addresses the risk of application programs running on a UAV that may impact flight autonomy and
mission completion performance.

• To facilitate the reliability design of a UAV system for mission-critical scenarios, FA-Assure is proposed. We
provide the models to capture the dynamic behaviors of application programs on the UAV under uncertain
environments.

• A case study of a search and rescue mission is presented to show the feasibility and effectiveness of the proposed
framework. Extensive numerical studies are conducted to analyze the impact of several internal and external
factors on autonomy-related metrics.

We structure the remainder of the paper as follows. Section 2 describes the related work. Section 3 explains the
potential risk of faulty applications on a UAV system. Section 4 introduces FA-Assure: the proposed autonomy assurance
framework. Section 5 details the SPN models used in FA-Assure for evaluating the autonomy-related metrics. Section

Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 3

6 shows the case study and the results of numerical experiments. Lastly, Section 7 concludes this work and briefly
discusses future works.

2 RELATEDWORK

UAVs are a relatively new technology that has attracted the attention of researchers. The investigations around this
concept are broad and cover several areas. In [31], a detailed survey on the different aspects of UAV environments is
presented.

In the last few years, many studies have been proposed for the modeling and evaluation of UAV environments. In
[18, 19], the authors proposed using stochastic reward nets (SRNs) to analyze performance-availability trade-offs in
image processing tasks running on drones and fog nodes. In [17], the authors proposed stochastic models to estimate
the availability, performance, and energy consumption of a drone-based image processing system considering different
computation modes, such as single drone processing, fog offloading, and drone load-balancing.

In [40], the authors presented a review of energy consumption models for drone delivery operations. They identified
the main factors that affect the energy consumption of drones and discussed the similarities and differences between
various models. Nguyen et. al [25] proposed to adopt fault trees and stochastic Petri nets to model and analyze the
dependability of a typical unmanned aerial system. The authors also performed sensitivity analysis on the SPN models
to investigate the elements that most impact on the system’s overall availability and reliability.

In a mission-critical context, a few studies have considered UAV-based environments. In [30], drone technology
was used for the inspection of offshore wind infrastructures in order to improve operational safety and minimize
production downtime. The authors stated that the use of drones for such type of inspection is still in an early stage of
development and its suitability has not yet been proven. Thus, they proposed a semi-quantitative reliability analysis
framework to determine the criticality of failures that can occur in inspection missions using drones. In [32], the authors
developed and tested a drone-based environment for avalanche rescue activities based on an avalanche transceiver. The
results showed that the proposed environment is capable of locating survivors quickly and, therefore, guaranteeing the
maximum chance of survival. For assuring the safety of UAV systems, a tool for testing the safe behavior of UAVs with
a scenario-based testing approach is presented [29].

While our study also considers a UAV system in a mission-critical scenario, we first look into the risk of faulty
application processes that is different from the studies concerning the issues of the flight controller [14, 16, 34, 36]. We
demonstrate how continuous application programs running on the UAV may adversely impact mission performance
by quantitatively analyzing UAV’s flight autonomy. Regarding the modeling approach, we use SPNs like existing
studies [17, 18, 25], but we present a hierarchically-configured model to compute the autonomy-related metrics. Since
the autonomy-related metrics depend on the conditions of different components, such as application processes and
wireless communication channels, unlike other studies, SPN subnets need to be configured dependently. The constructed
hierarchical model allows us to evaluate flight autonomy and guide a desirable configuration that meets the mission
requirements.

Software faults impacting the operation of battery-powered devices have been studied in the literature [7, 15, 26, 35].
The authors of [15] proposed methods to detect two types of energy bugs in Android applications. The tool for verifying
the absence of no-sleep energy bugs is presented in [35]. Several studies on energy bugs in smartphone platforms are
summarized in [26]. UAVs can suffer from such energy bugs as they are also battery-powered devices. For a mission-
critical scenario, it is crucial to ensure the autonomy that is constrained by the battery charge. Our case study involves a
UAV that must complete its mission without needing to charge its battery and must also deal with potentially unstable

Manuscript submitted to ACM



4 Andrade et al.

network connectivity over the course of its operation. In contrast to other systems with battery-driven devices, these
unique characteristics cannot be guaranteed. The design and operation of our UAV must account for these factors to
ensure successful mission completion.

3 MOTIVATION

Application programs are often subject to changes and updates, potentially becoming a vulnerable component in an
integrated software system. Recent studies for software reliability of drone systems mainly focus on flight control
software such as PX4 and Ardupilot as they have a direct impact on the safe operation of UAVs [34]. However, the
behavior of application processes is not negligible since it may harm the UAV mission indirectly. For instance, a
compute-intensive program with a high demand may consume a considerable amount of CPU and energy, which
must have adverse impacts on the mission performance. Since battery charge is a critical constraint of UAV systems,
application programs need to be energy-efficient.

To understand the potential risk of faulty application processes on an edge computing device, we conducted
experiments using a small testbed. Considering a UAV-based SAR mission, we ran a real-time object detection algorithm
on a Raspberry Pi 4 with a 1.5GHz quad-core ARMv8 CPU and 4GB RAM. We did not use a UAV for this experiment
since the experiments may damage the property if it becomes out of control. We assume the UAV application needs to
be executed in a restricted computation environment like the edge device we used.

Our first experiment aims to characterize the impact of workload by the object detection algorithm on battery usage.
For this purpose, we use a UPS Lithium battery power module with 5000 mAh to empower the Raspberry Pi instead of
connecting it to a power outlet. Following the configuration used in [37], we utilized an open-source implementation of
YOLOv5 based on the PyTorch framework and manipulated the workload by configuring different input image sizes:
1280x720 and 640x360. For each workload, we ran YOLOv5 for one hour and recorded both the frame per second and
battery usage. The results are presented in Table 1. The frame per second for the process with 640x360 is higher than
the case with 1280x720, resulting in a higher workload. The impact of the workload on the battery usage is apparent;
the object detection algorithm under a higher workload condition (640x360) consumes more energy (78%). The rapid
battery consumption due to the heavy-loaded application can be a risk to the autonomy of battery-powered devices.

Table 1. Battery consumption in one hour of real-time object detection with different workloads.

Input image size Frame per second Battery consumption
640x360 0.7319 78%
1280x720 0.2999 69%

No N/A 40%

Next, we conducted another experiment to investigate the reliability issue of an application program due to excessive
resource consumption over time. We used the same configuration described in Watanabe et. al [37] and ensured a
continuous execution over an extended period of time by connecting the device to a power outlet. The YOLOv5 is run
with a 640px image size of a video stream. Figure 1 shows the observed trends of the free memory and swap usage
over 200 hours of execution. As can be seen, the amount of free memory decreased sharply in the first 15 hours as
represented by the dotted line. While the system is working even after that phase, the swapping eventually starts
around 190 hours (plotted by the solid line). This increased swapping leads to significant I/O and CPU usage, which can
adversely affect the object detection process and drain the battery of UAVs. Although a UAV mission is not supposed to
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 5

0 50 100 150 200

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Elapsed time (hours)

F
re

e 
m

em
or

y 
(m

b)

0
20

40
60

S
w

ap
e 

us
ag

e 
(%

)

Free memory
Swap usage

Fig. 1. Software aging in an object recognition application.

have such a long run, the results show the potential risk of software aging in the object detection process on UAVs. It is
worth emphasizing that we did not collect energy consumption data for this specific experiment, as it was conducted
on a device connected to a power source. Nevertheless, it is well-documented that memory leaks can indeed impact
battery-powered devices, such as smartphones, as discussed in [38].

4 AUTONOMY ASSURANCE FRAMEWORK

To address the issue of a faulty application program in a mission-critical UAV environment, we propose FA-Assure as a
framework to assure the autonomy of a UAV through performability modeling and analysis. First, we explain the fault
models and the corresponding recovery methods considered in the framework. Then, the architecture of FA-Assure is
explained.

4.1 Fault models

As explained in the motivation, we focus on the impact of a faulty application program such as an object detection
algorithm on the mission of a UAV. We consider two types of software fault models that may have an impact on flight
autonomy.

• Heavy-loaded process: A software process operating under a high workload can significantly consume CPU
resources. While the application continues to function as intended, heavily-loaded applications can potentially
disrupt the entire system by causing resource conflicts, among other issues. Moreover, increased CPU usage
accelerates battery consumption, a critical factor for UAV flight.

• Software aging process: A software process can progressively consume a substantial amount of memory during
continuous execution due to aging-related bugs [11]. These bugs have been observed in various application
programs, such as image classifiers and object detection algorithms [2]. Software aging processes can also trigger

Manuscript submitted to ACM



6 Andrade et al.

Fig. 2. Overview of FA-Assure.

swapping when the system’s available memory is insufficient. Extensive swapping can result in elevated CPU
usage, potentially affecting battery life.

4.2 Recovery methods

To counteract the application program faults in operation, we consider two recovery methods. For the heavy-loaded
process, we can offload the process to another computing node to save the battery on the drone. Regardless of faulty
and non-faulty processes, CPU-intensive applications reduce the battery charge significantly, and hence offloading can
offer an effective mitigation. In this paper, we consider that a fog computing infrastructure is available for a UAV to
allocate necessary computing resources for taking over the computation tasks. A fog computing infrastructure is a
decentralized computing architecture that brings computation and data storage closer to the edge of the network [4].
Note that computation offloading is effective only when the UAV has a stable wireless network connection.

For a software aging process, the aging state can be cleared by process restart upon the aging detection. It requires a
short downtime of the application process, but the process can be restarted with an initial robust state. Since other
benign internal states in memory are also cleared, the restart needs to be carefully scheduled such that the application
does not lose critical data in processing. Offloading can also mitigate the issue of software aging if the assigned fog
node has a sufficient amount of memory.

4.3 FA-Assure

To analyze the impact of application faults and the effectiveness of the recovery methods for a UAV system, we propose
FA-Assure which is an autonomy assurance framework that consists of the performability analyzer and the planning
tool. Figure 2 shows the schematic overview of FA-Assure.

FA-Assure necessitates several input parameters about the internal and external factors of the UAV environment.
The internal factors include the states of the application process running on the system, which may be idle, processing,
aging, or failed. On the other hand, the external factors include application demands and the communication network
states. The performability analysis is conducted by a performability analyzer in which hierarchically-configured SPNs
are used to evaluate several performance measures such as availability, throughput, and autonomy. The estimated
performance and the mission requirements, such as the mission period, are considered together for making the strategy
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 7

that determines the computation mode and recovery operation to satisfy the mission requirements. The planning tool
assists system designers to derive such a strategy from the results of sensitivity analysis on the hierarchical models.
The strategy specifies the recommended computation mode and recovery operations for given system conditions. For
example, the output strategy may suggest computation offloading of the application process if the communication delay
of the fog node 𝜃𝐹𝑛 is less than 1 second. As the strategy-making process involves manual operations and interactions
with engineers, an interface to access the analysis results is necessary. In this work, we assume the usage of software
packages like SPNP [6] and Mercury [20] that provide graphical user interfaces as well. In this paper, we focus on the
core part of FA-Assure, which is the performability models detailed in the next section.

5 MODELS

In this section, we discuss the models for assessing the performability of a UAV system under different mission
environments. First, we introduce the formalism adopted in this work. After that, we detail the models for heavy-loaded
processes (drone processing (DP) and fog processing (FP) modes). In DP, faulty application processes, which we assumed
to be an image processing program such as an object detector, are continuously executed on the drone. In FP, on the
other hand, captured images are offloaded to a fog node in a fog computing infrastructure instead of being processed
on the drone. Next, we present the models for aging drones (AD), where aging states and a restart mechanism are
considered. Finally, we explain the evaluated metrics: availability, throughput, drone flight autonomy, and out-of-battery
probability. In the proposed models, we assume that all inter-event times are exponentially distributed in our analysis.
Since we focus on the early phase of the UAV system design, detailed distributions may not be available. However, we
can also assign general distributions to the models once the information is given or collected.

5.1 Stochastic Petri nets

Petri nets are a family of formalisms suitable for modeling various types of systems due to their capacity to represent
concurrency, synchronization, communication mechanisms, and both deterministic and probabilistic delays. However,
the original Petri net lacks the concept of time when analyzing performance and dependability. To address this, timed
Petri nets were developed, incorporating event durations. In this work, we employ the stochastic Petri net [24], a
specific type of timed Petri net, where activity delays (represented by transitions) are modeled as random variables with
an exponential distribution. Marsan et al. [1] proposed the Generalized Stochastic Petri Net (GSPN) as an extension of
SPN, which considers two types of transitions: timed and immediate. Timed transitions have exponentially distributed
firing times, while immediate transitions, by definition, fire instantly without any delay. For conciseness, we use the
acronym SPN to refer to the entire family of models derived from the original stochastic Petri net defined in [24].

5.2 DP and FP models

Figure 3 shows the SPNs that represent DP mode, while Table 2 presents the legend for these models. It is composed of
three submodels corresponding to a drone, multiple network interfaces, and a battery. The drone model is shown in
Figure 3a. It represents the states of an image processing on the drone. When a token is deposited in 𝑃𝐷1_𝑖 , representing
that the drone has no image for processing, the transitions 𝑇𝐷1_𝑗 and 𝑇𝐷1_𝑓 2 are enabled. When 𝑇𝐷1_𝑗 fires, a token
is consumed from 𝑃𝐷1_𝑖 and a new token is deposited in 𝑃𝐷1_𝑝 . This state transition corresponds to the arrival of an
image processing request. We assume that the arrival of image processing requests follows a Poisson process. A higher
arrival rate causes the increased probability of the busy state leading to a heavy-workload condition. The firing of
𝑇𝐷1_𝑠 represents the completion of an image processing. On the other hand, when 𝑇𝐷1_𝑓 2 fires, which represents an

Manuscript submitted to ACM



8 Andrade et al.

TD1_s

PD1_i PD1_p

TD1_j

(a) Drone model

TD1_f1
TD1_f2

TD1_r
PD1_dw

1
TW_r

PW_dw

PW_up

TW_f

1
TL_r

PL_dw

PL_up

TL_f

1

PW_dact
PL_act

PL_dact

PW_act
tL_dact

TW_act

tW_dact TL_act

Pidle_w

(c) Battery model

PS_discharge

tidle_w Tidle_wC

Pdec
PB_level

Pidle_ltidle_l Tidle_lC

Pbusy_w
tbusy_w Tbusy_wC

Pbusy_ltbusy_l Tbusy_lC

Tdec

100

1

(b) Network model

Fig. 3. Drone processing models.

application drone failure event in the idle state, a new token is deposited in 𝑃𝐷1_𝑑𝑤 . The place 𝑃𝐷1_𝑑𝑤 represents the
application failure. The drone application can also fail while processing an image by firing 𝑇𝐷1_𝑓 1. When the drone
application fails, the application undergoes the unavailable state and remains in this state until 𝑇𝐷1_𝑟 is fired, which
represents the repair of the application. Once 𝑇𝐷1_𝑟 is fired, a token is consumed from 𝑃𝐷1_𝑑𝑤 and a new one is added
to 𝑃𝐷1_𝑖 .

Although there are many network communication technologies used by drone-based environments [12], in this work,
the environment’s network is modeled considering Wi-Fi and LTE connections (see Figure 3b) [23]. They represent the
connectivity between the drone and the ground station so that the drones are only able to connect to the ground station
if there is an active Wi-Fi or LTE connection. The models of the upper part of Figure 3b represent the connection and
disconnection behavior of the Wi-Fi and LTE networks, respectively. The other model (see the bottom part of Figure 3b)
represents the activation of either Wi-Fi or LTE. A token in the place 𝑃𝑊 _𝑎𝑐𝑡 indicates that the Wi-Fi is activated. If the
Wi-Fi goes down (represented by a token in 𝑃𝑊 _𝑑𝑤 ), the LTE is activated. When the Wi-Fi connection is restored, the
LTE is deactivated, for the sake of performance and energy consumption. Such behavior is modeled by guard functions
assigned to the immediate transitions 𝑡𝑊 _𝑑𝑎𝑐𝑡 and 𝑡𝐿_𝑑𝑎𝑐 , as described in Table 3.

Figure 3c presents the SPN for the battery discharge process. The battery consumption of a UAV device can be
affected mainly due to two factors: network communication technologies and drone processing states. Consequently,
the battery discharge process can be modeled using four immediate transitions 𝑡𝑖𝑑𝑙𝑒_𝑤 , 𝑡𝑖𝑑𝑙𝑒_𝑙 , 𝑡𝑏𝑢𝑠𝑦_𝑤 and 𝑡𝑏𝑢𝑠𝑦_𝑙 . The
transitions 𝑡𝑖𝑑𝑙𝑒_𝑤 and 𝑡𝑖𝑑𝑙𝑒_𝑙 are associated with the probabilities of battery discharge when the drone is in the idle
state and using Wi-Fi and LTE, respectively. On the other hand, the transitions 𝑡𝑏𝑢𝑠𝑦_𝑤 and 𝑡𝑏𝑢𝑠𝑦_𝑙 are associated with
the probability of battery discharge when the drone is in a busy state and using Wi-Fi and LTE network connections,
respectively. The place 𝑃𝐵_𝑙𝑒𝑣𝑒𝑙 contains one hundred tokens representing the battery is fully charged. By removing
tokens from this place, the model represents the process of discharging the drone’s battery. The discharge is modeled
considering a fixed consumption of 1%. When 𝑇𝑑𝑒𝑐 fires, which means the beginning of the battery consumption, a new
token is deposited in 𝑃𝑑𝑒𝑐 . After that, any of the transitions 𝑡𝑖𝑑𝑙𝑒_𝑤 , 𝑡𝑖𝑑𝑙𝑒_𝑙 , 𝑡𝑏𝑢𝑠𝑦_𝑙 and 𝑡𝑏𝑢𝑠𝑦_𝑙 can fire based on the
probability assigned to these transitions. Note that these probabilities are obtained from the models in Figures 3a and b.
Supposing 𝑡𝑖𝑑𝑙𝑒_𝑤 fires, a token is consumed from 𝑃𝑑𝑒𝑐 and a new token is deposited in 𝑃𝑖𝑑𝑙𝑒_𝑤 . This state transition
means that 1% of the drone’s battery is going to be consumed. The firing of 𝑇𝑖𝑑𝑙𝑒_𝑤𝐶 represents the completion of 1%
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 9

Table 2. Legend for the drone processing models.

Model Transition Description
Drone 𝑃𝐷1_𝑖 Drone idle state

𝑃𝐷1_𝑝 Drone busy state
𝑃𝐷1_𝑑𝑤 Drone down state
𝑇𝐷1_𝑗 Drone job arrival time
𝑇𝐷1_𝑠 Drone service time

𝑇𝐷1_𝑓 1 Drone failure time in busy state
𝑇𝐷1_𝑓 2 Drone failure time in idle state
𝑇𝐷1_𝑟 Drone recovery time

Network 𝑃𝑊 _𝑢𝑝 Wi-Fi up state
𝑃𝑊 _𝑑𝑤 Wi-Fi down state
𝑇𝑊 _𝑓 Wi-Fi disconnection time
𝑇𝑊 _𝑟 Wi-Fi connection time
𝑃𝐿_𝑢𝑝 LTE up state
𝑃𝐿_𝑑𝑤 LTE down state
𝑇𝐿_𝑓 LTE disconnection time
𝑇𝐿_𝑟 LTE connection time

𝑃𝑊 _𝑎𝑐𝑡 Wi-Fi activation state
𝑃𝑊 _𝑑𝑎𝑐𝑡 Wi-Fi deactivation state
𝑃𝐿_𝑎𝑐𝑡 LTE activation state
𝑃𝐿_𝑑𝑎𝑐𝑡 LTE deactivation state
𝑡𝑊 _𝑑𝑎𝑐𝑡 Wi-Fi deactivation
𝑡𝐿_𝑑𝑎𝑐𝑡 LTE deactivation
𝑇𝐿_𝑎𝑐𝑡 LTE activation time
𝑇𝑊 _𝑎𝑐𝑡 Wi-Fi activation time

Battery 𝑃𝐵_𝑙𝑒𝑣𝑒𝑙 Battery level state
𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Battery discharge state

𝑇𝑑𝑒𝑐 Decision point
𝑃𝑑𝑒𝑐 Decision state

𝑡𝑖𝑑𝑙𝑒_𝑤 Drone probability (Wi-Fi and idle)
𝑡𝑖𝑑𝑙𝑒_𝑙 Drone probability (LTE and idle)

𝑡𝑏𝑢𝑠𝑦_𝑤 Drone probability (Wi-Fi and busy)
𝑡𝑏𝑢𝑠𝑦_𝑙 Drone probability (LTE and idle)
𝑃𝑖𝑑𝑙𝑒_𝑤 Battery discharge (Wi-Fi and idle) state
𝑃𝑖𝑑𝑙𝑒_𝑙 Battery discharge (LTE and idle) state

𝑃𝑏𝑢𝑠𝑦_𝑤 Battery discharge (Wi-Fi and busy) state
𝑃𝑏𝑢𝑠𝑦_𝑙 Battery discharge (LTE and busy) state

𝑇𝑖𝑑𝑙𝑒_𝑤𝐶 Battery discharge (Wi-Fi and idle) time
𝑇𝑖𝑑𝑙𝑒_𝑙𝐶 Battery discharge (LTE and idle) time

𝑇𝑏𝑢𝑠𝑦_𝑤𝐶 Battery discharge (Wi-Fi and busy) time
𝑇𝑏𝑢𝑠𝑦_𝑙𝐶 Battery discharge (LTE and busy) time

drain on the drone’s battery. Lastly, tokens in 𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 represent the battery’s state of charge where one hundred
tokens in this place mean the battery is fully discharged.

Figure 4 presents the models for FP mode, while Table 4 presents the legend for these models. It is composed of three
submodels corresponding to a drone-fog environment, multiple network interfaces, and a battery. While the network

Manuscript submitted to ACM



10 Andrade et al.

Table 3. Guard functions for the models of Figure 3.

Transition Expression
𝑡𝑊 _𝑑𝑎𝑐𝑡 (𝑃𝑊 _𝑑𝑤 = 1) AND (𝑃𝐿_𝑢𝑝 = 1)
𝑡𝐿_𝑑𝑎𝑐𝑡 (𝑃𝑊 _𝑢𝑝 = 1)

model is unchanged (we omitted from Figure 4), the drone-fog environment and battery models are changed from the
drone processing models shown previously.

TF_s

PF_i
PF_p

TF_n

(a) Drone-Fog environment model

TF_f1
TF_f2

TF_r
PF_dw

Pidle_w

(b) Battery model

PS_discharge

tidle_w Tidle_wC

Pdec
PB_level

Pidle_l
tidle_l Tidle_lC

Tdec

100

1tD1_s

PD1_i PD1_p

TD1_j

TD1_f2TD1_r

PD1_dw

1

PF_b

Fig. 4. Fog processing models.

In the fog offloading mode, the captured images are not processed on the drone, but sent to the fog node through the
network. Therefore, the drone model has the place 𝑃𝐹_𝑏 , representing the drone offloading. Since the offloading only
works when the WI-FI or LTE communication links are available, such condition is specified by the guard function
assigned to 𝑡𝐷1_𝑠 (see Table 5). When a token is deposited in 𝑃𝐹_𝑏 , the transition 𝑇𝐹_𝑛 , which represents the network
delay, is enabled. When 𝑇𝐹_𝑛 fires, tokens in 𝑃𝐹_𝑏 and 𝑃𝐹_𝑖 are removed and a new token is deposited in 𝑃𝐹_𝑝 . This
state transition corresponds to the arrival of an image processing request in the fog. The firing of 𝑇𝐹_𝑠 represents
the completion of an image processing. As the failure and recovery processes are the same as in the previous models
presented, we do not detail them. Additionally, the battery model (see Figure 4b) is slightly changed because the captured
images are not processed on the drone. Consequently, the part of the model related to the drone’s busy state (e.g.:
transitions 𝑡𝑏𝑢𝑠𝑦_𝑤 and 𝑡𝑏𝑢𝑠𝑦_𝑙 ) is removed. The battery model hierarchically depends on the drone-fog environment
and network models, since battery discharge rates should change according to processing and communications states.

5.3 AD models

Figure 5 presents the model we created based on the model of Figure 3 to consider aging states and a restart mechanism
for a drone application. Table 6 presents the legend for the SPN models in Figure 5. We opted not to consider the
models presented in Figure 4 as the processing occurs within a fog node. In this context, periodic restarts of the drone
application, triggered promptly upon detecting aging, would have no impact on this environment. Although the network
and battery models remain unchanged (omitted from Figure 5), we introduced a restart model (see Figure 5b) and
updated the drone model to account for aging states (𝑃𝐴𝐷1𝑖 and 𝑃𝐴𝐷1𝑝 ) and a restart mechanism (𝑇𝑅1 and 𝑇𝑅2). The
restart model represents the restarting of the application process by the firing of the transitions 𝑇𝑅1 or 𝑇𝑅2 when an
aging state is detected, represented by the presence of tokens in the places 𝑃𝐴𝐷1_𝑖 or 𝑃𝐴𝐷1_𝑝 . The application can fail
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 11

Table 4. Legend for the fog processing models.

Models Transition Description
Drone-Fog 𝑃𝐷1_𝑖 Drone idle state

𝑃𝐷1_𝑝 Drone busy state
𝑃𝐷1_𝑑𝑤 Drone down state
𝑇𝐷1_𝑗 Drone job arrival time
𝑇𝐷1_𝑓 2 Drone failure time in idle state
𝑇𝐷1_𝑟 Drone recovery time
𝑡𝐷1_𝑠 Drone offloading
𝑃𝐹_𝑏 Drone offloading state
𝑃𝐹_𝑖 Fog idle state
𝑃𝐹_𝑝 Fog busy state
𝑃𝐹_𝑑𝑤 Fog down state
𝑇𝐹_𝑛 Fog network delay
𝑇𝐹_𝑠 Fog service time
𝑇𝐹_𝑓 1 Fog failure time in busy state
𝑇𝐹_𝑓 2 Fog failure time in idle state
𝑇𝐹_𝑟 Fog recovery time

Battery 𝑃𝐵_𝑙𝑒𝑣𝑒𝑙 Battery level state
𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Battery discharge state
𝑇𝑑𝑒𝑐 Decision point
𝑃𝑑𝑒𝑐 Decision state
𝑡𝑖𝑑𝑙𝑒_𝑤 Drone probability (Wi-Fi and idle)
𝑡𝑖𝑑𝑙𝑒_𝑙 Drone probability (LTE and idle)
𝑃𝑖𝑑𝑙𝑒_𝑤 Battery discharge (Wi-Fi and idle) state
𝑃𝑖𝑑𝑙𝑒_𝑙 Battery discharge (LTE and idle) state
𝑇𝑖𝑑𝑙𝑒_𝑤𝐶 Battery discharge (Wi-Fi and idle) time
𝑇𝑖𝑑𝑙𝑒_𝑙𝐶 Battery discharge (LTE and idle) time

Table 5. Additional guard functions adopted for the models of Figure 4.

Transition Expression
𝑡𝐷1_𝑠 ((𝑃𝑊 _𝑢𝑝 = 1) AND (𝑃𝑊 _𝑎𝑐𝑡 = 1)) OR ((𝑃𝐿_𝑢𝑝 = 1) AND (𝑃𝐿_𝑎𝑐𝑡 = 1))

from the aging states through the transitions 𝑇𝐷1_𝑓 3 and 𝑇𝐷1_𝑓 4. Table 7 lists the guard functions for the model. When
the application process is restarted, the state is changed to the normal state, as indicated by the guard functions of the
transitions 𝑡𝑖𝑛_𝑅1, 𝑡𝑖𝑛_𝑅2, 𝑡𝐶𝑙𝑜𝑐𝑘 , and 𝑡𝑅𝑒𝑠𝑡𝑎𝑟𝑡 .

Manuscript submitted to ACM



12 Andrade et al.

TD1_s

PD1_i PD1_p

TD1_j

(a) Drone model

TD1_f1
TD1_f2

TD1_r
PD1_dw

1

TAD1_s

PAD1_i PAD1_p

TAD1_j

TA2
TA1

tin_R1

PR1

TR2

tin_R2

PR2

TR1

1
tRestart

Pout_Clock

Pin_Clock

tClock

(b) Restart model

TD1_f3TD1_f4

Fig. 5. Aging drone processing models with a restart.

Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 13

Table 6. Legend for the drone processing models with a restart.

Model Transition Description

Drone 𝑃𝐴𝐷1_𝑖 Drone aging idle state
𝑃𝐴𝐷1_𝑝 Drone aging busy state
𝑇𝐴𝐷1_𝑖 Drone aging job arrival time
𝑇𝐴𝐷1_𝑝 Drone aging service time
𝑇𝐴1 Drone aging time in idle state
𝑇𝐴2 Drone aging time in busy state
𝑇𝐷1_𝑓 3 Drone failure time in aging busy state
𝑇𝐷1_𝑓 4 Drone failure time in aging idle state
𝑇𝑖𝑛_𝑅1 Drone restart in busy state
𝑇𝑖𝑛_𝑅2 Drone restart in idle state
𝑃𝑅1 Drone restart state (busy)
𝑃𝑅2 Drone restart state (idle)
𝑇𝑅1 Drone restart time (busy)
𝑇𝑅2 Drone restart time (idle)
𝑃𝐷1_𝑖 Drone idle state
𝑃𝐷1_𝑝 Drone busy state
𝑃𝐷1_𝑑𝑤 Drone down state
𝑇𝐷1_𝑗 Drone job arrival time
𝑇𝐷1_𝑠 Drone service time
𝑇𝐷1_𝑓 1 Drone failure time in busy state
𝑇𝐷1_𝑓 2 Drone failure time in idle state
𝑇𝐷1_𝑟 Drone recovery time

Clock 𝑃𝑖𝑛_𝑐𝑙𝑜𝑐𝑘 Drone aging detection state
𝑃𝑜𝑢𝑡_𝑐𝑙𝑜𝑐𝑘 Drone restart state
𝑡𝑐𝑙𝑜𝑐𝑘 Drone aging detection
𝑡𝑟𝑒𝑠𝑡𝑎𝑟𝑡 Drone restart

Table 7. Guard functions for the models of Figure 5.

Transition Expression
𝑡𝑖𝑛_𝑅1 (𝑃𝑖𝑛_𝐶𝑙𝑜𝑐𝑘 = 1)
𝑡𝑖𝑛_𝑅2 (𝑃𝑖𝑛_𝐶𝑙𝑜𝑐𝑘 = 1)
𝑡𝐶𝑙𝑜𝑐𝑘 (𝑃𝑅1 = 1) OR (𝑃𝑅2 = 1)

𝑡𝑅𝑒𝑠𝑡𝑎𝑟𝑡 (𝑃𝑅1 = 0) AND (𝑃𝑅2 = 0)

Figure 6 presents the aging drone processing models without a restart, while Table 8 presents the legend for these
models. This model is similar to the model presented in Figure 5. The difference is that we removed the restart mechanism
and updated the battery model. The update of the battery model is required because we needed to include the probability
of the aging states represented by the transitions 𝑡𝐴𝑖𝑑𝑙𝑒_𝑤 , 𝑡𝐴𝑖𝑑𝑙𝑒_𝑙 , 𝑡𝐴𝑏𝑢𝑠𝑦_𝑙 , and 𝑡𝐴𝑏𝑢𝑠𝑦_𝑙 . It is important to note that

Manuscript submitted to ACM



14 Andrade et al.

in the scenario with a restart, the battery model does not account for transitions representing the probability of aging
states. This is because we assume the application is promptly restarted as soon as an aging state is detected.

TD1_s

PD1_i PD1_p

TD1_j

(a) Drone model

TD1_f1
TD1_f2

TD1_r
PD1_dw

PAidle_w

(b) Battery model

PS_charge

tAidle_w TAidle_wC

PdecPB_level

PAidle_ltAidle_l TAidle_lC

Pbusy_w
tbusy_w Tbusy_wC

Pbusy_ltbusy_l Tbusy_lC

Tdec

100

1

TAD1_s

PAD1_i PAD1_p

TAD1_j

TA2TA1

TD1_f3TD1_f4

PAbusy_
w

tAbusy_w TAbusy_wC

PAbusy_ltAbusy_l TAbusy_lC

Pidle_wtidle_w Tidle_wC

Pidle_ltidle_l Tidle_lC

Fig. 6. Aging drone processing models without a restart.

5.4 Adopted metrics

In this study, we consider several key metrics: steady-state availability (AV), throughput (TP), drone flight autonomy
(FA), and out-of-battery probability (OBP). Table 9 displays the expressions used to evaluate these metrics, which are
defined for the models presented earlier in this work. It is worth noting that AV and TP can be computed using the
lower-level component models, such as the drone model and network model. Note that 𝐷𝑠𝑒𝑟 and 𝐹𝑠𝑒𝑟 represent values
assigned to transitions 𝑇𝐷1𝑠 and 𝑇𝐹𝑠 , respectively. Furthermore, we employ AV1 and AV2 to compute the steady-state
availability of the AD model, both with and without restart mechanisms.

Autonomy-related metrics like FA and OBP need to be analyzed through a higher-level model, specifically, the battery
model. The FA metric is calculated by determining the average time to absorption in 𝑃𝑆𝑑 𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 within the battery
model. In other words, it represents the average time it takes for the battery to run out. Unlike the other metrics in Table
9, FA is not explicitly defined as an expression because its value can be computed from the mean time to absorption
within the model. On the other hand, the value of the OBP metric is calculated by the probability of battery discharge
through a transient evaluation at a given time of the metric 𝑃{#𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 100}.

6 EVALUATION

To evaluate the proposed models and FA-Assure, we consider a case study of a SAR mission scenario and conduct
numerical studies to derive the autonomy assurance strategy. First, we present a SAR scenario to illustrate the proposed
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 15

Table 8. Legend for the drone processing models without a restart.

Model Transition Description
Drone 𝑃𝐴𝐷1_𝑖 Drone aging idle state

𝑃𝐴𝐷1_𝑝 Drone aging busy state
𝑇𝐴𝐷1_𝑖 Drone aging job arrival time
𝑇𝐴𝐷1_𝑝 Drone aging service time
𝑇𝐴1 Drone aging time in idle state
𝑇𝐴2 Drone aging time in busy state
𝑇𝐷1_𝑓 3 Drone failure time in aging busy state
𝑇𝐷1_𝑓 4 Drone failure time in aging idle state
𝑃𝐷1_𝑖 Drone idle state
𝑃𝐷1_𝑝 Drone busy state
𝑃𝐷1_𝑑𝑤 Drone down state
𝑇𝐷1_𝑗 Drone job arrival time
𝑇𝐷1_𝑠 Drone service time
𝑇𝐷1_𝑓 1 Drone failure time in busy state
𝑇𝐷1_𝑓 2 Drone failure time in idle state
𝑇𝐷1_𝑟 Drone recovery time

Battery 𝑃𝐵_𝑙𝑒𝑣𝑒𝑙 Battery level state
𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 Battery discharge state
𝑇𝑑𝑒𝑐 Decision point
𝑃𝑑𝑒𝑐 Decision state
𝑡𝐴𝑖𝑑𝑙𝑒_𝑤 Drone aging probability (Wi-Fi and idle)
𝑡𝐴𝑖𝑑𝑙𝑒_𝑙 Drone aging probability (LTE and idle)
𝑡𝐴𝑏𝑢𝑠𝑦_𝑤 Drone aging probability (Wi-Fi and busy)
𝑡𝐴𝑏𝑢𝑠𝑦_𝑙 Drone aging probability (LTE and idle)
𝑃𝐴𝑖𝑑𝑙𝑒_𝑤𝐶 Battery aging discharge state (Wi-Fi and idle)
𝑃𝐴𝑖𝑑𝑙𝑒_𝑙𝐶 Battery aging discharge state (LTE and idle)
𝑃𝐴𝑏𝑢𝑠𝑦_𝑤𝐶 Battery aging discharge state (Wi-Fi and busy)
𝑃𝐴𝑏𝑢𝑠𝑦_𝑙𝐶 Battery aging discharge state (LTE and busy)
𝑇𝐴𝑖𝑑𝑙𝑒_𝑤𝐶 Battery aging discharge time (Wi-Fi and idle)
𝑇𝐴𝑖𝑑𝑙𝑒_𝑙𝐶 Battery aging discharge time (LTE and idle)
𝑇𝐴𝑏𝑢𝑠𝑦_𝑤𝐶 Battery aging discharge time (Wi-Fi and busy)
𝑇𝐴𝑏𝑢𝑠𝑦_𝑙𝐶 Battery aging discharge time (LTE and busy)
𝑡𝑖𝑑𝑙𝑒_𝑤 Drone probability (Wi-Fi and idle)
𝑡𝑖𝑑𝑙𝑒_𝑙 Drone probability (LTE and idle)
𝑡𝑏𝑢𝑠𝑦_𝑤 Drone probability (Wi-Fi and busy)
𝑡𝑏𝑢𝑠𝑦_𝑙 Drone probability (LTE and idle)
𝑃𝑖𝑑𝑙𝑒_𝑤 Battery discharge state (Wi-Fi and idle)
𝑃𝑖𝑑𝑙𝑒_𝑙 Battery discharge state (LTE and idle)
𝑃𝑏𝑢𝑠𝑦_𝑤 Battery discharge state (Wi-Fi and busy)
𝑃𝑏𝑢𝑠𝑦_𝑙 Battery discharge state (LTE and busy)
𝑇𝑖𝑑𝑙𝑒_𝑤𝐶 Battery discharge time (Wi-Fi and idle)
𝑇𝑖𝑑𝑙𝑒_𝑙𝐶 Battery discharge time (LTE and idle)
𝑇𝑏𝑢𝑠𝑦_𝑤𝐶 Battery discharge time (Wi-Fi and busy)
𝑇𝑏𝑢𝑠𝑦_𝑙𝐶 Battery discharge time (LTE and busy)

Manuscript submitted to ACM



16 Andrade et al.

Table 9. Expression for evaluating the adopted metrics.

Env. Metric Expression
DP AV P{((#𝑃𝐷1_𝑖 = 1) OR (#𝑃𝐷1_𝑝 = 1)) AND ((#𝑃𝑊 _𝑢𝑝 = 1) AND (#𝑃𝑊 _𝑎𝑐𝑡 = 1)) OR

((#𝑃𝐿_𝑢𝑝 = 1) AND (#𝑃𝐿_𝑎𝑐𝑡 = 1))}
TP ((𝐸{#𝑃𝐷1_𝑝 }) ∗ (1/𝐷𝑠𝑒𝑟 ))

OBP 𝑃{#𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 100}
FP AV P{((#𝑃𝐷1_𝑖 = 1) OR (#𝑃𝐷1_𝑝 = 1)) AND ((#𝑃𝐹_𝑏 = 1) OR (#𝑃𝐹_𝑝 = 1)) AND

((#𝑃𝑊 _𝑢𝑝 = 1) AND (#𝑃𝑊 _𝑎𝑐𝑡 = 1)) OR ((#𝑃𝐿_𝑢𝑝 = 1) AND (#𝑃𝐿_𝑎𝑐𝑡 = 1))}
TP ((𝐸{#𝑃𝐹_𝑝 }) ∗ (1/𝐹𝑠𝑒𝑟 ))

OBP 𝑃{#𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 100}
AD AV1 P{((#𝑃𝐷1_𝑖 = 1) OR (#𝑃𝐷1_𝑝 = 1)OR (#𝑃𝐴𝐷1_𝑖 = 1) OR (#𝑃𝐴𝐷1_𝑝 = 1) OR (#𝑃𝑅1 = 1) OR (#𝑃𝑅2 = 1))

AND ((#𝑃𝑊 _𝑢𝑝 = 1) AND (#𝑃𝑊 _𝑎𝑐𝑡 = 1)) OR ((#𝑃𝐿_𝑢𝑝 = 1) AND (#𝑃𝐿_𝑎𝑐𝑡 = 1))}
AV2 P{((#𝑃𝐷1_𝑖 = 1) OR (#𝑃𝐷1_𝑝 = 1)OR (#𝑃𝐴𝐷1_𝑖 = 1) OR (#𝑃𝐴𝐷1_𝑝 = 1))

AND ((#𝑃𝑊 _𝑢𝑝 = 1) AND (#𝑃𝑊 _𝑎𝑐𝑡 = 1)) OR ((#𝑃𝐿_𝑢𝑝 = 1) AND (#𝑃𝐿_𝑎𝑐𝑡 = 1))}
OBP 𝑃{#𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 100}

approach for modeling and analyzing a UAV in a mission-critical scenario. Following that, we present results related to
availability, performance, and autonomy, particularly in the context of heavy-loaded processes (DP and FP). We then
proceed to present the results pertaining to software aging processes, focusing on restarting as one of the recovery
methods that can be implemented to mitigate application aging. Finally, we provide an analysis of the strategy.

For the sake of reproducibility, we divided the input parameter values in Tables 10, 11, and 12. In Table 10, we present
the input parameter values for DP and FP models presented in Figures 3 and 4, respectively. In Tables 11 and 12, we
present additional input parameter values for the aging drone processing models with and without a restart presented,
respectively, in Figures 5 and 6. Note these input parameter values are assigned to the transitions of the SPN models for
the purpose of numerical analysis. Despite the fact the parameter values can be measured or estimated from experiments,
we gathered them from other works [17, 18]. The battery discharge values are based on [21]. For constructing our
hierarchical models based on SPNs, we utilized both SPNP and Mercury to facilitate the modeling and subsequent
numerical analysis. More specifically, we used SPNP for the availability-performance analysis, while Mercury is used
for flight autonomy analysis. SPNP is a tool for modeling and analyzing stochastic systems using stochastic Petri nets
[13]. It is widely used to model complex systems and analyze their performance by incorporating randomness into
transitions and events. Mercury [20], on the other hand, is integrated software that enables the creation and evaluation
of reliability block diagrams, stochastic Petri nets, continuous time Markov chains, and energy flow models. It offers a
graphical interface for model creation, supports formal analysis, and simulations, making it valuable for designing and
evaluating complex systems.

6.1 UAV in a SAR scenario

We consider a SAR scenario to illustrate the proposed approach to model and analyze a UAV in a mission-critical
scenario (see Figure 7). The UAV captures images of the area of a mission to search for missing persons after a natural
disaster. If a person is found, the UAV communicates the coordinates to the ground station. Wi-Fi or LTE networks are
used for communication purposes. If the Wi-Fi network is not working, the LTE network is used instead. An object
detection program runs on the drone to detect persons to rescue, but the process can be offloaded to a fog node in the
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 17

Table 10. Default input parameters for DP and FP models.

Transition Variable Value
𝑇𝐷1_𝑗 𝜃𝐷1_𝑗 0.00139 (hrs)
𝑇𝐷1_𝑠 𝜃𝐷1_𝑠 0.00083 (hrs)

𝑇𝐷1_𝑓 1 𝜃𝐷1_𝑓 1 72 (hrs)
𝑇𝐷1_𝑓 2 𝜃𝐷1_𝑓 2 336 (hrs)
𝑇𝐷1_𝑟 𝜃𝐷1_𝑟 0.332 (hrs)
𝑇𝐹_𝑛 𝜃𝐹_𝑛 0.000139 (hrs)
𝑇𝐹_𝑠 𝜃𝐹_𝑠 0.00069 (hrs)

𝑇𝐹_𝑓 1 𝜃𝐹_𝑓 1 730 (hrs)
𝑇𝐹_𝑓 2 𝜃𝐹_𝑓 2 2920 (hrs)
𝑇𝐹_𝑟 𝜃𝐹_𝑟 0.5 (hrs)
𝑇𝑊 _𝑓 𝜃𝑊 _𝑓 2 (hrs)
𝑇𝑊 _𝑟 𝜃𝑊 _𝑟 0.0028 (hrs)
𝑇𝐿_𝑓 𝜃𝐿_𝑓 2 (hrs)
𝑇𝐿_𝑟 𝜃𝐿_𝑟 0.0028 (hrs)

𝑇𝑊 _𝑎𝑐𝑡 𝜃𝑊 _𝑎𝑐𝑡 0.000139 (hrs)
𝑇𝐿_𝑎𝑐𝑡 𝜃𝐿_𝑎𝑐𝑡 0.000139 (hrs)

𝑇𝑖𝑑𝑙𝑒_𝑤𝐶 𝜃𝑖𝑑𝑙𝑒_𝑤𝐶 0.09 (hrs)
𝑇𝑖𝑑𝑙𝑒_𝑙𝐶 𝜃𝑖𝑑𝑙𝑒_𝑙𝐶 0.071666 (hrs)

𝑇𝑏𝑢𝑠𝑦_𝑤𝐶 𝜃𝑏𝑢𝑠𝑦_𝑤𝐶 0.045 (hrs)
𝑇𝑏𝑢𝑠𝑦_𝑙𝐶 𝜃𝑏𝑢𝑠𝑦_𝑙𝐶 0.035833 (hrs)
𝑡𝑖𝑑𝑙𝑒_𝑤 𝜃𝑖𝑑𝑙𝑒_𝑤 0.142
𝑡𝑖𝑑𝑙𝑒_𝑙 𝜃𝑖𝑑𝑙𝑒_𝑙 2.84E-05

𝑡𝑏𝑢𝑠𝑦_𝑤 𝜃𝑏𝑢𝑠𝑦_𝑤 0.853
𝑡𝑏𝑢𝑠𝑦_𝑙 𝜃𝑏𝑢𝑠𝑦_𝑙 0.00017

Table 11. Default input parameters for the aging processing models with a restart.

Transition Variable Value
𝑇𝐴1 𝜃𝐴1 4 (hrs)
𝑇𝐴2 𝜃𝐴2 4 (hrs)
𝑇𝑅1 𝜃𝑅1 0.01666 (hrs)
𝑇𝑅2 𝜃𝑅2 0.01666 (hrs)

𝑇𝐷1_𝑓 3 𝜃𝐷1_𝑓 3 36 (hrs)
𝑇𝐷1_𝑓 4 𝜃𝐷1_𝑓 4 168 (hrs)
𝑡𝑖𝑑𝑙𝑒_𝑤 𝜃𝑖𝑑𝑙𝑒_𝑤 0.14
𝑡𝑖𝑑𝑙𝑒_𝑙 𝜃𝑖𝑑𝑙𝑒_𝑙 0.84

𝑡𝑏𝑢𝑠𝑦_𝑤 𝜃𝑏𝑢𝑠𝑦_𝑤 1.86E-4
𝑡𝑏𝑢𝑠𝑦_𝑙 𝜃𝑏𝑢𝑠𝑦_𝑙 0.001

fog node infrastructure. FA-Assure is used for determining the right condition to start or stop computation offloading
depending on internal and external system states or when restarting faulty application processes.

6.2 Performance and availability analysis

The stability of a Wi-Fi connection for a flying drone can vary significantly depending on the location. For example,
UAVs in a SAR mission may need to connect to multiple Wi-Fi hotspots as they cover a given area. Therefore, in Figure 8,

Manuscript submitted to ACM



18 Andrade et al.

Table 12. Default input parameters for the aging processing models without a restart.

Transition Variable Value
𝑇𝐴𝑖𝑑𝑙𝑒_𝑤𝐶 𝜃𝐴𝑖𝑑𝑙𝑒_𝑤𝐶 0.045 (hrs)
𝑇𝐴𝑖𝑑𝑙𝑒_𝑙𝐶 𝜃𝐴𝑖𝑑𝑙𝑒_𝑙𝐶 0.035 (hrs)

𝑇𝐴𝑏𝑢𝑠𝑦_𝑤𝐶 𝜃𝐴𝑏𝑢𝑠𝑦_𝑤𝐶 0.0225 (hrs)
𝑇𝐴𝑏𝑢𝑠𝑦_𝑙𝐶 𝜃𝐴𝑏𝑢𝑠𝑦_𝑙𝐶 0.017 (hrs)
𝑡𝐴𝑖𝑑𝑙𝑒_𝑤 𝜃𝐴𝑖𝑑𝑙𝑒_𝑤 0.58
𝑡𝐴𝑖𝑑𝑙𝑒_𝑙 𝜃𝐴𝑖𝑑𝑙𝑒_𝑙 7.78E-4

𝑡𝐴𝑏𝑢𝑠𝑦_𝑤 𝜃𝐴𝑏𝑢𝑠𝑦_𝑤 0.35
𝑡𝐴𝑏𝑢𝑠𝑦_𝑙 𝜃𝐴𝑏𝑢𝑠𝑦_𝑙 4.67E-4
𝑡𝑖𝑑𝑙𝑒_𝑤 𝜃𝑖𝑑𝑙𝑒_𝑤 0.0073
𝑡𝑖𝑑𝑙𝑒_𝑙 𝜃𝑖𝑑𝑙𝑒_𝑙 9.5E-6

𝑡𝑏𝑢𝑠𝑦_𝑤 𝜃𝑏𝑢𝑠𝑦_𝑤 0.043
𝑡𝑏𝑢𝑠𝑦_𝑙 𝜃𝑏𝑢𝑠𝑦_𝑙 5.71E-5

Area of mission

Unmanned Aerial Vehicles 

Fog

LTE Wi-Fi

Ground Control Station

(1) Drone Processing

(2) Fog Processing

Fig. 7. UAVs in a mission-critical scenario.

we plot the impact of the mean time between Wi-Fi disconnections on the availability. On the x-axis we vary the mean
time between Wi-Fi disconnections (𝜃𝑊 _𝑓 ), starting from 5 up to 300 minutes. If we consider the mean time between
Wi-Fi disconnections less than 60 minutes, the results show that having both Wi-Fi and LTE network connections has
better results than just one in terms of availability. For the cases where the mean time between Wi-Fi disconnections is
bigger than 60 minutes, the availability for DP and FP starts to get very close. However, FP still has the best levels of
availability. These results revealed that for critical missions where the mean time between Wi-Fi disconnections is low,
the best option is always to use more than one network connection. Nevertheless, as the mean time between Wi-Fi
disconnections increases, FP is the best option and the choice of whether or not to use redundant networks is not so
significant.

Figure 9 presents the impact of the mean time between Wi-Fi disconnections on the throughput. Note that high
throughput is very important for mission-critical UAVs since they need to be able to process large amounts of data
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 19

0 50 100 150 200 250 300

96
97

98
99

10
0

Mean Time between Wi−Fi Disconnections (Minutes)

A
va

ila
bi

lit
y 

(%
)

DP(Wi−Fi)
DP(Wi−Fi+LTE)
FP(Wi−Fi+LTE)
FP(Wi−Fi)

Fig. 8. Availability analysis.

0 10 20 30 40 50 60

70
0

80
0

90
0

10
00

12
00

Mean Time between Wi−Fi Disconnections (Minutes)

T
hr

ou
gh

pu
t

DP(Wi−Fi)
DP(Wi−Fi+LTE)
FP(Wi−Fi+LTE)
FP(Wi−Fi)

Fig. 9. Throughput analysis.

0 1 2 3 4 5

60
0

80
0

10
00

14
00

Network Delay (Seconds)

T
hr

ou
gh

pu
t

DP(Wi−Fi+LTE)
DP(Wi−Fi)
FP(Wi−Fi+LTE)
FP(Wi−Fi)

Fig. 10. Network delay analysis.

0 1 2 3 4 5

10
00

20
00

30
00

40
00

Fog Service Time (Seconds)

T
hr

ou
gh

pu
t

DP(Wi−Fi+LTE)
DP(Wi−Fi)
FP(Wi−Fi+LTE)
FP(Wi−Fi)

Fig. 11. Fog processing time analysis.

quickly. For instance, high throughput rates enable the timely delivery of videos or images of a rescue area, which
is crucial for the success of any SAR mission. We vary the 𝜃𝑊 _𝑓 from 0.1 up to 60 minutes on the x-axis. As the
image processing for DP is not affected by the network because the image processing is carried out locally, the results
considering only Wi-Fi and both (Wi-Fi and LTE network connections) are the same (see green and black lines). The
throughput of FP, on the other hand, is highly affected, especially, when the mean time between Wi-Fi disconnections
is less than 6 minutes and only a Wi-Fi configuration is considered. Nevertheless, the longer the mean time between
Wi-Fi disconnections, the higher the throughput for FP. In short, if the network connection is unstable, the best option
is FP(Wi-Fi+LTE). On the other hand, if the network connection is stable, the best option is FP using only Wi-Fi or both
Wi-Fi and LTE.

It is known that one of the main advantages of using fog computing is to decrease the latency by processing selected
data locally, instead of sending it to the cloud for analysis. However, it will depend on how far away the fog is located and
how much data needs to be sent to it. Additionally, fog nodes may not always be available for a UAV in mission-critical
scenarios. Therefore, Figure 10 presents the impact of network delays on throughput. We vary the fog network delay
(𝜃𝐹_𝑛) from 0.1 to 5 seconds. The results confirm that FP is highly affected by network delays. As the network delay
increases, the throughput decreases for FP. On the other hand, DP is not affected by long-distance network delays
because there is no fog node for this environment. Also, the throughput difference for FP using only Wi-Fi and both
Wi-Fi and LTE is very small.

As stated by [3], "fog nodes can be any device with computing, storage, and network connectivity and are deployed
anywhere with a network connection". Nevertheless, these devices have different processing times and can affect SAR

Manuscript submitted to ACM



20 Andrade et al.

missions. Therefore, Figure 11 presents the impact of the mean fog service time on the throughput. We vary the mean
fog processing time (𝜃𝐹_𝑠 ) from 0.1 to 5 seconds. Note that the throughput for DP is constant because there is no fog
node for this environment and the throughput difference for FP using only Wi-Fi and both Wi-Fi and LTE is very
small. As expected for FP, the shorter the Fog processing time is, the better the throughput is. It also reveals that the
throughput of DP is only better than FP when the mean fog service time is greater than 3 seconds.

6.3 Flight autonomy analysis

One of the concerns in a UAV operation is the battery life which limits the length of the flight. In Table 13, we present
the FA in terms of battery lifetime, taking into account distinct network connections. The results show that FP is better
than DP for all the scenarios. LTE is turned out to be the worst option in terms of the battery lifetime regardless of
computation modes because the LTE connection has a higher discharge rate than Wi-Fi.

Table 13. Battery Lifetime for Different Scenarios.

Scenario WIFI LTE WIFI+LTE
DP 5.181 4.126 5.180
FP 9.000 7.167 8.998

UAV pilots who are willing to plan and execute a mission should be aware of the UAV flight autonomy. The CDF
(Cumulative Distributed Function) of OBP indicates the probability of a UAV running out of battery in the air and
crashing to the ground. Note that we compute the CDF by a transient evaluation of the metric 𝑃{#𝑃𝑆_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 100}.
In Figure 12, we present the CDFs for DP considering Wi-Fi, Wi-Fi plus LTE, and LTE. Note that the difference between
Wi-Fi plus LTE and just Wi-Fi is minimal so the lines are overlapping each other. The results indicate that the average
probabilities of a UAV running out of battery within 5 hours are 38.98%, 38.89%, and 96.76% for Wi-Fi, Wi-Fi plus
LTE, and LTE, respectively. Nevertheless, the probability increases with time, so that at 8.3 hours the probability of a
UAV running out of battery considering Wi-Fi and Wi-Fi plus LTE is 100%, while at 6.6 hours the same probability
considering LTE is 100%.

In Figure 13, we compare the CDFs considering distinct network connections for FP. Similar to DP, the difference
between Wi-Fi plus LTE and just Wi-Fi is minimal, therefore the lines are overlapping each other. Compared to DP, FP
has much better flight autonomy. For instance, the results indicate that the average probability of a UAV running out of
battery within 8 hours is 13.15%, 13.09%, and 87.57% for Wi-Fi, Wi-Fi plus LTE, and LTE, respectively. On the other
hand, the UAV is out of battery at 13.7 hours for Wi-Fi and Wi-Fi plus LTE and at 11.1 for the LTE.

Drone battery consumption can be highly affected by external factors like wind speed and direction [39]. Therefore,
we compare the CDFs of DP and FP modes for Wi-Fi plus LTE scenario considering three conditions (normal, medium,
and harsh). For the medium and harsh conditions, we simulated scenarios where the battery consumption rates were
accelerated by 50% and 100%, respectively, compared to the normal condition (𝜃𝑖𝑑𝑙𝑒_𝑤𝐶 , 𝜃𝑖𝑑𝑙𝑒_𝑙𝐶 , 𝜃𝑏𝑢𝑠𝑦_𝑤𝐶 and 𝜃𝑏𝑢𝑠𝑦_𝑙𝐶 ).
In the medium condition, where drones may encounter moderately adverse conditions such as increased wind resistance
or challenging flight conditions, the battery depletes 1.5 times faster than under normal circumstances. On the other
hand, the harsh condition represents the most challenging operational scenario, characterized by extreme environmental
conditions that impose substantial energy demands on drones, such as strong winds or turbulent air. In this scenario, we
assumed a 100% increase in battery consumption rate compared to the normal condition, causing the battery to deplete
at twice the rate it would under normal circumstances. Figures 14 and 15 present CDFs considering the three conditions.
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 21

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (hours)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Wi−Fi
Wi−Fi+LTE
LTE

Fig. 12. CDFs of OBP for DP under different networks.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (hours)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Wi−Fi+LTE
Wi−Fi
LTE

Fig. 13. CDFs of OBP for FP under different networks.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (hours)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Normal
Medium
Harsh

Fig. 14. CDFs of OBP for DP under different conditions.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (hours)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Normal
Medium
Harsh

Fig. 15. CDFs of OBP for FP under different conditions.

For DP, the results show the UAV is out of battery at 8.3, 5.6, and 4.2 hours for normal, medium, and harsh conditions.
For FP, the results show the UAV is out of battery at 13.7, 9.3, and 7.0 hours for normal, medium, and harsh conditions.
The only scenario where DP is better than FP is when the environmental condition for DP is normal and that for FP is
medium or harsh. The results show that environmental conditions can have a great impact on the probability of a UAV
to fulfill its mission.

6.4 Aging drones analysis

As presented before, application programs are subject to software aging like classification systems. These classification
systems are fundamental for SAR missions because they can be used for identifying potential victims in a rescue area.
Restarting is one of the recovery methods that can be implemented to prevent applications from aging. However, it is
important to note that restarting can be costly and lead to application downtime. Thus, assessing this recovery method
is fundamental.

In Table 14, we present a comparative analysis of availability, considering scenarios both with and without restarts.
In the with restart scenario, the availability slightly surpasses that of the w/o restart scenario, with values of 0.9959 and
0.9953, respectively. This implies that the strategy involving periodic restarts offers advantages in terms of availability, as
the application is promptly restarted upon the detection of aging. The downtime column quantifies the total downtime
experienced by each scenario over the course of a year. The w/o restart scenario accumulates more annual downtime,
totaling 40.776 hours, compared to the with restart scenario, which experiences 35.563 hours of downtime. This suggests
that the with restart scenario experiences less downtime throughout the year, attributed to its prompt restarts upon
aging detection.

Manuscript submitted to ACM



22 Andrade et al.

Table 14. Availability and downtime analysis.

Scenario Availability Annual Downtime (hours)
With restart 0.9959 35.563
W/o restart 0.9953 40.776

In Figure 16, we compare the CDFs of the OBP for a UAV considering with and without restart. Compared to the
UAV without restart, the UAV with restart has much better flight autonomy. For instance, the results indicate that the
average probability of a UAV running out of battery within 4 hours is 98.95%, and 1.14% for the cases without and with
restart, respectively. Additionally, the UAV is out of battery at 8.3 hours for the case with restart and at 5 hours for the
case without restart. These results show that restarting critical aging applications can increase UAV autonomy.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (hours)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

With restart
W/O restart

Fig. 16. CDFs of OBP for a UAV with and without restart.

Our analysis of aging drones has highlighted the importance of addressing software aging in critical applications like
classification systems used in search and rescue missions. While the use of periodic restarts comes with some cost and
potential downtime, our findings show that this strategy can significantly enhance availability and considerably extend
UAV flight autonomy. This emphasizes the significance of employing SPN models to analyze UAV systems, ensuring
the maintenance of availability and performance for these crucial UAV systems that play an essential role in mission
success and saving lives.

6.5 Strategy analysis

The results of sensitivity analysis can guide the design of the UAV system that contains the strategy to mitigate
faulty application programs. One of the important aspects of the strategy is whether the system can effectively use
computation offloading under given environments. From the performance and availability analysis, we observe that
the benefit of FP mode is reduced by a longer fog network delay and a larger fog service time. On the other hand, FP
mode is always preferable if a higher FA is required, as presented in the flight autonomy analysis. If the environmental
conditions discourage offloading, the system needs to operate in DP mode. In this case, the impact of software aging in
the application process must be considered. As shown in the recovery operation analysis, application program restart
Manuscript submitted to ACM



Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 23

should be employed if FA needs to be larger than approximately 2.5 hours. Based on these observations, the system
engineers may derive a strategy like presented in Figure 17.

Fig. 17. A strategy to select the computation mode for autonomy assurance.

If fog network delay 𝜃𝐹𝑛 and fog service time 𝜃𝐹𝑠 are sufficiently small (𝜃𝐹𝑛 < 1𝑠 and 𝜃𝐹𝑠 < 3𝑠 in our numerical
setting), choosing FP mode can be the best option for systems requiring high FA. If fog network delay or fog service
time is larger than a certain threshold value (i.e., 𝜃𝐹𝑛 > 1 or 𝜃𝐹𝑠 > 3), DP mode can be a better choice (See Figure.
10 and 11 as well). However, in this case, the impact of a faulty application process running on the UAV should be
considered as well. If the application process confronts software aging and FA is required to be larger than 4 hours, a
restarting method needs to be implemented. The derived strategy has a certain level of generality and may be useful in
a higher-level system design. However, the system parameter values differ in other application scenarios. FA-Assure
can assist engineers to conduct such sensitivity analysis and to derive the appropriate strategy for given missions.

7 CONCLUSION

In this work, we presented FA-Assure as an autonomy assurance framework for UAV systems in mission-critical
scenarios based on a performability analysis approach. FA-Assure employs hierarchically-configured SPNs to model and
assess flight autonomy performance subject to faulty application processes. Our approach allows rescue teams to choose
the relevant strategy to ensure the required flight autonomy to accomplish the mission. Through the numerical study
on a SAR mission case study, we showed an example of a strategy for determining computation offloading for given
environmental conditions. However, it is important to note that the challenges in the field of drone technology extend
beyond single-drone operations. As the present work only considers a single drone, in our future work, we plan to
extend our research to address these challenges by considering a swarm of drones where multiple drones collaboratively
work together for mission-critical tasks. Our intention is to explore key issues such as swarm behavior, scalability,
safety, energy efficiency, and practical applications in the context of drone swarms. These challenges represent critical
factors in the development and deployment of drone swarm technology in mission-critical scenarios. By addressing

Manuscript submitted to ACM



24 Andrade et al.

these challenges, we aim to contribute to the advancement and practical implementation of drone swarm technology,
enabling its effective use in a wide range of mission-critical applications. Our work also focused on the early stage of
system design and assumed exponential distributions for state transitions in the proposed SPNs. Collecting data from
real UAV environments to estimate realistic distributions is a necessary step toward the detailed design of the system.
Thus, we plan to collect this data and investigate how the changes in distributions affect the autonomy evaluation.

ACKNOWLEDGMENTS

The authors would like to thank Kengo Watanabe and Qinyang Zhang to help produce the experiment results discussed
in Section 3.

REFERENCES
[1] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. 1984. A class of generalized stochastic Petri nets for the performance evaluation of

multiprocessor systems. ACM Transactions on Computer Systems (TOCS) 2, 2 (1984), 93–122.
[2] Ermeson Andrade, Fumio Machida, Roberto Pietrantuono, and Domenico Cotroneo. 2020. Software Aging in Image Classification Systems on Cloud

and Edge. In 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 342–348.
[3] João Bachiega Jr, Breno Costa, and Aleteia PF Araujo. 2022. Computational Perspective of the Fog Node. arXiv preprint arXiv:2203.07425 (2022).
[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things. Proceedings of the first

edition of the MCC workshop on Mobile cloud computing (2012), 13–16.
[5] Hwei-Ming Chung, Sabita Maharjan, Yan Zhang, Frank Eliassen, and Kai Strunz. 2020. Placement and routing optimization for automated inspection

with unmanned aerial vehicles: a study in offshore wind farm. IEEE Transactions on Industrial Informatics 17, 5 (2020), 3032–3043.
[6] Gianfranco Ciardo, Jogesh K Muppala, Kishor S Trivedi, et al. 1989. SPNP: Stochastic Petri Net Package.. In PNPM, Vol. 89. Citeseer, 142–151.
[7] Domenico Cotroneo, Francesco Fucci, Antonio Ken Iannillo, Roberto Natella, and Roberto Pietrantuono. 2016. Software aging analysis of the android

mobile os. In 2016 IEEE 27th international symposium on software reliability engineering (ISSRE). IEEE, 478–489.
[8] Graham R Drozeski. 2005. A fault-tolerant control architecture for unmanned aerial vehicles. Georgia Institute of Technology.
[9] Emad Ebeid, Martin Skriver, Kristian Husum Terkildsen, Kjeld Jensen, and Ulrik Pagh Schultz. 2018. A survey of Open-Source UAV flight controllers

and flight simulators. Microprocessors and Microsystems 61 (2018), 11–20. https://doi.org/10.1016/j.micpro.2018.05.002
[10] Michael A Goodrich, Bryan S Morse, Damon Gerhardt, Joseph L Cooper, Morgan Quigley, Julie A Adams, and Curtis Humphrey. 2008. Supporting

wilderness search and rescue using a camera-equipped mini UAV. Journal of Field Robotics 25, 1-2 (2008), 89–110.
[11] Michael Grottke, Rivalino Matias, and Kishor S Trivedi. 2008. The fundamentals of software aging. In 2008 IEEE International conference on software

reliability engineering workshops (ISSRE Wksp). Ieee, 1–6.
[12] Lav Gupta, Raj Jain, and Gabor Vaszkun. 2015. Survey of important issues in UAV communication networks. IEEE Communications Surveys &

Tutorials 18, 2 (2015), 1123–1152.
[13] Christophe Hirel, Bruno Tuffin, and Kishor S Trivedi. 2000. Spnp: Stochastic petri nets. version 6.0. In Computer Performance Evaluation. Modelling

Techniques and Tools: 11th International Conference, TOOLS 2000 Schaumburg, IL, USA, March 27–31, 2000 Proceedings 11. Springer, 354–357.
[14] Shahrear Iqbal. 2021. A Study on UAV Operating System Security and Future Research Challenges. In 2021 IEEE 11th Annual Computing and

Communication Workshop and Conference (CCWC). 0759–0765.
[15] Hao Jiang, Hongli Yang, Shengchao Qin, Zhendong Su, Jian Zhang, and Jun Yan. 2017. Detecting energy bugs in android apps using static analysis.

In International Conference on Formal Engineering Methods. Springer, 192–208.
[16] Anamta Khan, Naghmeh Ivaki, and HenriqueMadeira. 2022. Are UAVs’ Flight Controller Software Reliable?. In 2022 IEEE 27th Pacific Rim International

Symposium on Dependable Computing (PRDC). IEEE, 194–204.
[17] Fumio Machida and Ermeson Andrade. 2021. Availability Modeling for Drone Image Processing Systems with Adaptive Offloading. In 2021 IEEE

26th Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE, 93–103.
[18] Fumio Machida and Ermeson Andrade. 2021. PA-Offload: performability-aware adaptive fog offloading for drone image processing. In 2021 IEEE 5th

International Conference on Fog and Edge Computing (ICFEC). IEEE, 66–73.
[19] Fumio Machida, Qingyang Zhang, and Ermeson Andrade. 2023. Performability analysis of adaptive drone computation offloading with fog computing.

Future Generation Computer Systems 145 (2023), 121–135. https://doi.org/10.1016/j.future.2023.03.027
[20] Paulo Maciel, Rubens Matos, Bruno Silva, Jair Figueiredo, Danilo Oliveira, Iure Fé, Ronierison Maciel, and Jamilson Dantas. 2017. Mercury:

Performance and dependability evaluation of systems with exponential, expolynomial, and general distributions. In 2017 IEEE 22nd Pacific Rim
international symposium on dependable computing (PRDC). IEEE, 50–57.

[21] Rubens Matos, Jean Araujo, Danilo Oliveira, Paulo Maciel, and Kishor Trivedi. 2015. Sensitivity analysis of a hierarchical model of mobile cloud
computing. Simulation Modelling Practice and Theory 50 (2015), 151–164.

Manuscript submitted to ACM

https://doi.org/10.1016/j.micpro.2018.05.002
https://doi.org/10.1016/j.future.2023.03.027


Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis 25

[22] Arvind Merwaday and Ismail Guvenc. 2015. UAV assisted heterogeneous networks for public safety communications. In 2015 IEEE wireless
communications and networking conference workshops (WCNCW). IEEE, 329–334.

[23] Mohamed-Ayoub Messous, Sidi-Mohammed Senouci, Hichem Sedjelmaci, and Soumaya Cherkaoui. 2019. A game theory based efficient computation
offloading in an UAV network. IEEE Transactions on Vehicular Technology 68, 5 (2019), 4964–4974.

[24] Michael K. Molloy. 1982. Performance analysis using stochastic Petri nets. IEEE Transactions on computers 31, 09 (1982), 913–917.
[25] Tuan Anh Nguyen, Kwonsu Jeon, Jae-Woo Lee, Iure Fe, and Francisco Airton Silva. 2022. Model-driven Mission Dependability Design of Unmanned

Aerial Systems. In AIAA AVIATION 2022 Forum. 4091.
[26] Pijush Kanti Dutta Pramanik, Nilanjan Sinhababu, Bulbul Mukherjee, Sanjeevikumar Padmanaban, Aranyak Maity, Bijoy Kumar Upadhyaya, Jens Bo

Holm-Nielsen, and Prasenjit Choudhury. 2019. Power consumption analysis, measurement, management, and issues: A state-of-the-art review of
smartphone battery and energy usage. IEEE Access 7 (2019), 182113–182172.

[27] Supravat Samanta, Subhajit Pramanick, and Partha Sarathi Mandal. 2021. Fault-Tolerant Covering Points by UAVs. In 8th International Conference on
Networking, Systems and Security. 60–64.

[28] David C Schedl, Indrajit Kurmi, and Oliver Bimber. 2021. An autonomous drone for search and rescue in forests using airborne optical sectioning.
Science Robotics 6, 55 (2021), eabg1188.

[29] Tabea Schmidt and Alexander Pretschner. 2022. StellaUAV: A Tool for Testing the Safe Behavior of UAVs with Scenario-Based Testing. In IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 37–47.

[30] Mahmood Shafiee, Zeyu Zhou, Luyao Mei, Fateme Dinmohammadi, Jackson Karama, and David Flynn. 2021. Unmanned aerial drones for inspection
of offshore wind turbines: A mission-critical failure analysis. Robotics 10, 1 (2021), 26.

[31] Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah,
and Mohsen Guizani. 2019. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. Ieee Access 7 (2019),
48572–48634.

[32] Mario Silvagni, Andrea Tonoli, Enrico Zenerino, and Marcello Chiaberge. 2017. Multipurpose UAV for search and rescue operations in mountain
avalanche events. Geomatics, Natural Hazards and Risk 8, 1 (2017), 18–33.

[33] Tullio Joseph Tanzi, Madhu Chandra, Jean Isnard, Daniel Camara, Olivier Sébastien, and Fanilo Harivelo. 2016. Towards" drone-borne" disaster
management: future application scenarios. In XXIII ISPRS Congress, Commission VIII (Volume III-8), Vol. 3. Copernicus GmbH, 181–189.

[34] Max Taylor, Jayson Boubin, Haicheng Chen, Christopher Stewart, and Feng Qin. 2021. A Study on Software Bugs in Unmanned Aircraft Systems. In
2021 International Conference on Unmanned Aircraft Systems (ICUAS). 1439–1448. https://doi.org/10.1109/ICUAS51884.2021.9476844

[35] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. 2012. Towards verifying android apps for the absence of no-sleep energy bugs. In
Presented as part of the 2012 Workshop on Power-Aware Computing and Systems.

[36] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An exploratory study of autopilot software bugs in unmanned aerial
vehicles. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 20–31.

[37] Kengo Watanabe, Fumio Machida, Ermeson Andrade, Roberto Pietrantuono, and Domenico Cotroneo. 2023. Software Aging in Real-Time Object
Detection Systems on Edge Servers. In Proceedings of the 38th Annual ACM Symposium on Applied Computing. 671–678.

[38] Mingyuan Xia, Wenbo He, Xue Liu, and Jie Liu. 2013. Why application errors drain battery easily? A study of memory leaks in smartphone apps. In
Proceedings of the Workshop on Power-Aware Computing and Systems. 1–5.

[39] Connie Zeng, Jacob Knickerbocker, Razia Shaik, and Kevin Marx. 2020. Routing of hitchhiking drones with respect to autonomous and connected
vehicles. US Patent App. 16/756,582.

[40] Juan Zhang, James F Campbell, Donald C Sweeney II, and Andrea C Hupman. 2021. Energy consumption models for delivery drones: A comparison
and assessment. Transportation Research Part D: Transport and Environment 90 (2021), 102668.

Manuscript submitted to ACM

https://doi.org/10.1109/ICUAS51884.2021.9476844

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Autonomy assurance framework
	4.1 Fault models
	4.2 Recovery methods
	4.3 FA-Assure

	5 Models
	5.1 Stochastic Petri nets
	5.2 DP and FP models
	5.3 AD models
	5.4 Adopted metrics

	6 Evaluation
	6.1 UAV in a SAR scenario
	6.2 Performance and availability analysis
	6.3 Flight autonomy analysis
	6.4 Aging drones analysis
	6.5 Strategy analysis

	7 Conclusion
	Acknowledgments
	References

