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Abstract

A trading problem can be classified into the following four types: a selling problem and a buying problem, each of which can be categorized
as a problem with a reservation price mechanism (where the counter trader proposes the trading price) and a problem with a posted price
mechanism (where the leading trader proposes the trading price). Let us refer to this group of four problems as the quadruple-asset-trading-
problems. The main objective of this paper is twofold: to construct a general theory that integrates the quadruple-asset-trading-problems
and to analyze fundamental models of these problems by using the theory. To achieve this objectives, several novel concepts are introduced:
symmetry, analogy, initiating time, quitting penalty price, market restriction, etc. These concepts lead us to a new horizon that has not
been previously explored by any researchers, including the authors of this paper. The most notable findings resulting from the analysis
of these models are twofold: first, there is a significant breakdown of symmetry between the selling problem and the buying problem;
second, the existence of null-time-zone, a time period during which any decision-making activity is entirely senseless. Particularly, the
latter discovery challenges us to re-examine the entire discussions that have been conducted regarding conventional trading problems as
decision-making processes. Moreover interestingly, when this zone encompasses all points in time on the planning horizon except the
deadline, it follows that all decision-making activities scheduled throughout the entire planning horizon are engulfed by the deadline, which
is reminiscent of all matter, even light, falling into a black hole. Lastly, we present an extensive range of models for asset trading problems
that have not yet been proposed, concluding this study by emphasizing that the treatment of these problems is nearly impossible without
the integrated-theory.
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It was a spring afternoon in March, 1966, and the distant song of a bird filled the air. I was in the office of my academic supervisor
Dr. (Eng.) Shizuo Senju. Sunbeams streamed through leaves, casting a gentle sway on window glasses. The professor silently rose from the
chair and drew a picture of one apple on the blackboard. He turned to me and said “Would you take this apple? If you do, you can eat it
and that will be the end of it. However, if you choose not to, this apple will disappear, and another one may appear—either greater or
smaller than the one that vanished. In considering this situation, how would you decide whether or not to take this apple ?”. After a few
moments of contemplation, the professor softly continued “Many decision problems in corporate management have a similar structure · · · .
This is the subject of your master’s thesis !”. With that, he left the room. Even now, the sound of the chalk sliding on the blackboard
echoes in the depths of my ears. With those words, he exited the room, leaving behind the lingering resonance of chalk sliding on the
blackboard, a sound forever etched in the recesses of my memory.
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Chapter 1

Preface

1.1 Two Motives
First, let us consider the fact that an economic behaviour is fundamentally constituted by various types of transactions. Different

models for trading assets (house, car, a lot of land, · · · ), commodities (wheat, copper, gasoline, · · · ), and goods (fruit, fish,

clothes, · · · ) have been proposed and examined thus far. The trading problem can be classified into the following four types: an

asset selling problem† and an asset buying problem,‡ each of which falls into the two categories. One where a leading-trader (a

primary party in a transaction) proposes a trading price, the other where an counter-trader (a counter party in the transaction)

proposes a trading price. We refer to these four types of trading problems as the quadruple-asset-trading-problems. While

considering the four problems, two questions as shown below naturally come to appear. The exploration of these questions has

formed the two main motivations that have driven the present paper.

Motive 1 Is a buying problem always symmetrical to a selling problem ?

Long before the inception of this study, we held a naive perspective on the selling and buying problems: “Could

a buying problem always be symmetrical to a selling problem ?” In other words, If we understand the nature of a

seller’s problem, could we immediately grasp the nature of its corresponding buyer’s problem by merely altering the

signs of variables, parameters, constants, etc. defined in the seller’s problem? While this context, most researchers,

including the authors of this study, paid little attention to the aforementioned simplistic viewpoint. However, our

ultimate response to this viewpoint is a resolute “no !”

Motive 2 Is it possible for a general theory integrating quadruple-asset-trading-problems to exist?

Before beginning to write this paper, we extensively reviewed numerous papers related to the buying and selling

problems and naturally developed a preliminary expectation that there could potentially be a “common denominator”

underlying all discussions presented therein. This intuition guided us to the insight (realization) that this common

denominator is closely connected to a function known as the T -function (refer to Section 6.1.1(p.25) ). Urged by this

insight, we soon developed a faint anticipation that a general theory integrating the quadruple-asset-trading-problems

could exist. As we delved deeper into our exploration, a ray of hope emerged that constructing such a theory might

indeed be possible. This hope was buoyed by introducing the concepts of symmetry (see Chap. 13(p.69) ) and analogy

(see Chap. 14(p.89) ). Fortunately, our work (attempt) over an extended period led to the successful construction of this

theory (see Chap. 17(p.115) ).

1.2 Philosophical Background of This paper
Before proceeding with our discussions, let us outline the philosophical background that underpins the entire writing of this

paper.

1.2.1 Outset

When I (Ikuta) was a high-school student (1958), during a physics lesson, the teacher placed one cotton ball and one iron ball in

a glass tube of one-meter length, setting it upright. Not surprisingly, the iron ball fell with a thud, and the cotton ball fell slowly

as if chasing the iron ball. Afterward, the air in the tube was evacuated with a turn of the motor switch, and the tube was again

set upright. This time, both balls fell alongside. Why ? A surprise passed through my mind. The teacher then drew a picture

and explained the rationality of this phenomenon; it was my first introduction to the power of real experiments and thought

experiments in physics. After an interval, he mentioned that Galileo conducted an experiment of a free fall in the Tower of Pisa

and harked back that it took several thousand years to recognize the shift from the earth-centered theory to the sun-centered

†[30,1962], [32,1963], [3,1977], [38,1983], [37,1983], [40,1990], [7,1991], [33,1993], [44,1993], [36,1995], [27,1995], [45,1995], [4,1995], [47,1997],
[9,1997], [12,1998], [20,1999], [1,1999], [13,2001], [35,2002], [11,2002], [15,2004], [19,2005], [16,2005]

‡[9,1998], [11,2002]
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4

theory (the Copernican revolution). Shortly afterwards, the teacher tossed a sponge ball from the platform toward us (students)

and explained that the trajectory of an object tossed over forms a parabola expressed by the quadratic curve. Without air, a

speed at which an object thrown horizontally will loop back around the earth, drawing a circular orbit, is approximately 7.9

kilometers per second, and the speed at which it flies out of the orbit is about 11.2 kilometers per second. After graduating

from high-school, I enrolled in the engineering department of Keio University, where I learned high-level physics. In the spring

afternoon of March, 1966, I visited the laboratory office of my academic supervisor, Dr. Professor Shizuo Senju (see the episode

on the title page of this paper). In the process of this personal history, I gradually came to recognize not only natural phenomena

but also human behaviors physically. This is the fundamental outset that has influenced the entirety of my investigative life.

1.2.2 Decision Theory as Physics

Basically, every human being’s behavior is influenced by their underlying philosophical background. Therefore, naturally, the

authors (Ikuta & Kang, both holding D.Eng.) consistently approached their research with a deep-rooted focus on the physical

perspective. Physics, described as a scientific pursuit unraveling the mysteries of natural phenomena, is seen by the authors

as a research discipline that necessitates unfiltered observation of a subject, free from preconceived premises, assumptions,

hypotheses, or preconceptions. It requires researchers to actively engage both ears and eyes in observing the research object,

calmly listening to every sound from its depths and carefully observing every light emerging within. While the authors are open

to integrating concepts, knowledge, and techniques from business administration, economics, and mathematics as necessary,

their core viewpoint is that decision processes are inherently connected to human-driven physical phenomena. Therefore, the

decision theory discussed in this paper, for the authors, is a decision theory as physics —always the starting point and the

ultimate perspective. If we were not researchers in the field of natural science, this paper would not saw the light of day at all

in this world.

1.3 Structure of Asset Trading Problems

The section provides an overview of asset trading problems.

1.3.1 Definitions of Terms

Before proceeding, let us establish definitions for some key terms that will be used in our upcoming discussion.

• For the subject matter of transaction, whether properties, commodities, or goods, we refer to it as the asset in a general

term.

• For the decision-making problem related to the trading of asset, we refer to it as the asset trading problem, ATP for short,

consisting of asset selling problem and asset buying problem, simply ASP and ABP respectively.

• For the parts involved in a trading, we use the terms “leading-trader” and “counter-trader” to distinguish between the part

leading the trading and its counterpart. Accordingly, in ASP (ABP), the seller (buyer) is a leading-trader and the buyer (seller)

is an counter-trader.

1.3.2 Asset Trading Problem (ATP)

Below, let us conceptualize the asset trading problem as a drama involving a leading-trader and an counter-trader on unfolding

two scenes below:

• Scene R in which

◦ first a counter-trader appears and posts his trading price,

◦ then a leading-trader appears and answers whether or not to accept it based on his reservation price.†

• Scene P in which

◦ first a leading-trader appears and posts his trading price,

◦ then a counter-trader appears and answers whether or not to accept it based on his reservation price.

Let us refer to the trading in SceneR (SceneP) as the asset trading problem with the reservation price mechanism (posted price

mechanism), simply ATP with R-mechanism¶ (ATP with P-mechanism ∥), further abbreviated as

ATP[R] (ATP[P]).

The above asset trading problem (ATP) can be translated into the asset selling problem (ASP) and the asset buying problem

(ABP) as below.

†A threshold based on which it is judged whether or not to accept it.
¶[4,1995],[6,2001]
∥[5,1998],[6,2001],[21,1994],[44,1993],[45,1995]
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1.3.3 Asset Selling Problem (ASP)

In the asset selling problem, a leading-trader is a seller and its counter-trader is a buyer, hence the drama of the above asset

trading problem (ATP) can be rewritten as below:

Scene R in which

◦ first a buyer (counter-trader) appears and posts his buying price,

◦ then a seller (leading-trader) appears and answers whether or not to accept it based on his reservation price.

Scene P in which

◦ first a seller (leading-trader) appears and posts his selling price,
◦ then a buyer (counter-trader) appears and answers whether or not to accept it based on his reservation price.

Let us refer to the selling problem in SceneR (SceneP) as the asset selling problem with reservation price mechanism (posted

price mechanism), simply ASP with R-mechanism (P-mechanism), further abbreviated as

ASP[R] (ASP[P]).

The following two examples convey a flavor of the models of the above asset selling problem, which mirror the “mental conflict”

of a seller (leading-trader) in the above drama.

� Example 1.3.1 (SceneR) Suppose you (seller, leading-trader) have to sell your car by a specified deadline due to a

compelling reason, such as being required to suddenly return to your mother country by order of the head office when you are

stationed in a foreign country. A potential buyer (counter-trader) has just appeared. In this situation, if the buyer offers a

high buying price, you would likely sell the car. However, if the offered price is very low, you might hesitate. In either case,

you are faced with a decision that involves the following risks. Selling the car carries the risk of missing out a higher-paying

buyer that may appear in the future. On the other hand, not selling the car carries the risk that a higher-paying buyer may

not appear before the deadline, or even worse, no buyers may appear at all, leading to the necessity of selling the car at a very

low price (a giveaway price) or incurring costs to dispose of it. Considering these risks, you must decide whether or not to sell

your car to each successive buyer. This perspective implies that, as the deadline approaches, it is necessary to gradually lower

the minimum permissible selling price (referred to as the reservation price). This expectation reflects a mental conflict of you

(seller as a decision-maker) that you must more and more become “selling spree” as the deadline approaches.

The above example is what has been defined and investigated under the name “optimal stopping problem”; To the best of the

authors’ knowledge, the earliest papers related to the problem can be traced back to 1960’s

[43,1961][30,1962][10,1971][34,1973].

� Example 1.3.2 (SceneP) In the same example as mentioned above, let us suppose that you set a selling price for your

car to buyers who appear successively in front of you. In the situation, if you set your price too low, a buyer will buy the car,

conversely, if your price is excessively high, the buyer will leave (walk away). This indicates that selling the car at a low posted

price carries the risk of missing an opportunity that a potential buyer willing to pay a higher price appears in the future. On

the other hand, setting a high posted price carries the risk of no buyer appearing before the deadline, or even being compelled

to sell your car at a significantly reduced price (a rock-bottom price) or dispose of it at a cost. Considering these risks, you must

decide whether or not to sell your car to each successive buyer. Similarly to in Example 1.3.1(p.5) , this perspective implies that,

as the deadline approaches, it is necessary to gradually lower the selling price to propose (referred to as the proposed price).

This expectation reflects a mental conflict of you (seller as a decision-maker) that you must more and more become “selling

spree” as the deadline approaches.

1.3.4 Asset Buying Problem (ABP)

In the asset buying problem, a leading-trader is a buyer and its counter-trader is a seller, hence the drama of the asset trading

can be rewritten as below:

Scene R in which

◦ first a seller (counter-trader) appears and posts his selling price,
◦ then a buyer (leading-trader) appears and answers whether or not to accept it based on his reservation price.

Scene P in which

◦ first a buyer (leading-trader) appears and posts his buying price,
◦ then a seller (counter-trader) appears and answers whether or not to accept it based on his reservation price.

Let us refer to the buying problem in SceneR (SceneP) as the asset buying problem with reservation price mechanism (posted

price mechasnism), simply ABP with R-mechanism (ABP with P-mechanism), further abbreviated as

ABP[R] (ABP[P]).

One may say that since the following two examples seem to be mere inverses of the asset selling problem, they are redundant

and unnecessary. However, it will be known later on that fine differences between the asset selling problem and the asset buying

problem produces a significant difference between both.
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� Example 1.3.3 (SceneR) Suppose you (buyer, leading-trader) have to buy a car by a specified date (deadline) due to

the need to secure a car hastily for daily life and commuting upon returning from a foreign assignment, and then you find a

potential seller. In this situation, if the price offered by the seller is low enough, you will buy the car from the seller. However, if

it is very high, you will hesitate to buy. Buying the car carries the risk of missing an opportunity that you can find a potential

seller offering a lower price in the future. On the other hand, not buying a car carries the risk that a lower-offering seller may

not appears before the deadline. Considering these risks, you must decide whether or not to buy a car from each successive

seller. This perspective implies that, as the deadline approaches, it is necessary to gradually raise the maximum permissible

buying price (referred to as the reservation price). This expectation reflects a mental conflict of you (buyer as a decision-maker)

that you must more and more become “buying spree” as the deadline approaches.

� Example 1.3.4 (SceneP) In the same example as mentioned above, let us suppose that you propose your buying price

to a potential seller. Then, if your proposed price is high enough, the seller will sell the car, conversely, if it is very low, the

seller will reject the offer. Buying the car carries the risk that a seller offering a lower price may appear in the future. On the

other hand, not buying a car carries the risk that a lower-offering seller may not appear before the deadline. Considering these

risks, you must determine your buying price to propose. Similarly to in Example 1.3.3(p.6) , this perspective implies that, as

the deadline approaches, it is necessary to gradually raise the buying price to propose (referred to as the proposed price). This

expectation reflects a mental conflict of you (buyer as a decision-maker) that you must more and more become “buying spree”

as the deadline approaches.

1.3.5 Quadruple-Asset-Trading-Problems

Let us refer to the set of the four asset trading problems ASP[R], ABP[R], ASP[P], and ABP[P] defined above as the quadruple-

asset-trading-problems , represented as

qATP = {ASP[R], ABP[R], ASP[P], ABP[P]}. (1.3.1)

The interconnectedness among these problems are somewhat akin to a drama played across the looking glass, depicted as in

Figure 1.3.1(p.6) below.

⟨1⟩ ASP[R] · · ·
�� ��seller

�� ��buyer · · · ABP[R]⟨2⟩

⟨3⟩ ASP[P] · · ·
�� ��seller

�� ��buyer · · · ABP[P]⟨4⟩

I �

	 R

looking glass

looking glass

looking glass looking glass

selling problem
↓

buying problem
↓

↑
selling problem

↑
buying problem

R-mechanism → ← R-mechanism

P-mechanism → ← P-mechanism

Figure 1.3.1: Interconnectedness among the quadruple-asset trading-problems

The aslant arrows RI	� in the above figure symbolizes a drama which revolves between a leading-trader in ASP and a leading-trader

in ABP, i.e.,

◦ R The leading-trader
�� ��seller in ⟨1⟩ ASP[R] faces the leading-trader

�� ��buyer in ⟨4⟩ ABP[P],†

◦ I The leading-trader
�� ��buyer in ⟨4⟩ ABP[P] faces the leading-trader

�� ��seller in ⟨1⟩ ASP[R],‡

◦ 	 The leading-trader
�� ��buyer in ⟨2⟩ ABP[R] faces the leading-trader

�� ��seller in ⟨3⟩ ASP[P],
◦ � The leading-trader

�� ��seller in ⟨3⟩ ASP[P] faces the leading-trader
�� ��buyer in ⟨2⟩ ABP[R].

1.3.6 Symmetry and analogy

The concepts of symmetry and analogy play pivotal role in the construction of the integrated-theory as stated in Motive 1(p.3) .

We delve into these concepts further, illustrating their significance in Figure 1.3.2(p.7) below.

(i) A symmetry is observed between ⟨1⟩ ASP[R] and ⟨2⟩ ABP[R],
(ii) Similarly, symmetry relation between ⟨3⟩ ASP[P] and ⟨4⟩ ABP[P],
(iii) An analogy is drawn between ⟨1⟩ ASP[R] and ⟨3⟩ ASP[P],
(iv) Likewise, an analogy is evident between ⟨2⟩ ABP[R] and ⟨4⟩ ABP[P].

†The leading-trader
�� ��buyer in ⟨4⟩ ABP[P] is an counter-trader from the standpoint of the leading-trader

�� ��seller in ⟨1⟩ ASP[R].
‡The leading-trader

�� ��seller in ⟨1⟩ ABP[R] is an counter-trader from the standpoint of the leading-trader
�� ��buyer in ⟨4⟩ ASP[P].
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⟨1⟩ ASP[R] · · ·
�� ��seller

�� ��buyer · · · ABP[R]⟨2⟩

⟨3⟩ ASP[P] · · ·
�� ��seller

�� ��buyer · · · ABP[P]⟨4⟩

Y *

� j

(i)

(ii)

(iii) (iv)

looking glass

looking glass

looking glass looking glass

selling problem
↓

buying problem
↓

↑
selling problem

↑
buying problem

R-mechanism → ← R-mechanism

P-mechanism → ← P-mechanism

⇐= symmetry =⇒

⇐= symmetry ⇐=

⇑
analogy

⇓

⇑
analogy

⇓

Figure 1.3.2: Symmetry and analogy among the quadruple-asset-trading-problems

Roughly speaking, the two concepts implies the following. The symmetry relation in each of (i) and (ii) means that for each of

X = R,P, a given simple transformation of some variables in an assertion on ASP[X] yields its corresponding assertion on ABP[X]
and vice versa, and the analogy relation in each of (iii) and (iv) means that a given simple replacement of some variables in

an assertion on ATP[R] by others yields its corresponding assertion on ATP[P] and vice versa. The strict definitions of symmetry

and analogy will be given in Chaps. 13(p.69) , 14(p.89) , 15(p.101) , and 16(p.111) .

1.4 Highlights of This Paper
Before we proceed with our discussions, let us outline the key points of this paper.

H1. Recognizing time, starting time, initiating time, stopping time, and deadline

The above five points in time (see Section 8.1(p.43) ) are essential requisites for “a decision theory as physics” (see Section 1.2(p.3)

and C??(p.??) ). Below are summaries of implications that they have:

a. Recognizing time

A decision is, after all, what is made by a human-being; accordingly, it eventually follows that a behaviour of “decision”

first materializes only when being recognized in the bottom of heart of a person; let us refer to the time point of this

recognition as the recognizing time tr. Now, when a decision-making problem is recognized, the first question to answer

is whether or not it is enforced to tackle with the decision problem.

i. tE-case: Let us refer to the former case as the tackle-Enforced-case. In this case, even if it is known to yield no

profit when tackling the problem, a decision-maker must accept the red ink.

ii. tA-case: Let us call the latter case the tackle-Allowed (not enforced) case. In this case, a decision-maker has the

option “whether to tackle the problem or not”. Therefore, when it is known that no profit yields even if tackling

the problem, it suffices not to tackle it.

b. Starting time

Whether in tE-case or when it is determined to tackle the problem in tA-case, after a period of preparation, it arrives at

the time when the decision-maker can start to initiate the attack of the decision-making problem. Let us refer to the

time point as the starting time τ .

c. Initiating time

Before moving further on ahead, let us suppose the following two cases related to “whether or not it is enforced to

immediately initiate the attack of the problem at the starting time τ”:

i. iiE-Case: The case in which it is enforced to immediately initiate the attack, called the immediate-initiation-

enforced-case.
ii. iiA-Case: The case in which it is allowed (not enforced) to immediately initiate the attack, called the immediate-

initiation-allowed-case. In this case, it is possible to postpone its initiation; in other words, we have the options

“initiation at the starting time τ”, “initiation at the time τ − 1”, · · · , “initiation at the deadline (time 0)”. Then,

if it is determined to initiate the attack of the decision-making problem at time t (τ ≥ t ≥ 0), then let us refer

to this time point as the initiating time ti. Here it is naturally questioned what is the optimal initiating time,

denoted by t∗τ (see Section 8.2.4.1(p.44) ).

c. Stopping time

When the attack of the decision-making problem initiates at the optimal initiating time t∗τ and then the asset’s sale (in

ASP) or the asset’s purchase (in ABP) occurs thereafter, the process stops at that time. We refer to this point in time as

the stopping time ts .

d. Deadline

In this paper, from a practical viewpoint, we stress that a decision process with an infinite planning horizon is a product

of mathematical imagination beyond the real world; in fact, considering a planning horizon spanning over 135 hundred
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millions years is nonsensical and futile. Therefore, in this paper, we will focus on only models with finite planning

horizons. Then, let us refer to the terminal (final) point in time of the decision process as deadline. However, we can

have the two reasons for which it becomes still meaningful to discuss the model with the infinite planning horizon. One

is that it can become an approximation for the models with an enough long (finite) planning horizon, the other is that

results mathematically derived from it can provide an important information for the analyses of models with the finite

planning horizon.

e. The flow of the five points in time

The flow of the above five points in time can be depicted as below.

-• • • • • • • • • • • • • • • • • • •· · · · · · 0(t∗τ ) ti ts · · ·τtr

stopping time(optimal) initiating timestarting timerecognizing time deadline

Figure 1.4.1: Five points in time

H2. Deadline and Decision-Making Behaviour

A decision process with a finite planning horizon is akin to a conveyor-belt machinery which willy-nilly moves on to a

deadline with the passage of time, usually leading to undesirable results, say a sale for a giveaway price in Example 1.3.1(p.5) ,

a bankruptcy in the business management, and a ruination of state in the political decision. This event which is brought

forth by the deadline becomes stronger as it gets nearer to the deadline and conversely weaker as it get away from the

deadline. The mental conflict of a seller (decision-maker) stated in Examples 1.3.1(p.5) graphically reflects this situation in

the sense that the reservation price of a seller becomes smaller as the distance from the deadline get shorter. The above

phenomenon also implies that a decision-making behaviour at any point in time is, in varying degrees, touched off by the

existence of deadline, conversely, without the existence of deadline, it follows that a decision-making behaviour is difficult

to be excited. For this reason, the existence of deadline should be said to be an imperative requirement of decision process

in the real world. In other words, the decision process with infinite planning horizon (without deadline) is what can be

considered only at an abstract level (see A11(p.13) ), implying that the existence of such decision process should be said to

be a creature of fantasy from the realistic viewpoint.

H3. Null-time-zone and Deadline-engulfing

Before delving into the explanation of the two terms in the title, let us recall here the definitions of the starting time τ and

the initiating time t (see H1(p.7) ). Additionally, let us denote the optimal initiating time by t∗τ (τ ≥ t∗τ ) (see (8.2.4(p.44) )).

Then, the case of τ > t∗τ indicates that no action is taken at every point in time t ∈ {τ, τ − 1, · · · , t∗τ}. In this case, we

will refer to this period of time as the null-time-zone (see Section 8.2.4.5(p.46) ). Next, consider an interesting case in which

the optimal initiating time t∗τ coincides with the deadline, i.e., t∗τ = 0. This situation ultimately implies that, any actions

undertaken prior to the deadline are rendered meaningless, suggesting “Don’t do anything until the deadline.” Using a

metaphorical comparison, it is akin to “All actions undertaken before the deadline being engulfed by the deadline itself”,

much like all forms of matter, including light, being absorbed into a black hole. Taking this into consideration, we refer to

this phenomenon as deadline-engulfing (see Section 8.2.4.6(p.46) ). Then, when we regard a decision process with the infinite

planning horizon as the limiting process of the finite planning horizon process, the existence of “deadline-engulfing” implies

that the decision process with the finite planning horizon fades away in time toward the infinite future. This could be

considered one of the most remarkable discoveries in this paper, compelling us to undertake a comprehensive re-evaluation

of the entire theory of decision processes (see Section A5(p.319) ) that have been explored so far without taken into account

the phenomenon of “deadline-engulfing”.

H4. Symmetry

The notion of the adjective “symmetrical” used in Motive 1(p.3) was initially sparked by a vague inspiration drawn from

the yin-yan principle, an ancient Chinese philosophy, which offers conceptual guidance for harmonizing opposites. This

concept is reified in ways that transforming some of terms related to the asset selling problem with R-mechanism (ASP[R])
produces the asset buying problem with R-mechanism ABP[R] (see Chap. 13(p.69) ).

H5. Analogy

At the earlier stage of this study we could not absolutely imagine that there will exist a relationship between the asset

selling problem with R-mechanism (ASP[R]) and the asset selling problem with P-mechanism (ASP[P]). However, in the

process of delving into discussions, we observed certain similarity between the two problems. This scenario led us to a

procedure, referred to as the analogy replacement operation; replacing the two parameters a and µ† appearing within ASP[R]
by a⋆‡ and a respectively produces ASP[P], yielding the analogouse relation ASP[R] ◃▹ ASP[P] (see Chap. 14(p.89) ).

†The lower bound a and the expectation µ of the distribution function of ξ (see A9(p.12) )
‡See (6.1.26(p.26) )
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H6. Integrated-Theory

As ones corresponding to the relations ASP[R]∼ ABP[R] · · · (1∗) and ASP[R] ◃▹ ASP[P] · · · (2∗) depicted in Figure 1.4.2(p.9)

below, we obtain also the relations ASP[P]∼ ABP[P] · · · (3∗) and ABP[R] ◃▹ ABP[P] · · · (4∗).

ASP[R] -� ABP[R]

?

6

?

6

ASP[P] -� ABP[P]

(2∗) ◃▹ (4∗) ◃▹

(1∗) ∼

(3∗) ∼

Figure 1.4.2: Integrated-Theory

The above figure schematizes the flow of the formulation of the integrated-theory (refer to Figure 17.1.1(p.115) ), which can

be explained as follows:

· (1∗) represents the symmetry relation between the selling problem with R-mechanism (ASP[R]) and the buying problem

with R-mechanism (ABP[R]) (see Chap. 13(p.69) ).

· (2∗) represents the analogy relation between the selling problem with R-mechanism (ASP[R]) and the selling problem

with P-mechanism (ASP[P]) (see Chap. 14(p.89) ).

· (3∗) represents, the symmetry relation between the selling problem with P-mechanism (ASP[P]) and the buying problem

with P-mechanism (ABP[P]) (see Chap. 15(p.101) ).

· (4∗) represents the analogy relation between the buying problem with R-mechanism (ABP[R]) and the buying problem

with P-mechanism (ABP[P]) (see Chap. 16(p.111) ).

H7. Collapse of symmetry

The symmetry and analogy discussed in H4 and H5 were all derived under the assumption that the price ξ is defined on

the interval (−∞,∞), which allows for the possibility of negative values. However, in a typical the real-world, prices ξ are

always positive, i.e., ξ ∈ (0,∞). Consequently, if we constrain ξ ∈ (−∞,∞) to ξ ∈ (0,∞), then a natural question arises:

“Are the symmetry and analogy inherited? (see Motive 1(p.3) ). Contrary to this expectation, it will be observed that “not

inherited” frequently occurs in reality (see Chap. 19(p.129) ).

H8. Diagonal symmetry

In H7(p.9) we asserted that the symmetry is not always inherited on (0,∞). However, it can be demonstrated in Chap. 19(p.129)

that the symmetry is consistently preserved between the selling problem on (−∞, 0) and the buying problem on (0,∞),

which is referred to as the “diagonal symmetry”.

H9. Underlying functions

The introduction of the underlying functions T , L, K, and L (see Chap. 6(p.25) ) stands as a significant highlights in this

paper. While T -function has been widely recognized thus far in fields of statistics, operational research, and economics

(see [14,Deg1970]), the remaining underlying functions L, K, and L are all what were first defined in the present paper.

It will be known later on that the properties of these functions (see Chap. 11(p.55) ) play a central role in the analyses of all

the models presented in the present paper. Without properties of these functions, not only could we challenge systematic

analysis of these models, but also the successful construction of the integrated-theory would have been nearly impossible.

H10. Structured-unit-of models

This paper addresses two types of models, no-recall model and recall model (see Section 3.2(p.16) ). For each model we define 24

distinct models. In this paper we refer to the whole of these 24 models as the structured-unit-of-model (see Section 3.3(p.16) ).

Now, these 24 models are not what were capriciously defined but what were inevitably established based on the principles

of quitting penalty price ρ (see A7(p.12) ) and search enforced/allowed-case (see (A5(p.11) )). In this paper, through treating the

entirety of these 24 models as a cohesive unit, we endeavored to comprehensively analyze all of them. Although so many

models of asset trading problems have been posed so far,† all of them have been one-by-one and independently treated

thus far without touching upon any relationships each other. Against this, in the present paper, we aim to clarify the

interconnectedness among all models included in the structured-unit-of-model.

†[30,1962], [32,1963], [3,1977], [38,1983], [37,1983], [40,1990], [7,1991], [33,1993], [44,1993], [36,1995], [27,1995], [45,1995], [4,1995], [47,1997],

[9,1997], [12,1998], [20,1999], [1,1999], [13,2001], [35,2002], [11,2002], [15,2004], [19,2005], [16,2005]‡
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Chapter 2

Assumptions

2.1 Ultimate Simplification of Models
In addressing a given real-world problem, two distinct approaches to study emerge. One is the construction of a model that

faithfully represents its research object to the greatest extent possible. The other involves building the simplest model conceivable

where further simplification risks the loss of essential elements. Here, we label research based on the former as experimental

study and the latter as theoretical study. While there is no inherent superiority between these two approaches, our overall stance

in this study aligns with the latter, reflecting our philosophical background (see Section 1.2(p.3) ). The methodology classification

into these two categories acts as a dividing ridge, causing a study to bifurcate in counter directions. The first drop of water from

the former follows the east wall, and the first drop of water from the latter follows the west wall. Eventually, both converge in

a lake with a common bottom, and shortly thereafter, a flower blooms. This amalgamation of results from both methodologies

leads us to a genuine understanding of the reality in question.

2.2 Assumptions
In order to realize the simplification of models that was stated above let us configure the following assumptions:

A1 Points in time

The asset trading process occurs intermittently at points in time equally spaced along a finite length of the time axis as

depicted in Figure 2.2.1(p.11) below. We shall backward label each point in time from the final point in time, denoted as time

0 (deadline), as 0, 1, and so forth. Accordingly, when the present point in time is designated as time t, the two adjacent

points in time, t+ 1 and t− 1, are the previous and next points in time respectively.

-• • • • • time
time 0time 1· · ·time t− 1time ttime t + 1

(deadline)(next)(present)(previous)

Figure 2.2.1: Points in time

A2 Absolutely necessary condition

In ASP (ABP), the leading-trader acting as a seller (buyer) must sell (buy), by all means, the trading asset to a buyer (from a

seller) by the deadline. To rephrase, the seller (buyer) is not allowed to quit the selling (buying) process without completing

the sale (purchase) of the asset.

A3 Stop of process

The process stop when the leading-trader accepts a price proposed by an counter-trader in ATP[R] and when an counter-trader

accepts a price proposed by the leading-trader in ATP[P].

A4 Search cost

A cost s ≥ 0, referred to as the search cost, must be paid to search for counter-traders, which includes expenses for

advertising, communication, transfer, and so on.

A5 Search-Enforced-Model and search-Allowed-Model

The two models are related to the question “Whether it is enforced to conduct the search or not ?”.

a. search-Enforced-model (sE-model): This refers to the case in which, once the process has initiated, conducting the search

at every subsequent point in time is mandatory. In this scenario, as illustrated in Figure 2.2.2(p.12) below, a decision-maker

must continue to conduct the search until the process stops.

11
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-• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

C C C C C C C C Stop

Figure 2.2.2: Flow of Search-Conducts in the search-Enforced-model

b. search-Allowed-model (sA-model): This refers to the case in which, even after the process has initiated, it is permissible

to skip the search at every subsequent point in time. In other words, a leading-trader has the option to conduct the search

or to skip it at every point in time as long as the process does not stop. In this scenario, we can consider different types

of flows for search-Conduct and search-Skip, as illustrated in Figure 2.2.3(p.12) below, where “ ” represents the transition

from search-Skip to search-Conduct or from search-Conduct to search-Skip.

-• • • • • • • • • • • • • • • • time

starting time deadline
τ 0

Type 1 C C C C C C C C → Stop

Type 2 C C C C C C C C  S S S S C → Stop

Type 3 C C C S S S S C C C C C C → Stop

Type 4 S S S  C C C C  S S S S C → Stop

Type 5 S S  C C C  S S S  C C  S S S  C → Stop

Type 6 S S S S S S S S S  C → Stop

Figure 2.2.3: Different flows of search-Conduct and search-Skip

Definition 2.2.1 By C S (S C ) let us denote the switch from search-Conduct to search-Skip (search-Skip to search-
Conduct).

A6 Opposite-trader’s appearance probability λ

In this paper, it is assumed that when the search is conducted at a certain point in time, an counter-trader appears at the

next point in time with a known probability λ (0 < λ ≤ 1).

A7 Quitting penalty price

Suppose that the counter-trader appearing probability λ is less than 1, i.e., 0 < λ < 1. Then it is possible that no counter-

trader appears in the subsequent points in time even if conducting the search. This situation can lead to the risk that a

leading-trader potentially has to quit the process at the final point in time point (deadline) without executing the trade for

the asset, which contradicts the requirement of A2. When facing with such a circumstance, the leading-trader will take the

following actions at the deadline:

◦ In ASP, the seller (leading-trader) will attempt to find ways to sell the asset by proposing a giveaway price ρ to any

available buyer (counter-trader).

◦ In ABP, the buyer (leading-trader) will strive to acquire the asset by presenting a notably high-price ρ to any available

seller (counter-trader).

Let us refer to such a price ρ as the terminal quitting penalty price ρ, implying that, at the deadline (terminal point in

time 0), the leading-trader can quit the process in exchange for the ρ. Additionally, we can consider the case that such

a ρ is available also at every point in time including the terminal point in time (deadline). Then let us refer to it as the

intervening quitting penalty price. In the explanation above, the ρ is implicitly assumed to be positive ρ ∈ (0,∞); however,

to generalize discussions that follows, we define it to be ξ ∈ (−∞,∞).

A8 Range of price

Whether a price ξ proposed by an appearing counter-trader or the reservation price ξ of an appearing counter-trader, it

should be defined on (0,∞) in the normal market of the real-world (see Section 18.2(p.117) ). However, in this paper, to

construct the integrated-theory in Part 2 (p.51) we dare to define it on (−∞,∞).

A9 Distribution function

In ATP[R] (ATP[P]) we assume that the prices proposed by successively appearing counter-trader, ξ, ξ′, · · · (the reservation

prices of successively appearing counter-trader, ξ, ξ′, · · · ) are independent identically distributed random variables having

a continuous distribution function F (ξ) = Pr{ξ ≤ ξ} with a finite expectation µ where

F (ξ) = 0 · · · (1) ξ ≤ a,

0 < F (ξ) < 1 · · · (2) a < ξ < b,

F (ξ) = 1 · · · (3) b ≤ ξ,

(2.2.1)

for given constants a and b such that

−∞ < a < µ < b <∞. (2.2.2)
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Furthermore, for its probability density function f(ξ) let us assume

f(ξ) = 0 · · · (1) ξ < a,

0 < f(ξ) < 1 · · · (2) a ≤ ξ ≤ b,

f(ξ) = 0 · · · (3) b < ξ.

(2.2.3)

Here assume that there exits f such that

f = inf
a≤ξ≤b

f(ξ)dξ > 0. (2.2.4)

Let us represent the set consisting of all possible distribution functions with (2.2.2(p.12) ) by F , i.e.,

F = {F
∣∣ −∞ < a < µ < b <∞}, (2.2.5)

called the total distribution function space, simply the total-DF-space .

ξ

f(ξ)

µ0 a b
............
.........
...........
..............
.....................................................................................
...........
.........
.........
.........
.........
...........
.............
.................
......................................................
.........
.........
...........
.............
..................
..................
............
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Figure 2.2.4: Probability density function f(ξ)

A10 Recallability of once rejected counter-trader

Whether a model with R-mechanism or a model with P-mechanism, if a once-rejected counter-trader can be recalled later

and accepted at the discretion of the leading-trader, then it is referred to as the recall-model or model-with-recall (see

Section 3.2.2(p.16) and Part 4(p.247) ). Conversely, if such recallability is not allowed, then it is referred to as the no-recall-

model, model-with-no-recall, or model-without-recall.

A11 Finiteness of planning horizon

In the present paper we consider only models with the finite planning horizon (see H1d(p.7) ). Our basic standpoint over

the whole of this paper lies in a grim reality that a process with the infinite planning horizon is a mere product of fantasy

created by mathematics, which does not exist in the real world at all; in fact, it is an inanity to consider a model with the

planning horizon of more than 135 hundred millions years. However, we can have the two reasons for which it becomes still

meaningful to discuss the model with the infinite planning horizon. One is that it can become an approximation for the

process with an enough long (finite) planning horizon, the other is that results obtained from it can provide a meaningful

information for the analyses of models with the finite planning horizon.

A12 Discount factor β

First, let us note here that the concept of value creation process lies, overtly and covertly, beneath business science and eco-

nomic science. This fact implies that, without this concept, any managerial and/or economic activity becomes meaningless.

Below let us clarify the practical implications of this concept.

a. Fund: Let us refer to the amount of money on hand as fund, which can be always and freely invested. Let us represent

its interest rate per period as r ≥ 0 and define β = (1 + r)−1 (1 ≥ β > 0), called the discount factor.

b. Profit: Let us refer to the increment of the fund yielded by a managerial and/or economic activity as a profit (P

dollar).

c. Cost: Suppose that an amount of the fund has been paid away for a reason. Then, let us refer to the amount of fund

as an expense (E dollar). Now, if the amount of funds were not paid away as an expense, then it would remain (return

to life) as savings on hand; let us call it the opportunity savings (S dollar). However, this expense is what had been

already paid, hence it is booked as a loss, which is usually called the opportunity loss (L dollar) in standard textbooks

of management and/or economics. In this paper, we refer to this opportunity loss a cost (C dollar).

d. Discount factor for profit: In an asset selling problem (ASP), a seller can invest the profit x obtained by selling his/her

asset. Since the profit is a part of fund, it can be invested at a given rate of interest r > 0 by definition; as a result, the

profit x obtained today (the present point in time) increases to (1+ r)nx after n days, i.e., x→ β−nx. By A0 and An let

us represent actions with the profits P0 and Pn obtained today and n days later respectively. Then we have P0 → β−nP0,

schematized as in the figure below.
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Figure 2.2.5: Discount factor β for profit

The above context implies the following:

The profit P0 that you take today increases, if not taking today, to (1+ r)nP0 after n days, which you
take on that day.

The evaluation (on n days later) of the relative merits between actions A0 and An should be made not by P0 ≥ (≤) Pn

but by β−nP0 ≥ (≤) Pn. Multiplying the latter inequality by βn leads to P0 ≥ (≤) βnPn, implying that the evaluation

(on today) is made by this inequality. We refer to the βnPn as the present (today) value of the profit Pn gained n days

later. Accordingly, it follows that the total present value of profit for the action with profits P0, P1, P2, · · · is given by

P0 + βP1 + β2P2 + · · · .

e. Discount factor for cost To begin with, let us start with a simple question “Since a cost is a fund which has already

been paid away, it cannot be invested, so how to evaluate a future’s cost as in a profit?” Fortunately we can find out

its answer within the concept of the opportunity saving which is a part of fund that can be invested. By A0 and An let

us represent actions with the expenses E0 and En today and n days later respectively. Suppose that the payment of a

today’s expense E0 postpones to n days later. Then, during that time, the paid expense transforms into the opportunity

savings S0, which increases to (1+r)nS0 = β−nS0. However, since the initial expense E0 is paid, not only the opportunity

saving S0 but also β−nS0 does not materialize, hence β−nS0 is lost in fact and becomes a opportunity loss β−nL0 and

finally cost β−nC0. The above scenario can be depicted as in the figure below.
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?
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Figure 2.2.6: Discount factor β for cost

The above context implies the following:

The cost C0 that you incur today increases, if not incurring today, to (1 + r)nC0 after n days, which
you incur on that day.

From the above we see that the evaluation (n days later) of the relative merits between actions A0 and An should be

made not by C0 ≥ (≤) Cn but by β−nC0 ≥ (≤) Cn. Multiplying the latter inequality by βn leads to C0 ≥ (≤) βnCn,

implying that the evaluation (today) is made by this inequality. We refer to the βnCn as the present (today) value of

the profit Cn gained n days later. Accordingly, it follows that the total present value of cost for the action with costs

C0, C1, C2, · · · is given by C0 + βC1 + β2C2 + · · · .

2.3 Evolutionary Development of Models
For a positivist, theoretical research might seem unrealistic due to the excessive simplification of models. However, the simplicity

of a theoretical model, achieved by excluding many elements of real-world problems, makes it relatively easier to understand the

essence of the problem it addresses. On the contrary, embarking on a complex model from the outset, incorporating numerous

elements, can make it relatively challenging to grasp the essence of the problems, given the complexity involved. Nevertheless, if

an interesting and essential characteristic is discovered in a simplified model, there is a possibility that this characteristic is also

embedded in an extended model derived from the simplified version. From this perspective, we initiated our analysis with some

simplified models. However, our exploration didn’t stop at the discovery of characteristics identified through its analyses; we

continued defining and researching even more complex (extended) models. Through this approach, our research has progressed

towards models providing deeper insights for real-world problems. The models under this study have undergone an evolution

over time.



Chapter 3

Classification of Models

3.1 Model Classification Factors
The paper categorizes models based on the following four factors:

(A) The first factor is whether selling model or buying model, represented as:

◦ Selling model → M.

◦ Buying model→ M̃.

(B) The second factor is the quitting penalty price ρ (see A7(p.12) ), classified as:

◦ Model 1 in which the quitting penalty price ρ is not available.

◦ Model 2 in which the only terminal quitting penalty price ρ is available.

◦ Model 3 in which both terminal quitting penalty price ρ and intervening quitting penalty ρ are available.

(C) The third factor is whether R-mechanism or P-mechanism (see Section 1.3(p.4) ), denoted as:

◦ R-mechanism-model (R-model)→ [R].
◦ P-mechanism-model (P-model)→ [P].

(D) Thelast factor is whether search-Enforced-model or search-Allowed-model (see A5(p.11) ), symbolized as:

◦ search-Enforced-model (sE-model)→ [E].

◦ search-Allowed-model (sA-model)→ [A].
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3.2 Tables of Models

3.2.1 No-Recall-Model

Let us designate sE-model with no recall by

M:x[X][E] (M̃:x[X][E]) x = 1, 2, 3, X = R,P, ‡

and sA-model with no recall by

M:x[X][A] (M̃:x[X][A]) x = 1, 2, 3, X = R,P.

Then let us define the set

Q⟨M :x[X]⟩ def
= {M:x[R][X], M̃:x[R][X],M:x[P][X], M̃:x[P][X]}, x = 1, 2, 3, X = E, A,

called the quadruple-asset-trading-models-with-no-recall, consisting of the 24 models in the table below:

Table 3.2.1: Twenty Four No-recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{M:1[E]} = { M:1[R][E], M̃:1[R][E], M:1[P][E], M̃:1[P][E] }
Q{M:1[A]} = { M:1[R][A], M̃:1[R][A], M:1[P][A], M̃:1[P][A] }

Q{M:2[E]} = { M:2[R][E], M̃:2[R][E], M:2[P][E], M̃:2[P][E] }
Q{M:2[A]} = { M:2[R][A], M̃:2[R][A], M:2[P][A], M̃:2[P][A] }

Q{M:3[E]} = { M:3[R][E], M̃:3[R][E], M:3[P][E], M̃:3[P][E] }
Q{M:3[A]} = { M:3[R][A], M̃:3[R][A], M:3[P][A], M̃:3[P][A] }

3.2.2 Recall-Model

Let us designate sE-model with recall by

rM:x[X][E] (rM̃:x[X][E]) x = 1, 2, 3, X = R,P,
and sA-model with recall by

rM:x[X][A] (rM̃:x[X][A]) x = 1, 2, 3, X = R,P.
Then let us define the set

Q⟨rM :x[X]⟩ def
= {rM:x[R][X], rM̃:x[R][X], rM:x[P][X], rM̃:x[P][X]}, x = 1, 2, 3, X = E, A,

called the quadruple-asset-trading-models-with-recall, consisting of the 24 models in the table below:

Table 3.2.2: Twenty Four Recall-Models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E] }
Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A] }

Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E], rM̃:2[P][E] }
Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A], rM̃:2[P][A] }

Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E], rM̃:3[P][E] }
Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A], rM̃:3[P][A] }

3.3 Structured-Unit-of-Models
Let us refer to the set of 24 models defined in each of Tables 3.2.1(p.16) and 3.2.2(p.16) as the structured-unit-of-models. Here note

that all models within each structured-unit-of-model are not ones blindly defined but ones systematically and inevitably defined.

The big difference from all other studies that have been made by many researchers, including the authors in the past, lies in

clarifying the overall interconnectedness among these models.

‡Throughout the paper, the model of the asset buying problem (ABP) is represented by the symbol upon which the tilde “˜” is capped
like M̃.
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3.4 Decisions

What a leading-trader should determine in each of models defined in Tables 3.2.1(p.16) and 3.2.2(p.16) are as follows:

⟨1⟩ When to initiate the process (for all models) (see Section 8.2.4(p.44) ).

⟨2⟩ Whether or not to accept the price proposed by a counter-trader (only for R-model) (see Section 8.2.1(p.43) ),

⟨3⟩ What price to post (only for P-model) (see Section 8.2.2(p.44) ),

⟨4⟩ Whether or not to conduct the search (only for sA-model) (see Section 8.2.3(p.44) ),

3.5 Trading Problem with Negative Trading Price
In A8(p.12) we defined a price ξ on (−∞,∞). However, this seemingly unrealistic assumption can be justified by the following

reason. First, let us note here that “ sell” means “deliver” and “buy” means “receive”; more precisely speaking:

◦ In a selling problem, a seller (leading-trader) delivers the asset to a buyer (counter-trader), who receives it from the seller.

◦ In a buying problem, a buyer (leading-trader) receives the asset from a seller (counter-trader), who delivers it to the buyer.

The above two scenarios can be schematized as below.

leading-trader counter-trader
↓ ↓

selling problem: seller (delivering-side) ↔ (recieving-side) buyer

buying problem: buyer (recieving-side) ↔ (delivering-side) seller

In other words, “selling problem” and “buying problem” can be said to be “delivering problem” and “receiving problem”

respectively. Now let us consider here a transaction in which the asset traded there is a worthless debris such as surplus soil,

concrete blocks and so on which are disposed of when a building is broken up. In this case, a receiving-side (buyer), in whether

selling problem or buying problem, rightly requires some amount of money as a disposal cost nevertheless being a buyer. Seeing

the problem from the standpoint of the seller (delivering-side), the seller gives some amount of money to the buyer (receiving-

side) nevertheless being a seller. This interpretation implies that the trading problem stated above can be regarded as “a

trading problem with a negative trading price” whether selling problem or buying problem. To discuss the trading problem

more generally for the above reason, expanding the range of the trading price to (−∞,∞) can be said to be reasonable from a

practical viewpoint. See Section A7.5(p.326) for a further economic implication.

3.6 Symbols of Models
In the paper we will sometimes use the following symbols for the no-recall-model.

◦ By M:x[R/P][X] let us denote M:x[R][X] and M:x[P][X].
◦ By M̃:x[R/P][X] let us denote M̃:x[R][X] and M̃:x[P][X].
◦ By M/M̃:x[R/P][X] let us denote M:x[R/P][X] and M̃:x[R/P][X].
◦ By M:1/2/3[X][X] let us denote M:1[X][X], M:2[X][X], and M:3[X][X].
◦ By M:x[X][E/A] let us denote M:x[X][E] and M:x[X][A].
◦ By M̃:1/2/3[X][X] let us denote M̃:1[X][X], M̃:2[X][X], and M̃:3[X][X].
◦ By M̃:x[X][E/A] let us denote M̃:x[X][E] and M̃:x[X][A].

Also for the recall-model we define the same symbols, say rM/M̃:x[R/P][X], rM̃:x[R/P][X], · · ·
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Chapter 4

Definitions of Models

4.1 No-Recall-Model

4.1.1 Model 1

4.1.1.1 Search-Enforced-Model: Q⟨M :1[E]⟩ = {M:1[R][E], M:1[P][E], M̃:1[R][E], M̃:1[P][E]}
4.1.1.1.1 M:1[R][E] and M:1[P][E]

These two are the most basic models of the asset selling problem [8,Ber1995,p.158-162][46,You1998], which are defined by the

following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for buyers (see (A5a(p.11) )),

hence the search cost s ≥ 0 is paid at every point in time (see A4(p.11) ).

A2. After the search has been conducted at a point in time t > 0, a buyer certainly appears at time t− 1 (next point in time),

i.e., the buyer appearing probability λ = 1 (see A6(p.12) ).

A3. The prices ξ, ξ′, ξ′′, · · · proposed by successively appearing buyers in M:1[R][E] and the reservation prices ξ, ξ′, ξ′′, · · ·
of successively appearing buyers in M:1[P][E] are both assumed to be independent identically distributed random variables

having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ} (see A9(p.12) ).†

A4. Both terminal quitting penalty price ρ and intervening quitting penalty price ρ are not available (see A7(p.12) ).

A5. The selling process stops/terminates at the point in time when the asset is sold to an appearing buyer (see A3(p.11) ).

- time• • • • • • •
01· · ·t− 1tt + 1t + 2

ξ
z′

6

M:1[R][E]: buying price ξ proposed by an appearing buyer (counter-trader)
M:1[P][E]: selling price z proposed by the seller (leading-trader)

6
?
s

?
s

previous present next deadline

search cost

Figure 4.1.1: M:1[R][E] and M:1[P][E]

The objective is to maximize the total expected present discounted profit, i.e., the expected present discounted value of the

price for which the asset is sold, minus the total expected present discounted value of the search costs which will be paid until

the process stops with selling the asset.

Remark 4.1.1

(a) The starting time τ must be greater than 0, i.e., τ > 0 for the following reason. If τ = 0, there exists no buyer at time 0,
hence the process must stop without selling the asset, which contradicts A2(p.11) .

(b) Suppose the process has proceeded up to time 1. Then, since the search is conducted at that time due to A1(p.19) , a buyer
certainly appears at time 0 (deadline) due to A2(p.19) .

1. In M:1[R][E], due to A2(p.11) the seller must sell the asset to the buyer however small the price proposed by the buyer
may be.

2. In M:1[P][E], the seller must propose the price a to the buyer where a is the lower bound of the distribution function
F for the reservation price ξ of the buyer (see Figure 2.2.4(p.13) ). Then, the buyer certainly buys the asset.

†ξ and ξ represent a random variable and a realized value respectively.
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4.1.1.1.2 M̃:1[R][E] and M̃:1[P][E]

These two are both the models of the asset buying problem, defined by the following assumptions:

A1. Once the process initiates, at every point in time after that it is enforced to conduct the search for sellers, hence the

search cost s ≥ 0 is paid at every point in time.

A2. After the search has been conducted at a point in time t > 0, a seller certainly appears at time t− 1 (next point in time),

i.e., the seller appearing probability λ = 1.

A3. The prices ξ, ξ′, ξ′′, · · · proposed by successively appearing sellers in M̃:1[R][E] and the reservation prices ξ, ξ′, ξ′′, · · ·
of successively appearing sellers in M̃:1[P][E] are both assumed to be independent identically distributed random variables

having a known continuous probability distribution function F (ξ) = Pr{ξ ≤ ξ}.†

A4. Both terminal quitting penalty price ρ and intervening quitting penalty price ρ are not available.

A5. The buying process stops at the point in time when the asset is bought by an appearing seller.
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M̃:1[R][E]: selling price ξ proposed by an appearing seller (opposite-trader)

M̃:1[P][E]: buying price z proposed by the buyer (leading-trader)
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Figure 4.1.2: M̃:1[R][E] and M̃:1[P][E]

The objective is to minimize the total expected present discounted cost, i.e., the expected present discounted value of the price

for which the asset is bought, plus the total expected present discounted value of the search costs which will be paid until the

process stops with buying the asset.

Remark 4.1.2 Here it should be noted that the direction of the vectors representing the trading price (ξ, z, and z′) and that
of the search cost (s) are converse in 4.1.1(p.19) but identical in 4.1.2(p.20) .

4.1.1.2 Search-Allowed-Model 1: Q⟨M :1[A]⟩ = {M:1[R][A], M:1[P][A], M̃:1[R][A], M̃:1[P][A]}
4.1.1.2.1 M:1[R][A] and M:1[P][A]

These two are the same as M:1[R][E] and M:1[P][E] in Section 4.1.1.1.1(p.19) only except that A1(p.19) is changed into as follows:

A1. At every point in time t > 0, it is allowed to skip the search (see (A5b(p.12) )); in other words, the seller has an option

whether to conduct the search or to skip.

Remark 4.1.3

(a) The starting time τ must be greater than 0, i.e., τ > 0 for the same reason as in Remark 4.1.1(p.19) (a).

(b) Suppose the process has proceeded up to time t = 1. Then, if the search is skipped at that time, no buyer appears
at time t = 0, hence the seller is faced with the situation of having to quit the process without selling the asset, which
contradicts A2(p.11) . Accordingly, also in this case the search must be necessarily conducted at time t = 1; as a result, a buyer
certainly appears at time 0 due to the assumption A2.

4.1.1.2.2 M̃:1[R][A] and M̃:1[P][A]

These two are the same as M̃:1[R][E] and M̃:1[P][E] in Section 4.1.1.1.2(p.20) only except that after the process has initiated, it is

allowed to skip the search.

4.1.2 Model 2

4.1.2.1 Search-Enforced-Model 2: Q⟨M :2[E]⟩ = {M:2[R][E], M:2[P][E], M̃:2[R][E], M̃:2[P][E]}
The quadruple models indicated in the above brace are the same as in Section 4.1.1.1.1(p.19) only except that the assumptions

A2(p.19) and A4(p.19) are changed into as follows:

A2. After the search has been conducted at time t > 0, a buyer appears at the next point in time with a probability λ ≤ 1.

A4. The terminal quitting penalty price ρ is available.

Remark 4.1.4 In these models it is possible to stop the process by accepting the terminal quitting penalty price ρ at time 0
(deadline), hence the starting time τ = 0 is permitted since the leading-trader can quit the process with accepting the ρ at
time 0 even if no counter-trader exists at time 0. Accordingly, in these models it follows that the starting time τ is greater than
or equal to 0, i.e., τ ≥ 0.

†ξ and ξ represent a random variable and a realized variable respectively.
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4.1.2.2 Search-Allowed-Model 2: Q⟨M :2[A]⟩ = {M:2[R][A], M:2[P][A], M̃:2[R][A], M̃:2[P][A]}
The quadruple models indicated in the above brace are the same as in Section 4.1.2.1(p.20) only except that A1(p.19) is changed as

follows:

A1. After the process has initiated, it is allowed to skip the search at every point in time t > 0.

4.1.3 Model 3

4.1.3.1 Search-Enforced-Model 3: Q⟨M :3[E]⟩ = {M:3[R][E], M:3[P][E], M̃:3[R][E], M̃:3[P][E]}
The quadruple models are the same as in Section 4.1.2.1(p.20) only except that the assumption A4(p.20) is changed as follows:

A4. In addition to the terminal quitting penalty price ρ, the intervening quitting penalty price ρ is also available.

4.1.3.2 Search-Allowed-Model 3:Q⟨M :3[A]⟩ = {M:3[R][A], M:3[P][A], M̃:3[R][A], M̃:3[P][A]}
The quadruple models indicated in the above brace are the same as those in Section 4.1.3.1(p.21) only except that after the process

has initiated, it is allowed to skip the search.

4.2 Recall-Model
See Chap. 25(p.249) .

4.3 Spaces
Let us refer to λ ∈ (0, 1], β ∈ (0, 1], s ∈ [0,∞), and ρ ∈ (−∞,∞) as the parameter of models, all of which are independent of

the distribution function F . Then, let p = (λ, β, s) for Model 1 and p = (λ, β, s, ρ) for Models 2 and 3, which are called the

parameter vector. We represent the set of all possible p’s by

P = {p
∣∣ λ = 1, 0 < β ≤ 1, 0 ≤ s} for Model 1, (4.3.1)

P = {p
∣∣ 0 < λ ≤ 1, 0 < β ≤ 1, 0 ≤ s, −∞ < ρ <∞} for Models 2,3, (4.3.2)

called the total parameter space, simply total-P-space . Then, let us refer to the direct product (Cartesian product) of the

total-P-space P and total-DF-space F (see (2.2.5(p.13) )), i.e.,

P ×F = {(p, F )
∣∣ p ∈P, F ∈ F} (4.3.3)

as the total-P/DF-space.
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Chapter 5

Different Variations

In this chapter let us present various variations of models defined in Chap. 4(p.19) .

5.1 No-Recall-Model

Below are variations of models defined in Section 4.1(p.19) .

⟨1⟩ Limited search budget [24,Iku1992]† This model involves a limited total budget allocated for search activities. The

challenge lies in determining how to distribute this limited budget among search activities at each time point throughout

the planning horizon.

⟨2⟩ Price mechanism switching [17,Eem2006] [15,Eem2004]∗ This model allows for the switching of price mechanisms between

R-mechanism and P-mechanism at each time point during the planning horizon.

⟨3⟩ Several search areas [25,Iku1995]‡ For instance, consider Tokyo, Kyoto, and Osaka as potential areas where the leading-

trader can search for counter-traders. If the leading-trader is in Tokyo today, the decision arises tomorrow whether to

remain in Tokyo, move to Kyoto, or relocate to Osaka ?

⟨4⟩ Uncertain deadline [18,Eem2009] In Example 1.3.1(p.5) , the return home date is not yet definite; it could be imminent, one

week later, or the directive itself might be rescinded.

5.2 Recall-Model

Below are variations of models defined in Section 4.2(p.21) .

⟨5⟩ Uncertain recall [31,Kar1977] [2,Aki2014] [23,Iku1988]§ This is the model in which the recall of counter-traders once

rejected is uncertain.

⟨6⟩ Costly recall [28,Kan1999],[29,Kan2005] This is the model in which some cost must be paid to recall counter-traders once

rejected.

⟨7⟩ Reserved recall [41,Sai1998],[42,Sai1999] This is the model in which the availability of recall can be reserved by paying

some deposit

5.3 Others

In addition to the above variations, in the future we will have other different variations which are not yet posed by any

researchers. For example:

⟨8⟩ Multiple assets model This is the model in which multiple assets are traded. In the model, the optimal decision rule

depends on the number of assets remaining not yet being traded.

⟨9⟩ Lasting effect of search activity This is the model in which the effect of the search activity that was taken at a certain

point in time lasts for a while. The simplest case of the variation is that its effect disappears with a given probability p at

the next point in time; hence, it lasts with the probability 1− p.

...

†https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.35 02 172.pdf
∗https://commons.sk.tsukuba.ac.jp/discussion/page/27 No.1098 (2004)
‡https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.38 01 089.pdf
§https://www.orsj.or.jp/˜archive/pdf/e mag/Vol.31 02 145.pdf
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5.4 Future Subjects�� ���� ��F.S. 1 We can consider the structured-unit-of-model also for each of the 9 variations presented above. Since each

structured-unit-of-model consists of 24 model, it follows that the total number of variations amounts to 216 = 24× 9. Analyses

of all of them remain as subjects of future study (see Section 32.1(p.297) ).



Chapter 6

Underlying Functions

This chapter defines some functions called the underlying function, which will be used to derive the system of optimality

equations of the 24 model in Table 3.2.1(p.16) .

6.1 Definition

6.1.1 T , L , K , and L of Type R
For any F ∈ F let us define

T (x) = E[max{ξ − x, 0}] (6.1.1)

=
∫∞
−∞ max{ξ − x, 0}f(ξ)dξ, †‡ (6.1.2)

and then define

L (x) = λβT (x)− s, (6.1.3)

K (x) = λβT (x)− (1− β)x− s, § (6.1.4)

L (s) = L (λβµ− s), (6.1.5)

κ = λβT (0)− s (6.1.6)

= L (0) = K (0) = λβT (0)− s (6.1.7)

Let us refer to each of T , L , K , and L as the underlying function of Type R and to κ as the κ-value of Type R. The formula

below will be sometimes used in the rest of the paper.

K (x) + (1− β)x = L (x), (6.1.8)

K (x) + x = L (x) + βx, (6.1.9)

λβE[max{ξ, x}] + (1− λ)βx− s = K (x) + x (6.1.10)

6.1.2 T̃ , L̃ , K̃ , and L̃ of Type R
For any F ∈ F let us define

T̃ (x) = E[min{ξ − x, 0}] (6.1.11)

=
∫∞
−∞ min{ξ − x, 0}f(ξ)dξ, (6.1.12)

and then define

L̃ (x) = λβT̃ (x) + s, (6.1.13)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (6.1.14)

L̃ (s) = L̃ (λβµ+ s), (6.1.15)

κ̃ = λβT̃ (0) + s (6.1.16)

= L̃ (0) = K̃ (0). (6.1.17)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype R and to κ̃ as the κ̃-value of T̃ype R.

†See [14,DeGroot70].
‡See Figure A 7.3(p.324) (I) ,
§See Figure A 7.3(p.324) (II) ,
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6.1.3 T , L , K , and L of Type P
For any F ∈ F let us define

p(z) = Pr{z ≤ ξ}, (6.1.18)

T (x) = max
z

p(z)(z − x)† (6.1.19)

and then define

L (x) = λβT (x)− s, (6.1.20)

K (x) = λβT (x)− (1− β)x− s, (6.1.21)

L (s) = L (λβa− s), (6.1.22)

κ = λβT (0)− s (6.1.23)

= L (0) = K (0) (6.1.24)

Let us refer to each of T , L , K , and L as the underlying function of Type P and to κ as the κ-value of Type P. Let us denote
z maximizing p(z)(z − x) by z(x) if it exists, i.e.,

T (x) = p(z(x))(z(x)− x). (6.1.25)

Definition 6.1.1 If there exists multiple z(x), let us define the smallest of them as z(x).

Furthermore, for convenience of later discussions, let us define

a⋆ = inf{x
∣∣ T (x) + x > a} = inf{x

∣∣ T (x) > a− x}, (6.1.26)

x⋆ = inf{x | z(x) > a}. (6.1.27)

Noting that (6.1.18(p.26) ) can be rewritten as p(z) = 1−Pr{ξ < z} = 1−Pr{ξ ≤ z} due to the assumption of F being continuous

(see A9(p.12) ), we have p(z) = 1− F (z). Accordingly, it can be immediately seen that

p(z)

{
= 1, z ≤ a · · · (1) due to (2.2.1 (1) (p.12) ),

< 1, a < z · · · (2) due to (2.2.1 (2,3) (p.12) ),
(6.1.28)

p(z)

{
> 0, z < b · · · (1), due to (2.2.1 (1,2) (p.12) ),

= 0, b ≤ z · · · (2), due to (2.2.1(p.12) )3.
(6.1.29)

In general p(z)(z − x) can be depicted as below.

1

a bx

p(z)

p(z)(z−x)

•
z(x)

z−
x

z
•TP (z(x))

Figure 6.1.1: Graph of p(z)(z − x)

When F is the uniform distribution function on [a, b], we have

a⋆ = 2a− b (see (A 7.6 (1) (p.325) ) ). (6.1.30)

6.1.4 T̃ , L̃ , K̃ , and L̃ of Type P
For any F ∈ F let us define

p̃(z) = Pr{ξ ≤ z}, (6.1.31)

T̃ (x) = min
z

p̃(z)(z − x), (6.1.32)

†See Figure A 7.4(p.324) .
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and then define

L̃ (x) = λβT̃ (x) + s, (6.1.33)

K̃ (x) = λβT̃ (x)− (1− β)x+ s, (6.1.34)

L̃ (s) = L̃ (λβb+ s), (6.1.35)

κ̃ = λβT̃ (0) + s (6.1.36)

= L̃ (0) = K̃ (0). (6.1.37)

Let us refer to each of T̃ , L̃ , K̃ , and L̃ as the underlying function of T̃ype P and to κ̃ as the κ̃-value of T̃ype P. Let us denote
z minimizing p̃(z)(z − x) by z(x) if it exists, i.e.,

T̃ (x) = p̃(z(x))(z(x)− x). (6.1.38)

Definition 6.1.2 If there exists multiple z(x), let us define the largest of them as z(x).

Furthermore, for convenience of later discussions, let us define

b⋆ = sup{x
∣∣ T̃ (x) + x < b} = sup{x

∣∣ T̃ (x) < b− x}, (6.1.39)

x̃⋆ = sup{x | z(x) < b}. (6.1.40)

Noting that (6.1.31(p.26) ) can be rewritten as p̃(z) = F (z), we can immediately see that

p̃(z)

{
= 0, z ≤ a · · · (1) due to (2.2.1 (1) (p.12) ),

> 0, a < z · · · (2) due to (2.2.1 (2.3) (p.12) ),
(6.1.41)

p̃(z)

{
< 1, z < b · · · (1) due to (2.2.1 (1,2) (p.12) ),

= 1, b ≤ z · · · (2) due to (2.2.1 (3) (p.12) ).
(6.1.42)

6.2 Solutions
The solutions defined below are commonly used in the analyses of all models in the whole paper.

(a) Let us define the solutions of the equations L (x) = 0, K (x) = 0, and L (s) = 0 (whether Type R or Type P) by xL , xK ,

and sL respectively if they exist, i.e.,

L (xL) = 0 · · · (1), K (xK) = 0 · · · (2), L (sL) = 0 · · · (1). (6.2.1)

If multiple solutions exist for each of the above three equations, we employ the smallest as its solution.

(b) Let us define the solutions of the equations L̃ (x) = 0, K̃ (x) = 0, and L̃ (s) = 0 (whether T̃ype R or T̃ype P) by x
L̃ , x

K̃ ,

and sL̃ respectively if they exist.

L̃ (xL̃ ) = 0 · · · (1), K̃ (xK̃) = 0 · · · (2), L̃ ( sL̃) = 0 · · · (1). (6.2.2)

If multiple solutions exist for each of the above three equations, we employ the largest as its solution.

6.3 Primitive Underlying Functions and Derivative Underlying Functions
Sometimes let us refer to each of T - and T̃ -functions as the primitive underlying function and to each of L-, K-, L-, L̃-, L̃-, and
L̃-functions as the derivative underlying function, which are defined by use of primitive underlying functions T and T̃ .

6.4 Identical Representation and Explicit Representation
In the rest of the paper, when we need to distinguish

T , L ,K , L , κ, xL , xK , sL , T̃ , L̃ , K̃ , L̃ , κ̃, x
L̃ , x

K̃ , sL̃ (6.4.1)

between Type R and Type P, let us denote them by

TR ,LR ,KR ,LR ,κR, xLR,xKR, sLR, T̃R ,L̃R ,K̃R ,L̃R ,κ̃R, xL̃R, xK̃R, sL̃R, (6.4.2)

TP , LP ,KP , LP , κP, xLP, xKP, sLP , T̃P , L̃P , K̃P , L̃P ,κ̃P, xL̃P, xK̃P, sL̃P. (6.4.3)

Let us refer to (6.4.1) as the identical representation and to (6.4.2) and (6.4.3) as the explicit representation.
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6.5 Characteristic Vector and Characteristic Element
Let us here define the two vectors, CR consisting of (6.1.3(p.25) )-(6.1.6(p.25) ) and C̃R consisting of (6.1.13(p.25) )-(6.1.16(p.25) ), i.e,

CR = (LR , KR ,LR , κR), C̃R = (L̃R , K̃R , L̃R , κ̃R).

Likewise, let us define the two vectors, CP consisting of (6.1.20(p.26) )-(6.1.23(p.26) ) and C̃P consisting of

(6.1.33(p.27) )-(6.1.36(p.27) ), i.e.,

CP = (LP , KP ,LP , κP), C̃P = (L̃P , K̃P , L̃P , κ̃P).

Furthermore, adding T - and T̃ -functions to the above vectors, let us define

CT
R = (TR , LR , KR ,LR , κR), C̃T

R = (T̃R , L̃R , K̃R , L̃R , κ̃R),

CT
P = (TP , LP , KP ,LP , κP), C̃T

P = (T̃P , L̃P , K̃P , L̃P , κ̃P).

Let us call each of the vectors defined above the characteristic vector and its element the characteristic element. In the identical

representation, the above vectors are all represented by C , C̃ , CT , and C̃T respectively.



Chapter 7

Systems of Optimality Equations

In this chapter we derive the system of optimality equations (SOE) for each of the 24 models in Table 3.2.1(p.16)

(see Chap. 26(p.251) for models in Table 3.2.2(p.16) ).

7.1 Preliminary

Definition 7.1.1 Throughout the paper let us represent the action

“Conduct the search at time t” (“Skip the search at time t”)

as Conductt (Skipt) for short. Then, when this action is simply optimal, indifferently optimal, or strictly optimal, let us
represent it as respectively

Conductt△ (Skipt△), Conductt∥ (Skipt∥), or ConducttN (SkiptN).

Remark 7.1.1 (relationship between SOE and assertion) In general, a model M of a decision process, whether in this
paper or not, has the system of optimality equations, denoted by SOE{M}, which should be said to be a mirror exhaustively
reflecting the entire aspect of the model M. In other words, SOE{M} involves the exhaustive information of the model M as if
a gene has the exhaustive information of a life. This implies that any assertion which is characterized by the sequence {Vt}
generated from SOE{M} can be regarded as an assertion on the model M; conversely, an assertion which is not characterized by
the sequence {Vt} cannot be said to be an assertion on the M.

Below let us represent “buyer (seller) proposing a price w” by “buyer (seller) w” for short.

7.2 No-Recall-Model
7.2.1 Search-Allowed-Model

7.2.1.1 Model 1

Let us note here that λ = 1 is assumed in this model.

7.2.1.1.1 M:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then, we have

v0(w) = w, (7.2.1)

vt(w) = max{w, Vt}, t > 0, (7.2.2)

where Vt is the maximum of the total expected present discounted profit from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)]− s = βE[ξ]− s = βµ− s (see Remark 4.1.3(p.20) (b)), (7.2.3)

Vt = max{C : βE[vt−1(ξ)]− s, S : βVt−1}, t > 1, (7.2.4)

where C and S represent the actions of Conducting the search and Skipping the search respectively. Then, since vt−1(ξ) =

max{ξ, Vt−1} = max{ξ−Vt−1, 0}+Vt−1, we have E[vt−1(ξ)] = T (Vt−1)+Vt−1 for t > 1 (see (6.1.1(p.25) )), hence (7.2.4(p.29) ) can

be written as

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (6.1.4(p.25) ) with λ = 1) (7.2.5)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (6.1.8(p.25) )). (7.2.6)

� SOE{M:1[R][A]} is given by the set of (7.2.1(p.29) ) – (7.2.4(p.29) ). However, since the sequence {Vt} is generated from the two

expressions (7.2.3(p.29) ) and (7.2.5(p.29) ), due to Remark 7.1.1(p.29) it can be reduced to only the two in Table 7.4.1(p.41) (I).
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Now, let us here define

St = β(E[vt−1(ξ)]− Vt−1)− s, t > 1. (7.2.7)

Then, (7.2.4(p.29) ) can be rewritten as

Vt = max{βE[vt−1(ξ)]− βVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 1, (7.2.8)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), (7.2.9)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (7.2.10)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.11)

St > (<) 0 ⇒ ConducttN (SkiptN). (7.2.12)

Then, from (7.2.2(p.29) ) we can rewrite (7.2.7(p.30) ) as

St = β(E[max{ξ, Vt−1}]− Vt−1)− s = βE[max{ξ − Vt−1, 0}]− s.

Accordingly, from (6.1.1(p.25) ) and (6.1.3(p.25) ) with λ = 1 we have

St = βT (Vt−1)− s (7.2.13)

= L(Vt−1), t > 1. (7.2.14)

7.2.1.1.2 M̃:1[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = w, (7.2.15)

vt(w) = min{w, Vt}, t > 0, (7.2.16)

where Vt is the minimum of the total expected present discounted cost from rejecting the proposed price w. Then, we have

V1 = βE[v0(ξ)] + s = βE[ξ] + s = βµ+ s, (7.2.17)

Vt = min{βE[vt−1(ξ)] + s, βVt−1}, t > 1. (7.2.18)

Then, since vt−1(ξ) = min{ξ, Vt−1} = min{ξ−Vt−1, 0}+Vt−1, we have E[vt−1(ξ)] = T̃ (Vt−1)+Vt−1 for t > 1 (see (6.1.11(p.25) )),

hence (7.2.18(p.30) ) can be written as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.14(p.25) ) with λ = 1) (7.2.19)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1 (see (6.1.14(p.25) ) and (6.1.13(p.25) ) with λ = 1). (7.2.20)

� SOE{M̃:1[R][A]} can be reduced to (7.2.17(p.30) ) and (7.2.19(p.30) ), listed in Table 7.4.1(p.41) (II).

Remark 7.2.1 Note here that the same notations vt(w) and Vt are used for both M:1[R][A] and M̃:1[R][A]. For explanatory
convenience, later on we sometimes represent the vt(w) and Vt for M̃:1[R][A] by ṽt(w) and Ṽt respectively. Then (7.2.15(p.30) )-
(7.2.18(p.30) ) are written as respectively

ṽ0(w) = w,

ṽt(w) = min{w, Ṽt},

Ṽ1 = βµ+ s,

Ṽt = min{βE[ṽt−1(ξ)] + s, βṼt−1}.
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Now, let us here define
S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 1. (7.2.21)

Then, (7.2.18(p.30) ) can be rewritten as

Vt = min{βE[vt−1(ξ)]− βVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 1, (7.2.22)

which can be rewritten as, due to Def. 7.1.1(p.29) ,
S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (7.2.23)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (7.2.24)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.25)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (7.2.26)

Then, from (7.2.16(p.30) ) we can rewrite (7.2.21(p.31) ) as

S̃t = β(E[min{ξ, Vt−1}]− Vt−1) + s = βE[min{ξ − Vt−1, 0}] + s.

Accordingly, from (6.1.11(p.25) ) and (6.1.13(p.25) ) with λ = 1 we have

S̃t = βT̃ (Vt−1) + s (7.2.27)

= L̃(Vt−1), t > 1. (7.2.28)

7.2.1.1.3 M:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1 (see Remark 4.1.3(p.20) (b)), there exists a

buyer at time 0. Suppose the process has proceeded up to time 0. Then, since the seller must necessarily sell the asset at that

time, he must propose the price a† to a buyer appearing at that time (see Remark 4.1.1(p.19) (b2)), thus we have

z0 = a. (7.2.29)

Hence, the profit that the seller obtains at time 0 becomes a, i.e.,

v0 = a. (7.2.30)

Now, since the search is conducted at time 1 (see Remark 4.1.3(p.20) (b)), we have

V1 = βv0 − s = βa− s. (7.2.31)

In addition, we have
Vt = max{βvt−1 − s, βVt−1}, t > 1. (7.2.32)

If the seller proposes a price z, the probability of a buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see
(6.1.18(p.26) )), hence we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (7.2.33)

due to (6.1.19(p.26) ), implying that the optimal price zt which the seller should propose is given by

zt = z(Vt), t > 0, (see (6.1.25(p.26) )). (7.2.34)

Now, since vt−1 = T (Vt−1) + Vt−1 for t > 1, we can rearrange (7.2.32(p.31) ) as follows

Vt = max{βT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (6.1.21(p.26) ) with λ = 1) (7.2.35)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (see (6.1.21(p.26) ) and (6.1.20(p.26) ) with λ = 1) (7.2.36)

� SOE{M:1[P][A]} is given by (7.2.31(p.31) ) and (7.2.35(p.31) ), listed in Table 7.4.1(p.41) (III).

Now, let us here define
St = β(vt−1 − Vt−1)− s, t > 1. (7.2.37)

Then, (7.2.32(p.31) ) can be rewritten as

†The lower bound of the distribution function for the reservation price (maximum permissible buying price) of the buyer.



32

Vt = max{βvt−1 − βVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 1, (7.2.38)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt). (7.2.39)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (7.2.40)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.41)

St > (<) 0 ⇒ ConducttN (SkiptN). (7.2.42)

Then, from (7.2.33(p.31) ) with t − 1 we have vt−1 = T (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T (Vt−1), thus, noting (6.1.20(p.26) ), we

can rewrite (7.2.37(p.31) ) as below

St = βT (Vt−1)− s (7.2.43)

= L(Vt−1), t > 1. (7.2.44)

7.2.1.1.4 M̃:1[P][A]
By vt (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. In this model, since the search must be necessarily conducted at time 1, there exists a seller at time 0. Suppose

the process has proceeded up to time 0. Then, since the buyer must necessarily buy the asset at that time, he must propose

the price b† to a seller appearing at that time, thus we have

z0 = b. (7.2.45)

Hence, the cost that the buyer pays at time 0 becomes b, i.e.,

v0 = b. (7.2.46)

Now, since the search is conducted at time 1, we have

V1 = βv0 + s = βb+ s. (7.2.47)

In addition, we have
Vt = min{βvt−1 + s, βVt−1}, t > 1. (7.2.48)

If the buyer proposes a price z, the probability of a seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (6.1.31(p.26) )), hence

we have

vt = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (7.2.49)

due to (6.1.32(p.26) ), implying that the optimal price zt which the buyer should propose is given by

zt = z(Vt), t > 0, (see (6.1.38(p.27) )). (7.2.50)

Now, since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1, we can rearrange (7.2.48(p.32) ) as

Vt = min{βT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.34(p.27) ) with λ = 1) (7.2.51)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (6.1.34(p.27) ) and (6.1.33(p.27) ) with λ = 1) (7.2.52)

� SOE{M̃:1[P][A]} is given by (7.2.47(p.32) ) and (7.2.51(p.32) ), listed in Table 7.4.1(p.41) (IV).

Now, let us here define

S̃t = β(vt−1 − Vt−1) + s, t > 1. (7.2.53)

Then, (7.2.48(p.32) ) can be rewritten as

Vt = min{βvt−1 − βVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 1, (7.2.54)

implying that

†The upper bound of the distribution function for the reservation price (minimum permissible selling price) of the seller
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S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (7.2.55)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (7.2.56)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.57)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (7.2.58)

Then, from (7.2.49(p.32) ) with t − 1 we have vt−1 = T̃ (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T̃ (Vt−1), thus, noting (6.1.33(p.27) ), we

can rewrite (7.2.53(p.32) ) as below

St = βT̃ (Vt−1) + s (7.2.59)

= L̃(Vt−1), t > 1. (7.2.60)

7.2.1.2 Model 2

7.2.1.2.1 M:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively. Then we have

v0(w) = max{w, ρ}, (7.2.61)

vt(w) = max{w, Vt}, t > 0, (7.2.62)

where
Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (7.2.63)

Let us here define
V0 = ρ. (7.2.64)

Then (7.2.62(p.33) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, Vt}, t ≥ 0. (7.2.65)

Since vt−1(ξ) = max{ξ, Vt−1} = max{ξ− Vt−1, 0}+ Vt−1 = T (Vt−1) + Vt−1 for t > 0 (see (6.1.1(p.25) )), from (7.2.63(p.33) ) we have

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (6.1.4(p.25) )) (7.2.66)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (6.1.8(p.25) )). (7.2.67)

� SOE{M:2[R][A]} is given by (7.2.64(p.33) ) and (7.2.66(p.33) ), listed in Table 7.4.3(p.41) (I).

Let us here define

St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (7.2.68)

Then, (7.2.63(p.33) ) can be rewritten as

Vt = max{λβE[vt−1(ξ)]− λβVt−1 − s, 0}+ βVt−1

= max{St, 0}+ βVt−1, t > 0, (7.2.69)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (7.2.70)

which can be rewritten as, due to Def. 7.1.1(p.29) ,
St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (7.2.71)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.72)

St > (<) 0 ⇒ ConducttN (SkiptN). (7.2.73)

Then, from (7.2.68(p.33) ) we can rewrite (7.2.62(p.33) ) as

St = β(E[max{ξ, Vt−1}]− Vt−1)− s = βE[max{ξ − Vt−1, 0}]− s.

Accordingly, from (6.1.1(p.25) ) and (6.1.3(p.25) ) we have

St = βT (Vt−1)− s (7.2.74)

= L(Vt−1), t > 0. (7.2.75)
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7.2.1.2.2 M̃:2[R][A]
By vt(w) (t ≥ 0) and Vt (t > 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller w and with no seller respectively. Then, we have

v0(w) = min{w, ρ}, (7.2.76)

vt(w) = min{w, Vt}, t > 0, (7.2.77)

where
Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0. (7.2.78)

Let us here define
V0 = ρ. (7.2.79)

Then (7.2.77(p.34) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, Vt}, t ≥ 0. (7.2.80)

Since vt−1(ξ) = min{ξ, Vt−1} = min{ξ−Vt−1, 0}+Vt−1 = T̃ (Vt−1)+Vt−1 for t > 0 (see (6.1.11(p.25) )), from (7.2.78(p.34) ) we have

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.14(p.25) )) (7.2.81)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 0. (see (6.1.14(p.25) ) and (6.1.13(p.25) )) (7.2.82)

� SOE{M̃:2[R][A]} is given by (7.2.79(p.34) ) and (7.2.81(p.34) ), listed in Table 7.4.3(p.41) (II).

Let us here define
S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (7.2.83)

Then, (7.2.78(p.34) ) can be rewritten as

Vt = min{λβE[vt−1(ξ)]− λβVt−1 + s, 0}+ βVt−1

= min{S̃t, 0}+ βVt−1, t > 0, (7.2.84)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (7.2.85)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (7.2.86)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.87)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (7.2.88)

Then, from (7.2.77(p.34) ) we can rewrite (7.2.83(p.34) ) as

S̃t = β(E[min{ξ, Vt−1}]− Vt−1) + s = βE[min{ξ − Vt−1, 0}] + s.

Accordingly, from (6.1.11(p.25) ) and (6.1.13(p.25) ) we have

S̃t = βT̃ (Vt−1) + s (7.2.89)

= L̃(Vt−1), t > 1. (7.2.90)

7.2.1.2.3 M:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, the seller must determine whether to accept the

terminal quitting penalty ρ or to sell the asset to the buyer. Let the ρ is accepted. Then the profit which the seller can obtain

is ρ. On the other hand, let the asset be sold to the buyer. Then since the seller must necessarily sell the asset to the buyer due

to A2(p.11) , the price a† must be proposed to the buyer; in other words, the optimal price to propose at time t = 0 is given by

z0 = a, (7.2.91)

hence the profit which the seller can obtain at that time is a. Accordingly, it follows that the profit that the seller can obtain

at time 0 is given by

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer.
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v0 = max{ρ, a}. (7.2.92)

Suppose there exists a buyer at a time t > 0. Then, since the reservation price (maximum permissible buying price) of the

buyer is ξ, if the seller proposes a price z, the probability of the buyer buying the asset is given by p(z) = Pr{z ≤ ξ} (see

(6.1.18(p.26) )). Hence we have

vt = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0, (7.2.93)

due to (6.1.19(p.26) ), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (7.2.94)

due to (6.1.25(p.26) ). Finally Vt can be expressed as follows.

V0 = ρ, (7.2.95)

Vt = max{λβvt−1 + (1− λ)βVt−1 − s, βVt−1}, t > 0. (7.2.96)

For t = 1 we have

V1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}

= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (7.2.97)

Since vt−1 = T (Vt−1) + Vt−1 for t > 1 from (7.2.93(p.35) ), we can rearrange (7.2.96(p.35) ) as follows.

Vt = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K(Vt−1) + Vt−1, βVt−1} (see (6.1.21(p.26) )) (7.2.98)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (6.1.21(p.26) ) and (6.1.20(p.26) )). (7.2.99)

� SOE{M:1[P][A]} is given by (7.2.95(p.35) ), (7.2.97(p.35) ), and (7.2.98(p.35) ), listed in Table 7.4.3(p.41) (III).

Now let us here define

St = λβ(vt−1 − Vt−1)− s, t > 0. (7.2.100)

Then (7.2.96(p.35) ) can be rewritten as

Vt = max{λβvt−1 − λβVt−1 − s, 0} − βVt−1

= max{St, 0}+ βVt−1, t > 0, (7.2.101)

implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), (7.2.102)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (7.2.103)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.104)

St > (<) 0 ⇒ ConducttN (SkiptN). (7.2.105)

Then, from (7.2.93(p.35) ) with t − 1 we have vt−1 = T (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T (Vt−1), thus, noting (6.1.20(p.26) ), we

can rewrite (7.2.100(p.35) ) as below

St = βT (Vt−1)− s (7.2.106)

= L(Vt−1), t > 0. (7.2.107)

7.2.1.2.4 M̃:2[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, the buyer must determine whether to accept the

terminal quitting penalty ρ or to buy the asset from the seller. Let the ρ is accepted. Then the cost which the buyer pays is ρ.

On the other hand, let an asset be bought from the seller. Them since the buyer must necessarily buy the asset from the seller

due to A2(p.11) , the price b† must be proposed to the seller; in other words, the optimal price to propose at time t = 0 is given by

†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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z0 = b, (7.2.108)

hence the cost which the buyer pays at that time is b. Accordingly, the cost that the buyer pays at time 0 becomes

v0 = min{ρ, b}. (7.2.109)

Suppose there exists a seller at a time t > 0. Then, since the reservation price (minimum permissible selling price) of the seller

is ξ, if the buyer proposes a price z, the probability of the seller selling the asset is given by p̃(z) = Pr{ξ ≤ z} (see (6.1.31(p.26) )).

Hence we have

vt = min
z
{p̃(z)z + (1− p(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (7.2.110)

due to (6.1.32(p.26) ), implying that the optimal buying price zt which the buyer should propose is given by

zt = z(Vt), t > 0, (7.2.111)

due to (6.1.38(p.27) ). Finally Vt can be expressed as follows.

V0 = ρ, (7.2.112)

Vt = min{λβvt−1 + (1− λ)βVt−1 + s, βVt−1}, t > 0. (7.2.113)

For t = 1 we have

V1 = min{λβv0 + (1− λ)βV0 + s, βV0}

= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}

= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (7.2.114)

Since vt−1 = T̃ (Vt−1) + Vt−1 for t > 1 from (7.2.110(p.36) ), we can rearrange (7.2.113(p.36) ) as follows.

Vt = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.34(p.27) )) (7.2.115)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= min{L̃ (Vt−1), 0}+ βVt−1, t > 1. (see (6.1.34(p.27) ) and (6.1.33(p.27) )) (7.2.116)

� SOE{M̃:2[P][A]} can be reduced to (7.2.112(p.36) ), (7.2.114(p.36) ), and (7.2.115(p.36) ), listed in Table 7.4.3(p.41) (IV).

Now, let us here define

S̃t = λβ(vt−1 − Vt−1) + s, t > 0. (7.2.117)

Then, (7.2.113(p.36) ) can be rewritten as

Vt = min{λβvt−1 − λβVt−1 + s, 0} − βVt−1

= min{S̃t, 0}+ βVt−1, t > 0, (7.2.118)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), (7.2.119)

which can be rewritten as, due to Def. 7.1.1(p.29) ,

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (7.2.120)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (7.2.121)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (7.2.122)

Then, from (7.2.110(p.36) ) with t− 1 we have vt−1 = T̃ (Vt−1) + Vt−1, hence vt−1 − Vt−1 = T̃ (Vt−1), thus, noting (6.1.33(p.27) ), we

can rewrite (7.2.117(p.36) ) as below

St = βT̃ (Vt−1) + s t > 0. (7.2.123)

= L̃(Vt−1), t > 0. (7.2.124)
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7.2.1.3 Model 3

7.2.1.3.1 M:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer w and with no buyer respectively, expressed as

v0(w) = max{w, ρ}, (7.2.125)

vt(w) = max{w, ρ, Ut}, t > 0, (7.2.126)

V0 = ρ, (7.2.127)

Vt = max{ρ, Ut}, t > 0, (7.2.128)

where Ut is the maximum of the total expected present discounted profit from rejecting both the price w and intervening quitting

penalty ρ in (7.2.126(p.37) ) and from rejecting the intervening quitting penalty ρ in (7.2.128(p.37) ). Then, Ut can be expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0. (7.2.129)

For convenience, let us here define U0 = ρ, hence from (7.2.127(p.37) ) we have

V0 = U0 = ρ. (7.2.130)

Then, it follows that both (7.2.126(p.37) ) and (7.2.128(p.37) ) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = max{w, ρ, Ut}, t ≥ 0, (7.2.131)

Vt = max{ρ, Ut}, t ≥ 0, (7.2.132)

thus (7.2.131(p.37) ) can be expressed as

vt(w) = max{w, Vt}, t ≥ 0. (7.2.133)

Accordingly, since E[vt−1(ξ)] = E[max{ξ, Vt−1}] = E[max{ξ − Vt−1, 0}] + Vt−1 = T (Vt−1) + Vt−1 for t > 0 from (6.1.1(p.25) ),

we can rewrite (7.2.129(p.37) ) as

Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K (Vt−1) + Vt−1, βVt−1} (see (6.1.4(p.25) )) (7.2.134)

= max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0 (see (6.1.8(p.25) )). (7.2.135)

� SOE{M:3[R][A]} can be reduced to (7.2.130(p.37) ), (7.2.132(p.37) ), and (7.2.134(p.37) ), listed in Table 7.4.5(p.41) (I).

7.2.1.3.2 M̃:3[R][A]
By vt(w) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t ≥ 0 with a seller w and with no seller respectively, expressed as

v0(w) = min{w, ρ}, (7.2.136)

vt(w) = min{w, ρ, Ut}, t > 0, (7.2.137)

V0 = ρ, (7.2.138)

Vt = min{ρ, Ut}, t > 0, (7.2.139)

where Ut is the minimum of the total expected present discounted cost from rejecting both the price w and intervening quitting

penalty ρ in (7.2.137(p.37) ) and from rejecting the intervening quitting penalty ρ in (7.2.139(p.37) ). Then, Ut can be expressed as

Ut = min{C :λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (7.2.140)

For convenience, let us here define U0 = ρ, hence from (7.2.138(p.37) ) we have

V0 = U0 = ρ. (7.2.141)

Then, it follows that both (7.2.137(p.37) ) and (7.2.139(p.37) ) hold true for t ≥ 0 instead of t > 0, i.e.,

vt(w) = min{w, ρ, Ut}, t ≥ 0, (7.2.142)

Vt = min{ρ, Ut}, t ≥ 0, (7.2.143)

thus (7.2.137(p.37) ) can be expressed as
vt(w) = min{w, Vt}, t ≥ 0. (7.2.144)



38

Accordingly, since vt−1(ξ) = min{ξ, Vt−1} = E[min{ξ − Vt−1, 0}] + Vt−1 = T̃ (Vt−1) + Vt−1 for t > 0 from (6.1.11(p.25) ), we can

rewrite (7.2.140(p.37) ) as follows.

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + βVt−1 + s, βVt−1}

= min{K̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.14(p.25) )) (7.2.145)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L̃ (Vt−1), 0}+ βVt−1, t > 0 (see (6.1.14(p.25) ) and (6.1.13(p.25) )). (7.2.146)

� SOE{M̃:3[R][A]} can be reduced to (7.2.141(p.37) ), (7.2.143(p.37) ), and (7.2.145(p.38) ), listed in Table 7.4.5(p.41) (II).

7.2.1.3.3 M:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the maximums of the total expected present discounted profit from initiating the

process at time t with a buyer and with no buyer respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a buyer at time t = 0 (deadline). Then, the seller must determine whether to accept the

terminal quitting penalty ρ or to sell the asset to the buyer. Let the ρ be accepted. Then the profit which the seller can obtain

is ρ. On the other hand, let the asset be sold to the buyer. Then, since the seller must sell the asset to the buyer due to A2(p.11) ,

the price a† must be proposed to the buyer, in other words, the optimal price to propose at time t = 0 is given by

z0 = a, (7.2.147)

hence the profit which the seller obtains at that time is a. Accordingly, the profit that the seller obtains at time 0 becomes

v0 = max{ρ, a}. (7.2.148)
Next we have

vt = max{ρ,Ht}, t > 0, (7.2.149)

V0 = ρ, (7.2.150)

Vt = max{ρ, Ut}, t > 0, (7.2.151)

where Ht and Ut are defined as follows. Firstly Ht is the maximum of the total expected present discounted profit from

rejecting the intervening quitting penalty ρ. Since a buyer exists due to the above definition of vt and since the reservation

price (maximum permissible buying price) of the buyer is ξ, if the seller proposes a price z, the probability of the buyer buying

the asset is given by p(z) = Pr{z ≤ ξ} (see (6.1.18(p.26) )). Hence we have

Ht = max
z
{p(z)z + (1− p(z))Vt} = max

z
p(z)(z − Vt) + Vt = T (Vt) + Vt, t > 0 (7.2.152)

due to (6.1.19(p.26) ), implying that the optimal selling price zt which the seller should propose is given by

zt = z(Vt), t > 0, (7.2.153)

due to (6.1.25(p.26) ). Finally Ut is the maximum of the total expected present discounted profit from rejecting the intervening

quitting penalty ρ. Since no buyer exists due to the above definition of Vt, it can be expressed as follows.

Ut = max{ C : λβvt−1 + (1− λ)βVt−1 − s, S : βVt−1}, t > 0. (7.2.154)

For t = 1 we have
U1 = max{λβv0 + (1− λ)βV0 − s, βV0}

= max{λβmax{ρ, a}+ (1− λ)βρ− s, βρ}

= max{λβmax{0, a− ρ}+ βρ− s, βρ}. (7.2.155)

Now, from (7.2.152(p.38) ) we have Ht − Vt = T (Vt) for t > 0, hence from (7.2.149(p.38) ) we have vt − Vt = max{ρ− Vt,Ht − Vt} =
max{ρ− Vt, T (Vt)} · · · ((1)) for t > 0. Since Vt ≥ ρ for t > 0 from (7.2.151(p.38) ), we have ρ− Vt ≤ 0 for t > 0. In addition, since

p(b) = 0 due to (6.1.29 (2) (p.26) ), from (6.1.19(p.26) ) we have T (Vt) ≥ p(b)(b− Vt) = 0. Therefore, since ρ− Vt ≤ 0 ≤ T (Vt), from
(1) we have vt − Vt = T (Vt) for t > 0, i.e., vt = T (Vt) + Vt for t > 0, hence vt−1 = T (Vt−1) + Vt−1 for t > 1. Accordingly

(7.2.154(p.38) ) with t > 1‡ can be rearranged as

Ut = max{λβ(T (Vt−1) + Vt−1) + (1− λ)βVt−1 − s, βVt−1}

= max{λβT (Vt−1) + βVt−1 − s, βVt−1}

= max{K(Vt−1) + Vt−1, βVt−1} (see (6.1.21(p.26) )) (7.2.156)

= max{K(Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1 (see (6.1.21(p.26) ) and (6.1.20(p.26) )). (7.2.157)

†The lower bound of the distribution function for the reservation price (the maximum permissible buying price) of the buyer
‡Instead of t > 0.
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For convenience, let U0 = ρ. Then, due to (7.2.150(p.38) ) we have

V0 = U0 = ρ, (7.2.158)

hence it follows that (7.2.151(p.38) ) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = max{ρ, Ut}, t ≥ 0. (7.2.159)

� SOE{M:3[P][A]} is given by (7.2.158(p.39) ), (7.2.159(p.39) ), (7.2.155(p.38) ), and (7.2.156(p.38) ), listed in

Table 7.4.5(p.41) (III).

7.2.1.3.4 M̃:3[P][A]
By vt (t ≥ 0) and Vt (t ≥ 0) let us denote the minimums of the total expected present discounted cost from initiating the

process at time t with a seller and with no seller respectively. In addition, let us denote the optimal price to propose at time

t ≥ 0 by zt. Suppose there exists a seller at time t = 0 (deadline). Then, the buyer must determine whether to accept the

terminal quitting penalty ρ or to buy the asset from the seller. Let the ρ be accepted. Then, the cost which the buyer pays at

time 0 is ρ. On the other hand, let the asset be bought for the buyer. Then, since the buyer must buy the asset from the seller

due to A2(p.11) , the price b† must be is proposed to the seller; in other words, the optimal price to propose is given by

z0 = b, (7.2.160)

hence the cost which the buyer pays at that time is b. Accordingly, the buyer pays at time 0 becomes

v0 = min{ρ, b}. (7.2.161)

Next we have
vt = min{ρ,Ht}, t > 0. (7.2.162)

V0 = ρ, (7.2.163)

Vt = min{ρ, Ut}, t > 0, (7.2.164)

where Ht and Ut are defined as follows. Firstly Ht is the minimum of the total expected present discounted cost from rejecting

the intervening quitting penalty ρ. Since a seller exists due to the above definition of vt and since the reservation price (minimum

permissible selling price) of the seller is ξ, if the buyer proposes the price z to an appearing seller, the probability of the seller

selling the asset for the price z is p̃(z) = Pr{ξ ≤ z} (see (6.1.31(p.26) )). Hence we have

Ht = min
z
{p̃(z)z + (1− p̃(z))Vt} = min

z
p̃(z)(z − Vt) + Vt = T̃ (Vt) + Vt, t > 0, (7.2.165)

due to (6.1.32(p.26) ), implying that the optimal buying price which the buyer should pay is given by

zt = z(Vt), t ≥ 0, (7.2.166)

due to (6.1.38(p.27) ). Finally Ut is the minimum of the total expected present discounted cost from rejecting the intervening

quitting penalty ρ. Since no seller exists due to the above definition of Vt, it can be expressed as follows.

Ut = min{C : λβvt−1 + (1− λ)βVt−1 + s, S : βVt−1}, t > 0. (7.2.167)

For t = 1 we have
U1 = min{λβv0 + (1− λ)βV0 + s, βV0}

= min{λβmin{ρ, b}+ (1− λ)βρ+ s, βρ}

= min{λβmin{0, b− ρ}+ βρ+ s, βρ}. (7.2.168)

Now, from (7.2.165(p.39) ) we have Ht − Vt = T̃ (Vt) for t > 0, hence from (7.2.162(p.39) ) we have vt − Vt = min{ρ− Vt,Ht − Vt} =
min{ρ− Vt, T̃ (Vt)} · · · ((2)) for t > 0. Since Vt ≤ ρ for t > 0 from (7.2.164(p.39) ), we have ρ− Vt ≥ 0 for t > 0. In addition, since

p̃(a) = 0 due to (6.1.41 (1) (p.27) ), from (6.1.32(p.26) ) we have T̃ (Vt) ≤ p̃(a)(a− Vt) = 0. Therefore, since ρ− Vt ≥ 0 ≥ T̃ (Vt), from
(2) we have vt − Vt = T̃ (Vt) for t > 0, i.e., vt = T̃ (Vt) + Vt for t > 0, hence vt−1 = T̃ (Vt−1) + Vt−1 for t > 1. Accordingly

(7.2.167(p.39) ) with t > 1 can be rearranged as

Ut = min{λβ(T̃ (Vt−1) + Vt−1) + (1− λ)βVt−1 + s, βVt−1}

= min{λβT̃ (Vt−1) + Vt−1) + βVt−1 + s, βVt−1}

= min{K̃(Vt−1) + Vt−1, βVt−1} (see (6.1.34(p.27) )) (7.2.169)

= min{K̃ (Vt−1) + (1− β)Vt−1, 0}+ βVt−1, t > 1

= max{L̃ (Vt−1) + Vt−1, βVt−1} (see (6.1.34(p.27) ) and (6.1.33(p.27) )) (7.2.170)

†The upper bound of the distribution function for the reservation price (the minimum permissible selling price) of the seller.
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For convenience, let U0 = ρ. Then, due to (7.2.163(p.39) ) we have

V0 = U0 = ρ, (7.2.171)

hence it follows that (7.2.164(p.39) ) holds true for t ≥ 0 instead of t > 0, i.e.,

Vt = min{ρ, Ut}, t ≥ 0. (7.2.172)

� SOE{M̃:3[R][A]} is given by (7.2.171(p.40) ), (7.2.172(p.40) ), (7.2.168(p.39) ), and (7.2.169(p.39) ), listed in Table 7.4.5(p.41) (IV).

7.2.2 Search-Enforced-Model

In sE-model (M:x[X][E] and M̃:x[X][E] with x = 1, 2, 3 and X = R,P) a leading-trader needs to take no decision activity regarding

whether or not to conduct the search. This implies that eliminating the terms related to this decision from the systems

of optimality equations in sA-model (SOE{M:x[X][A]} and SOE{M̃:x[X][A]}) produces the systems of optimality equations in

sE-model (SOE{M:x[X][E]} and SOE{M̃:x[X][E]}). Noting this, from Tables 7.4.1(p.41) , 7.4.3(p.41) , and 7.4.5(p.41) we can immediately

obtain the systems of optimality equations for E-model, which are given by Tables 7.4.2(p.41) , 7.4.4(p.41) , and 7.4.6(p.41) .

7.2.3 Assertion and Assertion System of Model

In general, let us refer to a description on whether or not a given statement is true as the assertion, denoted by A, and as a set

consisting of some assertions as the assertion system, denoted by A . In addition, let us denote an assertion and an assertion

system for a given Model by respectively A{Model} and A {Model}.

7.3 Recall-Model
See Chap. 26(p.251) .
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7.4 Summary of the System of Optimality Equations (SOE)

Model 1
Table 7.4.1: Search-Allowed-Model 1

(I) SOE{M:1[R][A]}
V1 = βµ− s, (7.4.1)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.2)

(II) SOE{M̃:1[R][A]}
V1 = βµ + s, (7.4.3)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.4)

(III) SOE{M:1[P][A]}
V1 = βa− s, (7.4.5)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.6)

(IV) SOE{M̃:1[P][A]}
V1 = βb + s, (7.4.7)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.8)

Table 7.4.2: Search-Enforced-Model 1

(I) SOE{M:1[R][E]}
V1 = βµ− s, (7.4.9)
Vt = K(Vt−1) + Vt−1, t > 1. (7.4.10)

(II) SOE{M̃:1[R][E]}
V1 = βµ + s, (7.4.11)

Vt = K̃(Vt−1) + Vt−1, t > 1. (7.4.12)

(III) SOE{M:1[P][E]}
V1 = βa− s, (7.4.13)
Vt = K(Vt−1) + Vt−1, t > 1, (7.4.14)

(IV) SOE{M̃:1[P][E]}
V1 = βb + s, (7.4.15)

Vt = K̃(Vt−1) + Vt−1, t > 1, (7.4.16)

Model 2
Table 7.4.3: Search-Allowed-Model 2

(I) SOE{M:2[R][A]}
V0 = ρ, (7.4.17)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (7.4.18)

(II) SOE{M̃:2[R][A]}
V0 = ρ, (7.4.19)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (7.4.20)

(III) SOE{M:2[P][A]}
V0 = ρ, (7.4.21)
V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (7.4.22)
Vt = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.23)

(IV) SOE{M̃:2[P][A]}
V0 = ρ, (7.4.24)
V1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (7.4.25)

Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.26)

Table 7.4.4: Search-Enforced-Model 2

(I) SOE{M:2[R][E]}
V0 = ρ, (7.4.27)
Vt = K(Vt−1) + Vt−1, t > 0, (7.4.28)

(II) SOE{M̃:2[R][E]}
V0 = ρ, (7.4.29)

Vt = K̃(Vt−1) + Vt−1, t > 0, (7.4.30)

(III) SOE{M:2[P][E]}
V0 = ρ, (7.4.31)
V1 = λβmax{0, a− ρ}+ βρ− s, (7.4.32)
Vt = K(Vt−1) + Vt−1, t > 1, (7.4.33)

(IV) SOE{M̃:2[P][E]}
V0 = ρ, (7.4.34)
V1 = λβmin{0, b− ρ}+ βρ + s, (7.4.35)

Vt = K̃(Vt−1) + Vt−1, t > 1, (7.4.36)

Model 3
Table 7.4.5: Search-Allowed-Model 3

(I) SOE{M:3[R][A]}
V0 = U0 = ρ, (7.4.37)
Vt = max{ρ, Ut}, t ≥ 0, (7.4.38)
Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 0. (7.4.39)

(II) SOE{M̃:3[R][A]}
V0 = U0 = ρ, (7.4.40)
Vt = min{ρ, Ut}, t ≥ 0, (7.4.41)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0. (7.4.42)

(III) SOE{M:3[P][A]}
V0 = U0 = ρ, (7.4.43)
Vt = max{ρ, Ut}, t ≥ 0, (7.4.44)
U1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}, (7.4.45)
Ut = max{K(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.46)

(IV) SOE{M̃:3[P][A]}
V0 = U0 = ρ, (7.4.47)
Vt = min{ρ, Ut}, t ≥ 0, (7.4.48)
U1 = min{λβmin{0, b− ρ}+ βρ + s, βρ}, (7.4.49)

Ut = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 1. (7.4.50)

Table 7.4.6: Search-Enforced-Model 3

(I) SOE{M:3[R][E]}
V0 = U0 = ρ, (7.4.51)
Vt = max{ρ, Ut}, t ≥ 0, (7.4.52)
Ut = K(Vt−1) + Vt−1, t > 0. (7.4.53)

(II) SOE{M̃:3[R][E]}
V0 = U0 = ρ, (7.4.54)
Vt = min{ρ, Ut}, t ≥ 0, (7.4.55)

Ut = K̃(Vt−1) + Vt−1, t > 0. (7.4.56)

(III) SOE{M:3[P][E]}
V0 = U0 = ρ, (7.4.57)
Vt = max{ρ, Ut}, t ≥ 0, (7.4.58)
U1 = λβmax{0, a− ρ}+ βρ− s, (7.4.59)
Ut = K(Vt−1) + Vt−1, t > 1. (7.4.60)

(IV) SOE{M̃:3[P][E]}
V0 = U0 = ρ, (7.4.61)
Vt = min{ρ, Ut}, t ≥ 0, (7.4.62)
U1 = λβmin{0, b− ρ}+ βρ + s, (7.4.63)

Ut = K̃(Vt−1) + Vt−1, t > 1. (7.4.64)
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Chapter 8

Optimal Decision Rules

This chapter clarifies the structure of the optimal decision rules for the 24 no-recall-models in Table 3.2.1(p.16) .

8.1 Five Points in Time
To start with, let us note here that the optimal decision rules are closely related to the following six points in time (see H1(p.7) ).

◦ Recognizing time tr ≥ 0,

◦ Starting time ts (tτ ≥ ts ≥ ti), represented by τ , i.e., τ = ts,

◦ Initiating time ti (ts ≥ ti ≥ ts′), sometimes represented by t = ti,

◦ Stopping time ts′ (ti ≥ ts′ ≥ 0), sometimes represented by t = ts′ ,

◦ Deadline td = 0, the final point in time of the decision process.

◦ Quasi-deadline tqd, the smallest of all possible initiating times where

tqd = 1 for Model 1 (see Remark 4.1.1(p.19) (a)), (8.1.1)

tqd = 0 for Model 2/3 (see Remark 4.1.4(p.20) ). (8.1.2)

Model 1-• • • • • • • • • • • • • • • • • • •· · · · · · td = 0tqd = 1t = ti t = ts′ · · ·ts = τtr

stopping timeinitiating timestarting timerecognizing time
quasi-deadline

deadline

Model 2/3-• • • • • • • • • • • • • • • • • • •· · · · · · td = 0

tqd = 0

t = ti t = ts′ · · ·ts = τtr

stopping timeinitiating timestarting timerecognizing time
quasi-deadline

deadline

Figure 8.1.1: Six points in time related to the optimal decision rules

8.2 Four Kinds of Decisions
Below, let us provide the more strict definitions for the four kinds of decisions prescribed in Section 3.4(p.17) .

8.2.1 Whether or Not to Accept the Proposed Price

This is the decision only for R-model. Below let us represent

“Accept a price w at time t” and “Reject a price w at time t”as Acceptt⟨w⟩ and Rejectt⟨w⟩ respectively. (8.2.1)

First, in the selling model (M:1/2[R][A]) suppose that a buyer appearing at a time t has proposed a buying price w. Then, from

(7.2.2(p.29) ) and (7.2.62(p.33) ) we have

w ≥ (≤)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩). (8.2.2)

Similarly, in the buying model (M̃:1/2[R][A]) suppose that a seller appearing at a time t has proposed a selling price w. Then,

from (7.2.16(p.30) ) and (7.2.77(p.34) ) we have

w ≤ (≥)Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩).

We refer to the Vt given above as the optimal-reservation-price, opt-R-price for short.
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8.2.2 What Price to Propose

This is the decision only for P-model. In the selling model the optimal selling price (M:1/2[P][A]) which a seller (leading-trader)

should propose at a time t is given by

zt = z(Vt) (see (7.2.34(p.31) ) and (7.2.94(p.35) )).

Similarly, in the buying model (M̃:1/2[P][A]) the optimal buying price which a buyer (leading-trader) should propose at a time t

is given by
zt = z(Vt) (see (7.2.50(p.32) ) and (7.2.111(p.36) )).

We refer to the zt given above as the optimal-posted-price, opt-P-price for short.

8.2.3 Whether or not to Conduct the Search

This is the decision only for sA-model (see (A5b(p.12) ). Then, its decision rule is given by (7.2.9(p.30) ), (7.2.23(p.31) ), (7.2.39(p.32) ),

(7.2.55(p.33) ), (7.2.70(p.33) ), (7.2.85(p.34) ), (7.2.102(p.35) ), and (7.2.119(p.36) ).

Remark 8.2.1 (Conduct Skip (C S ) (see Figure 2.2.3(p.12) )) Figure 8.2.1(p.44) (I) below sketches the case that the search-
Conduct starts at the optimal initiating time t∗τ and continue up to the quasi-deadline tqd = 1 (Model 1) so long as the process
does not stop; it will be known later on that this case occurs everywhere in the paper. Contrary to this, Figure 8.2.1(p.44) (II)
schematizes the case that the search-Conduct starts at the optimal initiating time t∗τ , continues for a while, and switches to the
search-Skip at a certain point in time t′ < tqd; this is a very rare case that occurs only in Tom’s 22.1.4(p.166) (b3iii), 22.1.7(p.177) (b3iii),
and 22.1.10(p.178) (b3iii). Let us represent the case as Conduct Skip, simply C S (Def. 2.2.1(p.12) ).

(I) -• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 01· · · · · · ︸ ︷︷ ︸
search-Conduct

(II) -• • • • • • • • • • • • • • • • • • • • • •

recognizing time starting time deadline

tr tr − 1 τ τ − 1

optimal initiating time

t∗τ t∗τ − 1 · · · t′ t′ − 1 · · · 01· · · · · · ︸ ︷︷ ︸
search-Conduct

↓

search-Skip
(Conduct Skip)

Figure 8.2.1: Conduct Skip (C S )

� Alice 1 (jumble of intuition and theory) Herein, Alice was hit by the following question. For example, suppose that
St < 0 at a time t (see (7.2.12(p.30) )), meaning that the search-skip becomes strictly optimal at that time. Then, since max{St, 0} =
0, we have Vt = βVt−1 from (7.2.8(p.30) ), implying that initiating the process at time t becomes indifferent to initiating the process
at time t− 1; nevertheless, the search skip is strictly optimal ! After having mumbled, letting out a strange noise “Is this a little
bit funny ?”, she gave a shout “Such a laughable affair !”. Then, Dr. Rabbit again appeared and pedantically told to Alice “The
above two results are both ones based on a theory of mathematics, but your confusion is caused by an intuition; there does not exist
any logical relationship between the two ! Well · · · your confusion is what is caused by a jumble of intuition and theory !!”, and he
again disappeared down the hole as murmuring “Oh dear! Oh dear! I shall be too late for the faculty meeting !”.

8.2.4 When to Initiate the Process (Optimal Initiating Time)

This is the decision only for iiA-Case (see (H1(p.7) (d))).

8.2.4.1 Definition

The definition below is only for a selling model with tqd = 1 (Model 1 (tqd = 0 for Model 2)).† Suppose that the process

has started at the starting time τ and that the seller (leading-trader) has determined to initiate the process at a given time t

(τ ≥ t ≥ tqd) after that, i.e., τ − t periods hence. Then, the total expected present discounted profit at the starting time τ is

given by

Itτ
def
= βτ−tVt, τ ≥ t ≥ tqd. (8.2.3)

See (7.2.3(p.29) ) and (7.2.4(p.29) ) for the definition of Vt. Then, by t∗τ let us denote t maximizing Itτ on τ ≥ t ≥ tqd, i.e.,

I
t∗τ
τ = max

τ≥t≥tqd
Itτ or equivalently I

t∗τ
τ ≥ Itτ , τ ≥ t ≥ tqd. (8.2.4)

Let us call the t∗τ the optimal initiating time (see H1(p.7) ), denoted by OITτ ⟨t∗τ ⟩△. If

I
t∗τ
τ > Itτ for t ̸= t∗τ , (8.2.5)

then it is called the strictly optimal initiating time, denoted by OITτ ⟨t∗τ ⟩N.

†The similar things can be said for all other models.
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Remark 8.2.2 (N strict optimality) Suppose that the initiating time t∗τ is strictly optimal in a sense of (8.2.5(p.44) ). Then,

since I
t∗τ
τ > I

t∗τ−1
τ , we have βτ−t∗τVt∗τ > βτ−t∗τ+1Vt∗τ−1, hence Vt∗τ > βVt∗τ−1. Accordingly, since Vt∗τ = max{St∗τ , 0} + βVt∗τ−1

from (7.2.8(p.30) ) with t = t∗τ , hence max{St∗τ , 0} > 0, we have St∗τ > 0, implying that it becomes strictly optimal to conduct the
search due to (7.2.12(p.30) ); in other words, it is not allowed to skip the search.

Throughout the paper, let us employ the following preference rule.

Preference Rule 8.2.1 Let Itτ = It−1
τ for a given t. Then, the seller (leading-trader) prefers t − 1 to t as the initiating time,

implying that “Postpone the initiation of the process so long as it is not unprofitable to do so.”

8.2.4.2 β-adjusted sequence Vβ[τ ]

First, let us denote the sequence consisting of Vτ , Vτ−1, Vτ−2, · · · , Vtqd by

V[τ ]
def
= {Vτ , Vτ−1, Vτ−2, · · · , Vtqd}, (8.2.6)

called the original sequence and let

t∗′τ = argmaxV[τ ] = argmax{Vτ , Vτ−1, Vτ−2, · · · , Vtqd}. (8.2.7)

Next, let us denote the sequence

Vβ[τ ]
def
= {Vτ , βVτ−1, β

2Vτ−2, · · · , βτ−tqdVtqd} = {I
τ
τ , I

τ−1
τ , Iτ−2

τ , · · · , Itqdτ }, (8.2.8)

called the β-adjusted sequence of V[τ ]. By definition, the optimal initiating time t∗τ is given by t attaining the maximum of

elements within β-adjusted sequence Vβ[τ ], i.e.,

t∗τ = argmaxVβ[τ ] = argmax{Vτ , βVτ−1, β
2Vτ−2, · · · , βτ−tqdVtqd}. (8.2.9)

Note here that the monotonicity of the original sequence V[τ ] is not always inherited to the β-adjusted sequence Vβ[τ ], i.e.,

t∗τ ̸= t∗′τ (see Section A5.2.2(p.320)).

8.2.4.3 Three Possibilities

Below let us define the three types of the optimal initiating time (OIT).

1. Degeneration to the starting time τ

Let t∗τ = τ , i.e., it is optimal to initiate the process at the starting time τ , denoted by ⃝⃝s . Then, the optimal initiating

time t∗τ is said to degenerate to the starting time τ , represented by ⃝s dOITsτ ⟨τ⟩ △ (⃝⃝s △ for short). If the optimal initiating

time t∗τ is strict (see (8.2.5(p.44) )), it is called the strictly degenerate OIT, represented by ⃝s dOITsτ ⟨τ⟩ N (⃝⃝s N for short).

2. Non-degeneration (τ > t∗τ > tqd)

Let τ > t∗τ > tqd, i.e., the optimal initiating time is between the starting time τ and the quasi-deadline tqd, denoted by } .

Then, the optimal initiating time t∗τ is said to be non-degenerate OIT, represented by } ndOITτ ⟨t∗τ ⟩ △ (} △ for short). If

Iττ = Iτ−1
τ = · · · = I

t∗τ
τ ≥ I

tqd
τ (8.2.10)

as a special case, then it is said to be indifferent non-degenerate OIT (see Preference Rule 8.2.1), represented by } ndOITτ ⟨t∗τ ⟩ ∥

(} ∥ for short). If I
t∗τ
τ > Itτ for all t ̸= t∗τ , then it is said to be strictly non-degenerate OIT, represented by } ndOITτ ⟨t∗τ ⟩ N

(} N for short).

3. Degeneration to the deadline tqd

Let t∗τ = tqd = 1 (0) for Model 1 (Model 2/3), i.e., the optimal initiating time is the quasi-deadline, denoted by•dd . Then,

the optimal initiating time t∗τ is said to degenerate to the quasi-deadline tqd, represented by • dOITdτ ⟨tqd⟩ △ (•dd △ for short).

If its optimality is strict, then it is called the strictly degenerate OIT, represented by • dOITdτ ⟨tqd⟩ N (•dd N for short). If

Iττ = Iτ−1
τ = · · · = I

tqd
τ , · · · ((1))

then the degeneration is said to be indifferent, represented by • dOITdτ ⟨tqd⟩ ∥ (•dd ∥ for short).

Remark 8.2.3 When (8.2.10(p.45) ) is possible, as an optimal initiating time we can define ⃝⃝s ∥ if Preference Rule 8.2.1(p.45) is
ignored. However, this definition is not permitted since the preference rule is applied throughout the paper.
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8.2.4.4 First Search Conducing Time

There might exist a person who thinks that the optimal initiating time can be given also by the first search conducing time.

However, for example, consider M:2[R][A] (tqd = 0) with the starting time τ = 6 where

Skip6△, Skip5△, Skip4△, Conduct3N, Conduct2△, Conduct1△.

This means that the first search conducting time is t∗∗τ
def
= 3 · · · ((2)). Then, since

S6 ≤ 0, S5 ≤ 0, S4 ≤ 0, S3 > 0, S2 ≥ 0, S1 ≥ 0

from (7.2.71(p.33) ) and (7.2.73(p.33) ), we have

max{S6, 0} = 0, max{S5, 0} = 0, max{S4, 0} = 0, max{S3, 0} > 0, max{S2, 0} ≥ 0, max{S1, 0} ≥ 0.

Thus, from (7.2.69(p.33) ) we have

V6 = βV5, V5 = βV4, V4 = βV3, V3 > βV2, V2 ≥ βV1, V1 ≥ βV0,

so

V6 = βV5 = β2V4 = β3V3 > β4V2 ≥ β5V1 ≥ β6V0 or equivalently I66 = I56 = I46 = I36 > I26 ≥ I16 ≥ I06

due to (8.2.3(p.44) ), hence we have the optimal initiating time t∗τ = 3 · · · ((3)) by definition.

� Alice 2 (first search conducting time) When the story has come up to here, after a moment’s reflection, Alice happened
to conceive of an idea; “Since t∗∗τ = t∗τ = 3 from (2) and (3) , as an optimal initiating time we can employ the first search conducting
time t∗∗τ = 3 instead of t∗τ !”. Then, Dr. Rabbit suddenly appeared and told to her “ Surely you are not incorrect, Miss Alice !. But,
but— the profit attained by initiating the process at the first search conducting time t∗∗τ is the same as the profit attained by initiating
the process at the optimal initiating time t∗τ ; in other words, since the former profit does not become greater than the latter profit, we
have no reason why t∗∗τ must be used instead of t∗τ ; accordingly, it suffices to employ t∗τ !! Miss Alice !!! ”. And then, taking a watch
out of the waistcoat-pocket and murmuring “Oh dear! Oh dear! I shall be too late for the faculty meeting”, he again disappeared
down the hole.

8.2.4.5 Null-Time-Zone

In this section let us raise a perplexing situation caused by the optimal initiating time t∗τ . Here let τ > t∗τ , i.e., the optimal

initiating time t∗τ is not the starting time τ (see Figure 8.2.2(p.46) below), implying that no decision-making action is taken at

every point in time t = τ, τ − 1, · · · , t∗τ + 1. Let us refer to each of τ, τ − 1, · · · , t∗τ + 1 as the null point in time and the whole

of these time points as the null-time-zone, denoted as Null-TZ.

Null-TZ
def
= ⟨τ, τ − 1, · · · , t∗τ + 1⟩.

-• • • • • • • • • • • • • • • • • • • • • • time︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time starting time optimal initiating time (OIT) quasi-deadline tqd

deadline

tr τ τ − 1 t∗τ + 1 t∗τ t∗τ − 1 01· · · · · ·

Figure 8.2.2: Null-time-zone in Model 1 with tqd = 1 (Null-TZ)

The above event implies that, without noticing the existence of Null-TZ, we unwittingly or unconsciously might have continued

to fall into the senselessness of engaging in unnecessary decision-making activities over these points in time.

8.2.4.6 Deadline-Engulfing

� Alice 3 (black hole) Hereupon, Alice supposed “If the optimal initiating time t∗τ degenerates to the deadline (time 0), then
what will ever happen ?”, and screamed out “If so, it follows that don’t conduct any decision-making activity up to the deadline !;
If that happens, the whole of decision-making activities which are scheduled at the starting time τ come to naught as if being falling
into the deadline !”. Alice was heavily nonplused and cried “It · · · , it is the same as that black hole into which all physical matters,
even light, are squeezed into ! If so, · · · , a decision process with an infinite planning horizon vanishes away in time toward an infinite
future ! Oh dear!! Oh dear !!! · · · ” She hunkered down, and then buried her head in her hands. Then, Dr. Rabbit again appeared
and told to her a little bit ungraciously “This is an undeniable conclusion that is theoretically derived !.”

In this paper, let us refer to “falling into the deadline” as “deadline-engulfing”, represented by•dd -engulfing. This situation can

be depicted as the two figures below.



47

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨1⟩

deadline

tr tr − 1 τ

starting time

τ − 1 t∗τ = 1 0· · · · · ·
.......................................................................

................................................................................
...........................................................................................................



- •dd

Figure 8.2.3: Deadline-engulfing (•dd ) for Model 1

-• • • • • • • • • • • • • • • • • • • • • •︸ ︷︷ ︸
null-time-zone (Null-TZ)

recognizing time

optimal initiating time • dOITdτ>1⟨0⟩

deadline

tr tr − 1 ττ

starting time

t∗τ = 0· · · · · ·
.........................................................................

......................................................................................
..................................................................................................................



- •dd

Figure 8.2.4: Deadline-engulfing (•dd ) for Model 2

Later on we will see that the•dd -engulfing is not a rare event but a phenomenon which is very often possible even in the simplest

case “β = 1 and s = 0” (see Pom’s 22.2.1(p.209) , 22.2.5(p.212) , 22.2.9(p.222) , and 22.2.17(p.231) ). Taking this fact into consideration, we

will inevitably be led to a serious re-examination of the whole discussion that have been made so far for all decision processes,

including Markovian decision processes [22,Howard,1960] (see Section A5(p.319) ).

8.3 Five Time Zones
From all discussions which have been made so far, it is seen that we have the following five kinds of time-zones:

◦ Let us refer to the interval between tr and ts (= τ) as the preparation-time-zone, denoted by

Preparation-TZ = {tr, tr − 1, · · · , ts}.

◦ Let us refer to the interval between ts (= τ) and 0 as the total-time-zone, denoted by

Total-TZ = {ts, ts − 1, · · · , 0}.

◦ Let us refer to the interval between ts (= τ) and ti as the Null-time-zone, denoted by

Null-TZ = {ts, ts − 1, · · · , ti}.

◦ Let us refer to the interval between ti and ts′ as the searching-time-zone, denoted by

Searching-TZ = {ti, ti − 1, · · · , ts′}.

◦ Let us refer to the interval between ts′ and 0 as the remaining-time-zone, denoted by

Remaining-TZ = {ts′ , ts′ − 1, · · · , 0}.

-

Total-TZ︷ ︸︸ ︷
︸ ︷︷ ︸

Preparation-TZ

︸ ︷︷ ︸
Null-TZ

︸ ︷︷ ︸
Searching-TZ

︸ ︷︷ ︸
Remainig-TZ

deadline

tr
•

recognizing time

ts = τ
•

starting time

ti
•

initiating time

ts′
•

stopping time

0
•

Figure 8.3.1: Five time-zones
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8.4 Monotonicity of opt-R/P-price
Here, let us represent “opt-R-price (Vt) and/or opt-P-price (zt)” defined in Chap. 7(p.29) by opt-R/P-price (Vt/zt) for short. In

this paper, one of main concerns on the opt-R/P-price is its monotonicity.

8.4.1 Normal Mental Conflict

Suppose that the monotonicity over the entire planning horizon is

· nondecreasing in t (see Figure 8.4.1(p.48) (I)) or

· nonincreasing in t (see Figure 8.4.1(p.48) (II)).

opt-R/P-price (Vt/zt)

-
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.......................................
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............................

...........................
........................
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.................
................
................
...............
...............
...............
.............
.............
.............
............
............
............
............
...........
...........
...........
...........
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...........
...........
..........
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2

•
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· · ·
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•

t− 1

•
t

•

(II)

Figure 8.4.1: Normal Conflict

Remark 8.4.1 (normal mental conflict) The monotonicity of the opt-R/P-price reflects the mental conflict of decision-
maker that was presented within the expectation of Examples 1.3.1(p.5) - 1.3.4(p.6) . This mental conflict can be restated as follows.
As the deadline approaches,

· a seller becomes “selling spree” in the selling problem.

· a buyer becomes “buying spree” in the buying problem.

Let us refer to this as the normal mental conflict..

8.4.2 Abnormal Mental Conflict

Suppose that the monotonicity over the entire planning horizon shifts

· from “nondecreasing” to “nonincreasing” in t (see Figure 8.4.2(p.48) (I)) or

· from “nonincreasing” to “nondecreasing ”in t (see Figure 8.4.2(p.48) (I)).

Remark 8.4.2 (abnormal mental conflict) The above monotonicity of the opt-R/P-price can be stated as follows. As the
deadline approaches

· A seller shift from “selling spree” to “selling restraint”in the selling problem.

· A buyer shift from “buying spree” to “buying restraint” in the buying problem.

This does not reflect the mental conflict of decision-maker in Examples 1.3.1(p.5) - 1.3.4(p.6) . Let us refer to this as the abnormal
mental conflict..

opt-R/P-price (Vt/zt)
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Figure 8.4.2: Abnormal Conflict



Chapter 9

Conclusions of Part 1 (Prologue)

The whole discussions over Chaps. 1(p.3) - 8(p.43) are summarized as below.

C1. Two motives of this study (see Section 1.1(p.3) ).

Behavior of human-beings, whether a little action or a significant one, often begins with a subtle motive. Now, in an

early stage of this study, the authors observed similarities between selling and buying problems, as well as resemblances

among methodologies used to analyze them. This led to two initial questions: (1) Is a buying problem symmetrical to a

selling problem ? and (2) Is it possible for a general theory integrating quadruple-asset-trading-problems to exist? This

study, spanning over half a century, was be inspired by the desire to answer these seemingly trivial questions. Our final

conclusions of us are “No” for (1) and “Yes” for (2).

C2. Philosophical background of this paper (see Section 1.2(p.3) ).

Refer to Section 1.2(p.3) for the philosophical background on how and why we came to perceive a decision theory as physics,

which fundamentally informs the entire content of this paper. Generally, a physical viewpoint stems from a mental process

involving unfiltered observation of a subject, free from any preconceived premises, assumptions, hypotheses, or biases. It is

crucial to recognize the difficulty of this task, even for modern individuals who consider themselves scientifically aware. Prior

to Galileo’s era (pre-1600s), no one would have questioned the belief that the heaven revolved around the Earth (Ptolemaic

system). Similarly, in the absence of modern knowledge, individuals, including the authors, would without question adhere

to this theory today. It is essential to acknowledge that the transition to the sun-centered theory (Copernican system)

took thousands of years, highlighting the challenge of objectively examining facts without biases or preconceptions. History

demonstrates that the natural science, including physics, have successfully undergone this rigorous examination, but it

is uncertain whether other fields have done so. Scientists must remain open to the existence of “as-yet-unrecognized

knowledge” and embrace the acknowledgment of ignorance. Those familiar with physics will quickly grasp the essence of

Albert Einstein “As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain,

they do not refer to reality.” However, for those without such experience, understanding may require significant time or

may never fully materialize.

C3. Time concept in decision theory

Guided by the aforementioned philosophical background, we came to regard human beings themselves as real entities that

scientists study as their research objects. Now, since there are no physical existence devoid of the time concept, we inevitably

and/or unconsciously began to recognize the concepts of the five points in time: recognizing time, starting time, initiating

time, stopping time, and deadline (see H1(p.7) and Section 8.1(p.43) ). Readers will recognize that these time concepts dominate

the whole description of this paper.

C4. Optimal initiating time

Especially noteworthy one among the aforementioned five points in time is the initiating time, which leads us to the

optimal initiating time (OIT) (see Section 8.2.4.1(p.44) ). This yields three kinds of points in time: ⃝⃝s (starting time), }
(non-degenerate time), and•dd (deadline) (see Section 8.2.4.3(p.45) ).

C5. Null-time-zone and deadline-engulfing (see Sections 8.2.4.5(p.46) and 8.2.4.6(p.46) )

It is striking here that the last two, } and•dd , necessarily gives rise to the events of null-time-zone and deadline-engulfing

(see H3(p.8) ), both of which can be considered novel concepts; they have not been previously recognized by researchers,

including the authors. Furthermore, what is remarkable is that the existence of the two time points, } and•dd , are not

rare but rather occurs very frequently (see 22.2% and 33.4% in Table 24.1.1(p.246) ). Lastly, it is important to emphasize that

}N and •ddN (strictly optimal) occur at 2.6% and 3.2% respectively (see Table 24.1.1(p.246) ). Presumably, the confirmed

existence of these two events could be considered the most significant discoveries in this paper, suggesting the need for
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a comprehensive re-examination of all results derived from past investigations of decision processes without incorporating

the concept of the optimal initiating time.

C6. Structured-unit-of-models (see Section 1.3(p.4) )).

Before delving into the core of the study, we endeavored to clarify the general structure of asset trading problems, which

gave rise to the concepts of the quadruple-asset-trading-problems (see Figure 1.3.1(p.6) ) and the structured-unit-of-models

(see Section 3.3(p.16) ). It is important to note that this structure will become indispensable for the whole analysis of all

models addressed in the present paper (see H10(p.9) ). One of the key points in this paper is not to analyze respective models

included in the structured-unit-of-models discretely and individualistically but to clarify the interconnectedness among

these models systematically and comprehensively by using the integrated-theory in Part 2(p.51) .

C7. Assumptions (see Chap. 2(p.11) )).

In Chap. 2(p.11) we presented essential assumptions necessary for providing strict definitions of all models related to asset

trading problems discussed in this paper. What should be particularly noted among them are the introductions of the

quitting penalty price ρ (see A7(p.12) ) and the discount factor β for cost (see A12(p.13) ). The former leads to inevitable

definitions of the three types of models (see (B(p.15) )) and the latter offers a novel interpretation of the discount factor

(see A12(p.13) ).

C8. Discount factor for cost

Refer to [39, Ross] for a description concerning a managerial and/or economic implications of the discount factor β for

profit. However, surprisingly, to the best of the authors’ knowledge, we have not encountered references providing a

persuasive explanation for the implications of the discount factor β for cost. We provided a clear interpretation for this

issue (see A12(p.13) ).

C9. Underlying functions (see Chap. 6(p.25) ).

Here, it is important to note that the system of optimality equations (see Chap. 7(p.29) ) for all models (see Table 3.2.1(p.16) )

is expressed by using functions T , L , K , and L , referred to as the underlying function (see Chap. 6(p.25) ). The func-

tion T has been already defined and used in the fields of mathematical statistics, operational research, and economics

(see [14,Deg1970]); however, the introduction of other functions L, K, and L (see (6.1.3(p.25) ) - (6.1.5(p.25) )) is presumably

the first in this paper. Moreover, it is essential to remember that different properties of these functions are consistently

utilized in the analysis of these models. All properties of these underlying functions (see Lemmas 11.1.1(p.55) - 11.3.1(p.59) )

were derived through the repeated arrangement and rearrangement, as if solving a jigsaw puzzle, of many results obtained

over more than ten years of various models. In [26,Iku1996] it was demonstrated that various results for wide-ranging types

of decision problems posed and examined in many references thus far can be expressed by using these functions. These

facts suggest the broader and deeper possibilities of properties inherent within these functions.

C10. Jumble of intuition and theory

We reiterate here that a question in Alice 1(p.44) is stemmed from the confusion between intuition and theory. While many

researchers may quickly recognize the inaccuracy in her question, is it merely speculative to assume the possibility of

individuals who have difficulty acknowledging their tendency to become entangled in this confusion? Indeed, in the past,

we had encountered cases where submitted papers were nearly rejected due to referees’ misunderstandings caused by such

a jumble as described above.
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Part 2

Integrated-Theory

In this part we attempt to construct the integrated-theory.

Chap. 10 Flow of the Construction of Integrated Theory . . . . . . . . . . . . . . . . . . . . . . . . 53

Chap. 11 Properties of Underlying Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chap. 12 Proof of A {M:1[R][A]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chap. 13 Symmetry Theorem (R↔ R̃) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chap. 14 Analogy Theorem (R↔ P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chap. 15 Symmetry Theorem (P↔ P̃) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chap. 16 Analogy Theorem (R̃↔ P̃) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chap. 17 Integrated-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chap. 18 Market Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chap. 19 Diagonal Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chap. 20 Conclusions of Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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Chapter 10

Flow of the Construction of Integrated Theory

10.1 Bird’s-Eye View
Figure 10.1.1(p.53) below provides a bird’s-eye view of the flow of discussions which constructs the integrated-theory.

Chap. 11(p.55)

(Underlying Functions)

↓

Chap. 12(p.61)

(Proof of A {M:1[R][A]}) -�
Chap. 13(p.69)

Symmetry Theorem (R↔ R̃)
(Derivation of A {M̃:1[R][A]})

?

6

?

6

Chap. 14(p.89)

Analogy Theorem (R↔ P)
(Derivation of A {M:1[P][A]})

-�
Chap. 15(p.101)

Symmetry Theorem (P↔ P̃)
(Derivation of A {M̃:1[P][A]})

Figure 10.1.1: The flow of the construction of the integrated theory

←
Chap. 16(p.111)

Analogy Theorem (R̃↔ P̃)
(Derivation of A {M̃:1[P][A]})

AR→P AP→R AR̃→P̃ AP̃→R̃

The above figure states the following:

◦ In Chap. 11(p.55) , lemmas and corollaries for underlying functions are proven.

◦ In Chap. 12(p.61) , A {M:1[R][A]} is proven by using the results in Chap. 11(p.55) .

◦ In Chap. 13(p.69) , the symmetry theorem (R↔ R̃) is proven, by which A {M̃:1[R][A]} is derived form A {M:1[R][A]}.
◦ In Chap. 14(p.89) , the analogy theorem (R↔ P) is proven, by which A {M:1[P][A]} is derived form A {M:1[R][A]}.
◦ In Chap. 15(p.101) , the symmetry theorem (P↔ P̃) is proven, by which A {M̃:1[P][A]} is derived form A {M:1[P][A]}.
◦ In Chap. 16(p.111) , the analogy theorem (R̃↔ P̃) is proven, which gives the relationship between A {M̃:1[R][A]} and A {M̃:1[P][A]}.

10.2 Connection with Both Directions
In the flow of Figure 10.1.1(p.53) above we should note the following:

◦ It is only A {M:1[R][A]} that is directly proven.

◦ The remaining three A {M̃:1[R][A]} , A {M:1[P][A]} , and A {M̃:1[P][A]} are derived by applying operations SR→R̃, AR→P, and

SP→P̃ to A {M:1[R][A]} .

◦ The above four boxes are connected with both directions (↔ ↕). The above interrelationship implies that any given box can
be derived from any other box by applying operations SR→R̃, S R̃→R, SP→P̃, S P̃→P, AR→P, AP→R, AR̃→P̃, and AP̃→R̃, which are
defined in Chaps. 13(p.69) -16(p.111) .
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Chapter 11

Properties of Underlying Functions

This chapter examines the properties of underlying functions TR , LR , KR , and LR and the κR-value (see (6.1.1(p.25) )-(6.1.6(p.25) )),
which are used to clarify the properties of the optimal decision rules for M:1[R][A] (see Chap. 12(p.61) ).

Definition 11.0.1 (A{XR}and A {XR}) Let us denote an assertion on XR = TR , LR , KR ,LR , κR by A{XR} and an assertion
system consisting of some assertions A{XR}’s by A {XR}.

11.1 Primitive Underlying Function TR
To begin with, let us prove the following lemma for the assertion system A {TR}.

Lemma 11.1.1 (A {TR }) For any F ∈ F :

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) + x is nondecreasing on (−∞,∞).

(e) T (x) + x is strictly increasing on [a,∞).

(f) T (x) = µ− x on (−∞, a] and T (x) > µ− x on (a,∞).

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(h) T (x) ≥ max{0, µ− x} on (−∞,∞).

(i) T (0) = µ if a > 0 and T (0) = 0 if b < 0.

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x < y and a < y, then T (x) + x < T (y) + y.

(m) λβT (λβµ− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) a < µ.†

• Proof First, for any x and y let us prove the following two inequalities:

−(x− y)(1− F (y)) ≤ T (x)− T (y) ≤ −(x− y)(1− F (x)) · · · ((1)), (11.1.1)

(x− y)F (y) ≤ T (x) + x− T (y)− y ≤ (x− y)F (x) · · · ((2)). (11.1.2)

Then, let T (x, y)
def
= E[(ξ − x)I(ξ > y)] for any x and y.‡ Since 1 ≥ I(ξ > y) ≥ 0 and since max{ξ − x, 0} ≥ 0 and

max{ξ − x, 0} ≥ ξ − x, we have

max{ξ − x, 0} ≥ max{ξ − x, 0}I(ξ > y) ≥ (ξ − x)I(ξ > y),

hence from (6.1.1(p.25) ) we get T (x) ≥ E[(ξ − x)I(ξ > y)] = T (x, y). Accordingly, for any x and y we have

T (x)− T (y) ≥ T (x, y)− T (y) = E[(ξ − x)I(ξ > y)]− E[(ξ − y)I(ξ > y)] = −(x− y)E[I(ξ > y)].

Since I(ξ ≤ y) + I(ξ > y) = 1, we have

T (x)− T (y) ≥ −(x− y)(E[1− I(ξ ≤ y)]) = −(x− y)(1− E[I(ξ ≤ y)]).

Then, since

E[I(ξ ≤ y)] =
∫∞
−∞ I(ξ ≤ y)f(ξ)dξ =

∫ y

−∞ 1× f(ξ)dξ =
∫ y

−∞ f(ξ)dξ = Pr{ξ ≤ y} = F (y),

we have T (x)− T (y) ≥ −(x− y)(1− F (y)), hence the far left inequality of (1) holds. Multiplying both sides of the inequality
by −1 leads to −T (x) + T (y) ≤ (x− y)(1− F (y)) or equivalently T (y)− T (x) ≤ −(y − x)(1− F (y)). Then, interchanging the

†The self-evident assertion is intentionally added here in order to keep the consistency with Lemma 14.2.1(p.93) (n).
‡If a given statement S is true, then I(S) = 1, or else I(S) = 0.
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notations x and y yields T (x)− T (y) ≤ −(x− y)(1− F (x)), hence the far right inequality of (1) holds. (2) is immediate from
adding x− y to (1) . Let us note here that T (x) defined by (6.1.1(p.25) ) can be rewritten as

T (x) = E[max{ξ − x, 0}I(a ≤ ξ)] + E[max{ξ − x, 0}I(ξ < a) · · · ((3)), (11.1.3)

= E[max{ξ − x, 0}I(b < ξ)] + E[max{ξ − x, 0}I(ξ ≤ b)] · · · ((4)). (11.1.4)

(a,b) Immediate from (6.1.1(p.25) ) and from the fact that max{ξ− x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for
any given ξ.

(c) Let y < x < b, hence x− y > 0. Then, since F (x) < 1 due to (2.2.1 (1,2) (p.12) ), we have −(x− y)(1− F (x)) < 0, hence
T (x)−T (y) < 0 due to (1) , so T (x) < T (y), i.e., T (x) is strictly decreasing on x < b · · · ((5)). Let us assume T (x) = T (b) on x < b.

Then, for any sufficiently small ε > 0 such that b− x > 2ε we have b > b− ε > x+ ε > x, hence T (b) = T (x) > T (b− ε) ≥ T (b)
due to the strict decreasingness shown above and the nonincreasingness in (b), which is a contradiction. Thus, it must be that
T (x) ̸= T (b) on x < b, so T (x) > T (b) or T (x) < T (b) on x < b; however, the latter is impossible due to (b), hence it follows
that T (x) > T (b) on x < b. From this fact and (5) it inevitably follows that T (x) is strictly decreasing on x ≤ b, i.e., T (x) is
strictly decreasing on (−∞, b].

(d) Evident from the fact that T (x) + x = E[max{ξ, x}] from (6.1.1(p.25) ) and max{ξ, x} is nondecreasing in x for any ξ.

(e) Let a < y < x, hence F (y) > 0 due to (2.2.1 (2,3) (p.12) ). Then, since (x− y)F (y) > 0, we have 0 < T (x) + x− T (y) + y
from (2) , hence T (y) + y < T (x) + x, i.e., T (x) + x is strictly increasing on a < x · · · ((6)). Let us assume T (a) + a = T (x) + x

on a < x. Then, for any sufficiently small ε > 0 such that x − a > ε we have a < a + ε < x, hence T (a) + a = T (x) + x >
T (a+ ε)+ a+ ε ≥ T (a)+ a due to the strict increasingness shown above and the nondecreasing in (d), which is a contradiction.
Thus, it must be that T (x)+ x ̸= T (a)+ a on a < x, so we have T (x)+ x > T (a)+ a or T (x)+ x < T (a)+ a on a < x; however,
the latter is impossible due to (d), hence it follows that T (x) + x > T (a) + a on a < x. From this fact and (6) it inevitably
follows that T (x)+ is strictly increasing on a ≤ x, i.e., T (x) + x is strictly increasing on [a,∞).

(f) Let x ≤ a. If a ≤ ξ, then x ≤ ξ, hence max{ξ − x, 0} = ξ − x and if ξ < a, then f(ξ) = 0 · · · ((7)) due to (2.2.3 (1) (p.13) ).

Thus, from (3) we have T (x) = E[(ξ− x)I(a ≤ ξ)] + 0. Then, since E[(ξ− x)I(ξ < a)] =
∫ a

∞(ξ − x)f(ξ)dξ = 0 due to (7) , we
have

T (x) = E[(ξ − x)I(a ≤ ξ)] + E[(ξ − x)I(ξ < a)] = E[(ξ − x)(I(a ≤ ξ) + I(ξ < a)] = E[ξ − x] = µ− x,

hence the former half is true. Then, since T (a) = µ − a or equivalently T (a) + a = µ, if a < x, from (e) we have T (x) + x >
T (a) + a = µ, hence T (x) > µ− x, thus the latter half is true.

(g) Let b ≤ x. If b < ξ, then f(ξ) = 0 due to (2.2.3 (3) (p.13) ), hence E[max{ξ−x, 0}I(b < ξ)] =
∫∞
b

max{ξ−x, 0}f(ξ)dξ = 0

and if ξ ≤ b, then ξ ≤ x, hence max{ξ − x, 0}I(ξ ≤ b) = 0, so E[max{ξ − x, 0}I(ξ ≤ b)] = 0. Accordingly, from (4) we
have T (x) = 0 · · · ((8)), so the latter half is true. Let x < b. Then, since T (x) > T (b) from (c) and T (b) = 0 from (8) , we have

T (x) > 0, hence the former half is true.

(h) Since T (x) ≥ µ− x on (−∞,∞) from (f) and T (x) ≥ 0 on (−∞,∞) from (g), it follows that T (x) ≥ max{0, µ− x} on
(−∞,∞).

(i) From (6.1.1(p.25) ) and (2.2.3 (1,3) (p.13) ) we have T (0) = E[max{ξ, 0}] = E[max{ξ, 0}I(a ≤ ξ ≤ b)]. Hence, if a > 0, then
T (0) = E[ξI(a ≤ ξ ≤ b)] = E[ξ] = µ and if b < 0, then T (0) = E[0I(a ≤ ξ ≤ b)] = 0.

(j) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (d).

(k) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (d).

(l) Let x < y and a < y. If x ≤ a, then T (x) + x ≤ T (a) + a < T (y) + y due to (d,e), and if a < x, then a ≤ x < y, hence
K(x) + x < K(y) + y due to (e). Thus, whether x ≤ a or a < x, we have T (x) + x < T (y) + y

(m) From (6.1.1(p.25) ) we have

λβT (λβµ− s)− s = λβE[max{ξ − λβµ+ s, 0}]− s

= E[max{λβξ − (λβ)2µ+ λβs, 0}]− s

= E[max{λβξ − (λβ)2µ− (1− λβ)s,−s}],

which is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) Evident.

11.2 Derivative Underlying Functions
First let us define

δ = 1− (1− λ)β. (11.2.1)

Then, since 0 < β ≤ 1 and 1 ≥ λ > 0, we have

δ ≥ 1− (1− λ)× 1 = λ > 0 · · · (1), δ ≤ 1− (1− λ)× 0 = 1 · · · (2). (11.2.2)
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Now, from (6.1.3(p.25) ) and (6.1.4(p.25) ) and from Lemma 11.1.1(p.55) (f) we obtain

L (x)

{
= λβµ− s− λβx on (−∞, a] · · · (1),

> λβµ− s− λβx on (a,∞) · · · (2),
(11.2.3)

K (x)

{
= λβµ− s− δx on (−∞, a] · · · (1),

> λβµ− s− δx on (a,∞) · · · (2).
(11.2.4)

In addition, from (6.1.4(p.25) ) and Lemma 11.1.1(p.55) (g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(11.2.5)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (11.2.6)

Then, from (11.2.4 (1) (p.57) ) and (11.2.5 (2) (p.57) ) we get

K (x) + x =

{
λβµ− s+ (1− λ)βx on (−∞, a] · · · (1),

βx− s on [b,∞) · · · (2).
(11.2.7)

From (6.1.8(p.25) ) we have K (x) = L (x)− (1− β)x and L (x) = K (x) + (1− β)x. Accordingly, if xL and xK exist, then we get

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2). (11.2.8)

Lemma 11.2.1 (A {LR })
(a) L (x) is continuous.

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβµ− s)/λβ ≤ (>) a ⇔ xL = (>) (λβµ− s)/λβ.

• Proof (a-c) Immediate from (6.1.3(p.25) ) and Lemma 11.1.1(p.55) (a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), from Lemma 11.1.1(p.55) (g) we have L (x) > 0 for b > x and L (x) = 0 for
b ≤ x, hence xL = b by the definition of xL (see Section 6.2(p.27) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by
contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.

(e) Let s > 0.

(e1) From (11.2.3 (1) (p.57) ) and from λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that x ≤ a. In
addition, we have L (b) = λβT (b) − s = −s < 0 due to Lemma 11.1.1(p.55) (g). Hence, from (a,c) it follows that xL uniquely
exists. The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβµ− s)/λβ ≤ (>) a, from (11.2.3(p.57) ) we have

L ((λβµ− s)/λβ) = (>) λβµ− s− λβ(λβµ− s)/λβ = 0,

hence xL = (>) (λβµ− s)/λβ from (e1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

Corollary 11.2.1 (A {LR})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma 11.2.1(p.57) (d,e1). “⇐” is evident by contraposition.

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 or equivalently xL = x ⇒ L (x) = 0, hence xL = x ⇒
L (x) ≥ 0. Accordingly, it follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma 11.2.2 (A {KR })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).
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(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a,∞).

(h) If x < y and a < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβµ− s)/δ ≤ (>) a ⇔ xK = (>) (λβµ− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof (a-c) Immediate from (6.1.4(p.25) ) and Lemma 11.1.1(p.55) (a-c).

(d) Immediate from (6.1.4(p.25) ) and Lemma 11.1.1(p.55) (b).

(e) From (6.1.4(p.25) ) we have

K (x) + x = λβT (x) + βx− s = λβ(T (x) + x) + (1− λ)βx− s · · · ((1)),

hence the assertion holds from Lemma 11.1.1(p.55) (d).

(f) Obvious from (1) and Lemma 11.1.1(p.55) (d).

(g) Clearly from (1) and Lemma 11.1.1(p.55) (e).

(h) Let x < y and a < y. If x ≤ a, then K(x) + x ≤ K(a) + a < K(y) + y due to (e,g), and if a < x, then a < x < y, hence
K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a or a < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (6.1.4(p.25) ), from Lemma 11.1.1(p.55) (g) we have K (x) > 0 for x < b
and K (x) = 0 for b ≤ x, hence xK = b by the definition of xK (see Section 6.2(p.27) (a)). Thus xK > (≤) x ⇒ K (x) > (=) 0.
The inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (11.2.5 (2) (p.57) ). If β < 1, then K (x) < 0 for any sufficiently large x > 0 with x ≥ b and if s > 0, then, whether
β < 1 or β = 1, we have K (x) < 0 for any sufficiently large x > 0 with x ≥ b. Hence, whether β < 1 or s > 0, we have
K (x) < 0 for any sufficiently large x > 0 with x ≥ b.

• Next note (11.2.4 (1) (p.57) ). Then, since δ > 0 from (11.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) > 0 for any
sufficiently small x < 0 with x ≤ a.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution xK is unique from (d).

◦ Let s > 0. If β < 1, the solution xK is unique for the reason just above. If β = 1, we have K (b) = −s < 0 from
(11.2.5 (2) (p.57) ), hence xK < b due to (c), so K (x) is strictly decreasing on the neighbourhood of x = xK due to (c), hence
the solution xK is unique. Therefore, whether β < 1 or β = 1, it follows that the solution xK is unique.

◦ Accordingly, whether β < 1 or s > 0, it follows that the solution xK is unique.

From all the above, whether β < 1 or s > 0, it follows that the solution xK uniquely exists and hence that the latter half
becomes true.

(j2) Let (λβµ− s)/δ ≤ (>) a. Then, from (11.2.4 (1(2)) (p.57) ) we have

K ((λβµ− s)/δ) = (>) λβµ− s− δ(λβµ− s)/δ = 0,

hence xK = (>) (λβµ− s)/δ due to (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (6.1.7(p.25) ), hence xK > (= (<)) 0 from (j1).

Corollary 11.2.2 (A {KR})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma 11.2.2(p.57) (i,j1). “⇐” is evident by contraposition.

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 or equivalently xK = x ⇒ K (x) = 0, hence xK = x ⇒
K (x) ≥ 0. Accordingly, it follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Lemma 11.2.3 (A {LR /KR })
(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.
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• Proof (a) If β = 1 and s = 0, then xL = b from Lemma 11.2.1(p.57) (d) and xK = b from
Lemma 11.2.2(p.57) (i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K ( xL ) = 0 from (11.2.8 (1) (p.57) ), hence xK = xL from
Lemma 11.2.2(p.57) (j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma 11.2.1(p.57) (d).

◦ If b > 0, then xL > 0, hence K ( xL ) < 0 from (11.2.8 (1) (p.57) ), so xL > xK from Lemma 11.2.2(p.57) (j1). If b = (<) 0, then
xL = (<) 0, hence K ( xL ) = (>) 0 from (11.2.8 (1) (p.57) ), so xL = (<) xK from
Lemma 11.2.2(p.57) (j1). Accordingly, we have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first
relation “⇔ ” holds.

◦ If b > 0, from (6.1.7(p.25) ) we haveK (0) = λβT (0) > 0 due to Lemma 11.1.1(p.55) (g), hence xK > 0 · · · ((2)) from Lemma 11.2.2(p.57) (j1).

If b = (<) 0, from (6.1.7(p.25) ) we haveK (0) = λβT (0) = 0 due to Lemma 11.1.1(p.55) (g), hence xK = (<) 0 from Lemma 11.2.2(p.57) (j1).
Accordingly, we have the second relation “⇒ ”.

(d) Let β < 1 and s > 0. Now, since κ = K (0) from (6.1.7(p.25) ), if κ > (= (<)) 0, then K (0) > (= (<)) 0, thus
xK > (= (<)) 0 · · · ((3)) from Lemma 11.2.2(p.57) (j1). Accordingly L (xK ) > (= (<)) 0 from (11.2.8 (2) (p.57) ), hence xL > (= (<)) xK

from Lemma 11.2.1(p.57) (e1). Thus, “⇒ ” in the first relation “⇔ ” holds and its inverse “⇐ ” is immediate by contraposition.
Finally, the first relation “⇒” is immediate from (3) .

Lemma 11.2.4 (LR )

(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.

(b) Let λβµ ≥ b.

1. xL ≤ λβµ− s.

2. Let s > 0 and λβ < 1. Then xL < λβµ− s.

(c) Let λβµ < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβµ− s.

• Proof (a) From (6.1.5(p.25) ) and (6.1.3(p.25) ) we have

L (s) = L (λβµ− s) = λβT (λβµ− s)− s · · · ((1)),

hence the assertion holds from Lemma 11.1.1(p.55) (m).

(b) Let λβµ ≥ b. Then, from (1) we have L (0) = λβT (λβµ) = 0 · · · ((2)) due to Lemma 11.1.1(p.55) (g).

(b1) Since s ≥ 0, from (a) we have L (s) ≤ L (0) = 0 due to (2) or equivalently L (λβµ − s) ≤ 0 due to (1) , hence
xL ≤ λβµ− s from Corollary 11.2.1(p.57) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L (s) < L (0) = 0 · · · ((3)) due to (2) or equivalently L (λβµ− s) < 0 due

to (1) , hence xL < λβµ− s from Lemma 11.2.1(p.57) (e1).

(c) Let λβµ < b. From (1) we have L (0) = λβT (λβµ) > 0 · · · ((4)) due to Lemma 11.1.1(p.55) (g). Note (11.2.3 (1) (p.57) ). Then,

for any sufficiently large s > 0 such that λβµ− s ≤ a and λβµ− s < 0 we have

L (s) = L (λβµ− s) = λβµ− s− λβ(λβµ− s) = (1− λβ)(λβµ− s) ≤ 0.

Accordingly, due to (a) it follows that there exists the solution sL of L (s) = 0 where sL > 0 due to (4) . Then, since L (s) > 0
for s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβµ − s) > 0 for s < sL and L (λβµ − s) ≤ 0 for s ≥ sL , from
Corollary 11.2.1(p.57) (a) we get xL > λβµ− s for s < sL and xL ≤ λβµ− s for s ≥ sL .

11.3 κR-value
Lemma 11.3.1 (A {κR})
(a) κ = λβµ− s if a > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof (a) Immediate from (6.1.6(p.25) ) and Lemma 11.1.1(p.55) (i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (6.1.7(p.25) ), hence xK > (= (<)) 0 from
Lemma 11.2.2(p.57) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.
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Chapter 12

Proof of A {M:1[R][A]}

12.1 Preliminary
From (7.2.8(p.30) ) and (7.2.14(p.30) ) we have

Vt − βVt−1 = max{St, 0}

= max{L (Vt−1), 0}, t > 1. (12.1.1)
Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence from (6.1.9(p.25) ) we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (12.1.2)

2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0, hence

Vt = βVt−1, t > 1.. (12.1.3)
Now, from (7.4.2(p.41) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (12.1.4)

Finally, from (7.2.14(p.30) ) and (7.2.12(p.30) ) we have

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 1.. (12.1.5)

12.2 Proof of A {M:1[R][A]}
Definition 12.2.1 (assertion and assertion system) ByA{M:1[R][A]} let us represent an assertion included in each of Tom’s 12.2.1(p.61)

and 12.2.2(p.62) below and by A {M:1[R][A]} the assertion system consisting of all assertions included in each Tom.

Below, note that λ = 1 is assume in the model (See Def. 13.7.1(p.83) for the meaning of symbol �� which is used below).

�� Tom 12.2.1 (A {M:1[R][A]}) Let β = 1 and s = 0.
(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (6.1.4(p.25) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma 11.1.1(p.55) (g), hence from (7.4.2(p.41) ) and (1) we have

Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)), t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma 11.1.1(p.55) (d) we have Vt ≤ T (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in
t > 0.

(b) Since V1 = µ from (7.4.1(p.41) ), we have V1 < b. Suppose Vt−1 < b. Then, from (2) we have Vt < T (b) + b = b due to
Lemma 11.1.1(p.55) (l,g). Accordingly, by induction Vt−1 < b for t > 1, hence L (Vt−1) > 0 for t > 1 due to Lemma 11.2.1(p.57) (d);
accordingly, L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Thus, from (12.1.1(p.61) ) we obtain Vt − βVt−1 > 0 for τ ≥ t > 1, i.e., Vt > βVt−1

for τ ≥ t > 1. Accordingly, since Vτ > βVτ−1 > · · · > βτ−1V1, we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N, hence we have

ConducttN for τ ≥ t > 1 due to (3) and (12.1.5(p.61) ).

Let us define

S1 ⃝s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where CONDUCTτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where CONDUCTτ≥t>1N.

}
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�� Tom 12.2.2 (A {M:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ < b.

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)) .

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)) .

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a and s < sL . Then S1(p.61) ⃝s N } ∥ is true.

• Proof Let β < 1 or s > 0. In this model, note that the search must be necessarily conducted at time t = 1 (see Re-
mark 4.1.3(p.20) (b)) and that δ = 1 · · · ((1)) (see (11.2.1(p.56) )) due to the assumption λ = 1 · · · ((2)).

(a) Since xK ≥ βµ− s = V1 due to Lemma 11.2.2(p.57) (j2) and (7.4.1(p.41) ), we have K (V1) ≥ 0 due to Lemma 11.2.2(p.57) (j1),
hence V2− V1 ≥ 0 from (12.1.4(p.61) ), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (7.4.2(p.41) ) and Lemma 11.2.2(p.57) (e) we have
Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0. Consider a
sufficiently largeM > 0 with βµ−s ≤M and b ≤M , hence V1 ≤M from (7.4.1(p.41) ). Suppose Vt−1 ≤M . Then, from (7.4.2(p.41) ),
Lemma 11.2.2(p.57) (e), and (11.2.7 (2) (p.57) ) we have Vt ≤ max{K (M) +M,βM} = max{βM − s, βM} ≤ max{M,M} = M due
to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤ M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (7.4.2(p.41) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since
K (V ) ≤ 0, we have V ≥ xK from Lemma 11.2.2(p.57) (j1).

(b) Let βµ ≥ b. Then xL ≤ βµ − s = V1 from Lemma 11.2.4(p.59) (b1) with λ = 1, hence xL ≤ Vt−1 for t > 1 from (a).
Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary 11.2.1(p.57) (a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1. Hence, from

(12.1.3(p.61) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ , hence t∗τ = 1 for
τ > 1, i.e., • dOITdτ>1⟨1⟩ ∥ (see Preference Rule 8.2.1(p.45) ).

(c) Let βµ < b.

(c1) Let β = 1 · · · ((3)), hence s > 0 due to the assumption “β < 1 or s > 0”. Then, from (3) , (1) , (2) we have (λβµ−s)/δ =

µ− s · · · ((4)). In addition, since xL = xK · · · ((5)) from Lemma 11.2.3(p.58) (b), we have K (xL) = K (xK) = 0 · · · ((6)).

(c1i) Let µ− s ≤ a. Then xL = xK = µ− s = V1 from (5) , Lemma 11.2.2(p.57) (j2), (4) , and (7.4.1(p.41) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma 11.2.1(p.57) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.

(c1ii) Let µ− s > a. Then xL = xK > µ− s = V1 > a from (5) and Lemma 11.2.2(p.57) (j2), hence a < Vt−1 for t > 1 from
(a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from Lemma 11.2.1(p.57) (e1). Then, from (12.1.2(p.61) ), Lemma 11.2.2(p.57) (g), and
(5) we have Vt < K (xL) + xL = K (xK) + xL = xL . Accordingly, by induction Vt−1 < xL for t > 1, hence L (Vt−1) > 0 for
t > 1 due to Corollary 11.2.1(p.57) (a). Thus, for the same reason as in the proof of Tom 12.2.1(p.61) (b) we have ⃝s dOITsτ>1⟨τ⟩ N
and CONDUCTτ≥t>1N.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((7)) from Lemma 11.2.3(p.58) (c ((d))). Now, since xK ≥ βµ − s due to

Lemma 11.2.2(p.57) (j2), (1) , and (2) , we have xK ≥ V1 from (7.4.1(p.41) ). Suppose xK ≥ Vt−1. Then, from (7.4.2(p.41) ) and
Lemma 11.2.2(p.57) (e) we have Vt ≤ max{K (xK) + xK , β xK } = max{xK , β xK } = xK due to (7) . Accordingly, by induction
Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (7) , thus L (Vt−1) > 0 for t > 1 due to Corollary 11.2.1(p.57) (a). Hence,
for the same reason as in the proof of Tom 12.2.1(p.61) (b) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((8)) from Lemma 11.2.3(p.58) (c ((d))).

(c2ii1) Let βµ− s ≤ a. Then, xK = βµ− s = V1 from Lemma 11.2.2(p.57) (j2). Suppose Vt−1 = xK , hence Vt−1 = xL from
(8) , so L (Vt−1) = L (xL) = 0. Then, from (12.1.2(p.61) ) we have Vt = K (xK) + xK = xK . Accordingly, by induction Vt−1 = xK

for t > 1, hence Vt−1 = xL for t > 1 due to (8) . Then, since L (Vt−1) = L (xL) = 0 for t > 1, we have Vt = βVt−1 for t > 1
from (12.1.3(p.61) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ>1⟨1⟩ ∥.

(c2ii2) Let βµ − s > a. Then, since V1 > a from (7.4.1(p.41) ), we have Vt−1 > a for t > 1 due to (a). In addition, we have
xK > βµ− s = V1 from Lemma 11.2.2(p.57) (j2). Suppose xK > Vt−1, hence xL > Vt−1 from (8) . Then, since L (Vt−1) > 0 due
to Corollary 11.2.1(p.57) (a), from (12.1.2(p.61) ) and Lemma 11.2.2(p.57) (g) we have Vt < K (xK ) + xK = xK . Hence, by induction
xK > Vt−1 for t > 1, so xL > Vt−1 for t > 1 due to (8) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary 11.2.1(p.57) (a),
for the same reason as in the proof of (c1ii) we have ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((9)) from Lemma 11.2.3(p.58) (c ((d))).
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(c2iii1) Let βµ− s ≤ a or sL ≤ s. First let βµ− s ≤ a. Then, since xK = βµ− s = V1 from
Lemma 11.2.2(p.57) (j2), we have xL < V1 from (9) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βµ − s due to
Lemma 11.2.4(p.59) (c), we have xL ≤ V1. Accordingly, whether βµ − s ≤ a or sL ≤ s, we have xL ≤ V1, thus xL ≤ Vt−1 for
t > 1 due to (a). Hence, since L (Vt−1) ≤ 0 for t > 1 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof of (b) we
obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βµ − s > a · · · ((10 )) and s < sL . Then, from (9) and Lemma 11.2.4(p.59) (c) we have xK > xL > βµ − s =

V1 · · · ((11 )), hence K (V1) > 0 · · · ((12 )) from Lemma 11.2.2(p.57) (j1). In addition, since V1 > a due to (10) , we have Vt−1 > a

for t > 0 from (a). Now, from (12.1.4(p.61) ) and (12) we have V2 − V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from
Lemma 11.2.2(p.57) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt is
strictly increasing in t > 0. Note that V1 < xL due to (11) . Assume that Vt−1 < xL for all t > 1, hence V ≤ xL due to (a).
Then, from (9) and from V ≥ xK due to (a) we have the contradiction of V ≥ xK > xL ≥ V . Hence, it is impossible that
Vt−1 < xL for all t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · ,
from which

Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt−1, t > t•τ . (12.2.1)

Therefore, from Corollary 11.2.1(p.57) (a) we have

L (Vt−1) > 0 · · · ((13 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((14 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((15 )) for τ ≥ t > 1 from (13) , for the same reason as in the proof of (c1ii) we

have ⃝s dOITst•τ≥τ>1⟨τ⟩ N and CONDUCTτ≥t>1N. Hence S1(1) is true.

2. Let τ > t•τ . First, let τ ≥ t > t•τ . Then, since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (14) , we have Vt = βVt−1 for τ ≥ t > t•τ from
(12.1.3(p.61) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ · · · ((16 )).

Next let t•τ ≥ t > 1. Then, from (13) and (12.1.1(p.61) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1, i.e., Vt > βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1 · · · ((17 )).

From (16) and (17) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ due to Preference Rule 8.2.1(p.45) . In addition, we have ConducttN for

t•τ ≥ t > 1 due to (13) and (12.1.5(p.61) ). Hence S1(2) is true.

Definition 12.2.2 (model-migration) If “ ⃝s dOITsτ>1⟨τ⟩ N and CONDUCTτ≥t>1N” holds in M:1[R][A], then the search is not
skipped over τ ≥ t > 1, implying that the model M:1[R][A] is substantively reduced to the model in which the search is enforced
over τ ≥ t > 1, i.e. , M:1[R][E]. We refer to this event as “ M:1[R][A] migrates over to M:1[R][E] ”, represented as

M:1[R][A] # M:1[R][E].

12.3 Structure of Assertion System A {M:1[R][A]}
In this section we clarify the structure of the assertion system A {M:1[R][A]} (see Def. 12.2.1(p.61) ). It will be known later on that
its structure will play an essential role in the discussions in Step 6 (p.78) .

12.3.1 Breakdown and Aggregation

Before proceeding with our discussions, let us define the following two perspectives (see Figure 12.3.1(p.64) below (k = 3)).

(I) The breakdown of a given set X into k mutually disjoint subsets X1, X2, · · · , and Xk (k > 0), i.e.,

X = X1 ∪X2 ∪ · · · ∪Xk where Xi ∩Xj = ∅ for any i ̸= j.

This is called the breakdown scenario, represented as X ⇒ {X1,X2, · · · ,Xk}.

(II) The aggregation of k mutually disjoint subsets X ′
1 , X ′

2 , · · · , and X ′
k (k > 0) of a given set X , i.e.,

X ′ def
= X ′

1 ∪X ′
2 ∪ · · · ∪X ′

k ⊆ X where X ′
i ∩X ′

j = ∅ for any i ̸= j.

This is called the aggregation scenario, represented as {X ′
1 ,X

′
2 , · · · ,X ′

k} ⇒ X ′.
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Figure 12.3.1: Breakdown and aggregation

12.3.2 Structure of Assertion A{M:1[R][A]}
12.3.2.1 Condition-Space C ⟨A⟩
In general, any given assertion A{M:1[R][A]} consists of a statement S and a condition-expression CE, schematized as

A{M:1[R][A]}={S holds if CE is satisfied}. (12.3.1)

� Example 12.3.1 The assertion given by Tom 12.2.2(p.62) (b) can be rewritten as

A{M:1[R][A]}={ • dOITdτ>1⟨1⟩ ∥ holds if βµ ≥ b is satisfied}

where S = { • dOITdτ>1⟨1⟩ ∥} and CE = {βµ ≥ b}.

Then, in general, the condition-expression CE is given as a conditional on a parameter vector p and a distribution function F
where

p ∈PA ⊆P,

F ∈ FA|p ⊆ F

for a given parameter space PA ⊆ P (see (4.3.1(p.21) ) and (4.3.2(p.21) )) and a given distribution function space FA|p ⊆ F (see
(2.2.5(p.13) )) related to a given p ∈PA. Then (12.3.1(p.64) ) can be rewritten as

A{M:1[R][A]} = {S holds for p ∈PA ⊆P and F ∈ FA|p ⊆ F}. (12.3.2)

� For the assertion A given by Tom 12.2.2(p.62) (c1i) we have

PA = {p
∣∣ λ = 1 ∩ β = 1 ∩ s > 0}, †

FA|p = {F
∣∣ βµ < b ∩ µ− s ≤ a}.

� For the assertion A given by Tom 12.2.2(p.62) (c2iii2) we have

PA = {p
∣∣ λ = 1 ∩ β < 1 ∩ s = 0 ((s > 0))},

FA|p = {F
∣∣ βµ < b ∩ b < 0 ((κ < 0)) ∩ βµ− s > a ∩ s < sL }.

Here let us define

C ⟨A⟩ def
= {(p, F )

∣∣ p ∈PA ⊆P, F ∈ FA|p ⊆ F}, (12.3.3)

called the condition-space of a given assertion A{M:1[R][A]}. Then, (12.3.2(p.64) ) can be rewritten as

A{M:1[R][A]} = {S holds on C ⟨A⟩ }. (12.3.4)

Throughout the rest of the paper, for explanatory convenience, let us alternatively express the whole of (12.3.4(p.64) ) as

A{M:1[R][A]} holds on C ⟨A⟩. (12.3.5)

†When β = 1, we have s > 0 due to the assumption “β < 1 or s > 0”.
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12.3.2.2 Structure of Tom

Definition 12.3.1

(a) We sometimes represent Tom 12.2.1(p.61) and Tom 12.2.2(p.62) by “Tom” for short, removing “12.2.1” and “12.2.2”.

(b) To discriminate multiple Tom’s we sometimes use Tom1, Tom2, · · · . For example, Tom1 = Tom 12.2.1(p.61) and Tom2 =
Tom 12.2.2(p.62) .

(c) In order to stress that an assertion A{M:1[R][A]} is included in a given Tom, i.e., A{M:1[R][A]} ∈ Tom, let us represent it
as ATom{M:1[R][A]} and an assertion system consisting of all ATom{M:1[R][A]} as ATom {M:1[R][A]}.

Then (12.3.2(p.64) )-(12.3.5(p.64) ) can be rewritten as respectively

ATom{M:1[R][A]} = {S holds for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F}, (12.3.6)

C ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F}, (12.3.7)

ATom{M:1[R][A]} = {S holds on C ⟨ATom⟩ }, (12.3.8)

ATom{M:1[R][A]} holds on C ⟨ATom⟩. (12.3.9)

Closely looking into the structure of Tom 12.2.1(p.61) and Tom 12.2.2(p.62) , in general, we see that a given Tom consists of a basic-
premise BP and some assertions A1

Tom, A
2
Tom, · · · , i.e.,

Tom= {Let BP be true. Then assertions A1
Tom, A

2
Tom, · · · hold.}

or equivalently
Tom= {Assertions A1

Tom, A
2
Tom, · · · hold if BP be true.} (12.3.10)

in which the basic-premise BP is given as a conditional on a parameter vector p and a distribution function F where

p ∈PTom ⊆P,

F ∈ FTom|p ⊆ F (12.3.11)

for given subsets PTom ⊆P and FTom|p ⊆ F . Then the basic-premise BP can be written as

BP = {a condition on p ∈PTom ⊆P and F ∈ FTom|p ⊆ F}. (12.3.12)

� Example 12.3.2 For M:1[R][A] we have

PTom = {p
∣∣ λ = 1 ∩ β = 1 ∩ s = 0} for Tom 12.2.1(p.61)

PTom = {p
∣∣ λ = 1 ∩ (β < 1 ∪ s > 0)} for Tom 12.2.2(p.62)

FTom|p = F for Tom 12.2.1(p.61)

FTom|p = F for Tom 12.2.2(p.62)

For M:2[R][A] in Section 22.1.4(p.162) we have

PTom = {p
∣∣ λ ≤ 1 ∩ β = 1 ∩ s = 0 ∩ −∞ < ρ <∞} for Tom 22.1.1(p.163)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 22.1.2(p.163)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 22.1.3(p.166)

PTom = {p
∣∣ λ ≤ 1 ∩ (β < 1 ∪ s > 0) ∩ −∞ < ρ <∞} for Tom 22.1.4(p.166)

FTom|p = {F
∣∣ −∞ < a < µ < b <∞} = F for Tom 22.1.1(p.163)

FTom|p = {F
∣∣ F ∈ F ∩ ρ < xK } for Tom 22.1.2(p.163)

FTom|p = {F
∣∣ F ∈ F ∩ ρ = xK } for Tom 22.1.3(p.166)

FTom|p = {F
∣∣ F ∈ F ∩ ρ > xK } for Tom 22.1.4(p.166)

12.3.2.3 Condition Space C ⟨Tom⟩
For a given Tom let us define

C ⟨Tom⟩ def
= {(p, F )

∣∣ p ∈PTom ⊆P, F ∈ FTom|p ⊆ F}, (12.3.13)

called the condition space of Tom. Then (12.3.12(p.65) ) can be rewritten as

BP = {a condition on C ⟨Tom⟩ }, (12.3.14)
hence (12.3.10(p.65) ) can be rewritten as

Tom = {Assertions A1
Tom, A

2
Tom. · · · hold on BP}, (12.3.15)

alternatively as
Tom = {Assertions A1

Tom, A
2
Tom, · · · hold on C ⟨Tom⟩}. (12.3.16)

Moreover, for explanatory convenience, we will sometimes express the event “ATom and Aj
Tom are included in Tom ” as “ATom ∈ Tom

and Aj
Tom ∈ Tom ”.
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12.3.3 Construction of Assertion System A {M:1[R][A]}�� ��breakdown scenario

↓

12.3.3.1 Completeness of Tom on C ⟨Tom⟩
(12.3.16(p.65) ) means that assertions A1

Tom, A
2
Tom, · · · included in Tom are all over all possible parameters (p, F ) ∈ C ⟨Tom⟩. In this

paper we refer to this fact as the completeness of Tom on C ⟨Tom⟩.

12.3.3.2 Breakdown of C ⟨Tom⟩
Let us note here that the completeness of Tom is not what should be proven but what is given as a requirement ; in other words,
the breakdown of the condition space C ⟨Tom⟩ to the condition spaces C ⟨A1

Tom⟩, C ⟨A2
Tom⟩, · · · is given as a priori requirement.

This scenario can be described as the expression below.

C ⟨Tom⟩ = ∪j=1,2,···C ⟨Aj
Tom⟩ = ∪ATom∈TomC ⟨ATom⟩, (12.3.17)

depicted as in Figure 12.3.2(p.66) below.

C ⟨Tom⟩

⇓breakedown�� ��C ⟨A1
Tom⟩, C ⟨A2

Tom⟩ C ⟨A3
Tom⟩

Figure 12.3.2: Breakedown of C ⟨Tom⟩ to C ⟨A1
Tom⟩, C ⟨A2

Tom⟩, C ⟨A3
Tom⟩

12.3.3.3 Construction of ATom {M:1[R][A]}
Consider the list of (12.3.9(p.65) ) over Tom, i.e., A1

Tom, A
2
Tom, · · · ∈ Tom, or equivalently

“A1
Tom{M:1[R][A]} holds on C ⟨A1

Tom⟩ ”,

“A2
Tom{M:1[R][A]} holds on C ⟨A2

Tom⟩ ”,
...

Then, gathering the above list with noting (12.3.17(p.66) ), we get

ATom {M:1[R][A]} holds on C ⟨Tom⟩ (12.3.18)

where

ATom {M:1[R][A]} def
= {A1

Tom{M:1[R][A]}, A2
Tom{M:1[R][A]}, · · · }. (12.3.19)

12.3.3.4 Condition-Space C ⟨Tom⟩
For explanatory convenience, let us represent Tom 12.2.1(p.61) and Tom 12.2.2(p.62) by Tom1 and Tom2 respectively; in general, let
Tom1, Tom2, · · · . Then, let us define

Tom def
= {Tom1, Tom2, , · · · } = {Tom}.

� Example 12.3.3 For example we have

Tom = {Tom1 = Tom 12.2.1(p.61) , Tom2 = Tom 12.2.2(p.62) },

Tom = {Tom1 = Tom 22.1.1(p.163) , Tom2 = Tom 22.1.2(p.163) , Tom3 = Tom 22.1.3(p.166) , Tom4 = Tom 22.1.4(p.166) }.

Here let us define

C ⟨Tom⟩ def
= ∪i=1,2,···C ⟨Tomi⟩ = ∪Tom∈TomC ⟨Tom⟩, (12.3.20)

called the condition space of Tom, schematized as in Figure 12.3.3(p.67) below.
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C ⟨Tom1⟩

C ⟨Tom2⟩

C ⟨Tom3⟩

C ⟨Tom⟩

∥definition�� ��C ⟨Tom1⟩, C ⟨Tom2⟩, C ⟨Tom3⟩

Figure 12.3.3: Condition space C ⟨Tom⟩

For convenience of discussions that follows, as one corresponding to (12.3.10(p.65) ), let us define, for i = 1, 2, · · · ,

Tomi = {Assertions A1
Tomi

, A2
Tomi

, · · · hold on C ⟨Tom⟩i}. (12.3.21)

12.3.3.5 Construction of A {M:1[R][A]}
Using (12.3.17(p.66) ), we can express (12.3.20(p.66) ) as below

C ⟨Tom⟩ = ∪i=1,2,··· ∪j=1,2,··· C ⟨Aj
Tomi
⟩ (12.3.22)

= ∪Tom∈Tom ∪j=1,2,··· C ⟨Aj
Tom⟩ (12.3.23)

= ∪Tom∈Tom ∪ATom∈Tom C ⟨ATom⟩ (12.3.24)

This relation implies the breakdown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩ /C ⟨Aj

Tom⟩ /C ⟨ATom⟩.

� Example 12.3.4 As an example let us consider Tom = {Tom1, Tom2, Tom3} where Tom1 = {A1
Tom1 , A

2
Tom1 , A

3
Tom1}, Tom2 =

{A1
Tom2 , A

2
Tom2 , A

3
Tom2}, and Tom3 = {A1

Tom3 , A
2
Tom3 , A

3
Tom3}.

Then, fetching Figure 12.3.2(p.66) in Figure 12.3.3(p.67) with noting (12.3.22(p.67) ) produces Figure 12.3.4(p.67) below, which is the
breakdown of C ⟨Tom⟩ into C ⟨Aj

Tomi
⟩.

C ⟨Tom⟩

⇓breakedown
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C ⟨A1
Tom2
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C ⟨A2
Tom2
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C ⟨A1
Tom3
⟩

C ⟨A2
Tom3
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C ⟨A3
Tom3
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C ⟨Tom⟩

∥definition

C ⟨Tom1⟩

⇓�� ��C ⟨A1
Tom1
⟩, C ⟨A2

Tom1
⟩ C ⟨A3

Tom1
⟩

C ⟨Tom2⟩

⇓�� ��C ⟨A1
Tom2
⟩, C ⟨A2

Tom2
⟩ C ⟨A3

Tom2
⟩

C ⟨Tom3⟩

⇓�� ��C ⟨A1
Tom3
⟩, C ⟨A2

Tom3
⟩ C ⟨A2

Tom3
⟩

breakedown breakedown breakedown

Figure 12.3.4: Breakdown of C ⟨Tom⟩ into C ⟨Aj
Tomi
⟩, i, j = 1, 2, 3

Figure 12.3.4(p.67) above implies that first

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨Tomi⟩ , i = 1, 2, 3 ”, by definition

and then

“ each
�� ��C ⟨Tomi⟩ , i = 1, 2, 3 is broken down to

�� ��C ⟨Aj
Tomi
⟩ , i, j = 1, 2, 3. ”

The above two successive breakdown procedures eventually yields

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨Aj
Tomi
⟩ for i, j = 1, 2, 3 ”,

more generally

“
�� ��C ⟨Tom⟩ is broken down to

�� ��C ⟨ATom⟩ ”

Here, consider the list of (12.3.18(p.66) ) over Tom1, Tom2, , · · · ∈ Tom = {Tom1, Tom2, · · · }, i.e.,

“ATom1 {M:1[R][A]} holds on C ⟨Tom1⟩ ”.

“ATom2 {M:1[R][A]} holds on C ⟨Tom2⟩ ”.
...
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Then, gathering the above list with noting (12.3.22(p.67) ), we obtain

A {M:1[R][A]} holds on C ⟨Tom⟩ (12.3.25)
where

A {M:1[R][A]} def
= {ATom1{M:1[R][A]},ATom2{M:1[R][A]}, · · · }.

12.3.3.6 Completeness of Tom on C ⟨Tom⟩ = P ×F

Throughout this paper, the condition space C ⟨Tom⟩ is constructed so as to equal the total-P/DF-space P ×F (see (4.3.3(p.21) )),
i.e.,

C ⟨Tom⟩ = P ×F . (12.3.26)

The equality (12.3.26(p.68) ) implies that assertions Aj
Tomi

, i, j = 1, 2, · · · , raised and discussed there are all over all possible points
(p, F ) ∈ C ⟨Tom⟩ = P ×F (see (12.3.3.1(p.66) )).

Remark 12.3.1 (a priori requirement) What should be especially noted here is that this is not what should be proven
but what should be satisfied as a priori requirement.

The above perspective can be depicted as in Figure 12.3.4(p.67) as below.

C ⟨Tom⟩ = P ×F

⇓complete breakedown
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Figure 12.3.5: The complete breakedown of C ⟨Tom⟩ to C ⟨Aj
Tomi
⟩, i, j = 1, 2, 3

↑�� ��breakdown scenario



Chapter 13

Symmetry Theorem (R↔ R̃)

13.1 Two Kinds of Equality

13.1.1 Correspondence Equality

For ξ, a, µ, b, T (x), · · · , which are all dependent on a given distribution function F ∈ F (see (2.2.5(p.13) )), let us define ξ̂ = −ξ,
â = −a, µ̂ = −µ, b̂ = −b, T̂ (x) = −T (x), · · · respectively, called the reflection operation R. Then, for any given distribution
function F ∈ F , i.e.,

F (ξ) = Pr{ξ ≤ ξ} ⊆ F , (13.1.1)

let us define the distribution function of ξ̂ by F̌ , i.e.,

F̌ (ξ)
def
= Pr{ξ̂ ≤ ξ}, (13.1.2)

where its probability density function is represented by f̌ and the set of all possible F̌ is denoted by F̌ , i.e.,

F̌
def
= {F̌

∣∣ F ∈ F}. (13.1.3)

Now, since ˇ̌F (ξ) = Pr{ˆ̂ξ ≤ ξ} for any ξ due to the definition (13.1.2(p.69) ) and since

ˆ̂
ξ = −̂ξ = −(−ξ) = ξ, (13.1.4)

we have ˇ̌F (ξ) = Pr{ξ ≤ ξ} = F (ξ) for any ξ due to (13.1.1(p.69) ), i.e.,

ˇ̌F ≡ F. (13.1.5)
For any subset F ′ ⊆ F let us define

F̌ ′ def
= {F̌

∣∣ F ∈ F ′}. (13.1.6)

Then we have

ˇ̌F ′ = { ˇ̌F
∣∣ F̌ ∈ F̌ ′} = {F

∣∣ F̌ ∈ F̌ ′} (13.1.7)

due to (13.1.5(p.69) ). If F ∈ F ′, then F̌ ∈ F̌ ′ from (13.1.6(p.69) ), hence F ∈ ˇ̌F ′ due to (13.1.7(p.69) ); accordingly, we have

F ′ ⊆ ˇ̌F ′ · · · (∗). If F ∈ ˇ̌F ′, then F̌ ∈ F̌ ′ due to (13.1.7(p.69) ), hence F ∈ F ′ from (13.1.6(p.69) ), therefore, we have ˇ̌F ′ ⊆ F ′.
From this and (∗) it follows that

ˇ̌F ′ = F ′.

By ǎ, µ̌, and b̌ let us denote the lower bound, the expectation, and the upper bound of F̌ ∈ F̌ corresponding to any given
F ∈ F with the lower bound a, the expectation µ, and the upper bound b. Then, from Figure 13.1.1(p.70) just below we clearly
have, for any ξ,

f(ξ) = f̌(ξ̂), (13.1.8)

called the correspondence equality , where

â = b̌, µ̂ = µ̌, b̂ = ǎ. (13.1.9)

69



70

0

ξ̂ ξξξ̂
a b−a = â = b̌
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f(ξ)f̌(ξ̂)

Figure 13.1.1: Relationship between probability density functions f and f̌

13.1.2 Identity Equality

Lemma 13.1.1

(a) F and F̌ are one-to-one correspondent where F = F̌ .

(b) For any F̌ ∈ F̌ there exists a F ∈ F which is identical to the F̌ , i.e., F ≡ F̌ .†

(c) For any F ∈ F there exists a F̌ ∈ F̌ which is identical to the F , i.e., F̌ ≡ F .

• Proof If F ∈ F , then F̌ ∈ F̌ from (13.1.3(p.69) ), hence F ∈ F ⇒ F̌ ∈ F̌ · · · ((1)). Conversely, if F̌ ∈ F̌ , then F from which

F̌ ∈ F̌ is defined is clearly an element of F due to (13.1.3(p.69) ), i.e., F ∈ F , hence F̌ ∈ F̌ ⇒ F ∈ F · · · ((2)).

(a) First, for any F ∈ F and for the F̌ ∈ F̌ corresponding to the F we have

F̌ (ξ) = Pr{ξ̂ ≤ ξ} = Pr{−ˆ̂ξ ≤ −ξ̂} = Pr{ˆ̂ξ ≥ ξ̂} = Pr{ξ ≥ ξ̂} (due to (13.1.4(p.69) ))

= 1− Pr{ξ < ξ̂} = 1− Pr{ξ ≤ ξ̂}‡ = 1− F (ξ̂) · · · ((3)).

Suppose any F ∈ F yields the two different F̌1 ∈ F̌ and F̌2 ∈ F̌ , meaning that there exists at least one ξ′ such that
F̌1(ξ

′) ̸= F̌2(ξ
′). Then, since F̌1(ξ

′) = 1−F (ξ̂′) and F̌2(ξ
′) = 1−F (ξ̂′) due to (3) , we have the contradiction of F̌1(ξ

′) = F̌2(ξ
′),

hence the F ∈ F must correspond to a unique F̌ ∈ F̌ .

Next, for any F̌ ∈ F̌ and for F ∈ F from which F̌ ∈ F̌ is defined we have

F (ξ) = Pr{ξ ≤ ξ} = Pr{−ξ̂ ≤ −ξ̂} = Pr{ξ̂ ≥ ξ̂} = 1− Pr{ξ̂ < ξ̂} = 1− Pr{ξ̂ ≤ ξ̂}‡ = 1− F̌ (ξ̂) · · · ((4)).

Suppose any F̌ ∈ F̌ is yielded from the two different F1 ∈ F and F2 ∈ F , meaning that there exists at least one ξ′ such that
F1(ξ

′) ̸= F2(ξ
′). Then, since F1(ξ

′) = 1− F̌ (ξ̂′) and F2(ξ
′) = 1− F̌ (ξ̂′) due to (4) , we have the contradiction of F1(ξ

′) = F2(ξ
′),

hence the F̌ ∈ F̌ must correspond to a unique F ∈ F . Thus, the former half of the assertion is true.

The latter half can be proven as follows. First, consider any F ∈ F̌ . Then, since F ∈ F by definition, we have F̌ ⊆ F · · · ((5)).

Next, consider any F ∈ F . Then, since F̌ ∈ F̌ due to (1) , we have F̌ ∈ F due to (5) . Hence ˇ̌F ∈ F̌ due to (1(p.70) ), so F ∈ F̌
due to (13.1.5(p.69) ), thus we have F ⊆ F̌ . From this and (5) we have F̌ = F · · · ((6)).

(b) Consider any F̌ ∈ F̌ , hence F̌ ∈ F · · · ((7)) due to (6) . Suppose every F ∈ F is not identical to the F̌ , i.e., F ̸≡ F̌ ,

implying that the F̌ lies outside F ,§ hence cannot become an element of F , i.e., F̌ ̸∈ F , which contradicts (7) . Hence, it
follows that there must exist at least one F such that F ≡ F̌ , thus the assertion holds.

(c) Consider any F ∈ F , hence F ∈ F̌ · · · ((8)) due to (6) . Suppose every F̌ ∈ F̌ is not identical to the F , i.e., F̌ ̸≡ F ,

implying that the F lies outside F̌ ∥, hence cannot become an element of F̌ , i.e., F ̸∈ F̌ , which contradicts (8) . Hence, it
follows that there must exist at least one F̌ such that F̌ ≡ F , thus the assertion holds.

Lemma 13.1.1(p.70) (b,c) implies that there always exist F and F̌ such that F ≡ F̌ holds; in other words, there always exist f and
f̌ such that f ≡ f̌ or equivalently

f(ξ) ≡ f̌(ξ), (13.1.10)

called the identity equality .

13.2 Definitions of Underlying Functions
The functions defined in the successive two sections are all the variations of ones that were defined in Sections 6.1.1(p.25) and
6.1.2(p.25) .

†This means F (x) = F̌ (x) for all x ∈ (−∞,∞).
‡Due to the assumption of F being continuous (see A9(p.12) )
§Note that F is a set consisting of al possible F ’s by definition.
∥Note that F̌ is a set consisting of al possible F̌ ’s by definition.
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13.2.1 Ť , Ľ , Ǩ , Ľ , and κ̌ of Type R
Let us define the underlying functions of Type R (see Section 6.1.1(p.25) ) for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

Ť (x) = Ě[max{ξ − x, 0}] =
∫∞
−∞ max{ξ − x, 0}f̌(ξ)dξ, (13.2.1)

Ľ (x) = λβŤ (x)− s, (13.2.2)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (13.2.3)

Ľ (s) = Ľ (λβµ̌− s). (13.2.4)

Let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by xĽ , xǨ , and sĽ respectively if they exist. If each of the

equations has the multiple solutions, let us employ the smallest one (see (a) of Section 6.2(p.27) ). Let us define

κ̌ = λβŤ (0)− s. (13.2.5)

By M̌:1[R][A] let us define M:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M:1[R][A] we can
express SOE{M̌:1[R][A]} as (see Table 7.4.1(p.41) (I))

SOE{M̌:1[R][A]} = {V1 = βµ̌− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}.

13.2.2 ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , and ˇ̃κ of T̃ype R
Let us define the underlying functions of T̃ype R for F̌ ∈ F̌ corresponding to any F ∈ F as follows.

ˇ̃T (x) = Ě[min{ξ − x, 0}] =
∫∞
−∞ min{ξ − x, 0}f̌(ξ)dξ, (13.2.6)

ˇ̃L (x) = λβ ˇ̃T (x) + s, (13.2.7)

ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (13.2.8)

ˇ̃L (s) = ˇ̃L (λβµ̌+ s). (13.2.9)

Let the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (s) = 0 be denoted by xˇ̃L , xˇ̃K , and sˇ̃L respectively if they exist. If each of the
equations has the multiple solutions, let us employ the largest one (see (b) of Section 6.2(p.27) ). Let us define

ˇ̃κ = λβ ˇ̃T (0) + s. (13.2.10)

By
ˇ̃M:1[R][A] let us define M̃:1[R][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for M̃:1[R][A] we can

express SOE{ ˇ̃M:1[R][A]} as (see Table 7.4.1(p.41) (II))

SOE{ ˇ̃M:1[R][A]} = {V1 = βµ̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}.

13.2.3 List of the Underline Functions of Type R and T̃ype R
So far we have defined the four kinds of underlying functions, which may cause confusions. To give a clearer picture of these
functions, we shall coordinate them as in Table 13.2.1(p.71) .

Table 13.2.1: List of the underlying functions of Type R and T̃ype R

Type R T̃ype R

For any F ∈ F For F̌ ∈ F̌ corresponding
to any F ∈ F

T (x) =
∫ b
a
max{ξ − x, 0}f(ξ)dξ

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βµ− s)

See Section 6.1.1(p.25)

Ť (x) =
∫ b
a
max{ξ − x, 0}f̌(ξ)dξ

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βµ̌− s)

See Section 13.2.1(p.71)

T̃ (x) =
∫ b
a
min{ξ − x, 0}f(ξ)dξ

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x + s

L̃ (x) = L̃ (βµ + s)

See Section 6.1.2(p.25)

ˇ̃T (x) =
∫ b
a
min{ξ − x, 0}f̌(ξ)dξ

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x + s

ˇ̃L (x) = ˇ̃L (βµ̌ + s)

See Section 13.2.2(p.71)
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13.3 Two Kinds of Replacements
13.3.1 Correspondence Replacement

Lemma 13.3.1 (CR) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, µ̂ = µ̌, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.

• Proof (a) The same as (13.1.8(p.69) ).

(b) The same as (13.1.9(p.69) ).

(c) The function T (x) for any F (see (6.1.2(p.25) )) can be rewritten as

T (x) =
∫∞
−∞ max{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ min{ξ̂ − x̂, 0}f̌(ξ̂)dξ due to (a).

Let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, we have

T (x) =
∫ −∞
∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ min{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= − ˇ̃T (x̂) (see (13.2.6(p.71) )),

hence T̂ (x) = ˇ̃T (x̂).

(d) From (6.1.3(p.25) ) and (c) we have L (x) = −λβT̂ (x)− s = −λβ ˇ̃T (x̂)− s = − ˇ̃L (x̂) from

(13.2.7(p.71) ), hence L̂ (x) = ˇ̃L (x̂).

(e) From (6.1.4(p.25) ) and (c) we have K (x) = −λβT̂ (x)+ (1−β)x̂− s = −λβ ˇ̃T (x̂)+ (1−β)x̂− s = − ˇ̃K (x̂) from (13.2.8(p.71) ),

hence K̂ (x) = ˇ̃K (x̂).

(f) From (6.1.5(p.25) ) we have L (s) = −L̂ (λβµ − s), hence from (d) we obtain L (s) = − ˇ̃L ( ̂λβµ− s) = − ˇ̃L (−λβµ + s) =

− ˇ̃L (λβµ̂+ s) = − ˇ̃L (λβµ̌+ s) due to (b). Accordingly, from (13.2.9(p.71) ) we obtain L (s) = − ˇ̃L (s), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have L̂ ( xL ) = 0, which can be rewritten as ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have K̂ (xK ) = 0, which can be rewritten as ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have L̂ (sL) = 0, which can be rewritten as ˇ̃L (sL) = 0 from (f), implying that ˇ̃L (s) = 0
has the solution sˇ̃L = sL by definition.

(j) From (6.1.6(p.25) ) we have κ = −λβT̂ (0)−s, which can be rewritten as κ = −λβ ˇ̃T (0̂)−s from (c), hence κ = −λβ ˇ̃T (0)−s =
−ˇ̃κ from (13.2.10(p.71) ), thus κ̂ = ˇ̃κ.

Definition 13.3.1 (correspondence replacement operation CR) Let us call the operation of replacing the left-hand of each
equality in Lemma 13.3.1(p.72) by its right-hand the correspondence replacement operation CR.

Lemma 13.3.2 (C̃R) The left-hand side of each equality below is for any F ∈ F and its right-hand side is for F̌ ∈ F̌
corresponding to the F .

(a) f(ξ) = f̌(ξ̂).

(b) b̂ = ǎ, µ̂ = µ̌, â = b̌.

(c) ˆ̃T (x) = Ť (x̂).

†The mere replacement of the symbol η by ξ.
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(d) ˆ̃L (x) = Ľ (x̂).

(e) ˆ̃K (x) = Ǩ (x̂).

(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = xĽ .

(h) x̂
K̃ = xǨ .

(i) sL̃ = sĽ .

(j) ˆ̃κ = κ̌.

• Proof (a) The same as (13.1.8(p.69) ).

(b) The same as (13.1.9(p.69) ).

(c) The function T̃ (x) for any F (see (6.1.12(p.25) )) can be rewritten as

T̃ (x) =
∫∞
−∞ min{−ξ̂ + x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f(ξ)dξ

= −
∫∞
−∞ max{ξ̂ − x̂, 0}f̌(ξ̂)dξ (due to (a(p.72) )).

Let η = ξ̂ = −ξ. Then, since dη = −dξ, we have

T̃ (x) =
∫ −∞
∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{η − x̂, 0}f̌(η)dη

= −
∫∞
−∞ max{ξ − x̂, 0}f̌(ξ)dξ (without loss of generality†)

= −Ť (x̂) (see (13.2.1(p.71) )),

hence ˆ̃T (x) = Ť (x̂).

(d) From (6.1.13(p.25) ) and (c) we have L̃ (x) = −λβ ˆ̃T (x)+ s = −λβŤ (x̂)+ s = −Ľ (x̂) from (13.2.2(p.71) ), hence ˆ̃L (x) = Ľ (x̂).

(e) From (6.1.14(p.25) ) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+(1−β)x̂+s = −λβŤ (x̂)+(1−β)x̂+s = −Ǩ (x̂) from (13.2.3(p.71) ),

hence ˆ̃K (x) = Ǩ (x̂).

(f) From (6.1.15(p.25) ) and (d) we have L̃ (s) = − ˆ̃L (λβµ+s) = −Ľ ( ̂λβµ+ s) = −Ľ (−λβµ−s) = −Ľ (λβµ̂−s) = −Ľ (λβµ̌−s)

due to (b), hence from (13.2.4(p.71) ) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˆ̃L ( xL̃ ) = 0, which can be rewritten as Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˆ̃K ( xK̃ ) = 0, which can be rewritten as Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have ˆ̃L (sL̃) = 0, which can be rewritten as Ľ (sL̃) = 0 from (f), implying that Ľ (s) = 0

has the solution sĽ = sL̃ by definition.

(j) From (6.1.16(p.25) ) we have κ̃ = −λβ ˆ̃T (0) + s, which can be rewritten as κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ =
−λβŤ (0) + s = −κ̌ from (13.2.5(p.71) ), thus ˆ̃κ = κ̌.

Definition 13.3.2 (correspondence replacement operation C̃R) Let us call the operation of replacing the left-hand of each
equality in Lemma 13.3.2(p.72) by its right-hand the correspondence replacement operation C̃R.

Definition 13.3.3 (reflective element and non-reflective element) It should be noted that the left-hand of each of the equalities
in Lemmas 13.3.1(p.72) (i) and 13.3.2(p.72) (i) have not the hat symbol “ ˆ”. In other words, sL and sL̃ are not subjected to the
reflection. For the reason, let us refer to each of sL and sL̃ as the non-reflective element and to each of all the other elements
as the reflective element.

13.3.2 Identity Replacement

Lemma 13.3.3 (IR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.

(b) ǎ = a, µ̌ = µ, b̌ = b.

(c) ˇ̃T (x) = T̃ (x).

(d) ˇ̃L (x) = L̃ (x).

(e) ˇ̃K (x) = K̃ (x).

†The mere replacement of the symbol η by ξ.
†See Lemma 13.1.1(p.70) (b,c).
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(f) ˇ̃L (s) = L̃ (s).
(g) xˇ̃L = x

L̃ .

(h) xˇ̃K = x
K̃ .

(i) sˇ̃L = sL̃ .

(j) ˇ̃κ = κ̃.

• Proof (a) Clear from [1∗].

(b) Obvious from (a).

(c) Evident from (13.2.6(p.71) ), (6.1.12(p.25) ), and [3∗].

(d) From (13.2.7(p.71) ) and (c) we have ˇ̃L (x) = λβT̃ (x) + s, hence ˇ̃L (x) = L̃ (x) from (6.1.13(p.25) ).

(e) From (13.2.8(p.71) ) and (c) we have ˇ̃K (x) = λβT̃ (x)− (1− β)x+ s, hence ˇ̃K (x) = K̃ (x) from (6.1.14(p.25) ).

(f) From (13.2.9(p.71) ) and (d) we have ˇ̃L (s) = L̃ (λβµ̌+ s), hence ˇ̃L (s) = L̃ (λβµ+ s) from (b), so ˇ̃L (s) = L̃ (s) (6.1.15(p.25) ).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have ˇ̃L ( xL̃ ) = 0 from (d), hence ˇ̃L (x) = 0 has the solution xˇ̃L = x
L̃ .

(h) Since K̃ ( xK̃ ) = 0 by definition, we have ˇ̃K ( xK̃ ) = 0 from (e), hence ˇ̃K (x) = 0 has the solution xˇ̃K = x
K̃ .

(i) Since L̃ ( sL̃ ) = 0 by definition, we have ˇ̃L ( sL̃ ) = 0 from (f), hence ˇ̃L (x) = 0 has the solution sˇ̃L = sL̃ by definition.

(j) From (13.2.10(p.71) ) and (c) with x = 0 we have (6.1.16(p.25) ).

Definition 13.3.4 (identity replacement operation IR) Let us call the operation of replacing the left-hand side of each equality
in Lemma 13.3.3(p.73) by its right-hand side the identity replacement operation IR.

Lemma 13.3.4 (ĨR) The left-hand side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right-hand
side is for F ∈ F such that F ≡ F̌ · · · [1∗].†

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ.

(b) ǎ = a, µ̌ = µ, b̌ = b.

(c) Ť (x) = T (x).

(d) Ľ (x) = L (x).

(e) Ǩ (x) = K (x).

(f) Ľ (s) = L (s).
(g) xĽ = xL .

(h) xǨ = xK .

(i) sĽ = sL .

(j) κ̌ = κ.

• Proof (a) Clear from [1∗].

(b) Obvious from (a).

(c) Evident from (13.2.1(p.71) ), (6.1.2(p.25) ), and [3∗].

(d) From (13.2.2(p.71) ) and (c) we have Ľ (x) = λβT (x)− s, hence Ľ (x) = L (x) from (6.1.3(p.25) ).

(e) From (13.2.3(p.71) ) and (c) we have Ǩ (x) = λβT (x)− (1− β)x− s, hence Ǩ (x) = K (x) from (6.1.4(p.25) ).

(f) From (13.2.4(p.71) ) and (d) we have Ľ (s) = Ľ (λβµ− s), hence Ľ (s) = Ľ (λβµ+ s) from (b), so L (s) = Ľ (λβµ+ s), hence
Ľ (s) = L (s) from (6.1.5(p.25) ).

(g) Since L ( xL ) = 0 by definition, we have Ľ ( xL ) = 0 from (d), hence Ľ (x) = 0 has the solution xĽ = xL by definition.

(h) Since K (xK ) = 0 by definition, we have Ǩ (xK ) = 0 from (e), hence Ǩ (x) = 0 has the solution xǨ = xK by definition.

(i) Since L ( sL ) = 0 by definition, we have Ľ ( sL ) = 0 from (f), hence Ľ (x) = 0 has the solution sĽ = sL by definition.

(j) From (13.2.5(p.71) ) and (c) with x = 0 we have (6.1.6(p.25) ).

Definition 13.3.5 (identity replacement operation ĨR) Let us call the operation of replacing the left-hand of each equality in
Lemma 13.3.4(p.74) by its right-hand the identity replacement operation ĨR.

13.4 Attribute Vector
Closely looking into the contents of all assertions A{M:1[R][A]} ∈ A {M:1[R][A]} (see Tom’s 12.2.1(p.61) and 12.2.2(p.62) ), we can
immediately see that each assertion is described by using a part or all of the following twelve kinds of elements;

a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt

where Vt represents the sequence {Vt, t = 1, 2, · · · } generated from SOE{M:1[R][A]} (see Table 7.4.1(p.41) (I)). Let us call each
element the attribute element and the vector of them the attribute vector, denoted by

†See Lemma 13.1.1(p.70) (b,c).
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θ(A{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (13.4.1)

In addition, also for the assertion system A {M:1[R][A]} we can employ the similar definition, denoted by

θ(A {M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (13.4.2)

13.5 Scenario[R]
In this section we write up a scenario deriving an assertion on M̃:1[R][A] (buying model with R-mechanism) from a given assertion
on M:1[R][A] (selling model with R-mechanism). Let us refer to this as the scenario of Type R, denoted by Scenario[R].

� Step 1 (opening )

◦ The system of optimality equations for M:1[R][A] is given by Table 7.4.1(p.41) (I), i.e.,

SOE{M:1[R][A]} = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}. (13.5.1)

◦ Let us consider an assertion ATom{M:1[R][A]}† included in Tom 12.2.1(p.61) or Tom 12.2.2(p.62) , which can be written in general as

ATom{M:1[R][A]} = {S is true for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F} (see (12.3.6(p.65) )) (13.5.2)

= {S is true on C ⟨ATom⟩} (see (12.3.8(p.65) )). (13.5.3)

To facilitate the understanding of the discussion that follows, let us use the following example.‡

S = ⟨Vt + sL + xL + κ + a+ µ+ b ≥ 0, t > 0 ⟩. (13.5.4)

◦ The attribute vector of the assertion ATom{M:1[R][A]} is given by (13.4.1(p.75) ), i.e.,

θ(ATom{M:1[R][A]}) = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt). (13.5.5)

� Step 2 (reflection operation R)

◦ Applying the reflection operation R (see Section 13.1.1(p.69) ) to (13.5.1(p.75) ) produces

R[SOE{M:1[R][A]}] = {−V̂1 = −βµ̂− s, −V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}

= {−V̂1 = −βµ̂− s, −V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}

= {V̂1 = βµ̂+ s, V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (13.5.6)

◦ Applying R to (13.5.2(p.75) ) and (13.5.3(p.75) ) yields to

R[ATom{M:1[R][A]}] = {R[S] is true for p ∈PATom ⊆P and F ∈ FATom|p ⊆ F} (13.5.7)

= {R[S] is true on C ⟨ATom⟩}. (13.5.8)

For our example we have:

R[S] = ⟨−V̂t + sL − x̂L − κ̂ − â− µ̂− b̂ ≥ 0, t > 0 ⟩§

= ⟨ V̂t − sL + x̂L + κ̂ + â+ µ̂+ b̂ ≤ 0, t > 0 ⟩. (13.5.9)

◦ The attribute vector of the assertion R[ATom{M:1[R][A]}] is given by applying R to (13.5.5(p.75) ), i.e.,

θ(R[ATom{M:1[R][A]}]) def
= R[θ(ATom{M:1[R][A]})] (13.5.10)

= (â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t). (13.5.11)

� Step 3 (correspondence replacement operation CR)
◦ Here let us consider the application of the correspondence replacement operation CR, i.e., the replacement of the left-hand

side of each equality in Lemma 13.3.1(p.72) ,

f(ξ), â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ (x), L̂ (x), K̂ (x), L̂ (s) · · · (1∗),
by its right-hand,

f̌(ξ̂), b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x̂), ˇ̃L (x̂), ˇ̃K (x̂), ˇ̃L (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

†See Def. 12.3.1(p.65) (c) for the symbol “Tom” in ATom{M:1[R][A]}.
‡The example is a hypothetical assertion which is not contained in ATom {M:1[R][A]}; It is used merely for explanatory convenience.
§Note Def. 13.3.3(p.73) .



76

◦ Applying CR to (13.5.6(p.75) ) leads to

CRR[SOE{M:1[R][A]}] = {V̂1 = βµ̌+ s, V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (13.5.12)

◦ Applying CR to R[S] in (13.5.9(p.75) ), we have

CRR[S] = ⟨ V̂t − sˇ̃L + xˇ̃L + ˇ̃κ + b̌+ µ̌+ ǎ ≤ 0, t > 0 ⟩. (13.5.13)

Now, let us note here that the application of CR inevitably transforms

“F ∈ FATom|p ⊆ F ” in (13.5.2(p.75) )

into

“ F̌ ∈ F̌ATom|p ⊆ F̌ corresponding to F ∈ FATom|p ⊆ F ” (13.5.14)

where

F̌ATom|p
def
= {F̌

∣∣ F ∈ FATom|p} ⊆ {F̌
∣∣ F ∈ F} = F̌ (see (13.1.3(p.69) )). (13.5.15)

Hence, applying CR to (13.5.7(p.75) ) produces

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom and F̌ ∈ F̌ATom|p ⊆ F̌

corresponding to F ∈ FATom|p ⊆ F}. (13.5.16)

Now, since the phrase “ F̌ ∈ F̌ATom|p ⊆ F̌ ” is implicitly accompanied with the phrase “ corresponding to F ∈ FATom|p ⊆ F ”,
the latter phrase becomes redundant. Accordingly, (13.5.16(p.76) ) can be rewritten as

CRR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F̌}

= {CRR[S] is true on Č ⟨ATom⟩} (13.5.17)

where

Č ⟨ATom⟩ = {(p, F̌ )
∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌} (compare (12.3.3(p.64) )). (13.5.18)

◦ The attribute vector of CRR[ATom{M:1[R][A]}] is given by applying CR to (13.5.10(p.75) ), i.e.,

θ(CRR[ATom{M:1[R][A]}]) = CRR[θ(ATom{M:1[R][A]})]

= (b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , Vt). (13.5.19)

� Step 4 (identity replacement operation IR)

◦ Here let us consider the application of the identity replacement operation IR, i.e., the replacement of the left-hand side of
each equality in Lemma 13.3.3(p.73) ,

f̌(ξ), ǎ, µ̌, b̌, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T (x), ˇ̃L (x), ˇ̃K (x), ˇ̃L (s) · · · (1∗),

by its right-hand side,
f(ξ), a, µ, b, x

L̃ , x
K̃ , sL̃ , κ̃ T̃ (x), L̃ (x), K̃ (x), L̃ (s) · · · (2∗),

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F̌ ∈ F , i.e., F̌ ≡ F · · · ((1))
(see Lemma 13.1.1(p.70) (c)).

◦ Applying IR to (13.5.12(p.76) ) yields

IRCRR[SOE{M:1[R][A]}] = {V̂1 = βµ+ s, V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (13.5.20)

Now, we have V̂1 = βµ+ s = V1 from (7.4.3(p.41) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (7.4.4(p.41) ), by induction V̂t = Vt for t > 0. Thus (13.5.20(p.76) ) can be rewritten as

IRCRR[SOE{M:1[R][A]}] = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1},

which is the same as SOE{M̃:1[R][A]} (see Table 7.4.1(p.41) (II)). Thus we have

SOE{M̃:1[R][A]} = IRCRR[SOE{M:1[R][A] }] (13.5.21)

= {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (13.5.22)
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◦ Applying IR to (13.5.17(p.76) ) yields (note F̌ ≡ F in (1) )

IRCRR[ATom{M:1[R][A]}] = {IRCRR[S] is true on Č ⟨ATom⟩ }. (13.5.23)

Applying IR to (13.5.13(p.76) ) yields

IRCRR[S] = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (13.5.24)

Now Vt within IRCRR[S] is generated from SOE{M̃:1[R][A]}, hence (13.5.23(p.77) ) can be regarded as the assertion on M̃:1[R][A]
(see Remark 7.1.1(p.29) ). Thus, we have

ATom{M̃:1[R][A]} = IRCRR[ATom{M:1[R][A]}] (13.5.25)

= {IRCRR[S] is true on Č ⟨ATom⟩}. (13.5.26)

◦ The attribute vector of ATom{M̃:1[R][A]} is given by applying IR to (13.5.19(p.76) ), i.e.,

θ(ATom{M̃:1[R][A]}) = IRCRR[θ(ATom{M:1[R][A]})]

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt), (13.5.27)� Step 5 (symmetry transformation operation SR→R̃)

Lining up the four attribute vectors in Steps 1-4, we have the following:

Step 1: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (13.5.5(p.75) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← R

Step 2: θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t ) (← (13.5.11(p.75) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← CR (13.5.28)

Step 3: θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t ) (← (13.5.19(p.76) ))

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← IR
Step 4: θ( b, µ, a, x

L̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (13.5.27(p.77) ))

The above flow can be eventually reduced to

SR→R̃
def
= {a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

} , (13.5.29)

called the symmetry transformation operation, which can be regarded as the successive application of the three operations, i.e.,
“ R→ CR → IR ”. Hence, defining

SR→R̃ = IRCRR, (13.5.30)

we can rewrite (13.5.25(p.77) ) as

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}]

= {S̃ holds on Č ⟨ATom⟩ } (13.5.31)

where
S̃

def
= SR→R̃[S]. (13.5.32)

Then, from (13.5.24(p.77) ) we have

S̃ = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0⟩. (13.5.33)

Furthermore, (13.5.21(p.76) ) can be rewritten as

SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A] }]. (13.5.34)

In addition, (13.5.27(p.77) ) can be rewritten as

θ(ATom{M̃:1[R][A]}) = SR→R̃[θ(ATom{M:1[R][A]})] (13.5.35)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (13.5.36)

From all the above we see that Scenario[R] starting with (13.5.3(p.75) ) finally ends up with (13.5.31(p.77) ), which can be alternatively
rewritten as respectively (see (12.3.5(p.64) ))

ATom{M:1[R][A]} holds on C ⟨ATom⟩ (see (12.3.8(p.65) )), (13.5.37)

ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩.

From the above two results and (13.5.34(p.77) ) we eventually obtain the following lemma.
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Lemma 13.5.1 Let ATom{M:1[R][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩ where

ATom{M̃:1[R][A]} = SR→R̃[ATom{M:1[R][A]}]. (13.5.38)

� Step 6 (Completeness of T̃om) �� ��aggregation scenario

↓

⋆ Condition Space Č ⟨ATom⟩
Applying Lemma 13.5.1(p.78) to any assertion A{M:1[R][A]} included in Tom’s 12.2.1(p.61) and 12.2.2(p.62) , we have A{M̃:1[R][A]}
corresponding to each A{M:1[R][A]}, which are given by Tom’s 13.7.1(p.83) and 13.7.2(p.84) . Below let us replace the two symbols
Tom’s as Tom1 and Tom2 respectively, i.e.,

Tom1 = Tom 13.7.1(p.83) and Tom2 = Tom 13.7.2(p.84) .

Furthermore, let
Tom

def
= Tom1, Tom2, · · · . (13.5.39)

Here, as one corresponding to (13.5.18(p.76) ), let us define

Č ⟨ATomi⟩ = {(p, F̌ )
∣∣ p ∈PATom i

⊆P, F̌ ∈ F̌A·Tom i|p ⊆ F̌}, i = 1, 2, · · · . (13.5.40)

In general, let
Č ⟨ATom⟩ = {(p, F̌ )

∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌}. (13.5.41)

In addition, let us define

Tomi
def
= {A1

Tomi
, A2

Tomi
, · · · } = {ATomi},

T̃om def
= {Tom1, Tom2, · · · } = {Tom}.

Then, as one corresponding to (12.3.17(p.66) ), let us define

Č ⟨Tomi⟩ def
= ∪j=1,2,···Č ⟨Aj

Tomi
⟩ = ∪ATomi

∈Tomi Č ⟨ATomi⟩, i = 1, 2, · · · , (13.5.42)

which is the aggregation of Č ⟨Aj
Tomi
⟩, j = 1, 2, · · · , into Č ⟨Tomi⟩. This can be rewritten as

Č ⟨Tomi⟩
def
= {Č ⟨A1

Tomi
⟩, Č ⟨A2

Tomi
⟩, · · · }, i = 1, 2, · · · . (13.5.43)

� Example 13.5.1 Let T̃om = {Tom1, Tom2, Tom3} and Č ⟨Tomi⟩ = {Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩, Č ⟨A3

Tomi
⟩}, i = 1, 2, 3.

Then, the flow of aggregating Č ⟨Aj
Tomi
⟩, j = 1, 2, 3, into Č ⟨Tomi⟩ can be depicted as in Figure 13.5.1(p.78) below:
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⇑aggregation

Č ⟨A1
Tomi
⟩ →

Č ⟨A2
Tomi
⟩ → ← Č ⟨A3

Tomi
⟩

←⟨∗⟩
Č ⟨Tomi⟩

⇑aggregation�� ��Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩, Č ⟨A3

Tomi
⟩

Figure 13.5.1: Aggregation of Č ⟨A1
Tomi
⟩, Č ⟨A2

Tomi
⟩,Č ⟨A3

Tomi
⟩ into Č ⟨Tomi⟩

⋆ Condition-Space Č ⟨T̃om⟩
As one corresponding to (12.3.20(p.66) ), let us define

Č ⟨T̃om⟩ def
= ∪i=1,2,···Č ⟨Tomi⟩ = ∪T̃om∈T̃omČ ⟨Tom⟩, (13.5.44)

called the condition space of T̃om, which is the aggregation of Č ⟨Tomi⟩ into Č ⟨T̃om⟩, depicted as in Figure 13.5.2(p.79) below
(compare Figure 12.3.3(p.67) ).
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Č ⟨T̃om⟩

∥definition

Č ⟨Tom2⟩

Č ⟨Tom1⟩

Č ⟨Tom3⟩

←⟨∗∗⟩

←⟨∗⟩
Č ⟨T̃om⟩

∥definition�� ��Č ⟨Tom1⟩, Č ⟨Tom2⟩, Č ⟨Tom3⟩

Figure 13.5.2: Condition space Č ⟨T̃om⟩

In the above figure, the small deformed circle ⟨∗⟩ is the same as the deformed circle ⟨∗⟩ in Figure 13.5.1(p.78) and the big deformed
circle ⟨∗∗⟩ consists of the three small deformed circles including ⟨∗⟩.

⋆ Construction of A {M̃:1[R][A]}
Using (13.5.42(p.78) ), as ones corresponding to (12.3.22(p.67) )-(12.3.24(p.67) ), from (13.5.44(p.78) ) we have

Č ⟨T̃om⟩ = ∪i=1,2,··· ∪j=1,2,··· Č ⟨Aj
Tomi
⟩ (13.5.45)

= ∪Tom∈T̃om ∪j=1,2,··· Č ⟨Aj
Tom⟩ (13.5.46)

= ∪Tom∈T̃om ∪ATom∈Tom Č ⟨ATom⟩ (13.5.47)

Then, noting Figures 13.5.1(p.78) and 13.5.2(p.79) , we see from (13.5.45(p.79) )-(13.5.47(p.79) ) that mingling the three figures for Č ⟨T̃om1⟩,
Č ⟨T̃om2⟩, and Č ⟨T̃om3⟩ together yields Figure 13.5.3(p.79) below.
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⟩ Č ⟨A3

Tom2
⟩
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Figure 13.5.3: The aggregation of Č ⟨Aj
Tomi
⟩ into Č ⟨T̃om⟩

Figure 13.5.3(p.79) above implies that first

“aggregating
�� ��Č ⟨Aj

Tomi
⟩ , j = 1, 2, 3, for i = 1, 2, 3 produces

�� ��Č ⟨Tomi⟩ ”

and then
“aggregating

�� ��Č ⟨Tomi⟩ , i = 1, 2, 3, produces
�� ��Č ⟨T̃om⟩ ”.

The above two aggregating successive procedures eventually yields

“ aggregating
�� ��C ⟨Aj

Tomi
⟩ for i, j = 1, 2, 3 produces

�� ��Č ⟨T̃om⟩ ”, (13.5.48)

Moreover, noting A {M̃:1[R][A]} is associated with
�� ��Č ⟨T̃om⟩ , we see that Figure 13.5.3(p.79) eventually implies

A {M̃:1[R][A]} holds over
�� ��Č ⟨T̃om⟩ . (13.5.49)

⋆ Completeness of T̃om on Č ⟨T̃om⟩ = P ×F

From (12.3.25(p.68) ) and (13.5.49(p.79) ), we see that aggregating Lemma 13.5.1(p.78) produces Lemma 13.5.2(p.79) below.

Lemma 13.5.2 Let A {M:1[R][A]} holds on C ⟨Tom⟩. Then A {M̃:1[R][A]} holds on Č ⟨T̃om⟩ where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}].

Here note again (12.3.26(p.68) ), i.e.
C ⟨Tom⟩ = P ×F . (13.5.50)

Whereas we have the following lemma.
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Lemma 13.5.3 We have

Č ⟨T̃om⟩ = P ×F . (13.5.51)

• Proof When F in (13.5.14(p.76) ) transforms into F̌ in (13.5.15(p.76) ), it is clear that the completeness of Tom on C ⟨Tom⟩ =
P×F is inherited also to the completeness of T̃om on Č ⟨T̃om⟩ = P×F̌ . In addition, since F̌ = F due to Lemma 13.1.1(p.70) (a),
we have Č ⟨T̃om⟩ = P ×F . Below is a more strict proof. First note here that for any given F̌ ∈ F̌ there exists a F ∈ F such
that F ≡ F̌ · · · ((1)) (see Lemma 13.1.1(p.70) (b)) and that for any given F ∈ F there exists a F̌ ∈ F̌ such that F̌ ≡ F · · · ((2)) (see
Lemma 13.1.1(p.70) (c)).
◦ From (13.5.18(p.76) ) we have Č ⟨ATom⟩ ⊆ {(p, F̌ )

∣∣ p ⊆ P, F̌ ⊆ F̌} for any ATom, hence due to (1) we get Č ⟨ATom⟩ ⊆ {(p, F )
∣∣

p ∈ P, F ∈ F̌} = P × F̌ = P ×F due to F̌ = F from Lemma 13.1.1(p.70) (a). Accordingly, from (13.5.47(p.79) ) we obtain
Č ⟨T̃om⟩ ⊆ ∪T̃om∈T̃om ∪ATom∈T̃om P ×F = P ×F · · · ((3)).

◦ Consider any (p, F ) ∈ P × F · · · ((4)). Then, since (p, F ) ∈ C ⟨Tom⟩ due to (12.3.26(p.68) ), we have (p, F ) ∈ C ⟨ATom⟩ for at

least one C ⟨ATom⟩ due to (12.3.24(p.67) ). Hence, since F ∈ FATom|p due to (12.3.7(p.65) ), we have F̌ ∈ F̌ATom|p due to (13.1.3(p.69) ),

hence (p, F̌ ) ∈ Č ⟨ATom⟩ due to (13.5.18(p.76) ), thus (p, F ) ∈ Č ⟨ATom⟩ due to (2) , hence (p, F ) ∈ Č ⟨T̃om⟩ due to (13.5.47(p.79) ).
Accordingly, from (4) we have P ×F ⊆ Č ⟨T̃om⟩ · · · ((5)).

From (3) and (5) we obtain Č ⟨T̃om⟩ = P ×F .

Let us refer to the equality (13.5.51(p.80) ) as the completeness of T̃om on Č ⟨T̃om⟩ = P ×F . Then (13.5.48(p.79) ) can be rewritten
as

“aggregating Č ⟨Aj
Tomi
⟩ for i, j = 1, 2, 3, produces Č ⟨T̃om⟩ = P ×F”, (13.5.52)

hence Figure 13.5.3(p.79) can be rewritten as Figure 13.5.4(p.80) below.

Č ⟨T̃om⟩ = P ×F
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Č ⟨Tom1⟩

⇑�� ��Č ⟨A1
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⟩, Č ⟨A2

Tom1
⟩, Č ⟨A3
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Figure 13.5.4: The complete aggregation of Č ⟨Aj
Tomi
⟩ into Č ⟨T̃om⟩ = P ×F

� Step 7 (symmetry theorem (R→ R̃))
From (13.5.50(p.79) ) and (13.5.51(p.80) ), it follows that Lemma 13.5.2(p.79) can be rewritten as Theorem 13.5.1(p.80) below.

Theorem 13.5.1 (symmetry theorem (R→ R̃)) Let A {M:1[R][A]} holds on P×F . Then A {M̃:1[R][A]} holds on P×F
where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (13.5.53)

Then, clearly the attribute vector of A {M̃:1[R][A]} becomes as follows (see (13.5.35(p.77) ))

θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (13.5.54)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (13.5.55)

↑�� ��aggregation scenario

� Step 8 (summary of Scenario[R])
At a glance, the symmetry transformation operation SR→R̃ seems to be rather complicated, however it can be simply prescribed
as follows.

◦ Firstly, apply the reflection operation R to all reflective elements (see Defs 13.3.3(p.73) ) appearing within the description of
A {M:1[R][A]} (see Tom’s 12.2.1(p.61) and 12.2.2(p.62) ).

◦ Next, replace each of all elements, whether resultant ones (reflective) or non-reflective ones, with the right side of its
corresponding equality in Lemma 13.3.1(p.72) (correspondence replacement operation CR).

◦ Finally, remove the check sign “ˇ” from all the replaced symbols (identity replacement operation IR).
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13.6 Derivation of T̃R , L̃R , K̃R , L̃R , and κ̃R

To begin with, let us note here the fact that Scenario[R] is a scenario which is applicable for an assertion A{M:1[R][A]} related
to the attribute vector (see Section 13.4(p.74) )

θ = (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt).

Then it can be immediately seen that the scenario can be always applied also to any assertions involved with the attribute
vector θ. Accordingly, applying it to any assertion on TR , LR , KR ,LR , and κR yields its corresponding assertion on T̃R , L̃R , K̃R , L̃R

and κ̃R, i.e.,

A {T̃R , L̃R , K̃R , L̃R , κ̃R} = SR→R̃[A {TR , LR , KR ,LR , κR}].

Accordingly, we have the following lemma:

Lemma 13.6.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x strictly increasing on (−∞, b].

(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).

(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).

(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) b > µ.

• Proof by symmetry The lemma, excluding (a,n), can be easily obtained by applying SR→R̃ (see (20.0.1(p.136) )) to
Lemmas 11.1.1(p.55) as shown below.

(a) Evident from the fact that min{ξ − x, 0} in (6.1.11(p.25) ) is continuous on (−∞,∞).

(b) Lemma 11.1.1(p.55) (b) can be rewritten as A ={T (x) ≥ T̃ (x′) for x < x′}. Applying R to this yields R[A]={−T̂ (x) ≥
−T̂ (x′) for −x̂ < −x̂′}={T̂ (x̂) ≤ T̂ (x̂′) for x̂ > x̂′}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ ˇ̃T (x̂′) for x̂ > x̂′}.
Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ T̃ (x̂′) for x̂ > x̂′}. Without loss of generality, this can be rewritten as
IRCRR[A ={T̃ (x) ≤ T̃ (x′) for x > x′}, meaning that T̃ (x) is nonincreasing on (−∞,∞).

(c-e) Almost the same as the proof of (b)

(f) Let the former half of Lemma 11.1.1(p.55) (f) can by rewritten as A ={T (x) = µ− x for x ≤ a}. Applying R to this yields

R[A]={−T̂ (x) = −µ̂+x̂ for −x̂ ≤ −â}={T̂ (x) = µ̂−x̂ for x̂ ≥ â}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) = µ̌−x̂
for x̂ ≥ b̌}. Finally, applying IR to this lead to IRCRR[A] ={T̃ (x̂) = µ − x̂ for x̂ ≥ b}. Without loss of generality, this can be
rewritten as IRCRR[A] ={T̃ (x) = µ − x for x ≥ b}={T̃ (x) = µ − x on [b,∞)}. The proof of the latter half is almost the same
as the above.

(g) The former half of Lemma 11.1.1(p.55) (g) can be rewritten by A ={T (x) > 0 for x < b}. Applying R to this yields

R[A] ={−T̂ (x) > 0 for −x̂ < −b̂}={T̂ (x) < 0 for x̂ > b̂}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) < 0 for x̂ > ǎ}.
Finally, applying IR to this leads to IRCRR[A] ={T̃ (x̂) < 0 for x̂ > a}. Without loss of generality, this can be rewritten as
IRCRR[A] ={T̃ (x) < 0 for x > a}={T̃ (x) < 0 on (a,∞)}. The proof of the latter half is almost the same as the above.

(h) ApplyingR to Lemma 11.1.1(p.55) (h) yieldsR[A] ={−T̂ (x) ≥ max{0,−µ̂+x̂} for −∞ < −x̂ <∞}={T̂ (x) ≤ min{0, µ̂−x̂}
for∞ > x̂ > −∞}, and then applying CR to this produces CRR[A] ={ ˇ̃T (x̂) ≤ min{0, µ̌− x̂} for∞ > x̂ > −∞}. Finally, applying
IR to this leads to IRCRR[A] ={T̃ (x̂) ≤ min{0, µ − x̂} for ∞ > x̂ > −∞}. Without loss of generality, this can be rewritten as
IRCRR[A] ={T̃ (x) ≤ min{0, µ− x} for ∞ > x > −∞}={T̃ (x) ≤ min{0, µ− x} on (−∞,∞)}.

(i) Immediate from T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)] from (6.1.11(p.25) ) and
(2.2.3(p.13) )).

(j,k) Almost the same as the proof of (b and c)

(l) Lemma 11.1.1(p.55) (l) can be rewritten as A ={If x < y and a < y, then T (x) + x < T (y) + y}. Applying R to this
yields R[A]={If −x̂ < −ŷ and −â < −ŷ, then −T̂ (x) − x̂ < −T̂ (y) − ŷ}={If x̂ > ŷ and â > ŷ, then T̂ (x)x̂ > T (y) + ŷ}, and
then applying CR to this produces CRR[A] ={If x̂ > ŷ and b̌ > ŷ, then ˇ̃T (x̂) + x̂ > ˇ̃T (ŷ) + ŷ}={If x > y and b̌ > y, then
ˇ̃T (x) + x > ˇ̃T (y) + y}. Finally, applying IR to this leads to IRCRR[A] ={If x > y and b > y, then T̃ (x) + x > T̃ (y) + y}.
(m) The former half of Lemma 11.1.1(p.55) (m) can be rewritten as Let A ={λβT (λβµ−s)−s is nonincreasing in s}, which can

be rewritten as A ={λβT (λβµ−s)−s ≥ λβT (λβµ−s′)−s′ for s < s′}. ApplyingR to this yieldsR[A] ={−λβT̂ (−λβµ̂−s)−s ≥
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−λβT̂ (−λβµ̂−s′)−s′ for s < s′}={λβT̂ (−λβµ̂−s)+s ≤ λβT̂ (−λβµ̂−s′)+s′ for s < s′},† and then applying CR to this produces

CRR[A] ={λβ ˇ̃T (−̂λβµ̌− s)+s ≤ λβ ˇ̃T (−̂λβµ̌− s′)+s′ for s < s′}={λβ ˇ̃T (λβµ̌+s)+s ≤ λβ ˇ̃T (λβµ̌+s′)+s′ for s < s′}. Finally,
applying IR to this leads to IRCRR[A] ={λβT̃ (λβµ+ s) + s ≤ λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s
is nondecreasing in s. Similarly, the latter half of Lemma 11.1.1(p.55) (m) can be rewritten as IRCRR[A] ={λβT̃ (λβµ+ s) + s <
λβT̃ (λβµ+ s′) + s′ for s < s′}, meaning that λβT̃ (λβµ+ s) + s is nonincreasingness in s.

(n) Clear from (2.2.2(p.12) ).

• Direct proof See Section A1.1(p.298) .

We have:

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),
< λβµ+ s− λβx on (−∞, b) · · · (2),

(13.6.1)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),
< λβµ+ s− δx on (−∞, b) · · · (2).

(13.6.2)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),
= −(1− β)x+ s on (−∞, a] · · · (2),

(13.6.3)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (13.6.4)

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(13.6.5)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (13.6.6)

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to (11.2.3(p.57) ) - (11.2.8(p.57) ).

• Direct proof See (A 1.1(p.299) )-(A 1.6(p.300) ) .

Lemma 13.6.2 (A {L̃R })
(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Lemmas 11.2.1(p.57)

• Direct proof See Lemma A1.2(p.300) .

Corollary 13.6.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Corollaries 11.2.1(p.57)

• Direct proof See Corollary A 1.1(p.300) .

Lemma 13.6.3 (A {K̃R })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on (−∞, b].

(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

†Note Def. 13.3.3(p.73) ).
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2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Lemmas 11.2.2(p.57) .

• Direct proof See Lemma A1.3(p.300) .

Corollary 13.6.2 (A {K̃R})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Corollaries 11.2.2(p.58) .

• Direct proof See Corollary A 1.2(p.301) .

Lemma 13.6.4 (A {L̃R /K̃R })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x
L̃ < (= (>)) x

K̃ ⇒ x
K̃ < (= (>)) 0.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Lemmas 11.2.3(p.58) .

• Direct proof See Lemma A1.4(p.301) .

Lemma 13.6.5 (A {L̃R })
(a) L̃ (s) is nondecreasing in s and is strictly increasing in s if λβ < 1.

(b) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(c) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

• Proof by symmetry Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Lemmas 11.2.4(p.59) .

• Direct proof See Lemma A1.5(p.302) .

Lemma 13.6.6 (κ̃R) We have:

(a) κ̃ = λβµ+ s if b < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof Obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Lemmas 11.3.1(p.59) .

• Direct proof See Lemma A1.6(p.302) .

13.7 Derivation of A {M̃:1[R][A]}
Lemma 13.7.1 (M̃:1[R][A]) The optimal initiating time t∗τ (OIT) is not subject to the influence of the symmetry transformation
operation SR→R̃ (see (13.5.29(p.77) )).

• Proof First, let us represent (8.2.4(p.44) ) as D
def
= {It

∗
τ

τ ≥ Itτ for τ ≥ t ≥ tqd}· · · ((1)), which can be rewritten as D = {βτ−t∗τVt∗τ ≥
βτ−tVt for τ ≥ t ≥ tqd}. Next, applying R to this yields R[D]={−βτ−t∗τ V̂t∗τ ≥ −β

τ−tV̂t for τ ≥ t ≥ tqd}={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t

for τ ≥ t ≥ tqd}. Then, even if applying CR (Lemma 13.3.1(p.72) ) to this, no change occurs, i.e., CRR[D] ={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t for

τ ≥ t ≥ tqd}. Finally, applying IR (Lemma 13.3.3(p.73) ) to this, we have IRCRR[A] ={βτ−t∗τ V̂t∗τ ≤ βτ−tV̂t for τ ≥ t ≥ tqd}. Then,
since V̂t changes into Vt for the same reason as been stated just below (13.5.20(p.76) ), so we have IRCRR[A] ={βτ−t∗τVt∗τ ≤ βτ−tVt

for τ ≥ t ≥ tqd}, i.e., {I
t∗τ
τ ≤ Itτ for τ ≥ t ≥ tqd}· · · ((2)). The above result means that the optimal initiating time is t∗τ even

if SR→R̃ (= IRCRR) is applied, hence it follows that the optimal initiating time t∗τ due to (1) is entirely inherited to t∗τ due to
(2) .

Definition 13.7.1 (�� Tom and �� Tom) The assertion system A {M:1[R][A]} is directly proven in�� Tom 12.2.1(p.61) and�� Tom 12.2.2(p.62) ;
however, the assertion system A {M̃:1[R][A]} is indirectly derived in �� Tom 13.7.1(p.83) and �� Tom 13.7.2(p.84) just below through
the application of the symmetry transformation operation SR→R̃ to the above two �� Tom’s. In this sense, let us refer to each of
the above two �� Tom’s as the primitive-Tom and to each of the latter two �� Tom’s as the derivative-Tom.

�� Tom 13.7.1 (ATom {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.
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• Proof by symmetry Immediately obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Tom 12.2.1(p.61) .

• Direct proof See Tom A4.1(p.312) .

�� Tom 13.7.2 (A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof by symmetry Immediately obtained by applying SR→R̃ (see (20.0.1(p.136) )) to Tom 12.2.2(p.62) .

• Direct proof See Tom A4.2(p.313) .

13.8 S̃cenario[R]
In this section we write up the inverse of Scenario[R](p.75 ) which derives A {M:1[R][A]} (see Tom’s 12.2.1(p.61) and 12.2.2(p.62) )
from A {M̃:1[R][A]} (see Tom’s 13.7.1(p.83) and 13.7.2(p.84) ). Let us represent this scenario as S̃cenario[R].

� S̃tep 1 (opening)

◦ The system of optimality equation of M̃:1[R][A] is given by Table 7.4.1(p.41) (II), i.e.,

SOE{M̃:1[R][A]} = {V1 = βµ+ s, Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1}. (13.8.1)

◦ Let us consider an assertion ATom{M̃:1[R][A]} in each of Tom’s 13.7.1(p.83) and 13.7.2(p.84) , which can be rewritten as

ATom{M̃:1[R][A]} = {S̃ is true for p ∈PATom ⊆P and F ∈ FATom|p with p ∈PAT̃om
⊆ F}

= {S̃ is true on Č ⟨ATom⟩} (see (13.5.31(p.77) )) (13.8.2)

where

Č ⟨ATom⟩ def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F}.

To facilitate the understanding of the discussion that follows let us use the following example.

S̃ = ⟨Vt − sL̃ + x
L̃ + κ̃ + b+ µ+ a ≤ 0, t > 0 ⟩ (see (13.5.33(p.77) )).

◦ The attribute vector of the assertion ATom{M̃:1[R][A]} is given by (13.5.36(p.77) ), i.e.,

θ(ATom{M̃:1[R][A]}) = (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (13.8.3)

� S̃tep 2 (reflection operation R)

◦ Applying the reflection operation R to (13.8.1(p.84) ) produces

R[SOE{M̃:1[R][A]}] = {−V̂1 = −βµ̂+ s, −V̂t = min{− ˆ̃K (Vt−1)− V̂t−1,−βV̂t−1}, t > 1}

= {−V̂1 = −βµ̂+ s, −V̂t = −max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}}

= {V̂1 = βµ̂− s, V̂t = max{ ˆ̃K (Vt−1) + V̂t−1, βV̂t−1}, t > 1}. (13.8.4)

◦ Applying R to (13.8.2(p.84) ) yields to

R[ATom{M̃:1[R][A]}] = {R[S̃] is true on Č ⟨ATom⟩ }. (13.8.5)

For our example we have:

R[S̃] = ⟨−V̂t − sL̃ − x̂
L̃ − ˆ̃κ − b̂− µ̂− â ≤ 0, t > 0 ⟩

= ⟨ V̂t + sL̃ + x̂
L̃ + ˆ̃κ + b̂+ µ̂+ â ≥ 0, t > 0 ⟩. (13.8.6)
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◦ The attribute vector of the assertion R[ATom{M̃:1[R][A]}] is given by applying R to (13.5.36(p.77) ), i.e.,

θ(R[ATom{M̃:1[R][A]}]) def
= R[θ(ATom{M̃:1[R][A]})]

= (b̂, µ̂, â, x̂L̃ , x̂K̃ , sL̃ , κ̂, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t). (13.8.7)

� S̃tep 3 (correspondence replacement operation C̃R)

◦ Here let us consider the application of the correspondence replacement operation C̃R, i.e., the replacement of the left-hand
side of each equality in Lemma 13.3.2(p.72) .

b̂, µ̂, â, x̂
L̃ , x̂

K̃ , sL̃ , ˆ̃κ, ˆ̃T (x), ˆ̃L (x), ˆ̃K (x), ˆ̃L (s) · · · (1∗)
by its right-hand side

ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x̂), Ľ (x̂), Ǩ (x̂), Ľ (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ corresponding to the F ∈ F .

◦ Applying C̃R to (13.8.4(p.84) ) leads to

C̃RR[SOE{M̃:1[R][A]}] = SOE{M:1[R][A]} = {V̂1 = βµ̌− s, V̂t = max{Ǩ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}. (13.8.8)

◦ Applying C̃R to R[S̃] in (13.8.6(p.84) ), we have

C̃RR[S̃] = ⟨ V̂t + sĽ + x̌L + κ̌ + ǎ+ µ̌+ b̌ ≤ 0, t > 0 ⟩. (13.8.9)

Now, let us note here that the application of C̃R (see Lemma 13.3.2(p.72) ) inevitably changes

“ for F ∈ FATom|p ⊆ F ” in (13.8.5(p.84) )

into

“ for F̌ ∈ F̌ATom|p ⊆ F corresponding to any F ∈ FATom|p with p ∈PATom ⊆P ”

where

F̌ATom|p = {F̌
∣∣ F ∈ FATom|p} (see (13.1.3(p.69) )).

Hence, applying (13.8.5(p.84) ), we have

C̃RR[ATom{M:1[R][A]}] = {CRR[S] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F (13.8.10)

corresponding to F ∈ FATom|p ⊆ F with p ∈PATom ⊆P}.(13.8.11)

Now, since the phrase “F ∈ FATom|p ⊆ F ” is implicitly accompanied with the phrase “ F̌ ∈ F̌ATom|p ⊆ F ”. Accordingly
(13.8.11(p.85) ) can be rewritten as

C̃RR[ATom{M̃:1[R][A]}] = {C̃RR[S̃] is true for p ∈PATom ⊆P and F̌ ∈ F̌ATom|p ⊆ F}, (13.8.12)

= {CRR[S] is true on Č ⟨ATom⟩ }

where

Č ⟨ATom⟩
def
= {(p, F )

∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F}. (13.8.13)

◦ The attribute vector of C̃RR[ATom{M̃:1[R][A]}] is given by applying C̃R to (13.8.7(p.85) ), i.e.,

θ(C̃RR[ATom{M̃:1[R][A]}]) = C̃RR[θ(ATom{M̃:1[R][A]})]

= (ǎ, µ̌, b̌, x̌L , x̌K , sĽ .κ̌, Ť , Ľ , Ǩ , Ľ , V̂t). (13.8.14)

� S̃tep 4 (identity replacement operation ĨR)

◦ Here let us consider the application of the identity replacement operation ĨR, i.e., the replacement of the left-hand of each
equality in Lemma 13.3.4(p.74)

F̌ , ǎ, µ̌, b̌, x̌L , x̌K , sĽ , κ̌, Ť (x), Ľ (x), Ǩ (x), Ľ (s) · · · (1∗)
by its right-hand side

F , a, µ, b, xL , xK , sL , κ, T (x), L (x), K (x), L (s) · · · (2∗)

where (1∗) is for any F ∈ F and (2∗) is for F̌ ∈ F̌ which is identical to the F ∈ F , i.e., F̌ ≡ F · · · ((1)).



86

◦ Applying ĨR to (13.8.8(p.85) ) yields

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V̂1 = βµ− s, V̂t = max{K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1}.

Now, we have V̂1 = βµ− s = V1 from (7.4.5(p.41) ). Suppose V̂t−1 = Vt−1. Then, since V̂t = max{K̃ (Vt−1) + Vt−1, βVt−1} = Vt

from (7.4.6(p.41) ), by induction V̂t = Vt for t > 0. Thus we have

ĨRC̃RR[SOE{M̃:1[R][A]}] = {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1},

which is the same as SOE{M:1[R][A]} (see Table 7.4.1(p.41) (I)). Thus we have

SOE{M̃:1[R][A]} = ĨRC̃RR[SOE{M̌:1[R][A]}] (13.8.15)

= {V1 = βµ− s, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1}.

◦ Applying ĨR to (13.8.12(p.85) ) yields

ĨRC̃RR[ATom{M̃:1[R][A]}] = {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }. (13.8.16)

Applying ĨR to (13.8.9(p.85) ) yields

ĨRC̃RR[S̃] = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩. (13.8.17)

Now Vt within ĨRC̃RR[S̃] is generated from SOE{M:1[R][A]}, hence (13.8.16(p.86) ) can be regarded as an assertion as to M:1[R][A].
Thus, we have

ATom{M:1[R][A]} = ĨRC̃RR[ATom{M̃:1[R][A]}] (13.8.18)

= {ĨRC̃RR[S̃] is true on Č ⟨ATom⟩ }.

◦ The attribute vector of AT̃om{M:1[R][A]} is given by applying ĨR to (13.8.14(p.85) ), i.e.,

θ(ATom{M:1[R][A]}) = ĨRC̃RR[θ(ATom{M̃:1[R][A]})]

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt), (13.8.19)

� S̃tep 5 (symmetry transformation operation S R̃→R)

Below, letting us line up the attribute vectors given in S̃tep 1 to S̃tep 4, we have the following:

S̃tep 1: θ( b, µ, a, x
L̃ , x

K̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) (← (13.8.3(p.84) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← R

S̃tep 2: θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˜̂κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t ) (← (13.8.7(p.85) ))
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← C̃R (13.8.20)

S̃tep 3: θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t ) (← (13.8.14(p.85) ))

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ← ĨR
S̃tep 4: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) (← (13.8.19(p.86) ))

The above flow can be eventually reduced to

S R̃→R
def
= { b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt
} , (13.8.21)

called the symmetry transformation operation, which can be regarded as the successive application of the three operations, i.e.,
“ R→ C̃R → ĨR ”. Here let us define

S R̃→R
def
= ĨRC̃RR. (13.8.22)

Then (13.8.18(p.86) ) can be rewritten as

ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}]

= {S is true on Č ⟨ATom⟩ } (13.8.23)

where
S = S R̃→R[S̃]. (13.8.24)

Then, from (13.8.17(p.86) ) we have
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S = ⟨Vt + sL + xL + κ + a+ µ+ b ≤ 0, t > 0⟩.

Then, (13.8.15(p.86) ) can be rewritten as

SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A] }]. (13.8.25)

In addition, (13.5.27(p.77) ) can be rewritten as

θ(ATom{M:1[R][A]}) = S R̃→R[θ(ATom{M̃:1[R][A]})] (13.8.26)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (13.8.27)

From all the above we see that S̃cenario[R] starting with (13.8.2(p.84) ) finally ends up with (13.8.23(p.86) ), which can be rewritten
as respectively

ATom{M̃:1[R][A]} holds on C ⟨ATom⟩, (13.8.28)

ATom{M:1[R][A]} holds on Č ⟨ATom⟩. (13.8.29)

From the above two results and (13.8.25(p.87) ) we eventually obtain the following lemma.

Lemma 13.8.1 Let ATom{M̃:1[R][A]} holds on Č ⟨ATom⟩. Then ATom{M:1[R][A]} holds on C ⟨ATom⟩ where

ATom{M:1[R][A]} = S R̃→R[ATom{M̃:1[R][A]}]. (13.8.30)

� S̃tep 6 (aggregation)

We can construct quite the same procedure as in Step 6 (p.78) .

� S̃tep 7 (symmetry theorem R← R̃)
Through the procedure in S̃tep 6 (p.87) we have the following theorem

Theorem 13.8.1 Let A {M̃:1[R][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}]. (13.8.31)

• Proof Immediate for the same reason as in Theorem 13.5.1(p.80) .

The attribute vector of A {M:1[R][A]} is given by

θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (13.8.32)

= (a, µ, b, xL , xK , sL , κ, T , L ,K ,L , Vt) (13.8.33)

13.9 Definition of Symmetry
Thus far, the term of symmetry has been used in the rather intuitive nuance. In order to make our discussions more clear,
below let us provide its strict definition.

Definition 13.9.1

(a) Let A{M1} and A{M2} be assertions on models M1 and M2 respectively. Then, if A{M2} = SR→R̃[A{M1}] and A{M1} =
S R̃→R[A{M2}, let A{M1} and A{M2} be said to be symmetrical, denoted by A{M1} ∼ A{M2}. Then let us employ the
expression of “M1 and M2 are symmetrical with respect to A ”.

(b) For given two assertion systems A {M1} and A {M2} which are one-to-one correspondent, if A{M1} ∼ A{M2} for any pair
(A{M1},A{M2}) where A{M1} ∈ A {M1} and A{M2} ∈ A {M2}, then A {M1} and A {M2} are said to be symmetrical,
denoted by A {M1} ∼ A {M2}. Then, let us employ the expression of “M1 and M2 are symmetrical with respect to A ”.

(c) Without confusion, let us remove the phrases “with respect to A” and “with respect to A ”.

Lemma 13.9.1 A {M:1[R][A]} and A {M̃:1[R][A]} are symmetrical, i.e.,

A {M:1[R][A]} ∼ A {M̃:1[R][A]}. (13.9.1)

• Proof Immediate from (13.5.53(p.80) ) and (13.8.31(p.87) ).

13.10 Symmetry-Operation-Free
When no change occurs even if the symmetry operation is applied to a given assertion A, the assertion is said to be free from
the symmetry operation, called the symmetry-operation-free assertion.

Lemma 13.10.1 Even if the symmetry operation is applied to the symmetry-operation-free assertion, no change occurs.

• Proof Evident.
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Chapter 14

Analogy Theorem (R↔ P)
In this chapter we present a methodology which derives A {M:1[P][A]} (selling model with P-mechanism) from A {M:1[R][A]}
(selling model with P-mechanism).

14.1 Preliminary

Lemma 14.1.1 ([46,You])

(a) Let x ≥ b. Then z(x) = b.
(b) Let x < b. Then x < z(x) < b.
(c) z(x) ≥ a for any x.

• Proof (a) Let x ≥ b. If z < b · · · (I), then z < x, hence p(z)(z − x) < 0 due to (6.1.29 (1) (p.26) ), and if b ≤ z · · · (III), then
p(z)(z − x) = 0 due to (6.1.29 (2) (p.26) ). Hence z(x) can be given by any z ≥ b, thus z(x) = b due to Def. 6.1.1(p.26) .

-
b
◦• z

-z < b

(I)

� b ≤ z

(III)

Figure 14.1.1: Case x ≥ b

(b) Let x < b. If z ≤ x · · · (I), then p(z)(z − x) ≤ 0, if x < z < b · · · (II), then p(z)(z − x) > 0 due to (6.1.29 (1) (p.26) ),
and if b ≤ z · · · (III), then p(z)(z − x) = 0 from (6.1.29 (2) (p.26) ). Hence, z(x) is given by z such that x < z < b or equivalently
x < z(x) < b.

-
x
•◦

b
◦• z

-z ≤ x

(I)
-� x < z < b

(II)
� b ≤ z

(III)

Figure 14.1.2: Case x < b

(c) Assume that z(x) < a for a certain x. Then, since p(z(x)) = 1 = p(a) due to (6.1.28 (1) (p.26) ), from (6.1.25(p.26) ) we have
T (x) = p(z(x))(z(x)− x) = z(x)− x < a− x = p(a)(a− x) ≤ T (x), which is a contradiction. Hence, it must be that z(x) ≥ a
for any x.

Corollary 14.1.1 ([46,You]) a ≤ z(x) ≤ b for any x.

• Proof Immediate from Lemma 14.1.1(p.89) .

Lemma 14.1.2 ([46,You]) p(z) is nonincreasing on (−∞,∞) and strictly decreasing in z ∈ [a, b].

• Proof The former half is immediate from (6.1.18(p.26) ). Let a ≤ z′ < z ≤ b. Then p(z′)− p(z) = Pr{z′ ≤ ξ} − Pr{z ≤ ξ} =
Pr{z′ ≤ ξ < z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.2.3 (2) (p.13) )), hence p(z′) > p(z), i.e., p(z) is strictly decreasing on [a, b].

Lemma 14.1.3 ([46,You]) z(x) is nondecreasing on (−∞,∞).
• Proof From (6.1.25(p.26) ), for any x and y we have

T (x) = p(z(x))(z(x)− x)

= p(z(x))(z(x)− y)− (x− y)p(z(x))

≤ T (y)− (x− y)p(z(x))

= p(z(y))(z(y)− y)− (x− y)p(z(x))

= p(z(y))
(
z(y)− x+ (x− y)

)
− (x− y)p(z(x))

= p(z(y))(z(y)− x) + (x− y)(p(z(y))− p(z(x)))

≤ T (x) + (x− y)(p(z(y))− p(z(x))).

‡This is the most important property of the function T , which was proven in [?, 0298].
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Hence 0 ≤ (x− y)(p(z(y))− p(z(x))). Let x > y. Then 0 ≤ p(z(y))− p(z(x)), so p(z(x)) ≤ p(z(y)) · · · ((1)). Since a ≤ z(x) ≤ b

and a ≤ z(y) ≤ b from Corollary 14.1.1(p.89) , if z(x) < z(y), then p(z(x)) > p(z(y)) from Lemma 14.1.2(p.89) , which contradicts
(1) . Hence, it must be that z(x) ≥ z(y), i.e., z(x) is nondecreasing in x ∈ (−∞,∞).

Lemma 14.1.4

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(e) T (x) ≥ a− x on (−∞,∞).

(f) T (x) + x is nondecreasing on (−∞,∞).

(g) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(h) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(i) T (x) ≥ max{0, a− x} on (−∞,∞).

(j) λβT (λβa− s)− s is nonincreasing in s and is strictly decreasing in s if λβ < 1.

• Proof (a,b) Immediate from the fact that p(z)(z − x) in (6.1.19(p.26) ) is continuous and nonincreasing in x ∈ (−∞,∞) for
any z.

(c) Let x′ < x < b. Then z(x) < b from Lemma 14.1.1(p.89) (b). Accordingly, since p(z(x)) > 0 due to (6.1.29 (1) (p.26) ) and
since z(x) − x < z(x) − x′, from (6.1.25(p.26) ) we have T (x) = p(z(x))(z(x) − x) < p(z(x))(z(x) − x′) ≤ T (x′), implying that
T (x) is strictly decreasing on (−∞, b) · · · · · · ((1)). Assume T (b) = T (x) for a given x < b, so b− x > 0. Then, for any sufficiently

small ε > 0 such that b − x > 2ε > 0 we have b > b − ε > x + ε > x, hence T (b) = T (x) > T (b − ε) ≥ T (b) due to the strict
unceasingness shown above and the nonincreasingness in (b), which is a contradiction. Thus, since T (x) ̸= T (b) for any x < b,
we have T (x) > T (b) or T (x) < T (b) for any x < b. However, the latter is impossible due to (b), hence only the former is
possible. Consequently, it follows that T (x) is strictly decreasing on (−∞, b] instead of (−∞, b).

(d) Let x ≥ b. Then, since z(x) = b from Lemma 14.1.1(p.89) (a), we have p(z(x)) = 0 due to (6.1.29 (2) (p.26) ), hence
T (x) = p(z(x))(z(x)− x) = 0 on [b,∞). Let x < b. Then, from (c) we have T (x) > T (b) = 0, i.e., T (x) > 0 on (−∞, b).

(e) Since p(a) = 1 from (6.1.28 (1) (p.26) ), we have T (x) ≥ p(a)(a− x) = a− x for any x on (−∞,∞).

(f) Let x < x′. Then, we have

T (x) + x = p(z(x))(z(x)− x) + x

= p(z(x))z(x) + (1− p(z(x)))x

≤ p(z(x))z(x) + (1− p(z(x)))x′

= p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T (x) + x is nondecreasing on (−∞,∞).

(g) If β = 1, then βT (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT (x) + x = β(T (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Immediate from the fact that T (x) ≥ a− x on (−∞,∞) from (e) and T (x) ≥ 0 on (−∞,∞) from (d).

(j) From (6.1.19(p.26) ) we have

λβT (λβa− s)− s = λβmaxz p(z)(z − λβa+ s)− s = maxz p(z)(λβz − (λβ)2a+ λβs)− s.

Let s > s′. Then, we have

λβT (λβa− s)− s− λβT (λβa− s′) + s′

= maxz p(z)(λβz − (λβ)2a+ λβs)−maxz p(z)(λβz − (λβ)2a+ λβs′)− (s− s′)

≤ maxz p(z)(s− s′)λβ − (s− s′)†

≤ maxz(s− s′)λβ − (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= (s− s′)λβ − (s− s′)

= −(s− s′)(1− λβ) ≤ (<) 0 if λβ ≤ (<) 1.

Hence, since λβT (λβa− s)− s ≤ (<) λβT (λβa− s′)− s′ if λβ ≤ (<) 1, it follows that T (λβa− s)− s is nonincreasing (strictly
decreasing) in s if λβ ≤ (<) 1.

Let us define
h(z) = p(z)(z − a)/(1− p(z)), z > a,

h⋆ = supa<z h(z),

†maxx g(x)−maxx h(x) ≤ maxx{g(x)− h(x)}.
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Below, for a given x let us define the following successive four assertions:

A1(x) = ⟨⟨ z(x) > a ⟩⟩,

A2(x) = ⟨⟨ T (a, x) < T (z′, x, ) for at least one z′ > a ⟩⟩,

A3(x) = ⟨⟨ a− h(z′) < x for at least one z′ > a ⟩⟩,

A4(x) = ⟨⟨ infz>a{a− h(z)} < x ⟩⟩.

Proposition 14.1.1 For any given x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

• Proof Letting T (z, x)
def
= p(z)(z − x), we can rewrite (6.1.19(p.26) ) as T (x) = maxz T (z, x) = T (z(x), x) (see (6.1.25(p.26) )).

1. Let A1(x) be true for any given x. Suppose T (a, x) ≥ T (z′, x) for all z′ ≥ a, hence the maximum of T (z, x) for all z ≥ a is
attained at z = a, i.e., z(x) = a (see Def. 6.1.1(p.26) ), which contradicts A1(x). Hence it must be that T (a, x) < T (z′, x) for
at least one z′ > a, thus A2(x) becomes true. Accordingly, we have A1(x)⇒ A2(x). Suppose A2(x) is true for any given x.
Then, if z(x) = a, we have T (a, x) < T (z′, x) ≤ T (x) = T (z(x), x) = T (a, x), which is a contradiction, hence it must be that
z(x) > a due to Lemma 14.1.1(p.89) (c). Accordingly, we have A2(x) ⇒ A1(x). Thus, it follows that A1(x) ⇔ A2(x) for any
given x.

2. Since p(a) = 1 from (6.1.28 (1) (p.26) ), for z′ > a (hence 1 > p(z′) · · · ((1)) from (6.1.28 (2) (p.26) )) we have

T (a, x)− T (z′, x)

= p(a)(a− x)− p(z′)(z′ − x)

= a− x− p(z′)(z′ − x)

= a− x− p(z′)(a− x+ z′ − a)

= a− x− p(z′)(a− x)− p(z′)(z′ − a)

= (1− p(z′))(a− x)− p(z′)(z′ − a)

= (1− p(z′))
(
a− x− p(z′)(z′ − a)/(1− p(z′))

)
= (1− p(z′))(a− x− h(z′))

= (1− p(z′))(a− h(z′)− x).

Accordingly, due to (1) we immediately obtain A2(x)⇔ A3(x) for any given x.

3. Let A3(x) be true for any given x. Then clearly A4(x) is also true, i.e., A3(x)⇒ A4(x). Let A4(x) be true for any given x.
Then evidently a− h̃(z′) < x for at least one z′ > a, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows
that A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma 14.1.5

(a) 0 < h⋆ <∞.

(b) x⋆ = a− h⋆ < a.

(c) x⋆ < (≥) x⇔ z(x) > (=) a.

(d) a⋆ < a.

• Proof (a) For any infinitesimal ε > 0 such that a < b − ε < b · · · (II) we have 0 < p(b − ε) < 1 from (6.1.29 (1) (p.26) ) and
(6.1.28 (2) (p.26) ), hence h(b− ε) = p(b− ε)(b− ε− a)/(1− p(b− ε)) > 0. If b ≤ z · · · (III), then p(z) = 0 due to (6.1.29 (2) (p.26) ),
hence h(z) = 0 for z ≥ b. From the above we have h⋆ > 0 (finite) or h⋆ =∞.

-a
•◦ b◦•

-z ≤ a

(I)

-� a < z < b

(II)

� b ≤ z

(III)

6

h(b− ε) > 0

z
h(z) = 0

Figure 14.1.3: h(b− ε) > 0 and h(z) = 0 for z ≥ b

Assume that h⋆ =∞. Then, there exists at least one z′ on a < z′ < b such that h(z′) ≥ N for any given N > 0. Hence, if the
N is given by M/

¯
f† with any M > 1, we have h(z′) ≥ M/

¯
f or equivalently p(z′)(z′ − a)/(1 − p(z′)) ≥ M/

¯
f . Hence, noting

(6.1.18(p.26) ), we have

p(z′)(z′ − a) ≥ (1− p(z′))M/
¯
f = (1− Pr{z′ ≤ ξ})M/

¯
f = Pr{ξ < z′}M/

¯
f · · · (∗)

†See (2.2.4(p.13) )
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where Pr{ξ < z′} =
∫ z′

a
f(w)dw ≥

∫ z′

a
¯
fdw = (z′ − a)

¯
f . Accordingly, since p(z′)(z′ − a) ≥ (z′ − a)

¯
fM/

¯
f = (z′ − a)M , we have

p(z′) ≥M > 1 due to z′ − a > 0, which is a contradiction. Hence, it must follow that h⋆ <∞.

(b) Since A1(x)⇒ A4(x) due to Proposition 14.1.1, we can rewritten (6.1.27(p.26) ) as

x⋆ = inf{x
∣∣ infz>a{a− h(z)} < x}

= infz>a{a− h(z)} · · · ((1))

= a− supa<z h(z) = a− h⋆ < a (due to (a) ),

hence (b) holds.

(c) If x⋆ < x, then infz>a{a−h(z)} < x from (1) , hence z(x) > a due to A4(x)⇒ A1(x). If x
⋆ ≥ x, then infa<z{a−h(z)} ≥ x

from (1) . Now, since infa<z{a − h(z)} ≥ x ⇔ z(x) ≤ a due to a contraposition of A4(x) ⇔ A1(x), hence we obtain z(x) = a
due to Lemma 14.1.1(p.89) (c).

(d) First note T (x) ≥ p(z′)(z′ − x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a + ε < b we
have p(a + ε) > 0 from (6.1.29 (1) (p.26) ), hence T (a) ≥ p(a + ε)(a + ε − a) = p(a + ε)ε > 0. Adding a to the inequality yields
T (a) + a > a. Thus, we have T (x) + x ≥ T (a) + a > a for any x ≥ a due to Lemma 14.1.4(p.90) (f). Accordingly, if a⋆ ≥ a, then
since T (a⋆) + a⋆ ≥ T (a) + a > a, from Lemma 14.1.4(p.90) (a) we have T (a⋆ − ε) + a⋆ − ε > a for any sufficiently small ε > 0
or equivalently T (a⋆ − ε) > a − (a⋆ − ε), which contradicts the definition of a⋆ (see (6.1.26(p.26) )). Therefore, it must be that
a⋆ < a.

Lemma 14.1.6

(a) T (x) + x is strictly increasing on [a⋆,∞).

(b) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).

(c) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.

(d) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

• Proof (a) From (6.1.25(p.26) ) we have

T (x) + x = p(z(x))(z(x)− x) + x = p(z(x))z(x) + (1− p(z(x)))x. · · · ((1))

◦ Let x⋆ < x. Then z(x) > a from Lemma 14.1.5(p.91) (c), hence p(z(x)) < 1 due to (6.1.28 (2) (p.26) ), so 1 − p(z(x)) > 0. If
x < x′, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

i.e., T (x) + x is strictly increasing on (−∞,∞), hence understandably so also on [a⋆,∞).

◦ Let x⋆ ≥ x. Then z(x) = a from Lemma 14.1.5(p.91) (c), hence p(z(x)) = 1 from (6.1.28 (1) (p.26) ), so T (x) = p(z(x))(z(x)−x) =
a−x · · · ((2)). Suppose a⋆ < x⋆. Then, since a⋆ < a⋆ +2ε < x⋆ for an infinitesimal ε > 0, we have a⋆ < a⋆ + ε < x⋆− ε < x⋆

or equivalently x⋆ > a⋆ + ε; accordingly, due to (2) we obtain T (a⋆ + ε) = a− (a⋆ + ε) · · · ((3)). Now, due to (6.1.26(p.26) ) we

have T (a⋆ + ε) > a− (a⋆ + ε), which contradicts (3) . Accordingly, it must be that x⋆ ≤ a⋆. Let x′ > x > a⋆. Then, since
x⋆ < x, we have z(x) > a Lemma 14.1.5(p.91) (c), hence p(z(x)) < 1 due to (6.1.28 (2) (p.26) ) or equivalently 1 − p(z(x)) > 0.
Thus, from (1) we have

T (x) + x = p(z(x))z(x) + (1− p(z(x)))x < p(z(x))z(x) + (1− p(z(x)))x′ = p(z(x))(z(x)− x′) + x′ ≤ T (x′) + x′,

implying that T (x) + x is strictly increasing· · · ((4)) on (a⋆,∞). Now, let us assume T (x) + x = T (a⋆) + a⋆ on a⋆ < x,

so x − a⋆ > 0. Then, for any sufficiently small ε > 0 such that x − a⋆ > 2ε we have x > x − ε > a⋆ + ε > a⋆, hence
T (x) + x = T (a⋆) + a⋆ ≤ T (a⋆ + ε) + a⋆ + ε < T (x) + x due to the nondecreasing in Lemma 14.1.4(p.90) (f) and the strict
increasingness shown above, which is a contradiction. Thus, it must be that T (x) + x ̸= T (a⋆) + a⋆ on a⋆ < x, so we have
T (x) + x > T (a⋆) + a⋆ or T (x) + x < T (a⋆) + a⋆ on a⋆ < x; however, the latter is impossible due to the nondecreasing in
Lemma 14.1.4(p.90) (f), hence it follows that T (x) + x > T (a⋆) + a⋆ on a⋆ < x. From this fact and (4) it inevitably follows
that T (x) + x is strictly increasing on a⋆ ≤ x, i.e., T (x) + x is strictly increasing on not (a⋆,−∞) but [a⋆,−∞).

Accordingly, whether x⋆ < x or x⋆ ≥ x, it follows that T (x) + x is strictly increasing on [a⋆,∞).

(b) Due to (6.1.26(p.26) ) we have T (x) > a− x for x > a⋆, i.e., T (x) > a− x on (a⋆,∞), hence the latter half is true. Since
T (x) ≥ a − x on (−∞,∞) due to Lemma 14.1.4(p.90) (e), we have T (x) + x ≥ a · · · ((5)) on (−∞,∞). Suppose T (a⋆) + a⋆ > a.

Then, for an infinitesimal ε > 0 we have T (a⋆− ε)+a⋆− ε > a due to Lemma 14.1.4(p.90) (a), i.e., T (a⋆− ε) > a− (a⋆− ε), which
contradicts the definition of a⋆ (see (6.1.26(p.26) )). Consequently, we have T (a⋆) + a⋆ = a · · · ((6)) or equivalently T (a⋆) = a− a⋆.

Let x < a⋆. Then, from Lemma 14.1.4(p.90) (f) we have T (x)+x ≤ T (a⋆)+a⋆ = a. From the result and (5) we have T (x)+x = a,
hence T (x) = a− x on (−∞, a⋆). From this and (6) it follows that T (x) = a− x on (−∞, a⋆]. Hence the former half is true.

(c) Let a⋆ > 0. Then, since 0 ∈ (−∞, a⋆], we have T (0) = a from the former half of (b). We have T (0) = maxz p(z)z · · · ((7))
from (6.1.19(p.26) ). Let b < 0. Then, if z ≥ b, we have p(z)z = 0 from (6.1.29 (2) (p.26) ) and if z < b (< 0), then p(z)z < 0 from
(6.1.29 (1) (p.26) ), hence T (0) = 0 due to (7) .

(d) Let x < y and a⋆ < y. If x ≤ a⋆, then T (x) + x ≤ T (a⋆) + a⋆ < T (y) + y due to Lemma 14.1.4(p.90) (f) and (a), and if
a⋆ < x, then a⋆ ≤ x < y, hence T (x)+x < T (y)+y due to (a). Thus, whether x ≤ a⋆ or a⋆ < x, we have T (x)+x < T̃ (y)+y.
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14.2 Analogy Replacement Operation AR→P
14.2.1 Three Facts

Let us focus on the three facts below.

⋆ Fact 1 First, the following lemma can be obtained.

Lemma 14.2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞) ← ← Lemma 14.1.4(p.90) (a)

(b) T (x) is nonincreasing on (−∞,∞) ← ← Lemma 14.1.4(p.90) (b)

(c) T (x) is strictly decreasing on (−∞, b] ← ← Lemma 14.1.4(p.90) (c)

(d) T (x) + x is nondecreasing on (−∞,∞) ← ← Lemma 14.1.4(p.90) (f)

(e) T (x) + x is strictly increasing on [a⋆,∞) ← ← Lemma 14.1.6(p.92) (a)

(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞) ← ← Lemma 14.1.6(p.92) (b)

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞) ← ← Lemma 14.1.4(p.90) (d)

(h) T (x) ≥ max{0, a− x} on (−∞,∞) ← ← Lemma 14.1.4(p.90) (i)

(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0 ← ← Lemma 14.1.6(p.92) (c)

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma 14.1.4(p.90) (g)

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma 14.1.4(p.90) (h)

(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y ← ← Lemma 14.1.6(p.92) (d)

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1 ← ← Lemma 14.1.4(p.90) (j)

(n) a⋆ < a ← ← Lemma 14.1.5(p.91) (d)

Here we shall pay attention to the fact that replacing a and µ in Lemma 11.1.1(p.55) (A {TR })(p.55 ) by a⋆ and a
respectively yields Lemma 14.2.1(p.93) (A {TP }) . Let us represent this replacement by

AR→P = {a→ a⋆, µ→ a}. (14.2.1)

In other words, applying AR→P to the former lemma leads to the latter lemma, i.e.,

Lemma 14.2.1(p.93) (A {TP}) = AR→P[ Lemma 11.1.1(p.55) (A {TR})]. (14.2.2)

Here let us focus on the following fact. The whole description proving Lemma 11.1.1(p.55) is quite different from that proving
Lemma 14.2.1(p.93) ; in other words, no relation exists at all between both descriptions. Nevertheless, what is amazing here is
that the whole descriptions of both lemmas are joined together by AR→P. In the paper, we call AR→P the analogy replacement
operation.

⋆ Fact 2 Next, note that replacing µ in L (s) = L (λβµ− s) (see (6.1.5(p.25) )) by a yields L (s) = L (λβa− s) (see
(6.1.22(p.26) )). This means that applying AR→P to the characteristic vector (LR , KR ,LR , κR) (see (6.1.3(p.25) ) - (6.1.6(p.25) )) produces
(LP , KP ,LP , κP) (see (6.1.20(p.26) ) - (6.1.23(p.26) )), i.e.,

(LP , KP ,LP , κP) = AR→P[(LR , KR ,LR , κR)]. (14.2.3)

⋆ Fact 3 Finally, note that replacing µ in V1 = βµ− s (see (7.4.1(p.41) )) by a yields V1 = βa− s (see (7.4.5(p.41) )). This means
that applying AR→P to the system of optimality equations SOE{M:1[R][A]} (see Table 7.4.1(p.41) (I)) leads to SOE{M:1[P][A]} (see
Table 7.4.1(p.41) (III)), i.e.,

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (14.2.4)

14.2.2 Prefiguration I

Here let us present a prefiguration through which A {M:1[P][A]} can be obtained only by replacing a and µ appearing A {M:1[R][A]}
by a⋆ and a respectively.

First, by F (a,µ,b) let us denote the distribution function with the lower bound a, the expectation µ, and the upper bound b
(a < µ < b). For convenience of reference, below let us copy (14.2.2(p.93) ) - (14.2.4(p.93) ):

Lemma 14.2.1(p.93) (A {TP}) = AR→P[ Lemma 11.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ](1⋆)l (1⋆)r

For F (a,µ,b) For F (a,µ,b)

Procedure[P] Procedure[R]

Next, closely looking at the flow of all discussions in Chap. 12(p.61) , we see that A {M:1[R][A]} was derived only from the procedure
related to the three terms within the box (1⋆)r above; here let us denote this procedure by Procedure[R]. Now, for quite the
same reason as in Procedure[R] we also see that A {M:1[P][A]} will be derived from the procedure related to the three terms
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within the box (1⋆)l above, then let us denote this procedure by Procedure[P]. The flow of the above two procedures can be
schematized as below.

Lemma 14.2.1(p.93) (A {TP}) = AR→P[ Lemma 11.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ]

↓ ↓

Procedure[P] Procedure[R]
↓ ↓

A {M:1[P][A]} A {M:1[R][A]}

(1⋆)l

(2⋆)l

(1⋆)r

(2⋆)r

For F (a,µ,b) For F (a,µ,b)

Now, since we have the relation (1⋆)l = AR→P[(1
⋆)r] due to the three Facts in the preceding section, it can be prefigured that

this relation will be inherited also between Procedure[P] and Procedure[R], i.e.,

Procedure[P] = AR→P[Procedure[R]],

hence also between A {M:1[P][A]} and A {M:1[R][A]}, i.e.

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (14.2.5)

In other words, A {M:1[P][A]} can be obtained by applying AR→P to A {M:1[R][A]}. From the above discussions we see that the
above figure can be rewritten as below.

Lemma 14.2.1(p.93) (A {TP}) = AR→P[ Lemma 11.1.1(p.55) (A {TR}) ]

(LP , KP ,LP , κP) = AR→P[ (LR , KR ,LR , κR) ]

SOE{M:1[P][A]} = AR→P[ SOE{M:1[R][A]} ]

↓ ↓
Procedure[P] = AR→P[ Procedure[R] ]

↓ ↓
A {M:1[P][A]} = AR→P[ A {M:1[R][A]} ](2⋆)l

(1⋆)l

(2⋆)r

(1⋆)r

For F (a,µ,b) For F (a,µ,b)

Here note that the above discussions is not a proof but a prefiguration.

14.2.3 Prefiguration II

Below is another prefiguration through which the validity of (14.2.5(p.94) ) will be confirmed.

First, let us represent the procedure proving A {M:1[R][E]}(a,µ,b) with F (a,µ,b) by Procedure[R](a,µ,b) (see Section 12.2(p.61) ).
Now, since a⋆ < a < b due to Lemma 14.2.1(p.93) (n), we can express the F with the lower bound a⋆, the expectation a, and the
upper bound b as F (a⋆,a,b), hence we can define Procedure[R](a⋆,a,b), proving A {M:1[R][E]}(a⋆,a,b) with F (a⋆,a,b). Here note that
Procedure[R](a⋆,a,b) is identical to one resulting from replacing a and µ in Procedure[R](a,µ,b) by a⋆ and a respectively, i.e.,

Procedure[R](a⋆,a,b) = AR→P[Procedure[R](a,µ,b)].

Then, from the three facts in Section 14.2.1(p.93) we can regard Procedure[P](a,µ,b) as quite the same as Procedure[R](a⋆,a,b) from
the viewpoint of symbolic logic,† i.e.,

Procedure[P](a,µ,b)

s·logic
= Procedure[R](a⋆,a,b)

hence we have

Procedure[P](a,µ,b)

s·logic
= Procedure[R](a⋆,a,b) = AR→P[Procedure[R](a,µ,b)].

The above relation implies that A {M:1[P][E]}(a,µ,b) proved by Procedure[P](a,µ,b) becomes identical (in the sense of “symbolic
logic”) to A {M:1[R][E]}(a⋆,a,b) proved by Procedure[R](a⋆,a,b), i.e.,

A {M:1[P][E]}(a,µ,b)
s·logic
= A {M:1[R][E]}(a⋆,a,b).

†A logic is regarded as reducing deduction to the process which transforms the expressions by representing propositions, the concept of
logic, and so on with symbols such as +, −, >, <, ∨, ∧, ⇒, and so on (Wikipedia)
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In other words, A {M:1[P][E]}(a,µ,b) can be given by A {M:1[R][E]}(a⋆,a,b) resulting from applying AR→P to A {M:1[R][E]}(a,µ,b)
or equivalently from replacing a and µ in A {M:1[R][E]}(a,µ,b) by a⋆ and a respectively, i.e.,

A {M:1[P][E]}(a,µ,b)
s·logic
= A {M:1[R][E]}(a⋆,a,b) = AR→P[A {M:1[R][E]}(a,µ,b)];

14.2.4 Strict Proof

In this section, by dividing the intuitive prefiguration in Section 14.2.2(p.93) into several stages, we shall strictly prove that
(14.2.5(p.94) ) holds also theoretically.

� First, let us note that Procedure[R] deriving A {M:1[R][E]} (see Section 12.2(p.61) ) can be restated as below.

· First, by applying A {TR} (see Lemma 11.1.1(p.55) ) to the characteristic vector (LR , KR ,LR , κR) consisting of (6.1.3(p.25) )-
(6.1.6(p.25) ), we obtain expressions (11.2.3(p.57) ) - (11.2.8(p.57) ); let us denote these expressions by {LR , KR ,LR , κR}.
· Next, by applying the A {TR} to the {LR , KR ,LR , κR}, we get the assertion system A {LR , KR ,LR , κR} (see Lemmas 11.2.1(p.57) -
11.3.1(p.59) ).

· Finally, by applying the system of optimality equations SOE{M:1[R][E]} (see Table 7.4.1(p.41) (I)) to A {LR , KR ,LR , κR}, we
get the assertion system A {M:1[R][E]} (see Tom’s 12.2.1(p.61) and 12.2.2(p.62) ).

The above flow of Procedure[R] can be schematized as below.

Procedure[R] = ⟨⟨A {TR } ⇒ (LR , KR ,LR , κR)→ {LR , KR ,LR , κR},

A {TR } ⇒ {LR , KR ,LR , κR} → A {LR , KR ,LR , κR},

SOE{M:1[R][E]} ⇒ A {LR , KR ,LR , κR} → A {M:1[R][E]} ⟩⟩

� Secondarily, applying AR→P to the above flow leads to

AR→P[Procedure[R]] = ⟨⟨AR→P[A {TR }]⇒ AR→P[(LR , KR ,LR , κR)]→ AR→P[{LR , KR ,LR , κR}] ,

AR→P[A {TR }]⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

AR→P[SOE{M:1[R][E]}]⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩

� Thirdly, due to (14.2.2(p.93) )-(14.2.4(p.93) ) we can replace

AR→P[A {TR}], AR→P[(LR , KR ,LR , κR)], AR→P[SOE{M:1[R][E]}]
in the above flow by

A {TP}, (LP , KP ,LP , κP), SOE{M:1[P][E]}

respectively. Accordingly, the above flow can be rewritten as follows.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (14.2.6)

� Fourthly, let us focus our attentions on the items without underline in the above flow, i.e.,

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ AR→P[{LR , KR ,LR , κR}],

A {TP } ⇒ AR→P[{LR , KR ,LR , κR}]→ AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (14.2.7)

Here (LP , KP ,LP , κP) can be describes as follows.

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(14.2.8)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2),

(14.2.9)

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),

= −(1− β)x− s on [b,∞) · · · (2),
(14.2.10)

K (x) + x ≥ βx− s on (−∞,∞), (14.2.11)

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2),

(14.2.12)

K ( xL ) = −(1− β) xL · · · (1), L (xK ) = (1− β)xK · · · (2), (14.2.13)

• Direct proof See (A 2.1(p.303) )-(A 2.6(p.303) ) .
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� Fifthly, applyingAR→P to the relations {LR , KR ,LR , κR} (see Lemmas 11.2.1(p.57) -11.3.1(p.59) ) yields the relations {LP , KP ,LP , κP},
i.e.,

AR→P[{LR , KR ,LR , κR}] = {LP , KP ,LP , κP}. (14.2.14)

� Finally, noting (14.2.14(p.96) ), we can rewrite (14.2.7(p.95) ) as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → AR→P[A {LR , KR ,LR , κR}],

SOE{M:1[P][E]} ⇒ AR→P[A {LR , KR ,LR , κR}]→ AR→P[A {M:1[R][E]}] ⟩⟩ (14.2.15)

� Now we have

AR→P[A {LR , KR ,LR , κR}] = A {LP , KP ,LP , κP}. (14.2.16)

Accordingly (14.2.15(p.96) ) can be rewritten as below.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κR)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → AR→P[A {M:1[R][E]}] ⟩⟩. (14.2.17)

� Applying (14.2.16(p.96) ) to Lemmas 11.2.1(p.57) to 11.3.1(p.59) yields the following lemmas and corollaries:

Lemma 14.2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ.

• Proof by analogy Obtained from applying AR→P to Lemma 11.2.1(p.57) .

• Direct proof See Lemma A2.2(p.303) .

Corollary 14.2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof by analogy Obtained from applying AR→P to Corollary 11.2.1(p.57) .

• Direct proof See Corollary A 2.1(p.303) .

Lemma 14.2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).

(f) K (x) + x is strictly increasing on [a⋆,∞).

(g) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x ⇔ K (x) > (= (<)) 0.

2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 11.2.2(p.57) .

• Direct proof See Lemma A2.3(p.303) .

Corollary 14.2.2 (A {KP})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
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(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof by analogy Obtained from applying AR→P to Corollary 11.2.2(p.58) .

• Direct proof See Lemma A2.2(p.304) .

Lemma 14.2.4 (A {LP /KP })

(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇔ xL > (= (<)) xK ⇒ xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 11.2.3(p.58) .

• Direct proof See Lemma A2.4(p.304) .

Lemma 14.2.5 (A {LP })

(a) L (s) is nonincreasing in s and strictly decreasing in s if λβ < 1.

(b) Let λβa ≥ b.

1. xL ≤ λβa− s.

2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(c) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

• Proof by analogy Obtained from applying AR→P to Lemma 11.2.4(p.59) .

• Direct proof See Lemma A2.5(p.305) .

Lemma 14.2.6 (κP) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.

(b) Let κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof by analogy Obtained from applying AR→P to Lemma 11.3.1(p.59) .

• Direct proof See Lemma A2.6(p.305) .

� Since the assertion system AR→P[A {M:1[R][E]} in (14.2.17(p.96) ) is derived from SOE{M:1[P][E]}, it can be regarded as an
assertion system for the model M:1[P][E] (see Remark 7.1.1(p.29) ), i.e., A {M:1[P][E]}, hence we have

A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (the same as (14.2.5(p.94) )). (14.2.18)

Thus (14.2.17(p.96) ) can be rewritten as follows.

AR→P[Procedure[R]] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩ (14.2.19)

� The whole of the r.h.s. of (14.2.19(p.97) ) can be regarded as the procedure deriving A {M:1[P][E]}, so let us denote it by
Procedure⟨P⟩, i.e.,

AR→P[Procedure[R]] = Procedure[P]. (14.2.20)

Accordingly, finally it follows that we have

Procedure[P] = ⟨⟨A {TP } ⇒ (LP , KP ,LP , κP)→ {LP , KP ,LP , κP},

A {TP } ⇒ {LP , KP ,LP , κP} → A {LP , KP ,LP , κP},

SOE{M:1[P][E]} ⇒ A {LP , KP ,LP , κP} → A {M:1[P][E]} ⟩⟩

14.3 Analogy Theorem (R↔ P)
From (14.2.5(p.94) ) we immediately obtain the following theorem.

Theorem 14.3.1 (analogy (R→ P)) Let A {M:1[R][A]} holds on P ×F . Then A {M:1[P][A]} holds on P ×F where

A {M:1[P][A]} = AR→P[A {M:1[R][A]}]. (14.3.1)
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Then, from the comparison of (I) and (III) of Tables 7.4.1(p.41) we also get

SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}]. (14.3.2)

Moreover, from (13.4.2(p.75) ) we obtain the following:

θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (14.3.3)

= ( a⋆, a, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (14.3.4)

The analogy replacement operation AR→P is a mere replacement of the two symbols, a → a⋆ and µ → a. Hence, defining its
inverse as

AP→R = {a⋆ → a, a → µ}, (14.3.5)

we can immediately obtain the inverse of the above theorem becomes true as follows.

Theorem 14.3.2 (analogy (P← R)) Let A {M:1[P][A]} holds on P ×F . Then A {M:1[R][A]} holds on P ×F where

A {M:1[R][A]} = AP→R[A {M:1[P][A]}]. (14.3.6)

In addition, as an inverses of (14.3.2(p.98) ) and (14.3.3(p.98) ) we immediately obtain

SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}]. (14.3.7)

θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (14.3.8)

= ( a, µ, b, xL , xK , sL , κ, TR , LR , KR ,LR , Vt). (14.3.9)

14.4 Derivation of A {M:1[P][A]}
�� Tom 14.4.1 (A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof by analogy Immediate from applying AR→P to Tom 12.2.1(p.61) .

• Direct proof See Tom A4.3(p.315) .

�� Tom 14.4.2 (A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof by analogy Immediate from applying AR→P to Tom 12.2.2(p.62) .

• Direct proof See Tom A4.4(p.315) .

14.5 Strict Definition of Analogy
Below let us provide the strict definition for “analogy” that we have indefinitely used so far.

Definition 14.5.1 (analogy)

(a) By AR→P[X] (AP→R[X]) let us denote the assertion defined by applying AR→P (AP→R) to a given X.

(b) If A{X2} = AR→P[A{X1}] and A{X1} = AP→R[A{X2}], then A{X1} and A{X2} is said to be analogous, denoted by
A{X1} ◃▹ A{X2}.

(c) For given two assertion systems A {X1} and A {X2} which are one-to-one correspondent, if A{X1} ◃▹ A{X2} for any pair
(A{X1},A{X2}) where A{X1} ∈ A {X1} and A{X2} ∈ A {X2} are correspondent each other, then A {X1} and A {X2} are
said to be analogous, denoted by A {X1} ◃▹ A {X2}.



99

14.6 Analogy-Operation-Free
When no change occurs even if the analogy operation is applied to a given assertion A, the assertion is said to be free from the
analogy operation, called the analogy-operation-free assertion.

Lemma 14.6.1 Even if the analogy operation is applied to the analogy-operation-free assertion, no change occurs.

• Proof Evident.

14.7 Optimal Price to Propose

Lemma 14.7.1 (A {M:1[P][A]}) The optimal price zt to propose is nondecreasing in t > 0.

• Proof Obvious from (7.2.34(p.31) ), Tom’s 14.4.1(p.98) (a) and 14.4.2(p.98) (a), and
Lemma 14.1.3(p.89) .
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Chapter 15

Symmetry Theorem (P↔ P̃)

In this chapter we present the methodology deriving A {M̃:1[P][A]} (buying model with P-mechanism) from A {M:1[P][A]} (selling
model with P-mechanism).

15.1 Functions Ť , Ľ , Ǩ , and Ľ of Type P
Below let us define ones corresponding to the underlying functions that were defined in Section 6.1.3(p.26) . First let us define the
T -function of Type P for F̌ ∈ F̌ corresponding to any F ∈ F (see (6.1.19(p.26) ) and (6.1.18(p.26) )) by

Ť (x) = max
z

p̌(z)(z − x) · · · (1), p̌(z) = Pr{z ≤ ξ̂} · · · (2). (15.1.1)

By ž(x) let us define z maximizing p̌(z)(z − x) if it exists, i.e.,

Ť (x) = p̌(ž(x))(ž(x)− x). (15.1.2)

Furthermore, let us define

Ľ (x) = λβŤ (x)− s, (15.1.3)

Ǩ (x) = λβŤ (x)− (1− β)x− s, (15.1.4)

Ľ (s) = Ľ (λβǎ− s), (15.1.5)

κ̌ = λβŤ (0)− s. (15.1.6)

Then, let the solutions of Ľ (x) = 0, Ǩ (x) = 0, and Ľ (s) = 0 be denoted by respectively xĽ , xǨ , and sĽ if they exist; If multiple

solutions exist for each of xĽ , xǨ , and sĽ , let us employ the smallest as its solution (see Sections 6.2(p.27) (a) and 13.2.1(p.71) ).

Furthermore, let us define (see Figure 13.1.1(p.70) for ǎ, µ̌, and b̌)

ǎ⋆ = inf{x
∣∣ Ť (x) > ǎ− x} (see (6.1.26(p.26) )), (15.1.7)

x̌⋆ = inf{x
∣∣ ž(x) > ǎ} (see (6.1.27(p.26) )). (15.1.8)

By M̌:1[P][A] let us define M:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M:1[P][A]}
(see Table 7.4.1(p.41) (III)) we can obtain

SOE{M̌:1[P][A]} = {V1 = βǎ− s, Vt = max{Ǩ (Vt−1) + Vt−1, βVt−1}, t > 1}. (15.1.9)

15.2 Functions ˇ̃T , ˇ̃L , ˇ̃K , and ˇ̃L of Type P
Below let us define ones corresponding to the underlying functions that were defined in Section 6.1.4(p.26) . First, let us define
the T̃ -function of T̃ype P for F̌ ∈ F̌ corresponding to any F ∈ F by (see (6.1.32(p.26) )).

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x) · · · (1), ˇ̃p(z) = Pr{ξ̂ ≤ z} · · · (2) (15.2.1)

where by ž(x) let us define z minimizing ˇ̃p(z)(z − x) if it exists, i.e.,

ˇ̃T (x) = ˇ̃p(ž(x))(ž(x)− x). (15.2.2)

Let us define
ˇ̃L (x) = λβ ˇ̃T (x) + s, (15.2.3)

ˇ̃K (x) = λβ ˇ̃T (x)− (1− β)x+ s, (15.2.4)

ˇ̃L (s) = ˇ̃L (λβb̌+ s), (15.2.5)

ˇ̃κ = λβ ˇ̃T (0) + s (15.2.6)
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where let us define the solutions of ˇ̃L (x) = 0, ˇ̃K (x) = 0, and ˇ̃L (x) = 0 by respectively xˇ̃L , xˇ̃K , and sˇ̃L ; If multiple solutions
exist for each of x

L̃ , x
K̃ , and sL̃ , we shall employ the largest as its solution (see Sections 6.2(p.27) (b)). Furthermore let us define

(see Figure 13.1.1(p.70) for ǎ, µ̌, and b̌)

b̌⋆ = sup{x
∣∣ ˇ̃T (x) < b̌− x} (see (6.1.39(p.27) )), (15.2.7)

ˇ̃x⋆ = sup{x | ž(x) < b̌} (see (6.1.40(p.27) )). (15.2.8)

By
ˇ̃M:1[P][A] let us define M̃:1[P][A] for F̌ ∈ F̌ corresponding to any F ∈ F . Then, for the same reason as for SOE{M̃:1[P][A]}

(see Table 7.4.1(p.41) (IV)) we can obtain

SOE{ ˇ̃M:1[P][A]} = {V1 = βb̌+ s, Vt = min{ ˇ̃K (Vt−1) + Vt−1, βVt−1}, t > 1}. (15.2.9)

15.3 List of Underline Functions of Type P and T̃ype P
The table below is the list of the four kinds of underline functions of Type P and T̃ype P (see Table 13.2.1(p.71) ).

Table 15.3.1: List of the underlying functions of Type P and T̃ype P

Type P T̃ype P

For any F ∈ F
For F̌ ∈ F̌

corresponding to any F ∈ F

T (x) = max
z

p(z)(z − x)

L (x) = βT (x)− s

K (x) = βT (x)− (1− β)x− s

L (x) = L (βa− s)

See Section 6.1.3(p.26)

Ť (x) = max
z

p̌(z)(z − x)

Ľ (x) = βŤ (x)− s

Ǩ (x) = βŤ (x)− (1− β)x− s

Ľ (x) = Ľ (βǎ− s)

See Section 15.1

T̃ (x) = min
z

p̃(z)(z − x)

L̃ (x) = βT̃ (x) + s

K̃ (x) = βT̃ (x)− (1− β)x+ s

L̃ (x) = L̃ (βb+ s)

See Section 6.1.4(p.26)

ˇ̃T (x) = min
z

ˇ̃p(z)(z − x)

ˇ̃L (x) = β ˇ̃T (x) + s

ˇ̃K (x) = β ˇ̃T (x)− (1− β)x+ s

ˇ̃L (x) = ˇ̃L (βb̌+ s)

See Section 15.2

15.4 Two Kinds of Replacements
15.4.1 Correspondence Replacement

Lemma 15.4.1 (CP) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, â⋆ = b̌⋆, b̂ = ǎ.

(c) T̂ (x) = ˇ̃T (x̂).

(d) L̂ (x) = ˇ̃L (x̂).

(e) K̂ (x) = ˇ̃K (x̂).

(f) L̂ (s) = ˇ̃L (s).
(g) x̂L = xˇ̃L .

(h) x̂K = xˇ̃K .

(i) sL = sˇ̃L .

(j) κ̂ = ˇ̃κ.

• Proof (a) The same as (13.1.8(p.69) ).

(The first and third equalities of (b)) The same as the first and third equalities of (13.1.9(p.69) ). The second equality will be
proven after the proof of (c).

(c) From (6.1.18(p.26) ) and (15.2.1 (2) (p.101) ), we obtain

p(z) = Pr{−ẑ ≤ −ξ̂} = Pr{ξ̂ ≤ ẑ} = ˇ̃p(ẑ), (15.4.1)

hence from (6.1.19(p.26) ) we have T (x) = maxz
ˇ̃p(ẑ)(−ẑ + x̂) = −minz

ˇ̃p(ẑ)(ẑ − x̂). Now, in general “minz = min−∞<z<∞ =
min−∞<−ẑ<∞ = min∞>ẑ>−∞ = min−∞<ẑ<∞ = minẑ”, hence we have T (x) = −minẑ

ˇ̃p(z)(ẑ − x̂). Then, without loss of
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generality, this can be rewritten as T (x) = −minz
ˇ̃p(z)(z − x̂). Accordingly, since T (x) = − ˇ̃T (x̂) from (15.2.1 (1) (p.101) ), we

obtain T̂ (x) = ˇ̃T (x̂).

(The second equality of (b)) From (6.1.26(p.26) ) we have a⋆ = inf{−x̂
∣∣ −T̂ (x) > −â + x̂} = − sup{x̂

∣∣ T̂ (x) < â − x̂} =

− sup{x̂
∣∣ ˇ̃T (x̂) < b̌− x̂} due to (c) and (b). Without loss of generality, this can be rewritten as a⋆ = − sup{x

∣∣ ˇ̃T (x) < b̌− x},
hence a⋆ = −b̌⋆ due to (15.2.7(p.102) ), so that â⋆ = b̌⋆.

(d) From (6.1.20(p.26) ) and (c) we have L (x) = −λβT̂ (x)−s = −λβ ˇ̃T (x̂)−s = − ˇ̃L (x̂) from (15.2.3(p.101) ), hence L̂ (x) = ˇ̃L (x̂).

(e) From (6.1.21(p.26) ) and (c) we have K (x) = −λβT̂ (x)+(1−β)x̂−s = −λβ ˇ̃T (x̂)+(1−β)x̂−s = − ˇ̃K (x̂) from (15.2.4(p.101) ),

hence K̂ (x) = ˇ̃K (x̂).

(f) From (6.1.22(p.26) ) we have L (s) = −L̂ (λβa − s) = − ˇ̃L ( ̂λβa− s) due to (d). Then, since L (s) = − ˇ̃L (−λβa + s) =

− ˇ̃L (λβâ+ s) = − ˇ̃L (λβb̌+ s) due to (b), we have L (s) = − ˇ̃L (s) from (15.2.5(p.101) ), hence L̂ (s) = ˇ̃L (s).

(g) Since L ( xL ) = 0 by definition, we have −L̂ ( xL ) = 0, i.e., L̂ ( xL ) = 0, hence ˇ̃L ( x̂L ) = 0 from (d), implying that
ˇ̃L (x) = 0 has the solution xˇ̃L = x̂L by definition.

(h) Since K (xK ) = 0 by definition, we have −K̂ (xK ) = 0, i.e., K̂ (xK ) = 0, hence ˇ̃K ( x̂K ) = 0 from (e), implying that
ˇ̃K (x) = 0 has the solution xˇ̃K = x̂K by definition.

(i) Since L (sL) = 0 by definition, we have −L̂ (sL) = 0, i.e., L̂ (sL) = 0, hence ˇ̃L (sL) = 0 from (f), implying that ˇ̃L (s) = 0
has the solution sˇ̃L = sL by definition.

(j) From (6.1.23(p.26) ) we have κ = −λβT̂ (0)− s = −λβ ˇ̃T (0̂)− s from (c), hence κ = −λβ ˇ̃T (0)− s = −ˇ̃κ from (15.2.6(p.101) ),
thus κ̂ = ˇ̃κ.

Definition 15.4.1 (correspondent replacement operation CP) Let us call the operation of replacing the left-hand side of each
equality in Lemma 15.4.1(p.102) by its right-hand side the correspondence replacement operation CP.

Lemma 15.4.2 (C̃P) The left side of each equality below is for any F ∈ F and its right side is for F̌ ∈ F̌ corresponding to
the F . Then:

(a) f(ξ) = f̌(ξ̂).

(b) â = b̌, b̂⋆ = ǎ⋆, b̂ = ǎ.

(c) ˆ̃T (x) = Ť (x̂).

(d) ˆ̃L (x) = Ľ (x̂).

(e) ˆ̃K (x) = Ǩ (x̂).

(f) ˆ̃L (s) = Ľ (s).
(g) x̂

L̃ = x̌L .

(h) x̂
K̃ = x̌K .

(i) sL̃ = sĽ .

(j) ˆ̃κ = κ̌.

• Proof (29.2.3) The same as (13.1.8(p.69) ).

(The first and third equalities of (b)) The same as the first and third equation of (13.1.9(p.69) ). The second equality will be
proven after the proof of (c).

(c) From (6.1.31(p.26) ) and (15.1.1 (2) (p.101) ) we obtain

p̃(z) = Pr{−ξ̂ ≤ −ẑ} = Pr{ξ̂ ≥ ẑ} = Pr{ẑ ≤ ξ̂} = p̌(ẑ), (15.4.2)

hence from (6.1.32(p.26) ) we have T̃ (x) = minz p̌(ẑ)(−ẑ + x̂) = −maxz p̌(ẑ)(ẑ − x̂). Now, in general “maxz = max−∞<z<∞ =
max−∞<−ẑ<∞ = max∞>ẑ>−∞ = max−∞<ẑ<∞ = maxẑ”, hence we have T̃ (x) = −maxẑ p̌(z)(ẑ − x̂). Then, without loss of
generality, this can be rewritten as T̃ (x) = −maxz p̌(z)(z − x̂). Accordingly, since T̃ (x) = −Ť (x̂) from (15.1.1 (1) (p.101) ), we

obtain ˆ̃T (x) = Ť (x̂).

(The second equality of (b)) From (6.1.39(p.27) ) we have b⋆ = sup{−x̂
∣∣ − ˆ̃T (x) < −b̂ + x̂} = − inf{x̂

∣∣ ˆ̃T (x) > b̂ − x̂} =
− inf{x̂

∣∣ Ť (x̂) > ǎ − x̂} due to (c) and (b). Without loss of generality, this can be rewritten as b⋆ = − inf{x
∣∣ Ť (x) > ǎ − x}

we have b⋆ = −ǎ⋆ due to (15.1.7(p.101) ) or equivalently −b⋆ = ǎ⋆, hence b̂⋆ = ǎ⋆.

(d) From (6.1.33(p.27) ) and (c) we have L̃ (x) = −λβ ˆ̃T (x)+s = −λβŤ (x̂)+s = −Ľ (x̂) from (15.1.3(p.101) ), hence ˆ̃L (x) = Ľ (x̂).

(e) From (6.1.34(p.27) ) and (c) we have K̃ (x) = −λβ ˆ̃T (x)+(1−β)x̂+s = −λβŤ (x̂)+(1−β)x̂+s = −Ǩ (x̂) from (15.1.4(p.101) ),

hence ˆ̃K (x) = Ǩ (x̂).

(f) From (6.1.35(p.27) ) we have L̃ (s) = − ˆ̃L (λβb + s), hence from (d) we obtain L̃ (s) = −Ľ ( ̂λβb+ s) = −Ľ (−λβb − s) =

−Ľ (λβb̂− s) = −Ľ (λβǎ− s) due to (b). Accordingly, from (15.1.5(p.101) ) we obtain L̃ (s) = −Ľ (s), hence ˆ̃L (s) = Ľ (s).

(g) Since L̃ ( xL̃ ) = 0 by definition, we have − ˆ̃L ( xL̃ ) = 0, i.e., ˆ̃L ( xL̃ ) = 0, hence Ľ ( x̂L̃ ) = 0 from (d), implying that
Ľ (x) = 0 has the solution xĽ = x̂

L̃ by definition.
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(h) Since K̃ ( xK̃ ) = 0 by definition, we have − ˆ̃K ( xK̃ ) = 0, i.e., ˆ̃K ( xK̃ ) = 0, hence Ǩ ( x̂K̃ ) = 0 from (e), implying that
Ǩ (x) = 0 has the solution xǨ = x̂

K̃ by definition.

(i) Since L̃ (sL̃) = 0 by definition, we have − ˆ̃L (sL̃) = 0, i.e., ˆ̃L (sL̃) = 0, hence Ľ (sL̃) = 0 from (f), implying that Ľ (s) = 0

has the solution sĽ = sL̃ by definition.

(j) From (6.1.36(p.27) ) we have κ̃ = −λβ ˆ̃T (0) + s, leading to κ̃ = −λβŤ (0̂) + s from (c), hence κ̃ = −λβŤ (0) + s = −κ̌ from
(15.1.6(p.101) ), thus ˆ̃κ = κ̌.

Remark 15.4.1 The equality µ̂ = µ̌ in Lemmas 13.3.1(p.72) (b) changes into respectively â⋆ = b̌⋆ in
Lemma 15.4.1(p.102) (b) and the equality µ̂ = µ̌ in (13.1.9(p.69) ) changes into b̂⋆ = ǎ⋆ in Lemma 15.4.2(p.103) (b).

The definition below is the same as Def. 13.3.3(p.73) .

Definition 15.4.2 (reflective element and non-reflective element) It should be noted that the left side of each of the equalities
in Lemmas 15.4.1(p.102) (i) and 15.4.2(p.103) (i) is respectively sL and sL̃ without the hat symbol “ ˆ”; in other words, sL and sL̃
are not subjected to the reflection. For the reason, let us refer to each of sL and sL̃ as the non-reflective element and to each
of all the other elements as the reflective element.

Definition 15.4.3 (correspondent replacement operation C̃P) Let us call the operation of replacing the left-hand side of each
equality in the above lemma by its right-hand side the correspondence replacement operation C̃P.

15.4.2 Identity Replacement

Lemma 15.4.3 (IP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F̌ ≡ F · · · [1∗].† Then:

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, b̌⋆ = b⋆, b̌ = b,

(c) ˇ̃T (x) = T̃ (x),

(d) ˇ̃L (x) = L̃ (x),

(e) ˇ̃K (x) = K̃ (x),

(f) ˇ̃L (s) = L̃ (s),
(g) xˇ̃L = x

L̃ ,

(h) xˇ̃K = x
K̃ ,

(i) sˇ̃L = sL̃ ,

(j) ˇ̃κ = κ̃.

• Proof (a) Clear from [1∗].

(the first and last equalities of (b)) Immediate from (a). The second equality will be proven after the proof of (c).

(c) From (15.2.1 (2) (p.101) ) we have ˇ̃p(z) = Pr{ξ̂ ≤ z} =
∫ z

−∞ f̌(ξ)dξ. Then, due to [3∗] we have ˇ̃p(z) =
∫ z

−∞ f(ξ)dξ = Pr{ξ ≤
z} = p̃(z) from (6.1.31(p.26) ). Hence, we have that ˇ̃T (x) given by (15.2.1 (1) (p.101) ) becomes ˇ̃T (x) = minz p̃(z)(z − x), which is

identical to T̃ (x) given by (6.1.32(p.26) ), i.e., ˇ̃T (x) = T̃ (x) for any x.

(the second equality of (b)) From (15.2.7(p.102) ) and (c) we have b̌⋆ = sup{x
∣∣ T̃ (x) < b̌ − x}, hence from (b) we get

b̌⋆ = sup{x
∣∣ T̃ (x) < b− x} = b⋆ due to (6.1.39(p.27) ).

(d,e) Noting (c), from (15.2.3(p.101) ) and (6.1.33(p.27) ) we have ˇ̃L (x) = L̃ (x). Similarly, from (15.2.4(p.101) ) and (6.1.34(p.27) ) we

have ˇ̃K (x) = K̃ (x).

(f) (15.2.5(p.101) ) becomes ˇ̃L (s) = ˇ̃L (λβb + s) due to (b). This can be rewritten as ˇ̃L (s) = L̃ (λβb + s) due to (d), which is

the same as L̃ (s) given by (6.1.35(p.27) ), i.e., ˇ̃L (s) = L̃ (s).

(g-i) Evident from (d-f).

(j) (15.2.6(p.101) ) becomes ˇ̃κ = λβT̃ (0) + s due to (c), which is the same as κ̃ given by (6.1.36(p.27) ).

Definition 15.4.4 (identity replacement operation IP) Let us call the operation of replacing the left-hand of each equality in
the above lemma by its right-hand the identity replacement operation IP.

Lemma 15.4.4 (ĨP) The left side of each equality below is for F̌ ∈ F̌ corresponding to any F ∈ F and the right side is for
F ∈ F where F ≡ F̌ · · · [1∗]. Then :

(a) F̌ (ξ) = F (ξ) · · · [2∗] and f̌(ξ) = f(ξ) · · · [3∗] for any ξ,

(b) ǎ = a, ǎ⋆ = a⋆, b̌ = b,

(c) Ť (x) = T (x),

(d) Ľ (x) = L (x),

†See Lemma 13.1.1(p.70) (b)
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(e) Ǩ (x) = K (x),
(f) Ľ (s) = L (s),
(g) xĽ = xL ,
(h) xǨ = xK ,
(i) sĽ = sL ,
(j) κ̌ = κ.

• Proof (a) Clear from [1∗].

(The first and last equalities of b)) Immediate form (a). The second equality will be proven after the proof of (c).

(c) From (15.1.1 (2) (p.101) ) we have p̌(z) = Pr{z ≤ ξ̂} =
∫∞
z

f̌(ξ)dξ. Then, due to [3∗] we have p̌(z) =
∫∞
z

f(ξ)dξ = Pr{z ≤
ξ} = p(z) from (6.1.18(p.26) ). Hence, we have that Ť (x) given by (15.1.1 (1) (p.101) ) becomes Ť (x) = maxz p(z)(z − x), which is
identical to T (x) given by (6.1.19(p.26) ), i.e., Ť (x) = T (x) for any x.

(the second equality of (b)) From (15.1.7 (1) (p.101) ) and (c) we have ǎ⋆ = inf{x
∣∣ T (x) > ǎ − x}, hence from (b) we get

ǎ⋆ = inf{x
∣∣ T (x) > a− x} = a⋆ due to (6.1.26(p.26) ). Thus, the second equality of (b) is true.

(d,e) Noting (c), from (15.1.3(p.101) ) and (6.1.20(p.26) ) we have Ľ (x) = L (x). Similarly, from (15.1.4(p.101) ) and (6.1.21(p.26) ) we
have Ǩ (x) = K (x).

(f) (15.1.5(p.101) ) becomes Ľ (s) = Ľ (λβa − s) due to (b). This can be rewritten as Ľ (s) = L (λβa − s) due to (d), which is
the same as L (s) given by (6.1.22(p.26) ), i.e., Ľ (s) = L (s).

(g-i) Evident from (d-f).

(j) (15.1.6(p.101) ) becomes κ̌ = λβT (0)− s due to (c), which is the same as κ given by (6.1.23(p.26) ).

Definition 15.4.5 (Identity replacement operation ĨP) Let us call the operation of replacing the left-hand of each equality in
the above lemma by its right-hand the identity replacement operation ĨP.

15.5 Scenario of Type P
15.5.1 Scenario[P]
This section provides the scenario deriving A {M̃:1[P][A]} (buying model with P-mechanism) from A {M:1[P][A]} (selling model
with P-mechanism), denoted by Scenario[P].

� Before moving on, here let us carry out a review of Scenario[R]. For convenience of reference, below let us copy the
transformation process of the attribute vectors (see (13.5.28(p.77) )) in Scenario[R].

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[R][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R]: R→ θ( â, µ̂, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (15.5.1)

Step 3[R]: Lemma 13.3.1(p.72) CR → θ( b̌, µ̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R]: Lemma 13.3.3(p.73) IR → θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[R][A]})

� From the above flow of the attribute vectors, we see that Scenario[P] is the same as Scenario[R] only except that

◦ a and µ in θ(A {M:1[R][A]}) is replaced a⋆ and a in θ(A {M:1[P][A]}) (see (14.2.1(p.93) )) and

◦ Lemmas 13.3.1(p.72) and 13.3.3(p.73) are changed into Lemmas 15.4.1(p.102) and 15.4.3(p.104) respectively.

Therefore the above flow of attribute vectors can be rewritten as follows.

Step 1[R]: θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P]: θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[P][A]}
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P]: R→ θ( â⋆, â, b̂, x̂L , x̂K , sL , κ̂, T̂ , L̂ , K̂ , L̂ , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (15.5.2)

Step 3[P]: Lemma 15.4.1(p.102) CP → θ( b̌⋆, b̌, ǎ, xˇ̃L , xˇ̃K , sˇ̃L , ˇ̃κ, ˇ̃T , ˇ̃L , ˇ̃K , ˇ̃L , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P]: Lemma 15.4.3(p.104) IP → θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[P][A]}

↓
Scenario[P]

Accordingly, it follows that the operation which transforms θ(A {M:1[P][A]}) into θ(A {M̃:1[P][A]}) can be eventually reduced
to the operation below:

S P→P̃
def
= IPCPR = { a⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

}.† (15.5.3)

†Compare the dash box with that in (13.5.29(p.77) ).
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� Thus, one sees that in Scenario[P] it suffices to change SR→R̃ = IRCRR(see (13.5.30(p.77) )) into S P→P̃ = IPCRP above.

� Moreover, from (III) and (IV) of Table 7.4.1(p.41) it can be easily seen that

SOE{M̃:1[P][A]} = S P→P̃[SOE{M:1[P][A]}]. (15.5.4)

From all the above discussions it follows that for quite the same reason as that for which Lemma 13.5.1(p.78) was derived we can
immediately obtain Lemma 15.5.1(p.106) below.

Lemma 15.5.1 Let ATom{M:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M̃:1[P][A]} holds on C ⟨ATom⟩ where

ATom{M̃:1[P][A]} = S P→P̃[ATom{M:1[P][A]}]. (15.5.5)

Finally, also for almost the same reason as that for which Theorem 13.5.1(p.80) is derived from Lemma 13.5.1(p.78) we have
Theorem 15.5.1(p.106) below.

Theorem 15.5.1 (symmetry theorem (P→ P̃)) Let A {M:1[P][A]} holds on P×F . Then A {M̃:1[P][A]} holds on P×F
where

A {M̃:1[P][A]} = S P→P̃[A {M:1[P][A]}]. (15.5.6)

In addition, we have (see (13.5.54(p.80) ))

θ(A {M̃:1[P][A]}) def
= S P→P̃[θ(A {M:1[P][A]})] (15.5.7)

= (b⋆, b, a, xL̃ , sL̃ , xK̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt). (15.5.8)

15.5.2 S̃cenario[P]
This section provides the inverse of Scenario[R], i.e., the scenario deriving A {M:1[P][A]} (selling model with P-mechanism) from
A {M̃:1[P][A]} (buying model with P-mechanism), denoted by S̃cenario[P].
� Before moving on, here let us carry out a review of S̃cenario[R]. For convenience of reference, below let us copy the
transformation process (see (13.8.20(p.86) )) of the attribute vectors in Scenario[R].

Step 1[R̃]: θ( b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[R][A]})
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[R̃]: R→ θ( b̂, µ̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (15.5.9)

Step 3[R̃]: Lemma 15.4.1(p.102) C̃R → θ( ǎ, µ̌, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[R̃]: Lemma 15.4.3(p.104) ĨR → θ( a, µ, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[R][A]})

� From the above we see that S̃cenario[P] is the same as S̃cenario[R] only except that

◦ b and µ in θ(A {M̃:1[R][A]}) is replaced b⋆ and b in θ(A {M̃:1[P][A]} and
◦ Lemmas 15.4.1(p.102) and 15.4.3(p.104) used there are changed into Lemmas 15.4.2(p.103) and 15.4.4(p.104) respectively.

Therefore the above flow of attribute vectors can be rewritten as follows.

Step 1[R̃]: θ( b, µ, b, xL , xK , sL , κ, T , L , K , L , Vt )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 1[P̃] θ( b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt ) = θ(A {M̃:1[P][A]}
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 2[P̃] R→ θ( b̂⋆, b̂, â, ˆ̃xL
, ˆ̃xK

, sL̃ , ˆ̃κ, ˆ̃T , ˆ̃L , ˆ̃K , ˆ̃L , V̂t )
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (15.5.10)

Step 3[P̃] Lemma 15.4.2(p.103) C̃P → θ( ǎ⋆, ǎ, b̌, xĽ , xǨ , sĽ , κ̌, Ť , Ľ , Ǩ , Ľ , V̂t )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Step 4[P̃] Lemma 15.4.4(p.104) ĨP → θ( a⋆, a, b, xL , xK , sL , κ, T , L , K , L , Vt ) = θ(A {M:1[P][A]}

↓
S̃cenario[P]

Accordingly it follows that the operation which transforms θ(A {M̃:1[P][A]}) into θ(A {M:1[P][A]}) can be eventually reduced
to the operation below:

S P̃→P
def
= ĨPC̃PR = { b⋆, b, a, xL̃ ,κ̃, xK̃ , sL̃ ,T , L ,K ,L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a⋆, a, b, xL ,κ, xK ,sL ,T̃ , L̃ ,K̃ ,L̃ , Vt

}. (15.5.11)
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� Thus, one sees that in S̃cenario[P] it suffices to change S P→P̃ = IPCPR(see (15.5.3(p.105) )) into SR→R̃ = IRCRP above.

� Moreover, from (III) and (IV) of Table 7.4.1(p.41) it can be easily seen that

SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}]. (15.5.12)

From all the above discussions it follows that for quite the same reason as that for which Lemma 13.8.1(p.87) was derived we can
immediately obtain Lemma 15.5.2(p.107) below.

Lemma 15.5.2 Let ATom{M̃:1[P][A]} holds on C ⟨ATom⟩. Then ATom{M:1[P][A]} holds on C ⟨ATom⟩ where

ATom{M:1[P][A]} = S P̃→P[ATom{M̃:1[P][A]}]. (15.5.13)

Finally, for the same reason as the one for which Theorem 13.8.1(p.87) is derived from Lemma 13.8.1(p.87) we have Theo-
rem 15.5.2(p.107) below.

Theorem 15.5.2 (symmetry theorem (P̃→ P)) Let A {M̃:1[P][A]} holds on P×F . Then A {M:1[P][A]} holds on P×F
where

A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}]. (15.5.14)

From (13.8.32(p.87) ) we have

θ(A {M:1[P][A]}) def
= S P̃→P[θ(A {M̃:1[P][A]})] (15.5.15)

= (a⋆, a, b, xL , sL , xK , κ, T , L ,K ,L , Vt). (15.5.16)
15.6 Derivation of A {T̃P , L̃P , K̃P , L̃P , κ̃P}
For the same reason as in Section 28.2.1(p.285) we see that applying S P→P̃ to A {TP , LP , KP ,LP , κP} given by Lemmas 14.2.1(p.93) –
14.2.6(p.97) yields A {T̃P , L̃P , K̃P , L̃P , κ̃P}.

Lemma 15.6.1 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,−∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x is strictly increasing on (−∞, b⋆].

(f) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).

(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞).

(i) T̃ (0) = b if b⋆ ≤ 0 and T̃ (0) = 0 if a > 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

(n) b⋆ > b.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.1(p.93) .

• Direct proof See Lemma A3.7(p.309) .

Applying S P→P̃ to (14.2.8(p.95) )-(14.2.13(p.95) ), we obtain the relations below:

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(15.6.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(15.6.2)

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(15.6.3)

K̃ (x) + x ≤ βx+ s on (−∞,∞). (15.6.4)

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(15.6.5)

K̃ ( xL̃ ) = −(1− β) xL̃ · · · (1), L̃ ( xK̃ ) = (1− β) xK̃ · · · (2). (15.6.6)

• Proof by analogy Immediate from applying S P→P̃ to (14.2.8(p.95) )-(14.2.13(p.95) ).

• Direct proof See (A 3.1(p.309) )-(A 3.6(p.310) ).
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Lemma 15.6.2 (A {L̃P })
(a) L̃ (x) is continuous on (−∞,∞).
(b) L̃ (x) is nonincreasing on (−∞,∞).
(c) L̃ (x) is strictly decreasing on [a,∞).
(d) Let s = 0. Then x

L̃ = a where x
L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.

(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.2(p.96) .

• Direct proof See Lemma A3.8(p.310) .

Corollary 15.6.1 (A {L̃P})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.
• Proof by analogy Immediate from applying S P→P̃ to Corollary 14.2.1(p.96) .

• Direct proof See Corollary A 3.2(p.310) .

Lemma 15.6.3 (A {K̃P })
(a) K̃ (x) is continuous on (−∞,∞).
(b) K̃ (x) is nonincreasing on (−∞,∞).
(c) K̃ (x) is strictly decreasing on [a,∞).
(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.
(e) K̃ (x) + x is nondecreasing on (−∞,∞).
(f) K̃ (x) + x is strictly increasing on (−∞, b⋆].
(g) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.
(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.
(i) Let β = 1 and s = 0. Then x

K̃ = a where x
K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (=>)) 0.
2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x

K̃ = (<) (λβb+ s)/δ.
3. Let κ̃ < (= (>)) 0. Then x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.3(p.96) .

• Direct proof See Lemma A3.9(p.310) .

Corollary 15.6.2 (A {K̃P})
(a) x

K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.
(b) x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.
• Proof by analogy Immediate from applying S P→P̃ to Corollary 14.2.2(p.96) .

• Direct proof See Corollary A 3.3(p.311) .

Lemma 15.6.4 (A {L̃P /K̃P })
(a) Let β = 1 and s = 0. Then x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .
(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇔ x

L̃ < (= (>)) x
K̃ ⇒ x

K̃ < (= (=)) 0.
(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇔ x

L̃ < (= (>)) x
K̃ ⇒ x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.4(p.97) .

• Direct proof See Lemma A3.10(p.311) .

Lemma 15.6.5 (A {L̃P })
(a) L̃ (s) is nondecreasing in s and strictly increasing in s if λβ < 1.
(b) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(c) Let λβb > a. Then there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.5(p.97) .

• Direct proof See Lemma A3.11(p.311) .

Lemma 15.6.6 (κ̃P) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.
(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0. Then x

K̃ < (= (>)) 0.

• Proof by analogy Immediate from applying S P→P̃ to Lemma 14.2.6(p.97) .

• Direct proof See Lemma A3.12(p.312) .
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15.7 Derivation of A {M̃:1[P][A]}
�� Tom 15.7.1 (A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 14.4.1(p.98) .

• Direct proof See Tom A4.5(p.317) .

�� Tom 15.7.2 (A {M̃:1[P][A]}) Let β < 0 or s > 0. Then, for a given starting time τ > 1:

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 14.4.2(p.98) .

• Direct proof See Tom A4.6(p.317) .

15.8 Optimal Price to Propose

Lemma 15.8.1 (ATom {M̃:1[P][A]}) The optimal price to propose zt is nonincreasing in t > 0.

• Proof Obvious from Tom’s 15.7.1(p.109) (a) and 15.7.2(p.109) (a) and from (7.2.50(p.32) ) and Lemma A3.3(p.306) .

15.9 Symmetry-Operation-Free
When no change occurs even if the symmetry operation is applied to a given assertion A, the assertion is said to be free from
the symmetry operation, called the symmetry-operation-free assertion.

Lemma 15.9.1 Even if the symmetry operation is applied to the symmetry-operation-free assertion, no change occurs.

• Proof Evident.
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Chapter 16

Analogy Theorem (R̃↔ P̃)

In this chapter we clarify the interrelationship between A {M̃:1[P][A]} (buying model with P-mechanism) and A {M:1[P][A]}
(selling model with P-mechanism).

16.1 Relationship between M̃:1[P][A] and M̃:1[R][A]
16.1.1 Assertion System A

First, note the three relations below:

◦ A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}] (← (13.5.53(p.80) )), (16.1.1)

• A {M:1[P][A]} = AR→P[A {M:1[R][A]}] (← (14.3.1(p.97) )), (16.1.2)

• A {M̃:1[P][A]} = SP→P̃[A {M:1[P][A]}] (← (15.5.6(p.106) )). (16.1.3)

Next, the inverses of the above relations were:

• A {M:1[R][A]} = S R̃→R[A {M̃:1[R][A]}] (← (13.8.31(p.87) )), (16.1.4)

◦ A {M:1[R][A]} = AP→R[A {M:1[P][A]}] (← (14.3.6(p.98) )), (16.1.5)

◦ A {M:1[P][A]} = S P̃→P[A {M̃:1[P][A]}] (← (15.5.14(p.107) )). (16.1.6)

Then, from • (16.1.3(p.111) ), • (16.1.2(p.111) ), and • (16.1.4(p.111) ) we obtain the relation below:

A {M̃:1[P][A]} = SP→P̃AR→P S R̃→R[A {M̃:1[R][A]}]. (16.1.7)

Finally, from ◦ (16.1.1(p.111) ), ◦ (16.1.5(p.111) ), and ◦ (16.1.6(p.111) ) we obtain the relation below:

A {M̃:1[R][A]} = SR→R̃AP→R S P̃→P[A {M̃:1[P][A]}]. (16.1.8)

16.1.2 System of Optimality Equations (SOE)

First, note the three relations below:

◦ SOE{M̃:1[R][A]} = SR→R̃[SOE{M:1[R][A]}] (← (13.5.34(p.77) )), (16.1.9)

• SOE{M:1[P][A]} = AR→P[SOE{M:1[R][A]}] (← (14.3.2(p.98) )), (16.1.10)

• SOE{M̃:1[P][A]} = SP→P̃[SOE{M:1[P][A]}] (← (15.5.4(p.106) )), (16.1.11)

Next, the inverses of the above relations were:

• SOE{M:1[R][A]} = S R̃→R[SOE{M̃:1[R][A]}] (← (13.8.25(p.87) )), (16.1.12)

◦ SOE{M:1[R][A]} = AP→R[SOE{M:1[P][A]}] (← (14.3.7(p.98) )), (16.1.13)

◦ SOE{M:1[P][A]} = S P̃→P[SOE{M̃:1[P][A]}] (← (15.5.12(p.107) )), (16.1.14)

Then, from • (16.1.11(p.111) ), • (16.1.10(p.111) ), and • (16.1.12(p.111) ) we obtain the relation below:

SOE{M̃:1[P][A]} = SP→P̃AR→P S R̃→R[SOE{M̃:1[R][A]}], (16.1.15)

Finally, from ◦ (16.1.9(p.111) ), ◦ (16.1.13(p.111) ), and ◦ (16.1.14(p.111) ) we obtain the relation below:

SOE{M̃:1[R][A]} = SR→R̃AP→R S P̃→P[SOE{M̃:1[P][A]}]. (16.1.16)
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16.1.3 Attribute Vector θ

First, note the three relations below:

◦ θ(A {M̃:1[R][A]}) = SR→R̃[θ(A {M:1[R][A]})] (← (13.5.54(p.80) )), (16.1.17)

• θ(A {M:1[P][A]}) = AR→P[θ(A {M:1[R][A]})] (← (14.3.3(p.98) )), (16.1.18)

• θ(A {M̃:1[P][A]}) = SP→P̃[θ(A {M:1[P][A]})] (← (15.5.7(p.106) )), (16.1.19)

Next, then the inverses of the above relations were:

• θ(A {M:1[R][A]}) = S R̃→R[θ(A {M̃:1[R][A]})] (← (13.8.32(p.87) )), (16.1.20)

◦ θ(A {M:1[R][A]}) = AP→R[θ(A {M:1[P][A]})] (← (14.3.8(p.98) )), (16.1.21)

◦ θ(A {M:1[P][A]}) = S P̃→P[θ(A {M̃:1[P][A]})] (← (15.5.15(p.107) )), (16.1.22)

Then, from • (16.1.19(p.112) ), • (16.1.18(p.112) ), and • (16.1.20(p.112) ) we obtain the relation below:

θ(A {M̃:1[P][A]}) = SP→P̃AR→P S R̃→R[θ(A {M̃:1[R][A]})] (16.1.23)

= (b⋆, b, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (15.5.8(p.106) )). (16.1.24)

Finally, from ◦ (16.1.17(p.112) ), ◦ (16.1.21(p.112) ), and ◦ (16.1.22(p.112) ) we obtain the relation below:

θ(A {M̃:1[R][A]}) = SR→R̃AP→R S P̃→P[θ(A {M̃:1[P][A]})] (16.1.25)

= (b, µ, a, xL̃ , xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt) (← (13.5.55(p.80) )). (16.1.26)

16.2 Symmetry Theorem (R̃↔ P̃)
Here let us define

A R̃→P̃
def
= SP→P̃AR→P S R̃→R, (16.2.1)

A P̃→R̃
def
= SR→R̃AP→R S P̃→P. (16.2.2)

Then (16.1.7(p.111) ) and (16.1.8(p.111) ) can be expresses as below.

A {M̃:1[P][A]} = A R̃→P̃[A {M̃:1[R][A]}], (16.2.3)

A {M̃:1[R][A]} = A P̃→R̃[A {M̃:1[P][A]}]. (16.2.4)

(16.2.3(p.112) ) implies that the following theorem holds.

Theorem 16.2.1 (analogy [R̃→ P̃]) Let A {M̃:1[R][A]} holds on P ×F . Then A {M̃:1[P][A]} holds on P ×F where

A {M̃:1[P][A]} def
= A R̃→P̃[A {M̃:1[R][A]}]. (16.2.5)

Similarly (16.2.4(p.112) ) implies that the following theorem (inverse of the above theorem) holds.

Theorem 16.2.2 (analogy [R̃→ P̃]) Let A {M̃:1[P][A]} holds on P ×F . Then A {M̃:1[R][A]} holds on P ×F where

A {M̃:1[R][A]} def
= A P̃→R̃[A {M̃:1[P][A]}]. (16.2.6)

Then (16.1.15(p.111) ) and (16.1.16(p.111) ) can be expresses as below.

SOE{M̃:1[P][A]} = A R̃→P̃[SOE{M̃:1[R][A]}], (16.2.7)

SOE{M̃:1[R][A]} = A P̃→R̃[SOE{M̃:1[P][A]}]. (16.2.8)

Similarly (16.1.23(p.112) ) and (16.1.25(p.112) ) can be expresses as below.

θ(M̃:1[P][A]) = A R̃→P̃[θ(M̃:1[R][A])], (16.2.9)

θ(M̃:1[R][A]) = A P̃→R̃[θ(M̃:1[P][A])]. (16.2.10)
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16.3 The Structure of A P̃→R̃
The operation A R̃→P̃ = SP→P̃AR→P S R̃→R given by (16.2.1(p.112) ) means that the three operations are applied in the order of
S R̃→R → AR→P → SP→P̃. Then, putting this flow in vertically, we have

S R̃→R
def
= { b, µ, a, x

L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (13.8.21(p.86) ))

a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(2)}
AR→P

def
= { a, µ · · ·(3)

↓ ↓ (← (14.2.1(p.93) ))

a⋆, a · · ·(4)}
SP→P̃

def
= { a

⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(5)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (15.5.3(p.105) ))

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(6)
}

The above flow can be interpreted as follows:

◦ First, let us focus attention on elements outside the dashbox . Then, we see that first (1)-row changes into (2)-row, next
(2)-row is identical to (5)-row, and finally (5)-row changes into (6)-row, which is identical to the original (1)-row. In other
words, (1)-row remains unchanged outside the dash-box even if these operations are applied.

◦ Next, let us focus attention on elements inside the dashbox . Then, we see that first (1)-row changes into (2)-row, next
(2)-row identical to (3)-row, which changes into (4)-row, then (4)-row is identical to (5)-row, and finally (5)-row changes
into (6)-row. In other words, b and µ in (1)-row change into respectively b⋆ and b in (6)-row through the applications of
these operations.

From the above we see that the above triple operations can be eventually reduced to the single operation

A R̃→P̃
def
= SP→P̃AR→PS R̃→R = { b, µ, a, xL̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt
} (16.3.1)

Removing the unchanged elements from the above A R̃→P̃, eventually we obtain

A R̃→P̃ = SP→P̃AR→PS R̃→R = {b→ b⋆, µ→ b}. (16.3.2)

Similarly, the operation A P̃→R̃ = SR→R̃AP→R S P̃→P given by (16.2.2(p.112) ) means that the three operations are applied in the
order of S P̃→P → AP→R → SR→R̃. Then, putting this flow in vertically, we have

S P̃→P
def
= { b

⋆, b, a, xL̃ ,xK̃ , sL̃ ,κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (15.5.11(p.106) ))

a⋆, a, b, xL ,xK ,sL ,κ, T , L ,K ,L , Vt · · ·(2)
}

AP→R
def
= { a⋆, a · · ·(3)

↓ ↓ (← (14.3.5(p.98) ))

a, µ · · ·(4)}
SR→R̃

def
= { a, µ, b, xL ,xK , sL ,κ, T , L ,K ,L , Vt · · ·(5)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (← (13.5.29(p.77) ))

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ ,K̃ ,L̃ , Vt · · ·(5)}

The above flow can be eventually reduced to as follows.

A P̃→R̃ = SR→R̃AP→R S P̃→P = {b⋆ → b, b→ µ}. (16.3.3)
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Chapter 17

Integrated-Theory

17.1 Integrated-Theory
� Let us here again recall Motive 2(p.3) “Does a general theory integrating quadruple-asset-trading-problems exist ?”, and this
motivation was put an end with a successful construction. The complete picture of the integrated-theory can be summarized
as follows:

⟨1⟩ A {TR} is proven (see Lemma 11.1.1(p.55) ).

⟨2⟩ A {LR , KR ,LR , κR} is proven (see Lemmas 11.2.1(p.57) – 11.3.1(p.59) ).

⟨3⟩ A {M:1[R][A]} is proven (see Tom’s 12.2.1(p.61) and 12.2.2(p.62) ).

⟨4⟩ A {M̃:1[R][A]} is derived (see Tom’s 13.7.1(p.83) and 13.7.2(p.84) ).

⟨5⟩ A {TP} is proven (see Lemma 14.2.1(p.93) ).

⟨6⟩ A {M:1[P][A]} is derived (see Tom’s 14.4.1(p.98) and 14.4.2(p.98) ).

⟨7⟩ A {M̃:1[P][A]} is derived (see Tom’s 15.7.1(p.109) and 15.7.2(p.109) ).

⟨8⟩ The analogous relation between A {M̃:1[P][A]} and A {M̃:1[R][A]} is shown (see Theorems 16.2.1(p.112) and 16.2.2(p.112) ).

� The above flow, ⟨1⟩ – ⟨8⟩, can be schematized as in Figure 17.1.1(p.115) below where the three shadow-boxes are directly
proven and the remaining four frame-boxes are all indirectly derived by applying SP→P̃, AR→P, and SR→R̃.

A {TR } - A {LR , KR ,LR , κR} - A {M:1[R][A]} -� A {M̃:1[R][A]}

?
6

?
6

?
6

A {TP } A {M:1[P][A]} -� A {M̃:1[P][A]}

⟨1⟩ Lemma 11.1.1(p.55) ⟨2⟩ Lemma 11.2.1(p.57) ⟨3⟩ Tom 12.2.1(p.61) ⟨4⟩ Tom 13.7.1(p.83)

⟨5⟩ Lemma 14.2.1(p.93) ⟨6⟩ Tom 14.4.1(p.98) ⟨7⟩ Tom 15.7.1(p.109)

⟨8⟩AR→P AP→R AR→P AP→R A R̃→P̃ A P̃→R̃

SR→R̃

S R̃→R

SP→P̃

S P̃→P

Figure 17.1.1: The whole flow of constructing the integrated-theory

� The interrelationship among the quadruple assertion systems within the dashbox of Figure 17.1.1(p.115) implies the following.
First, an assertion system of M:1[R][A] is defined as a core within the quadruple-asset-trading-models Q⟨M :1[A]⟩ and then proven
(see Chap. 12(p.61) ). Next, the assertion system for each of the remaining three models is derived by sequentially applying the

operations SR→R̃ and AR→P to the core assertion system (see Chaps. 13(p.69) and 14(p.89) ). Finally, A {M̃:1[P][A]} is derived so
as to become symmetrical to A {M:1[P][A]} by using SP→P̃ and A P̃→R̃ (see Chap. 15(p.101) and Chap. 16(p.111) ). Since it is proven
that any of these operations are reversible, even if any other assertion system within Q⟨M :1[A]⟩ is selected as a seed, the same
flow as the above can be depicted. Let us refer to the methodology which integrates the quadruple assertion systems in such
a fashion as stated above as the integrated-theory. In the conventional methodology, each of the quadruple assertion systems
must be separately defined and one by one proven. On the other hand, in our methodology based on the integrated-theory, the
number of assertion systems which are defined and proven is only one as a core. In Part 3 that follows we try to apply the
integrated-theory to all of the remaining five quadruple-asset-trading-models in Table 3.2.1(p.16) except for Q⟨M :1[A]⟩ the analysis
of which was already ended. After having finished reading Part 3, readers will realize that the integrated-theory provides a
strong tool for the treatment of asset trading problems.
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Chapter 18

Market Restriction

18.1 Preliminary
As seen from the whole discussions over Chaps. 11(p.55) to 16(p.111) , the integrated-theory is constructed under the premise that
prices ξ, whether reservation price or posted price, is defined on the total-DF-space (see (2.2.5(p.13) )), i.e.,

F = {F
∣∣ −∞ < a < µ < b <∞}. (18.1.1)

However, since the prices ξ in a usual market of the real world are positive, i.e., ξ ∈ (0,∞), the above premise, permitting a
negative price ξ ∈ (−∞, 0), must be said to be unrealistic. This chapter provides a methodology working through this problem.

18.2 Market Restriction
Throughout the remaining of this paper, we call the total-DF-space F the total market. Now let us refer to the restriction of
the total market F to a given subset

F ′ ⊆ F (18.2.1)

as the market restriction of F to F ′ and to the F ′ as the restricted market. Throughout this paper let us consider the following
three kinds of restricted markets:

F+ def
= {F

∣∣ 0 < a < b} (positive market), (18.2.2)

F± def
= {F

∣∣ a ≤ 0 ≤ b} (mixed market), (18.2.3)

F− def
= {F

∣∣ a < b < 0} (negative market) (18.2.4)

where clearly

F = F+ ∪F± ∪F−. (18.2.5)

w
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Figure 18.2.1: Three kinds of markets

Definition 18.2.1 In the present paper, let us represent the restriction of F to the above three restricted markets by the
same symbols F+, F±, and F− above, called the positive market restriction F+, the mixed market restriction F±, and the
negative market restriction F− respectively. See Section A7.5(p.326) for an interesting economic implication brought about by
the three market restrictions.

18.3 Market Restricted Models
Throughout the rest of this paper, let us denote the models defined on the restricted markets F+, F±, and F− by Model+,
Model±, and Model− respectively, called the market restricted models. For x = 1, 2, 3 and X = A, E let us define:

Q⟨M :x[X]+⟩ def
= {M:x[R][X]+, M̃:x[R][X]+,M:x[P][X]+, M̃:x[P][X]+}, (18.3.1)

Q⟨M :x[X]±⟩ def
= {M:x[R][X]±, M̃:x[R][X]±,M:x[P][X]±, M̃:x[P][X]±}, (18.3.2)

Q⟨M :x[X]−⟩ def
= {M:x[R][X]−, M̃:x[R][X]−,M:x[P][X]−, M̃:x[P][X]−}. (18.3.3)
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18.4 Inequalities Resulting From Market Restriction
The lemma below will be used to examine what occurs when the operation of market restriction is applied to results derived
by using the integrated-theory constructed on the total market F .

Lemma 18.4.1 (positive market F+) Suppose 0 < a. Then we have:

[1]
[ref.8078]

0 < a < µ < b. Proof: Evident from (2.2.2(p.12) ).

[2]
[ref.9343]

βb ≤ b for 0 < β ≤ 1. Proof: Immediate from 0 < βb ≤ b with β = 1.

[3]
[ref.7865]

βµ < b for 0 < β ≤ 1. Proof: Immediate from 0 < βµ < b with β = 1.

[4]
[ref.8369]

βa < b for 0 < β ≤ 1. Proof: Immediate from 0 < βa < b with β = 1.

[5]
[ref.9483]

a < βµ and βµ ≤ a are both possible. Proof: Since 0 < a < βµ with β = 1, the former is possible for a β sufficiently close to β = 1

and the latter is possible for any sufficiently small β > 0.

[6]
[ref.6867]

a < βb and βb ≤ a are both possible. Proof: Since 0 < a < βb with β = 1, the former is possible for a β sufficiently close to β = 1

and the latter is possible for any sufficiently small β > 0.

[7]
[ref.6296]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 < βb < b⋆ with β = 1 due to Lemma 15.6.1(p.107) (n).

Lemma 18.4.2 (mixed market F±) Suppose a ≤ 0 ≤ b. Then we have:

[8]
[ref.8062]

a < βµ < b for 0 < β ≤ 1. Proof: Let µ = 0. Then a < µ = βµ = 0 < b for 0 < β ≤ 1. Let µ ̸= 0. If a < µ < 0, then

a < βµ < 0 ≤ b with β = 1, hence a < βµ < 0 ≤ b for 0 < β ≤ 1 and if 0 < µ < b, then a ≤ 0 < βµ < b with β = 1, hence a ≤ 0 < βµ < b

for 0 < β ≤ 1. Accordingly, whether a < µ < 0 or 0 < µ < b, we have a < βµ < b for 0 < β ≤ 1. Thus, whether µ = 0 or µ ̸= 0, it follows

that a < βµ < b for 0 < β ≤ 1.

[9]
[ref.6907]

βa < b for 0 < β ≤ 1. Proof: Let β = 1. Then βa = a < b. Let β < 1. If a = 0, then βa = a = 0 < b and if a < 0, then βa < 0 ≤ b,

hence βa < b whether a = 0 or a < 0. Thus, whether β = 1 or β < 1 (i.e., 0 < β ≤ 1) it follows that we have βa < b.

[10 ]
[ref.6892]

a < βb for 0 < β ≤ 1. Proof: If b > 0, then a ≤ 0 < b = βb with β = 1, hence a ≤ 0 < βb for 0 < β ≤ 1. If b = 0, then

a < b = βb = 0 for 0 < β ≤ 1. Therefore, whether b > 0 or b = 0, we have a < βb for 0 < β ≤ 1.

[11 ]
[ref.6896]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < βa ≤ 0 with β = 1 due to Lemma 14.2.1(p.93) (n).

[12 ]
[ref.6298]

βb < b⋆ for 0 < β ≤ 1. Proof: Immediate from 0 ≤ βb < b⋆ with β = 1 due to Lemma 15.6.1(p.107) (n).

Lemma 18.4.3 (negative market F−) Suppose b < 0. Then we have:

[13 ]
[ref.7486]

a < µ < b < 0. Proof: Evident from (2.2.2(p.12) ).

[14 ]
[ref.6118]

a ≤ βa for 0 < β ≤ 1. Proof: Immediate from a ≤ βa < 0 with β = 1.

[15 ]
[ref.8068]

a < βµ for 0 < β ≤ 1. Proof: Immediate from a < βµ < 0 with β = 1.

[16 ]
[ref.7482]

a < βb for 0 < β ≤ 1. Proof: Immediate from a < βb < 0 with β = 1.

[17 ]
[ref.7478]

βµ < b and b ≤ βµ are both possible. Proof: Since βµ < b < 0 with β = 1, the former is true for a β sufficiently close to β = 1

and the latter is true for a sufficiently small β > 0.

[18 ]
[ref.8296]

βa < b and b ≤ βa are both possible. Proof: Since βa < b < 0 with β = 1, the former is possible for a β sufficiently close to

β = 1 and the latter is possible for a sufficiently small β > 0.

[19 ]
[ref.6919]

a⋆ < βa for 0 < β ≤ 1. Proof: Immediate from a⋆ < βa < 0 with β = 1 due to Lemma 14.2.1(p.93) (n).

Definition 18.4.1 (market-restriction-free-assertion) When no change occurs even if a market restriction is applied to a given
assertion, the assertion is said to be free from the market restriction, called the market-restriction-free assertion.

Lemma 18.4.4 Even if a market restriction is applied to a market-restriction-free assertion, no change occurs.

• Proof Evident.

18.5 Market Restriction

18.5.1 A {M:1[R][A]}
18.5.1.1 Positive Restriction

� Pom 18.5.1 (A {M:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N. → → ⃝⃝s

• Proof The same as Tom 12.2.1(p.61) due to Lemma 18.4.4(p.118) .
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� Pom 18.5.2 (A {M:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N,

3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N (see Numerical Example 1(p.126) ).

ii. Let s ≥ βµ. Then • dOITdτ>1⟨1⟩ ∥ (see Numerical Example 2(p.126) ).

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Let β < 1 or s > 0. Then κ = βµ− s · · · ((2)) from
Lemma 11.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 12.2.2(p.62) (a).

(b,c) Always βµ < b due to [3(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 12.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 12.2.2(p.62) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s. Then, since κ > 0 due to (2) , it suffices to consider only (c2i) of Tom 12.2.2(p.62) .

(c3ii) Let βµ ≤ s. Then, since κ ≤ 0 due to (2) and since βµ − s ≤ 0 < a, it suffices to consider only (c2ii1,c2iii1) of
Tom 12.2.2(p.62) .

18.5.1.2 Mixed Restriction

� Mim 18.5.1 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 12.2.1(p.61) due to Lemma 18.4.4(p.118) .

� Mim 18.5.2 (A {M:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a and sL > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 12.2.2(p.62) (a).

(b,c) Always βµ < b due to [8(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 12.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 12.2.2(p.62) and if b = 0, then since always
βµ− s = βµ > a due to [8] , it suffices to consider only (c2ii2) of Tom 12.2.2(p.62) . Therefore, whether b > 0 or b = 0, we have the
same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 12.2.2(p.62) (c2i-c2iii2) with κ = βT (0)− s from
(6.1.7(p.25) ) with λ = 1.
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18.5.1.3 Negative Restriction

� Nem 18.5.1 (A {M:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 12.2.1(p.61) due to Lemma 18.4.4(p.118) .

� Nem 18.5.2 (A {M:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.61) ⃝s N } ∥ is true.

3. Let β < 1 and s > 0.
i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let βµ− s > a and sL > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof Suppose b < 0 · · · ((1)). Let β < 1 or s > 0. Then, we have κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a). Moreover, in

this case, both βµ ≥ b and βµ < b are possible due to [17(p.118)] .

(a,b) The same as Tom 12.2.2(p.62) (a,b).

(c) Let βµ < b. Then sL > 0 · · · ((3)) from Lemma 11.2.4(p.59) (c).

(c1) Let β = 1, hence s > 0 due to the assumption β < 1 or s > 0.

(c1i,c1ii) The same as Tom 12.2.2(p.62) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii1,c2iii2) of Tom 12.2.2(p.62) . Since βµ−s = βµ > a
due to [15(p.118)] and since s = 0 < sL due to (3) , we have Tom 12.2.2(p.62) (c2iii2).

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 12.2.2(p.62) .

18.5.2 A {M̃:1[R][A]}

18.5.2.1 Positive Restriction

� Pom 18.5.3 (A {M̃:1[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 13.7.1(p.83) due to Lemma 18.4.4(p.118) .

� Pom 18.5.4 (A {M̃:1[R][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.
(c) Let βµ > a.

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.
ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.61) ⃝s N } ∥ is true.
3. Let β < 1 and s > 0.†

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.
ii. Let βµ+ s < b and sL̃ > s. Then S1(p.61) ⃝s N } ∥ is true (see

Numerical Example 3(p.127) ).

• Proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a). Here note that µβ ≤ a and µβ > a are both

possible due to [5(p.118)] .

(a,b) The same as Tom 13.7.2(p.84) (a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 13.6.5(p.83) (c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have
Tom 13.7.2(p.84) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.118)] and since sL̃ > 0 = s from (3) , due to (1) it
suffices to consider only (c2iii2) of Tom 13.7.2(p.84) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 13.7.2(p.84) .
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18.5.2.2 Mixed Restriction

� Mim 18.5.3 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 13.7.1(p.83) due to Lemma 18.4.4(p.118) .

� Mim 18.5.4 (A {M̃:1[R][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > −βT̃ (0).
1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S1(p.61) ⃝s N } ∥ is true.

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 13.7.2(p.84) (a).

(b,c) Always βµ > a due to [8(p.118)] , hence βµ ≤ a is impossible. Hence sL̃ > 0 · · · ((1)) due to Lemma 13.6.5(p.83) (c).

(c1-c1ii) The same as Tom 13.7.2(p.84) (c1-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 13.7.2(p.84) . Let a = 0. Then
βµ + s = βµ < b due to [8(p.118)] , hence it suffices to consider only (c2ii2) of Tom 13.7.2(p.84) . Accordingly, whether a < 0 or
a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 13.7.2(p.84) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(6.1.16(p.25) ).

18.5.2.3 Negative Restriction

� Nem 18.5.3 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 13.7.1(p.83) due to Lemma 18.4.4(p.118) .

� Nem 18.5.4 (ATom {M̃:1[R][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).

(c) Let βµ > a (always holds).

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ ∥.

• Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 13.6.6(p.83) (a).

(a) The same as Tom 13.7.2(p.84) (a).

(b,c) Always a < βµ due to [15(p.118)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 13.7.2(p.84) (c1-c1ii).
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(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 13.7.2(p.84) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Hence, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 13.7.2(p.84) .

(c3ii) Let βµ ≥ −s, hence βµ+ s ≥ 0. Let βµ+ s = 0. Then, since κ̃ = 0 due to (3) and βµ+ s > b due to (2) , it suffices
to consider only (c2iii1) of Tom 13.7.2(p.84) . Let βµ + s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider only (c2iii) of
Tom 13.7.2(p.84) . Then, since βµ+ s > 0 > b due to (1) , it suffices to consider only (c2ii1) of Tom 13.7.2(p.84) . Accordingly, whether
βµ+ s = 0 or βµ+ s > 0, we have the same result.

18.5.3 A {M:1[P][A]}

18.5.3.1 Positive Restriction

� Pom 18.5.5 (A {M:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 14.4.1(p.98) due to Lemma 18.4.4(p.118) .

� Pom 18.5.6 (A {M:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 14.4.2(p.98) (a).

(b,c) Always βa < b due to [4(p.118)] , hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 14.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 14.4.2(p.98) .

(c3-c3iii2) Immediate from Tom 14.4.2(p.98) (c2-c2iii2) with κ = βT (0)− s from
(6.1.23(p.26) ) with λ = 1.

18.5.3.2 Mixed Restriction

� Mim 18.5.5 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 14.4.1(p.98) due to Lemma 18.4.4(p.118) .

� Mim 18.5.6 (A {M:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.
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i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 14.4.2(p.98) (a).

(b,c) Always βa < b due to [9(p.118)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 14.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 14.4.2(p.98) (c2i) and if b = 0, then βa− s = βa > a⋆ from
[11(p.118)] , hence the assertion become true from Tom 14.4.2(p.98) (c2ii2). Accordingly, whether b > 0 or b = 0, we have the same
result.

(c3-c3iii2) The same as Tom 14.4.2(p.98) (c2i-c2iii2) with κ = βT (0)− s from
(6.1.23(p.26) )) with λ = 1.

18.5.3.3 Negative Restriction

� Nem 18.5.5 (A {M:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof Immediate from Tom 14.4.1(p.98) due to Lemma 18.4.4(p.118) .

� Nem 18.5.6 (A {M:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.61) ⃝s N } ∥ .

3. Let β < 1 and s > 0.

i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let βa− s > a⋆ and sL > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Suppose b < 0 · · · ((1)), hence κ = κP = −s · · · ((2)) from Lemma 14.2.6(p.97) (a). Then, both βa ≥ b and βa < b are

possible due to [18(p.118)] . If βa < b, then sL > 0 · · · ((3)) due to Lemma 14.2.5(p.97) (c) with λ = 1.

(a) The same as Tom 14.4.2(p.98) (a).

(b) Let βa ≥ b. Then, the assertion is true Tom 14.4.2(p.98) (b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 14.4.2(p.98) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 14.4.2(p.98) . In addition, since
βa− s = βa > a⋆ due to [19(p.118)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 14.4.2(p.98) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ < 0 from (2) , it suffices to consider only (c2iii) of Tom 14.4.2(p.98) .

18.5.4 A {M̃:1[P][A]}
18.5.4.1 Positive Restriction

� Pom 18.5.7 (A {M̃:1[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 15.7.1(p.109) due to Lemma 18.4.4(p.118) .

� Pom 18.5.8 (A {M̃:1[P][A]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.
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(b) Let βb ≤ a. Then • dOITdτ ⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥ →
ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then S1(p.61) ⃝s N } ∥ .

3. Let β < 1 and s > 0.

i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

ii. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a). In this case, βb ≤ a and βb > a are both

possible due to [6(p.118)] , and if βb > a, then sL̃ > 0 · · · ((3)) due to Lemma 15.6.5(p.108) (c) with λ = 1. In addition, we have

(a,b) The same as Tom 15.7.2(p.109) (a,b).

(c) Let βb > a.

(c1-c1ii)

The same as Tom 15.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii) of Tom 15.7.2(p.109) . In this case, since
βb+ s = βb < b⋆ due to [7(p.118)] and since sL > 0 = s due to (3) , it suffices to consider only (c2iii2) of Tom 15.7.2(p.109) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only (c2iii-c2iii2) of Tom 15.7.2(p.109) .

18.5.4.2 Mixed Restriction

� Mim 18.5.7 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 15.7.1(p.109) due to Lemma 15.7.1(p.109) .

� Mim 18.5.8 (A {M̃:1[P][A]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let s > −βT̃ (0).
1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 15.7.2(p.109) (a).

(b,c) Always βb > a due to [10(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 15.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 15.7.2(p.109) . Let a < 0. Then, the assertion is
true from Tom 15.7.2(p.109) (c2i). Let a = 0. Then, since βb+ s = βb < b⋆ due to [12(p.118)] , it suffices to consider only (c2ii2) of
Tom 15.7.2(p.109) . Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 15.7.2(p.109) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(6.1.36(p.27) ) with λ = 1.
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18.5.4.3 Negative Restriction

� Nem 18.5.7 (A {M̃:1[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

• Proof The same as Tom 15.7.1(p.109) due to Lemma 18.4.4(p.118) .

� Nem 18.5.8 (A {M̃:1[P][A]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

ii. Let s = −βT̃ (0).
1. Let βb+ s ≥ b⋆. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ⟩ N where CONDUCTτ≥t>1N.

iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ ⟨1⟩ ∥.

2. Let βb+ s < b⋆ and sL̃ > s. Then S1(p.61) ⃝s N } ∥ .

• Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 15.7.2(p.109) (a).

(b,c) Always βb > a due to [16(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 15.7.2(p.109) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 15.7.2(p.109) .

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 15.7.2(p.109) (c2-c2iii2) with κ̃ = βT̃ (0)+s from (6.1.36(p.27) )
with λ = 1.
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18.6 Numerical Example

Numerical Example 1 (A {M:1[R][A]}+ (selling model)

This is the example for ⃝s dOITsτ>1⟨τ⟩ N in Pom 18.5.2(p.119) (c3i) with a = 0.01, b = 1.00, β = 0.98, and s = 0.05.† Then,

we have xK = 0.6436 (see Section A6(p.321) ). Figure 18.6.1(p.126) below is the graphs of Itτ = βτ−tVt for τ = 2, 3, · · · , 15
and t = 1, 2, · · · , τ (see (8.2.3(p.44) )). For example, the two points on the line of τ = 2 are given by V2 = 0.538513 ( • ) and
βV1 = 0.98 × 0.444900 = 0.436002 ( � ) , hence V2 > βV1. Similarly, the three points on the polygonal curve of τ = 3 are
given by V3 = 0.583152 ( • ), βV2 = 0.98 × 0.538513 = 0.52774274 ( � ), and β2V1 = 0.982 × 0.4449 = 0.42728196 ( � ), hence
V3 > βV2 > β2V1. Then, the value of t on the horizontal line corresponding to the bullet • provides the optimal initiating time
t∗τ for each of τ = 2, 3, · · · , 15, i.e., OITτ ⟨t∗τ ⟩, so we have t∗2 = 2, t∗3 = 3, · · · , t∗15 = 15 (see t∗τ - column of the table below). This
result means ⃝s dOITsτ>1⟨τ⟩ N for τ = 2, 3, · · · , 15. Since Vt − βVt > 0 for t = 2, 3, · · · , 15 (see values of Vt − βVt - column in
the table below), we have L(Vt−1) > 0 from (12.1.1(p.61) ), meaning Conduct15≥t>1N from (12.1.5(p.61) ), i.e., it is strictly optimal
to conduct the search on 15 ≥ t > 1.
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t∗12 = 12

Vt − βVt−1, t∗τ (OIT)[006(1)Data.DAT]

t Vτ Vt − βVt−1 t∗τ decision

0
1 0.444900
2 0.538513 +0.102511 2 ConductN
3 0.583152 +0.055409 3 ConductN
4 0.607492 +0.036003 4 ConductN
5 0.621595 +0.026252 5 ConductN
6 0.630035 +0.020871 6 ConductN
7 0.635180 +0.017745 7 ConductN
8 0.638351 +0.015874 8 ConductN
9 0.640318 +0.014734 9 ConductN
10 0.641544 +0.014032 10 ConductN
11 0.642309 +0.013596 11 ConductN
12 0.642788 +0.013325 12 ConductN
13 0.643088 +0.013155 13 ConductN
14 0.643276 +0.013049 14 ConductN
15 0.643393 +0.012983 15 ConductN

[TAB7473x]

Figure 18.6.1: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

Numerical Example 2 (A {M:1[R][A]}+ (selling model)

This is the example for • dOITdτ>1⟨1⟩ ∥ in Pom 18.5.2(p.119) (c3ii) with a = 0.01, b = 1.00, β = 0.98, and s = 0.50† The bullet
• in each of the 14 horizontal straight lines in Figure 18.6.2(p.126) below shows that the optimal initiating time t∗τ degenerates
to time 1 (i.e., t∗τ = 1 for τ = 2, 3, · · · , 15) under Preference Rule 8.2.1(p.45) , i.e., • dOITdτ=2,3,··· ,15⟨1⟩ ∥. The result comes
from the fact of Vt − βVt = 0 for t = 2, 3, · · · , 15 with t = 2, 3, · · · , 15 (see Vt − βVt−1 - column in the table below), leading to

Vτ = βVτ−1 = · · · = βτ−1V1 for τ = 2, 3, · · · , 15, i.e., Iττ = Iτ−1
τ = · · · = I1τ for τ = 2, 3, · · · , 15.
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Vt − βVt−1 [006(2)Data.DAT]

t Vt Vt − βVt−1 t∗τ St
0
1 −0.005100
2 −0.004998 0.000000 1 −0.00010200
3 −0.004898 0.000000 1 −0.00021960
4 −0.004800 0.000000 1 −0.00029996
5 −0.004704 0.000000 1 −0.00039600
6 −0.004610 0.000000 1 −0.00049008
7 −0.004517 0.000000 1 −0.00058220
8 −0.004427 0.000000 1 −0.00067334
9 −0.004338 0.000000 1 −0.00076154
10 −0.004252 0.000000 1 −0.00084876
11 −0.004167 0.000000 1 −0.00093304
12 −0.004083 0.000000 1 −0.00101634
13 −0.004002 0.000000 1 −0.00109866
14 −0.003922 0.000000 1 −0.00117804
15 −0.003843 0.000000 1 −0.00125644
[TAB7407x]

Figure 18.6.2: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1) where • represents OIT

Note here that numbers in Vt-column are all negative, meaning that tackling the asset selling problem makes no profits (red ink).
Accordingly, if this is of tE-case (see H1(p.7) (a)), you must resign to the red ink and if it is of tA-case (see H1(p.7) (b)), it suffices
to pass over the problem without tackling the selling problem itself. Since 0.5× (a+ b) = 0.505 and since Vt < 0 < 0.01 = a for
t = 1, 2, · · · , 15 (see Vt-column of the above table), from (A7.2 (1) (p.323) ) we have T (Vt) = 0.505− Vt for t = 1, 2, · · · , 15, hence
we have:

T (V1) = 0.505 − (−0.005100) = 0.510100, T (V6) = 0.505 − (−0.004610) = 0.509610, T (V11) = 0.505 − (−0.004167) = 0.509167,

T (V2) = 0.505 − (−0.004998) = 0.509998, T (V7) = 0.505 − (−0.004517) = 0.509517, T (V12) = 0.505 − (−0.004083) = 0.509083,

†Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01 + 1.00)/2 = 0.505, we have βµ = 0.98 × 0.505 = 0.4949 >
0.05 = s. Thus, the condition of this assertion is satisfied.

†Note that a = 0.01 > 0, β = 0.98 < 1, and s = 0.50 > 0. In addition, since µ = (0.01+ 1.00)/2 = 0.505, we have βµ = 0.98× 0.505 = 0.4949 <
0.50 = s. Thus, the condition of the assertion is satisfied.
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T (V3) = 0.505 − (−0.004898) = 0.509898, T (V8) = 0.505 − (−0.004427) = 0.509427, T (V13) = 0.505 − (−0.004002) = 0.509002,

T (V4) = 0.505 − (−0.004800) = 0.509800, T (V9) = 0.505 − (−0.004338) = 0.509338, T (V14) = 0.505 − (−0.003922) = 0.508922,

T (V5) = 0.505 − (−0.004704) = 0.509704, T (V10) = 0.505 − (−0.004252) = 0.509252, T (V15) = 0.505 − (−0.003843) = 0.508843.

Since St = 0.98× T (Vt−1)− 0.5 from (7.2.13(p.30) ), we get

S2 = 0.98 × 0.510100 − 0.5 = −0.00010200, S7 = 0.98 × 0.509610 − 0.5 = −0.00058220, S12 = 0.98 × 0.509167 − 0.5 = −0.00101634,

S3 = 0.98 × 0.509998 − 0.5 = −0.00021960, S8 = 0.98 × 0.509517 − 0.5 = −0.00067334, S13 = 0.98 × 0.509083 − 0.5 = −0.00109866,

S4 = 0.98 × 0.509898 − 0.5 = −0.00029996, S9 = 0.98 × 0.509427 − 0.5 = −0.00076154, S14 = 0.98 × 0.509002 − 0.5 = −0.00117804,

S5 = 0.98 × 0.509800 − 0.5 = −0.00039600, S10 = 0.98 × 0.509338 − 0.5 = −0.00084876, S15 = 0.98 × 0.508922 − 0.5 = −0.00125644,

S6 = 0.98 × 0.509704 − 0.5 = −0.00049008, S11 = 0.98 × 0.509252 − 0.5 = −0.00093304.

From the results of the above numerical calculation we have St < 0 for 15 ≥ t > 1, hence it is strictly optimal to skip the
search over 15 ≥ t > 1 due to (7.2.9(p.30) ), i.e., SkipN. However, since Vt − βVt−1 = 0 for 15 ≥ t > 1 (see (Vt − βVt−1)-column
in the above table), we have V15 = βV14 = · · · = β14V1, i.e., the profit attained are indifferent over 15 ≥ t > 0. This is not a
contradiction, which is a false feeling caused by confusion from the jumble of intuition and theory (see Alice 1(p.44) ).

Numerical Example 3 (A {M̃:1[R][A]+} (buying model)

This is the numerical example for } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ in S1(p.61) ⃝s N } ∥ of Pom 18.5.4(p.120) (c3ii) with a = 0.01, b = 1.00,

β = 0.98, and s = 0.05.† Then, we have sL̃ = 0.323274 (see Section A6(p.321) ). Hence, the optimal initiating time t∗τ is given
by t attaining minτ≥t>0 I

t
τ (see (8.2.4(p.44) )).‡ The bullet • in Figure 18.6.3(p.127) below shows the optimal initiating time for

each of τ = 2, 3, · · · , 15 (see t∗τ - column in the table below). From the figure and table we see that t∗τ = τ for τ = 2, 3, · · · , 7,
i.e., ⃝s dOITs7≥τ>1⟨τ⟩ N (see S1(p.61) (1)) and that t∗τ = 7 for τ = 8, 9, · · · , 15, i.e., } ndOITτ>7⟨7⟩ ∥ (see S1(p.61) (2)). In the

numerical example, note the fact that S̃ = L̃ (Vτ−1) are all negative (< 0 (−), i.e., SkipN) for t = 2, 3, · · · , 7 and positive
(> 0 (+), i.e., ConductN) for t = 8, 9, · · · , 15. Moreover, note that we have Vt − βVt−1 = 0 or equivalently Vt = βVt−1

for t = 8, 9, · · · , 15 and Vt − βVt−1 < 0 or equivalently Vt < βVt−1 for t = 2, 3, · · · , 7 (see Vt − βVt−1-column), hence
V15 = βV14 = β2V13 = · · · = β8V7 < β9V6 < β10V5 < · · · < β14V1 (see β15−tVt-column), so we have } ndOITτ>7⟨7⟩ ∥.
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t β15−t Vt Vt − βVt−1 β15−tVt t∗τ S̃t = L̃ (Vt−1) decision

0
1 0.753641 0.544900 0.410658
2 0.769022 0.442388 −0.091614 0.340206 2 −0.091614 ConductN
3 0.784716 0.391004 −0.042535 0.306827 3 −0.042535 ConductN
4 0.800731 0.361335 −0.021849 0.289332 4 −0.021849 ConductN
5 0.817072 0.343013 −0.011094 0.280266 5 −0.011094 ConductN
6 0.833747 0.331264 −0.004889 0.276190 6 −0.004889 ConductN
7 0.850763 0.323555 −0.001084 0.275268 7 −0.001084 ConductN
8 0.868125 0.317084 0.000000 0.275268 7 +0.001338 SkipN
9 0.885842 0.310742 0.000000 0.275268 7 +0.003326 SkipN
10 0.903920 0.304527 0.000000 0.275268 7 +0.005233 SkipN
11 0.922368 0.298437 0.000000 0.275268 7 +0.007064 SkipN
12 0.941192 0.292468 0.000000 0.275268 7 +0.008822 SkipN
13 0.960400 0.286618 0.000000 0.275267 7 +0.010508 SkipN
14 0.980000 0.280886 0.000000 0.275268 7 +0.012127 SkipN
15 1.000000 0.275268 0.000000 0.275268 7 +0.013680 SkipN

[TAB7474x]

Figure 18.6.3: Graphs of Itτ = βτ−tVt (15 ≥ τ ≥ 2, τ ≥ t ≥ 1)

†Note that a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0. Then, since µ = (0.01+1.00)/2 = 0.505, we have βµ = 0.98×0.505 = 0.4949,
hence βµ + s = 0.4949 + 0.05 = 0.5449 < 1.00 = b. In addition, sL̃ = 0.323274 > 0.05 = s. Thus, the conditions for the assertions are satisfied.

‡Note that this is a selling model with cost minimization.
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Chapter 19

Diagonal Symmetry

In Chap. 18(p.117) we showed that the symmetry between a selling problem and a buying problem on F may collapse on F+. In
this chapter we demonstrate that the selling problem on F− becomes always symmetrical to the buying problem on F+ and
that the buying problem on F− becomes always symmetrical to the selling problem on F+.

19.1 Model with R-mechanism

19.1.1 Identicalness of Condition Spaces C ⟨Tom⟩ and Č ⟨T̃om⟩
Note here that C ⟨Tom⟩ = P ×F ...........
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Č ⟨T̃om⟩ = P ×F

Figure 19.1.1: Identicalness of C ⟨Tom⟩ and Č ⟨T̃om⟩

19.1.2 Collapse of Identicalness by Market Restriction

� Market Restriction
Let us consider here the market restriction of F to a given subset F ′ (see Section 18.2(p.117) )), i.e.,

F ′ ⊆ F . (19.1.2)
Then, let us define

C ′⟨ATom⟩ def
= {(p, F )

∣∣ p ∈PATom ⊆P, F ∈ FATom|p ⊆ F ′} (see (12.3.7(p.65) )), (19.1.3)

C ′⟨Tom⟩ def
= ∪Tom∈Tom ∪ATom∈Tom C ′⟨ATom⟩ (see (12.3.24(p.67) )). (19.1.4)

In addition, let us define

F̌ ′ def
= {F̌

∣∣ F ∈ F ′} (see (13.1.3(p.69) )) (19.1.5)
where

F̌ ′ ⊆ F̌ .† (19.1.6)
Then, let us define

Č ′⟨ATom⟩
def
= {(p, F̌ )

∣∣ p ∈PATom ⊆P, F̌ ∈ F̌ATom|p ⊆ F̌ ′} (see (13.5.18(p.76) )), (19.1.7)

Č ′⟨Tom⟩ def
= ∪T̃om∈T̃om ∪ATom∈Tom Č ′⟨ATom⟩ (see (13.5.47(p.79) )). (19.1.8)

� Rewrite of Section 12.3(p.63)

Here it should be noted that, even if F and F̌ in Section 12.3(p.63) are replaced by F ′ and F̌ ′ respectively, we can make quite
the similar discussions that have been made there, hence (12.3.25(p.68) ) and (12.3.26(p.68) ) cab be rewritten as respectively.

A {M:1[R][A]} holds on C ′⟨Tom⟩ (19.1.9)

C ′⟨Tom⟩ = P ×F ′. (19.1.10)

� Rewrite of Section 12.3(p.63)

Similarly to the above, even if F and F̌ in Step 6 (p.78) are replaced by F ′ and F̌ ′ respectively, we can make quite the similar
discussions as having been made there except for Lemma 13.5.3(p.80) . In this case this lemma can be rewritten as below.

†Due to (19.1.2(p.129) ) we have F̌ ′ = {F̌
∣∣ F ∈ F ′} ⊆ {F̌

∣∣ F ∈ F} = F̌ .
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Lemma 19.1.1 We have

Č ′⟨T̃om⟩ = P × F̌ ′. (19.1.11)

• Proof For quite the same reason of F in (13.5.14(p.76) ) being transformed into F̌ in (13.5.15(p.76) ), we can show that F ′

in (19.1.10(p.129) ) is transformed into F̌ ′ in (19.1.11(p.130) ). In accordance with this transformation, the completeness of Tom on
C ′⟨Tom⟩ = P ×F ′ is inherited also to the completeness of T̃om on Č ′⟨T̃om⟩ = P × F̌ ′.

Since it cannot be always proven that F is identical to F̌ (i.e., F ′ =\ F̌ ′), we have C ′⟨Tom⟩ =\ Č ′⟨T̃om⟩, schematized as in
Figure 19.1.2(p.130) below.
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Č ′⟨T̃om⟩ ⊆P ×F

Figure 19.1.2: Non-identicalness of C ′⟨Tom⟩ and Č ′⟨T̃om⟩

Now, since F ′ ⊆ F due to (19.1.2(p.129) ) and F̌ ⊆ F by definition, we have

C ′⟨Tom⟩ = P ×F ′ ⊆P ×F = C ⟨Tom⟩, (19.1.12)

Č ′⟨T̃om⟩ = P × F̌ ′ ⊆P ×F = Č ⟨T̃om⟩. (19.1.13)

Accordingly, superimposing Figures 19.1.1(p.129) onto 19.1.2(p.130) yields Figure 19.1.3(p.130) below.
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Č ⟨T̃om⟩ = P ×F

Č ′⟨T̃om⟩ = P × F̌ ′

Figure 19.1.3: Superimposition of Figures 19.1.1 onto 19.1.2

The inclusion relations depicted in Figure 19.1.3(p.130) implies that what holds on C ⟨Tom⟩ · · · (I) holds also on C ′⟨Tom⟩ · · · (I′) and
what holds on Č ⟨T̃om⟩ · · · (II) holds on Č ′⟨T̃om⟩ · · · (II′). This fact implies{

The validity of Lemma 13.5.2(p.79) , which holds on C ⟨Tom⟩ = F ×F · · · (I) and Č ⟨T̃om⟩ = F ×F , is in its entirety
inherited to C ′⟨Tom⟩ = F ×F ′ · · · (I′) and Č ′⟨T̃om⟩ = F × F̌ ′ · · · (II′).

}

This fact implies hat Lemma 13.5.2(p.79) can be rewritten as Theorem 19.1.1(p.130) below:

Theorem 19.1.1 Let A {M:1[R][A]} holds on P×F ′ (= C ′⟨Tom⟩). Then, A {M̃:1[R][A]} holds on P× F̌ ′ (= Č ′⟨T̃om⟩) where

A {M̃:1[R][A]} = SR→R̃[A {M:1[R][A]}]. (19.1.14)

19.1.3 A Lemma

As the restricted market F ′ (see (19.1.2(p.129) )) let us consider here the following three cases:

F ′ = F+ · · · (1), F ′ = F± · · · (2), F ′ = F− · · · (3). (19.1.15)

Then F̌ ′ (see (19.1.5(p.129) )) corresponding to each case above can be expressed as below:

F̌ ′ = F̌+ = {F̌
∣∣ F ∈ F+} · · · (1), F̌ ′ = F̌± = {F̌

∣∣ F ∈ F±} · · · (2), F̌ ′ = F̌− = {F̌
∣∣ F ∈ F−} · · · (3).(19.1.16)

Lemma 19.1.2 We have:

F̌+ = F− · · · (1), F̌± = F± · · · (2), F̌− = F+ · · · (1). (19.1.17)
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Proof of (1) Consider any F̌ ∈ F̌+ = {F̌
∣∣ F ∈ F+}. Then, since F ∈ F+, we have F (ξ) = Pr{ξ ≤ ξ} with 0 < a < ξ < b.

Hence, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with 0 > â > ξ̂ > b̂, we have F̌ ∈ F−, so F̌+ ⊆ F− · · · (1∗). Consider any F̌ ∈ F−. Then,

since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with a < ξ̂ < b < 0, we have F (ξ) = Pr{ξ ≤ ξ} with â >
ˆ̂
ξ = ξ > b̂ > 0, so F ∈ F+, hence since

F̌ ∈ F̌+, we have F− ⊆ F̌+. From this and (1∗) we have F̌+ = F−.

Proof of (2) Consider any F̌ ∈ F̌± = {F̌
∣∣ F ∈ F±}. Then, since F ∈ F±, we have F (ξ) = Pr{ξ ≤ ξ} with a ≤ 0 ≤ b.

Hence, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with â ≥ 0 ≥ b̂, we have F̌ ∈ F±, so F̌± ⊆ F± · · · (2∗). Consider any F̌ ∈ F±. Then, since
F̌ (ξ) = Pr{ξ̌ ≤ ξ} with a ≤ 0 ≤ b, we have F (ξ) = Pr{ξ ≤ ξ} with â ≥ 0 ≥ b̂, so F ∈ F±, hence since F̌ ∈ F̌±, we have
F± ⊆ F̌±. From this and (2∗) we have F̌± = F±.

Proof of (3) Consider any F̌ ∈ F̌− = {F̌
∣∣ F ∈ F−}. Then, since F ∈ F−, we have F (ξ) = Pr{ξ ≤ ξ} with a < ξ < b < 0.

Hence, since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with â > ξ̂ > b̂ > 0, we have F̌ ∈ F+, so F̌− ⊆ F+ · · · (3∗). Consider any F̌ ∈ F+. Then,

since F̌ (ξ) = Pr{ξ̌ ≤ ξ} with 0 < a < ξ̂ < b, we have F (ξ) = Pr{ξ ≤ ξ} with 0 > â >
ˆ̂
ξ = ξ > b̂, so F ∈ F−, hence F̌ ∈ F̌−,

we have F+ ⊆ F̌−. From this and (3∗) we have F̌− = F+.

From (19.1.16(p.130) ) and (19.1.17(p.130) ) we have

F̌ ′ = F− · · · (1), F̌ ′ = F± · · · (2), F̌ ′ = F+ · · · (3). (19.1.18)

19.1.4 Diagonal Symmetry

Applying (19.1.15(p.130) ) and (19.1.18(p.131) ) to Lemma 19.1.1(p.130) produces the following three theorems:

Theorem 19.1.2 Let A {M:1[R][A]+} holds on P ×F+. Then, A {M̃:1[R][A]−} holds on P ×F− where

A {M̃:1[R][A]−} = SR→R̃[A {M:1[R][A]+}]. (19.1.19)

• Proof Due to (19.1.15 (1) (p.130) ) we can rewrite M:1[R][A] in Lemma 19.1.1(p.130) as M:1[R][A]+ (see (18.3.1(p.117) )). In addi-

tion,due to (19.1.18 (1) (p.131) ) we can rewrite M̃:1[R][A] in Lemma 19.1.1(p.130) as M̃:1[R][A]−. Accordingly, Lemma 19.1.1(p.130) can
be rewritten as the above theorem.

Theorem 19.1.3 Let A {M:1[R][A]±} holds on P ×F±. Then, A {M̃:1[R][A]±} holds on P ×F± where

A {M̃:1[R][A]±} = SR→R̃[A {M:1[R][A]±}]. (19.1.20)

• Proof Due to (19.1.15 (2) (p.130) ) we can rewrite M:1[R][A] in Lemma 19.1.1(p.130) as M:1[R][A]± (see (18.3.2(p.117) )). In addition,

due to (19.1.18 (2) (p.131) ) we can rewrite M̃:1[R][A] in Lemma 19.1.1(p.130) as M̃:1[R][A]±. Accordingly, Lemma 19.1.1(p.130) can be
rewritten as the above theorem.

Theorem 19.1.4 Let A {M:1[R][A]−} holds on P ×F−. Then, A {M̃:1[R][A]+} holds on P ×F+ where

A {M̃:1[R][A]+} = SR→R̃[A {M:1[R][A]−}]. (19.1.21)

• Proof Due to (19.1.15 (3) (p.130) ) we can rewrite M:1[R][A] in Lemma 19.1.1(p.130) as M:1[R][A]− (see (18.3.3(p.117) )). In addition,

due to (19.1.18 (3) (p.131) ) we can rewrite M̃:1[R][A] in Lemma 19.1.1(p.130) as M̃:1[R][A]+. Accordingly, Lemma 19.1.1(p.130) can be
rewritten as the above theorem.

The inverses of the above three theorems can be given as below:

Theorem 19.1.5 Let A {M̃:1[R][A]−} holds on P ×F− . Then, A {M:1[R][A]+} holds on P ×F+ where

A {M:1[R][A]+} = S R̃→R[A {M̃:1[R][A]−}]. (19.1.22)

Theorem 19.1.6 Let A {M̃:1[R][A]±} holds on P ×F± . Then, A {M:1[R][A]±} holds on P ×F± where

A {M:1[R][A]±} = S R̃→R[A {M̃:1[R][A]±}]. (19.1.23)

Theorem 19.1.7 Let A {M̃:1[R][A]+} holds on P ×F+ . Then, A {M:1[R][A]−} holds on P ×F− where

A {M:1[R][A]−} = S R̃→R[A {M̃:1[R][A]+}]. (19.1.24)

For convenience of reference, below let us copy (19.1.19(p.131) )-(19.1.21(p.131) ) and (19.1.22(p.131) )-(19.1.24(p.131) ).

⟨a⟩ A {M̃:1[R][A]}− = SR→R̃[A {M:1[R][A]+}], (19.1.25)

⟨b⟩ A {M̃:1[R][A]}± = SR→R̃[A {M:1[R][A]±}], (19.1.26)

⟨c⟩ A {M̃:1[R][A]}+ = SR→R̃[A {M:1[R][A]−}], (19.1.27)

⟨a⟩ A {M:1[R][A]}+ = S R̃→R[A {M̃:1[R][A]−}], (19.1.28)

⟨b⟩ A {M:1[R][A]}± = S R̃→R[A {M̃:1[R][A]±}], (19.1.29)

⟨c⟩ A {M:1[R][A]}− = S R̃→R[A {M̃:1[R][A]+}]. (19.1.30)

The above relationships can be schematized as in Figure 19.1.4(p.132) below.
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A {M:1[R][A]−}

A {M:1[R][A]±}

A {M:1[R][A]+}

A {M̃:1[R][A]−}

A {M̃:1[R][A]±}

A {M̃:1[R][A]+}
*

�

Y

j

-� ∼
⟨c⟩

⟨c⟩

⟨b⟩ ⟨b⟩

⟨a⟩

⟨a⟩

Figure 19.1.4: Symmetrical Relations

Definition 19.1.1 (diagonal-symmetry) Let us refer to the aslant relationships RI	� in Figure 19.1.4(p.132) as the diagonal-
symmetry, denoted by d-∼ .

Thus we have the following corollary.

Corollary 19.1.1 (diagonal symmetry) We have:

	� (c) A {M:1[R][A]−} d-∼ A {M̃:1[R][A]+} (19.1.31)

-� (b) A {M:1[R][A]±} ∼ A {M̃:1[R][A]±} (19.1.32)

RI (a) A {M:1[R][A]+} d-∼ A {M̃:1[R][A]−} (19.1.33)

Exercise 19.1.1

	� (c) Confirm by yourself that (19.1.31(p.132) ) holds in fact by comparing Pom 18.5.4(p.120) and Nem 18.5.2(p.120) .

-� (b) Confirm by yourself that (19.1.32(p.132) ) holds in fact by comparing Mim 18.5.4(p.121) and Mim 18.5.2(p.119) .

RI (a) Confirm by yourself that (19.1.33(p.132) ) holds in fact by comparing Nem 18.5.4(p.121) and Pom 18.5.2(p.119) .

Remark 19.1.1 (19.1.32(p.132) ) implies that the symmetrical relationship on F is inherited on F±.

19.2 Conventional Methodology vs Methodology by Integrated-Theory
19.2.1 Conventional Methodology

In the conventional methodology, analyses are separately and one-by-one performed for each of 16 shadow-boxes and
in Figure 19.2.1(p.132) below.

(I) (II)

Pom+

Mim±

Nem−

Tom

~Pom
+

~Mim
±

~Nem
−

~Tom

M:1[R][A] M̃:1[R][A]

�

�

�

�

�

�

�

�

Selling Model
↓

↑
Selling Model

Buying Model
↓

↑
Buying Model

←R-mechanismR-mechanism →

(III) (IV)

Pom+

Mim±

Nem−

~Tom

~Pom
+

~Mim
±

~Nem

Tom

M:1[P][A] M̃:1[P][A]

�

�

�

�

�

�

�

�
←P-mechanismR-mechanism →

Figure 19.2.1: Conventional Methodology

19.2.2 Methodology by Integrated-Theory

The Figure 19.2.2(p.133) below shows the flow of analyses based on the integrated-theory where

◦ S in (5∗), (1∗), (2∗), and (6∗) is the symmetry transformation operation (see (20.0.1(p.136) ) and (20.0.3(p.136) )),

◦ A in (3∗) and (4∗) is the analogy replacement operation (see (20.0.5(p.136) ) and (20.0.7(p.136) )).
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In the figure, actual analyses are performed only for the 4 boxes , and the remaining 12 shadow-boxes are all derived
from applying the market restrictions F+, F±, and F− to the 4 boxes .

(I) (II)

� ]

- �

^ �
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�

�

�

�

�

�

�

�

�

-

^
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(1∗)

Selling Model
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↑
Selling Model
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↓

↑
Buying Model

←R-mechanismR-mechanism →

(III) (IV)

� ]

- �

^ �

Tom
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Mim±

Nem−

F+ F+

F± F±

F− F−

~Tom

~Pom
+

~Mim
±

~Nem
−

?

SP→P̃
(2∗)

M:1[P][A] M̃:1[P][A]

�

�

�

�

�

�

�

�

�

-

^

SP→P̃

(6∗)

-

AR→P(3∗)

�

AR̃→P̃ (4∗)

←P-mechanismR-mechanism →

Figure 19.2.2: Operations Based on the Integrated-Theory

19.2.3 Two Possible Simplified Methods

Carefully and in detail looking at the structure of the diagrams in Figure 19.2.2(p.133) , we immediately see that there exist the

two methods (Method I and Method II) to obtain ~Pom
+

. Removing redundant relations within Figure 19.2.2(p.133) produces
Figure 19.2.3(p.133) below.
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�
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AR→P

Figure 19.2.3: Two methods to derive Pom+

The above two methods can be restated as follows.

Method I. Combination use of the negative restriction (F−) and diagonal symmetry theorem (SR→R̃/SP→P̃)

Derivation from applying SR→R̃/SP→P̃ to Nem− derived by applying F− to Tom on F ,

~Pom
+
= SR→R̃[Nem

−] = SR→R̃[F
−[Tom]] = SR→R̃F−[Tom],

~Pom
+
= SP→P̃[Nem

−] = SP→P̃[F
−[Tom]] = SP→P̃F

−[Tom].

Method II. Combination use of the symmetry theorem (SR→R̃/SP→P̃) and positive restriction (F+)

Derivation from applying F+ to ~Tom derived by applying SR→R̃/SP→P̃ to Tom,

~Pom
+
= F+[~Tom] = F+[SR→R̃[Tom]] = F+SR→R̃[Tom],

~Pom
+
= F+[~Tom] = F+[SP→P̃[Tom]] = F+SP→P̃[Tom].

Method I is recommended in the sense that it is simpler than Method II ; however, it is often efficient to use the two methods
for purposes of the analyses.
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19.3 Model with P-mechanism
Closely looking at the reasoning of discussions for model with R-mechanism (see Section 19.1(p.129) ), one immediately see that
these discussions are not directly related to the price mechanism employed there. This fact implies that they hold also for
P-mechanism, hence it follows that all of Theorems 19.1.2(p.131) -19.1.7(p.131) hold also for P-mechanism. In other words, the
diagonal symmetry holds also between A {M̃:1[P][A]} and A {M:1[P][A]}.

Theorem 19.3.1 Let A {M:1[P][A]+} holds on P ×F+. Then, A {M̃:1[P][A]−} holds on P ×F− where

A {M̃:1[P][A]−} = SR→R̃[A {M:1[P][A]+}]. (19.3.1)

Theorem 19.3.2 Let A {M:1[P][A]±} holds on P ×F±. Then, A {M̃:1[P][A]±} holds on P ×F± where

A {M̃:1[P][A]±} = SR→R̃[A {M:1[P][A]±}]. (19.3.2)

Theorem 19.3.3 Let A {M:1[P][A]−} holds on P ×F−. Then, A {M̃:1[P][A]+} holds on P ×F+ where

A {M̃:1[P][A]+} = SR→R̃[A {M:1[P][A]−}]. (19.3.3)

Below are the inverses of the above three theorems.

Theorem 19.3.4 Let A {M̃:1[P][A]−} holds on P ×F− . Then, A {M:1[P][A]+} holds on P ×F+ where

A {M:1[P][A]+} = S R̃→R[A {M̃:1[P][A]−}]. (19.3.4)

Theorem 19.3.5 Let A {M̃:1[P][A]±} holds on P ×F± . Then, A {M:1[P][A]±} holds on P ×F± where

A {M:1[P][A]±} = S R̃→R[A {M̃:1[P][A]±}]. (19.3.5)

Theorem 19.3.6 Let A {M̃:1[P][A]+} holds on P ×F+ . Then, A {M:1[P][A]−} holds on P ×F− where

A {M:1[P][A]−} = S R̃→R[A {M̃:1[P][A]+}]. (19.3.6)

Thus, we see that (19.3.1(p.134) )-(19.3.3(p.134) ) and (19.3.4(p.134) )-(19.3.6(p.134) ) hold also for P-mechanism, hence we have

A {M̃:1[P][A]}− = SR→R̃[A {M:1[P][A]+}], (19.3.7)

A {M̃:1[P][A]}± = SR→R̃[A {M:1[P][A]±}], (19.3.8)

A {M̃:1[P][A]}+ = SR→R̃[A {M:1[P][A]−}], (19.3.9)

A {M:1[P][A]}+ = S R̃→R[A {M̃:1[P][A]−}], (19.3.10)

A {M:1[P][A]}± = S R̃→R[A {M̃:1[P][A]±}], (19.3.11)

A {M:1[P][A]}− = S R̃→R[A {M̃:1[P][A]+}]. (19.3.12)

Then we have following corollary (see Corollary 19.1.1(p.132) ).

Corollary 19.3.1 (diagonal symmetry) vspace-1.5em

	� (c) A {M:1[P][A]−} d-∼ A {M̃:1[P][A]+} (19.3.13)

-� (b) A {M:1[P][A]±} ∼ A {M̃:1[P][A]±} (19.3.14)

RI (a) A {M:1[P][A]+} d-∼ A {M̃:1[P][A]−} (19.3.15)

Exercise 19.3.1

	� (c) Confirm by yourself that (19.3.10(p.134) ) holds in fact by comparing Pom 18.5.6(p.123) and Nem 18.5.8(p.123) .

-� (b) Confirm by yourself that (19.3.11(p.134) ) holds in fact by comparing Mim 18.5.6(p.122) and Mim 18.5.8(p.124) .

RI (a) Confirm by yourself that (19.3.12(p.134) ) holds in fact by comparing Nem 18.5.6(p.122) and Pom 18.5.8(p.125) .

Remark 19.3.1 (19.3.14(p.134) ) implies that the symmetrical relationship on F is inherited on F±.
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Conclusions of Part 2 (Integrated-Theory)

Below let us summarize the whole discussions over Chaps. 11(p.55) - 19(p.129) .

C1. Preliminary (see Chaps. 11(p.55) and 12(p.61) )

As a preliminary step in constructing the integrated-theory, we first proved the properties of underlying functions (see
Chap. 11(p.55) ). Using these properties, we then established the assertion system A {M:1[R][A]} (see Chap. 12(p.61) ).

C2. Symmetry theorem (R↔ R̃) (see Chap. 13(p.69) )

The concept of symmetry between a selling model and a buying model was first vaguely inspired from the pattern of the yin-
yang principle in an ancient Chinese philosophy. This rather superstitious and shaky concept was mathematically formalized
by the introduction of the reflection operation R (see Section 13.1.1(p.69) and Step 2 (p.75) ). After that, through about twenty
years of trial-and-errors, this concept led us to the correspondence replacement operation CR (see Lemma 13.3.1(p.72) and
Step 3 (p.75) ), and then to identity replacement operation IR (see Lemma 13.3.3(p.73) and Step 4 (p.76) ). Finally, the above three
operations were compiled into a single operation SR→R̃ = IRCRR (see (13.5.30(p.77) )), called the symmetry transformation
operation, yielding Theorem 13.5.1(p.80) (symmetry theorem), which derives A {M̃:1[R][A]} by applying SR→R̃ to A {M:1[R][A]}
in Tom’s 12.2.1(p.61) and 12.2.2(p.62) .

C3. Analogy theorem (R↔ P) (see Chap. 14(p.89) )

In the earlier stage of this study, we did not anticipate at all that there would be a relation between R-mechanism-model
and P-mechanism-model. However, as we proceeded with analyses of both models, we gradually noticed similarities in
the procedures for treating both models. This realization led us, as if solving the jigsaw puzzle, to the existence of an
analogous relation between the two models. This recognition eventually was materialized by the proof of the two lemmas,
Lemmas 11.1.1(p.55) and 14.2.1(p.93) , which are finally combined into the analogy replacement operation AR→P (see (14.2.1(p.93) )).
This finding produced Theorem 14.3.1(p.97) (analogy theorem), which combines the above two models in a manner that
A {M:1[P][A]} can be derived by applying the operation to A {M:1[R][A]}.

C4. Symmetry theorem (P↔ P̃) (see Chap. 15(p.101) )

While the symmetry theorem in C2(p.135) is for R-mechanism-model, we relatively easily succeeded in obtaining the sym-
metry theorem for P-mechanism-model with symmetry transformation operation S P→P̃ (see (15.5.3(p.105) )). By applying the
operation to A {M:1[P][A]} we can obtain A {M̃:1[P][A]} (see Theorem 15.5.1(p.106) ).

C5. Analogy theorem (R̃↔ P̃) (see Chap. 16(p.111) )

This theorem (see Theorem 16.2.1(p.112) ) was not directly derived but was obtained as a result of combining the three results

derived in C2(p.135) -C4(p.135) .

C6. Integrated-theory (see Chap. 17(p.115) )

The highly distinguishing results in the present paper is the successful construction of the integrated-theory (see Motive 2(p.3)

and Chap. 17(p.115) ), which can systematically and comprehensively analyze all models included in a given structured-unit-of-
models (see Section 3.3(p.16) ). The theory consists of the two symmetry theorems (see Theorems 13.5.1(p.80) and 15.5.1(p.106) )
and the two analogy theorems (see Theorems 14.3.1(p.97) and 16.2.1(p.112) ). The former two combines the asset selling problem
and the asset buying problem with the symmetrical relation and the latter two combines the asset trading problem with
the R-mechanism and the asset trading problem with the P-mechanism with the analogouse relation. The integrated-
theory plays a decisively important role in the analysis of models in the sense that it provides an absolutely necessary
methodology for treating not only all models in the present paper but also all variations of these models (see Chap. 5(p.23)

and Section 32.1(p.297) ) which will be dealt with in the future.

C7. Collapse of symmetry and analogy (see Chap. 18(p.117) )

Here, let us again note that the integrated-theory can be constructed under the premise that the price ξ, whether
R-price or P-price, is defined on the total market F (see (18.1.1(p.117) )). Through the integration-theory we clarified that
A {M̃:1[R][A]} (buying model with R-mechanism) can be derived so as to be symmetrical to A {M:1[R][A]} (selling model
with R-mechanism) and that A {M:1[P][A]} (selling problem with P-mechanism) can be derived so as to be analogous to

135
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A {M:1[R][A]} (selling problem R-mechanism). However, since trading on the normal market in the real world is usually
conducted on the positive market F+ (see (18.2.2(p.117) )), it is an open question whether symmetry and analogy on F are
inherited by F+ (see Chap. 18(p.117) ). To approach this problem, in this paper, we employ the methodology of restricting
results obtained on F to F+ by using Lemmas 18.4.1(p.118) - 18.4.3(p.118) . Through this methodology, we will show in C2(p.139)

and C3(p.140) that the symmetrical relation and the analogouse relation can strikingly collapse on F+.

C8. Diagonal symmetry (see Chap. 19(p.129) )

As seen in C7(p.135) , symmetry analogy are not not always inherited on F+ between a selling-problem and a buying problem.
However, we verified in Chap. 19(p.129) that symmetry and analogy are always inherited between a selling-problem on F−

and a buying problem on F+. In Section 19.2.3(p.133) we demonstrated that this result sometimes plays a very interesting
role in the analyses of models on restricted markets.

C9. Summary of operations

For convenience of reference, let us summarize all operations depicted in Figure 17.1.1(p.115) below.

(13.5.29(p.77) ) → SR→R̃ = {a, µ, b, xL ,xK , sL ,κ, T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt

}. (20.0.1)

(13.8.21(p.86) ) → S R̃→R = { b, µ, a, x
L̃ ,xK̃ , sL̃ , κ̃, T̃ , L̃ , K̃ , L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a, µ, b, xL ,xK , sL ,κ, T , L , K , L , Vt

}. (20.0.2)

(15.5.3(p.105) ) → SP→P̃ = { a⋆, a, b, xL ,xK ,κ, sL ,T , L , K , L , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b⋆, b, a, x
L̃ ,xK̃ , κ̃, sL̃ , T̃ , L̃ , K̃ , L̃ , Vt

}. (20.0.3)

(15.5.11(p.106) ) → S P̃→P = { b⋆, b, a, x
L̃ ,xK̃ , κ̃, sL̃ , T̃ , L̃ , K̃ , L̃ , Vt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a⋆, a, b, xL ,xK ,κ, sL ,T , L , K , L , Vt

}. (20.0.4)

(14.2.1(p.93) ) → AR→P = {a→ a⋆, µ→ a}. (20.0.5)

(14.3.5(p.98) ) → AP→R = {a⋆ → a, a→ µ}. (20.0.6)

(16.3.2(p.113) ) → A R̃→P̃ = {b→ b⋆, µ→ b} = SP→P̃AR→P S R̃→R. (20.0.7)

(16.3.3(p.113) ) → A P̃→R̃ = {b⋆ → b, b→ µ} = SR→R̃AP→R S P̃→P. (20.0.8)
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21.1 Search-Allowed-Model 1: Q{M:1[A]} = {M:1[R][A], M̃:1[R][A],M:1[P][A], M̃:1[P][A]}
All analyses of the search-Allowed-model 1 already completed in Part 2(p.51) . Below, let us summarize the whole conclusions
obtained there.

21.1.1 Conclusion 1 (Search-Allowed-Model 1)

C1. Mental Conflict

On F , for any β ≤ 1 and s ≥ 0 we have:

a. The opt-R-price Vt in M:1[R][A] (selling model) is nondecreasing in t as in Figure 8.4.1(p.48) (I) (see Tom’s 12.2.1(p.61) (a)
and 12.2.2(p.62) (a)), hence we have the normal conflict (see Remark 8.4.1(p.48) ).

b. The opt-P-price zt in M:1[P][A] (selling model) is nondecreasing in t as in Figure 8.4.1(p.48) (I) (see Lemma 14.7.1(p.99) ),
hence we have the normal conflict (see Remark 8.4.1(p.48) ).

c. The opt-R-price Vt in M̃:1[R][A] (buying model) is nonincreasing in t as in Figure 8.4.1(p.48) (II) (see Tom’s 13.7.1(p.83) (a)
and 13.7.2(p.84) (a)), hence we have the normal conflict (see Remark 8.4.1(p.48) ).

d. The opt-P-price zt in M̃:1[P][A] (buying model) is nonincreasing in t as in Figure 8.4.1(p.48) (II) (see Lemma 15.8.1(p.109) ),
hence we have the normal conflict (see Remark 8.4.1(p.48) ).

The above results can be summarized as below.

A. On F , for any β ≤ 1 and s ≥ 0, whether selling problem or buying problem and whether R-mechanism-model or
P-mechanism-model, we have the normal mental conflict, which coincides with expectations in Examples 1.3.1(p.5) -
1.3.4(p.6) .

C2. Symmetry

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 18.5.3(p.120) ∼ Pom 18.5.1(p.118) (A {M̃:1[R][A]}+ ∼ A {M:1[R][A]}+),
Pom 18.5.7(p.123) ∼ Pom 18.5.5(p.122) (A {M̃:1[P][A]}+ ∼ A {M:1[P][A]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 18.5.4(p.120) |∼ Pom 18.5.2(p.119) (A {M̃:1[R][A]}+ |∼ A {M:1[R][A]}+) · · · (s1),
Pom 18.5.8(p.123) |∼ Pom 18.5.6(p.122) (A {M̃:1[P][A]}+ |∼ A {M:1[P][A]}+) · · · (s2).

b. On F±, we have:

1. Let β = 1 and s = 0. Then we have:

Mim 18.5.3(p.121) ∼ Mim 18.5.1(p.119) (A {M̃:1[R][A]}± ∼ A {M:1[R][A]}±),
Mim 18.5.7(p.124) ∼ Mim 18.5.5(p.122) (A {M̃:1[P][A]}± ∼ A {M:1[P][A]}±).

2. Let β < 1 or s > 0. Then we have:

Mim 18.5.4(p.121) ∼ Mim 18.5.2(p.119) (A {M̃:1[R][A]}± ∼ A {M:1[R][A]}±),
Mim 18.5.8(p.124) ∼ Mim 18.5.6(p.122) (A {M̃:1[P][A]}± ∼ A {M:1[P][A]}±).
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c. On F−, we have:

1. Let β = 1 and s = 0. Then we have:

Nem 18.5.3(p.121) ∼ Nem 18.5.1(p.120) (A {M̃:1[R][A]}− ∼ A {M:1[R][A]}−),
Nem 18.5.7(p.125) ∼ Nem 18.5.5(p.123) (A {M̃:1[P][A]}− ∼ A {M:1[P][A]}−).

2. Let β < 1 or s > 0. Then we have:

Nem 18.5.4(p.121) |∼ Nem 18.5.2(p.120) (A {M̃:1[R][A]}− |∼ A {M:1[R][A]}−) · · · (s3),
Nem 18.5.8(p.125) |∼ Nem 18.5.6(p.123) (A {M̃:1[P][A]}− |∼ A {M:1[P][A]}−) · · · (s4).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C2b(p.139) ).

B. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2a1(p.139) /C2c1(p.140) ).

C. On F+ and F−, if β < 1 or s > 0, the symmetry collapses (see (s1)/(s2)/(s3)/(s4)).

C3. Analogy

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 18.5.5(p.122) ◃▹ Pom 18.5.1(p.118) (A {M:1[P][A]}+ ◃▹ A {M:1[R][A]}+),
Pom 18.5.7(p.123) ◃▹ Pom 18.5.3(p.120) (A {M̃:1[P][A]}+ ◃▹ A {M̃:1[R][A]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 18.5.6(p.122) ◃▹| Pom 18.5.2(p.119) (A {M:1[P][A]}+ ◃▹| A {M:1[R][A]}+) · · · (a1),

Pom 18.5.8(p.123) ◃▹ Pom 18.5.4(p.120) (A {M̃:1[P][A]}+ ◃▹ A {M̃:1[R][A]}+).

b. On F±, we have:

1. Let β = 1 and s = 0. Then we have:

Mim 18.5.5(p.122) ◃▹ Mim 18.5.1(p.119) (A {M:1[P][A]}± ◃▹ A {M:1[R][A]}±),

Mim 18.5.7(p.124) ◃▹ Mim 18.5.3(p.121) (A {M̃:1[P][A]}± ◃▹ A {M̃:1[R][A]}±).

2. Let β < 1 or s > 0. Then we have:

Mim 18.5.6(p.122) ◃▹ Mim 18.5.2(p.119) (A {M:1[P][A]}± ◃▹ A {M:1[R][A]}±),

Mim 18.5.8(p.124) ◃▹ Mim 18.5.4(p.121) (A {M̃:1[P][A]}± ◃▹ A {M̃:1[R][A]}±).

c. On F−, we have:

1. Let β = 1 and s = 0. Then we have:

Nem 18.5.5(p.123) ◃▹ Nem 18.5.1(p.120) (A {M:1[P][A]}− ◃▹ A {M:1[R][A]}−),

Nem 18.5.7(p.125) ◃▹ Nem 18.5.3(p.121) (A {M̃:1[P][A]}− ◃▹ A {M̃:1[R][A]}−).
2. Let β < 1 or s > 0. Then we have:

Nem 18.5.6(p.123) ◃▹ Nem 18.5.2(p.120) (A {M:1[P][A]}− ◃▹ A {M:1[R][A]}−),

Nem 18.5.8(p.125) ◃▹| Nem 18.5.4(p.121) (A {M̃:1[P][A]}− ◃▹| A {M̃:1[R][A]}−) · · · (a2).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the analogy are inherited (see C2b(p.139) ).

B. On F+ and F−, if β = 1 and s = 0, the analogy is inherited (see C3a1(p.140) /C3c1(p.140) ).

C. On F+ and F−, if β < 1 or s > 0, the analogy partially collapses (see (a1)/(a2)).

C4. Optimal Initiation Time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 18.5.1(p.118) , Mim 18.5.1(p.119) , Nem 18.5.1(p.120) ,

Pom 18.5.3(p.120) , Mim 18.5.3(p.121) , Nem 18.5.3(p.121) ,

Pom 18.5.5(p.122) , Mim 18.5.5(p.122) , Nem 18.5.5(p.123) ,

Pom 18.5.7(p.123) , Mim 18.5.7(p.124) , Nem 18.5.7(p.125)

we obtain Table 21.1.1(p.141) below (the symbol “◦” in the table below represents “possible”):
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Table 21.1.1: Possible OIT (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

A. Only ⃝⃝s N is possible on F+, F±, and F−.

b. Let β < 1 or s > 0. Then, from

Pom 18.5.2(p.119) , Mim 18.5.2(p.119) , Nem 18.5.2(p.120) ,

Pom 18.5.4(p.120) , Mim 18.5.4(p.121) , Nem 18.5.4(p.121) ,

Pom 18.5.6(p.122) , Mim 18.5.6(p.122) , Nem 18.5.6(p.123) ,

Pom 18.5.8(p.123) , Mim 18.5.8(p.124) , Nem 18.5.8(p.125)

we obtain Table 21.1.2(p.141) below:

Table 21.1.2: Possible OIT (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

A. Only ⃝⃝s N, }∥, and•dd∥ are possible on F+, F±, and F−.

The table below is the list of the occurrence percents of ⃝⃝s , } , and •dd on F appearing in �� Tom 12.2.1(p.61) and
�� Tom 12.2.2(p.62) (see Def. 13.7.1(p.83) ).

Table 21.1.3: Occurence percents of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
50.0%/ 5 10.0%/ 1 40.0%/ 4

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible × × possible × ×

–%/ – 0.0%/ 0 50.0%/ 5 10.0%/ 1 0.0%/ 0 0.0%/ 0 40.0%/ 4 0.0%/ 0 0.0%/ 0

C5. Null-Time-Zone and Deadline-Engulfing

From Table 21.1.3(p.141) above we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole, we have ⃝⃝s , } , and•dd at 50.0%, 10.0%, and 40.0% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 8.2.3(p.45) .

2. }∥ is possible (10.0%).

3. •dd∥ is possible (40.0%).

4. ⃝⃝s △ never occur (0.0%).
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5. }△ never occur (0.0%).

6. •dd△ never occur (0.0%).

7. ⃝⃝s N is possible (50.0%).

8. }N never occur (0.0%).

9. •ddN never occur (0.0%).

From the above results we see that on F :

A. } and•dd causing the null-time-zone are possible at 50.0% (= 10.0% + 40.0%).

B. }N strictly causing the null-time-zone is impossible (0.0%).

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

C6. Diagonal symmetry

See Corollaries 19.1.1(p.132) and 19.3.1(p.134) .

21.2 Search-Enforced-Model 1: Q{M:1[E]} = {M:1[R][E], M̃:1[R][E],M:1[P][E], M̃:1[P][E]}

21.2.1 Preliminary

As ones corresponding to Theorems 13.5.1(p.80) , 14.3.1(p.97) , and 15.5.1(p.106) , let us consider the following three theorems:

Theorem 21.2.1 (symmetry[R→ R]) Let A {M:1[R][E]} holds on P ×F . Then A {M̃:1[R][E]} holds on P ×F where

A {M̃:1[R][E]} = SR→R̃[A {M:1[R][E]}]. (21.2.1)

Theorem 21.2.2 (analogy[R→ P)]) Let A {M:1[R][E]} holds on P ×F . Then A {M:1[P][E]}holds on P ×F where

A {M:1[P][E]} = AR→P[A {M:1[R][E]}]. (21.2.2)

Theorem 21.2.3 (symmetry[P→ P]) Let A {M:1[P][E]} holds on P ×F . Then A {M̃:1[P][E]} holds on P ×F where

A {M̃:1[P][E]} = SP→P̃[A {M:1[P][E]}]. 9039 (21.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:1[R][E]} = SR→R̃[SOE{M:1[R][E]}], (21.2.4)

SOE{M:1[P][E]} = AR→P[SOE{M:1[R][E]}], (21.2.5)

SOE{M̃:1[P][E]} = SP→P̃[SOE{M:1[P][E]}], (21.2.6)

corresponding to (13.5.34(p.77) ), (14.2.4(p.93) ), and (15.5.4(p.106) ). Then, for the same reason as in Chap. 16(p.111) it can be shown
that the equality

SOE{M̃:1[P][E]} = A R̃→P̃[SOE{M̃:1[R][E]}] (21.2.7)

holds (corresponding to (16.2.7(p.112) )) and that we have the following theorem, corresponding to Theorem 16.2.1(p.112)

Theorem 21.2.4 (analogy[R→ P]) Let A {M̃:1[R][E]} holds on P ×F . Then A {M̃:1[P][E]} holds on P ×F where

A {M̃:1[P][E]} = A R̃→P̃[A {M̃:1[R][E]}]. (21.2.8)

In fact, from the comparisons of (I) and (II), of (I) and (III), of (III) and (IV), and of (II) and (IV) in Table 7.4.2(p.41) we can
easily show that (21.2.4(p.142) ) - (21.2.7(p.142) ) hold.

21.2.2 M:1[R][E]
21.2.2.1 Analysis

To begin with, let us note that
λ = 1 (21.2.9)

is assumed in the model (see A2(p.19) ), hence from (11.2.1(p.56) ) we have

δ = 1 (21.2.10)
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�� Tom 21.2.1 (A {M:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof Let β = 1 and s = 0. Then, from (6.1.4(p.25) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma 11.1.1(p.55) (g).

(a) From (7.4.10(p.41) ) with t = 2 we have V2 = K (V1) + V1 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma 11.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing
in t > 0.

(b) From (7.4.9(p.41) ) we have V1 = µ < b · · · ((2)). Suppose Vt−1 < b. Then, from (7.4.10(p.41) ) and

Lemma 11.2.2(p.57) (h) we have Vt < K (b) + b = T (b) + b = b due to (1) and Lemma 11.1.1(p.55) (g). Accordingly, by induction
Vt−1 < b for t > 1, hence L (Vt−1) > 0 for t > 1 due to Lemma 11.2.1(p.57) (d), thus L (Vt−1) > 0 for τ ≥ t > 1. Then, from
(7.4.10(p.41) ) and from (6.1.8(p.25) ) we have Vt− βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1) > 0 for τ ≥ t > 1 or equivalently Vt >
βVt−1 for τ ≥ t > 1. Hence, since Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1,
thus t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.

For explanatory simplicity, let us define the statement below:

S2 ⃝s N } ∥ } △ } N = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

(2) } ndOITt•τ+1⟨t•τ ⟩ △,

(3) } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( } ndOITτ>t•τ+1⟨t•τ ⟩ N )).†
}

�� Tom 21.2.2 (A {M:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ < b.

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b = 0 ((κ = 0)).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let b < 0 ((κ < 0)).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true. 7→ →}N
• Proof Let β < 1 or s > 0. From (7.4.10(p.41) ) and (6.1.8(p.25) ), we have Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1) · · · ((1))
for t > 1. From (7.4.10(p.41) ) with t = 2 we have V2 − V1 = K (V1) · · · ((2)).

(a) Note that V1 = βµ − s from (7.4.9(p.41) ). Then, from Lemma 11.2.2(p.57) (j2) we have xK ≥ βµ − s due to (21.2.9(p.142) )
and (21.2.10(p.142) ), hence xK ≥ V1 · · · ((3)). Accordingly, since K (V1) ≥ 0 due to Lemma 11.2.2(p.57) (j1), we have V1 ≤ V2 from

(2) . Suppose Vt−1 ≤ Vt. Then, from (7.4.10(p.41) ) and Lemma 11.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1. Hence, by
induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0. Note (3) . Suppose Vt−1 ≤ xK . Then, from (7.4.10(p.41) ) and
Lemma 11.2.2(p.57) (e) we have Vt ≤ K (xK ) + xK = xK . Hence, by induction Vt ≤ xK for t > 0, i.e., Vt is upper bounded in
t, thus Vt converges to a finite V as t → ∞. Accordingly, from (7.4.10(p.41) ) we have V = K (V ) + V , hence K (V ) = 0, thus
V = xK due to Lemma 11.2.2(p.57) (j1).

(b) Let βµ ≥ b · · · ((4)). Then xL ≤ βµ− s from Lemma 11.2.4(p.59) (b1), hence xL ≤ V1 from (7.4.9(p.41) ), so xL ≤ Vt−1 for

t > 1 from (a). Accordingly, L (Vt−1) ≤ 0 for t > 1 from Corollary 11.2.1(p.57) (a), hence L (Vt−1) ≤ 0 · · · ((5)) for τ ≥ t > 1. Then,

since Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (1) or equivalently Vt ≤ βVt−1 for τ ≥ t > 1, we have Vτ ≤ βVτ−1, Vτ−1 ≤ βVτ−2, · · · ,
V2 ≤ βV1, so Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 , hence it follows that t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ △.

(c) Let βµ < b.

(c1) Let β = 1 · · · ((6)), hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK · · · ((7)) due to Lemma 11.2.3(p.58) (b),

hence K ( xL ) = K (xK ) = 0 · · · ((8)).

†The outer side of (( )) is for s = 0 and the inner side is for s > 0.
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(c1i) Let µ−s ≤ a. Then, noting (6) , (21.2.9(p.142) ), and (21.2.10(p.142) ), we have xK = µ−s · · · ((9)) from Lemma 11.2.2(p.57) (j2),

hence xK = V1 from (7.4.9(p.41) ). Let Vt−1 = xK . Then, from (7.4.10(p.41) ) we have Vt = K(xK ) + xK = xK . Accordingly, by
induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 from (7) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, thus L (Vt−1) = 0
for τ ≥ t > 1. Then, since Vt−βVt−1 = 0 for τ ≥ t > 1 from (1) or equivalently Vt = βVt−1 for τ ≥ t > 1, we have Vτ = βVτ−1,
Vτ−1 = βVτ−2, · · · , V2 = βV1, so Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , hence t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ ∥ (see
Preference-Rule 8.2.1(p.45) ).

(c1ii) Let µ − s > a. Then, since V1 > a from (7.4.9(p.41) ), we have Vt−1 > a for t > 1 from (a). From (7) and
Lemma 11.2.2(p.57) (j2) we have xL = xK > µ − s = V1 from (7.4.9(p.41) ). Let Vt−1 < xL . Then, from (7.4.10(p.41) ) and
Lemma 11.2.2(p.57) (g) we have Vt < K ( xL ) + xL = xL due to (8) , hence by induction Vt−1 < xL for t > 1. Thus, since
L (Vt−1) > 0 for t > 1 due to Lemma 11.2.1(p.57) (e1), for the same reason as in the proof of Tom 21.2.1(p.143) (b) we obtain
⃝s dOITsτ>1⟨τ⟩ N.
(c2) Let β < 1 and s = 0 ((s > 0)).

(c2i) Let b > 0 ((κ > 0)). Then xL > xK · · · ((10 )) from Lemma 11.2.3(p.58) (c ((d))). Now, since xK ≥ βµ − s due to

Lemma 11.2.2(p.57) (j2), we have xK ≥ V1 from (7.4.9(p.41) ). Suppose xK ≥ Vt−1. Then, from (7.4.10(p.41) ) and Lemma 11.2.2(p.57) (e)
we have Vt ≤ K (xK )+ xK = xK . Thus, by induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (10) . Accordingly,
since L (Vt−1) > 0 for t > 1 due to Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 21.2.1(p.143) (b) we obtain
⃝s dOITsτ>1⟨τ⟩ N.
(c2ii) Let b = 0 ((κ = 0)). Then xL = xK · · · ((11 )) from Lemma 11.2.3(p.58) (c ((d))), hence K ( xL ) = K (xK ) = 0 · · · ((12 )).

(c2ii1) Let βµ − s ≤ a. Then, since xK = βµ − s · · · ((13 )) from Lemma 11.2.2(p.57) (j2), we have xK = V1 from (7.4.9(p.41) ).

Let Vt−1 = xK . Then, from (7.4.10(p.41) ) we have Vt = K(xK ) + xK = xK . Accordingly, by induction Vt−1 = xK for t > 1,
hence Vt−1 = xL for t > 1 due to (11) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, for the same reason as in the proof of
(c1i) we have • dOITdτ>1⟨1⟩ ∥.

(c2ii2) Let βµ − s > a. Then, since V1 > a from (7.4.9(p.41) ), we have Vt−1 > a for t > 1 from (a). From (11) and
Lemma 11.2.2(p.57) (j2) we have xL = xK > βµ − s = V1. Let Vt−1 < xL . Then, from (7.4.10(p.41) ) and Lemma 11.2.2(p.57) (g)
we have Vt < K ( xL ) + xL = xL due to (12) , hence, by induction Vt−1 < xL for t > 1. Consequently, since L (Vt−1) > 0 for
t > 1 due to Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 21.2.1(p.143) (b) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c2iii) Let b < 0 ((κ < 0)). Then xL < xK · · · ((14 )) from Lemma 11.2.3(p.58) (c ((d))).

(c2iii1) Let βµ − s ≤ a, then xL < xK = βµ − s = V1 from (14) , Lemma 11.2.2(p.57) (j2) and (7.4.9(p.41) ), so xL ≤ V1. Let
sL ≤ s, then xL ≤ βµ − s due to Lemma 11.2.4(p.59) (c), hence xL ≤ V1. Therefore, whether βµ − s ≤ a or sL ≤ s, we have
xL ≤ V1, hence xL ≤ Vt−1 for t > 1 due to (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 11.2.1(p.57) (a), for the
same reason as in the proof of (b) we obtain • dOITdτ>1⟨1⟩ △.

(c2iii2) Suppose βµ − s > a and sL > s. Hence, since V1 > a from (7.4.9(p.41) ), we have Vt−1 > a for t > 0 from (a).
Then, since xK > xL > βµ − s = V1 · · · ((15 )) from (14) , Lemma 11.2.4(p.59) (c), and (7.4.9(p.41) ), we have K (V1) > 0 from

Lemma 11.2.2(p.57) (j1), hence V2 > V1 from (2) . Suppose Vt−1 < Vt. Then, from (7.4.10(p.41) ) and Lemma 11.2.2(p.57) (g) we have
Vt < K (Vt) + Vt = Vt+1. Accordingly, by induction we have Vt−1 < Vt for t > 1, i.e., Vt is strictly increasing in t > 0. Note
that V1 < xL due to (15) . Assume that Vt−1 < xL for all t > 1, hence V ≤ xL · · · ((16 )) from (a). Then, since V = xK due

to (a), we have the contradiction of V = xK > xL ≥ V due to (14) and (16) . Hence, it is impossible that Vt−1 < xL for all
t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · · · · ((17 )),
from which we have

Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (21.2.11)

Hence, we have

L (Vt−1) > 0 · · · ((18 )) t•τ ≥ t > 1 (← Corollary 11.2.1(p.57) (a))

L (Vt•τ ) ≤ 0 · · · ((19 )) (← Corollary 11.2.1(p.57) (a))

L (Vt−1) = ((< 0))† · · · ((20 )) t > t•τ + 1 (← Lemma 11.2.1(p.57) (d((e1))))

◦ Let t•τ ≥ τ > 1. Then L (Vt−1) > 0 · · · ((21 )) for τ ≥ t > 1 from (18) . Since Vt − βVt−1 > 0 for τ ≥ t > 1 from

(1) and (21) , we have Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1, Vτ−1 > βVτ−2, · · · , V2 > βV1. Therefore, since
Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1, we obtain t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N, thus S2(1) is true. Let us
note here that when τ = t•τ , we have Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((22 )).

◦ Let τ = t•τ + 1. From (1) with t = t•τ + 1 and (19) we have Vt•τ+1 − βVt•τ ≤ 0, hence Vt•τ+1 ≤ βVt•τ . Accordingly, from (22)

we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((23 )),

thus t∗t•τ+1 = t•τ , i.e., } ndOITt•τ+1⟨t•τ ⟩ △, thus S2(2) is true.

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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◦ Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (20) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (1) , hence from (23)

we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ > β4Vt•τ−1 > · · · > βt•τ+2V1.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<)) βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τ Vt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1. · · · ((24 ))

◦ Let s = 0. Then (24) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1,

hence we have t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 8.2.1(p.45) ), hence S2(3) is true.

◦ Let s > 0. Then (24) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1, (21.2.12)

hence we have t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ N, hence S2(3) is true.

21.2.2.2 Market Restriction

21.2.2.2.1 Positive Restriction

� Pom 21.2.1 (A {M:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.1(p.143) due to Lemma 18.4.4(p.118) .

� Pom 21.2.2 (A {M:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b (impossible).

(c) Let βµ < b (always holds).

1. Let β = 1.

i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let βµ ≤ s. Then • dOITdτ>1⟨1⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = βµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 21.2.2(p.143) (a).

(b,c) Always βµ < b from [3(p.118) ], hence βµ ≥ b is impossible.

(c1-c1ii) The same as Tom 21.2.2(p.143) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 21.2.2(p.143) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ > s, hence κ > 0 due to (2) . Hence it suffices to consider only (c2i) of Tom 21.2.2(p.143) .

(c3ii) Let βµ ≤ s, hence κ ≤ 0 due to (2) . Then, since βµ−s ≤ 0 < a, it suffices to consider only (c2iii1) of Tom 21.2.2(p.143) .
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21.2.2.2.2 Mixed Restriction

� Mim 21.2.1 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ 0. Let β = 1 and s = 0.
(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 21.2.1(p.143) due to Lemma 18.4.4(p.118) .

� Mim 21.2.2 (A {M:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.
(b) Let βµ ≥ b (impossible).
(c) Let βµ < b (always holds).

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βµ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 21.2.2(p.143) (a).

(b,c) Always βµ < b due to [8(p.118)] , hence βµ ≥ b is impossible.

(c1) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”.

(c1i,c1ii) The same as Tom 21.2.2(p.143) (c1i,c1ii).

(c2) Let β < 1 and s = 0. If b > 0, then it suffices to consider only (c2i) of Tom 21.2.2(p.143) and if b = 0, then since always
βµ − s = βµ > a due to [8(p.118)] , it suffices to consider only (c2ii2) of Tom 21.2.2(p.143) . Therefore, whether b > 0 or b = 0, we
have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions are immediate from Tom 21.2.2(p.143) (c2i-c2iii2) with κ = βT (0) − s
from (6.1.7(p.25) ) with λ = 1.

21.2.2.2.3 Negative Restriction

� Nem 21.2.1 (A {M:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0 .
(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 21.2.1(p.143) due to Lemma 18.4.4(p.118) .

� Nem 21.2.2 (A {M:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βµ ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ < b.

1. Let β = 1.
i. Let µ− s ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ− s > a. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.
3. Let β < 1 and s > 0.

i. Let βµ− s ≤ a or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βµ− s > a and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0, hence a < µ < b < 0 · · · ((1)). Hence κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a) with λ = 1. In addition,

βµ ≥ b and βµ < b are both possible due to [17(p.118) ].

(a,b) The same as Tom 21.2.2(p.143) (a,b).

(c) Let βµ < b.

(c1-c1ii) The same as Tom 21.2.2(p.143) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, since b < 0 due to (1) , it suffices to consider only (c2iii) of Tom 21.2.2(p.143) . In this case,
since βµ− s = βµ > βa > a due to (1) and since sL > 0 = s due to
Lemma 11.2.4(p.59) (c), it suffices to consider only (c2iii2) of Tom 21.2.2(p.143) .

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (2) . Thus, it suffices to consider only (c2iii1-c2iii2) of Tom 21.2.2(p.143) .
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21.2.3 M̃:1[R][E]
21.2.3.1 Analysis

�� Tom 21.2.1 (A {M̃:1[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Tom 21.2.1(p.143) .

�� Tom 21.2.2 (A {M̃:1[R][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a = 0 ((κ̃ = 0)) .†

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let a > 0 ((κ̃ > 0)) .

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ+ s < b and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Tom 21.2.2(p.143) .

21.2.3.2 Market Restriction

21.2.3.2.1 Positive Restriction

� Pom 21.2.3 (A {M̃:1[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.1(p.147) due to Lemma 18.4.4(p.118) .

� Pom 21.2.4 (A {M̃:1[R][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βµ+ s < b and s < sL̃ . Then S2

⃝s N } ∥ } △ } N is true
(see Numerical Example 4(p.153) ).

• Proof by diagonal-symmetry Immediate from applying SP→P̃ ((20.0.3(p.136) )) to Nem 21.2.2(p.146) .

• Direct proof Suppose a > 0 · · · ((1)), hence κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a). Here note that µβ ≤ a and µβ > a are

both possible due to [5(p.118)] .

(a,b) The same as Tom 21.2.2(p.147) (a,b).

(c) Let βµ > a. Then sL̃ > 0 · · · ((3)) due to Lemma 13.6.5(p.83) (c) with λ = 1.

(c1-c1ii) Let β = 1, hence s > 0 due to the assumptions β < 1 and s > 0. Thus, we have
Tom 21.2.2(p.147) (c1i,c1ii).

(c2) Let β < 1 and s = 0. Then, since βµ + s = βµ < b due to [3(p.118)] and since sL̃ > 0 = s from (3) , due to (1) it
suffices to consider only (c2iii2) of Tom 21.2.2(p.147) .

(c3-c3ii) Let β < 1 and s > 0. Then, since κ̃ > 0 due to (2) , it suffices to consider only
(c2iii1,c2iii2) of Tom 21.2.2(p.147) .
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21.2.3.2.2 Mixed Restriction

� Mim 21.2.3 (A {M̃:1[R][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 21.2.1(p.147) due to Lemma 18.4.4(p.118) .

� Mim 21.2.4 (A {M̃:1[R][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).
(c) Let βµ > a (always holds).

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > −βT̃ (0).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βµ+ s < b and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) The same as Tom 21.2.2(p.147) (a).

(b,c) Always βµ > a due to [8(p.118)] , hence βµ ≤ a is impossible. Then sL̃ > 0 due to
Lemma 13.6.5(p.83) (c).

(c1-c1ii) The same as Tom 21.2.2(p.147) (c-c1ii).

(c2) Let β < 1 and s = 0. Let a < 0. Then it suffices to consider only (c2i) of Tom 21.2.2(p.147) . Let a = 0. Now, in this
case, since βµ + s = βµ < b due to [8(p.118)] , it suffices to consider only (c2ii2) of Tom 21.2.2(p.147) . Accordingly, whether a < 0
or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions become true from Tom 21.2.2(p.147) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(6.1.16(p.25) ).

21.2.3.2.3 Negative Restriction

� Nem 21.2.3 (A {M̃:1[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.
(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 21.2.2(p.147) due to Lemma 18.4.4(p.118) .

� Nem 21.2.4 (ATom {M̃:1[R][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a (impossible).
(c) Let βµ > a (always holds).

1. Let β = 1.
i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let βµ < −s. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let βµ ≥ −s. Then • dOITdτ>1⟨1⟩ △.

• Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)). Then κ̃ = βµ+ s · · · ((3)) due to Lemma 13.6.6(p.83) (a).

(a) The same as Tom 21.2.2(p.147) (a).

(b,c) Always a < βµ due to [15(p.118)] , hence βµ ≤ a is impossible.

(c1-c1ii) The same as the proof of Tom 21.2.2(p.147) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c2i) of Tom 21.2.2(p.147) .

(c3) Let β < 1 and s > 0.

(c3i) Let βµ < −s, hence βµ+ s < 0. Then, since κ̃ < 0 due to (3) , it suffices to consider only (c2i) of Tom 21.2.2(p.147) .

(c3ii) Let βµ ≥ −s, hence βµ + s ≥ 0. Let βµ + s = 0. Then, since κ̃ = 0 due to (3) and since βµ + s = 0 > b due to
(2) , it suffices to consider only (c2ii1) of Tom 21.2.2(p.147) . Let βµ + s > 0. Then, since κ̃ > 0 due to (3) , it suffices to consider
only (c2iii) of Tom 21.2.2(p.147) . Then, since βµ + s > 0 > b due to (1) , it suffices to consider only (c2iii1) of Tom 21.2.2(p.147) .
Accordingly, whether βµ+ s = 0 or βµ+ s > 0, we have the same result.
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21.2.4 M:1[P][E]
21.2.4.1 Analysis
�� Tom 21.2.3 (A {M:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by analogy The same as Tom 21.2.1(p.143) due to Lemma 14.6.1(p.99) .

�� Tom 21.2.4 (A {M:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b = 0 ((κ = 0)) .

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let b < 0 ((κ < 0)) .

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and sL > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by analogy Immediate from applying AR→P (see (20.0.5(p.136) )) to Tom 21.2.2(p.143) .

Corollary 21.2.1 (optimal price to propose) The optimal price to propose zt is nondecreasing in t > 0.

• Proof Immediate from Tom’s 21.2.3(p.149) (a) and 21.2.4(p.149) (a) and
from (7.2.34(p.31) ) and Lemma 14.1.3(p.89) .

21.2.4.2 Market Restriction

21.2.4.2.1 Positive Restriction

� Pom 21.2.5 (A {M:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.
• Proof The same as Tom 21.2.3(p.149) due to Lemma 18.4.4(p.118) .

� Pom 21.2.6 (A {M:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and s < sL . Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)).

(a) The same as Tom 21.2.4(p.149) (a).

(b,c) Always βa < b from [4(p.118) ], hence βa ≥ b is impossible.

(c1-c1ii) The same as Tom 21.2.4(p.149) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 21.2.4(p.149) .

(c3) Let β < 1 and s > 0.

(c3i-c3iii2) Immediate from Tom 21.2.4(p.149) (c2i-c2iii2) due to (2) with κ = βT (0)− s · · · ((2)) from (6.1.23(p.26) ).
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21.2.4.2.2 Mixed Restriction

� Mim 21.2.5 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.3(p.149) due to Lemma 18.4.4(p.118) .

� Mim 21.2.6 (A {M:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b (impossible).

(c) Let βa < b (always holds).

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0.Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < βT (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = βT (0).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > βT (0).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βa− s > a⋆ and sL > s. Then S2

⃝s N } ∥ } △ } N is true

• Proof Suppose a ≤ 0 ≤ b.

(a) The same as Tom 21.2.4(p.149) (a).

(b,c) Always βa < b due to [9(p.118)] , hence βa ≥ b is impossible. .

(c1-c1ii) The same as Tom 21.2.4(p.149) (c1-c1ii).

(c2) Let β < 1 and s = 0. If b > 0, the assertion is true from Tom 21.2.4(p.149) (c2i) and if b = 0, then βa− s = βa > a⋆ from
[11(p.118)] , hence the assertion become true from Tom 21.2.4(p.149) (c2ii2). Accordingly, whether b > 0 or b = 0, we have the same
result.

(c3-c3iii2) The same as Tom 21.2.4(p.149) (c2i-c2iii2) with κ = βT (0)− s from
(6.1.23(p.26) )) with λ = 1.

21.2.4.2.3 Negative Restriction

� Nem 21.2.5 (A {M:1[P][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.3(p.149) due to Lemma 18.4.4(p.118) .

� Nem 21.2.6 (A {M:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ △.
(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βa− s > a⋆ and s < sL . Then S2

⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0. Then, κ = −s · · · ((1)) from Lemma 14.2.6(p.97) (a). In addition, βa ≥ b and βa < b are both possible

due to [18(p.118) ].

(a,b) The same as Tom 21.2.4(p.149) (a,b).

(c) Let βa < b.

(c1-c1ii) The same as Tom 21.2.4(p.149) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2iii-c2iii2) of Tom 21.2.4(p.149) . In this case, since βa−s = βa > a⋆

due to [19(p.118) ] and since sL > 0 = s due to Lemma 14.2.5(p.97) (c), it suffices to consider only (c2iii2) of Tom 21.2.4(p.149) .

(c3-c3ii) Let β < 1 and s > 0, hence κ < 0 due to (1) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 21.2.4(p.149) .
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21.2.5 A {M̃:1[P][E]}
21.2.5.1 Analysis

�� Tom 21.2.5 (A {M̃:1[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Tom 21.2.3(p.149) .

�� Tom 21.2.6 (A {M̃:1[P][E]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆.† Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
2. Let βb+ s < b⋆ and sL̃ > s. Then S2

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Tom 21.2.4(p.149) .

Corollary 21.2.2 (optimal price to propose) The optimal price to propose zt is nonincreasing in t > 0.

• Proof Immediate from Tom’s 21.2.5(p.151) (a) and 21.2.6(p.151) (a) and
from (7.2.50(p.32) ) and Lemma A3.3(p.306) ).

21.2.5.2 Market Restriction

21.2.5.2.1 Positive Restriction

� Pom 21.2.7 (A {M̃:1[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.5(p.151) due to Lemma 18.4.4(p.118) .

� Pom 21.2.8 (A {M̃:1[P][E]+}) Suppose a > 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V = x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ △.
(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then S2

⃝s N } ∥ } △ } N is true.

3. Let β < 1 and s > 0.

i. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.
ii. Let βb+ s < b⋆ and s < sL̃ . Then S2

⃝s N } ∥ } △ } N is true.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ ((20.0.3(p.136) )) to Nem 21.2.5(p.150) .

• Direct proof Suppose a > 0 · · · ((1)). Then, κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a). In addition, βb ≤ a and βb > a are both

possible due to [6(p.118) ].

(a,b) The same as Tom 21.2.6(p.151) (a,b).

(c) Let βb > a.

(c1-c1ii) The same as Tom 21.2.6(p.151) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2iii-c2iii2) of Tom 21.2.6(p.151) . In this case, since
βb+ s = βb < b⋆ due to [7(p.118) ] and since sL̃ > 0 = s from
Lemma 15.6.5(p.108) (c) with λ = 1, it suffices to consider only (c2iii2) of Tom 21.2.6(p.151) .

(c3-c3ii) Let β < 1 and s > 0, hence κ̃ > 0 due to (2) . Hence, it suffices to consider only (c2iii1,c2iii2) of Tom 21.2.6(p.151) .
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21.2.5.2.2 Mixed Restriction

� Mim 21.2.7 (A {M̃:1[P][E]}±) Suppose a ≤ 0 ≤ b. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.5(p.151) due to Lemma 18.4.4(p.118) .

� Mim 21.2.8 (A {M̃:1[P][E]±}) Suppose a ≤ 0 ≤ b. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let s > −βT̃ (0).

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βb+ s < b⋆ and sL̃ > s. Then S2
⃝s N } ∥ } △ } N is true.

• Proof Let b ≥ 0 ≥ a · · · ((1)).

(a) The same as Tom 21.2.6(p.151) (a).

(b,c) Always βb > a due to [10(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 21.2.6(p.151) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, it suffices to consider only (c2i-c2ii2) of Tom 21.2.6(p.151) . Let a < 0. Then, the assertion is
true from Tom 21.2.6(p.151) (c2i). Let a = 0. Then, since βb+ s = βb < b⋆ due to [12(p.118)] , it suffices to consider only (c2ii2) of
Tom 21.2.6(p.151) . Accordingly, whether a < 0 or a = 0, we have the same result.

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 21.2.6(p.151) (c2i-c2iii2) with κ̃ = βT̃ (0) + s from
(6.1.36(p.27) ) with λ = 1.

21.2.5.2.3 Negative Restriction

� Nem 21.2.7 (A {M̃:1[P][E]−}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ>1⟨τ⟩ N.

• Proof The same as Tom 21.2.5(p.151) due to Lemma 18.4.4(p.118) .

� Nem 21.2.8 (A {M̃:1[P][E]−}) Suppose b < 0. Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≥ x
K̃ as t→∞.

(b) Let βb ≤ a (impossible).

(c) Let βb > a (always holds).

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s > 0.

i. Let s < −βT̃ (0). Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let s = −βT̃ (0).

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.
iii. Let −βT̃ (0) < s.

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ △.

2. Let βb+ s < b⋆ and sL̃ > s. Then S2
⃝s N } ∥ } △ } N is true.
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• Proof Let b < 0, hence a < b < 0 · · · ((1)).

(a) The same as Tom 21.2.6(p.151) (a).

(b,c) Always βb > a due to [16(p.118)] , hence βb ≤ a is impossible.

(c1-c1ii) The same as Tom 21.2.6(p.151) (c1-c1ii).

(c2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c2i) of Tom 21.2.6(p.151) .

(c3-c3iii2) Let β < 1 and s > 0. Then, the assertions hold from Tom 21.2.6(p.151) (c2-c2iii2) with κ̃ = βT̃ (0)+s from (6.1.36(p.27) )
with λ = 1.

21.2.6 Numerical Calculation

Numerical Example 4 (A {M̃:1[R][E]+} (buying model)

This is the example for ⃝s N and } N of S2(p.143) ⃝s N } ∥ } △ } N in Pom 21.2.4(p.147) (c3ii) with a = 0.01, b = 1.00, β = 0.98,
and s = 0.05 where x

K̃ = 0.3076395 and sL̃ = 0.3232736.† Note that the example is for the model of a buying problem
with the cost minimization. The figure below is the graph of Itτ = βτ−tVt where the symbol • shows the optimal initiating
time (OIT) for each τ = 2, 3, · · · , 15 (see t∗ - column in the table below). In addition, note that each of polygonal curves for
τ = 2, 3, · · · , 7 is strictly decreasing in t = 1, 2, · · · , 7 and that each of polygonal curves for τ = 8, 9, · · · , 15 is strictly decreasing
in t = 1, 2, · · · , 7 and strictly increasing in t = 7, 8, · · · , 15. The fact implies that the optimal initiating time t∗τ degenerates to
the starting time τ = 2, 3, · · · , 7, i.e., ⃝s dOITsτ ⟨τ⟩ N and that it is given by t∗τ = 7 (non-degenerate) for each of τ = 8, 9, · · · , 15,
i.e., } ndOITτ ⟨7⟩ N (see t∗ – column in the table below). Finally, note here that the leftmost point Vt in each curves converges
to x

K̃ = 0.3076395 as τ →∞ (see Pom 21.2.4(p.147) (a)).
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7 0.323555 −0.001084 7
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Figure 21.2.1: Graphs of Itτ = βτ−tVt with τ = 2, 3, · · · , 15 and t = 1, 2, · · · , τ

21.2.7 Conclusion 2 (Search-Enforced-Model 1)

C1. Mental Conflict

On F , for any β ≤ 1 and s ≥ 0 we have:

a. The opt-R-price Vt in M:1[R][E] (selling model) is nondecreasing in t as in Figure 8.4.1(p.48) (I) (see Tom’s 21.2.1(p.143) (a)
and 21.2.2(p.143) (a), hence we have the normal conflict (see Remark 8.4.1(p.48) ).

b. The opt-P-price zt in M:1[P][E] is nondecreasing (selling model) in t as in Figure 8.4.1(p.48) (I) (see Corollary 21.2.1(p.149) ),
hence we have the normal conflict (see Remark 8.4.1(p.48) ).

c. The opt-R-price Vt in M̃:1[R][E] (buying model) is nonincreasing in t as in Figure 8.4.1(p.48) (II) (see Tom’s 21.2.1(p.147) (a)
and 21.2.2(p.147) (a), hence we have the normal conflict (see Remark 8.4.1(p.48) ).

d. The opt-P-price zt in M̃:1[P][E] (buying model) is nonincreasing in t as in Figure 8.4.1(p.48) (II) (see Corollary 21.2.2(p.151) ),
hence we have the normal conflict (see Remark 8.4.1(p.48) ).

The above results can be summarized as below.

A. On F , for any β ≤ 1 and s ≥ 0, whether selling problem or buying problem and whether R-mechanism-model or
P-mechanism-model, we have the normal mental conflict, which coincides with expectations in Examples 1.3.1(p.5) -
1.3.4(p.6) .

C2. Symmetry

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 21.2.3(p.147) ∼ Pom 21.2.1(p.145) (A {M̃:1[R][E]}+ ∼ A {M:1[R][E]}+),
Pom 21.2.7(p.151) ∼ Pom 21.2.5(p.149) (A {M̃:1[P][E]}+ ∼ A {M:1[P][E]}+).

†Since a = 0.01 > 0, b = 1.00, β = 0.98 < 1, and s = 0.05 > 0, we have µ = (0.01 + 1.00)/2 = 0.525, βµ = 0.98 × 0.525 = 0.5145 > 0.01 = a,
βµ + s = 0.5145 + 0.05 = 0.5645 < 1.00 = b, and s = 0.05 < 0.3232736 = sL̃ . Thus, the condition of this assertion is satisfied.
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2. Let β < 1 or s > 0. Then we have:

Pom 21.2.4(p.147) |∼ Pom 21.2.2(p.145) (A {M̃:1[R][E]}+ |∼ A {M:1[R][E]}+) · · · (s1),
Pom 21.2.8(p.151) |∼ Pom 21.2.6(p.149) (A {M̃:1[P][E]}+ |∼ A {M:1[P][E]}+) · · · (s2).

b. On F± we have:

1. Let β = 1 and s = 0. Then we have:

Mim 21.2.3(p.148) ∼ Mim 21.2.1(p.146) (A {M̃:1[R][E]}± ∼ A {M:1[R][E]}±),

Mim 21.2.7(p.152) ∼ Mim 21.2.5(p.150) (A {M̃:1[P][E]}± ∼ A {M:1[P][E]}±).

2. Let β < 1 or s > 0. Then we have:

Mim 21.2.4(p.148) ∼ Mim 21.2.2(p.146) (A {M̃:1[R][E]}± ∼ A {M:1[R][E]}±),

Mim 21.2.8(p.152) ∼ Mim 21.2.6(p.150) (A {M̃:1[P][E]}± ∼ A {M:1[P][E]}±).

c. On F− we have:

1. Let β = 1 and s = 0. Then we have:

Nem 21.2.3(p.148) ∼ Nem 21.2.1(p.146) (A {M̃:1[R][E]}− ∼ A {M:1[R][E]}−),

Nem 21.2.7(p.152) ∼ Nem 21.2.5(p.150) (A {M̃:1[P][E]}− ∼ A {M:1[P][E]}−).

2. Let β < 1 or s > 0. Then we have:

Nem 21.2.4(p.148) |∼ Nem 21.2.2(p.146) (A {M̃:1[R][E]}− |∼ A {M:1[R][E]}−) · · · (s3),

Nem 21.2.8(p.152) |∼ Nem 21.2.6(p.150) (A {M̃:1[P][E]}− |∼ A {M:1[P][E]}−) · · · (s4).

The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C3b(p.154) ).

B. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2a1(p.153) /C2c1(p.154) ).

C. On F+ and F−, if β < 1 or s > 0, the symmetry collapses (see (s1)/(s2)/(s3)/(s4)).

C3. Analogy

a. On F+ we have:

1. Let β = 1 and s = 0. Then we have:

Pom 21.2.5(p.149) ◃▹ Pom 21.2.1(p.145) (A {M:1[P][E]}+ ◃▹ A {M:1[R][E]}+),

Pom 21.2.7(p.151) ◃▹ Pom 21.2.3(p.147) (A {M̃:1[P][E]}+ ◃▹ A {M̃:1[R][E]}+).

2. Let β < 1 or s > 0. Then we have:

Pom 21.2.6(p.149) ◃▹| Pom 21.2.2(p.145) (A {M:1[P][E]}+ ◃▹| A {M:1[R][E]}+) · · · (a1),

Pom 21.2.8(p.151) ◃▹ Pom 21.2.4(p.147) (A {M̃:1[P][E]}+ ◃▹ A {M̃:1[R][E]}+).

b. On F± we have:

1. Let β = 1 and s = 0. Then we have:

Mim 21.2.5(p.150) ◃▹ Mim 21.2.1(p.146) (A {M:1[P][E]}± ◃▹ A {M:1[R][E]}±),

Mim 21.2.7(p.152) ◃▹ Mim 21.2.3(p.148) (A {M̃:1[P][E]}± ◃▹ A {M̃:1[R][E]}±).

2. Let β < 1 or s > 0. Then we have:

Mim 21.2.6(p.150) ◃▹ Mim 21.2.2(p.146) (A {M:1[R][E]}± ◃▹ A {M:1[P][E]}±),

Mim 21.2.8(p.152) ◃▹ Mim 21.2.4(p.148) (A {M̃:1[R][E]}± ◃▹ A {M̃:1[P][E]}±).
c. On F− we have:

1. Let β = 1 and s = 0. Then we have:

Nem 21.2.5(p.150) ◃▹ Nem 21.2.1(p.146) (A {M:1[P][E]}− ◃▹ A {M:1[R][E]}−),

Nem 21.2.7(p.152) ◃▹ Nem 21.2.3(p.148) (A {M̃:1[P][E]}− ◃▹ A {M̃:1[R][E]}−).

2. Let β < 1 or s > 0. Then we have:

Nem 21.2.6(p.150) ◃▹ Nem 21.2.2(p.146) (A {M:1[P][E]}− ◃▹ A {M:1[R][E]}−),

Nem 21.2.8(p.152) ◃▹| Nem 21.2.4(p.148) (A {M̃:1[P][E]}− ◃▹| A {M̃:1[R][E]}−) · · · (a2).
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The above results can be summarized as below.

A. On F±, for any β ≤ 1 and s ≥ 0, the analogy is inherited (see C3b(p.154) ).

B. On F+ and F−, if β = 1 and s = 0, then the analogy is inherited (see C3a1(p.154) /C3c1(p.154) ).

C. On F+ and F−, if β < 1 or s > 0, then the analogy partially collapses (see (a1)/(a2)).

C4. Optimal initiating time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 21.2.1(p.145) , Mim 21.2.1(p.146) , Nem 21.2.1(p.146) ,

Pom 21.2.3(p.147) , Mim 21.2.3(p.148) , Nem 21.2.3(p.148) ,

Pom 21.2.5(p.149) , Mim 21.2.5(p.150) , Nem 21.2.5(p.150) ,

Pom 21.2.7(p.151) , Mim 21.2.7(p.152) , Nem 21.2.7(p.152)

we obtain the following table (the symbol “◦” in the table below represents “possible”):

Table 21.2.1: Possible OIT (β = 1 and s = 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥

• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

A. Only ⃝⃝s N is possible on F+, F±, and F−.b. Let β < 1 or s > 0. Then, from

Pom 21.2.2(p.145) , Mim 21.2.2(p.146) , Nem 21.2.2(p.146) ,

Pom 21.2.4(p.147) , Mim 21.2.4(p.148) , Nem 21.2.4(p.148) ,

Pom 21.2.6(p.149) , Mim 21.2.6(p.150) , Nem 21.2.6(p.150) ,

Pom 21.2.8(p.151) , Mim 21.2.8(p.152) , Nem 21.2.8(p.152)

we obtain the following table:

Table 21.2.2: Possible OIT (β < 1 or s > 0)

F+ F± F−

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ N }N ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN

A. ⃝⃝s N, }∥, }△, }N,•dd∥, and•dd△ are possible on F+, F±, and F−.

The table below is the list of the percents of ⃝⃝s , } , and •dd on F appearing in �� Tom 21.2.1(p.143) and �� Tom 21.2.2(p.143)

(see Def. 13.7.1(p.83) ).

Table 21.2.3: Occurence percents of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
41.7%/ 5 25.0%/ 3 33.3%/ 4

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible possible possible possible possible ×

–%/ – 0.0%/ 0 41.7%/ 5 8.3%/ 1 8.3%/ 1 8.3%/ 1 16.7%/ 2 16.7%/ 2 0.0%/ 0
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C5. Null-time-zone and deadline-engulfing

From Table 21.2.3(p.155) above we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 41.7%, 25.0%, and 33.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 8.2.3(p.45) .

2. }∥ is possible (8.3%).

3. •dd∥ is possible (16.7%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ is possible (3.8%).

6. •dd△ is possible (16.7%).

7. ⃝⃝s N is possible (41.7%).

8. }N is possible (8.3%).

• See Tom 21.2.2(p.143) (c2iii2)

9. •ddN never occur (0.0%).

From the above results we see that on F :

A. } and•dd causing the null-time-zone are possible at 58.3% (= 25.0% + 33.3%).

B. }N strictly causing the null-time-zone is possible at 8.3%.

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

C6. Diagonal symmetry

Exercise 21.2.1 Confirm by yourself that the diagonal symmetry below hold in fact:

Pom 21.2.3(p.147) d-∼ Nem 21.2.1(p.146) ,

Pom 21.2.3(p.148) ∼ Nem 21.2.1(p.146) ,

Pom 21.2.5(p.150) d-∼ Nem 21.2.7(p.151) ,

Pom 21.2.4(p.147) d-∼ Nem 21.2.2(p.146) ,

Pom 21.2.4(p.148) ∼ Nem 21.2.2(p.146) ,

Pom 21.2.6(p.150) d-∼ Nem 21.2.8(p.151) ,

21.3 Conclusions of Model 1
Conclusions 1 (p.139) and 2 (p.153) can be summarized as below.

C1. Mental Conflict

From C1A(p.139) and C1A(p.153) , on F , for any β ≤ 1 and s ≥ 0, whether search-Allowed-model od search-Enforced-model,
whether selling problem or buying problem, and whether R-mechanism-model or P-mechanism-model, we have the normal
mental conflict, which coincides with expectations in Examples 1.3.1(p.5) - 1.3.4(p.6) .

C2. Symmetry

a. On F±, for any β ≤ 1 and s ≥ 0, the symmetry is inherited (see C2A(p.140) and C2A(p.154) ).

b. On F+ and F−, if β = 1 and s = 0, the symmetry is inherited (see C2B(p.140) and C2B(p.154) ).

c. On F+ and F−, if β < 1 or s > 0, the symmetry may collapse on F+ and F− (see C2C(p.140) and C2C(p.154) ).

C3. Analogy

a. On F±, for any β ≤ 1 and s ≥ 0, the analogy are inherited (see C2A(p.140) and C2A(p.154) ).

b. On F+ and F−, if β = 1 and s = 0, the analogy are inherited (see C2B(p.140) and C2B(p.154) ).

c. On F+ and F−, if β < 1 or s > 0, the analogy may collapse on F+ and F− (see C2C(p.140) and C2C(p.154) ).

C4. Optimal initiating time (OIT)

On F+, F±, and F−, we have:

a. Let β = 1 and s = 0. Then only ⃝⃝s N is possible (see C4aA(p.141) and C4aA(p.155) ).

b. Let β < 1 or s > 0. Then:

1. For sA-model we have only ⃝⃝s N, }∥, and•dd∥ (see C4bA(p.141) ).

2. For sE-model we have ⃝⃝s N, }∥, }△, }N,•dd∥, and•dd△ (see C4bA(p.155) ).
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Joining Tables 21.1.3(p.141) and 21.2.3(p.155) produces the following table:

Table 21.3.1: Occurance percents of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
45.5%/ 10 18.2%/ 4 36.3%/ 8

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible possible possible possible possible ×

–%/ – 0.0%/ 0 45.5%/ 10 9.0%/ 2 4.6%/ 1 4.6%/ 1 27.3%/ 6 9.0%/ 2 0.0%/ 0

C5. Null-time-zone and deadline-engulfing

From Table 21.3.1(p.157) above we see that on F

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 45.5%, 18.2%, and 36.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 8.2.3(p.45) .

2. }∥ is possible (9.0%).

3. •dd∥ is possible (27.3%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ is possible (4.6%).

6. •dd△ is possible (9.0%).

7. ⃝⃝s N is possible (45.5%),

8. }N is possible(4.6%).

• Tom 21.2.2(p.143) (c2iii2)

9. •ddN never occur (0.0%).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 54.5% (= 18.2% + 36.3%).

B. }N strictly causing the null-time-zone is possible at 4.6%.

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

C6. Diagonal symmetry

See C6(p.142) and C6(p.156) .
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22.1 Search-Allowed-Model 2: Q{M:2[A]} = {M:2[R][A], M̃:2[R][A],M:2[P][A], M̃:2[P][A]}

22.1.1 Preliminary
As ones corresponding to Theorems 13.5.1(p.80) , 14.3.1(p.97) , and 15.5.1(p.106) , let us consider the following three theorems:

Theorem 22.1.1 (symmetry[R→ R̃]) Let A {M:2[R][A]} holds on P ×F . Then A {M̃:2[R][A]} holds on P ×F where

A {M̃:2[R][A]} = SR→R̃[A {M:2[R][A]}]. (22.1.1)

Theorem 22.1.2 (analogy[R→ P]) Let A {M:2[R][A]} holds on P ×F . Then A {M:2[P][A]} holds on P ×F where

A {M:2[P][A]} = AR→P[A {M:2[R][A]}]. (22.1.2)

Theorem 22.1.3 (symmetry[P→ P̃]) Let A {M:2[P][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = SP→P̃[A {M:2[P][A]}]. (22.1.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:2[R][A]} = SR→R̃[SOE{M:2[R][A]}], (22.1.4)

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}], (22.1.5)

SOE{M̃:2[P][A]} = SP→P̃[SOE{M:2[P][A]}], (22.1.6)

corresponding to (13.5.34(p.77) ), (14.2.4(p.93) ), and (15.5.4(p.106) ). Then, for the same reason as in Chap. 16(p.111) it can be shown
that the equality

SOE{M̃:2[P][A]} = A R̃→P̃[SOE{M̃:2[R][A]}] (22.1.7)

holds (corresponding to (16.2.7(p.112) )) and that we have the following theorem, corresponding to Theorem 16.2.1(p.112)

Theorem 22.1.4 (analogy [R̃→ P̃]) Let A {M̃:2[R][A]} holds on P ×F . Then A {M̃:2[P][A]} holds on P ×F where

A {M̃:2[P][A]} = A R̃→P̃[A {M̃:2[R][A]}]. (22.1.8)

In fact, from the comparisons of (I) and (II), of (I) and (III), of (III) and (IV), and of (II) and (IV) in Table 7.4.3(p.41) we can
easily show that (22.1.4(p.159) ) - (22.1.7(p.159) ) hold.

22.1.2 A Lemma

The following lemma provides the conditions which determine if each of Theorems 22.1.1(p.159) , 22.1.2(p.159) , and 22.1.3(p.159) holds
by testing whether or not each of (22.1.4(p.159) ), (22.1.5(p.159) ), and (22.1.6(p.159) ) is true.

Lemma 22.1.1 (M:2[R][A])
(a) Theorem 22.1.1(p.159) holds.

(b) Theorem 22.1.3(p.159) holds.

(c) If ρ ≤ a⋆ or b ≤ ρ, then Theorem 22.1.2(p.159) holds.

(d) If a⋆ < ρ < b, then Theorem 22.1.2(p.159) does not always hold.

159
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• Proof (a) From Table 7.4.3(p.41) (I) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[R][A]} = {V0 = ρ, Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 0} (22.1.9)

First, applying the operation R (see Step 2 (p.75) ) to this leads to

R[SOE{M:2[R][A]}] = {−V̂0 = ρ, −V̂t = max{−K̂(Vt−1)− V̂t−1,−βV̂t−1}, t > 0}

= {−V̂0 = ρ, −V̂t = −min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = −ρ, V̂t = min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = ρ̂, −V̂t = −min{K̂(Vt−1) + V̂t−1, βV̂t−1}, t > 0} (22.1.10)

Then, applying CR (see Step 3 (p.75) ) to this yields

CRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{ ˇ̃K(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}. (22.1.11)

Finally, applying IR (see Step 4 (p.76) ) to this produces

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ρ̂, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}. (22.1.12)

Since this holds for any ρ ∈ (−∞,∞), it holds also for ρ̂ ∈ (−∞,∞), hence holds also for the ˆ̂ρ, i.e.,

IRCRR[SOE{M:2[R][A]}] = {V̂0 = ˆ̂ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0}

= {V̂0 = ρ, V̂t = min{K̃(V̂t−1) + V̂t−1, βV̂t−1}, t > 0} (22.1.13)

due to ρ = ˆ̂ρ. Now, we have V̂0 = ρ = V0 from (7.4.17(p.41) ). Suppose V̂t−1 = Vt−1. Then, the second term in the r.h.s. of
(22.1.13(p.160) ) can be rewritten as V̂t = min{K̃ (Vt−1) + Vt−1, βVt−1} = Vt. Thus, by induction V̂t = Vt for t ≥ 0. Accordingly
(22.1.13(p.160) ) can be rewritten as

IRCRR[SOE{M:2[R][A]}] = {V0 = ρ, Vt = min{K̃(Vt−1) + Vt−1, βVt−1}, t > 0, (22.1.14)

which is identical to SOE{M̃:2[R][A]} (see Table 7.4.3(p.41) (II)), i.e.,

SOE{M̃:2[R][A]} = IRCRR[SOE{M:2[R][A]}]

= SR→R̃[SOE{M:2[R][A]}] (see (13.5.30(p.77) )). (22.1.15)

Hence, since (22.1.4(p.159) ) holds, it follows that Theorem 22.1.1(p.159) holds.

(b) From Table 7.4.3(p.41) (III) we have, for any ρ ∈ (−∞,∞),

SOE{M:2[P][A]} =


V0 = ρ,

V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ},
Vt = max{K (Vt−1) + Vt−1, βVt−1}, t > 1


Applying the operation R to this leads to

R[SOE{M:2[P][A]}] =


−V̂0 = ρ,

−V̂1 = max{λβmax{0,−â− ρ}+ βρ− s, βρ},
−V̂t = max{−K̂ (Vt−1)− V̂t−1,−βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = max{−λβmin{0, â+ ρ}+ βρ− s, βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


−V̂0 = ρ,

−V̂1 = −min{λβmin{0, â+ ρ} − βρ+ s,−βρ},
−V̂t = −min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = −ρ,
V̂1 = min{λβmin{0, â+ ρ}+ βρ− s, βρ},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1


=


V̂0 = ρ̂,

V̂1 = min{λβmin{0, â− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̂ (Vt−1) + V̂t−1, βV̂t−1}, t > 1

 .

Applying CP to this yields
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CPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b̌− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{ ˇ̃K (V̂t−1) + V̂t−1, βV̂t−1}, t > 1

 .

Applying IP to this produces

IPCPR[SOE{M:2[P][A]}] =


V̂0 = ρ̂,

V̂1 = min{λβmin{0, b− ρ̂}+ βρ̂+ s, βρ̂},
V̂t = min{K̃ (V̂t−1) + V̂t−1, βV̂t−1}, t > 1

 .

For the same reason as in the proof of (a), we can replace ρ̂ by ρ, hence we obtain.

IPCPR[SOE{M:2[P][A]}] =


V0 = ρ,

V1 = min{λβmin{0, b− ρ}+ βρ+ s, βρ},
Vt = min{K̃ (Vt−1) + Vt−1, βVt−1}, t > 1

 ,

which is the same as SOE{M̃:2[P][A]} given by Table 7.4.3(p.41) (IV), hence we have

SOE{M̃:2[P][A]} = IPCPR[SOE{M:2[R][A]}] (22.1.16)

= SP→P̃[SOE{M:2[P][A]}] (see (15.5.3(p.105) )). (22.1.17)

Hence, since (22.1.6(p.159) ) holds, it follows that Theorem 22.1.3(p.159) holds.

(c) Let ρ ≤ a⋆ or b ≤ ρ.

1. Let ρ ≤ a⋆. Then, since ρ ≤ a⋆ < a due to Lemma 14.2.1(p.93) (n), we have max{0, a− ρ} = a−ρ · · · ((1)). In addition, since

TR (ρ) = µ− ρ from Lemma 11.1.1(p.55) (f) and since TP (ρ) = a− ρ from Lemma 14.2.1(p.93) (f), we have

AR→P[TR (ρ)] = AR→P[µ− ρ] = a− ρ = TP (ρ) = max{0, a− ρ} · · · ((2)) (due to (1) )

2. Let b ≤ ρ. Then, since a < b < ρ, we have max{0, a− ρ} = 0 · · · ((3)). In addition, since TR (ρ) = 0 from

Lemma 11.1.1(p.55) (g) and since TP (ρ) = 0 from Lemma 14.2.1(p.93) (g), we have

AR→P[TR (ρ)] = 0 = TP (ρ) = max{0, a− ρ} · · · ((4)) (due to (3) ).

From (2) and (4) , whether ρ ≤ a⋆ or b ≤ ρ, we have

AR→P[TR (ρ)] = TP (ρ) = max{0, a− ρ}, (22.1.18)
hence from (6.1.4(p.25) ) we have

AR→P[KR (ρ)] = AR→P[λβTR (ρ)− (1− β)ρ− s]

= λβAR→P[TR (ρ)]− (1− β)ρ− s

= λβmax{0, a− ρ} − (1− β)ρ− s. (22.1.19)
Accordingly, we have

AR→P[(7.4.18(p.41) ) with t = 1]

= AR→P[
{
V1 = max{KR (V0) + V0, βV0}

}
]

= AR→P[
{
V1 = max{KR (ρ) + ρ, βρ}

}
]

=
{
V1 = max{AR→P[KR (ρ)] + ρ, βρ}

}
=

{
V1 = max{λβmax{0, a− ρ} − (1− β)ρ− s+ ρ, βρ}

}
(due to (22.1.19(p.161) ))

=
{
V1 = max{λβmax{0, a− ρ}+ βρ− s, βρ}

}
=

{
(7.4.22(p.41) )

}
.

The above result means that AR→P[(7.4.18(p.41) ) with “t > 0” is separated into the two cases, (7.4.22(p.41) ) with “t = 1” and
(7.4.23(p.41) ) “with “t > 1”. This fact implies that

SOE{M:2[P][A]} = AR→P[SOE{M:2[R][A]}]. (22.1.20)

Accordingly, since (22.1.5(p.159) ) holds whether ρ ≤ a⋆ or b ≤ ρ, it follows that Theorem 22.1.2(p.159) holds.

(d) Let a⋆ < ρ < b. Then, since the same reasoning as in the proof of (c) does not always hold, it follows that Theo-
rem 22.1.2(p.159) does not always hold.

Remark 22.1.1 (pseudo-reflective element ρ) Let us recall here that R is an operation applied only to attribute elements
which depend on the distribution function F (see Section 13.1.1(p.69) ). Accordingly, the operation cannot be applied to the
constant ρ which is not related to F , implying that the ρ̂ in the proofs of (a,b) is one resulting from merely rearranging the
expression −V̂1 = ρ as V̂1 = −ρ → V̂1 = ρ̂. However, superficially this transformation ρ → ρ̂ seems to be the application of
the reflective operation R defined in Section 13.1.1(p.69) . For this reason, regarding this ρ, which is originally a non-reflective
element, as a reflective element of a sort (see Def. 13.3.3(p.73) ), let us call it the pseudo-reflective element.
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22.1.3 Diagonal Symmetry

For quite the same reason as in Model 1 (see Chap. 19(p.129) ) one sees that the diagonal symmetry holds also for Model 2.

� Model with R-mechanism. In this model we have (see (19.1.25(p.131) )-(19.1.30(p.131) )):

A {M̃:2[R][A]}− = SR→R̃[A {M:2[R][A]+}], (22.1.21)

A {M̃:2[R][A]}± = SR→R̃[A {M:2[R][A]±}], (22.1.22)

A {M̃:2[R][A]}+ = SR→R̃[A {M:2[R][A]−}], (22.1.23)

A {M:2[R][R]}+ = S R̃→R[A {M̃:2[R][A]−}], (22.1.24)

A {M:2[R][R]}± = S R̃→R[A {M̃:2[R][A]±}], (22.1.25)

A {M:2[R][R]}− = S R̃→R[A {M̃:2[R][A]+}]. (22.1.26)

Hence we have the following corollary:

Corollary 22.1.1 We have :

A {M̃:2[R][A]}− d-∼ A {M:2[R][A]+} (see (22.1.21(p.162) ) and (22.1.24(p.162) )), (22.1.27)

A {M̃:2[R][A]}± ∼ A {M:2[R][A]±} (see (22.1.22(p.162) ) and (22.1.25(p.162) )), (22.1.28)

A {M̃:2[R][A]}+ d-∼ A {M:2[R][A]−} (see (22.1.23(p.162) ) and (22.1.26(p.162) )). (22.1.29)

� Model with P-mechanism. In this model we have:

A {M̃:2[P][A]}− = SR→R̃[A {M:2[P][A]+}], (22.1.30)

A {M̃:2[P][A]}± = SR→R̃[A {M:2[P][A]±}], (22.1.31)

A {M̃:2[P][A]}+ = SR→R̃[A {M:2[P][A]−}], (22.1.32)

A {M:2[P][A]}+ = S R̃→R[A {M̃:2[P][A]−}], (22.1.33)

A {M:2[P][A]}± = S R̃→R[A {M̃:2[P][A]±}], (22.1.34)

A {M:2[P][A]}− = S R̃→R[A {M̃:2[P][A]+}]. (22.1.35)

Hence we have the following corollary:

Corollary 22.1.2 We have :

A {M̃:2[P][A]}− d-∼ A {M:2[P][A]+} (see (22.1.30(p.162) ) and (22.1.33(p.162) )), (22.1.36)

A {M̃:2[P][A]}± ∼ A {M:2[P][A]±} (see (22.1.31(p.162) ) and (22.1.34(p.162) )), (22.1.37)

A {M̃:2[P][A]}+ d-∼ A {M:2[P][A]−} (see (22.1.32(p.162) ) and (22.1.35(p.162) )). (22.1.38)

22.1.4 M:2[R][A]
22.1.4.1 Preliminary

From (7.4.18(p.41) ) and (6.1.8(p.25) ) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 0, (22.1.39)

hence

Vt − βVt−1 = max{L (Vt−1), 0}, t > 0. (22.1.40)

Then, for t > 0 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (see (6.1.9(p.25) )), (22.1.41)

Vt = βVt−1 if L (Vt−1) ≤ 0. (22.1.42)

Finally, from (7.2.75(p.33) ) and from (7.2.71(p.33) ) and (7.2.73(p.33) ) we have

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△ (Skipt△), t > 0, (22.1.43)

St = L (Vt−1) > (<) 0⇒ ConducttN (SkiptN), t > 0. (22.1.44)
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22.1.4.2 Analysis

22.1.4.2.1 Case of β = 1 and s = 0

�� Tom 22.1.1 (A {M:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Let β = 1 and s = 0, hence xL = xK = b · · · ((1)) from Lemmas 11.2.3(p.58) (a). Then, since K (x) = λT (x) · · · ((2)) for

any x from (6.1.4(p.25) ), due to Lemma 11.1.1(p.55) (g) we have K (x) ≥ 0 · · · ((3)) for any x and K (b) = 0 · · · ((4)).

(a) From (7.4.18(p.41) ) we have Vt ≥ K (Vt−1)+Vt−1 for t > 0, hence Vt ≥ Vt−1 for t > 0 due to (3) . Thus Vt is nondecreasing
in t ≥ 0.

(b) Let ρ ≥ b, hence ρ ≥ xL due to (1) . Then, since V0 ≥ xL from (7.4.17(p.41) ), we have Vt−1 ≥ xL for t > 0 from
(a). Hence, since L (Vt−1) = 0 for t > 0 from Lemma 11.2.1(p.57) (d), we have Vt − βVt−1 = 0 for t > 0 from (22.1.40(p.162) ), thus
Vt − βVt−1 = 0 for τ ≥ t > 0, i.e., Vt = βVt−1 for τ ≥ t > 0. Hence, since Vτ = βVτ−1 = · · · = βτV0 , we have t∗τ = 0 for τ > 0
due to Preference Rule 8.2.1(p.45) , i.e., • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then V0 < b from (7.4.17(p.41) ). Suppose Vt−1 < b. Then, from Lemma 11.2.2(p.57) (h) and (7.4.18(p.41) ) with
β = 1 we have Vt < max{K (b)+ b, b} = max{b, b} due to (4) , hence Vt < b. Accordingly, by induction Vt−1 < b · · · ((5)) for t > 0,

so Vt−1 < xL for t > 0 due to (1) . Thus, since L (Vt−1) > 0 for t > 0 from Lemma 11.2.1(p.57) (d), we have L (Vt−1) > 0 · · · ((6))
for τ ≥ t > 0. Accordingly, from (22.1.40(p.162) ) we have Vt − βVt−1 > 0 for τ ≥ t > 0, i.e., Vt > βVt−1 for τ ≥ t > 0, hence
Vτ > βVτ−1 > · · · > βτV0. Accordingly, we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N. Then ConducttN for τ ≥ t > 0 due to
(6) and (22.1.44(p.162) ).

22.1.4.2.2 Case of β < or s > 0

For explanatory simplicity, let us define

S3 ⃝s N } ∥ =


For any τ > 1 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N where Conductτ≥t>0N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>0N.

 .

�� Tom 22.1.2 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≤ a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.

2. Let (λβµ− s)/δ > a.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.
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• Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (7.4.17(p.41) ) and K (ρ) > 0 · · · ((3)) due to

Lemma 11.2.2(p.57) (j1). Accordingly, from (7.4.18(p.41) ) with t = 1 we have V1 − V0 = V1 − ρ = max{K (ρ), βρ − ρ} ≥ K (ρ) > 0
due to (3) , hence V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from (7.4.18(p.41) ) and
Lemma 11.2.2(p.57) (e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is
nondecreasing in t ≥ 0. Again note (4) . Suppose Vt−1 < Vt. If λ < 1, from Lemma 11.2.2(p.57) (f) we have Vt < max{K(Vt) +
Vt, βVt} = Vt+1, and if a < ρ, then a < V0 from (7.4.17(p.41) ), hence a < Vt for t ≥ 0 due to (a), thus from Lemma 11.2.2(p.57) (g)
we have Vt < max{K(Vt) + Vt, βVt} = Vt+1. Therefore, whether λ < 1 or a < ρ, by induction Vt−1 < Vt for t > 0, i.e., Vt

is strictly increasing in t ≥ 0. Consider a sufficiently large M > 0 with ρ ≤ M and b ≤ M , hence V0 ≤ M from (7.4.17(p.41) ).
Suppose Vt−1 ≤M . Then, from Lemma 11.2.2(p.57) (e) and (7.4.18(p.41) ) we have Vt ≤ max{K(M)+M,βM} = max{βM−s, βM}
due to (11.2.7 (2) (p.57) ), hence Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Thus, by induction Vt ≤ M for t ≥ 0, i.e., Vt is
upper bounded in t. Accordingly Vt converges to a finite V as t→∞. Then, since V = max{K(V ) + V, βV } from (7.4.18(p.41) ),
we have 0 = max{K(V ),−(1− β)V }, hence K(V ) ≤ 0, so V ≥ xK due to Lemma 11.2.2(p.57) (j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0 from (7.4.17(p.41) ), we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for
t > 0 due to Corollary 11.2.1(p.57) (a). Accordingly, since Vt − βVt−1 = 0 for t > 0 from (22.1.40(p.162) ), we have Vt − βVt−1 = 0
for τ ≥ t > 0 or equivalently Vt = βVt−1 for τ ≥ t > 0, leading to Vτ = βVτ−1 = · · · = βτV0 , implying that t∗τ = 0 for τ > 0,
i.e., • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL · · · ((5)), hence V0 < xL · · · ((6)) from (7.4.17(p.41) ).

(c1) Since L (V0) = L (ρ) > 0 · · · ((7)) due to (5) and Corollary 11.2.1(p.57) (a), we have V1 = L (V0) + βV0 · · · ((8)) due to

(22.1.41(p.162) ) with t = 1, hence V1 > βV0 · · · ((9)). Accordingly, we have t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((10 )) and Conduct1N · · · ((11 ))
due to (7) and (22.1.44(p.162) ) with t = 1. Below let τ > 1.

(c2) Let β = 1, hence s > 0 · · · ((12 )) due to the assumption “β < 1 or s > 0”. Then δ = λ · · · ((13 )) from (11.2.1(p.56) )

and xL = xK · · · ((14 )) from Lemma 11.2.3(p.58) (b), hence K ( xL ) = K (xK ) = 0 · · · ((15 )). Then, from (5) and (14) we have

ρ < xK · · · ((16 )).

(c2i) Let a < ρ. Then a < V0 from (7.4.17(p.41) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK .
Then, from (7.4.18(p.41) ) with β = 1 and Lemma 11.2.2(p.57) (g) we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK .
Hence, by induction Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due to (14) . Accordingly, since L (Vt−1) > 0 for t > 0
from Lemma 11.2.1(p.57) (e1), for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and
CONDUCTτ≥t>0N.

(c2ii) Let ρ ≤ a · · · ((17 )). Then V0 ≤ a · · · ((18 )) from (7.4.17(p.41) ). Here note that (8) can be rewritten as V1 = K (V0)+V0 =

K (ρ) + ρ · · · ((19 )) due to (6.1.9(p.25) ). Then, from (17) and (11.2.7 (1) (p.57) ) with β = 1 we have V1 = λµ− s+ (1− λ)ρ · · · ((20 ))

(c2ii1) Let (λµ−s)/λ ≤ a. Then xK = (λµ−s)/λ ≤ a · · · ((21 )) from Lemma 11.2.2(p.57) (j2) and (13) . HenceK (a) ≤ 0 · · · ((22 ))
from Lemma 11.2.2(p.57) (j1). Note (18) . Suppose Vt−1 ≤ a. Then, from Lemma 11.2.2(p.57) (e) and (7.4.18(p.41) ) with β = 1 we
have Vt ≤ max{K (a) + a, a} = a due to (22) , hence by induction Vt−1 ≤ a for t > 0. Accordingly, from (7.4.18(p.41) ) with β = 1
and (11.2.7 (1) (p.57) ) we have Vt = max{λµ− s+ (1− λ)Vt−1, Vt−1} · · · ((23 )) for t > 0.

(c2ii1i) Let λ = 1. Then, since xK = µ− s from (21) , we have V1 = µ− s = xK · · · ((24 )) from (20) . In addition, from (23)

we have Vt = max{µ− s, Vt−1} = max{ xK , Vt−1} for t > 0. Note (24) . Suppose Vt−1 = xK . Then Vt = max{xK , xK } = xK .
Accordingly, by induction Vt−1 = xK for t > 1, thus Vt−1 = xL for t > 1 due to (14) . Hence L (Vt−1) = L ( xL ) = 0 for t > 1,
so L (Vt−1) = 0 · · · ((25 )) for τ ≥ t > 1. Then, from (22.1.40(p.162) ) we have Vt − βVt−1 = 0 for τ ≥ t > 1, i.e., Vt = βVt−1 for

τ ≥ t > 1, leading to Vτ = βVτ−1 = · · · = βτ−1V1. From this and (9) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence

t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥. Then, from (7) and (22.1.44(p.162) ) with t = 1 we have Conduct1N.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, since L (Vt−1) > 0 due to
Lemma 11.2.1(p.57) (e1), from (22.1.41(p.162) ) and Lemma 11.2.2(p.57) (f) we have Vt = K(Vt−1) + Vt−1 < K ( xL ) + xL = xL due to
(15) . Accordingly, by induction Vt−1 < xL for t > 0, so L (Vt−1) > 0 for t > 0 from
Lemma 11.2.1(p.57) (e1). Hence, for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and
Conductτ≥t>0N.

(c2ii2) Let (λµ− s)/λ > a. Then xK > (λµ− s)/λ > a · · · ((26 )) from Lemma 11.2.2(p.57) (j2). Note (6) . Suppose Vt−1 < xL .

Then L (Vt−1) > 0 from Lemma 11.2.1(p.57) (e1), hence Vt = K (Vt−1) + Vt−1 from (22.1.41(p.162) ). Now, since a < xK = xL

due to (26) and (14) , from Lemma 11.2.2(p.57) (h) we have Vt < K ( xL ) + xL = xL due to (15) . Accordingly, by induction
Vt−1 < xL · · · ((27 )) for t > 0, thus L (Vt−1) > 0 for t > 0 from Lemma 11.2.1(p.57) (e1). Hence, for almost the same reason as in

the proof of Tom 22.1.1(p.163) (c) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((28 )). Then, we have a < V0 from (7.4.17(p.41) ), hence a < Vt−1 · · · ((29 )) for t > 0 from (a). Note (4) .

Suppose Vt−1 < Vt. Then, from Lemma 11.2.2(p.57) (g) and (7.4.18(p.41) ) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1, hence by
induction Vt−1 < Vt for t > 0. Accordingly, it follows that Vt−1 is strictly increasing in t > 0 · · · ((30 )).
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(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then, xL ≥ xK ≥ 0 · · · ((31 )) from Lemma 11.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (29) , Lemma 11.2.2(p.57) (g), and (7.4.18(p.41) ) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due
to xK ≥ 0. Accordingly, by induction Vt−1 < xK for t > 0. Then, since Vt−1 < xL for t > 0 due to (31) , we have L (Vt−1) > 0
for t > 0 from Corollary 11.2.1(p.57) (a). Consequently, for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have
⃝s dOITsτ>1⟨τ⟩ N † and Conductτ≥t>0N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((32 )) from Lemma 11.2.3(p.58) (c ((d))). Note (6) , hence V0 ≤ xL . Assume that

Vt−1 ≤ xL for all t > 0, hence V ≤ xL due to (a) . Then, since xK ≤ V · · · ((33 )) due to (a), we have the contradiction of

V ≤ xL < xK ≤ V from (32) . Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (30) we
see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · .

Hence, for almost the same reason as in the proof of Tom 12.2.2(p.62) (c2iii2) we immediately see that S3 is true.‡

(c3ii) Let ρ ≤ a · · · ((34 )), hence V0 ≤ a from (7.4.17(p.41) ). Then, from (19) and (11.2.7 (1) (p.57) ) we have V1 = λβµ− s+ (1−
λ)βρ.

(c3ii1) Let (λβµ−s)/δ ≤ a. Then, since xK = (λβµ−s)/δ ≤ a · · · ((35 )) from Lemma 11.2.2(p.57) (j2), we have δ xK = λβµ−s,
hence V1 = δ xK + (1− λ)βρ · · · ((36 )).

(c3ii1i) Let λ = 1. Then, since δ = 1 from (11.2.1(p.56) ), we have xK = βµ − s ≤ a from (35) and V1 = xK ≤ a · · · ((37 ))
from (36) .

(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((38 )) due to Lemma 11.2.3(p.58) (c ((d))). Note (37) . Suppose Vt−1 = xK .

Then, from (7.4.18(p.41) ) we have Vt = max{K (xK ) + xK , β xK } = max{ xK , β xK } = xK due to xK > 0. Hence, by induction
Vt−1 = xK for t > 1, thus Vt−1 < xL for t > 1 due to (38) . Accordingly L (Vt−1) > 0 for t > 1 from Corollary 11.2.1(p.57) (a),
hence L (Vt−1) > 0 for t > 0 due to (7) . Therefore, for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have
⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 11.2.3(p.58) (c ((d))), from (37) we have V1 ≥ xL ,
hence Vt−1 ≥ xL for t > 1 from (a), so Vt−1 ≥ xL for τ ≥ t > 1. Accordingly, since L (Vt−1) ≤ 0 for τ ≥ t > 1 from
Corollary 11.2.1(p.57) (a), we obtain Vt − βVt−1 = 0 for τ ≥ t > 1 from (22.1.40(p.162) ) or equivalently Vt = βVt−1 for τ ≥ t > 1,
leading to Vτ = βVτ−1 = · · · = βτ−1V1. From this and (9) we obtain Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for

τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥. Then, we have Conduct1N from (7) and (22.1.44(p.162) ) with t = 1.

(c3ii1ii) Let λ < 1. Note (4) . Suppose Vt−1 < Vt. Then, from (7.4.18(p.41) ) and Lemma 11.2.2(p.57) (f) we have Vt <
max{K (Vt) + Vt, βVt} = Vt+1, hence by induction Vt−1 < Vt for t > 0. Accordingly, it follows that Vt is strictly increasing in
t ≥ 0 · · · ((39 )).

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((40 )) from Lemma 11.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (7.4.18(p.41) ) and Lemma 11.2.2(p.57) (f) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to
xK ≥ 0. Hence, by induction Vt−1 < xK for t > 0, thus Vt−1 < xL for t > 0 due to (40) . Accordingly, since L (Vt−1) > 0 for
t > 0 from Corollary 11.2.1(p.57) (a), for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have ⃝s dOITsτ>1⟨τ⟩ N
and Conductτ≥t>0N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK from Lemma 11.2.3(p.58) (c ((d))). Note (6) , hence V0 ≤ xL . Assume that
Vt−1 ≤ xL for all t > 0, hence V ≤ xL . Then, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V .
Accordingly, it is impossible that Vt−1 ≤ xL for all t > 0. Therefore, from (6) and (39) we see that there exists t•τ > 0 such
that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 12.2.2(p.62) (c2iii2) we have S3
‡ is true.

(c3ii2) Let (λβµ − s)/λ > a · · · ((41 )). Then xK > (λβµ − s)/δ > a · · · ((42 )) from Lemma 11.2.2(p.57) (j2). Let us note here

that:

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 for the same reason as in the proof of (c3ii1ii).

2. Let λ = 1. Then βµ − s > a · · · ((43 )) from (41) . Now, since K (ρ) + ρ = βµ − s from (11.2.7 (1) (p.57) ) and (34) , we have

V1 = βµ− s from (19) , hence V1 > a from (43) , so Vt−1 > a for t > 1 from (a). Note (4) . Suppose Vt−1 < Vt. Then, from
(7.4.18(p.41) ) and Lemma 11.2.2(p.57) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly by induction Vt−1 < Vt for
t > 0, i.e., Vt is strictly increasing in t > 0.

Consequently, whether λ < 1 or λ = 1, it follows that Vt is strictly increasing in t > 0 · · · ((44 )).

†Note that we have ⃝s dOITsτ>1⟨τ⟩ N instead of ⃝s dOITsτ>0⟨τ⟩ N due to (c1).
‡Note the fine difference between S3 and S1(p.61) .
‡Note the fine difference between S3 and S1(p.61) .
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(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK ≥ 0 · · · ((45 )) from Lemma 11.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from (7.4.18(p.41) ) and from (42) and Lemma 11.2.2(p.57) (h) we have Vt < max{K (xK ) + xK , β xK } = max{xK , β xK } =
xK due to xK ≥ 0. Accordingly, by induction Vt−1 < xK for t > 0, hence Vt−1 < xL for t > 0 from (45) , so L (Vt−1) > 0
for t > 0 from Corollary 11.2.1(p.57) (a). Hence, for almost the same reason as in the proof of Tom 22.1.1(p.163) (c) we have
⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((46 )) from Lemma 11.2.3(p.58) (c ((d))). Note (6) . Assume that Vt−1 < xL for

all t > 0, hence V ≤ xL · · · ((47 )). Now, since xK ≤ V from (a), we have the contradiction of V ≤ xL < xK ≤ V . Accordingly,

it is impossible that Vt−1 < xL for all t > 0. Therefore, from (44) and (6) we see that there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < · · · ,

hence for almost the same reason as in the proof of Tom 12.2.2(p.62) (c2iii2) we have S3 is true.

�� Tom 22.1.3 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof Let β < 1 or s > 0 and let ρ = xK . Then V0 = xK · · · ((1)) from (7.4.17(p.41) ), hence K (V0) = K (xK ) = 0 · · · ((2)).

(a) We obtain V1 ≥ K (V0) + V0 = V0 · · · ((3)) from (7.4.18(p.41) ) with t = 1 and (2) . Suppose Vt−1 ≤ Vt. Then, from

Lemma 11.2.2(p.57) (e) we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is
nondecreasing in t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK from Lemma 11.2.3(p.58) (b). Note (1) .
Suppose Vt−1 = xK . Then, from (7.4.18(p.41) ) we have Vt = max{K (xK ) + xK , xK } = max{xK , xK } = xK . Accordingly, by
induction Vt−1 = xK for t > 0, hence Vt−1 = xL for t > 0, so L (Vt−1) = L ( xL ) = 0 for t > 0. Accordingly, for the same
reason as in the proof of Tom 22.1.1(p.163) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((4)) from Lemma 11.2.3(p.58) (c ((d))). Note (1) . Suppose Vt−1 = xK . Then,

from (7.4.18(p.41) ) we have Vt = max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by induction
Vt−1 = xK for t > 0, hence Vt−1 < xL for t > 0 due to (4) , so L (Vt−1) > 0 for t > 0 due to Corollary 11.2.1(p.57) (a). Therefore,
for the same reason as in the proof of Tom 22.1.1(p.163) (c) we have ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 11.2.3(p.58) (c ((d))), we have xL ≤ V0 from (1) , hence xL ≤ Vt−1

for t > 0 from (a), so L (Vt−1) ≤ 0 for t > 0 due to Corollary 11.2.1(p.57) (a). Then, since Vt−βVt−1 = 0 for t > 0 from(22.1.40(p.162) ),
for the same reason as in the proof of Tom 22.1.1(p.163) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

S4
sN •∥ c s△ c sN = { There exist t•τ and t◦τ (t•τ > t◦τ ≥ 0) such that

(1) • dOITdt•τ≥τ>0⟨0⟩ ∥,

(2) ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N · · · (1∗) and
where C S t•τ≥t>t◦τ △ · · · (2∗) and

C S t◦τ≥t>0△ ((C S t◦τ≥t>0N )) · · · (3∗).†
}

�� Tom 22.1.4 (A {M:2[R][A]}) Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.‡

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true. 7→ →

�� ��c s N
(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

†See Def. 2.2.1(p.12) for the definition of the symbol C S .
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1. Vt is nondecreasing in t ≥ 0.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Let β < 1 or s > 0 and let ρ > xK · · · ((1)). Hence V0 > xK · · · ((2)) from (7.4.17(p.41) ) and K (ρ) < 0 · · · ((3)) due to

Lemma 11.2.2(p.57) (j1). Note that V0 ≥ xK . Suppose Vt−1 ≥ xK . Then, from (7.4.18(p.41) ) and
Lemma 11.2.2(p.57) (e) we have Vt ≥ K (Vt−1) + Vt−1 ≥ K (xK ) + xK = xK . Hence, by induction Vt−1 ≥ xK · · · ((4)) for t > 0.

From (7.4.18(p.41) ) with t = 1 we have

V1 − V0 = V1 − ρ = max{K(V0) + V0, βV0} − ρ = max{K(ρ) + ρ, βρ} − ρ = max{K (ρ),−(1− β)ρ} · · · ((5)).

(a) Let β = 1 or ρ = 0.

(a1) Then, since −(1 − β)ρ = 0, due to (3)we have V1 − V0 = 0 from (5) , i.e., V0 = V1. Suppose Vt−1 = Vt. Then, from
(7.4.18(p.41) ) we have Vt = max{K (Vt)+Vt, βVt} = Vt+1. Thus, by induction Vt−1 = Vt for t > 0, i.e., V0 = V1 = V2 = · · · , hence
Vt = V0 = ρ for t ≥ 0.

(a2) Let xL ≤ ρ. Then, since xL ≤ Vt−1 for t > 0 from (a1), we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 11.2.1(p.57) (a),
hence Vt − βVt−1 = 0 for t > 0 from (22.1.40(p.162) ). Accordingly, for the same reason as in the proof of Tom 22.1.1(p.163) (b) we
obtain • dOITdτ>0⟨0⟩ ∥.

(a3) Let xL > ρ. Then, since xL > Vt−1 for t > 0 from (a1), we have L (Vt−1) > 0 for t > 0 due to Corollary 11.2.1(p.57) (a),
hence for the same reason as in the proof of Tom 22.1.1(p.163) (c) we obtain ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

(b) Let β < 1 · · · ((6)) and ρ > 0 · · · ((7)) and let s = 0 ((s > 0)) . Then, since −(1− β)ρ < 0 · · · ((8)), from (5) and (3) we have

V1 − V0 < 0, so V1 > V0, hence ρ = V0 > V1 · · · ((9)) from (7.4.17(p.41) ).

(b1) We have V0 ≥ V1 from (9) . Suppose Vt−1 ≥ Vt. Then, from (7.4.18(p.41) ) and Lemma 11.2.2(p.57) (e) we have Vt ≥
max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. In addition, since Vt

is lower bounded in t due to (4) , it follows that Vt converges to a finite V as t→∞. Accordingly, from (4) we have V ≥ xK .

(b2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK due to Lemma 11.2.3(p.58) (c ((d))), from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 11.2.1(p.57) (a), we have Vt − βVt−1 = 0 for t > 0 from (22.1.40(p.162) ),
hence for the same reason as in the proof of Tom 22.1.1(p.163) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(b3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((10 )) from Lemma 11.2.3(p.58) (c ((d))).

(b3i) Let ρ < xL . Then, since V0 < xL from (7.4.17(p.41) ), we have Vt−1 < xL for t > 0 due to (b1). Therefore,
since L (Vt−1) > 0 for t > 0 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 22.1.1(p.163) (c) we have
⃝s dOITsτ>0⟨τ⟩ N and CONDUCTτ≥t>0N.

(b3ii) Let ρ = xL · · · ((11 )). Then, since V0 = xL from (7.4.17(p.41) ), we have L (V0) = L ( xL ) = 0 · · · ((12 )), hence from

(22.1.42(p.162) ) with t = 1 we have V1 = βV0 · · · ((13 )), so t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. From (9) and (11)

we have V1 < V0 = xL . Accordingly, since Vt−1 < xL for t > 1 from (b1), we have L (Vt−1) > 0 · · · ((14 )) for t > 1

from Corollary 11.2.1(p.57) (a), hence L (Vt−1) > 0 · · · ((15 )) for τ ≥ t > 1. Therefore, Vt − βVt−1 > 0 for τ ≥ t > 1 from

(22.1.40(p.162) ), hence Vt > βVt−1 for τ ≥ t > 1, so that Vτ > βVτ−1 > · · · > βτ−1V1. From this and (13) we obtain
Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then ConducttN for τ ≥ t > 1

due to (15) and (22.1.44(p.162) ).

(b3iii) Let xL < ρ, hence xL < V0 · · · ((16 )) from (7.4.17(p.41) ), so xL ≤ V0. Suppose xL ≤ Vt−1 · · · ((17 )) for all t > 0.

Then, since L (Vt−1) ≤ 0 for t > 0 from Corollary 11.2.1(p.57) (a), we have Vt = βVt−1 for t > 0 from (22.1.42(p.162) ), hence
Vt = βtV0 = βtρ > 0 for t ≥ 0 due to (7) . Then, since limt→∞ Vt = 0 due to (6) , from (10) we have xL > xK > Vt > 0 for
a sufficiently large t, which contradicts (17) . Hence, it is impossible that xL ≤ Vt−1 for all t > 0. Accordingly, from (16) and
(b1) we see that there exist t◦τ and t•τ (t◦τ < t•τ ) such that

V0 ≥ V1 ≥ · · · ≥ Vt◦τ−1 > Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · · · · ((18 ))
Hence, we have

xL > Vt•τ , xL > Vt•τ+1, · · · ,

Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V0 > xL , V1 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently
xL > Vt−1 · · · ((19 )), t > t•τ ,

Vt−1 = xL · · · ((20 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((21 )), t◦τ ≥ t > 0.

Accordingly, we have:

†The inverse of the condition “β = 1 or ρ = 0” is “β < 1 and ρ ̸= 0”, which is classified into the two cases of “β < 1 and ρ > 0 ” and “β < 1
and ρ < 0 ”, leading to the conditions in (b) and (c) that follows.
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1. Let t•τ ≥ τ > 0. Then, since Vt−1 ≥ xL for τ ≥ t > 0 from (20) and (21) , we have L (Vt−1) ≤ 0 · · · ((22 )) for τ ≥ t > 0

from Corollary 11.2.1(p.57) (a), hence Vt − βVt−1 = 0 for τ ≥ t > 0 from (22.1.40(p.162) ), i.e., Vt = βVt−1 for τ ≥ t > 0, leading
to Vτ = βVτ−1 = · · · = βτV0 · · · ((23 )), hence t∗τ = 0 for t•τ ≥ τ > 0, i.e., • dOITdt•τ≥τ>0⟨0⟩ ∥. Accordingly, S4(1) is true.

Then, from (23) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τV0 · · · ((24 )),
2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (19) , we have L (Vt−1) > 0 · · · ((25 )) for τ ≥ t > t•τ from

Corollary 11.2.1(p.57) (a), hence Vt − βVt−1 > 0 for τ ≥ t > t•τ from (22.1.40(p.162) ), i.e., Vt > βVt−1 for τ ≥ t > t•τ , leading to

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((26 )). From this and (24) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτV0,

hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, so the former half of S4(2) is true.

(i) We have ConducttN for τ ≥ t > t•τ · · · ((27 )) form (25) and (22.1.44(p.162) ). Hence the latter half (1∗) of S4(2) is true.

Below let us show the latter half (2∗) and (3∗) of S4(2).

(ii) If t•τ ≥ t > t◦τ , then L (Vt−1) = L ( xL ) = 0 from (20) , hence we have Skipt△ from (22.1.43(p.162) ), implying C S t△ (see
Figure 8.2.1(p.44) (II)) or equivalently C S t•τ≥t>t◦τ △. Hence the latter half (2∗) of S4(2) is true.

(iii) If t◦τ ≥ t > 0, then L (Vt−1) = ((<)) 0 ‡ from (21) and Lemma 11.2.1(p.57) (d ((e1))), hence we have Skipt△ ((SkiptN)) from
(22.1.43(p.162) ) (((22.1.44(p.162) ))) , implying C S t△ ((C S tN)) or equivalently
C S t◦τ≥t>0△ ((C S t◦τ≥t>0N)) . Hence the latter half (3∗) of S4(2) is true..

(c) Let β < 1 and ρ < 0 · · · ((28 )) and let s = 0 ((s > 0)) .

(c1) Since −(1 − β)ρ > 0, from (5) we have V1 − V0 > 0, i.e., V0 < V1, hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, from
(7.4.18(p.41) ) and Lemma 11.2.2(p.57) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 0, i.e.,
Vt is nondecreasing in t ≥ 0.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK due to Lemma 11.2.3(p.58) (c ((d))), hence from (4) we have Vt−1 ≥ xL for t > 0.
Accordingly, since L (Vt−1) ≤ 0 for t > 0 from Corollary 11.2.1(p.57) (a), we have Vt − βVt−1 = 0 for t > 0 from (22.1.40(p.162) ),
hence for the same reason as in the proof of Tom 22.1.1(p.163) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c3) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((29 )) from Lemma 11.2.3(p.58) (c ((d))). Then, since ρ < 0 < xK from (28) and

(29) , we have V0 < xK from (7.4.17(p.41) ), hence V0 ≤ xK . Suppose Vt−1 ≤ xK , hence Vt−1 < xL form (29) , thus L (Vt−1) > 0
from Corollary 11.2.1(p.57) (a). Accordingly, from (22.1.41(p.162) ) and Lemma 11.2.2(p.57) (e) we have Vt = K (Vt−1) + Vt−1 ≤
K (xK ) + xK = xK . Hence, by induction Vt−1 ≤ xK for t > 0, so Vt−1 < xL for t > 0 from (29) . Therefore, since
L (Vt−1) > 0 · · · ((30 )) for t > 0 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 22.1.1(p.163) (c) we have

⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

22.1.4.3 Market Restriction

22.1.4.3.1 Positive Restriction

� Pom 22.1.1 (A {M:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Tom 22.1.1(p.163) due to Lemma 18.4.4(p.118) .

� Pom 22.1.2 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N.

2. Let β = 1, hence s > 0.

i. Let a ≤ ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

‡If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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4. Let β < 1 and s > 0.

i. Let a < ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ < s. Then S3(p.163) ⃝s N } ∥ is true.

ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let βµ ≤ s. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ < s. Then S3(p.163) ⃝s N } ∥ is true.

2. Let (λβµ− s)/δ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then, we have κ = λβµ− s · · · ((3)) from
Lemma 11.3.1(p.59) (a).

(a-c2ii2) The same as Tom 22.1.2(p.163) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (2) it suffices to consider only (c3i1,c3ii1i1,
c3ii1ii1,c3ii2i) of Tom 22.1.2(p.163) .

(c4) Let β < 1 and s > 0.

(c4i-c4ii1ii2) Immediate from (3) and Tom 22.1.2(p.163) (c3i-c3ii1ii2) with κ.

(c4ii2) Let (λβµ − s)/δ > a. Then, since(λβµ − s)/δ > a > 0 due to (1) , we have λβµ − s > 0, so that κ > 0 due to (3) .
Hence, it suffices to consider only (c3ii2i) of Tom 22.1.2(p.163) .

� Pom 22.1.3 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a,b) The same as Tom 22.1.3(p.166) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 22.1.3(p.166) .

(d) Let β < 1 and s > 0.

(d1,d2) Immediate from (2) and Tom 22.1.3(p.166) (c1,c2) with κ.

� Pom 22.1.4 (A {M:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.

3. Let λβµ > s.

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then ⃝s dOITsτ>1⟨τ⟩ N △ where Conductτ≥t>1N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true (see Numerical Example 5(p.198) ).
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(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t ≥ 0.

2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ ∥.

3. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > µ > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-a3) The same as Tom 22.1.4(p.166) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. First, (b1) is the same as Tom 22.1.4(p.166) (b1). Next, due to (1) it suffices to
consider only (b3i-b3iii) of Tom 22.1.4(p.166) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. First, (c1) is the same as Tom 22.1.4(p.166) (b1). Next, due to (1) it suffices to
consider only (b3i-b3iii) of Tom 22.1.4(p.166) .

(d-d2) Let β < 1 and ρ < 0 and let s = 0. First, (d1) is the same as Tom 22.1.4(p.166) (c1). Next, since κ = λβµ > 0 due to
(2) and (1) , it suffices to consider only (c3) of Tom 22.1.4(p.166) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. First, (e1) is the same as Tom 22.1.4(p.166) (c1). Next, (e2,e3) are the same as
Tom 22.1.4(p.166) (c2,c3) with κ.

22.1.4.3.2 Mixed Restriction

Omitted.

22.1.4.3.3 Negative Restriction

� Nem 22.1.1 (A {M:2[R][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Tom 22.1.1(p.163) due to Lemma 18.4.4(p.118) .

� Nem 22.1.2 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N.

2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then we have S3(p.163) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let a < ρ. Then S3(p.163) ⃝s N } ∥ is true.
ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then S3(p.163) ⃝s N } ∥ is true.

2. Let (λβµ− s)/δ > a. Then S3(p.163) ⃝s N } ∥ is true.

• Proof Suppose b < 0 · · · ((1)), hence a < b < 0 · · · ((2)) and κ = −s · · · ((3)) from Lemma 11.3.1(p.59) (a).

(a-c2ii2) The same as Tom 22.1.2(p.163) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ− s)/δ ≤ a. Then, since λβµ/δ ≤ a, we have λβµ ≤ δa, hence λβµ ≤ δa ≤ λa due
to (2) and (11.2.2 (1) (p.56) ), so that βµ ≤ a, which contradicts [15(p.118) ]. Thus it must be that (λβµ− s)/δ > a. From this and
(1) it suffices to consider only (c3i2,c3ii2ii) of Tom 22.1.2(p.163) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (3) . Hence, it suffices to consider only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of
Tom 22.1.2(p.163) with κ.
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� Nem 22.1.3 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a) The same as Tom 22.1.3(p.166) (a).

(b) Let β = 1. Then, it suffices to consider only (b) of Tom 22.1.3(p.166) , we have • dOITdτ>0⟨0⟩ ∥. Let β < 1. If s = 0, then

due to (1) it suffices to consider only (c2) of Tom 22.1.3(p.166) and if s > 0, then κ < 0 due to (2) , hence it suffices to consider
only (c2) of Tom 22.1.3(p.166) . Thus, whether s = 0 or s > 0, we have • dOITdτ>0⟨0⟩ ∥. Accordingly, whether β = 1 or β < 1, it

eventually follows that we have • dOITdτ>0⟨0⟩ ∥.

� Nem 22.1.4 (A {M:2[R][A]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-a3) The same as Tom 22.1.4(p.166) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 22.1.4(p.166) (b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 22.1.4(p.166) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (b2) of Tom 22.1.4(p.166) . Thus, whether s = 0 or s > 0, it eventually follows that we have the same
result.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 22.1.4(p.166) (c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.1.4(p.166) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (c2) of Tom 22.1.4(p.166) . Thus, whether s = 0 or s > 0, it eventually follows that we have the same
result.

22.1.5 M̃:2[R][A]

22.1.5.1 Preliminary

Due to Lemma 22.1.1(p.159) (a), we see that the following Tom’s 22.1.1(p.171) – 22.1.4(p.172) can be obtained by applying SR→R̃ (see
(20.0.1(p.136) )) to Tom’s 22.1.1(p.163) – 22.1.4(p.166) (see Theorem 22.1.1(p.159) ).

22.1.5.2 Analysis

22.1.5.2.1 Case of β = 1 and s = 0

�� Tom 22.1.1 (A {M̃:2[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.1.1(p.163) .

22.1.5.2.2 Case of β < 1 or s > 0

�� Tom 22.1.2 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.
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i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.163) ⃝s N } ∥ is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.163) ⃝s N } ∥ is true.

2. Let (λβµ+ s)/δ < b.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.163) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.1.2(p.163) .

�� Tom 22.1.3 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.1.3(p.166) .

�� Tom 22.1.4 (A {M̃:2[R][A]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SR→R̃ (see to Tom 22.1.4(p.166) .
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22.1.5.3 Market Restriction

22.1.5.3.1 Positive Restriction

� Pom 22.1.5 (A {M̃:2[R][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Nem 22.1.1(p.170) (see
(19.1.21(p.131) )).

• Direct proof The same as Tom 22.1.1(p.171) due to Lemma 18.4.4(p.118) .

� Pom 22.1.6 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then we have S3(p.163) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let b > ρ. Then S3(p.163) ⃝s N } ∥ is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let λ < 1. Then S3(p.163) ⃝s N } ∥ is true.

2. Let (λβµ+ s)/δ < b. Then S3(p.163) ⃝s N } ∥ is true.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Nem 22.1.2(p.170) (see
(19.1.21(p.131) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and κ̃ = s · · · ((3)) from Lemma 13.6.6(p.83) (a).

(a-c2ii2) The same as Tom 22.1.2(p.171) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb, hence λβµ ≥ δb ≥ λb due
to (2) and (11.2.2 (1) (p.56) ), so that βµ ≥ b, which contradicts [3(p.118) ]. Thus, it must be that (λβµ + s)/δ < b. From this and
(1) it suffices to consider only (c3ii2ii) of Tom 22.1.2(p.171) .

(c4-c4ii2) If β < 1 and s > 0, then κ > 0 due to (3) , hence it suffices to consider
only (c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) with κ.

� Pom 22.1.7 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Nem 22.1.3(p.171)

(see (19.1.21(p.131) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a).

(a) The same as Tom 22.1.3(p.172) (a).

(2b) Let β = 1. Then it suffices to consider only (b) of Tom 22.1.3(p.172) . Let β < 1. If s = 0, due to (1) it suffices to consider
only (c2) of Tom 22.1.3(p.172) and if s > 0, then κ̃ > 0 due to (2) , hence it suffices to consider only (c2) of Tom 22.1.3(p.172) , thus,
whether s = 0 or s > 0 we have the same result. Accordingly, whether β = 1 or β < 1, it follows that we have the same result.

� Pom 22.1.8 (A {M̃:2[R][A]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
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2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Nem 22.1.4(p.171) (see (a(p.108) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a).

(a-a3) The same as Tom 22.1.4(p.172) (a-a3).

(b) Let β < 1 and ρ < 0.

(b1) The same as Tom 22.1.4(p.172) (b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 22.1.4(p.172) and if s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (b2) of Tom 22.1.4(p.172) . Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let β < 1 and ρ > 0.

(c1) The same as Tom 22.1.4(p.172) (c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.1.4(p.172) and if s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (c2) of Tom 22.1.4(p.172) . Accordingly, whether s = 0 or s > 0, we have the same result.

22.1.5.3.2 Mixed Restriction

Omitted.

22.1.5.3.3 Negative Restriction

Unnecessary.

22.1.6 M:2[P][A]
22.1.6.1 Preliminary

From (7.4.23(p.41) ) and from (6.1.21(p.26) ) and (6.1.20(p.26) ) we have

Vt = max{K (Vt−1) + (1− β)Vt−1, 0}+ βVt−1

= max{L (Vt−1), 0}+ βVt−1, t > 1, (22.1.45)

hence

Vt − βVt−1 = max{L (Vt−1), 0}, t > 1. (22.1.46)

Then, for t > 1 we have

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1 if L (Vt−1) ≥ 0 (22.1.47)

Vt = βVt−1 if L (Vt−1) ≤ 0. (22.1.48)

Now, from (7.2.107(p.35) ) and from (7.2.103(p.35) ) and (7.2.105(p.35) ) we have, for t > 1,

St = L (Vt−1) ≥ (≤) 0⇒ Conductt△(Skipt△), (22.1.49)

St = L (Vt−1) > (<) 0⇒ ConducttN(SkiptN). (22.1.50)

From (7.4.22(p.41) ) we have

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ, (22.1.51)
hence

V1 − βV0 = V1 − βρ = max{λβmax{0, a− ρ} − s, 0} ≥ 0. (22.1.52)

From the comparison of the two terms within { } in the r.h.s. of (22.1.51(p.174) ) it can be seen that

S1 = λβmax{0, a− ρ} ≥ (≤) s⇒ Conduct1△(Skip1△), (22.1.53)

S1 = λβmax{0, a− ρ} > (<) s⇒ Conduct1N(Skip1N). (22.1.54)
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22.1.6.2 Analysis

22.1.6.2.1 Case of β = 1 and s = 0

22.1.6.2.1.1 Preliminary

Let β = 1 and s = 0. Then, from (6.1.21(p.26) ), (6.1.20(p.26) ), and Lemma 14.2.1(p.93) (g) we have

K (x) = L (x) = λT (x) ≥ 0 for any x. (22.1.55)

In addition, from (22.1.46(p.174) ) we have

Vt − βVt−1 = max{λT (Vt−1), 0} = λT (Vt−1) ≥ 0, t > 1. (22.1.56)

Finally, from (22.1.51(p.174) ) we have

V1 = max{λmax{0, a− ρ}, 0}+ ρ (22.1.57)

= λmax{0, a− ρ}+ ρ (due to λmax{0, a− ρ} ≥ 0) (22.1.58)

= max{ρ, λa+ (1− λ)ρ}. (22.1.59)

22.1.6.2.1.2 Case of ρ ≤ a⋆

In this case, due to Lemma 22.1.1(p.159) (c), we can obtain Tom 22.1.1(p.175) below by applyingAR→P (see (20.0.5(p.136) )) to Tom 22.1.1(p.163)

with the condition ρ ≤ a⋆ (see Theorem 22.1.2(p.159) ).

Proposition 22.1.1 (ρ ≤ a⋆) Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Assume ρ ≤ a⋆ and let β = 1 and s = 0.

(a) The same as Tom 22.1.1(p.163) (a).

(b) Due to the assumption ρ ≤ a⋆ we have ρ ≤ a⋆ < a < b from Lemma 14.2.1(p.93) (n). Hence it suffices to consider only (c)
of Tom 22.1.1(p.163) .

22.1.6.2.1.3 Case of b ≤ ρ

In this case, due to Lemma 22.1.1(p.159) (c), we can obtain Tom 22.1.2(p.175) below by applyingAR→P (see (20.0.5(p.136) )) to Tom 22.1.1(p.163)

with the condition b ≤ ρ (see Theorem 22.1.2(p.159) ).

Proposition 22.1.2 (b ≤ ρ) Assume b ≤ ρ and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

• Proof Assume b ≤ ρ · · · ((1)) and let β = 1 and s = 0.

(a) The same as Tom 22.1.1(p.163) (a).

(b) Due to (1) it suffices to consider only (b) of Tom 22.1.1(p.163) .

22.1.6.2.1.4 Case of a⋆ < ρ < b

In this case, Theorem 22.1.2(p.159) does not always hold due to Lemma 22.1.1(p.159) (d), hence A {M:2[P][A]} must be directly found.

Proposition 22.1.3 (a⋆ < ρ < b) Assume a⋆ < ρ < b and let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and C S 1△.

(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β = 1 and s = 0. Then, from (6.1.20(p.26) ) and (6.1.21(p.26) ) we have L (x) =

K (x) = λT (x) ≥ 0 · · · ((2)) for any x from Lemma 14.2.1(p.93) (g). Then, since ρ < b and a < b, from (22.1.59(p.175) ) we obtain

V1 < max{b, λb+ (1− λ)b} = max{b, b} = b. Suppose Vt−1 < b. Then, since a⋆ < b due to (1) , from (7.4.23(p.41) ) with β = 1 we
have Vt < max{K (b)+b, b} from Lemma 14.2.3(p.96) (h), hence Vt < max{βb−s, b} from (14.2.12 (2) (p.95) ), so Vt−1 < max{b, b} = b
due to the assumption “β = 1 and s = 0”. Accordingly, by induction we have Vt−1 < b · · · ((3)) for t > 1, hence T (Vt−1) > 0 · · · ((4))
for t > 1 from Lemma 14.2.1(p.93) (g). Accordingly, Vt − βVt−1 > 0 for t > 1 from (22.1.56(p.175) ), i.e., Vt > βVt−1 for t > 1.
Then, since Vt > βVt−1 for τ ≥ t > 1, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)) for τ > 1. In addition, since

L (Vt−1) = λT (Vt−1) > 0 · · · ((6)) for τ ≥ t > 1 due to (4) , we have Conductτ≥t>1N · · · ((7)) from (22.1.50(p.174) ).

(a) From (22.1.58(p.175) ) and (7.4.21(p.41) ) we have V1 − V0 = V1 − ρ = λmax{0, a − ρ} ≥ 0, hence V1 ≥ V0 · · · ((8)). Since

V2 ≥ K (V1)+V1 from (7.4.23(p.41) ) with t = 2, we have V2−V1 ≥ K (V1) ≥ 0 due to (2) , hence V2 ≥ V1 · · · ((9)). Suppose Vt ≥ Vt−1.
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Then from (7.4.23(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt+1 = max{K (Vt) + Vt, βVt} ≥ max{K (Vt−1) + Vt−1, βVt−1} = Vt.
Hence, by induction Vt ≥ Vt−1 for t > 1. From this and (8) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing
in t ≥ 0.

(b) Let a ≤ ρ · · · ((10 )), hence V1 = ρ from (22.1.58(p.175) ), so V1 < b due to (1) . Then V1 − βV0 = V1 − V0 = ρ − ρ = 0

from (7.4.21(p.41) ), hence V1 = βV0 · · · ((11 )), so t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. Then, from (5) and (11) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 = βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Here note ConducttN

for τ ≥ t > 1 from (7) . In addition, since λmax{0, a − ρ} = 0 due to (10) , we have λmax{0, a − ρ} = 0 ≤ s for any s ≥ 0,
hence Skip1△ due to (22.1.53(p.174) ). Accordingly, it follows that we have C S 1△ (see Remark 8.2.1(p.44) ).

(c) Let ρ < a · · · ((12 )), hence V1 = λ(a− ρ) + ρ due to (22.1.58(p.175) ). Then, from (7.4.21(p.41) ) we have V1 − βV0 = V1 − V0 =

V1 − ρ = λ(a− ρ) > 0, i.e., V1 > βV0 · · · ((13 )), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((14 )). Below let τ > 1. Then, from (5) and

(13) we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0 for τ > 1, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From

the result and (14) we have ⃝s dOITsτ>0⟨τ⟩ N. Since a− ρ > 0 due to (12) , we have λmax{0, a− ρ} > 0 = s, implying that we

have Conduct1N due to (22.1.54(p.174) ). From this and (7) it follows that Conductτ≥t>0N.

22.1.6.2.1.5 Integration of Propositions 22.1.1(p.175) – 22.1.3(p.175)

Lemma 22.1.2 (A {M:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and C S 1△.

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof (a) The same as Tom’s 22.1.1(p.175) (a), 22.1.2(p.175) (a), and 22.1.3(p.175) (a).

(b) The same as Tom 22.1.1(p.175) (b).

(c) The same as Tom 22.1.2(p.175) (b).

(d-d2) The same as Tom 22.1.3(p.175) (b,c).

Corollary 22.1.3 Let β = 1 and s = 0. Then, the optimal price to propose zt is nondecreasing in t.

• Proof Immediate from Lemma 22.1.2(p.176) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

22.1.6.2.2 Case of β < 1 or s > 0

22.1.6.2.2.1 Case of ρ ≤ a⋆

In this case, Theorem 22.1.2(p.159) holds due to Lemma 22.1.1(p.159) (c), hence Tom’s 22.1.5(p.176) –22.1.7(p.177) below can be derived
by applying AR→P (see (20.0.5(p.136) )) to Tom’s 22.1.2(p.163) –22.1.4(p.166) . In the proofs below, let us represent what results from
applying AR→P to a given Tom by Tom′, i.e.,

Tom
′ = AR→P[Tom]. (22.1.60)

�� Tom 22.1.5 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.

i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.
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ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 22.1.2(p.163) . Then “a < ρ” in
Tom 22.1.2(p.163) (c2i,c3i) changes into “a⋆ < ρ” in the Tom′, which contradicts the assumption ρ ≤ a⋆. Accordingly, removing all
assertions with “a⋆ < ρ” from the Tom′ leads to Tom 22.1.5 above.

Corollary 22.1.4 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ < xK . Then, the optimal price to propose
zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.5(p.176) (26.2.43) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.1.6 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy The same as Tom 22.1.3(p.166) due to Lemma 14.6.1(p.99) .

Corollary 22.1.5 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ = xK . Then, the optimal price to propose
zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.6(p.177) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.1.7 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ > xL . Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by analogy The same as Tom 22.1.4(p.166) (see Lemma 14.6.1(p.99) ).

Corollary 22.1.6 (A {M:2[P][A]}) Assume ρ ≤ a⋆, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0, i.e., constant in t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.7(p.177) (a1,b1,c1) and from (7.2.94(p.35) ) and
Lemma 14.1.3(p.89) .
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22.1.6.2.2.2 Case of b ≤ ρ

In this case, Theorem 22.1.2(p.159) holds due to Lemma 22.1.1(p.159) (c), hence the following Tom’s 22.1.8(p.178) –22.1.10(p.178) can be
derived by applying AR→P (see (20.0.5(p.136) )) to
Tom’s 22.1.2(p.163) –22.1.4(p.166) :

�� Tom 22.1.8 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let b < 0 ((κ < 0)) . Then S3(p.163) ⃝s N } ∥ is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 22.1.2(p.163) . Then “ρ ≤ a” in
Tom 22.1.2(p.163) (c2i,c3i) changes into “ρ ≤ a⋆ ” in the Tom′, hence ρ ≤ a⋆ < a < b due to
Lemma 14.2.1(p.93) (n), which contradicts the assumption b ≤ ρ. Accordingly, removing all assertions with “ρ ≤ a” from the Tom′

leads to Tom 22.1.8 above.

Corollary 22.1.7 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ < xK . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.8(p.178) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.1.9 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy The same as Tom 22.1.3(p.166) due to Lemma 14.6.1(p.99) .

Corollary 22.1.8 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ = xK . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.9(p.178) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.1.10 (A {M:2[P][A]}) Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) .

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by analogy The same as Tom 22.1.4(p.166) due to Lemma 14.6.1(p.99) .

Corollary 22.1.9 Assume b ≤ ρ, let β < 1 or s > 0, and let ρ > xK .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)) . Then zt is nonincreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)) . Then zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.10(p.178) (a1,b1,c1) and from (7.2.94(p.35) ) and
Lemma 14.1.3(p.89) .
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22.1.6.2.2.3 Case of a⋆ < ρ < b

In this case, Theorem 22.1.2(p.159) does not always hold due to Lemma 22.1.1(p.159) (d), hence A {M:2[P][A]} must be directly found.
For convenience of reference, below let us copy (22.1.51(p.174) )

V1 = max{λβmax{0, a− ρ} − s, 0}+ βρ. (22.1.61)

Lemma 22.1.3

(a) Let V1 ≤ xK . Then Vt is nondecreasing in t > 0.

(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then Vt = V1 for t > 0.

2. Let β < 1 and V1 > 0. Then Vt is nonincreasing in t > 0.

3. Let β < 1 and V1 < 0. Then Vt is nondecreasing in t > 0.

• Proof (a) Let V1 ≤ xK . Then, K (V1) ≥ 0 due to Corollary 14.2.2(p.96) (b), hence from
(7.4.23(p.41) ) with t = 2 we have V2 ≥ K (V1) + V1 ≥ V1. Suppose Vt−1 ≤ Vt. Then, from (7.4.23(p.41) ) and Lemma 14.2.3(p.96) (e)
we have Vt ≤ max{K (Vt) + Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Let V1 > xK . Then K (V1) ≤ 0 · · · ((1)) due to Corollary 14.2.2(p.96) (a). Hence, from (7.4.23(p.41) ) with t = 2, hence

V2 − V1 = max{K (V1) + V1, βV1} − V1 = max{K (V1),−(1− β)V1} · · · ((2)).

(b1) Let β = 1 or V1 = 0. Then, since −(1− β)V1 = 0, from (2) we have V2 − V1 = max{K (V1), 0} = 0 due to (1) , hence
V2 = V1. Suppose Vt−1 = V1. Then from (7.4.23(p.41) ) we have Vt = max{K (V1) + V1, βV1} = V2 = V1. Hence, by induction we
have Vt = V1 for t > 0.

Below note that β = 1 or V1 = 0 (the negation of β = 1 or V1 = 0) is “β < 1 and V1 ̸= 0”, which can be classified into the
two cases, “β < 1 and V1 > 0” and “β < 1 and V1 > 0”.

(b2) Let β < 1 and V1 > 0. Then, since −(1− β)V1 < 0, from (2) we have V2 − V1 ≤ 0 due to (1) , hence V2 ≤ V1. Suppose
Vt−1 ≤ Vt−2. Then, from (7.4.23(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt ≤ max{K (Vt−2) + Vt−2, βVt−2} = Vt−1. Hence, by
induction we have Vt ≤ Vt−1 for t > 1, thus Vt nonincreasing in t > 0.

(b3) Let β < 1 and V1 < 0. Then, since −(1− β)V1 > 0, from (2) we have V2 − V1 > 0 or equivalently V2 > V1, so V2 ≥ V1.
Suppose Vt−1 ≥ Vt−2. Then from (7.4.23(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt ≥ max{K (Vt−2) + Vt−2, βVt−2} = Vt−1.
Hence, by induction we have Vt ≥ Vt−1 for t > 1, thus Vt nondecreasing in t > 0.

Let us define:

S5 ⃝s N } ∥ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1⇒ ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N

(2) τ > t•τ ⇒ } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductt•τ≥t>1N.

}
S6 ⃝s N } ∥ •∥ c s△ c sN = { There exists t•τ

† and t◦τ (t•τ > t◦τ > 1) such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.

(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ
⟨τ⟩ N where Conductτ≥t>t•τ N,

where pSKIPt•τ≥τ>t◦τ △ (C S t•τ≥t>t◦τ △), and
where pSKIPt◦τ≥t>1△ ((pSKIPt◦τ≥t>1N )) (C S t◦τ≥t>1△ ((C S t◦τ≥t>1))).

}
S7 ⃝s N } ∥ •∥ c s△ = { There exists t•τ > 1 such that:

(1) t•τ ≥ τ > 1 ⇒ If λβmax{0, a− ρ} ≤ s, then • dOITdt•τ≥τ>1⟨0⟩ ∥.

If λβmax{0, a− ρ} > s, then } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N.

(2) τ > t•τ ⇒ ⃝s dOITsτ>t•τ ⟨τ⟩ N where Conductτ≥t>t•τ N and where pSKIPt•τ≥τ>1△.
}

Remark 22.1.2 For explanatory convenience, let us represent “β = 1 or V1 = 0” as {β = 1 ∪ V1 = 0}. Then, its negation
{β = 1 ∪ V1 = 0} can be written as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ V1 ̸= 0} = {β < 1 ∩ V1 > 0} ∪ {β < 1 ∩ V1 < 0}.

Without loss of generality, this can be further expressed as

{β = 1 ∪ V1 = 0} = {β < 1 ∩ s ≥ 0 ∩ V1 > 0} ∪ {β < 1 ∩ s ≥ 0 ∩ V1 < 0}.

Furthermore, since {s ≥ 0} can be denoted by {s = 0 ((s > 0))}, it follows that the above expression can be rewritten as

{β = 1 ∪ V1 = 0} =
{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 > 0}

}
∪

{
β < 1 ∩ {s = 0 ((s > 0))} ∩ {V1 < 0}

}
.

�� Tom 22.1.5 (A {M:2[P][A]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1 .

(b) Let V1 ≤ xK .
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1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let b ≤ 0 ((κ ≤ 0)) . Then S5
⃝s N } ∥ is true.

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) (see Remark 22.1.2(p.179) above)

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) . Then

i. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true. 7→ →

�� ��c s N
ii. Let V1 = xL . Then S7

⃝s N } ∥ •∥ c s△ is true. 7→ →
�� ��c s N

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let b > 0 ((κ > 0)) .

i. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a−ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a)

i. Let λβmax{0, a − ρ} ≤ s. Then, since λβmax{0, a − ρ} − s ≤ 0, we have V1 − βV0 = 0 from (22.1.52(p.174) ), i.e.,
V1 = βV0 · · · ((2)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, since λβmax{0, a − ρ} − s > 0, we have V1 − βV0 > 0 from (22.1.52(p.174) ), i.e.,
V1 > βV0 · · · ((3)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N. Then, since λβmax{0, a − ρ} − s > 0, from the comparison of the

two terms within { } in the r.h.s. of (22.1.51(p.174) ) it follows that conducting the search is strictly optimal at time t = 1,
i.e., Conduct1N · · · ((4)).

Below let τ > 1.

(b) Let V1 ≤ xK · · · ((5)).

(b1) Vt is nondecreasing in t > 0 due to Lemma 22.1.3(p.179) (a). Consider a sufficiently large M > 0 with b ≤M and V1 ≤M .
Suppose Vt−1 ≤M . Then, from (7.4.23(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt ≤ max{K(M)+M,βM} = max{βM−s, βM}
due to (14.2.12 (2) (p.95) ), hence Vt ≤ max{M,M} = M due to β ≤ 1 and s ≥ 0. Accordingly, by induction Vt ≤ M for t > 0,
i.e., Vt is upper bounded in t. Hence Vt converges to a finite V as t → ∞. Then, since V = max{K(V ) + V, βM} · · · ((6)) from

(7.4.23(p.41) ), we have 0 = max{K(V ),−(1− β)V } · · · ((7)), hence K(V ) ≤ 0, so V ≥ xK due to Lemma 14.2.3(p.96) (j1).

(b2) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 14.2.1(p.96) (a),
hence Vt − βVt−1 = 0 for t > 1 from (22.1.46(p.174) ), i.e., Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we have
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((8)).

i. Let λβmax{0, a− ρ} ≤ s. Then, from (8) and (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (8) and (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., } ndOITτ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

(b3) Let V1 < xL · · · ((9)).

(b3i) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”, thus xL = xK · · · ((10 )) from
Lemma 14.2.4(p.97) (b). Now, since V1 ≥ βρ from (7.4.22(p.41) ), we have V1 ≥ ρ due to the assumption β = 1, hence a⋆ < V1 due
to (1) . Accordingly, it follows that a⋆ ≤ Vt−1 for t > 1 due to (b1). Note V1 < xK from (9) and (10) . Suppose Vt−1 < xK .
Then, from Lemma 14.2.3(p.96) (f) and (7.4.23(p.41) ) with β = 1 we have Vt < max{K (xK ) + xK , xK } = max{xK , xK } = xK .
Accordingly, by induction Vt−1 < xK for t > 1, hence Vt−1 < xL for t > 1 due to (10) , so L (Vt−1) > 0 for t > 1 from
Lemma 14.2.2(p.96) (e1). Then, since L (Vt−1) > 0 · · · ((11 )) for τ ≥ t > 1, we have Vt−βVt−1 > 0 for τ ≥ t > 1 from (22.1.46(p.174) ),

i.e., Vt > βVt−1 for τ ≥ t > 1, hence Vτ > βVτ−1 > · · · > βτ−1V1. In addition, since V1 ≥ βV0 from (22.1.52(p.174) ), we have
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Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0, hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. Then, we have ConducttN for τ ≥ t > 1

from (11) and (22.1.50(p.174) ).

(b3ii) Let β < 1 and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((12 )) from Lemma 14.2.4(p.97) (c ((d))). Here note (9) and (b1). Then

suppose there exists a t′ such that Vt−1 ≥ xL for t ≥ t′. Then L (Vt−1) ≤ 0 for t ≥ t′ from Corollary 14.2.1(p.96) (a), hence

Vt = βVt−1 for t ≥ t′ due to (22.1.48(p.174) ). Therefore, we have Vt = βt−t′+1Vt′−1 for t ≥ t′, leading to V = limt→∞ Vt = 0 < xK

due to (12) , which contradicts V ≥ xK in (b1). Accordingly, it follows that Vt−1 < xL for all t > 1, hence L (Vt−1) > 0 for t > 1
from Corollary 14.2.1(p.96) (a). Thus, for the same reason as in the proof of (b3i) we have ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>1N.

(b3ii2) Let b ≤ 0 ((κ ≤ 0)) .

• Let b = 0 ((κ = 0)) . Then xL = xK = 0 · · · ((13 )) from Lemma 14.2.4(p.97) (c ((d))), hence V ≥ xK = xL = 0 from (b1).

Here assume V > xK = 0. Then, since −(1− β)V < 0, we have K (V ) = 0 from (7) , leading to the contradiction V = xK

due to Lemma 14.2.3(p.96) (j1). Thus it must be that V = xK = 0. Accordingly, due to (b1) and due to V1 < xL = xK = V
from (9) and (13) it follows that there exists a t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL = xK = Vt•τ = Vt•τ+1 = · · · , †

where t•τ might be infinity (i.e., t•τ = ∞). Hence Vt−1 < xL for t•τ ≥ t > 1 and Vt−1 = xL for t > t•τ . Thus, from
Corollary 14.2.1(p.96) (a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) = 0 (hence L (Vt−1) ≤ 0) for t > t•τ · · · ((14 )).

• Let b < 0 ((κ < 0)) . Then xL < xK from Lemma 14.2.4(p.97) (c ((d))). Since V1 < xL from (9) and since xL < xK ≤ V
from (b1), there exists t•τ such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · ,

hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Accordingly, from Corollary 14.2.1(p.96) (a) we have

L (Vt−1) > 0 for t•τ ≥ t > 1 and L (Vt−1) ≤ 0 for t > t•τ · · · ((15 )).

From (14) and (15) we have, whether b = 0 ((κ = 0)) or b < 0 ((κ < 0)) (or equivalently b ≤ 0 ((κ ≤ 0)) ),

L (Vt−1) > 0 · · · ((16 )) for t•τ ≥ t > 1,

L (Vt−1) ≤ 0 · · · ((17 )) for t > t•τ .

Accordingly, from (22.1.46(p.174) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1 due to (16) and Vt − βVt−1 = 0 for t > t•τ due to (17)

or equivalently

Vt > βVt−1 · · · ((18 )), t•τ ≥ t > 1, Vt = βVt−1 · · · ((19 )), t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since Vt > βVt−1 · · · ((20 )) for τ ≥ t > 1 due to (18) , for the same reason as in the proof of (b3i)

we have ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N. Hence (1) of S5 holds. Then, since (20) with τ = t•τ can be rewritten as
Vt > βVt−1 for t•τ ≥ t > 1, we have

Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((21 )).

2. Let τ > t•τ . Then Vt = βVt−1 for τ ≥ t > t•τ due to (19) , hence

Vτ = βVτ−1 = · · · = βτ−t•τVt•τ · · · ((22 )).

Hence, from (22) and (21) and from the fact that V1 ≥ βV0 due to (2) and (3) we obtain

Vτ = βVτ−1 = · · · = βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτ−1V1 ≥ βτV0,

so we have t∗τ = t•τ for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥. Then ConducttN for t•τ ≥ t > 1 due to (16) and (22.1.50(p.174) ). From

the above we see that (2) of S5 holds.

(c) Let V1 > xK · · · ((23 )).

(c1) Let β = 1 or V1 = 0.

(c1i) The same as Lemma 22.1.3(p.179) (b1).

(c1ii) Since Vτ = Vτ−1 = · · · = V1 for τ > 0 from (c1i), we have Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((24 )).

i. Let λmax{0, a− ρ} ≤ s. Then, from (2) and (24) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1,
i.e., • dOITdτ>1⟨0⟩ ∥.

†Since Vt ≤ V for any t > 0 due to (b1), if V ≤ Vt for a t, then V = Vt.



182

ii. Let λmax{0, a− ρ} > s. Then, from (3) and (24) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1,

i.e., } ndOITτ>1⟨1⟩ ∥ where Conduct1N from (4) .

(c2) Let β < 1 · · · ((25 )) and s = 0 ((s > 0)) .

(c2i) Let V1 > 0.

(c2i1) The former half is the same as Lemma 22.1.3(p.179) (b2). The latter half can be proven as follows. Note (23) , hence
V1 ≥ xK . Suppose Vt−1 ≥ xK . Then from (7.4.23(p.41) ) we have Vt ≥ K(Vt−1)+Vt−1 ≥ K(xK )+ xK due to Lemma 14.2.3(p.96) (e),
hence Vt ≥ xK since K(xK ) = 0. Accordingly, by induction Vt ≥ xK for t > 0, i.e., Vt is lower bounded in t. Hence Vt converges
to a finite V as t → ∞. Then, since V = max{K(V ) + V, βV } from (7.4.23(p.41) ), we have 0 = max{K(V ),−(1 − β)V }, hence
K(V ) ≤ 0, so V ≥ xK due to Lemma 14.2.3(p.96) (j1).

(c2i2) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((26 )) from Lemma 14.2.4(p.97) (c ((d))).

(c2i2i) Let V1 > xL · · · ((27 )), hence V1 ≥ xL . Suppose Vt−1 ≥ xL for all t > 1. Then, since L (Vt−1) ≤ 0 for t > 1 from

Corollary 14.2.1(p.96) (a), we have Vt − βVt−1 = 0 for t > 1 from (22.1.46(p.174) ), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1.
Accordingly, we have V = limt→∞ Vt = 0 < xK due to (25) and (26) , which contradicts V ≥ xK in (c2i1). Thus it is impossible
that xL ≤ Vt−1 for all t > 0. Accordingly, due to (27) and (c2i1) it follows that there exist t•τ and t◦τ (t•τ > t◦τ > 0) such that

V1 ≥ V2 ≥ · · · ≥ Vt◦τ−1 > xL = Vt◦τ = Vt◦τ+1 = · · · = Vt•τ−1 > Vt•τ ≥ Vt•τ+1 ≥ · · · .
Hence, we have

xL > Vt•τ , xL > Vt•τ+1, · · · ,

Vt◦τ = xL , Vt◦τ+1 = xL , · · · , Vt•τ−1 = xL ,

V1 > xL , V2 > xL , · · · , Vt◦τ−1 > xL ,

or equivalently

xL > Vt−1 · · · ((28 )), t > t•τ ,

Vt−1 = xL · · · ((29 )), t•τ ≥ t > t◦τ ,

Vt−1 > xL · · · ((30 )), t◦τ ≥ t > 1.

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, since Vt−1 ≥ xL for τ ≥ t > 1 from (29) and (30) , we have L (Vt−1) ≤ 0 · · · ((31 )) for τ ≥ t > 1 from

Corollary 14.2.1(p.96) (a), hence Vt − βVt−1 = 0 for τ ≥ t > 1 from (22.1.46(p.174) ), i.e., Vt = βVt−1 for τ ≥ t > 1, leading to
Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((32 )).

i. Let λmax{0, a − ρ} ≤ s. Then, from (2) and (32) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for
t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.

ii. Let λmax{0, a − ρ} > s. Then, from (3) and (32) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for

t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥ where Conduct1N from (4) .

Accordingly S6(1) holds. From (32) with τ = t•τ we have Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((33 )).

2. Let τ > t•τ . Then, since xL > Vt−1 for τ ≥ t > t•τ from (28) , due to Corollary 14.2.1(p.96) (a) we have L (Vt−1) > 0 · · · ((34 ))
for τ ≥ t > t•τ . Accordingly, from (22.1.46(p.174) ) we have Vt − βVt−1 > 0 for τ ≥ t > t•τ or equivalently Vt > βVt−1 for

τ ≥ t > t•τ , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ . From this and (33) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1. · · · ((35 )).

Since V1 ≥ βV0 due to (2) and (3) , from (35) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0.

Hence, we have t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, thus the former half of S6(2) holds. The latter half can be proven
as follows.

(i) If τ ≥ t > t•τ , then ConducttN from (34) and (22.1.50(p.174) ).

(ii) If t•τ ≥ t > t◦τ , then Vt−1 = xL from (29) , hence L (Vt−1) = L ( xL ) = 0, so Skipt△ from (22.1.49(p.174) ), implying that
we have C S t•τ≥t>t◦τ △ (see Figure 8.2.1(p.44) (II).

(iii) If t◦τ ≥ t > 1, then Vt−1 > xL from (30) , hence L (Vt−1) = ((<)) 0‡ from
Lemma 14.2.2(p.96) (d ((e1))); i.e., Skipt△ ((SkiptN)) due to (22.1.49(p.174) ) (((22.1.50(p.174) ))), implying that we have C S t◦τ≥t>1△
((C S t◦τ≥t>1)).

From the above results we see that the latter half of S6(2) holds.

‡If s = 0, then “= 0” , or else “< 0”.
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(c2i2ii) Let V1 = xL . Suppose Vt−1 = xL for all t > 1. Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have Vt−βVt−1 = 0
for all t > 1 from (22.1.46(p.174) ), i.e., Vt = βVt−1 for all t > 1, hence Vt = βt−1V1. Then V = limt→∞ Vt = 0 < xK due to (25)

and (26) , which contradicts V ≥ xK in (c2i1). Hence, since Vt−1 is not equal to xL for all t > 1, due to (c2i1) it follows that
there exists t•τ > 1 such that

V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

or equivalently Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Thus, due to Corollary 14.2.1(p.96) (a) we have

L (Vt−1) = L ( xL ) = 0 · · · ((36 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((37 )), t > t•τ .

Accordingly, we have:

1. Let t•τ ≥ τ > 1. Then, from (36) and (22.1.46(p.174) ) we have Vt − βVt−1 = 0 for τ ≥ t > 1 or equivalently Vt = βVt−1 for
τ ≥ t > 1, from which we have Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a− ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for t•τ ≥ τ > 1,
i.e., • dOITdt•τ≥τ>1⟨0⟩ ∥.

ii. Let λβmax{0, a− ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for t•τ ≥ τ > 1,

i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥. In addition, we have Conduct1N from (4) .

Accordingly, it follows that S7(1) holds.

2. Let τ > t•τ . Then L (Vt−1) > 0 · · · ((38 )) for τ ≥ t > t•τ from (37) , hence due to (22.1.46(p.174) ) we have Vt − βVt−1 > 0 for

τ ≥ t > t•τ or equivalently Vt > βVt−1 for τ ≥ t > t•τ , leading to Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((39 )). In addition, since

Vt − βVt−1 = 0 for t•τ ≥ t > 1 from (36) and (22.1.46(p.174) ), we have Vt = βVt−1 for t•τ ≥ t > 1, leading to

Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((40 )).

From (39) and (40) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1.

In addition, since V1 ≥ βτV0 from (2) and (3) , we eventually obtain

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0 · · · ((41 )).

Thus t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence the former half of S7(2) holds. Then, we have that ConducttN for

τ ≥ t > t•τ due to (38) and (22.1.50(p.174) ). Moreover, we have Skipt△ for t•τ ≥ t > 1 due to (36) and (22.1.49(p.174) ), so it
follows that we have pSKIPt△ for t•τ ≥ t > 1 (see Figure 8.2.1(p.44) )(II)) or equivalently pSKIPt•τ≥t>1△. Hence the latter half
of S7(2) holds.

(c2i2iii) Let V1 < xL . Then Vt−1 < xL for t > 1 due to (c2i1), hence L (Vt−1) > 0 · · · ((42 )) for t > 1 from Corol-

lary 14.2.1(p.96) (a). Accordingly, since L (Vt−1) > 0 · · · ((43 )) for τ ≥ t > 1, we have Vt − βVt−1 > 0 for τ ≥ t > 1 from

(22.1.46(p.174) ) or equivalently Vt > βVt−1 for τ ≥ t > 1, hence

Vτ > βVτ−1 > · · · > βτ−1V1.

Since V1 ≥ βV0 from (2) and (3) , we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0,

hence we have t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. In addition, we have ConducttN for τ ≥ t > 1 due to (43) and
(22.1.50(p.174) ).

(c2i3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((44 )) from Lemma 14.2.4(p.97) (c ((d))). Then, from (23) and (c2i1) we have

Vt−1 ≥ xK for all t > 1, hence Vt−1 ≥ xL for all t > 1 due to (44) , thus L (Vt−1) ≤ 0 for all t > 1 from Corollary 14.2.1(p.96) (a).
Then, since L (Vt−1) ≤ 0 for τ ≥ t > 1, we have Vt − βVt−1 = 0 for τ ≥ t > 1 from (22.1.46(p.174) ) or equivalently Vt = βVt−1 for
τ ≥ t > 1, hence

Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,

• dOITdτ>1⟨0⟩ ∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

} ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .
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(c2ii) Let V1 < 0.

(c2ii1) The same as the proof of (c2i1).

(c2ii2) Let b > 0 ((κ > 0)) , hence xL > xK > 0 · · · ((45 )) from Lemma 14.2.4(p.97) (c ((d))).

(c2ii2i) Let V1 ≥ xL . Then, since Vt−1 ≥ xL for t > 1 due to (c2ii1), we have L (Vt−1) ≤ 0 for t > 1 from Corol-
lary 14.2.1(p.96) (a), hence L (Vt−1) ≤ 0 for τ ≥ t > 1. Thus Vt − βVt−1 = 0 for τ ≥ t > 1 from (22.1.46(p.174) ), i.e., Vt = βVt−1 for
τ ≥ t > 1, so

Vτ = βVτ−1 = · · · = βτ−1V1.

i. Let λβmax{0, a − ρ} ≤ s. Then, from (2) we have Vτ = βVτ−1 = · · · = βτ−1V1 = βτV0 , hence t∗τ = 0 for τ > 1, i.e.,
dOITτ>1⟨0⟩∥.

ii. Let λβmax{0, a − ρ} > s. Then, from (3) we have Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0, hence t∗τ = 1 for τ > 1, i.e.,

} ndOITτ>1⟨1⟩ ∥. Then Conduct1N from (4) .

(c2ii2ii) Let V1 < xL . Suppose that there exists t′ > 1 such that xL ≤ Vt−1 for t > t′. Then, since L (Vt−1) ≤ 0 for t > t′

from Corollary 14.2.1(p.96) (a), we have Vt − βVt−1 = 0 for t > t′ due to (22.1.46(p.174) ), hence Vt = βVt−1 for t > t′, so

Vt = βVt−1 = β2Vt−2 = · · · = βt−t′Vt′ .

Accordingly V = limt→∞ Vt = 0 < xK due to (25) and (45) , which contradicts V ≥ xK in (c2ii1), hence it must be
that Vt−1 < xL for t > 1. Then, since Vt−1 < xL for τ ≥ t > 1, we have L (Vt−1) > 0 · · · ((46 )) for τ ≥ t > 1 from

Corollary 14.2.1(p.96) (a), hence Vt − βVt−1 > 0 for τ ≥ t > 1 from (22.1.46(p.174) ) or equivalently Vt > βVt−1 for τ ≥ t > 1, thus

Vτ > βVτ−1 > · · · > βτ−1V1.

Since V1 ≥ βV0 from (2) and (3) , we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N. From (46) and (22.1.50(p.174) ) we have ConducttN for τ ≥ t > 1.

(c2ii3) Let b ≤ 0 ((κ ≤ 0)) , hence xL ≤ xK · · · ((47 )) from Lemma 14.2.4(p.97) (c ((d))). Then, due to (23) and (c2ii1) we have

Vt−1 > xK for t > 1, hence Vt−1 > xL for t > 1 from (47) , thus L (Vt−1) ≤ 0 for t > 1 from Corollary 14.2.1(p.96) (a).
Accordingly, the assertion is true for the same reason as in the proof of (c2ii2i).

Corollary 22.1.10 Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let V1 ≤ xK . Then zt is nondecreasing in t > 0.

(b) Let V1 > xK .

1. Let β = 1 or V1 = 0. Then zt = z(V1) for t > 0.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let V1 > 0. Then zt is nonincreasing in t > 0.

ii. Let V1 < 0. Then zt is nondecreasing in t > 0.

• Proof Immediate from Tom 22.1.5(p.179) (b1,c1i,c2i1,c2ii1) and from (7.2.94(p.35) )
and Lemma 14.1.3(p.89) .

22.1.6.3 Market Restriction

22.1.6.3.1 Positive Restriction

22.1.6.3.1.1 Case of β = 1 and s = 0

� Pom 22.1.9 (A {M:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1 (
�� ��c s )

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Lemma 22.1.2(p.176) due to Lemma 18.4.4(p.118) .
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22.1.6.3.1.2 Case of β < 1 or s > 0

22.1.6.3.1.2.1 Case of ρ ≤ a⋆

� Pom 22.1.10 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s ≥ λβT (0). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.
i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s > λβT (0). Then S3(p.163) ⃝s N } ∥ is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≥ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let s < λβT (0). Then S3(p.163) ⃝s N } ∥ is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a-c2ii) The same as Tom 22.1.5(p.176) (26.2.43-c2ii).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 22.1.5(p.176) .

(c4-c4ii2) The same as Tom 22.1.5(p.176) (c3-c3ii2) with κ.

� Pom 22.1.11 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let s ≥ βµT (0). Then • dOITdτ ⟨0⟩ ∥.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a,b) The same as Tom 22.1.6(p.177) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 22.1.6(p.177) .

(d-d2) The same as Tom 22.1.6(p.177) (c1,c2) with κ.

� Pom 22.1.12 (A {M:2[P][A]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V as t→∞.
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2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < βµT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ △ where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V as t→∞.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0) and converges to a finite V as t→∞.

2. Let s ≥ βµT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < βµT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a-a3) The same as Tom 22.1.7(p.177) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only
(b1,b3i-b3iii) of Tom 22.1.7(p.177) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as Tom 22.1.7(p.177) (b1-b3iii) with κ.

(d-d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only (c1,c3) of Tom 22.1.7(p.177) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as Tom 22.1.7(p.177) (c1-c3) with κ.

22.1.6.3.1.2.2 Case of b ≤ ρ

� Pom 22.1.13 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let s > λβT (0). Then S3(p.163) ⃝s N } ∥ is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a-c2) The same as Tom 22.1.8(p.178) (a-c2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c3i) of Tom 22.1.8(p.178) .

(c4-c4ii) Let β < 1 and s > 0. Then, we have the same as Tom 22.1.8(p.178) (c3i,c3ii) with κ.

� Pom 22.1.14 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a,b) The same as Tom 22.1.9(p.178) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 22.1.9(p.178) .

(d-d2) Let β < 1 and s > 0. Then, we have the same as Tom 22.1.9(p.178) (c1,c2) with κ.

� Pom 22.1.15 (A {M:2[P][A]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.
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3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

3. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

4. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ > 0 and let s > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < λβT (0).

i. Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let xL < ρ. Then S4
sN •∥ c s△ c sN is true.

(d) Let β < 1 and ρ < 0 and let s = 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(e) Let β < 1 and ρ < 0 and let s > 0.

1. Vt is nondecreasing in t (τ ≥ t ≥ 0).

2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ ∥.

3. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a-a3) The same as Tom 22.1.10(p.178) (a-a3).

(b-b4) Let β < 1 and ρ > 0 and let s = 0. Then, due to (1) it suffices to consider only
(b1,b3i-b3iii) of Tom 22.1.10(p.178) .

(c-c3iii) Let β < 1 and ρ > 0 and let s > 0. Then, we have the same as
Tom 22.1.10(p.178) (b1-b3iii) with κ.

(d,d2) Let β < 1 and ρ < 0 and let s = 0. Then, due to (1) it suffices to consider only
(c1,c3) of Tom 22.1.10(p.178) .

(e-e3) Let β < 1 and ρ < 0 and let s > 0. Then, we have the same as
Tom 22.1.10(p.178) (c1-c3) with κ.

22.1.6.3.1.2.3 Case of a⋆ < ρ < b

� Pom 22.1.16 (A {M:2[P][A]+}) Suppose a > 0. Assume a⋆ ≤ ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let s ≥ λβT (0). Then S5
⃝s N } ∥ is true.

(c) Let V1 > xK .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true.

3. Let V1 = xL . Then S7
⃝s N } ∥ •∥ c s△ is true.
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4. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

3. Let β < 1 and s > 0.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 > xL . Then S6
⃝s N } ∥ •∥ c s△ c sN is true.

ii. Let V1 = xL . Then S7
⃝s N } ∥ •∥ c s△ is true.

iii. Let V1 < xL . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N
ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let s < λβT (0).

i. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < xL . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N.

3. Let s ≥ λβT (0). If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Here note κ = λβT (0)− s from (6.1.23(p.26) ).

(a-b3i) The same as Tom 22.1.5(p.179) (a-b3i).

(b3ii) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (b3ii1) of Tom 22.1.5(p.179) .

(b3iii-b3iii2) Let β < 1 and s > 0. Then, the two assertions are immediate from
Tom 22.1.5(p.179) (b3ii1,b3ii2) with κ.

(c-c1ii) The same as Tom 22.1.5(p.179) (c-c1ii).

(c2-c2i4) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only
(c2i-c2i1,c2i2i-c2i2iii) of Tom 22.1.5(p.179) .

(c2ii-c2ii3) Due to (1) it suffices to consider only
(c2ii,c2ii1,c2ii2i,c2ii2ii) of Tom 22.1.5(p.179) .

(c3-c3i3) Let β < 1 and s > 0. Then, we have the same as Tom 22.1.5(p.179) (c2-c2i1,c2i2i-c2i2iii) with κ.

(c3ii-c3ii3) We have the same as Tom 22.1.5(p.179) (c2ii-c2ii2ii) with κ.

22.1.6.3.2 Mixed Restriction

Omitted.

22.1.6.3.3 Negative Restriction

22.1.6.3.3.1 Case of β = 1 and s = 0

� Nem 22.1.5 (A {M:2[P][A]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and pSKIP1.

2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof The same as Lemma 22.1.2(p.176) due to Lemma 18.4.4(p.118) .

22.1.6.3.3.2 Case of β < 1 or s > 0

22.1.6.3.3.2.1 Case of ρ ≤ a⋆

� Nem 22.1.6 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1.
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i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N and Conductτ≥t>0N.

3. Let β < 1 and s = 0. Then we have S3(p.163) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then S3(p.163) ⃝s N } ∥ is true.

ii. Let (λβa− s)/δ > a⋆. Then S3(p.163) ⃝s N } ∥ is true.

• Proof Suppose b < 0, hence a < b < 0 · · · ((1)) and κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a). Then a⋆ < 0 · · · ((3)) due to

Lemma 14.2.1(p.93) (n) and (1) .

(a,c2ii) The same as Tom 22.1.5(p.176) (26.2.43,c2ii) due to Lemma 18.4.4(p.118) .

(c3) Let β < 1 and s = 0. Assume (λβa− s)/δ ≤ a⋆. Then, since λβa/δ ≤ a⋆, we have λβa ≤ δa⋆ due to (11.2.2 (1) (p.56) ),
hence λβa ≤ δa⋆ ≤ λa⋆ due to (11.2.2 (1) (p.56) ) and (3) , so that βa ≤ a⋆, which contradicts [19(p.118) ]. Thus, it must be that
(λβa− s)/δ > a⋆. From this it suffices to consider only (c3ii2) of Tom 22.1.5(p.176) .

(c4-c4ii) Let β < 1 and s > 0. Then κ < 0 due to (2) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 22.1.5(p.176) with κ.

� Nem 22.1.7 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a) The same as Tom 22.1.6(p.177) (a).

(b) Let β = 1. Then, the assertion is the same as Tom 22.1.6(p.177) (b). Let β < 1. If s = 0, then due to (1) it suffices to
consider only (c2) of Tom 22.1.6(p.177) and if s > 0, then κ < 0 due to (2) , hence it suffices to consider only (c2) of Tom 22.1.6(p.177) ;
accordingly, whether s = 0 or s > 0, we have the same result. Thus, whether β = 1 or β < 1, it eventually follows that we have
the same result.

� Nem 22.1.8 (A {M:2[P][A]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITd1⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0, hence κ = −s · · · ((1)) from Lemma 14.2.6(p.97) (a).

(a-a3) The same as Tom 22.1.7(p.177) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 22.1.7(p.177) (b1).

(b2) If s = 0, it suffices to consider only (b2) of Tom 22.1.7(p.177) and if s > 0, then κ < 0 due to (1) , hence it suffices to
consider only (b2) of Tom 22.1.7(p.177) . Accordingly, whether s = 0 or s > 0, it eventually follows that we have the same results.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 22.1.7(p.177) (c1).

(c2) If s = 0, it suffices to consider only (c2) of Tom 22.1.7(p.177) and if s > 0, then κ < 0 due to (1) , hence it suffices to
consider only (c2) of Tom 22.1.7(p.177) . Accordingly, whether s = 0 or s > 0, it eventually follows that we have the same results.

22.1.6.3.3.2.2 Case of b ≤ ρ

� Nem 22.1.9 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V ≥ xK as t→∞.
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(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1. Then S3(p.163) ⃝s N } ∥ is true.

• Proof Suppose b < 0. Then κ = −s · · · ((1)) from Lemma 14.2.6(p.97) (a).

(a-c2) The same as Tom 22.1.8(p.178) (a-c2).

(c3) Let β < 1. If s = 0, it suffices to consider only (c3ii) of Tom 22.1.8(p.178) and if s > 0, then κ < 0 due to (1) , hence it
suffices to consider only (c3ii) of Tom 22.1.8(p.178) . Accordingly, whether s = 0 or s > 0, it eventually follows that we have the
same results.

� Nem 22.1.10 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt is nondecreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0. Then κ = −s · · · ((1)) from Lemma 14.2.6(p.97) (a).

(a) The same as Tom 22.1.9(p.178) (a).

(b) First, let β = 1. Then, the assertion is the same as Tom 22.1.9(p.178) (b). Next, let β < 1. If s = 0, then it suffices to
consider only (c2) of Tom 22.1.9(p.178) and if s > 0, then κ < 0 due to (1) , hence it suffices to consider only (c2) of Tom 22.1.9(p.178) .
Thus, whether s = 0 or s > 0, we have the same results. Accordingly, whether β = 1 or β < 1, it eventually follows that we
have the same result.

� Nem 22.1.11 (A {M:2[P][A]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let xL > ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have • dOITd1⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. We have Then • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a-a3) The same as Tom 22.1.10(p.178) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Tom 22.1.10(p.178) (b1).

(b2) If s = 0, then it suffices to consider only (b2) of Tom 22.1.10(p.178) and if s > 0, then κ < 0 due to (2) , hence it suffices
to consider only (b2) of Tom 22.1.10(p.178) . Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.

(c) Let β < 1 and ρ < 0.

(c1) The same as Tom 22.1.10(p.178) (c1).

(c2) If s = 0, then it suffices to consider only (c2) of Tom 22.1.10(p.178) and if s > 0, then κ < 0 due to (2) , hence it suffices
to consider only (c2) of Tom 22.1.10(p.178) . Thus, whether s = 0 or s > 0, it eventually follows that we have the same result.

22.1.6.3.3.2.3 Case of a⋆ < ρ < b

� Nem 22.1.12 (A {M:2[P][A]−}) Suppose b < 0. Assume a⋆ ≤ ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. Let V1 ≥ xL . Then, if λβmax{0, a− ρ} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 < xL .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1. Then S5
⃝s N } ∥ is true.

(c) Let V1 > xK .
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1. Let β = 1 or V1 = 0. Then:

i. Vt = V1 for t > 0.

ii. If λmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1.

i. Let V1 > 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 < 0.

1. Then Vt is nondecreasing in t ≥ 0 and converges to a finite V ≥ xK as t→∞.

2. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a-b3i) The same as Tom 22.1.5(p.179) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii2) of Tom 22.1.5(p.179) and if s > 0, then κ < 0
due to (2) , hence it suffices to consider only (b3ii2) of Tom 22.1.5(p.179) with κ. Accordingly, whether s = 0 or s > 0, we have the
same result.

(c) Let V1 > xK .

(c1-c1ii) The same as Tom 22.1.5(p.179) (c1-c1ii).

(c2) Let β < 1.

(c2i) Let V1 > 0.

(c2i1) The same as Tom 22.1.5(p.179) (c2i1).

(c2i2) If s = 0, then it suffices to consider only (c2i3) of Tom 22.1.5(p.179) and if s > 0, then κ < 0 due to (2) , hence it suffices
to consider only (c2i3) of Tom 22.1.5(p.179) . Consequently, whether s = 0 or s > 0, we have the same result.

(c2ii) Let V1 < 0.

(c2ii1) The same as Tom 22.1.5(p.179) (c2ii1).

(c2ii2) If s = 0, then it suffices to consider only (c2ii3) of Tom 22.1.5(p.179) and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c2ii3) of Tom 22.1.5(p.179) . Consequently, whether s = 0 or s > 0, we have the same result.

22.1.7 M̃:2[P][A]
22.1.7.1 Preliminary

Since Theorem 22.1.3(p.159) holds due to Lemma 22.1.1(p.159) (b), we can derive A {M̃:2[P][A]} by applying SP→P̃ (see (20.0.3(p.136) ))
to A {M:2[P][A]}.

22.1.7.2 Analysis

22.1.7.2.1 Case of β = 1 and s = 0

�� Tom 22.1.11 (A {M̃:2[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N and pSKIP1△.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Lemma 22.1.2(p.176) .

Corollary 22.1.11 Let β = 1 and s = 0. Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.11(p.191) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

22.1.7.2.2 Case of β < 1 or s > 0

22.1.7.2.2.1 Case of ρ ≥ b⋆†

�� Tom 22.1.12 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

†The condition of ρ ≥ b⋆ is what results from applying SP→P̃ to the condition ρ ≤ a⋆in Section 22.1.6.2.2.1(p.176) .
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2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)).

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1.
i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1.

i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)). Then S3(p.163) ⃝s N } ∥ is true.

ii. Let (λβb+ s)/δ < b⋆.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

2. Let a > 0 ((κ̃ > 0)). Then S3(p.163) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.5(p.176) .

Corollary 22.1.12 Assume ρ ≥ b⋆, let β < 1 or s > 0, and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.12(p.191) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.1.13 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, for a given starting time τ > 0:

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Clear from applying SP→P̃ to Tom 22.1.6(p.177) .

Corollary 22.1.13 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.1.13(p.192) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.1.14 (A {M̃:2[P][A]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let ρ < x
L̃ . Then S4

sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.7(p.177) .

Corollary 22.1.14 Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt is constant in t (zt = z(ρ) for t ≥ 0).

(b) Let β < 1 and ρ > 0. Then zt is nondecreasing in t ≥ 0 for any s ≥ 0.

(c) Let β < 1 and ρ < 0. Then zt is nonincreasing in t ≥ 0 for any s ≥ 0.

• Proof by symmetry Evident from Tom 22.1.14(p.192) (a1,b1,c1) and from (7.2.111(p.36) ) and
Lemma A3.3(p.306) .
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22.1.7.2.2.2 Case of a ≥ ρ†

�� Tom 22.1.15 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let a > 0 ((κ̃ > 0)) . Then S3(p.163) ⃝s N } ∥ is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.8(p.178) .

Corollary 22.1.15 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 22.1.15(p.193) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.1.16 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N and Conductτ≥t>0N.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.9(p.178) .

Corollary 22.1.16 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 22.1.16(p.193) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.1.17 (A {M̃:2[P][A]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)).

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)).

i. Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

ii. Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ where ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

iii. Let x
L̃ > ρ. Then S4

sN •∥ c s△ c sN is true.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)).

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ ∥.

3. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.10(p.178) .

Corollary 22.1.17 Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0. Then zt = z(ρ) for t ≥ 0.

(b) Let β < 1 and ρ > 0 and let s = 0 ((s > 0)). Then zt is nondecreasing in t ≥ 0.

(c) Let β < 1 and ρ < 0 and let s = 0 ((s > 0)). Then zt is nonincreasing in t ≥ 0.

• Proof Evident from Tom 22.1.17(p.193) (a1,b1,c1) and from (7.2.111(p.36) ) and
Lemma A3.3(p.306) .

†The condition of a ≥ ρ is what results from applying SP→P̃ to the condition of b ≤ ρ in Section 22.1.6.2.2.2(p.178) .
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22.1.7.2.2.3 Case of b⋆ > ρ > a†

Let us here note that (22.1.61(p.179) ) changes as follows.

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ.† (22.1.62)

�� Tom 22.1.18 (A {M̃:2[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmin{0, ρ− b} ≥ −s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 > x
L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then S5
⃝s N } ∥ is true.

(c) Let V1 < x
K̃ .

1. Let β = 1 or V1 = 0.

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 < x
L̃ . Then S6

⃝s N •∥ } ∥ c s△ c sN is true.

ii. Let V1 = x
L̃ . Then S7

⃝s N •∥ } ∥ c s△ is true.

iii. Let V1 > x
L̃ . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as τ →∞.

2. Let a < 0 ((κ̃ < 0)) . Then

i. Let V1 ≤ x
L̃ . If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > x
L̃ . Then ⃝s dOITsτ>⟨τ⟩ N where Conductτ≥t>1N.

3. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ−b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.1.5(p.179) .

Corollary 22.1.18 Assume b⋆ > ρ > a. Let β < 1 or s > 0:

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then

1. Let β = 1 or V1 = 0. Then zt is constant in t > 0 (zt = z(V1) for t > 0).

2. Let β < 1.

i. Let V1 < 0. Then zt is nondecreasing in t > 0 for any s ≥ 0.

ii. Let V1 > 0. Then zt is nonincreasing in t > 0 for any s ≥ 0.

• Proof Immediate from Tom 22.1.18(p.194) (b1,c1i,c2i1,c2ii1) and from (7.2.111(p.36) ) and
Lemma A3.3(p.306) .

†The condition of b⋆ > ρ > a is what results from applying SP→P̃ to the condition of a⋆ < ρ < b in Section 22.1.6.2.2.3(p.179) .
†

−V̂1 = max{λβmax{0,−â + ρ̂} − s, 0} − βρ̂ (apply the reflection to (22.1.61(p.179) ))

V̂1 = −max{λβmax{0,−â + ρ̂} − s, 0}+ βρ̂ (multiply the above by −1)

= min{−λβmax{0,−â + ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

= min{λβmin{0, â− ρ̂}+ s, 0}+ βρ̂ (arrangement the above)

V̂1 = min{λβmin{0, b̌− ρ̂}+ s, 0}+ βρ̂ (apply IR to the above)

V̂1 = min{λβmin{0, b− ρ̂}+ s, 0}+ βρ̂ (apply CR to the above)

V1 = min{λβmin{0, b− ρ}+ s, 0}+ βρ (remove the hat symbol ˆ)

†See Remark 22.1.2(p.179) .



195

22.1.7.3 Market Restriction

22.1.7.3.1 Positive Restriction

22.1.7.3.1.1 Case of β = 1 and s = 0

� Pom 22.1.17 (A {M̃:2[P][A]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N and C S 1△.

2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.5(p.188) (see
(19.3.10(p.134) )).

• Direct proof The same as Tom 22.1.11(p.191) due to Lemma 18.4.4(p.118) .

22.1.7.3.1.2 Case of β < 1 or s > 0

22.1.7.3.1.2.1 Case of ρ ≥ b⋆

� Pom 22.1.18 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1 and s > 0. Then we have S3(p.163) ⃝s N } ∥ .

4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let λ < 1. Then S3(p.163) ⃝s N } ∥ is true.

ii. Let (λβb+ s)/δ < b⋆. Then S3(p.163) ⃝s N } ∥ is true.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.6(p.188) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)) and b⋆ > 0 · · · ((3)) from Lemma 15.6.1(p.107) (n) and (2) . Then we

have κ̃ = s · · · ((4)) from Lemma 15.6.6(p.108) (a).

(a-c2ii) The same as Tom 22.1.12(p.191) (a-c2ii).

(c3) Let β < 1 and s = 0. Assume (λβb+ s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from (11.2.2 (1) (p.56) ), hence
λβb ≥ δb⋆ ≥ λb⋆ due to (3) , so that βb ≥ b⋆, which contradicts [7(p.118) ]. Thus it must be that (λβb + s)/δ < b⋆. From this it
suffices to consider only (c3ii2) of Tom 22.1.12(p.191) .

(c4-c4ii) Let β < 1 and s > 0. Then κ > 0 due (2) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 22.1.12(p.191) ; accordingly, whether s = 0 or s > 0, we have the same result.

� Pom 22.1.19 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.7(p.189) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0. Then κ̃ = s · · · ((1)) from Lemma 15.6.6(p.108) (a).

(a) The same as Tom 22.1.13(p.192) (a).

(b) Let β = 1. Then, we have • dOITdτ>0⟨0⟩ ∥ from Tom 22.1.13(p.192) (b). Let β < 1. Then, if s = 0, it suffices to consider

only (c2) of Tom 22.1.13(p.192) and if s > 0, then κ̃ > 0 due to (1) , hence it suffices to consider only (c2) of Tom 22.1.13(p.192) ;
accordingly, whether s = 0 or s > 0, we have the same results. Therefore, whether β = 1 or β < 1, we have the same result.
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� Pom 22.1.20 (A {M̃:2[P][A]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.

2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.8(p.189) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a-a3) The same as Tom 22.1.14(p.192) (a-a3).

(b-b2) Let β < 1 and ρ > 0. First, we have the same as Pom 22.1.14(b1). Next, if s = 0, then due to (1) it suffices to
consider only (b2) of Tom 22.1.14(p.192) and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (b2) of Tom 22.1.14(p.192) .
Thus, whether s = 0 or s > 0, we have the same result.

(c-c2) Let β < 1 and ρ < 0. First, we have the same as Pom 22.1.14(c1). Next, if s = 0, then due to (1) it suffices to consider
only (c2) of Tom 22.1.14(p.192) and if s > 0, then since κ̃ > 0 from (2) , it suffices to consider only (c2) of Tom 22.1.14(p.192) . Thus,
whether s = 0 or s > 0, we have the same result.

22.1.7.3.1.2.2 Case of a ≥ ρ

� Pom 22.1.21 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>0N.

3. Let β < 1. Then S3(p.163) ⃝s N } ∥ is true.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.9(p.189) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a-c2) The same as Tom 22.1.15(p.193) (a-c2).

(c3) Let β < 1. Then, if s = 0, then due to (1) it suffices to consider only (c3ii) of Tom 22.1.15(p.193) and if s > 0, then κ̃ > 0
due to (2) , hence it suffices to consider only (c3ii) of Tom 22.1.15(p.193) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 22.1.22 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0, and let ρ = x
K̃ .

(a) Vt is nonincreasing in t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.10(p.190) (see
(22.1.32(p.162) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a) The same as Tom 22.1.16(p.193) (a).

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥ from Tom 22.1.16(p.193) (b). Let β < 1. Then, if s = 0, then due to (1) it suffices

to consider only (c2) of Tom 22.1.16(p.193) , and if s > 0, then κ̃ ≥ 0 due to (2) , hence it suffices to consider only (c2) of
Tom 22.1.16(p.193) with κ̃; accordingly, whether s = 0 or s > 0, we have • dOITdτ>0⟨0⟩ ∥. Thus, whether β = 1 or β < 1, we have

• dOITdτ>0⟨0⟩ ∥.

� Pom 22.1.23 (A {M̃:2[P][A]+}) Suppose a > 0. Assume a > ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Let β = 1 or ρ = 0.

1. Vt = ρ for t ≥ 0.
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2. Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

3. Let x
L̃ < ρ. Then ⃝s dOITsτ>0⟨τ⟩ N where Conductτ≥t>0N.

(b) Let β < 1 and ρ > 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and ρ < 0.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.11(p.190) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0. Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a-a3) The same as Tom 22.1.17(p.193) (a-a3).

(b) Let β < 1 and ρ > 0.

(b1) The same as Pom 22.1.17(b1).

(b2) If s = 0, then due to (1) it suffices to consider only (b2) of Tom 22.1.17(p.193) and if s > 0, then κ̃ > 0 from (2) , hence
it suffices to consider only (b2) of Tom 22.1.17(p.193) . Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Pom c1(b1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.1.17(p.193) and if s > 0, then κ̃ > 0 from (2) , hence it
suffices to consider only (c2) of Tom 22.1.17(p.193) . Thus, whether s = 0 or s > 0, we have the same result.

22.1.7.3.1.2.3 Case of b⋆ > ρ > b

� Pom 22.1.24 (A {M̃:2[P][A]+}) Suppose a > 0. Assume b⋆ > ρ > b. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ ∥, or else ⃝s dOITs1⟨1⟩ N where Conduct1N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . Then, if λβmax{0, ρ− b} ≤ s, we have • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

3. Let V1 > x
L̃ .

i. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let β < 1. Then S5
⃝s N } ∥ is true.

(c) Let V1 < x
K̃ .

1. Let β = 1 or V1 = 0. Then:

i. Vt = V1 for t > 0.

ii. If λmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

2. Let β < 1 and s = 0 ((s > 0)) .†

i. Let V1 < 0.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

ii. Let V1 > 0.

1. Then Vt is nonincreasing in t ≥ 0 and converges to a finite V ≤ x
K̃ as t→∞ where V = x

K̃ if the immediate
initiation is strictly optimal for any τ ≫ 0.

2. If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ ∥, or else } ndOITτ>1⟨1⟩ ∥ where Conduct1N.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.1.12(p.190) (see
(19.3.10(p.134) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a-b3i) The same as Tom 22.1.18(p.194) (a-b3i).

(b3ii) Let β < 1. If s = 0, due to (1) it suffices to consider only (b3ii2) of Tom 22.1.18(p.194) and if s > 0, then κ̃ > 0 due to
(2) , hence it suffices to consider only (b3ii2) of Tom 22.1.18(p.194) . Accordingly, whether s = 0 or s > 0, we have the same result.

(c) Let V1 < x
K̃ .

(c1-c1ii) The same as Tom 22.1.18(p.194) (c1-c1ii).

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i,c2i1) The same as Tom 22.1.18(p.194) (c2i,c2i1).

(c2i2) The same as Tom 22.1.18(p.194) (23.3.2).

†See Remark 22.1.2(p.179) .
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(c2ii,c2ii1) The same as Tom 22.1.18(p.194) (c2ii,c2ii1).

(c2ii2) If s = 0, then due to (1) it suffices to consider only (c2ii3) of Tom 22.1.18(p.194) and if s > 0, then κ̃ > 0 due to (2) ,
hence t suffices to consider only (c2ii3) of Tom 22.1.18(p.194) . Thus, whether s = 0 or s > 0, we have the same result.

22.1.7.3.1.2.4 Mixed Restriction

Omitted.

22.1.7.3.1.2.5 Negative Restriction

Unnecessary.

22.1.8 Numerical Calculation

Numerical Example 5 (A {M:2[R][A]+} (selling model)

This is the example for c sN of S4
sN •∥ c s△ c sN in Pom 22.1.4(p.169) (c3iii) in which a > 0, ρ > xK , β < 1, ρ > 0, s > 0, and

xL < ρ. As an example let a = 0.01, b = 1.00, λ = 0.7, β = 0.98, s = 0.1, and ρ = 0.5where xL = 0.462767.† The graph
below is for Itτ = βτ−tVt, τ = 1, 2, · · · , 15 and t = 0, 1, · · · , τ , where • represents the optimal initiating time (OIT) for each
τ = 1, 2, · · · , 15 (see t∗τ - column in the table below).

1. Since ∆βV1 = ∆βV2 = ∆βV3 = ∆βV4 = 0 (see ∆βVt-column in the table below), we have V4 = βV3, V3 = βV2, V2 = βV1, and
V1 = βV0, implying that it becomes indifferent to skip the search up to the deadline td = 0 on t = 4, 3, 2, 1 (see Preference
Rule 8.2.1(p.45) ), i.e., • dOITdτ=4,3,2,1⟨0⟩ N. On the other hand, since L (Vt−1) < 0 for 1 ≤ t ≤ 4 (see L (Vt−1)-column in the
table below), it follows that it is strictly optimal to skip the search up to the deadline 0 (see (22.1.44(p.162) )) for 1 ≤ t ≤ τ = 4,
i.e., • dOITdτ=4,3,2,1⟨0⟩ N. Although the above two results “indifferent” and “strictly optimal” seem to contradict each other
at a glance, it is what is caused by the jumble of intuition and theory (see Alice 1(p.44) ).

2. Each of the graphs for τ = 6, 7, · · · , 15 shows that the optimal initiating time is strictly, i.e., ⃝s dOITs6≤τ≤15⟨τ⟩ N, meaning
that the immediate initiation is strictly optimal and that conducting the search is strictly optimal at time t = 6, 7, · · · , 15
(ConductN) and skipping the search becomes strictly optimal at time t = 5, 4, 3, 2, 1 after that (see L (Vt−1)-column in the
table below), implying that we have C S N (see Remark 8.2.1(p.44) ) occurs.
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t Vt ∆βVt = Vt − βVt−1 t∗τ L (Vτ−1)

0 0.5000000
1 0.4900000 0.0000000 0 −0.0133838 (SKIPN )
2 0.4802000 0.0000000 0 −0.0098846 (SKIPN )
3 0.4705960 0.0000000 0 −0.0063880 (SKIPN )
4 0.4611841 0.0000000 0 −0.0028969 (SKIPN )

5 0.4525469 +0.0005865 5 +0.0005865 (ConductN)
6 0.4473331 +0.0038371 6 +0.0038371 (ConductN)
7 0.4442109 +0.0058244 7 +0.0058244 (ConductN)
8 0.4423501 +0.0070235 8 +0.0070235 (ConductN)
9 0.4412444 +0.0077413 9 +0.0077413 (ConductN)
10 0.4405885 +0.0081690 10 +0.0081690 (ConductN)
11 0.4401998 +0.0084231 11 +0.0084231 (ConductN)
12 0.4399696 +0.0085738 12 +0.0085738 (ConductN)
13 0.4398333 +0.0086631 13 +0.0086631 (ConductN)
14 0.4397527 +0.0087160 14 +0.0087160 (ConductN)
15 0.4397049 +0.0087473 15 +0.0087473 (ConductN)

Figure 22.1.1: Graphs of Itτ = βτ−tVt (15 ≥ τ > 1, τ ≥ t > 0)

22.1.9 Conclusion 3 (Search-Allowed-Model 2)

C1. Mental Conflict

On F+, we have:

a. Let β = 1 and s = 0.

1. The opt-R-price Vt in M:2[R][A] (selling model) is nondecreasing in t N
a

as in Figure 8.4.1(p.48) (I), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

2. The opt-P-price zt in M:2[P][A] (selling model) is nondecreasing in t N
b

as in Figure 8.4.1(p.48) (I), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

3. The opt-R-price Vt in M̃:2[R][A] (buying model) is nonincreasing in t H
c

as in Figure 8.4.1(p.48) (II), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

4. The opt-P-price zt in M̃:2[P][A] (buying model) is nonincreasing in t H
d

as in Figure 8.4.1(p.48) (II), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

· Na ← Tom’s 22.1.1(p.163) (a).

· Nb ← Corollaries 22.1.3(p.176) .
· Hc ← Tom’s 22.1.1(p.171) (a).

· Hd ← Corollaries 22.1.11(p.191) .

b. Let β < 1 or s > 0.

†Note that a = 0.01 > 0, ρ = 0.5 > 0, β = 0.98 < 1, and s = 0.1 > 0. In addition, since µ = (1.00 + 0.01)/2 = 0.505, we have
λβµ = 0.34643 > 0.1 = s. Furthermore, we have xL = 0.4627674 < 0.5 = ρ. Thus the condition of the assertion is satisfied.
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1. The opt-R-price Vt in M:2[R][A] (selling model) is nondecreasing Na , constant ∥a , or nonincreasing in t H
a

as in Fig-
ure 8.4.2(p.48) (I), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

2. The opt-P-price zt in M:2[P][A] (selling model) is nondecreasing Nb , constant ∥b , or nonincreasing in t H
b

as in
Figure 8.4.2(p.48) (I), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

3. The opt-R-price Vt in M̃:2[R][A] (buying model) is nondecreasing Nc , constant ∥c , or nonincreasing in t H
c

as in
Figure 8.4.2(p.48) (II), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

4. The opt-P-price zt in M̃:2[P][A] (buying model) is nondecreasing Nd , constant ∥d , or nonincreasing in t H
d

as in
Figure 8.4.2(p.48) (II), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

· Na ← 22.1.2(p.163) (a), 22.1.3(p.166) (a), 22.1.4(p.166) (c1).
∥a ← Tom 22.1.4(p.166) (a1)).
Ha ← Tom 22.1.4(p.166) (b1).

· Nb ← 22.1.4(p.177) , 22.1.5(p.177) ,22.1.6(p.177) (c),

22.1.7(p.178) , 22.1.8(p.178) , 22.1.9(p.178) (c), 22.1.10(p.184) (a,b2ii).
∥b ← Corollary 22.1.6(p.177) (a), 22.1.9(p.178) (a), 22.1.10(p.184) (b1).

Hb ← Corollaries 22.1.6(p.177) (b), 22.1.9(p.178) (b), 22.1.10(p.184) (b2i).

· Nc ← Tom 22.1.4(p.172) (b1).
∥c ← Tom 22.1.4(p.172) (a1).
Hc ← 22.1.2(p.171) (a), 22.1.3(p.172) (a), 22.1.4(p.172) (c1).

· Nd ← Corollaries 22.1.14(p.192) (b), 22.1.17(p.193) (b),22.1.18(p.194) (b2i).
∥d ← Corollaries 22.1.17(p.193) (a), 22.1.18(p.194) (b1).

Hd ← 22.1.12(p.192) , 22.1.13(p.192) , 22.1.14(p.192) (c),

22.1.15(p.193) , 22.1.16(p.193) , 22.1.17(p.193) (c), 22.1.18(p.194) (a),b2ii).

The above results can be summarized as below.

A. If β = 1 and s = 0, then, on F+, whether selling problem or buying problem and whether R-mechanism-model or
P-mechanism-model, we have the normal mental conflict, which coincides with expectations in Examples 1.3.1(p.5) -
1.3.4(p.6) .

B. If β < 1 or s > 0, then, on F+, whether selling problem or buying problem and whether R-mechanism-model
or P-mechanism-model, we have the abnormal mental conflict, which does not coinside with expectations in Exam-
ples 1.3.1(p.5) - 1.3.4(p.6) .

C2. Symmetry

On F+, we have:

a. Let β = 1 and s = 0. Then we have:

Pom 22.1.5(p.173) ∼ Pom 22.1.1(p.168) (A {M̃:2[R][A]}+ ∼ A {M:2[R][A]}+),
Pom 22.1.17(p.195) ∼ Pom 22.1.9(p.184) (A {M̃:2[P][A]}+ ∼ A {M:2[P][A]}+).

b. Let β < 1 or s > 0. Then we have

Pom 22.1.6(p.173) |∼ Pom 22.1.2(p.168) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 22.1.7(p.173) |∼ Pom 22.1.3(p.169) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 22.1.8(p.173) |∼ Pom 22.1.4(p.169) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 22.1.18(p.195) |∼ Pom 22.1.10(p.185) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 22.1.19(p.195) |∼ Pom 22.1.11(p.185) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 22.1.20(p.196) |∼ Pom 22.1.12(p.185) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 22.1.21(p.196) |∼ Pom 22.1.13(p.186) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 22.1.22(p.196) |∼ Pom 22.1.14(p.186) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+),
Pom 22.1.23(p.196) |∼ Pom 22.1.15(p.186) (A {M̃:2[R][A]}+ |∼ A {M:2[R][A]}+),
Pom 22.1.24(p.197) |∼ Pom 22.1.16(p.187) (A {M̃:2[P][A]}+ |∼ A {M:2[P][A]}+).

The above results can be summarized as below.

A. Let β = 1 and s = 0. Then the symmetry is inherited.

B. Let β < 1 or s > 0. Then the symmetry collapses.
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C3. Analogy

On F+, for any β ≤ 1 and s ≥ 0 we have:

a. We have:

Pom 22.1.9(p.184) ◃▹| Pom 22.1.1(p.168) (A {M̃:2[R][A]}+ ◃▹| A {M:2[R][A]}+),
Pom 22.1.10(p.185) ◃▹| Pom 22.1.2(p.168) (A {M̃:2[P][A]}+ ◃▹| A {M:2[P][A]}+),
Pom 22.1.17(p.195) ◃▹| Pom 22.1.5(p.173) (A {M̃:2[R][A]}+ ◃▹| A {M:2[R][A]}+),
Pom 22.1.18(p.195) ◃▹| Pom 22.1.6(p.173) (A {M̃:2[P][A]}+ ◃▹| A {M:2[P][A]}+).

The above results can be summarized as below.

A. The analogy collapses.

C4. Optimal initiating time (OIT)

a. Let β = 1 and s = 0. Then, from

Pom 22.1.1(p.168) , Pom 22.1.5(p.173) , Pom 22.1.9(p.184) , Pom 22.1.17(p.195) ,

we have the following table:

Table 22.1.1: Possible OIT (β = 1 and s = 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

From the above table, we see that:

A. Only ⃝⃝s N and•dd ∥ are possible on F+.

b. Let β < 1 or s > 0. Then, from

Pom 22.1.2(p.168) , Pom 22.1.3(p.169) , Pom 22.1.4(p.169) , Pom 22.1.5(p.173) , Pom 22.1.6(p.173) ,

Pom 22.1.7(p.173) , Pom 22.1.8(p.173) , Pom 22.1.10(p.185) , Pom 22.1.11(p.185) , Pom 22.1.12(p.185) ,

Pom 22.1.13(p.186) , Pom 22.1.14(p.186) , Pom 22.1.15(p.186) , Pom 22.1.16(p.187) , Pom 22.1.19(p.195) ,

Pom 22.1.20(p.196) , Pom 22.1.21(p.196) , Pom 22.1.22(p.196) , Pom 22.1.23(p.196) , Pom 22.1.24(p.197) ,

we have the following table:

Table 22.1.2: Possible OIT (β < or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN

From the above table, we see that:

A. Only ⃝⃝s N,•dd ∥, and } ∥ is possible.
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The table below is the list of the occurrence percents ⃝⃝s , } , and•dd on F (See �� Tom 22.1.1(p.163) , Tom 22.1.2(p.163) ,
Tom 22.1.3(p.166) , Tom 22.1.4(p.166) , and Tom 22.1.5(p.179) ).

Table 22.1.3: Occurence percents of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
47.5%/ 29 21.3%/ 13 31.2%/ 19

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− × possible possible × × possible × ×

–%/ – 0.0%/ 0 47.5%/ 29 21.3%/ 13 0.0%/ 0 0.0%/ 0 31.2%/ 19 0.0%/ 0 0.0%/ 0

C5. Null-time-zone and deadline-engulfing

From Table 22.1.3(p.201) above we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 47.5%, 21.3%, and 31.2% respectively where

1. ⃝⃝s ∥ cannot be defined due to Remark 8.2.3(p.45) .

2. }∥ is possible (21.3%).

3. •dd∥ is possible (31.2%).

4. ⃝⃝s △ never occur (0.0%).

5. }△ never occur (0.0%).

6. •dd△ never occur (0.0%).

7. ⃝⃝s N is possible (47.5%).

8. } N never occurs (0.0%).

9. •dd N never occurs (0.0%).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 52.5% (= 21.3% + 31.2%).

B. }N strictly causing the null-time-zone is impossible (0.0%).

C. •ddN strictly causing the null-time-zone is impossible (0.0%), i.e., the deadline-engulfing is impossible.

C6. Diagonal Symmetry

Exercise 22.1.1 Confirm by yourself that the following relations hold in fact.
Pom 22.1.5(p.173) d-∼ Nem 22.1.1(p.170) (R-mechanism),

Pom 22.1.6(p.173) d-∼ Nem 22.1.2(p.170) (R-mechanism),

Pom 22.1.7(p.173) d-∼ Nem 22.1.3(p.171) (R-mechanism),

Pom 22.1.8(p.173) d-∼ Nem 22.1.4(p.171) (R-mechanism).

Pom 22.1.17(p.195) d-∼ Nem 22.1.5(p.188) (P-mechanism),

Pom 22.1.18(p.195) d-∼ Nem 22.1.6(p.188) (P-mechanism),

Pom 22.1.19(p.195) d-∼ Nem 22.1.7(p.189) (P-mechanism),

Pom 22.1.20(p.196) d-∼ Nem 22.1.8(p.189) (P-mechanism),

Pom 22.1.21(p.196) d-∼ Nem 22.1.9(p.189) (P-mechanism),

Pom 22.1.22(p.196) d-∼ Nem 22.1.10(p.190) (P-mechanism),

Pom 22.1.23(p.196) d-∼ Nem 22.1.11(p.190) (P-mechanism),

Pom 22.1.24(p.197) d-∼ Nem 22.1.12(p.190) (P-mechanism).

C7. C S On F+, we have (see (A5b(p.12) )):

Let β < 1 or s > 0. Then from Pom’s 22.1.4(p.169) , 22.1.12(p.185) , 22.1.15(p.186) , and 22.1.16(p.187) we have the following table:

Table 22.1.4: C S (β < 1 or s > 0)

A {M:2[R][A]+} A {M̃:2[R][A]+} A {M:2[P][A]+} A {M̃:2[P][A]+}

(a) C S△ ◦ ◦
(b) C SN ◦ ◦

a. C S △ occurs only for M:2[R][A]+ and M:2[P][A]+ (both are a selling model).

b. C S N occurs only for M:2[R][A]+ and M:2[P][A]+ (both are a selling model).

• Tom 22.1.4(p.166) (b3iii),

• Tom 22.1.5(p.179) (c2i2i),

• Tom 22.1.5(p.179) (c2i2ii).
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22.2 Search-Enforced-Model 2: Q{M:2[E]} = {M:2[R][E], M̃:2[R][E],M:2[P][E], M̃:2[P][E]}

22.2.1 Theorems

As ones corresponding to Theorems 21.2.1(p.142) , 21.2.2(p.142) , and 21.2.3(p.142) , let us consider here the following three theorems:

Theorem 22.2.1 (symmetry[R→ R])) Let A {M:2[R][E]} holds on P ×F . Then A {M̃:2[R][E]} holds on P ×F where

A {M̃:2[R][E]} = SR→R̃[A {M:2[R][E]}]. (22.2.1)

Theorem 22.2.2 (analogy[R→ P]) Let A {M:2[R][E]} holds on P ×F . Then A {M:2[P][E]} holds on P ×F where

A {M:2[P][E]} = AR→P[A {M:2[R][E]}]. (22.2.2)

Theorem 22.2.3 (symmetry[P→ P]) Let A {M:2[P][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = SP→P̃[A {M:2[P][E]}]. (22.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:2[R][E]} = SR→R̃[SOE{M:2[R][E]}], (22.2.4)

SOE{M:2[P][E]} = AR→P[SOE{M:2[R][E]}], (22.2.5)

SOE{M̃:2[P][E]} = SP→P̃[SOE{M:2[P][E]}], (22.2.6)

corresponding to (21.2.4(p.142) ), (21.2.5(p.142) ), and (21.2.6(p.142) ). Then, for the same reason as in Chap. 16(p.111) it can be shown
that the equality

SOE{M̃:2[P][A]} = A R̃→P̃[SOE{M̃:2[R][A]}] (22.2.7)

holds (corresponding to (21.2.7(p.142) )) and that we have the following theorem, corresponding to Theorem 21.2.4(p.142) .

Theorem 22.2.4 (analogy [R̃→ P̃]) Let A {M̃:2[R][E]} holds on P ×F . Then A {M̃:2[P][E]} holds on P ×F where

A {M̃:2[P][E]} = A R̃→P̃[A {M̃:2[R][E]}]. (22.2.8)

In fact, from the comparison of (I) and (II) and of (III) and (IV) in Table 7.4.4(p.41) it can be easily shown that (22.2.4(p.202) ) and
(22.2.6(p.202) ) hold; however, from the comparison of (I) and (III) in Table 7.4.4(p.41) we can immediately see that (22.2.5(p.202) )
does not always hold.

22.2.2 A Lemma

The following lemma provides the conditions on which whether each of Theorems 22.2.1(p.202) , 22.2.2(p.202) , and 22.2.3(p.202) holds
or not.

Lemma 22.2.1

(a) Theorem 22.2.1(p.202) always hold.

(b) Theorem 22.2.3(p.202) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 22.2.2(p.202) holds.

(d) Let a⋆ < ρ < b. Then Theorem 22.2.2(p.202) does not always hold.

• Proof (a,b) From the comparisons of (I) and (II) in Table 7.4.4(p.41) and that of (III) and (IV) in Table 7.4.4(p.41) we see that
(22.2.4(p.202) ) and (22.2.6(p.202) ) hold, hence Theorems 22.2.1(p.202) and 22.2.3 hold.

(c,d) From the comparison of (I) and (III) in Table 7.4.4(p.41) we see that (22.2.5(p.202) ) does not always hold, hence it
follows that Theorem 22.2.2(p.202) does not always hold. The proofs for the two assertions (c,d) are the same as those of
Lemma 22.1.1(p.159) (c,d).

22.2.3 Diagonal Symmetry

For quite the same reason as in Model 1 (see Chap. 19(p.129) ) one sees that the diagonal symmetry holds also for Model 2.

� Model with R-mechanism Then we have:

A {M̃:2[R][E]}− = SR→R̃[A {M:2[R][E]+}], (22.2.9)

A {M̃:2[R][E]}± = SR→R̃[A {M:2[R][E]±}], (22.2.10)

A {M̃:2[R][E]}+ = SR→R̃[A {M:2[R][E]−}], (22.2.11)

A {M:2[P][R]}+ = S R̃→R[A {M̃:2[R][A]−}], (22.2.12)

A {M:2[P][R]}± = S R̃→R[A {M̃:2[R][A]±}], (22.2.13)

A {M:2[P][R]}− = S R̃→R[A {M̃:2[R][A]+}]. (22.2.14)

Hence we have the following corollary.
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Corollary 22.2.1 We have :

A {M̃:2[R][E]}+ d-∼ A {M:2[R][E]−} (see (22.1.21(p.162) ) and (22.1.24(p.162) )), (22.2.15)

A {M̃:2[R][E]}± ∼ A {M:2[R][E]±} (see (22.1.22(p.162) ) and (22.1.25(p.162) )), (22.2.16)

A {M̃:2[R][E]}− d-∼ A {M:2[R][E]+} (see (22.1.23(p.162) ) and (22.1.26(p.162) )). (22.2.17)

� Model with P-mechanism. In this model we have;

A {M̃:2[P][E]}− = SR→R̃[A {M:2[P][E]+}], (22.2.18)

A {M̃:2[P][E]}± = SR→R̃[A {M:2[P][E]±}], (22.2.19)

A {M̃:2[P][E]}+ = SR→R̃[A {M:2[P][E]−}], (22.2.20)

A {M:2[P][E]}+ = S R̃→R[A {M̃:2[P][E]−}], (22.2.21)

A {M:2[P][E]}± = S R̃→R[A {M̃:2[P][E]±}], (22.2.22)

A {M:2[P][E]}− = S R̃→R[A {M̃:2[P][E]+}]. (22.2.23)

Hence we have the following corollary.

Corollary 22.2.2 We have :

A {M̃:2[P][E]}+ d-∼ A {M:2[P][E]−} (see (22.1.21(p.162) ) and (22.1.24(p.162) )), (22.2.24)

A {M̃:2[P][E]}± ∼ A {M:2[P][E]±} (see (22.1.22(p.162) ) and (22.1.25(p.162) )), (22.2.25)

A {M̃:2[P][E]}− d-∼ A {M:2[P][E]+} (see (22.1.23(p.162) ) and (22.1.26(p.162) )). (22.2.26)

22.2.4 M:2[R][E]
22.2.4.1 Preliminary

From (7.4.28(p.41) ) and (6.1.8(p.25) ) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 0. (22.2.27)

22.2.4.2 Analysis

22.2.4.2.1 Case of β = 1 and s = 0

�� Tom 22.2.1 (A {M:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof Let β = 1 and s = 0. Then, since K (x) = λT (x) · · · ((1)) from (6.1.4(p.25) ), we have K (x) ≥ 0 · · · ((2)) for any x due to

Lemma 11.1.1(p.55) (g).

(a) From (7.4.28(p.41) ) and (2) we obtain Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then, since b ≤ V0 from (7.4.27(p.41) ), we have b ≤ Vt−1 for t > 0 from (a), hence L (Vt−1) = 0 for t > 0
from Lemma 11.2.1(p.57) (d), thus Vt = βVt−1 for t > 0 from (22.2.27(p.203) ). Then, since Vt = βVt−1 for τ ≥ t > 0, we have
Vτ = βVτ−1 = β2Vτ−2 = · · · = βτV0 , hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ ∥ (see Preference Rule 8.2.1(p.45) ).

(c) Let ρ < b. Then V0 < b · · · ((3)) from (7.4.27(p.41) ). Let Vt−1 < b. Then, since Vt < K (b) + b from (7.4.28(p.41) ) and

Lemma 11.2.2(p.57) (h), we have Vt < βb−s = b from (11.2.7 (2) (p.57) ) and the assumptions “β = 1 and s = 0”. Hence, by induction
Vt−1 < b for t > 0, so L (Vt−1) > 0 for t > 0 from Lemma 11.2.1(p.57) (d). Accordingly, Vt−βVt−1 > 0 for t > 0 from (22.2.27(p.203) )
or equivalently Vt > βVt−1 for t > 0. Then, since Vt > βVt−1 for τ ≥ t > 0, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0,
hence t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

22.2.4.2.2 Case of β < 1 or s > 0

Let us define

S8
⃝s N } ∥ } △ } N = { For any τ > 0 there exists t•τ > 0 such that

(1) ⃝s dOITst•τ≥τ>0⟨τ⟩ N,

(2) } ndOITt•τ+1⟨t•τ ⟩ △,

(3) } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (( } ndOITτ>t•τ+1⟨t•τ ⟩ N)).
}.

Remark 22.2.1 S8 is the same as S2(p.143) except that the inequalities of τ > 1, t•τ > 1, and t•τ ≥ τ > 1 in S2 changes into
τ > 0, t > 0, and t•τ ≥ τ > 0 respectively in S8.
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�� Tom 22.2.2 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a < ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a < ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let ρ ≤ a.

1. Let (λµ− s)/λ ≤ a.
i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < ρ.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let b < 0 ((κ < 0)) . Then S8

⃝s N } ∥ } △ } N is true. 7→ →}N
ii. Let ρ ≤ a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true. 7→ →}N

2. Let (λβµ− s)/δ > a.
i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N
ii. Let b < 0 ((κ < 0)) . Then S8

⃝s N } ∥ } △ } N is true. 7→ →}N
• Proof Let β < 1 or s > 0 and let ρ < xK · · · ((1)). Then V0 < xK · · · ((2)) from (7.4.27(p.41) ) and K (ρ) > 0 due to

Lemma 11.2.2(p.57) (j1). Since V1 = K (ρ) + ρ · · · ((3)) from (7.4.28(p.41) ) with t = 1, we have V1 − V0 = V1 − ρ = K (ρ) > 0,

hence V1 > V0 · · · ((4)).

(a) Note (4) , hence V0 ≤ V1. Suppose Vt−1 ≤ Vt. Then, due to Lemma 11.2.2(p.57) (e) we have Vt ≤ K (Vt) + Vt = Vt+1 from
(7.4.28(p.41) ). Hence, by induction Vt ≥ Vt−1 for t > 0, i.e., Vt is nondecreasing in t ≥ 0. Note again (4) . Suppose Vt−1 < Vt. If
λ < 1, from Lemma 11.2.2(p.57) (f) we have Vt < K(Vt) + Vt = Vt+1. If a < ρ, then a < V0 from (7.4.27(p.41) ), hence a < Vt−1 for
t > 0 due to the nondecreasing of Vt, so from Lemma 11.2.2(p.57) (g) we have Vt < K(Vt) + Vt = Vt+1. Therefore, whether λ < 1
or a < ρ, by induction we have Vt−1 < Vt for t > 0, i.e., Vt is strictly increasing in t ≥ 0. Consider a sufficiently large M > 0
with ρ ≤ M and b ≤ M , hence from (7.4.27(p.41) ) we have V0 ≤ M . Suppose Vt−1 ≤ M . Then, from Lemma 11.2.2(p.57) (e) we
have Vt ≤ K(M)+M = βM − s due to (11.2.7 (2) (p.57) ), hence Vt ≤M due to the assumptions “β ≤ 1 and s ≥ 0”. Accordingly,
by induction Vt ≤M for t ≥ 0, i.e., Vt is upper bounded in t. Hence Vt converges to a finite V as t→∞. Thus V = K(V ) + V
from (7.4.28(p.41) ), hence K(V ) = 0, so V = xK due to Lemma 11.2.2(p.57) (j1).

(b) Let xL ≤ ρ. Then, since xL ≤ V0 from (7.4.27(p.41) ), we have xL ≤ Vt−1 for t > 0 due to (a), hence L (Vt−1) ≤ 0 for
t > 0 due to Corollary 11.2.1(p.57) (a), thus Vt − βVt−1 ≤ 0 for t > 0 from (22.2.27(p.203) ) or equivalently Vt ≤ βVt−1 for t > 0.
Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , hence t∗τ = 0 for τ > 0, i.e.,

• dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL · · · ((5)). Then V0 < xL · · · ((6)) from (7.4.27(p.41) ), hence L (V0) > 0 · · · ((7)) due to

Corollary 11.2.1(p.57) (a).

(c1) Since V1 − βV0 = L (V0) > 0 from (22.2.27(p.203) ) with t = 1 and (7) , we have V1 > βV0, hence t∗1 = 1, i.e.,
⃝s dOITs1⟨1⟩ N · · · ((8)). Below let τ > 1 · · · ((9)).

(c2) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then δ = λ from (11.2.1(p.56) ) and xL = xK · · · ((10 ))
from Lemma 11.2.3(p.58) (b), hence K ( xL ) = K (xK ) = 0 · · · ((11 )).

(c2i) Let a < ρ. Then a < V0 from (7.4.27(p.41) ), hence a < Vt−1 for t > 0 due to (a). Note (2) . Suppose Vt−1 < xK . Then,
from (7.4.28(p.41) ) and Lemma 11.2.2(p.57) (g) we have Vt < K (xK )+ xK = xK . Hence, by induction Vt−1 < xK for t > 0. Then,
since Vt−1 < xL for t > 0 due to (10) , we have L (Vt−1) > 0 for t > 0 from Lemma 11.2.1(p.57) (e1), hence for the same reason
as in the proof of Tom 22.2.1(p.203) (c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii) Let ρ ≤ a, hence V0 ≤ a · · · ((12 )) from (7.4.27(p.41) ). Then, from (3) and (11.2.7 (1) (p.57) ) we have V1 = λµ−s+(1−λ)ρ.

(c2ii1) Let (λµ − s)/λ ≤ a. Then xK = (λµ − s)/λ ≤ a · · · ((13 )) from Lemma 11.2.2(p.57) (j2). Hence K (a) ≤ 0 from

Lemma 11.2.2(p.57) (j1). Note (12) . Suppose Vt−1 ≤ a. Then, from (7.4.28(p.41) ) and Lemma 11.2.2(p.57) (e) we have Vt ≤ K (a)+a ≤
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a, hence by induction Vt−1 ≤ a for t > 0. Accordingly, from (7.4.28(p.41) ) and (11.2.7 (1) (p.57) ) we have Vt = λµ − s + (1 −
λ)Vt−1 · · · ((14 )) for t > 0.

(c2ii1i) Let λ = 1. Then, we have xK = µ − s from (13) and Vt = µ − s for t > 0 from (14) , hence Vt = xK for t > 0,
so Vt−1 = xK for t > 1. Accordingly, Vt−1 = xL for t > 1 due to (10) . Then L (Vt−1) = L ( xL ) = 0 for t > 1, hence
Vt − βVt−1 = 0 for t > 1 from (22.2.27(p.203) ) or equivalently Vt = βVt−1 for t > 1. Then, since Vt = βVt−1 for τ ≥ t > 1, we
have Vτ = βVτ−1 · · · = βτ−1V1 for τ > 1. From this and (4) we have Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 > βτV0, hence
t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ ∥.

(c2ii1ii) Let λ < 1. Note (6) . Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from Lemma 11.2.2(p.57) (f) and
(11) . Accordingly, by induction Vt−1 < xL for t > 0, hence L (Vt−1) > 0 for t > 0 from Lemma 11.2.1(p.57) (e1). Thus, for the
same reason as in the proof of Tom 22.2.1(p.203) (c) we have ⃝s dOITsτ>1⟨τ⟩ N.

(c2ii2) Let (λµ − s)/λ > a. Then xK > (λµ − s)/λ > a from Lemma 11.2.2(p.57) (j2), hence xL > a from (10) . Note (6) .
Suppose Vt−1 < xL . Then, we have Vt < K ( xL ) + xL = xL from
Lemma 11.2.2(p.57) (h) and (11) . Accordingly, by induction Vt−1 < xL · · · ((15 )) for t > 0, hence L (Vt−1) > 0 for t > 0 due to

Lemma 11.2.1(p.57) (e1). Consequently, for the same reason as in the proof of Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.
(c3) Let β < 1 and s = 0 ((s > 0)) .

(c3i) Let a < ρ · · · ((16 )). Then, since a < V0 from (7.4.27(p.41) ), we have a < Vt−1 for t > 0 due to (a).

(c3i1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((17 )) from Lemma 11.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK . Then,

from (7.4.28(p.41) ) and Lemma 11.2.2(p.57) (g) we have Vt < K (xK ) + xK = xK . Accordingly, by induction Vt−1 < xK for t > 0,
hence Vt−1 < xL for t > 0 due to (17) . Therefore, since L (Vt−1) > 0 for t > 0 from Corollary 11.2.1(p.57) (a), for the same reason
as in the proof of Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3i2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((18 )) from Lemma 11.2.3(p.58) (c ((d))). Note (6) . Suppose Vt−1 < xL for all

t > 0, hence V ≤ xL . Now, since V = xK due to (a), we have xL < V due to (18) , which is a contradiction. Hence, it is
impossible that Vt−1 < xL for all t > 0. In addition, from (6) and the strict increasingness of Vt due to (a), it follows that
there exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · .
from which we have

Vt−1 < xL , t•τ ≥ t > 0, xL ≤ Vt•τ , xL < Vt−1, t > t•τ + 1. (22.2.28)

Hence, we have

L (Vt−1) > 0 · · · ((19 )), t•τ ≥ t > 0 (due to Corollary 11.2.1(p.57) (a))

L (Vt•τ ) ≤ 0 · · · ((20 )), (due to Corollary 11.2.1(p.57) (a))

L (Vt−1) = ((< 0))† · · · ((21 )), t > t•τ + 1 (due to Lemma 11.2.1(p.57) (d((e1))))

• Let t•τ ≥ τ > 0. Then L (Vt−1) > 0 · · · ((22 )) for τ ≥ t > 0 from (19) . Hence, for the same reason as in

Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 0. Accordingly, S8(1) is true. Now, since Vt−βVt−1 > 0 for τ ≥ t > 0

from (22.2.27(p.203) ) and (22) , we have Vt > βVt−1 for τ ≥ t > 0, hence

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0.
Accordingly, when τ = t•τ , we have

Vt•τ > βVt•τ−1 > · · · > βt•τV0 · · · ((23 ))

• Let τ = t•τ + 1. From (22.2.27(p.203) ) with t = t•τ + 1 and (20) we have Vt•τ+1 − βVt•τ = L (t•τ ) ≤ 0, hence Vt•τ+1 ≤ βVt•τ .

Accordingly, from (23) we have

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τ+1V0 · · · ((24 )),

thus t∗t•τ+1 = t•τ , i.e., } ndOITt•τ+1⟨t•τ ⟩ △, so that S8(2) is true.

• Let τ > t•τ + 1. Since L (Vt•τ+1) = ((<)) 0 from (21) with t = t•τ + 2, we have Vt•τ+2 = ((<)) βVt•τ+1 from (22.2.27(p.203) ), hence

from (24) we have

Vt•τ+2 = ((<)) βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+2V0

Similarly we have

Vt•τ+3 = ((<)) βVt•τ+2 = ((<)) β2Vt•τ+1 ≤ β3Vt•τ
> β4Vt•τ−1 > · · · > βt•τ+3V0.

By repeating the same procedure, for τ = t•τ + 2, t•τ + 3, · · · we obtain

Vτ = ((<)) βVτ−1 = ((<)) · · · = ((<)) βτ−t•τ−2Vt•τ+2 = ((<))

βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0. · · · ((25 ))

†If s = 0, then L (Vt−1) = 0, or else L (Vt−1) < 0.
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◦ Let s = 0. Then (25) can be written as

Vτ = βVτ−1 = · · · = βτ−t•τ−2Vt•τ+2 = βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0,

hence t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t•τ ⟩ ∥ (see Preference Rule 8.2.1(p.45) ), hence S8(3) is true.

◦ Let s > 0. Then (25) can be written as

Vτ < βVτ−1 < · · · < βτ−t•τ−2Vt•τ+2 < βτ−t•τ−1Vt•τ+1 ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > · · · > βτV0, (22.2.29)

hence t∗τ = t•τ , i.e., } ndOITτ>t•τ+1⟨t◦⟩ N, hence S8(3) is true.

(c3ii) Let ρ ≤ a, hence V0 ≤ a from (7.4.27(p.41) ). Then, from (3) and (11.2.7 (1) (p.57) ) we have V1 = λβµ− s+ (1− λ)βρ.

(c3ii1) Let (λβµ− s)/δ ≤ a. Then xK = (λβµ− s)/δ ≤ a · · · ((26 )) from Lemma 11.2.2(p.57) (j2(p.58) ). Hence V1 = δ xK + (1−
λ)βρ · · · ((27 )).

(c3ii1i) Let λ = 1, hence δ = 1 from (11.2.1(p.56) ). Thus, from (26) and (27) we have xK = βµ − s ≤ a and V1 = xK ≤
a · · · ((28 )).

(c3ii1i1) Let b > 0 ((κ > 0)) . Then xL > xK · · · ((29 )) due to Lemma 11.2.3(p.58) (c ((d))). Note (28) . Suppose Vt−1 = xK .

Then, from (7.4.28(p.41) ) we have Vt = K (xK ) + xK = xK . Accordingly, by induction Vt−1 = xK for t > 1, hence Vt−1 < xL

for t > 1 due to (29) , thus L (Vt−1) > 0 for t > 1 from Corollary 11.2.1(p.57) (a). Hence, from (7) we obtain L (Vt−1) > 0 for
t > 0. Accordingly, for almost the same reason as in the proof of Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1i2) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 11.2.3(p.58) (c ((d))), we have V1 ≥ xL from (28) , hence
Vt−1 ≥ xL for t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 from Corollary 11.2.1(p.57) (a), we have L (Vt−1) ≤ 0
for τ ≥ t > 1, thus Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (22.2.27(p.203) ), i.e., Vt ≤ βVt−1 for τ ≥ t > 1. Hence Vτ ≤ βVτ−1 ≤
· · · ≤ βτ−1V1 · · · ((30 )). Now, from (7.4.27(p.41) ), (4) , (28) , and (29) we have ρ = V0 < V1 = xK < xL , hence L(ρ) > 0 from

Corollary 11.2.1(p.57) (a). In addition, from (3) and (7.4.27(p.41) ) we have V1−βV0 = V1−βρ = K(ρ)+ρ−βρ = K(ρ)+(1−β)ρ =
L(ρ) > 0 from (6.1.8(p.25) ), hence V1 > βV0. Accordingly, from (30) we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0 for
τ > 1, hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

(c3ii1ii) Let λ < 1.

(c3ii1ii1) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((31 )) from Lemma 11.2.3(p.58) (c ((d))). Note (2) . Suppose Vt−1 < xK .

Then, from Lemma 11.2.2(p.57) (f) we have Vt < K (xK ) + xK = xK . Hence, by induction Vt−1 < xK for t > 0, so Vt−1 < xL

for t > 0 due to (31) . Accordingly, since L (Vt−1) > 0 for t > 0 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof
of Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii1ii2) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((32 )) from Lemma 11.2.3(p.58) (c ((d))). Note (6) . Assume that Vt−1 < xL

for all t > 0, hence V ≤ xL due to (a). Now, since V = xK from (a), we have the contradiction xL < V from (32) . Hence, it
is impossible that Vt−1 < xL for all t > 0. From this and the strict increasingness of Vt due to (a), it follows that there exists
t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we have S8 ⃝s N } ∥ } △ } N .
(c3ii2) Let (λβµ− s)/δ > a · · · ((33 )). Then xK > (λβµ− s)/δ > a from Lemma 11.2.2(p.57) (j2).

1. Let λ < 1. Then Vt is strictly increasing in t ≥ 0 due to (a).

2. Let λ = 1, hence δ = 1 from (11.2.1(p.56) ), so βµ− s > a from (33) . Now K (x) ≥ βµ− s− x for any x from (11.2.4(p.57) ) or
equivalently K (x) + x ≥ βµ− s for any x, so V1 ≥ βµ− s > a from (3) . Accordingly Vt−1 > a for t > 1 due to (a). Note
(4) . Suppose Vt−1 < Vt. Then, from Lemma 11.2.2(p.57) (g) we have Vt < K (Vt) + Vt = Vt+1. Accordingly, by induction we
have Vt−1 < Vt for t > 0, i.e., Vt is strictly increasing in t ≥ 0.

From the above, whether λ < 1 or λ = 1, we see that Vt is strictly increasing in t > 0.

(c3ii2i) Let b ≥ 0 ((κ ≥ 0)) . Then xL ≥ xK · · · ((34 )) from Lemma 11.2.2(p.57) (c ((d))). From the above strict increasingness

of Vt in t ≥ 0 and (a) we have Vt−1 < V = xK for t > 0, hence Vt−1 < xL for t > 0 from (34) . Thus, since L (Vt−1) > 0 for
t > 0 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 22.2.1(p.203) (c) we obtain ⃝s dOITsτ>1⟨τ⟩ N.

(c3ii2ii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((35 )) from Lemma 11.2.3(p.58) (c ((d))). Note (6) . Suppose Vt−1 < xL for all

t > 0, hence V ≤ xL . Now, since V = xK from (a), we have xL < V from (35) , which is a contradiction. Accordingly, it is
impossible that Vt−1 < xL for all t > 0. From this, (6) , and the above strict increasingness of Vt in t ≥ 0 it follows that there
exists t•τ > 0 such that

V0 < V1 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · → xK .

Accordingly, for the same reason as in the proof of (c3i2) we can immediately see that the assertion holds true.
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�� Tom 22.2.3 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof Let β < 1 or s > 0 and let ρ = xK . Hence V0 = ρ = xK · · · ((1)) from (7.4.27(p.41) ).

(a) Note (1) . Suppose Vt−1 = xK . Then, from (7.4.28(p.41) ) we have Vt = K (xK ) + xK = xK . Hence, by induction
Vt = xK = ρ for t ≥ 0.

(b) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK from Lemma 11.2.3(p.58) (b).
Accordingly, since Vt−1 = xL for t > 0 from (a), we have L (Vt−1) = L ( xL ) = 0 for t > 0, hence for the same reason as in the
proof of Tom 22.2.1(p.203) (b) we obtain • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

(c1) Let b > 0 ((κ > 0)) . Then, since xL > xK from Lemma 11.2.3(p.58) (c ((d)), we have xL > xK = Vt−1 for t > 0 from
(a), hence L (Vt−1) > 0 for t > 0 due to Corollary 11.2.1(p.57) (a), thus for the same reason as in the proof of Tom 22.2.1(p.203) (c)
we obtain ⃝s dOITsτ>0⟨τ⟩ N.

(c2) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK from Lemma 11.2.3(p.58) (c ((d)). Hence, since xL ≤ xK = Vt−1 for t > 0 from (a),
we have L (Vt−1) ≤ 0 for t > 0 due to Corollary 11.2.1(p.57) (a), hence Vt − βVt−1 ≤ 0 for t > 0 from (22.2.27(p.203) ) or equivalently
Vt ≤ βVt−1 for t > 0. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 0, we have Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτV0 , thus t∗τ = 0
for τ > 0, i.e., dOITτ>0⟨0⟩△.

S9
⃝s △ •△ •N = { For any τ > 0 there exists t• > 0 such that

(1) • dOITdτ=1⟨0⟩ ∥ ( • dOITdτ=1⟨0⟩ N),

(2) ⃝s dOITsτ>t• ⟨τ⟩ △ or • dOITdτ>t• ⟨0⟩ △,

(3) • dOITdt•≥τ>1⟨0⟩ △ (( • dOITdt•≥τ>1⟨0⟩ N)).
}

�� Tom 22.2.4 (A {M:2[R][E]}) Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to a finite V = xK as to→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) . 7→ →•ddN
ii. Let b > 0 ((κ > 0)). Then S9

⃝s △ •△ •N is true. 7→ →•ddN
• Proof Let β < 1 or s > 0 and let ρ > xK . Then V0 > xK · · · ((1)) from (7.4.27(p.41) ) and K (ρ) < 0 · · · ((2)) from

Lemma 11.2.2(p.57) (j1). From (7.4.28(p.41) ) with t = 1 and from (7.4.27(p.41) ) we have V1 − V0 = K (V0) = K (ρ) < 0, hence
V1 < V0 · · · ((3)). In addition, from (22.2.27(p.203) ) with t = 1 we have V1 − βV0 = L (V0) = L (ρ) · · · ((4)) from (7.4.27(p.41) ).

(a) Note (3) , hence V0 ≥ V1. Suppose Vt−1 ≥ Vt. Then, from (7.4.28(p.41) ) and Lemma 11.2.2(p.57) (e) we have Vt ≥
K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 0, i.e., Vt is nonincreasing in t ≥ 0. Let λ < 1. Note again (3) .
Suppose Vt−1 > Vt. Then, from Lemma 11.2.2(p.57) (f) we have Vt > K (Vt) + Vt = Vt+1. Hence, by induction Vt−1 > Vt for
t > 0, i.e., Vt is strictly decreasing in t ≥ 0. Note (1) , hence V0 ≥ xK . Suppose Vt−1 ≥ xK . Then, from (7.4.28(p.41) ) and
Lemma 11.2.2(p.57) (e) we have Vt ≥ K (xK ) + xK = xK . Hence, by induction Vt−1 ≥ xK · · · ((5)) for t > 0, i.e., Vt is lower

bounded in t. Thus, it follows that Vt converges to a finite V as t→∞. Hence, since V = K(V )+V from (7.4.28(p.41) ), we have
K(V ) = 0, thus V = xK due to Lemma 11.2.2(p.57) (j1).

(b) Let ρ < xL . Then, since V0 < xL from (7.4.27(p.41) ), we have Vt−1 < xL for t > 0 due to (a). Therefore, since
L (Vt−1) > 0 for t > 0 from Corollary 11.2.1(p.57) (a), for the same reason as in the proof of Tom 22.2.1(p.203) (c) we obtain
⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = xL · · · ((6)). Then, since L (ρ) = L ( xL ) = 0, we have V1 − βV0 = 0 from (4) or equivalently V1 = βV0 · · · ((7)),
hence • dOITd1⟨0⟩ ∥. Below, let τ > 1. Now, since V1 = K (ρ) + ρ < ρ from (7.4.28(p.41) ) with t = 1 and (2) , we have Vt−1 < ρ

for t > 1 from (a), hence Vt−1 < xL for t > 1 due to (6) , so L (Vt−1) > 0 for t > 1 from Corollary 11.2.1(p.57) (a). Accordingly,
since L (Vt−1) > 0 for τ ≥ t > 1, we have Vt−βVt > 0 for τ ≥ t > 1 due to (22.2.27(p.203) ) or equivalently Vt > βVt for τ ≥ t > 1,
from which we have Vτ > βVτ−1 > · · · > βτ−1V1. Hence, from (7) we have

Vτ > βVτ−1 > · · · > βτ−1V1 = βτV0.

Accordingly, we obtain t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.
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(d) Let xL < ρ · · · ((8)), hence xL < V0 · · · ((9)) from (7.4.27(p.41) ). Thus, if s = ((>)) 0, then L (V0) = ((<)) 0 · · · ((10 )) from

Lemma 11.2.1(p.57) (d((e1))), hence V1 − βV0 = ((<)) 0 from (4) or equivalently V1 = ((<)) βV0 · · · ((11 )).

(d1) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then L (V0) < 0 from (10) , hence V1 < βV0 · · · ((12 ))
from (22.2.27(p.203) ). Now, since xL = xK due to Lemma 11.2.3(p.58) (b), from (5) we have Vt−1 ≥ xL for t > 0, hence L (Vt−1) ≤ 0
for t > 0 due to Lemma 11.2.1(p.57) (e1), thus Vt − βVt−1 ≤ 0 for t > 0 from (22.2.27(p.203) ). Then, since Vt − βVt−1 ≤ 0 for
τ ≥ t > 0, we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 .

Hence we have t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ △.
(d2) Let β < 1 and s = 0 ((s > 0)) .

(d2i) Let b ≤ 0 ((κ ≤ 0)) . Then xL ≤ xK due to Lemma 11.2.3(p.58) (c ((d))). Hence, from (5) we have Vt−1 ≥ xL for t > 0,
hence L (Vt−1) ≤ 0 for t > 0 due to Corollary 11.2.1(p.57) (a), so Vt − βVt−1 ≤ 0 for t > 0 from (22.2.27(p.203) ). Then, since
Vt − βVt−1 ≤ 0 for τ ≥ t > 0, we have Vt ≤ βVt−1 for τ ≥ t > 0, leading to

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 .

Due to (11) the inequality can be rewritten as

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 ,

hence t∗τ = 0 for τ > 0, i.e., • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

(d2ii) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((13 )) from Lemma 11.2.3(p.58) (c ((d))). Hence, from (3) and (9) and from

the nonincreasingness of Vt and the convergency of Vt to V = xK due to (a) we see that there exists t• > 0 such that

V0 > V1 ≥ V2 ≥ · · · ≥ Vt•−1 ≥ xL > Vt• ≥ Vt•+1 ≥ · · · → xK · · · ((14 ))

or equivalently V0 > xL , Vt−1 ≥ xL for t• ≥ t > 1, and xL > Vt−1 for t > t•. Hence, we have

L (Vt−1) > 0, t > t•, due to Corollary 11.2.1(p.57) (a),

L (Vt−1) ≤ 0, t• ≥ t > 1, due to Corollary 11.2.1(p.57) (a),

L (V0) = ((<)) 0 due to Lemma 11.2.1(p.57) (d((e1))).

Hence, from (22.2.27(p.203) ) we have

Vt > βVt−1 · · · ((15 )), t > t•, Vt ≤ βVt−1 · · · ((16 )), t• ≥ t > 1, V1 = ((<)) βV0 · · · ((17 )).

⟨A⟩ Let τ = 1. Then, since V1 = ((<)) βV0 due to (17) , we have • dOITdτ=1⟨0⟩ ∥ ( • dOITdτ=1⟨0⟩ N), hence (1) of S9 holds.

⟨B⟩ Let t• ≥ τ > 1. Then, since Vt ≤ βVt−1 for τ ≥ t > 1 from (16) , we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1,
hence

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0 · · · ((18 )), t• ≥ τ > 0,

from (17) or equivalently

Iττ ≤ Iτ−1
τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((19 )), t• ≥ τ > 0.

Thus t∗τ = 0 for t• ≥ τ > 0, i.e., • dOITdt•τ≥τ>1⟨0⟩ △ (( • dOITdt•τ≥τ>1⟨0⟩ N)), hence (2) of S9 holds. Now, from (18) with
τ = t• we have

Vt• ≤ βVt•−1 ≤ · · · ≤ βt•−1V1 = ((<)) βt•V0 · · · ((20 )).

⟨C⟩ Let τ > t• (> 0), hence τ > 1. From (15) with τ ≥ t > t• we have

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt•τ · · · ((21 )), τ > t•.

Combining (21) and (20) leads to

Vτ > βVτ−1 > · · · > βτ−t•−1Vt•+1 > βτ−t•Vt• ≤ βτ−t•+1Vt•−1 ≤ · · · ≤ βτ−1V1 = ((<)) βτV0, τ > t•,

or equivalently

Iττ > Iτ−1
τ > Iτ−2

τ > · · · > It
•+1

τ > It
•

τ ≤ It
•−1

τ ≤ · · · ≤ I1τ = ((<)) I0τ · · · ((22 )), τ > t•.

Hence we have ⃝s dOITsτ>t• ⟨τ⟩ or • dOITdτ>t• ⟨0⟩ , thus (3) of S9 holds.
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22.2.4.3 Market Restriction

22.2.4.3.1 Positive Restriction

22.2.4.3.1.1 Case of β = 1 and s = 0

� Pom 22.2.1 (A {M:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 22.2.1(p.203) due to Lemma 18.4.4(p.118) .

22.2.4.3.1.2 Case of β < 1 or s > 0

� Pom 22.2.2 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let a ≤ ρ.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N.IvsD

2. Let λβµ < s. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

ii. Let ρ < a.

1. Let (λβµ− s)/δ ≤ a.
i. Let λ = 1.

1. Let βµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let βµ ≤ s. Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let λβµ ≥ s. Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let λβµ < s. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

2. Let (λβµ− s)/δ > a.

i. Let λβµ ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let λβµ < s. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-c2ii2) The same as Tom 22.2.2(p.204) (a-c2ii2).

(c3) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only
(c3i1,c3ii1i1,c3ii1ii1,c3ii2i) of Tom 22.2.2(p.204) .

(c4-c4ii2ii) Let β < 1 and s < 0. Then, due to (2) it suffices to consider only
(c3-c3ii2ii) of Tom 22.2.2(p.204) with κ.

� Pom 22.2.3 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t > 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let λβµ > s. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ △.
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• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a,b) The same as Tom 22.2.3(p.207) (a,b).

(c) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (c1) of Tom 22.2.3(p.207) .

(d,d2) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (c1,c2) of Tom 22.2.3(p.207) .

� Pom 22.2.4 (A {M:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N → → ⃝⃝s
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N for τ > 1.

(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.207) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let λβµ ≤ s. Then • dOITdτ>0⟨0⟩ N.

ii. Let λβµ > s. Then S9(p.207) ⃝s △ •△ •N is true (see Numerical Example 6(p.233) )

• Proof Suppose a > 0. Then b > a > 0 · · · ((1)). We have κ = λβµ− s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-d1) The same as Tom 22.2.4(p.207) (a-d1).

(d2) Let β < 1 and s = 0. Then, due to (1) it suffices to consider only (d2ii) of Tom 22.2.4(p.207) .

(d3,d3ii) Let β < 1 and s > 0. Then, due to (2) it suffices to consider only (d2i,d2ii) of Tom 22.2.4(p.207) with κ.

22.2.4.3.2 Mixed Restriction

Omitted.

22.2.4.3.3 Negative Restriction

22.2.4.3.3.1 Case of β = 1 and s = 0

� Nem 22.2.1 (A {M:2[R][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≥ b. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Tom 22.2.1(p.203) due to Lemma 18.4.4(p.118) .

22.2.4.3.3.2 Case of β < 1 or s > 0

� Nem 22.2.2 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a ≤ ρ, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let a ≤ ρ. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let ρ < a.

1. Let (λµ− s)/λ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ− s)/λ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. S8(p.203) ⃝s N } ∥ } △ } N is true.

4. Let β < 1.

i. Let a ≤ ρ. S8(p.203) ⃝s N } ∥ } △ } N is true.

ii. Let ρ < a.

1. Let (λβµ− s)/δ ≤ a.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

2. Let (λβµ− s)/δ > a. Then S8(p.203) ⃝s N } ∥ } △ } N is true.
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• Proof Suppose b < 0, hence a < b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-c2ii2) The same as Tom 22.2.2(p.204) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ−s)/δ ≤ a. Then, since λβµ/δ ≤ a, we have λβµ ≤ δa due to (11.2.2 (1) (p.56) ), hence
λβµ ≤ δa ≤ λa due to (11.2.2 (1) (p.56) ) and (1) , so βµ ≤ a, which contradicts [15(p.118) ]. Thus, it must be that (λβµ− s)/δ > a.
From this it suffices to consider only (c3i2,c3ii2ii) of Tom 22.2.2(p.204) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (2) , hence it suffices to consider only
(c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of Tom 22.2.2(p.204) .

� Nem 22.2.3 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t > 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a,b) The same as Tom 22.2.3(p.207) (a,b).

(c) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.2.3(p.207) and if s > 0, then κ < 0 due to (2) , hence it
suffices to consider only (c2) of Tom 22.2.3(p.207) . Thus, whether s = 0 or s > 0, we have the same result.

� Nem 22.2.4 (A {M:2[R][E]−}) Suppose b < 0. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N for τ > 1.

(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 11.3.1(p.59) (a).

(a-d1) The same as Tom 22.2.4(p.207) (a-d1).

(d2) If s = 0, then due to (1) it suffices to consider only (d2i) of Tom 22.2.4(p.207) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (d2i) of Tom 22.2.4(p.207) . Thus, whether s = 0 or s > 0, we have the same result.

22.2.5 M̃:2[R][E]
Due to Lemma 22.2.1(p.202) (a), we see that the following Tom’s 22.2.1(p.211) – 22.2.4(p.212) can be obtained by applying SR→R̃ (see
(20.0.1(p.136) )) to Tom’s 22.2.1(p.203) – 22.2.4(p.207) (see Theorem 22.2.1(p.202) ).

22.2.5.1 Analysis

22.2.5.1.1 Case of β = 1 and s = 0

�� Tom 22.2.1 (A {M̃:2[R][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.2.1(p.203) .

22.2.5.1.2 Case of β < 1 or s > 0

�� Tom 22.2.2 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b > ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let b > ρ. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let ρ ≥ b.

1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)).
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i. Let b > ρ.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

ii. Let ρ ≥ b.

1. Let (λβµ+ s)/δ ≥ b.
i. Let λ = 1.

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)). Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1.

1. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

2. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

2. Let (λβµ+ s)/δ < b.
i. Let a ≤ 0 ((κ̃ ≤ 0)). Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)). Then S8
⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.2.2(p.204) .

�� Tom 22.2.3 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)).

1. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.2.3(p.207) .

�� Tom 22.2.4 (A {M̃:2[R][E]}) Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)).

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .
ii. Let a < 0 ((κ̃ < 0)). Then S9

⃝s △ •△ •N is true.

• Proof by symmetry Immediate from applying SR→R̃ to Tom 22.2.4(p.207) .

22.2.5.2 Market Restriction

22.2.5.2.1 Positive Restriction

22.2.5.2.1.1 Case of β = 1 and s = 0

� Pom 22.2.5 (A {M̃:2[R][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≤ a. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let ρ > a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to
Nem 22.2.1(p.210) (see (19.1.21(p.131) )).

• Direct proof The same as Tom 22.2.1(p.211) due to Lemma 18.4.4(p.118) .

22.2.5.2.1.2 Case of β < 1 or s > 0

� Pom 22.2.6 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1 or b ≥ ρ, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ ⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let b ≥ ρ. Then ⃝s dOITsτ ⟨τ⟩ N.
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ii. Let ρ > b.
1. Let (λµ+ s)/λ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

ii. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let (λµ+ s)/λ < b. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then we have S8(p.203) ⃝s N } ∥ } △ } N .
4. Let β < 1 and s > 0.

i. Let b ≥ ρ. Then S8(p.203) ⃝s N } ∥ } △ } N is true.
ii. Let ρ > b.

1. Let (λβµ+ s)/δ ≥ b.

i. Let λ = 1. Then } ndOITτ>1⟨1⟩ △.

ii. Let λ < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

2. Let (λβµ+ s)/δ < b. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to
Nem 22.2.2(p.210) (see (19.1.21(p.131) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0 · · · ((2)). Then κ̃ = s · · · ((3)) from Lemma 13.6.6(p.83) (a).

(a-c2ii2) The same as Tom 22.2.2(p.211) (a-c2ii2).

(c3) Let β < 1 and s = 0. Assume (λβµ+ s)/δ ≥ b. Then, since λβµ/δ ≥ b, we have λβµ ≥ δb from (11.2.2 (1) (p.56) ), hence
λβµ ≥ δb ≥ λb due to (2) , so βµ ≥ b, which contradicts [3(p.118) ]. Thus, it must be that (λβµ + s)/δ < b. From this it suffices
to consider only (c3i2,c3ii2ii) of Tom 22.2.2(p.211) .

(c4-c4ii2) Let β < 1 and s > 0. Then κ < 0 due to (2) , hence it suffices to consider only
(c3i2,c3ii1i2,c3ii1ii2,c3ii2ii) of Tom 22.2.2(p.204) with κ.

� Pom 22.2.7 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △.
• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to
Nem 22.2.3(p.211) (see (19.1.21(p.131) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a).

(a,b) The same as Tom 22.2.3(p.212) (a,b).

(c) If s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.2.3(p.212) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c2) of Tom 22.2.3(p.212) with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.

� Pom 22.2.8 (A {M̃:2[R][E]+}) Suppose a > 0. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N)) .

• Proof by diagonal-symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to
Nem 22.2.4(p.211) (see (19.1.21(p.131) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 13.6.6(p.83) (a).

(a-d1) The same as Tom 22.2.4(p.212) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 22.2.4(p.212) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 22.2.4(p.212) (d2i) with κ̃. Accordingly, whether s = 0 or s > 0, we have the same result.

Remark 22.2.2 (diagonal symmetry) The diagonal symmetry holds between A {M̃:1[R][E]+} and A {M:1[R][E]−}, i.e.,
A {M̃:1[R][E]+} d-∼ A {M:1[R][E]−}.

In fact it can be confirmed that the following relations hold:

A {Pom 22.2.5(p.212) } = SR→R̃[A {Nem 22.2.1(p.210) }] · · · (1),

A {Pom 22.2.6(p.212) } = SR→R̃[A {Nem 22.2.2(p.210) }] · · · (2),

A {Pom 22.2.7(p.213) } = SR→R̃[A {Nem 22.2.3(p.211) }] · · · (3),

A {Pom 22.2.8(p.213) } = SR→R̃[A {Nem 22.2.4(p.211) }] · · · (4).
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22.2.5.2.2 Mixed Restriction

Omitted.

22.2.5.2.3 Negative Restriction

Unnecessary.

22.2.6 M:2[P][E]
22.2.6.1 Preliminary

From (7.4.33(p.41) ) and from (6.1.21(p.26) ) and (6.1.20(p.26) ) we have

Vt − βVt−1 = K (Vt−1) + (1− β)Vt−1 = L (Vt−1), t > 1. (22.2.30)

From (7.4.32(p.41) ) we have

V1 − βV0 = V1 − βρ = λβmax{0, a− ρ} − s. (22.2.31)

22.2.6.2 Analysis

22.2.6.2.1 Case of β = 1 and s = 0

Let β = 1 and s = 0. Then, from (22.2.30(p.214) ) and (6.1.20(p.26) ) we have

Vt − βVt−1 = λT (Vt−1) ≥ 0, t > 1, (22.2.32)

due to Lemma 14.2.1(p.93) (g). From (7.4.32(p.41) ) we have

V1 = λmax{0, a− ρ}+ ρ (22.2.33)

= max{ρ, λa+ (1− λ)ρ}. (22.2.34)

22.2.6.2.1.1 Case of ρ ≤ a⋆

In this case, Theorem 22.2.2(p.202) holds due to Lemma 22.2.1(p.202) (c). Hence, Proposition 22.2.1 below can be derived by applying
AR→P (see (20.0.5(p.136) )) to Tom 22.2.1(p.203) .

Proposition 22.2.1 (ρ ≤ a⋆) Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by analogy Assume ρ ≤ a⋆. Let β = 1 and s = 0.

(a) The same as Tom 22.2.1(p.203) (a).

(b) Since (b,c) of Tom 22.2.1(p.203) have none of a and µ, even if AR→P is applied the two assertions, no change occurs
(see Lemma 14.6.1(p.99) ). However, since ρ ≤ a⋆ < a < b due to the assumption ρ ≤ a⋆ and Lemma 14.2.1(p.93) (n), it follows that
only (c) of Tom 22.2.1(p.203) holds.

22.2.6.2.1.2 Case of b ≤ ρ

In this case, Theorem 22.2.2(p.202) holds due to Lemma 22.2.1(p.202) (c). Hence, Proposition 22.2.2 below can be derived by applying
AR→P (see (20.0.5(p.136) )) to Tom 22.2.1(p.203) .

Proposition 22.2.2 (b ≤ ρ) Assume b ≤ ρ. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) • dOITdτ>0⟨0⟩ ∥.

• Proof by analogy Assume b ≤ ρ. Let β = 1 and s = 0.

(a) The same as Tom 22.2.1(p.203) (a).

(b) Due to the assumption b ≤ ρ, only (b) of Tom 22.2.1(p.203) holds.

22.2.6.2.1.3 Case of a⋆ < ρ < b

In this case, Theorem 22.2.2(p.202) does not always hold due to Lemma 22.2.1(p.202) (d). Hence, Proposition 22.2.3 below must be
directly proven.

Proposition 22.2.3 (a⋆ < ρ < b) Assume a⋆ < ρ < b. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.



215

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β = 1 and s = 0. Then L (x) = K (x) = λT (x) ≥ 0 · · · ((2)) for any x from

(6.1.20(p.26) ) and (6.1.21(p.26) ) and from Lemma 14.2.1(p.93) (g). Since V0 < b from (1) and (7.4.31(p.41) ), we have L (V0) = λT (V0) =
λT (ρ) > 0 · · · ((3)) from (2) and Lemma 14.2.1(p.93) (g). Then, since ρ < b and a < b, from (22.2.34(p.214) ) we obtain V1 <

max{b, λb+(1−λ)b} = max{b, b} = b. Suppose Vt−1 < b. Then, since a⋆ < b from (1) , we have Vt < K (b)+ b from (7.4.33(p.41) )
and Lemma 14.2.3(p.96) (h), hence Vt < βb − s from (14.2.12 (2) (p.95) ), so Vt−1 < b due to the assumption “β = 1 and s = 0”.
Accordingly, by induction Vt−1 < b for t > 1, hence T (Vt−1) > 0 · · · ((4)) for t > 1 from Lemma 14.2.1(p.93) (g). Thus Vt−βVt−1 > 0

for t > 1 from (22.2.32(p.214) ) or equivalently Vt > βVt−1 for t > 1. Then, since Vt > βVt−1 for τ ≥ t > 1, we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 · · · ((5)), τ > 1.

In addition, from (2) we have L (Vt−1) = λT (Vt−1) > 0 · · · ((6)) for t > 1 due to (4) , so L(Vt−1) > 0 for t > 0 due to (3) .

(a) From (22.2.33(p.214) ) and (7.4.31(p.41) ) we have V1 − V0 = V1 − ρ = λmax{0, a − ρ} ≥ 0, hence V1 ≥ V0 · · · ((7)). From

(7.4.33(p.41) ) with t = 2 we have V2 − V1 = K (V1) > 0 due to (6) with t = 2, hence V2 > V1, so V2 ≥ V1 · · · ((8)). Suppose

Vt ≥ Vt−1. Then from (7.4.33(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt+1 = K (Vt) + Vt ≥ K (Vt−1) + Vt−1 = Vt. Hence, by
induction Vt ≥ Vt−1 for t > 1. From this and (7) we have Vt ≥ Vt−1 for t > 0, hence it follows that Vt is nondecreasing in t ≥ 0.

(b) Let a ≤ ρ, hence V1 = λmax{0, a− ρ}+ ρ = ρ from (7.4.32(p.41) ), so V1 < b due to (1) . Then, since V1 − βV0 = V1 − V0 =
ρ− ρ = 0, we have V1 = βV0 · · · ((9)), hence t∗1 = 0, i.e., • dOITd1⟨0⟩ ∥. Below let τ > 1. Then, from (5) and (9) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 = βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ < a. Then, since V1 = λ(a− ρ) + ρ due to (7.4.32(p.41) ), we have V1 − βV0 = V1 − V0 = V1 − ρ = λ(a− ρ) > 0, i.e.,

V1 > βV0, hence t∗1 = 1 · · · ((10 )). Let τ > 1. Then, from (5) we have

Vτ > βVτ−1 > β2Vτ−2 > · · · > βτ−1V1 > βτV0, τ > 1,

hence t∗τ = τ for τ > 1, hence ⃝s dOITsτ>1⟨τ⟩ N. From this and (10) we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ N.

22.2.6.2.1.4 Integration of Propositions 22.2.1(p.214) -22.2.3(p.214)

Lemma 22.2.2 (A {M:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof (a) The same as Propositions 22.2.1(p.214) (a), 22.2.2(p.214) (a), and 22.2.3(p.214) (a).

(b) The same as Proposition 22.2.1(p.214) (b).

(c) The same as Proposition 22.2.2(p.214) (b).

(d-d2) The same as Proposition 22.2.3(p.214) (b,c).

Corollary 22.2.3 (M:2[P][E] ) Let β = 1 and s = 0. Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Lemma 22.2.2(p.215) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

22.2.6.2.2 Case of β < 1 or s > 0

22.2.6.2.2.1 Case of ρ ≤ a⋆

In this case, Theorem 22.2.2(p.202) holds due to Lemma 22.2.1(p.202) (c), hence Tom’s 22.2.5(p.215) –22.2.7(p.216) below can be derived
by applying AR→P (see (20.0.5(p.136) )) to Tom’s 22.2.2(p.204) –22.2.4(p.207) . In the proofs below, let us represent what results from
applying AR→P to a given Tom by Tom′ (see (22.1.60(p.176) )).

�� Tom 22.2.5 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.
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2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.
i. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b ≤ 0 ((κ ≤ 0)) . Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true.

ii. Let (λβa− s)/δ > a⋆.

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let b < 0 ((κ < 0)) . Then S8
⃝s N } ∥ } △ } N is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 22.2.2(p.204) . Then “a < ρ” in
Tom 22.2.2(p.204) (c2i,c3i) changes into “a⋆ < ρ” in the Tom′, which contradicts the assumption ρ ≤ a⋆. Accordingly, removing all
assertions with “a⋆ < ρ” from the Tom′ leads to Tom 22.2.5 above.

Corollary 22.2.4 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.5(p.215) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.2.6 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b ≤ 0 ((κ ≤ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by analogy The same as Tom 22.2.3(p.207) due to Lemma 14.6.1(p.99) .

Corollary 22.2.5 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK . Then, the optimal price to propose is
given by zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 22.2.6(p.216) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.2.7 (A {M:2[P][E]}) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let b > 0 ((κ > 0)). Then S9
⃝s △ •△ •N is true.

• Proof by analogy The same as Tom 22.2.4(p.207) due to Lemma 14.6.1(p.99) .

Corollary 22.2.6 (M:2[P][E] ) Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK . Then, the optimal price to propose zt is
nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.7(p.216) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

22.2.6.2.2.2 Case of b ≤ ρ

In this case, Theorem 22.2.2(p.202) holds due to Lemma 22.2.1(p.202) (c). Hence Tom’s 22.2.8-22.2.10 below can be derived by applying
AR→P to Tom’s 22.2.2(p.204) -22.2.4(p.207) .

�� Tom 22.2.8 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.
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2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let b < 0 ((κ < 0)) . Then S8

⃝s N } ∥ } △ } N is true.

• Proof by analogy Consider the Tom′ resulting from applying AR→P to Tom 22.2.2(p.204) . Then “ρ ≤ a” in
(c2ii,c3ii) of Tom 22.2.2(p.204) changes into “ρ ≤ a⋆ ” in the Tom′, hence ρ ≤ a⋆ < a < b due to
Lemma 14.2.1(p.93) (n), which contradicts the assumption b ≤ ρ. Accordingly, removing all assertions with “ρ ≤ a” from the Tom′

leads to Tom 22.2.8 above.

Corollary 22.2.7 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK . Then, the optimal price to propose zt is
nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.8(p.216) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.2.9 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let b ≥ 0 ((κ ≥ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let b < 0 ((κ < 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by analogy The same as Tom 22.2.3(p.207) due to Lemma 14.6.1(p.99) .

Corollary 22.2.8 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK . Then, the optimal price to propose is
given by zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 22.2.9(p.217) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

�� Tom 22.2.10 (A {M:2[P][E]}) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let b ≤ 0 ((κ ≤ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .
ii. Let b > 0 ((κ > 0)). Then S9

⃝s △ •△ •N is true.

• Proof by analogy Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK . In this case, even if AR→P is applied to Tom 22.2.4(p.207) , it
can be easily confirmed that no change occurs (see Lemma 14.6.1(p.99) ). However, if the condition ρ < xL is added, we encounter
the following contradiction. Then we have b ≤ ρ < xL · · · ((1)). Now, since 0 = L ( xL ) = λβT ( xL ) − s and T ( xL ) = 0 from

Lemma 14.2.1(p.93) (g), we have 0 = −s, hence s = 0, so we have xL = b due to Lemma 14.2.2(p.96) (d), which is a contradicts (1) .
Accordingly, the condition ρ < xL becomes impossible. This result implies that the assertion (b) with ρ ≥ xL in Tom 22.2.4(p.207)

must be omitted; accordingly, it follows that we have Tom 22.2.10 above.

Corollary 22.2.9 (M:2[P][E] ) Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK . Then, the optimal price to propose zt is
nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.10(p.217) (a) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

22.2.6.2.2.3 Case of a⋆ < ρ < b

In this case, Theorem 22.2.2(p.202) does not always hold due to Lemma 22.2.1(p.202) (d). Hence, Tom 22.2.5(p.218) below must be
directly proven. For explanatory convenience, let us define:

S10
⃝s △ •△ = { We have:

(1) Let λmax{0, a−ρ} < s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.
(2) Let λmax{0, a− ρ} ≥ s. Then ⃝s dOITsτ>1⟨τ⟩ △. }

S11
⃝s △ ⃝s N } △ •△ = { There exists t•τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,

ii. } ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,

ii. } ndOITτ>t•τ ⟨t
•
τ ⟩ △.

}
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S12
⃝s △ ⃝s N } △ •△ •N = { There exists t•τ > 1 such that:

(1) If λβmax{0, a− ρ} < s, then

i. • dOITdt•τ≥τ>0⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. } ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
S13

⃝s △ } △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:
(1) If λβmax{0, a− ρ} < s, then

i. • dOITdt•τ≥τ>1⟨0⟩ N,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

(2) If λβmax{0, a− ρ} ≥ s, then

i. } ndOITt•τ≥τ>1⟨1⟩ △,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t
⋆
τ ⟩ △.

}
For convenience of reference, below let us copy (7.4.32(p.41) )

V1 = λβmax{0, a− ρ}+ βρ− s. (22.2.35)

�� Tom 22.2.5 (A {M:2[P][E]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let V1 ≥ xL . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.
3. Let V1 < xL .

i. Let β = 1. Then S10
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let b > 0 ((κ > 0)) . Then S10
⃝s △ •△ is true.

2. Let b = 0 ((κ = 0)) . If λβmax{0, a−ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.
3. Let b < 0 ((κ < 0)) . Then S11

⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 > xK .

1. Vt is nonincreasing in t > 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △. 7→ →•ddN
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let b > 0 ((κ > 0)) .

1. Let V1 < xL . Then S10
⃝s △ •△ is true.

2. Let V1 = xL . Then S12
⃝s △ ⃝s N } △ •△ •N is true. 7→ →•ddN

3. Let V1 > xL . Then S13
⃝s △ } △ •△ •N is true. 7→ →•ddN

ii. Let b ≤ 0 ((κ ≤ 0)) . If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof Assume a⋆ < ρ < b · · · ((1)) and let β < 1 or s > 0.

(a) If λβmax{0, a − ρ} ≤ s, then V1 ≤ βV0 from (22.2.31(p.214) ) or equivalently V1 ≤ βV0 · · · ((2)), hence t∗1 = 0, i.e.,

• dOITd1⟨0⟩ △ · · · ((3)), or else V1 > βV0 · · · ((4)), hence t∗1 = 1, i.e., ⃝s dOITs1⟨1⟩ N · · · ((5)). Below let τ > 1.

(b) Let V1 ≤ xK · · · ((6)), hence K (V1) ≥ 0 · · · ((7)) from Lemma 14.2.3(p.96) (j1).

(b1) From (7.4.33(p.41) ) with t = 2 we have V2 = K (V1) + V1 ≥ V1 due to (7) . Suppose Vt ≥ Vt−1. Then Vt+1 ≥
K (Vt−1) + Vt−1 = Vt from Lemma 14.2.3(p.96) (e), hence by induction Vt ≥ Vt−1 for t > 1, so Vt is nondecreasing in t > 0. Note
(6) . Suppose Vt−1 ≤ xK . Then, from (7.4.33(p.41) ) and Lemma 14.2.3(p.96) (e) we have Vt ≤ K (xK ) + xK = xK . Hence, by
induction Vt ≤ xK · · · ((8)) for t > 0, i.e., Vt is upper bounded in t, hence Vt converges to a finite V as t → ∞. Then, since

V = K(V )+V as τ →∞ from (7.4.33(p.41) ), we have V = K(V )+V , hence K(V ) = 0 thus V = xK from Lemma 14.2.3(p.96) (j1).

(b2) Let V1 ≥ xL . Then, since xL ≤ Vt−1 for t > 1 due to (b1), we have L (Vt−1) ≤ 0 for t > 1 from Corollary 14.2.1(p.96) (a),
thus L (Vt−1) ≤ 0 for τ ≥ t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1 from (22.2.30(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 · · · ((9)), τ > 1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, from (2) and (9) we have

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 ≤ βτV0 ,

hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ △..
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(2) Let λβmax{0, a− ρ} > s. Then, from (4) and (9) we have

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 > βτV0,

hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

(b3) Let V1 < xL · · · ((10 )).

(b3i) Let β = 1 · · · ((11 )), hence s > 0 due to the assumption “β < 1 or s > 0”. Then xL = xK · · · ((12 )) from

Lemma 14.2.4(p.97) (b), hence Vt−1 ≤ xL for t > 1 due to (8) . Accordingly, since Vt−1 ≤ xL for τ ≥ t > 1, we have
L (Vt−1) ≥ 0 for τ ≥ t > 1 from Lemma 14.2.2(p.96) (e1), hence Vt ≥ βVt−1 for τ ≥ t > 1 from (22.2.30(p.214) ), so

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 · · · ((13 )), τ > 1.

(A) Let λmax{0, a − ρ} < s, hence λβmax{0, a − ρ} < s due to (11) . Then V1 − βV0 < 0 · · · ((14 )) from (22.2.31(p.214) ) or

equivalently V1 < βV0 · · · ((15 )). Hence, from (13) we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 < βτV0 · · · ((16 )), τ > 1.

Thus, we have ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △, hence (1) of S10 is true.

(B) Let λmax{0, a−ρ} ≥ s, hence λβmax{0, a−ρ} ≥ s due to (11) . Then V1−βV0 ≥ 0 from (22.2.31(p.214) ) or equivalently
V1 ≥ βV0 from (22.2.31(p.214) ). Then, from (13) we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≥ βτV0,

hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ>1⟨τ⟩ △, thus (2) of S10 holds.

(b3ii) Let β < 1 · · · ((17 )) and s = 0 ((s > 0)) .

(b3ii1) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((18 )) from Lemma 14.2.4(p.97) (c ((d))). Accordingly, from (8) we have

Vt−1 ≤ xK < xL for t > 1, hence L (Vt−1) > 0 for t > 1 from Corollary 14.2.1(p.96) (a), thus L (Vt−1) > 0 for τ ≥ t > 1.
Accordingly, since Vt > βVt−1 for τ ≥ t > 1 from (22.2.30(p.214) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((19 )) τ > 1.

(1) Let λβmax{0, a− ρ} < s. Then for the same reason as in (A) we have (1) of S10.

(2) Let λβmax{0, a− ρ} ≥ s. Then for the same reason as in (B) we have (2) of S10.

(b3ii2) Let b = 0 ((κ = 0)) . Then xL = xK from Lemma 14.2.4(p.97) (c ((d))). Accordingly, from (6) and (b1) we have Vt−1 ≤
xK for t > 1, hence Vt−1 ≤ xK = xL for τ ≥ t > 1. Therefore, from Corollary 14.2.1(p.96) (b) we have L (Vt−1) ≥ 0 · · · ((20 )) for

τ ≥ t > 1, hence Vt − βVt−1 ≥ 0 for τ ≥ t > 1 from (22.2.30(p.214) ) or equivalently Vt ≥ βVt−1 for τ ≥ t > 1, leading to

Vt ≥ βVt−1 ≥ · · · ≥ βt−1V1.

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (22.2.31(p.214) ), we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 ≤ βτV0 ,

hence ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △..

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (22.2.31(p.214) ), we have

Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1 > βτV0,

hence ⃝s dOITsτ>1⟨τ⟩ △.

(b3ii3) Let b < 0 ((κ < 0)) , hence xL < xK ≤ 0 · · · ((21 )) from Lemma 14.2.4(p.97) (c ((d))). Then, from (10) we have V1 <

xL < xK = V due to (b1). Accordingly, due to the nondecreasing of Vt it follows that there exists t•τ > 1 such that

V1 ≤ V2 ≤ · · · ≤ Vt•τ−1 < xL ≤ Vt•τ ≤ Vt•τ+1 ≤ · · · .

Hence Vt−1 < xL for t•τ ≥ t > 1 and xL ≤ Vt−1 for t > t•τ . Therefore, from Corollary 14.2.1(p.96) (a) we have

L (Vt−1) > 0 · · · ((22 )), t•τ ≥ t > 1, L (Vt−1) ≤ 0 · · · ((23 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 for τ ≥ t > 1 from (22) , we have Vt − βVt−1 > for τ ≥ t > 1 from (22.2.30(p.214) ) or
equivalently Vt > βVt−1 for τ ≥ t > 1, so

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((24 )).
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(1) Let λβmax{0, a− ρ}ρ < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 < βτV0

from (24) , hence t∗τ = τ or t∗τ = 0 for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △. Accordingly (1i) of
S11 holds.

(2) Let λβmax{0, a− ρ}ρ ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ), we have

Vτ > βVτ−1 > · · · > βτ−1V1 ≥ βτV0

from (24) , hence t∗τ = τ , i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N. Accordingly (2i) of S11 holds.

◦ Let τ > t•τ . Since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (23) , we have Vt ≤ βVt−1 for τ ≥ t > t•τ from (22.2.30(p.214) ), hence

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ · · · ((25 )), τ > t•τ .

From (22) and (22.2.30(p.214) ) we have Vt > βVt−1 for t•τ ≥ t > 1, hence

Vt•τ > βVt•τ−1 > · · · > βt•τ−1V1 · · · ((26 )).

From (25) and (26) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1. · · · ((27 ))

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 < βτV0 ,

Hence, we have t∗τ = t•τ or t∗τ = 0 for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △. Accordingly (1ii) of S11 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ), from (27) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−t•τVt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1 ≥ βτV0 ,

hence t∗τ = t•τ for τ > t•τ , i.e., } ndOITτ>t•τ ⟨t
•
τ ⟩ △. Accordingly (2ii) of S11 holds.

(c) Let V1 > xK · · · ((28 )), hence K (V1) < 0 · · · ((29 )) due to Lemma 14.2.3(p.96) (j1).

(c1) From (7.4.33(p.41) ) with t = 2 we have V2 = K (V1) + V1 < V1 · · · ((30 )) due to (29) , hence V2 ≤ V1. Suppose Vt ≤ Vt−1.

Then, from Lemma 14.2.3(p.96) (e) we have Vt+1 = K (Vt) + Vt ≤ K (Vt−1) + Vt−1 = Vt. Hence, by induction Vt ≤ Vt−1 for t > 1,
i.e., Vt is nonincreasing in t > 0. Note (28) , hence V1 ≥ xK . Suppose Vt−1 ≥ xK . Then, since Vt ≥ K (xK ) + xK = xK from
Lemma 14.2.3(p.96) (e), by induction we have Vt ≥ xK · · · ((31 )) for t > 0, i.e., Vt is lower bounded in t, hence Vt converges to a

finite V . Then, we have V = xK for the same reason as in the proof of (b1).

(c2) Let β = 1, hence s > 0 due to the assumption “β < 1 or s > 0”. Then, since xL = xK · · · ((32 )) from Lemma 14.2.4(p.97) (b),

we have Vt−1 ≥ xL for t > 1 from (31) . Accordingly L (Vt−1) ≤ 0 for t > 1 from Lemma 14.2.2(p.96) (e1), hence L (Vt−1) ≤ 0 for
τ ≥ t > 1, so Vt ≤ βVt−1 for τ ≥ t > 1 from (22.2.30(p.214) ), leading to Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1.

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 ,

hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ N.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ) we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0,

hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

(c3) Let β < 1 · · · ((33 )) and s = 0 ((s > 0)) .

(c3i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((34 )) from Lemma 14.2.4(p.97) (c ((d))).

(c3i1) Let V1 < xL , hence xL > Vt−1 for t > 1 from (c1). Accordingly, since L (Vt−1) > 0 for t > 1 from Corol-
lary 14.2.1(p.96) (a), we have Vt−βVt−1 > 0 for t > 1 due to (22.2.30(p.214) ) or equivalently Vt > βVt−1 for t > 1, hence Vt > βVt−1

for τ ≥ t > 1, leading to

Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((35 )).

(1) Let λβmax{0, a− ρ} < s. Then for the same reason as in (A(p.219) ) we have (1) of S10.

(2) Let λβmax{0, a− ρ} ≥ s. Then for the same reason as in (B(p.219) ) we have (2) of S10.
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(c3i2) Let V1 = xL . Then, since V1 = xL > xK = V from (34) and (c1), there exists t•τ > 1 such that

V1 = V2 = · · · = Vt•τ−1 = xL > Vt•τ ≥ Vt•τ+1 ≥ · · · ,

i.e., Vt−1 = xL for t•τ ≥ t > 1 and xL > Vt−1 for t > t•τ . Hence, from Corollary 14.2.1(p.96) (a) we have

L (Vt−1) = L ( xL ) = 0 · · · ((36 )), t•τ ≥ t > 1, L (Vt−1) > 0 · · · ((37 )), t > t•τ .

Accordingly, from (22.2.30(p.214) ) we have Vt − βVt−1 = 0 for t•τ ≥ t > 1 and Vt − βVt−1 > 0 for t > t•τ or equivalently

Vt = βVt−1 · · · ((38 )), t•τ ≥ t > 1, Vt > βVt−1 · · · ((39 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then, we have Vt = βVt−1 for τ ≥ t > 1 from (38) , leading to

Vτ = βVτ−1 = · · · = βτ−1V1 · · · ((40 )).

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ = βVτ−1 = · · · = βτ−1V1 < βτV0 ,

hence t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, hence (1i) of S12 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ), we have

Vτ = βVτ−1 = · · · = βτ−1V1 > βτV0

for t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ ∥, hence (2i) of S12 holds.

From (40) with τ = t•τ we have

Vt•τ = βVt•τ−1 = · · · = βt•τ−1V1 · · · ((41 )).

◦ Let τ > t•τ . Then, we have Vt > βVt−1 for τ ≥ t > t•τ from (39) , leading to

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ · · · ((42 )).

From this and (41) we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1.

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 < βτV0 ,

hence t∗τ = τ or t∗τ = 0 for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △, thus (1ii) of S12 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ), we have

Vτ > βVτ−1 > · · · > βτ−t•τVt•τ = βτ−t•τ+1Vt•τ−1 = · · · = βτ−1V1 ≥ βτV0

for τ > t•τ , hence t∗τ = τ for τ > t•τ , i.e., ⃝s dOITsτ>t•τ ⟨τ⟩ N, hence (2ii) of S12 holds.

(c3i3) Let V1 > xL · · · ((43 )). Then, since V1 > xL > xK = V from (34) and (c1), due to the nonincreasingness of Vt it

follows that there exists t•τ > 1 such that

V1 ≥ V2 ≥ · · · ≥ Vt•τ−1 > xL ≥ Vt•τ ≥ Vt•τ+1 ≥ · · · ,

from which Vt−1 > xL for t•τ ≥ t > 1 and xL ≥ Vt−1 for t > t•τ . Hence, from Corollary 14.2.1(p.96) (a) we have

L (Vt−1) ≤ 0 · · · ((44 )), t•τ ≥ t > 1, L (Vt−1) ≥ 0 · · · ((45 )), t > t•τ .

◦ Let t•τ ≥ τ > 1. Then L (Vt−1) ≤ 0 for τ ≥ t > 1 from (44) , hence Vt − βVt−1 ≤ 0 for τ ≥ t > 1 from (22.2.30(p.214) ), we have
Vt ≤ βVt−1 for τ ≥ t > 1. Hence

Vτ ≤ βVτ−1 ≤ β2Vτ−2 ≤ · · · ≤ βτ−1V1 · · · ((46 )).

(1) Let λβmax{0, a− ρ} < s. Then, since V1 < βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 < βτV0 ,

hence t∗τ = 0 for t•τ ≥ τ > 1, i.e., • dOITdt•τ≥τ>1⟨0⟩ N, so (1i) of S13 holds.
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(2) Let λβmax{0, a− ρ} ≥ s. Then, since V1 ≥ βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≥ βτV0

for t•τ ≥ τ > 1, hence t∗τ = 1 for t•τ ≥ τ > 1, i.e., } ndOITt•τ≥τ>1⟨1⟩ △, hence (2i) of S13 holds.

From (46) with τ = t•τ we have

Vt•τ ≤ βVt•τ−1 ≤ · · · ≤ βt•τ−1V1 · · · ((47 )).

◦ Let τ > t•τ . Then L (Vt−1) ≥ 0 for τ ≥ t > t•τ from (45) , hence Vt − βVt−1 ≥ 0 for τ ≥ t > t•τ from (22.2.30(p.214) ) or
equivalently Vt ≥ βVt−1 for τ ≥ t > t•τ , leading to

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ .

Hence, from (47) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 · · · ((48 )).

(1) Let λβmax{0, a− ρ} < s. Since V1 − βV0 < 0 · · · ((49 )) from (22.2.31(p.214) ) or equivalently V1 < βV0 · · · ((50 )). Then, from
(48) and (50) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−1V1 < βτV0 .

hence Thus, we obtain ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (1ii) of S13 holds.

(2) Let λβmax{0, a− ρ} ≥ s. Then V1 − βV0 ≥ 0 from (22.2.31(p.214) ), hence V1 ≥ βV0. Then, from (48) we have

Vτ ≥ βVτ−1 ≥ · · · ≥ βτ−t•τVt•τ ≤ βτ−t•τ+1Vt•τ−1 ≤ · · · ≤ βτ−2V2 ≤ βτ−1V1 ≥ βτV0.

Thus, we have ⃝s dOITsτ ⟨τ⟩ △ or • dOITdτ ⟨0⟩ △, hence (2ii) of S13 holds.

(c3ii) Let b ≤ 0 ((κ ≤ 0)) . Then, since xL ≤ xK from Lemma 14.2.4(p.97) (c ((d))), we have V1 > xK ≥ xL from (28) , hence
Vt−1 ≥ xK ≥ xL for t > 1 due to (c1). Accordingly L (Vt−1) ≤ 0 for t > 1 from Corollary 14.2.1(p.96) (a), hence Vt − βVt−1 ≤ 0
for t > 1 from (22.2.30(p.214) ) or equivalently Vt ≤ βVt−1 for t > 1. Accordingly, since Vt ≤ βVt−1 for τ ≥ t > 1, we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 · · · ((51 )).

(1) Let λβmax{0, a− ρ} ≤ s. Then, since V1 ≤ βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 ≤ βτV0 ,

from (51) , hence t∗τ = 0 for τ > 1, i.e., • dOITdτ>1⟨0⟩ △.

(2) Let λβmax{0, a− ρ} > s. Then, since V1 > βV0 from (22.2.31(p.214) ), we have

Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 > βτV0,

from (51) , hence t∗τ = 1 for τ > 1, i.e., } ndOITτ>1⟨1⟩ △.

Corollary 22.2.10 (M:2[P][E] ) Assume a⋆ < ρ < b. Let β < 1 or s > 0. :

(a) Let xK ≥ V1. Then zt is nondecreasing in t > 0.

(b) Let xK < V1. Then zt is nonincreasing in t > 0.

• Proof Immediate from Tom 22.2.5(p.218) (b1,c1) and from (7.2.94(p.35) ) and Lemma 14.1.3(p.89) .

22.2.6.3 Market Restriction

22.2.6.3.1 Positive Restriction

22.2.6.3.1.1 Case of β = 1 and s = 0

� Pom 22.2.9 (A {M:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Lemma 22.2.2(p.215) due to Lemma 18.4.4(p.118) .
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22.2.6.3.1.2 Case of β < 1 or s > 0

22.2.6.3.1.2.1 Case of ρ ≤ a⋆

� Pom 22.2.10 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a⋆ < ρ, and converges to a finite V = xK as
t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1.

i. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let s ≥ λβT (0). Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

ii. Let s > λβT (0). Then S8(p.203) ⃝s N } ∥ } △ } N is true

ii. Let (λβa− s)/δ > a⋆.

1. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

2. Let s > λβT (0). Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a-c2ii) The same as Tom 22.2.5(p.215) (a-c2ii).

(c3) Due to (1) it suffices to consider only (c3i1i,c3i2i,c3ii1) of Tom 22.2.5(p.215) .

(c4-c4ii2) Immediate from (2) and Tom 22.2.5(p.215) (c3-c3ii2) with κ due to (2) .

� Pom 22.2.11 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a,b) The same as Tom 22.2.6(p.216) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 22.2.6(p.216) .

(d-d2) Immediate from (2) and Tom 22.2.6(p.216) (c1,c2) with κ.

� Pom 22.2.12 (A {M:2[P][E]+}) Suppose a > 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.207) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let s < λβT (0). Then S9(p.207) ⃝s △ •△ •N is true.
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• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a-d1) The same as Tom 22.2.7(p.216) (a-d1).

(d2) Due to (1) it suffices to consider only (d2ii) of Tom 22.2.7(p.216) .

(d3,d3ii) Immediate from (2) and Tom 22.2.7(p.216) (d2i,d2ii) with κ.

22.2.6.3.1.2.2 Case of b ≤ ρ

� Pom 22.2.13 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
3. Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
4. Let β < 1 and s > 0.

i. Let s ≤ λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.

ii. Let s > λβT (0). Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a-c2) The same as Tom 22.2.8(p.216) (a-c2).

(c3) Due to (1) it suffices to consider only (c3i) of Tom 22.2.8(p.216) .

(c4-c4ii) Immediate from (2) and Tom 22.2.8(p.216) (c3i,c3ii) with κ.

� Pom 22.2.14 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0. Then ⃝s dOITsτ>0⟨τ⟩ N.
(d) Let β < 1 and s > 0.

1. Let s < λβT (0). Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a,b) The same as Tom 22.2.9(p.217) (a,b).

(c) Due to (1) it suffices to consider only (c1) of Tom 22.2.9(p.217) .

(d-d2) Immediate from (2) and Tom 22.2.9(p.217) (c1,c2) with κ.

� Pom 22.2.15 (A {M:2[P][E]+}) Suppose a > 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0. Then S9(p.207) ⃝s △ •△ •N is true.

3. Let β < 1 and s > 0.

i. Let s ≥ λβT (0). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

ii. Let s < λβT (0). Then S9(p.207) ⃝s △ •△ •N is true.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a-c1) The same as Tom 22.2.10(p.217) (a-c1).

(c2) Due to (1) it suffices to consider only (c2ii) of Tom 22.2.10(p.217) .

(c3-c3ii) Immediate from (2) and Tom 22.2.10(p.217) (c2i,c2ii) with κ.

22.2.6.3.1.2.3 Case of a⋆ < ρ < b

� Pom 22.2.16 (A {M:2[P][E]+}) Suppose a > 0. Assume a⋆ ≤ ρ < a. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} < s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let xK ≥ V1.

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = xK as t→∞
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2. Let xL ≤ V1. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.
3. Let xL > V1.

i. Let β = 1. Then S10(p.217) ⃝s △ •△ is true.

ii. Let β < 1 and s = 0. Then S10(p.217) ⃝s △ •△ is true.

iii. Let β < 1 and s > 0.

1. Let s < λβT (0). Then S10(p.217) ⃝s △ •△ is true.

2. Let s = λβT (0). If λβmax{0, a− ρ} < s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △,
or else ⃝s dOITsτ>1⟨τ⟩ △.

3. Let s > λβT (0). Then S11(p.217) ⃝s △ ⃝s N } △ •△ is true.

(c) Let xK < V1.

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let β = 1. If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △.
3. Let β < 1 and s = 0.

i. Let xL > V1. Then S10(p.217) ⃝s △ •△ is true.

ii. Let xL = V1. Then S12(p.218) ⃝s △ ⃝s N } △ •△ •N is true.

iii. Let xL < V1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

4. Let β < 1 and s > 0.

i. Let s < λβT (0).

1. Let xL > V1. Then S10(p.217) ⃝s △ •△ is true.

2. Let xL = V1. Then S12(p.218) ⃝s △ ⃝s N } △ •△ •N is true.

3. Let xL < V1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

ii. Let s ≥ λβT (0). If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof Suppose a > 0, hence b > a > 0 · · · ((1)). Then, we have κ = λβT (0)− s · · · ((2)) from (6.1.23(p.26) ).

(a-b3i) The same as Tom 22.2.5(p.218) (a-b3i).

(b3ii) Due to (1) it suffices to consider only (b3ii1) of Tom 22.2.5(p.218) .

(b3iii-b3iii3) The same as Tom 22.2.5(p.218) (b3ii1-b3ii3).

(c-c2) Immediate from (2) and Tom 22.2.5(p.218) (c-c2).

(c3-c3iii) Due to (1) it suffices to consider only (c3i1-c3i3) of Tom 22.2.5(p.218) .

(c4-c4ii) Immediate from (2) and Tom 22.2.5(p.218) (c3i-c3ii).

22.2.6.3.2 Mixed Restriction

Omitted.

22.2.6.3.3 Negative Restriction

22.2.6.3.3.1 Case of β = 1 and s = 0

� Nem 22.2.5 (A {M:2[P][E]−}) Suppose b < 0. Let β = 1 and s = 0.

(a) Vt is nondecreasing in t ≥ 0.

(b) Let ρ ≤ a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let b ≤ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let a⋆ < ρ < b.

1. Let a ≤ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ < a. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof The same as Lemma 22.2.2(p.215) due to Lemma 18.4.4(p.118) .

22.2.6.3.3.2 Case of β < 1 or s > 0

22.2.6.3.3.2.1 Case of ρ ≤ a⋆

� Nem 22.2.6 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1 or a⋆ < ρ, and converges to a finite V = xK as
t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λa− s)/λ ≤ a⋆.
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1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let (λa− s)/λ > a⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then S8(p.203) ⃝s N } ∥ } △ } N .
4. Let β < 1 and s > 0.

i. Let (λβa− s)/δ ≤ a⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

ii. Let (λβa− s)/δ > a⋆. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0 · · · ((1)), hence a⋆ < a < b < 0 · · · ((2)) from Lemma 14.2.1(p.93) (n). Then κ = −s · · · ((3)) from

Lemma 14.2.6(p.97) (a).

(a-c2ii) The same as Tom 22.2.5(p.215) (a-c2ii).

(c3) Let β < 1 and s = 0. Assume (λβa − s)/δ ≤ a⋆. Then, since λβa/δ ≤ a⋆, we have λβa ≤ δa⋆ from (11.2.2 (1) (p.56) ),
hence λβa ≤ δa⋆ ≤ λa⋆ due to (2) , so βa ≤ a⋆, which contradicts [19(p.118) ]. Thus it must be that (λβµ− s)/δ > a⋆. From this
it suffices to consider only (c3ii2) of Tom 22.2.5(p.215) .

(c4-c4ii) Let β < 1 and s > 0. Then κ < 0 due to (3) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 22.2.5(p.215) with κ.

� Nem 22.2.7 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ = xK .

(a) Vt = xK = ρ for t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof Suppose b < 0. Then κ = −s · · · ((1)) from Lemma 14.2.6(p.97) (a).

(a) The same as Tom 22.2.6(p.216) (a,b).

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥ from Tom 22.2.6(p.216) (b). Let β < 1. Then, if s = 0, due to (1) it suffices to

consider only (c2) of Tom 22.2.6(p.216) and if s > 0, then κ < 0 due to (1) , hence it suffices to consider only (c2) of Tom 22.2.6(p.216)

with κ. Thus, whether s = 0 or s > 0, we have the same result. Accordingly, whether β = 1 or β < 1, we have the same
result.

� Nem 22.2.8 (A {M:2[P][E]−}) Suppose b < 0. Assume ρ ≤ a⋆. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ < xL . Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(d) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a-d1) The same as Tom 22.2.7(p.216) (a-d1).

(d2) If s = 0, then due to (1) it suffices to consider only (d2i) of Tom 22.2.7(p.216) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (d2i) of Tom 22.2.7(p.216) . Thus, whether s = 0 or s > 0, we have the same result.

22.2.6.3.3.2.2 Case of b ≤ ρ

� Nem 22.2.9 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ < xK .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t ≥ 0 if λ < 1, and converges to a finite V = xK as t→∞.

(b) Let xL ≤ ρ. Then • dOITdτ>0⟨0⟩ △.
(c) Let ρ < xL .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof Suppose b < 0 · · · ((1)). Then κ = κP = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a,c2) The same as Tom 22.2.8(p.216) (a,c2).

(c3) If s = 0, then due to (1) it suffices to consider only (c3ii) of Tom 22.2.8(p.216) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (c3ii) of Tom 22.2.8(p.216) . Thus, whether s = 0 or s > 0, we have the same result.

� Nem 22.2.10 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ = xK .
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(a) Vt = xK = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then • dOITdτ>0⟨0⟩ △.

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a) The same as Tom 22.2.9(p.217) (a).

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥ from Tom 27.2.23(p.274) (b).

(c) Let β < 1. Then, if s = 0, then due to (1) it suffices to consider only (c2) of Tom 22.2.9(p.217) and if s > 0, then κ < 0
due to (2) , hence it suffices to consider only (c2) of Tom 22.2.9(p.217) . Accordingly, whether s = 0 or s > 0, we have the same
result.

� Nem 22.2.11 (A {M:2[P][E]−}) Suppose b < 0. Assume b ≤ ρ. Let β < 1 or s > 0 and let ρ > xK .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t > 0 if λ < 1, and converges to V = xK as to t→∞.

(b) Let ρ = xL . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.
(c) Let ρ > xL .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .

• Proof Suppose b < 0 · · · ((1)). Then κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a-c1) The same as Tom 22.2.10(p.217) (a-c1).

(c2) If s = 0, then due to (1) it suffices to consider only (c2i) of Tom 22.2.10(p.217) and if s > 0, then κ < 0 due to (2) , hence
it suffices to consider only (c2i) of Tom 22.2.10(p.217) . Thus, whether s = 0 or s > 0, we have the same result.

22.2.6.3.3.2.3 Case of a⋆ < ρ < b

� Nem 22.2.12 (A {M:2[P][E]−}) Suppose b < 0. Assume a⋆ ≤ ρ < a. Let β < 1 or s > 0.

(a) If λβmax{0, a− ρ} < s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≤ xK .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = xK as t→∞.

2. Let V1 ≥ xL V1. If λβmax{0, a− ρ} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.
3. Let V1 < xL .

i. Let β = 1. Then S10(p.217) ⃝s △ •△ is true.

ii. Let β < 1. Then S11(p.217) ⃝s △ ⃝s N } △ •△ is true.
(c) Let V1 > xK .

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = xK as t→∞
2. If λβmax{0, a− ρ} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △.

• Proof Suppose b < 0 · · · ((1)), hence κ = −s · · · ((2)) from Lemma 14.2.6(p.97) (a).

(a-b3i) The same as Tom 22.2.5(p.218) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii3) of Tom 22.2.5(p.218) and if s > 0, then κ < 0 due
to (2) , hence it suffices to consider only (b3ii3) of Tom 22.2.5(p.218) . Thus, whether s = 0 or s > 0, we have the same result.

(c) Let V1 > xK .

(c1) The same as Tom 22.2.5(p.218) (c1)

(c2) Let β = 1. Then, we have the same as Tom 22.2.5(p.218) (c2). Let β < 1. Then, if s = 0, then due to (1) it suffices to
consider only (c3ii) of Tom 22.2.5(p.218) and if s > 0, then κ < 0 from (2) , hence it suffices to consider only (c3ii) of Tom 22.2.5(p.218) .
Thus, whether s = 0 or s > 0, we have the same result. Accordingly, whether β = 1 or β < 1, it eventually follows that we have
the same result.

22.2.7 M̃:2[P][E]
22.2.7.1 Preliminary

Since Theorem 22.2.3(p.202) holds due to Lemma 22.2.1(p.202) (b), we can derive A {M̃:2[P][E]} by applying SP→P̃ (see (20.0.3(p.136) ))
to A {M:2[P][E]}.

22.2.7.2 Analysis

22.2.7.2.1 Case of β = 1 and s = 0

�� Tom 22.2.11 (A {M̃:2[P][E]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.
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(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by symmetry Immediate from applying SP→P̃ to Lemma 22.2.2(p.215) .

Corollary 22.2.11 (M̃:2[P][E] ) Let β = 1 and s = 0. Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.11(p.227) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

22.2.7.2.2 Case of β < 1 or s > 0

22.2.7.2.2.1 Case of ρ ≥ b⋆

�� Tom 22.2.12 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.
1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1 and s = 0 ((s > 0)) .

i. Let (λβb+ s)/δ ≥ b⋆.
1. Let λ = 1.

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a ≥ 0 ((κ̃ ≥ 0)) . Then } ndOITτ>1⟨1⟩ △.

2. Let λ < 1.
i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.

ii. Let a > 0 ((κ̃ > 0)) . Then S8
⃝s N } ∥ } △ } N is true.

ii. Let (λβb+ s)/δ < b⋆.
1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
2. Let a > 0 ((κ̃ > 0)) . Then S8

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.2.5(p.215) .

Corollary 22.2.12 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.12(p.228) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.2.13 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a ≥ 0 ((κ̃ ≥ 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.2.6(p.216) .

Corollary 22.2.13 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 22.2.13(p.228) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.2.14 (A {M̃:2[P][E]}) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .
ii. Let a < 0 ((κ̃ < 0)). Then S9

⃝s △ •△ •N is true.

• Proof by symmetry Immediate from applying SP→P̃ to Tom 22.2.7(p.216) .

Corollary 22.2.14 (M̃:2[P][E] ) Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.14(p.228) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .
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22.2.7.2.2.2 Case of a ≥ ρ

�� Tom 22.2.15 (A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N.
ii. Let a > 0 ((κ̃ > 0)) . Then S8

⃝s N } ∥ } △ } N is true.

• Proof by symmetry Immediate from SP→P̃ to Tom 22.2.8(p.216) .†

Corollary 22.2.15 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ . Then, zt is nonincreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.15(p.229) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.2.16 (A {M̃:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1 and s = 0 ((s > 0)) .

1. Let a ≤ 0 ((κ̃ ≤ 0)) . Then ⃝s dOITsτ>0⟨τ⟩ N.
2. Let a > 0 ((κ̃ > 0)) . Then • dOITdτ>0⟨0⟩ △.

• Proof by symmetry Immediate from SP→P̃ to Tom 22.2.9(p.217) .

Corollary 22.2.16 (M̃:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ . Then, zt = z(ρ) for t ≥ 0.

• Proof Immediate from Tom 22.2.16(p.229) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

�� Tom 22.2.17 (A {M:2[P][E]}) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a ≥ 0 ((κ̃ ≥ 0)). Then • dOITdτ>0⟨0⟩ △ (( • dOITdτ>0⟨0⟩ N )) .
ii. Let a < 0 ((κ̃ < 0)). Then S9

⃝s △ •△ •N is true.

• Proof by symmetry Immediate from SP→P̃ to Tom 22.2.10(p.217) .‡

Corollary 22.2.17 (M:2[P][E] ) Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ . Then, zt is nondecreasing in t ≥ 0.

• Proof Immediate from Tom 22.2.17(p.229) (a) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

22.2.7.2.2.3 Case of b⋆ > ρ > a

By applying SP→P̃ in Theorem 22.2.3(p.202) , we see that S10(p.217) – 26.1.12 change as follows respectively:

S14
⃝s △ •△ = { We have:

(1) Let λmin{0, ρ− b} > −s. Then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>0⟨0⟩ △.
(2) Let λmin{0, ρ− b} ≤ −s. Then ⃝s dOITsτ>1⟨τ⟩ △. }

S15
⃝s △ ⃝s N } △ •△ = { There exists t•τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. ⃝s dOITst•τ≥τ>1⟨τ⟩ △ or • dOITdt•τ≥τ>1⟨0⟩ △,
ii. } ndOITτ>t•τ ⟨t

•
τ ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. ⃝s dOITst•τ≥τ>1⟨τ⟩ N,
ii. } ndOITτ>t•τ ⟨t

•
τ ⟩ △.

}
†S8 does not change by the application of the operation.
‡S9 does not change by the application of the operation.
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S16
⃝s △ ⃝s N } △ •△ •N = { There exists t•τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. • dOITdt•τ≥τ>0⟨0⟩ N,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨0⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. } ndOITt•τ≥τ>1⟨1⟩ ∥,

ii. ⃝s dOITsτ>t•τ ⟨τ⟩ N.

}
S17

⃝s △ } △ •△ •N = { There exists t•τ > 1 and t⋆τ > 1 such that:

(1) If λβmin{0, ρ− b} > −s, then
i. • dOITdt•τ≥τ>1⟨0⟩ N,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t

⋆
τ ⟩ △.

(2) If λβmin{0, ρ− b} ≤ −s, then
i. } ndOITt•τ≥τ>1⟨1⟩ △,
ii. ⃝s dOITsτ>t•τ ⟨τ⟩ △ or • dOITdτ>t•τ ⟨t

⋆
τ ⟩ △.

}
Moreover, note that (22.2.35(p.218) ) can be changed into

V1 = λβmin{0, ρ− b}+ βρ+ s. (22.2.36)

�� Tom 22.2.18 (A {M̃:2[P][E]}) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmin{0, ρ− b} ≥ −s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .†

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≤ x
L̃ . If λβmin{0, ρ− b} ≥ −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

3. Let V1 > x
L̃ .

i. Let β = 1. Then S14
⃝s △ •△ is true.

ii. Let β < 1 and s = 0 ((s > 0)) .

1. Let a < 0 ((κ̃ < 0)) . Then S14
⃝s △ •△ is true.

2. Let a = 0 ((κ̃ = 0)) . If λβmin{0, ρ−b} > −s, then ⃝s dOITsτ>1⟨τ⟩ △ or • dOITdτ>1⟨0⟩ △, or else ⃝s dOITsτ>1⟨τ⟩ △.
3. Let a > 0 ((κ̃ > 0)) . Then S15

⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let β = 1. If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ N.
3. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) .

1. Let V1 ≥ x
L̃ . Then S14

⃝s △ •△ is true.

2. Let V1 = x
L̃ . Then S16

⃝s △ ⃝s N } △ •△ •N is true.

3. Let V1 < x
L̃ . Then S17

⃝s △ } △ •△ •N is true.

ii. Let a ≥ 0 ((κ̃ ≥ 0)) . If λβmin{0, ρ− b} > −s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

• Proof by symmetry Immediate from SP→P̃ to Tom 22.2.5(p.218) .

Corollary 22.2.18 (M̃:2[P][E] ) Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) Let V1 ≥ x
K̃ . Then zt is nonincreasing in t > 0.

(b) Let V1 < x
K̃ . Then zt is nondecreasing in t > 0.

• Proof Immediate from Tom 22.2.18(p.230) (b1,c1) and from (7.2.111(p.36) ) and Lemma A3.3(p.306) .

†V1 = λβmin{0, b− ρ}+ βρ + s (see (7.4.25(p.41) )).
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22.2.7.3 Market Restriction

22.2.7.3.1 Positive Restriction

22.2.7.3.1.1 A {M̃:2[P][E]+}

22.2.7.3.1.1.1 Case of β = 1 and s = 0

� Pom 22.2.17 (A {M̃:2[P][E]+}) Suppose a > 0. Let β = 1 and s = 0.

(a) Vt is nonincreasing in t ≥ 0.

(b) Let ρ ≥ b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.
(c) Let a ≥ ρ. Then • dOITdτ>0⟨0⟩ ∥.

(d) Let b⋆ > ρ > a.

1. Let b ≥ ρ. Then • dOITd1⟨0⟩ ∥ and ⃝s dOITsτ>1⟨τ⟩ N.
2. Let ρ > b. Then ⃝s dOITsτ>0⟨τ⟩ N.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to Nem 22.2.5(p.225) .

• Direct proof The same as Tom 22.2.11(p.227) due to Lemma 18.4.4(p.118) .

22.2.7.3.1.1.2 Case of β < 1 or s > 0

22.2.7.3.1.1.2.1 Case of ρ ≥ b⋆

� Pom 22.2.18 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N and Conduct1N. Below let τ > 1.

2. Let β = 1.

i. Let (λb+ s)/λ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ>1⟨1⟩ ∥.

2. Let λ < 1. Then ⃝s dOITsτ>0⟨τ⟩ N.
ii. Let (λb+ s)/λ < b⋆. Then ⃝s dOITsτ>0⟨τ⟩ N.

3. Let β < 1 and s = 0. Then S8
⃝s N } ∥ } △ } N is true.

4. Let β < 1 and s > 0.

i. Let (λβb+ s)/δ ≥ b⋆.

1. Let λ = 1. Then } ndOITτ ⟨1⟩ △.
2. Let λ < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

ii. Let (λβb+ s)/δ < b⋆. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.6(p.225) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b⋆ > b > a > 0 · · · ((2)) from Lemma 15.6.1(p.107) (n). Then we have κ̃ = s · · · ((3))
from Lemma 15.6.6(p.108) (a).

(a-c2ii) The same as Tom 22.2.12(p.228) (a-c2ii).

(c3) Let β < 1 and s = 0, hence κ̃ = 0 due to (3) . Assume (λβb+s)/δ ≥ b⋆. Then since λβb/δ ≥ b⋆, we have λβb ≥ δb⋆ from
(11.2.2 (1) (p.56) ), hence λβb ≥ δb⋆ ≥ λb⋆ due to (2) , so βb ≥ b⋆, which contradicts [7(p.118) ]. Thus it must be that (λβb+s)/δ < b⋆.
From this it suffices to consider only (c3ii2) of Tom 22.2.12(p.228) .

(c4-c4ii) Let β < 1 and s > 0. Then κ̃ > 0 from (3) , hence it suffices to consider only
(c3i1ii,c3i2ii,c3ii2) of Tom 22.2.12(p.228) with κ.

� Pom 22.2.19 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) We have • dOITdτ>0⟨0⟩ ∥.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.7(p.226) (see (22.2.20(p.203) )).

• Direct proof Let a > 0 · · · ((1)), then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a) The same as Tom 22.2.13(p.228) (a).

(b) Let β = 1. Then we have Tom 22.2.13(p.228) (a). Let β < 1. Then, if s = 0, due to (1) it suffices to consider only (c2)
of Tom 22.2.13(p.228) and if s > 0, then κ̃ > 0 from (2) , hence it suffices to consider only (c2 of Tom 22.2.13(p.228) . Thus, whether
s = 0 or s > 0, we have the same result.
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� Pom 22.2.20 (A {M̃:2[P][E]+}) Suppose a > 0. Assume ρ ≥ b⋆. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ > x
L̃ . Then ⃝s dOITsτ>0⟨τ⟩ N.

(c) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(d) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1. Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N).

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.8(p.226) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 15.6.6(p.108) (a).

(a-d1) The same as Tom 22.2.14(p.228) (a-d1).

(d2) If s = 0, due to (1) it suffices to consider only (d2i) of Tom 22.2.14(p.228) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (d2i) of Tom 22.2.14(p.228) . Thus, whether s = 0 or s > 0, we have the same result.

22.2.7.3.1.1.2.2 Case of a ≥ ρ

� Pom 22.2.21 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ > x
K̃ .

(a) Vt is nonincreasing in t ≥ 0, is strictly decreasing in t ≥ 0 if λ < 1, and converges to a finite V = x
K̃ as t→∞.

(b) Let x
L̃ ≥ ρ. Then • dOITdτ>0⟨0⟩ △.

(c) Let ρ > x
L̃ .

1. ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

2. Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ N.

3. Let β < 1. Then S8(p.203) ⃝s N } ∥ } △ } N is true.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.9(p.226) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a-c2) The same as Tom 22.2.15(p.229) (a-c2).

(c3) If s = 0, due to (1) it suffices to consider only (c3ii) of Tom 22.2.15(p.229) and if s > 0, then κ̃ > 0 due to (2) , hence it
suffices to consider only (c3ii) of Tom 22.2.15(p.229) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 22.2.22 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ = x
K̃ .

(a) Vt = x
K̃ = ρ for t ≥ 0.

(b) Let β = 1. Then we have • dOITdτ>0⟨0⟩ ∥.

(c) Let β < 1. Then we have • dOITdτ>0⟨0⟩ △.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.10(p.226) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) from Lemma 15.6.6(p.108) (a).

(a) The same as Tom 22.2.16(p.229) (a).

(b) The same as Tom 22.2.16(p.229) (b).

(c) Let β < 1. If s = 0, due to (1) it suffices to consider only (c2) of Tom 22.2.16(p.229) . If s > 0, then κ̃ > 0 due to (2) , hence
it suffices to consider only (c2) of Tom 22.2.16(p.229) . Thus, whether s = 0 or s > 0, we have the same result.

� Pom 22.2.23 (A {M̃:2[P][E]+}) Suppose a > 0. Assume a ≥ ρ. Let β < 1 or s > 0 and let ρ < x
K̃ .

(a) Vt is nondecreasing in t ≥ 0, is strictly increasing in t > 0 if λ < 1, and converges to V = x
K̃ as to t→∞.

(b) Let ρ = x
L̃ . Then • dOITd1⟨0⟩ △ and ⃝s dOITsτ>1⟨τ⟩ N.

(c) Let ρ < x
L̃ .

1. Let β = 1. Then • dOITdτ>0⟨0⟩ △.
2. Let β < 1 and let s = 0(s > 0). Then • dOITdτ>0⟨0⟩ △ ( • dOITdτ>0⟨0⟩ N).

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.11(p.227) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)). Then κ̃ = s · · · ((2)) due to Lemma 15.6.6(p.108) (a).

(a,b) The same as Tom 22.2.17(p.229) (a,b).

(c) Let ρ < x
L̃ .
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(c1) Let β = 1. Then we have • dOITdτ>0⟨0⟩ △ from Tom 22.2.17(p.229) (c1).

(c2) Let β < 1. If s = 0, then due to (2) it suffices to consider only (c2i) of Tom 22.2.17(p.229) and if s > 0, then κ̃ > 0 due
to (2) , hence it suffices to consider only (c2i) of Tom 22.2.17(p.229) . Thus, whether s = 0 or s > 0, we have the same result.

22.2.7.3.1.1.2.3 Case of b⋆ > ρ > a

� Pom 22.2.24 (A {M̃:2[P][E]+}) Suppose a > 0. Assume b⋆ ≥ ρ > a. Let β < 1 or s > 0.

(a) If λβmax{0, ρ− b} ≤ s, then • dOITd1⟨0⟩ △, or else ⃝s dOITs1⟨1⟩ N. Below let τ > 1.

(b) Let V1 ≥ x
K̃ .†

1. Vt is nonincreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. Let V1 ≥ x
L̃ . If λβmax{0, ρ− b} ≤ s, then • dOITdτ>1⟨0⟩ △, or else } ndOITτ>1⟨1⟩ △.

3. Let V1 > x
L̃ .

i. Let β = 1. Then S14(p.229) ⃝s △ •△ is true.

ii. Let β < 1. Then S15(p.229) ⃝s △ ⃝s N } △ •△ is true.

(c) Let V1 < x
K̃ .

1. Vt is nondecreasing in t ≥ 0 and converges to a finite V = x
K̃ as t→∞.

2. If λβmax{0, ρ− b} < s, then • dOITdτ>1⟨0⟩ N, or else } ndOITτ>1⟨1⟩ △.

• Proof by diagonal-symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) to
Nem 22.2.12(p.227) (see (22.2.20(p.203) )).

• Direct proof Suppose a > 0 · · · ((1)), hence b > a > 0. Then κ̃ = s · · · ((2)) due to Lemma 15.6.6(p.108) (a).

(a-b3i) The same as Tom 22.2.18(p.230) (a-b3i).

(b3ii) Let β < 1. If s = 0, then due to (1) it suffices to consider only (b3ii3) of Tom 22.2.18(p.230) and if s > 0, then κ̃ > 0
due to (2) , hence it suffices to consider only (b3ii3) of Tom 22.2.18(p.230) . Thus, whether s = 0 or s > 0, we have the same result.

(c1) The same as Tom 22.2.18(p.230) (c1).

(c2) If β = 1, then it suffices to consider only (c2) of Tom 22.2.18(p.230) and if β < 1, whether s = 0 or s > 0, it suffices to
consider only (c3ii) of Tom 22.2.18(p.230) . Accordingly, whether β = 1 or β < 1, we have the same result.

22.2.7.3.2 Mixed Restriction

Omitted.

22.2.7.3.3 Negative Restriction

Unnecessary.

22.2.7.4 Numerical Calculation

Numerical Example 6 (A {M:2[R][E]+} (selling model) This example is for the assertion in
Pom 22.2.4(p.210) (d3ii) in which a > 0, ρ > xK , ρ > xL , β < 1, s > 0, and λβµ > s. As an example let a = 0.01, b = 1.00,
λ = 0.7, β = 0.98, s = 0.1, and ρ = 0.5.† where xL = 0.462767 and xK = 0.439640. The symbols • in the figure below shows
the optimal initiating times t∗15 ≥ τ ≥ 1 (see the t∗τ -column in the table of Figure 22.2.2(p.233) below).
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Graphs of Itτ = βτ−tVt with 15 ≥ τ > 0 and τ ≥ t ≥ 0[FIG7498x]

t Vt ∆βVt t∗τ

0 0.5000000
1 0.4766162 −0.0133838 1
2 0.4619911 −0.0050927 1
3 0.4530367 +0.0002854 1
4 0.4476274 +0.0036514 1
5 0.4443866 +0.0057117 1
6 0.4424547 +0.0069558 1
7 0.4413065 +0.0077009 7
8 0.4406253 +0.0081449 8
9 0.4402216 +0.0084088 9
10 0.4399825 +0.0085653 10
11 0.4398410 +0.0086581 11
12 0.4397572 +0.0087130 12
13 0.4397076 +0.0087456 13
14 0.4396783 +0.0087648 14
15 0.4396609 +0.0087762 15

∆βVt = Vt − βVt−1 [017(1)Data.DAT]

Figure 22.2.2: Graphs of Itτ = βτ−tVt for 15 ≥ τ ≥ 2 and τ ≥ t ≥ 1

†V1 = λβmin{0, b− ρ}+ βρ + s (see (7.4.25(p.41) )).
†We have ρ = 0.5 > 0.462767 = xL , β = 0.98 < 1, and s = 0.1 > 0. Since µ = (0.01 + 1.00)/2 = 0.505, we have λβµ = 0.7 × 0.98 × 0.505 =

0.34634 > 0.1 = s. Thus the condition of this assertion is confirmed.
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Scaling up the graphs for τ = 6 and τ = 7 in the above figure, we have the figure below. This figure demonstrates that the
optimal initiating time shifts from 0 to 7 when the starting time changes from τ = 6 to τ = 7.
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Graphs of Itτ = βτ−tVt with τ = 6, 7 [FIG7498y]

τ = 6

t β6−tVt

0 0.4429212
1 0.4308233
2 0.4261259
3 0.4263946
4 0.4299014
5 0.4354989
6 0.4424547

τ = 7

t β7−tVt

0 0.4340628
1 0.4222069
2 0.4176034
3 0.4178667
4 0.4213034
5 0.4267889
6 0.4336056
7 0.4413065

Figure 22.2.3: Graphs of Itτ = βτ−tVt for τ = 6 and τ = 7

22.2.7.5 Conclusion 4 (Search-Enforced-Model 2)

C1. Mental Conflict

On F+, we have:

a. Let β = 1 and s = 0.

1. The opt-R-price Vt in M:2[R][E] (selling model) is nondecreasing in t N
a

as in Figure 8.4.1(p.48) (I), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

2. The opt-P-price zt in M:2[P][E] (selling model) is nondecreasing in t N
b

as in Figure 8.4.1(p.48) (I), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

3. The opt-R-price Vt in M̃:2[R][E] (buying model) is nonincreasing in t H
c

as in Figure 8.4.1(p.48) (II), hence we have the
normal conflict (see Remark 8.4.1(p.48) ).

4. The opt-P-price zt in M̃:2[P][E] (buying model) is nonincreasing in t as in Figure 8.4.1(p.48) (II), hence we have the

normal conflict (see Remark 8.4.1(p.48) ),H
d

.

· Na ← Tom 22.2.1(p.203) (a)

· Nb ← Corollary 22.2.3(p.215)

· Hc ← Tom 22.2.1(p.211) (a)

· Hd ← Corollary 22.2.11(p.228) .

b. Let β < 1 or s > 0.

1. The opt-R-price Vt in M:2[R][E] (selling model) is nondecreasing in t N
a

, constant ∥
a

, or nonincreasing in t H
a

as in
Figure 8.4.2(p.48) (I), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

2. The opt-P-price zt in M:2[P][E] (selling model) is nondecreasing in t N
b

, constant ∥
b

, or nonincreasing in t H
b

as in
Figure 8.4.2(p.48) (I), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

3. The opt-R-price Vt in M̃:2[R][E] (buying model) is nondecreasing in t N
c

, constant ∥
c

, or nonincreasing in t H
c

as in
Figure 8.4.2(p.48) (II), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

4. The opt-P-price zt in M̃:2[P][E] (buying model) is nondecreasing in t N
d

, constant ∥
d

, or nonincreasing in t H
d

as in
Figure 8.4.2(p.48) (II), hence we have the abnormal conflict (see Remark 8.4.2(p.48) ).

· Na ← Tom 22.2.1(p.203) (a), 22.2.2(p.204) (a).
∥a ← Tom 22.2.3(p.207) (a)).
Ha ← Tom 22.2.4(p.207) (a).

· Nb ← Corollary 22.2.3(p.215) , 22.2.4(p.216) , 22.2.7(p.217) ,22.2.10(p.222) (a).
∥b ← Corollary 22.2.5(p.216) , 22.2.8(p.217) .
Hb ← Corollary 22.2.6(p.216) , 22.2.9(p.217) , 22.2.10(p.222) (b).

· Nc ← Tom 22.2.4(p.212) (a).
∥c ← Tom 22.2.3(p.212) (a).
Hc ← Tom 22.2.1(p.211) (a), 22.2.2(p.211) (a).

· Nd ← Corollary 22.2.14(p.228) , 22.2.17(p.229) , 22.2.18(p.230) (b).
∥c ← Corollary 22.2.13(p.228) , 22.2.16(p.229) .
Hd ← Corollary 22.2.11(p.228) , 22.2.12(p.228) , 22.2.15(p.229) , 22.2.18(p.230) (a).

The above results can be summarized as below.

A. If β = 1 and s = 0, then, on F+, whether selling problem or buying problem and whether R-mechanism-model or
P-mechanism-model, we have the normal mental conflict, which coincides with expectations in Examples 1.3.1(p.5) -
1.3.4(p.6) .
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B. If β < 1 or s > 0, then, on F+, whether selling problem or buying problem and whether R-mechanism-model
or P-mechanism-model, we have the abnormal mental conflict, which does not coinside with expectations in Exam-
ples 1.3.1(p.5) - 1.3.4(p.6) .

C2. Symmetry

On F+, we have:

a. Let β = 1 and s = 0. Then we have:

Pom 22.2.5(p.212) ∼ Pom 22.2.1(p.209) (A {M̃:2[R][E]}+ ∼ A {M:2[R][E]}+),
Pom 22.2.17(p.231) ∼ Pom 22.2.9(p.222) (A {M̃:2[P][E]}+ ∼ A {M:2[P][E]}+).

b. Let β < 1 or s > 0. Then we have:

Pom 22.2.6(p.212) |∼ Pom 22.2.2(p.209) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.7(p.213) |∼ Pom 22.2.3(p.209) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.8(p.213) |∼ Pom 22.2.4(p.210) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.18(p.231) |∼ Pom 22.2.10(p.223) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.19(p.231) |∼ Pom 22.2.11(p.223) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.20(p.232) |∼ Pom 22.2.12(p.223) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.21(p.232) |∼ Pom 22.2.13(p.224) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.22(p.232) |∼ Pom 22.2.14(p.224) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.23(p.232) |∼ Pom 22.2.15(p.224) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)
Pom 22.2.24(p.233) |∼ Pom 22.2.16(p.224) (A {M̃:2[R][E]}+ |∼ A {M:2[R][E]}+)

The above results can be summarized as below.

A. Let β = 1 and s = 0. Then the symmetry is always inherited (see C2a(p.235) ).

B. Let β < 1 or s > 0. Then the symmetry always collapses (see C2b(p.235) ).

C3. Analogy

a. On F+, for any β ≤ 1 and s ≥ 0 we have:

Pom 22.2.9(p.222) ◃▹| Pom 22.2.1(p.209) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.10(p.223) ◃▹| Pom 22.2.2(p.209) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.11(p.223) ◃▹ Pom 22.2.3(p.209) (A {M̃:2[R][E]}+ ◃▹ A {M:2[R][E]}+) · · · (∗)
Pom 22.2.12(p.223) ◃▹| Pom 22.2.4(p.210) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.17(p.231) ◃▹| Pom 22.2.5(p.212) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.18(p.231) ◃▹| Pom 22.2.6(p.212) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.19(p.231) ◃▹| Pom 22.2.7(p.213) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.20(p.232) ◃▹| Pom 22.2.8(p.213) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.21(p.232) ◃▹| Pom 22.2.6(p.212) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)
Pom 22.2.22(p.232) ◃▹ Pom 22.2.7(p.213) (A {M̃:2[R][E]}+ ◃▹ A {M:2[R][E]}+) · · · (∗∗)
Pom 22.2.23(p.232) ◃▹| Pom 22.2.8(p.213) (A {M̃:2[R][E]}+ ◃▹| A {M:2[R][E]}+)

The above results can be summarized as below.

A. The analogy collapses except (∗) and (∗∗).

C4. Optimal initiating time (OIT)

On F+, we have:

a. Let β = 1 and s = 0. Then, from

Pom 22.2.1(p.209) , Pom 22.2.5(p.212) , Pom 22.2.9(p.222) , Pom 22.2.17(p.231) ,

we obtain the following table.

Table 22.2.3: Possible OIT on F+ (β = 1 and s = 0)

A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥

} ndOITτ ⟨t•τ ⟩ △ }△
} ndOITτ ⟨t•τ ⟩ N }N
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△
• dOITdτ ⟨0⟩ N •ddN
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From the above table we see that:

A. Only ⃝⃝s N and•dd ∥ are possible on F+.

b. Let β < 1 or s > 0. Then, from

Pom 22.2.4(p.210) , Pom 22.2.12(p.223) , Pom 22.2.15(p.224) , Pom 22.2.16(p.224) , Pom 22.2.24(p.233) ,

Pom 22.2.2(p.209) , Pom 22.2.3(p.209) , Pom 22.2.4(p.210) , Pom 22.2.6(p.212) , Pom 22.2.8(p.213) ,

Pom 22.2.10(p.223) , Pom 22.2.11(p.223) , Pom 22.2.13(p.224) , Pom 22.2.14(p.224) , Pom 22.2.16(p.224) ,

Pom 22.2.18(p.231) , Pom 22.2.20(p.232) , Pom 22.2.23(p.232) , Pom 22.2.16(p.224) , Pom 22.2.21(p.232) ,

Pom 22.2.7(p.213) , Pom 22.2.19(p.231) , Pom 22.2.22(p.232) , Pom 22.2.22(p.232) ,

we obtain the following table:

Table 22.2.4: Possible OIT on F+ (β < 1 or s > 0)

A {M:2[R][E]+} A {M̃:2[R][E]+} A {M:1[P][E]+} A {M̃:2[P][E]+}

⃝s dOITsτ ⟨τ⟩ ∥ ⃝⃝s ∥

⃝s dOITsτ ⟨τ⟩ △ ⃝⃝s △ ◦ ◦ ◦ ◦
⃝s dOITsτ ⟨τ⟩ N ⃝⃝s N ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ ∥ }∥ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ △ }△ ◦ ◦ ◦ ◦
} ndOITτ ⟨t•τ ⟩ N }N ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ ∥ •dd ∥ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ △ •dd△ ◦ ◦ ◦ ◦
• dOITdτ ⟨0⟩ N •ddN ◦ ◦ ◦ ◦

From the above table we see that:

A. ⃝⃝s △, } ∥, ⃝⃝s N, } N, } △,•dd ∥,•dd △, and•dd N are possible on F+.

The table below is the list of the occurrence percents ⃝⃝s , } , and•dd on F (see �� Tom 22.2.1(p.203) , Tom 22.2.2(p.204) ,
Tom 22.2.3(p.207) , Tom 22.2.4(p.207) , Tom 22.2.3(p.214) , and Tom 22.2.5(p.218) ).

Table 22.2.5: Occurance percents of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
41.4%/ 29 24.3%/ 17 34.3%/ 24

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− possible possible possible possible possible possible possible possible

–%/ – 12.9%/ 9 28.5%/ 20 5.7%/ 4 14.3%/ 10 4.3%/ 3 5.7%/ 4 21.5%/ 15 7.1%/ 5

C5. Null-time-zone and deadline-engulfing

From Table 22.2.5(p.236) above we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd occur at 41.4%, 24.3%, and 34.3% respectively where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 8.2.1(p.45) .

2. }∥ is possible (5.7%).

3. •dd∥ is possible (5.7%).

4. ⃝⃝s △ is possible (12.9%).

5. }△ is possible (14.3%).

6. •dd△ is possible (21.5%).

7. ⃝⃝s N is possible (28.5%).

8. } N is possible (4.3%).

• Tom 22.2.2(p.204) (c3i2,c3ii1ii2,c3ii2i).

9. •dd N is possible (7.1%).

• Tom 22.2.4(p.207) (d2i,d2ii).

• Tom 22.2.5(p.218) (c2,c3i2,c3i3).

From the above results we see that:
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A. } and•dd causing the null-time-zone are possible at 58.6% (= 24.3% + 34.3%).

B. }N strictly causing the null-time-zone is possible at 4.3%.

C. •ddN strictly causing the null-time-zone are possible at 7.1%, i.e., the deadline-engulfing is possible.

C6. Diagonal Symmetry

Exercise 22.2.1 Confirm by yourself that the following relations hold in fact.

Pom 22.2.5(p.212) d-∼ Nem 22.2.1(p.210) (R-mechanism),

Pom 22.2.6(p.212) d-∼ Nem 22.2.2(p.210) (R-mechanism),

Pom 22.2.7(p.213) d-∼ Nem 22.2.3(p.211) (R-mechanism),

Pom 22.2.8(p.213) d-∼ Nem 22.2.4(p.211) (R-mechanism).

Pom 22.2.17(p.231) d-∼ Nem 22.2.5(p.225) (P-mechanism),

Pom 22.2.18(p.231) d-∼ Nem 22.2.6(p.225) (P-mechanism),

Pom 22.2.19(p.231) d-∼ Nem 22.2.7(p.226) (P-mechanism),

Pom 22.2.20(p.232) d-∼ Nem 22.2.8(p.226) (P-mechanism),

Pom 22.2.21(p.232) d-∼ Nem 22.2.9(p.226) (P-mechanism),

Pom 22.2.22(p.232) d-∼ Nem 22.2.10(p.226) (P-mechanism),

Pom 22.2.23(p.232) d-∼ Nem 22.2.11(p.227) (P-mechanism),

Pom 22.2.24(p.233) d-∼ Nem 22.2.12(p.227) (P-mechanism).

22.3 Conclusions of Model 2
Conclusions 3(p.198) and 4(p.234) can be summed up as below.

C1. Mental Conflict

On F+, from C1A(p.199) and C1B(p.199) and from C1A(p.234) and C1B(p.235) . we have:

A. If β = 1 and s = 0, then, on F+, whether search-Allowed-model or search-Enforced-model, whether selling problem or
buying problem, and whether R-mechanism-model or P-mechanism-model, we have the normal mental conflict, which
coincides with expectations in Examples 1.3.1(p.5) - 1.3.4(p.6) .

B. If β < 1 or s > 0, then, on F+, whether search-Allowed-model or search-Enforced-model, whether selling problem
or buying problem, and whether R-mechanism-model or P-mechanism-model, we have the abnormal mental conflict,
which does not coinside with expectations in Examples 1.3.1(p.5) - 1.3.4(p.6) .

C2. Symmetry

On F+, we have:

a. If β = 1 and s = 0, the symmetry is always inherited (see C2A(p.199) and C2A(p.235) ).

b. if β < 1 or s > 0, the symmetry always collapses (see C2B(p.199) and C2B(p.235) ).

C3. Analogy

On F+, we have:

a. For any β ≤ 1 and s ≥ 0, the analogy collapse (see C3A(p.200) and C3A(p.235) ) except (∗) and (∗∗) of C3(p.235) .

C4. Optimal Initiating Time (OIT)

a. Let β = 1 and s = 0. Then we have ⃝⃝s N and•dd ∥ on F+ (see C4aA(p.200) and C4aA(p.236) ).

b. Let β < 1 or s > 0.

1. For sA-model we have ⃝⃝s N, } ∥, and•dd ∥ (see C4A(p.200) ).

2. For sE-model we have ⃝⃝s △,⃝⃝s N, } ∥, } △, } N,•dd ∥,•dd △, and•dd N (see C19.3.9(p.134) ).

Joining Tables 22.1.3(p.201) and 22.2.5(p.236) produces the following table:

Table 22.3.1: Percents (frequencies) of ⃝⃝s , } , and•dd on F+

⃝⃝s } •dd
44.2%/ 58 23.0%/ 30 32.8%/ 43

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− possible possible possible possible possible possible possible possible

–%/ – 6.8%/ 9 37.4%/ 49 13.2%/ 17 7.5%/ 10 2.3%/ 3 17.5%/ 23 11.5%/ 15 3.8%/ 5
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C5. Null-time-zone and deadline-engulfing

From Table 22.3.1(p.237) above we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole we have ⃝⃝s , } , and•dd at 44.2%, 23.0%, and 32.8% where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 8.2.1(p.45) .

2. }∥ is possible (13.2%).

3. •dd∥ is possible (17.5%).

4. ⃝⃝s △ is possible (6.8%).

5. }△ is possible (7.5%).

6. •dd△ is possible (11.5%).

7. ⃝⃝s N is possible (37.4%).

8. }N is possible (2.3%).

• Tom 22.2.2(p.204) (c3i2,c3ii1ii2,c3ii2i).

9. •ddN is possible (3.8%).

• Tom 22.2.4(p.207) (d2i,d2ii).

• Tom 22.2.5(p.218) (c2,c3i2,c3i3).

From the above results we see that:

A. } and•dd causing the null-time-zone are possible at 55.8% (= 23.0% + 32.8%).

B. }N and•ddN strictly causing the null-time-zone are possible at 2.3% and 3.8% respectively.

C6. Diagonal Symmetry

See C6(p.201) and C6(p.237) .



Chapter 23

Analysis of Model 3

23.1 Reduction

Definition 23.1.1 (reduction)

(a) If it is always optimal to reject the intervening quitting penalty price ρ in Model 3, then it follows that Model 3 is
substantively reduced to Model 2 in which the ρ is not defined, schematized as

Model 3 � Model 2. (23.1.1)

Let us represent this model reduction as the model-running-back; in other words, Model 3 in “downstream” runs back to
Model 2 in “upstream”.

(b) Let us define

Acceptt≥0(ρ) ◃ Stop
def
= {Accept the intervening quitting penalty price ρ at any given time point on t ≥ 0 }

and stop the process}. (23.1.2)

Let us represent the reduction of this optimal decision rule (odr) as odr 7→Acceptt≥0(ρ) ◃ Stop.

(c) Let us schematize the above two reductions as

Reduction

{
model reduction → model-running-back (� )

odr reduction → odr 7→ Acceptt≥0(ρ) ◃ Stop ( 7→)
(23.1.3)

Lemma 23.1.1 Let Acceptt≥0(ρ) ◃ Stop holds. Then

(a) Let β = 1. Then we have•dd ∥ for any ρ.

(b) Let β < 1 and ρ < 0. Then we have•dd N.
(c) Let β < 1 and ρ = 0. Then we have•dd ∥.

(d) Let β < 1 and ρ > 0. Then we have ⃝⃝s N.
(e) Let ρ ≥ 0. Then we have ⃝⃝s △.
• Proof If Acceptt≥0(ρ) ◃ Stop holds, then we have Vt = ρ for t > 0 from (7.4.38(p.41) ), (7.4.44(p.41) ), (7.4.52(p.41) ), and (7.4.58(p.41) ),

we have Itτ = βτ−tρ for t > 0 from (8.2.3(p.44) ).

(a) Let β = 1. Then β0ρ = β1ρ = · · · = βτρ = ρ for any ρ, hence Iττ = Iτ−1
τ = · · · = I0τ = ρ, so t∗τ = 0, i.e.,•dd∥.

(b) Let β < 1 and ρ < 0. Then β0ρ < β1ρ < · · · < βτρ, hence Iττ < Iτ−1
τ < · · · < I0τ , so t∗τ = 0, i.e.,•ddN.

(c) Let β < 1 and ρ = 0. Then β0ρ = β1ρ = · · · = βτρ = 0, hence Iττ = Iτ−1
τ = · · · = I0τ , so t∗τ = τ = 0, i.e.,•dd∥.

(d) Let β < 1 and ρ > 0. Then β0ρ > β1ρ > · · · > βτρ, hence Iττ > Iτ−1
τ > · · · > I0τ , so t∗τ = τ , i.e., ⃝⃝s N.

(e) Let ρ ≥ 0. Then β0ρ ≥ β1ρ ≥ · · · ≥ βτρ for any 0 < β ≤ 1, hence Iττ ≥ Iτ−1
τ ≥ · · · ≥ I0τ , so t∗τ = τ , i.e., ⃝⃝s △.

23.2 Search-Allowed-Model 3: Q{M:3[A]} = {M:3[R][A], M̃:3[R][A],M:3[P][A], M̃:3[P][A]}
23.2.1 Theorems

As ones corresponding to Theorems 13.5.1(p.80) , 14.3.1(p.97) , and 15.5.1(p.106) let us consider the following three theorems:

Theorem 23.2.1 (symmetry[R→ R̃]) Let A {M:3[R][A]} holds on P ×F . Then A {M̃:3[R][A]} holds on P ×F where

A {M̃:3[R][A]} = SR→R̃[A {M:3[R][A]}]. (23.2.1)

Theorem 23.2.2 (analogy[R→ P]) Let A {M:3[R][A]} holds on P ×F . Then A {M:3[P][A]} holds on P ×F where

A {M:3[P][A]} = AR→P[A {M:3[R][A]}]. (23.2.2)
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Theorem 23.2.3 (symmetry(P→ P̃]) Let A {M:3[P][A]} holds on P ×F . Then A {M̃:3[P][A]} holds on P ×F where

A {M̃:3[P][A]} = SP→P̃[A {M:3[P][A]}]. (23.2.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:3[R][A]} = SR→R̃[SOE{M:3[R][A]}], (23.2.4)

SOE{M:3[P][A]} = AR→P[SOE{M:3[R][A]}], (23.2.5)

SOE{M̃:3[P][A]} = SP→P̃[SOE{M:3[R][A]}], (23.2.6)

corresponding to (13.5.34(p.77) ), (14.2.4(p.93) ), and (15.5.4(p.106) ). Now, from the comparison of (I) and (II) and of (III) and (IV) in
Table 7.4.5(p.41) it can be easily shown that (23.2.4(p.240) ) and (23.2.6(p.240) ) hold. However, from the comparison of (I) and (III)
in Table 7.4.5(p.41) we can immediately see that (23.2.5(p.240) ) does not always hold, hence it follows that also Theorem 23.2.2(p.239)

does not always hold.

23.2.2 A Lemma

The following lemma determines if Theorem 23.2.2(p.239) holds by testing whether or not each of (23.2.5(p.240) ) is true.

Lemma 23.2.1

(a) Theorem 23.2.1(p.239) always hold.

(b) Theorem 23.2.3(p.240) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 23.2.2(p.239) holds.

(d) Let a⋆ < ρ < b. Then Theorem 23.2.2(p.239) does not always hold.

• Proof Almost the same as the proof of Lemma 22.1.1(p.159) .

23.2.3 M:3[R][A]
�� Tom 23.2.1 (A {M:3[R][A]})
(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[R][A] �M:2[R][A].
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof From (7.4.39(p.41) ) with t = 1 and (7.4.37(p.41) ) we have U1 = max{K (V0)+ρ, βV0)} = max{K (ρ)+ρ, βρ} · · · ((1)), hence
U1 − ρ = max{K (ρ),−(1− β)ρ} · · · ((2)). From (7.4.38(p.41) ) with t = 1 we have V1 ≥ ρ = V0. Then, from (7.4.39(p.41) ) with t = 2

and Lemma 11.2.2(p.57) (e) we have U2 = max{K (V1) + V1, βV1} = max{K (V0) + V0, βV0} = U1. Suppose Ut−1 ≥ Ut−2, hence
from (7.4.38(p.41) ) we have Vt−1 = max{ρ, Ut−1} ≥ max{ρ, Ut−2} = Vt−2. Then, from (7.4.39(p.41) ) we have Ut ≥ max{K (Vt−2) +
Vt−2, βVt−2} = Ut−1 due to Lemma 11.2.2(p.57) (e). Thus, by induction we have Ut ≥ Ut−1 for t > 1, i.e., we have that Ut is
nondecreasing in t > 0 · · · ((3)).

(a) Let ρ ≤ xK or ρ ≤ 0. Suppose ρ ≤ xK , hence K (ρ) ≥ 0 · · · ((4)) from Corollary 11.2.2(p.58) (b). Then, from (1) we have

U1 ≥ K (ρ) + ρ ≥ ρ. Hence Ut ≥ ρ for t > 0 due to (3) . Suppose ρ ≤ 0, hence −(1 − β)ρ ≥ 0. Then, noting (4) , from (2) we
have U1 − ρ ≥ 0, i.e., U1 ≥ ρ, so Ut ≥ ρ for t > 0 due to (3) . Accordingly, whether ρ ≤ xK or ρ ≤ 0, we have Ut ≥ ρ for t > 0,
meaning that it is always optimal to reject the intervening quitting penalty price ρ for any t > 0. This fact is the same as the
event “ the intervening quitting penalty price ρ does not exist on any time t > 0 ”; in other words, it follows that M:3[R][A] is
substantially reduced to M:2[R][A] which has not an intervening quitting penalty price ρ, i.e., M:3[R][A] �M:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0 · · · ((5)), hence K (ρ) ≤ 0 · · · ((6)) from Corollary 11.2.2(p.58) (a) and −(1 − β)ρ ≤ 0. Then, since

U1 − ρ ≤ 0 from (2) , we have U1 ≤ ρ · · · ((7)). Suppose Ut−1 ≤ ρ. Then Vt−1 = ρ from (7.4.38(p.41) ), hence from (7.4.39(p.41) ) we

have Ut = max{K (ρ) + ρ, βρ} = U1 ≤ ρ due to (1) and (7) . Accordingly, by induction Ut ≤ ρ for t > 0, meaning that it is
always optimal to accept the intervening quitting penalty price ρ at all time t ≥ 0 and stop the process. Hence we have odr 7→
Acceptt≥0(ρ) ◃ Stop.

23.2.4 M̃:3[R][A]
�� Tom 23.2.1 (A {M̃:3[R][A]})
(a) Let ρ ≥ x

K̃ or ρ ≥ 0. Then M̃:3[R][A] � M̃:2[R][A].
(b) Let ρ ≥ x

K̃ and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by symmetry Immediately from applying SR→R̃ (see (20.0.1(p.136) )) to Tom 23.2.1(p.240) due to
Lemma 23.2.1(p.240) (a).

23.2.5 M:3[P][A]
23.2.5.1 Case of ρ ≤ a⋆ or b ≤ ρ

�� Tom 23.2.2 (A {M:3[P][A]}) Assume ρ ≤ a⋆ or b ≤ ρ. Then:

(a) Let ρ ≤ xK or ρ ≤ 0. Then M:3[P][A] �M:2[P][A].
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by analogy The same as Tom 23.2.1(p.240) due to Lemma 14.6.1(p.99) .
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23.2.5.2 Case of a⋆ < ρ < b

�� Tom 23.2.3 (A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β = 1 and s = 0. Then M:3[P][A]� M:2[P][A].

• Proof by analogy Assume a⋆ < ρ < b and let β = 1 and s = 0. Then, from (6.1.21(p.26) ) we have K (x) = λT (x) ≥ 0 · · · ((1))
for any x due to Lemma 14.2.1(p.93) (g). From (7.4.45(p.41) ) we have U1 ≥ βρ = ρ. Suppose Ut−1 ≥ ρ. Then, from (7.4.44(p.41) )
we have Vt−1 = Ut−1 ≥ ρ, hence from (7.4.46(p.41) ) we obtain Ut ≥ βVt−1 = Vt−1 ≥ ρ. Thus, by induction Ut ≥ ρ for t > 0.
Accordingly, for the same reason as in the proof of Tom 23.2.1(p.240) (a) we have M:3[P][A] �M:2[P][A].

�� Tom 23.2.2 (A {M:3[P][A]}) Assume a⋆ < ρ < b. Let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s or −(1− β)ρ ≥ 0. Then M:3[P][A] � M:2[P][A].
(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0.

1. Let τ = 1. Then we have odr 7→ Accept1(ρ) ◃ Stop.
†

2. Let τ > 1. Then:

i. Let ρ ≤ xK . Then M:3[P][A] �M:2[P][A]
ii. Let ρ ≥ xK . Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

†

• Proof Assume a⋆ < ρ < b. Let β < 1 or s > 0. From (7.4.45(p.41) ) we have

U1 − ρ = max{λβmax{0, a− ρ} − (1− β)ρ− s,−(1− β)ρ} · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s or −(1 − β)ρ ≥ 0, hence U1 − ρ ≥ 0 from (1) or equivalently U1 ≥ ρ · · · ((2)).
Then, since V1 = U1 · · · ((3)) from (7.4.44(p.41) ) with t = 1, from (7.4.46(p.41) ) with t = 2 we have U2 = max{K (V1) + V1, βV1} =
max{K (U1) + U1, βU1} · · · ((4)). Hence, from (2) , Lemma 14.2.3(p.96) (e), and (6.1.21(p.26) ) we have

U2 ≥ max{K (ρ) + ρ, βρ}

= max{λβT (ρ)− (1− β)ρ− s+ ρ, βρ}

= max{λβT (ρ) + βρ− s, βρ}.

Then, from Lemma 14.2.1(p.93) (h) we have U2 ≥ max{λβmax{0, a − ρ} + βρ − s, βρ} = U1 due to (7.4.45(p.41) ). Suppose
Ut−1 ≥ Ut−2, so Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from (7.4.44(p.41) ). Hence, from (7.4.46(p.41) ) and
Lemma 14.2.3(p.96) (e) we have Ut ≥ max{K (Vt−2) + Vt−2, βVt−2} = Ut−1. Accordingly, by induction Ut ≥ Ut−1 for t > 1, i.e.,
Ut is nondecreasing in t > 0. Hence, from (2) we have Ut ≥ ρ for t > 0. Therefore, for almost the same reason as in the proof
of Tom 23.2.1(p.240) (a) we have M:3[P][A]�M:2[P][A].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s and −(1− β)ρ ≤ 0 · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. Then (6) implies that it is optimal to accept the intervening quitting penalty price ρ at t = 1 and stop the
process, i.e., odr 7→ Accept1(ρ) ◃ Stop.

(b2) Let τ > 1. Due to (6) we have V1 = ρ from (7.4.44(p.41) ) with t = 1, hence U2 = max{K (ρ) + ρ, βρ} · · · ((7)) from

(7.4.46(p.41) ) with t = 2.

(b2i) Let ρ ≤ xK . ThenK (ρ) ≥ 0 from Lemma 14.2.3(p.96) (j1), hence from (7) we have U2 ≥ K (ρ)+ρ ≥ ρ. Suppose Ut−1 ≥ ρ,
hence Vt−1 = Ut−1 = ρ from (7.4.44(p.41) ). Then, from (7.4.46(p.41) ) and Lemma 14.2.3(p.96) (e) we have Ut ≥ max{K (ρ) + ρ, βρ} ≥
K (ρ) + ρ ≥ ρ. Accordingly, by induction we have Ut ≥ ρ for t > 1. Thus the assertion holds for the same reason as in the proof
of Lemma 23.2.1(p.240) (a).

(b2ii) Let ρ ≥ xK , hence K (ρ) < 0 from Lemma 14.2.3(p.96) (j1). Then, from (7) we have U2 ≤ max{ρ, βρ} · · · ((8)). If β < 1,

then ρ ≥ 0 from (5) , hence U2 ≤ max{ρ, ρ} = ρ and if β = 1, then U2 ≤ max{ρ, ρ} = ρ. Accordingly, whether β < 1 or
β = 1, we have U2 ≤ ρ for t > 0. Suppose Ut−1 ≤ ρ, hence Vt−1 = ρ from (7.4.44(p.41) ). Then, from (7.4.46(p.41) ) we have
Ut = max{K (ρ) + ρ, βρ} = U2 ≤ ρ. Accordingly, by induction we have Ut ≤ ρ for t > 1. Hence, from (6) we have Ut ≤ ρ for
t > 0. Thus, for the same reason as in the proof of Tom 23.2.1(p.240) (b) it follows that the assertion holds.

23.2.6 M̃:3[P][A]
23.2.6.1 Case of ρ ≥ b⋆ or a ≥ ρ

�� Tom 23.2.4 (A {M̃:3[P][A]}) Assume ρ ≥ b⋆ or a ≥ ρ.

(a) Let ρ ≥ x
K̃ or ρ ≥ 0. Then M̃:3[P][A] � M̃:2[P][A].

(b) Let ρ ≤ x
K̃ and ρ ≤ 0. Then we have odr 7→ Acceptτ (ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) due to Lemma 23.2.1(p.240) (b).

†In this case, we have four possibilities for the optimal initiating time (OIT):•dd∥,•ddN, ⃝⃝s N, and ⃝⃝s △.
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23.2.6.2 Case of b⋆ > ρ > a

�� Tom 23.2.5 (A {M̃:3[P][A]}) Assume b⋆ > ρ > b. Let β = 1 and s = 0. Then M̃:3[P][A] � M̃:2[P][A].

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) due to Lemma 23.2.1(p.240) (b).

�� Tom 23.2.6 (A {M̃:3[P][A]}) Assume b⋆ > ρ > a. Let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ 0 or (1− β)ρ ≥ 0. Then M̃:3[P][A] �M̃:2[P][A].
(b) Let −λβmin{0, ρ− b}+ (1− β)ρ < s and (1− β)ρ < 0.

1. Let τ = 1. Then we have odr 7→ Accept1(ρ) ◃ Stop.

2. Let τ > 1.

i. Let ρ > x
K̃ . Then M̃:3[P][A] � M̃:2[P][A].

ii. Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptt≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.3(p.136) )) due to Lemma 23.2.1(p.240) (b).

23.2.7 Conclusion 5 (Search-Allowed-Model 3)

Model 3 (search-Allowed-model) is reduced to either of the following two cases (see (23.1.3(p.239) )):

Case A M/M̃:3[R/P][A] � M/M̃:2[R/P][A] where

1. M:3[R][A] � rM:2[R][A]; see Tom 23.2.1(p.240) (a),

2. M̃:3[R][A] � rM̃:2[R][A]; see Tom 23.2.1(p.240) (a),

3. M:3[P][A] � rM:2[P][A]; see Tom 23.2.2(p.240) (a), 23.2.3(p.241) , and 23.2.2(p.241) (a,b2i),

4. M̃:3[P][A] � rM̃:2[P][A]; see Tom 23.2.4(p.241) (a), 23.2.5(p.242) , and 23.2.6(p.242) (a,b2i).

Case B odr 7→ Acceptt≥0(ρ) ◃ Stop where

1. For M:3[R][A], see Tom 23.2.1(p.240) (b),

2. For M̃:3[R][A], see Tom 23.2.1(p.240) (b),

3. For M:3[P][A], see Tom 23.2.2(p.240) (b),23.2.2(p.241) (b1,b2ii),

4. For M̃:3[P][A], see Tom 23.2.4(p.241) (b),23.2.6(p.242) (b1.b2ii).

23.3 Search-Enforced-Model 3: Q{M:3[E]} = {M:3[R][E], M̃:3[R][E],M:3[P][E], M̃:3[P][E]}

23.3.1 Preliminary

As the ones corresponding to Theorems 23.2.1(p.239) , 23.2.2(p.239) , and 23.2.3(p.240) let us consider the following three theorems:

Theorem 23.3.1 (symmetry[R→ R]) Let A {M:3[R][E]} holds on P ×F . Then A {M̃:3[R][E]} holds on P ×F where

A {M̃:3[R][E]} = SR→R̃[A {M:3[R][E]}]. (23.3.1)

Theorem 23.3.2 (analogy[R→ P]) Let A {M:3[R][E]} holds on P ×F . Then A {M:3[P][E]} holds on P ×F where

A {M:3[P][E]} = AR→P[A {M:3[R][E]}]. (23.3.2)

Theorem 23.3.3 (symmetry[P→ P])) Let A {M:3[P][E]} holds on P ×F . Then A {M̃:3[P][E]} holds on P ×F where

A {M̃:3[P][E]} = SP→P̃[A {M:3[P][E]}]. (23.3.3)

In order for the above three theorems to hold, the following three relations must be satisfied:

SOE{M̃:3[R][E]} = SR→R̃[SOE{M:3[R][E]}], (23.3.4)

SOE{M:3[P][E]} = AR→P[SOE{M:3[R][E]}], (23.3.5)

SOE{M̃:3[P][E]} = SP→P̃[SOE{M:3[P][E]}], (23.3.6)

corresponding to (23.2.4(p.240) ), (23.2.5(p.240) ), and (23.2.6(p.240) ). Now, from the comparison of (I) and (II) and of (III) and (IV) in
Table 7.4.6(p.41) it can be easily shown that (23.3.4(p.242) ) and (23.3.6(p.242) ) hold. However, from the comparison of (I) and (III) in
Table 7.4.6(p.41) we can immediately see that (23.3.5(p.242) ) does not hold, hence it follows that also Theorem 23.3.2(p.242) does not
always hold.

23.3.2 A Lemma
Lemma 23.3.1

(a) Theorem 23.3.1(p.242) always hold.

(b) Theorem 23.3.3(p.242) always hold.

(c) Let ρ ≤ a⋆ or b ≤ ρ. Then Theorem 23.3.2(p.242) holds.

(d) Let a⋆ < ρ < b. Then Theorem 23.3.2(p.242) does not always hold.

• Proof Almost the same as the proof of Lemma 22.1.1(p.159) .
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23.3.3 M:3[R][E]
�� Tom 23.3.1 (A {M:3[R][E]})
(a) Let ρ ≤ xK . Then M:3[R][E] �M:2[R][E].
(b) Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

†

• Proof From (7.4.53(p.41) ) with t = 1 and (7.4.51(p.41) ) we have U1 = K (ρ) + ρ · · · ((1)) and from (7.4.52(p.41) ) with t = 1 we have

V1 ≥ ρ = V0. Then, from (7.4.53(p.41) ) with t = 2 and Lemma 11.2.2(p.57) (e) we have U2 = K (V1) + V1 ≥ K (ρ) + ρ = U1. Suppose
Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from (7.4.52(p.41) ). Then from (7.4.53(p.41) ) we have Ut = K (Vt−1) + Vt−1 ≥
K (Vt−2) + Vt−2 = Ut−1 due to Lemma 11.2.2(p.57) (e) Thus, by induction we have Ut ≥ Ut−1 for t > 1, i.e., Ut is nondecreasing
in t > 0 · · · ((2)).

(a) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Corollary 11.2.2(p.58) (b). Then, from (1) we have U1 ≥ ρ. Hence Ut ≥ ρ for t > 0 due
to (2) . Accordingly, for almost the same reason as in the proof of Tom 23.2.1(p.240) (a) we have M̃:3[R][E] � M̃:2[R][E].

(b) Let ρ ≥ xK , hence K (ρ) ≤ 0 · · · ((3)) from Corollary 11.2.2(p.58) (a). Then, from (1) we have U1 ≤ ρ. Suppose Ut−1 ≤ ρ.

Then Vt−1 = ρ from (7.4.52(p.41) ), hence from (7.4.53(p.41) ) we have Ut = K (ρ) + ρ ≤ ρ due to (3) . Accordingly, by induction
Ut ≤ ρ for t > 0, so we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop for the same reason as in Tom 23.2.1(p.240) (b).

23.3.4 M̃:3[R][E]
�� Tom 23.3.1 (A {M̃:3[R][E]}) For any β ≤ 1 and s ≥ 0 we have :

(a) Let ρ ≤ x
K̃ . Then M̃:3[R][E] � M̃:2[R][E].

(b) Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) due to Lemma 23.3.1(p.242) (a).

23.3.5 M:3[P][E]
23.3.5.1 Case of ρ ≤ a⋆ or b ≤ ρ

In this case, we can use Lemma 23.3.1(p.242) (c) to prove Tom 23.3.2(p.243) below.

�� Tom 23.3.2 (A {M:3[P][E]}) Assume ρ ≤ a⋆ or b ≤ ρ.

(a) Let ρ ≤ xK . Then M:3[P][E] �M:2[P][E].
(b) Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by analogy The same as Tom 23.3.1(p.243) due to Lemma 14.6.1(p.99) .

23.3.5.2 Case of a⋆ < ρ < b

In this case, Tom’s 23.3.2(p.243) and 23.3.3(p.243) below must be directly proven due to Lemma 23.3.1(p.242) (d).

�� Tom 23.3.2 (A {M:3[P][E]}) Assume a⋆ < ρ < b and let β = 1 and s = 0. Then we have M:3[P][E] � M:2[P][E].
• Proof Suppose a⋆ < ρ < b and let β = 1 and s = 0. From (6.1.21(p.26) ) we have K (x) = λT (x) ≥ 0 · · · ((1)) for any x due

to Lemma 14.2.1(p.93) (g). Now, from (7.4.59(p.41) ) we have U1 = λmax{0, a − ρ} + ρ ≥ ρ due to max{0, a − ρ} ≥ 0. Suppose
Ut−1 ≥ ρ. Then, since Vt−1 = Ut−1 due to (7.4.58(p.41) ), from (7.4.60) we have Ut = K (Ut−1) + Ut−1 ≥ Ut−1 due to (1) , hence
Ut ≥ ρ. Accordingly, by induction Ut ≥ ρ for t > 0, implying that it is optimal to reject the intervening quitting penalty price
ρ for any t > 1. Thus, for almost the same as in the proof of Tom 23.2.1(p.240) (a) we have M:3[P][E] � M:2[P][E].

�� Tom 23.3.3 (A {M:3[P][E]}) Assume a⋆ < ρ < b and let β < 1 or s > 0.

(a) Let λβmax{0, a− ρ} − (1− β)ρ ≥ s. Then M:3[P][E] � M:2[P][E].
(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s.

1. Let τ = 1. Then we have odr 7→ Acceptt=1(ρ) ◃ Stop.

2. Let τ > 1. Then

i. Let ρ ≤ xK . Then M:3[P][E] � M:2[P][E].
ii. Let ρ ≥ xK . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof Suppose a⋆ < ρ < b. Let β < 1 or s > 0. From (7.4.59(p.41) ) we have

U1 − ρ = λβmax{0, a− ρ} − (1− β)ρ− s · · · ((1)).

(a) Let λβmax{0, a − ρ} − (1 − β)ρ ≥ s, hence U1 ≥ ρ · · · ((2)) from (1) . Then, since V1 = U1 · · · ((3)) from (7.4.58(p.41) )

with t = 1, we have U2 = K (U1) + U1 · · · ((4)) from (7.4.60(p.41) ) with t = 2. Hence, from (2) , Lemma 14.2.3(p.96) (e), and

(6.1.21(p.26) ) we have U2 ≥ K (ρ) + ρ = λβT (ρ)− (1− β)ρ− s+ ρ = λβT (ρ) + βρ− s. Then, from Lemma 14.2.1(p.93) (h) we have
U2 ≥ λβmax{0, a − ρ} + βρ − s = U1 due to (7.4.59(p.41) ). Suppose Ut−1 ≥ Ut−2, hence Vt−1 ≥ max{ρ, Ut−2} = Vt−2 from

†In this case, we have four possibilities for the optimal initiating time (OIT):•dd∥,•ddN, ⃝⃝s N, and ⃝⃝s △ (see Lemma 23.1.1(p.239) ).
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(7.4.58(p.41) ). Then, from Lemma 14.2.3(p.96) (e) we have Ut ≥ K (Vt−2) + Vt−2 = Ut−1. Accordingly, by induction Ut ≥ Ut−1

for t > 1, i.e., Ut is nondecreasing in t > 0. Hence, from (2) we have Ut ≥ ρ for t > 0, implying that it is optimal to reject
the intervening quitting penalty price ρ for any t > 1. Therefore, for the same as in the proof of Tom 23.2.1(p.240) (a) we have
M:3[P][E] � M:2[P][E].

(b) Let λβmax{0, a− ρ} − (1− β)ρ ≤ s · · · ((5)). Then U1 − ρ ≤ 0 from (1) , i.e., U1 ≤ ρ · · · ((6)).

(b1) Let τ = 1. Now (6) implies that it is optimal to accept the intervening quitting penalty price ρ at the starting time
t = 1 and the process stops, hence we have odr 7→ Acceptt=1(ρ) ◃ Stop.

(b2) Let τ > 1. Now, due to (6) we have V1 = ρ from (7.4.58(p.41) ) with t = 1, thus U2 = K (ρ) + ρ · · · ((7)) from (7.4.60(p.41) )

with t = 2.

(b2i) Let ρ ≤ xK , hence K (ρ) ≥ 0 from Lemma 14.2.3(p.96) (j1). Then, from (7) we have U2 ≥ ρ. Suppose Ut−1 ≥ ρ, hence
Vt−1 = Ut−1 from (7.4.58(p.41) ). Then, from (7.4.60(p.41) ) and Lemma 14.2.3(p.96) (e) we have Ut = K (Ut−1)+Ut−1 ≥ K (ρ)+ρ ≥ ρ.
Hence, by induction Ut ≥ ρ for t > 1, implying that it is optimal to reject the intervening quitting penalty price ρ for any t > 1.
Thus, for almost the same as in the proof of Lemma 23.2.1(p.240) (a) we have M:3[P][E] � M:2[P][E].

(b2ii) Let ρ ≥ xK . Then K (ρ) ≤ 0 · · · ((8)) from Lemma 14.2.3(p.96) (j1). Hence U2 ≤ ρ from (7) . Suppose Ut−1 ≤ ρ, hence

Vt−1 = ρ from (7.4.58(p.41) ). Then, from (7.4.60(p.41) ) we have Ut = K (ρ) + ρ ≤ ρ · · · ((9)) due to (8) . Thus, by induction Ut ≤ ρ

for t > 1. From this and (6) we have Ut ≤ ρ for t > 0, hence we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop for the same reason as in the
proof of Tom 23.2.1(p.240) (b) we have that the assertion holds.

23.3.6 M̃:3[P][E]
23.3.6.1 Case of ρ ≥ b⋆ or a ≥ ρ

�� Tom 23.3.3 (A {M̃:3[P][E]}) Assume ρ ≥ b⋆ or a ≥ ρ and let β ≤ 1 and s ≥ 0.

(a) Let ρ ≥ x
K̃ . Then M̃:3[P][E] �M̃:2[P][E].

(b) Let ρ ≤ x
K̃ . Then we have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.2(p.136) )) to Tom 23.3.2(p.243) .

23.3.6.2 Case of b⋆ > ρ > a

�� Tom 23.3.4 (A {M̃:3[P][E]}) Assume b⋆ > ρ ≥ b and let β = 1 and s = 0. Then M̃:3[P][E] 7→M̃:2[P][E].
• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.2(p.136) )) to Tom 23.3.2(p.243) .

�� Tom 23.3.5 (A {M̃:3[P][E]}) Assume b⋆ > ρ > a and let β < 1 or s > 0.

(a) Let −λβmin{0, ρ− b}+ (1− β)ρ ≥ s. Then M̃:3[P][E] �M̃:2[P][E].
(b) Let −λβmin{0, ρ− b}+ (1− β)ρ ≤ s.

1. Let τ = 1. Then we have odr 7→ Acceptt=1(ρ) ◃ Stop.

2. Let τ > 1. Then

i. Let ρ > x
K̃ . Then M̃:3[P][E] �M̃:2[P][E]

ii. Let ρ ≤ x
K̃ . Then odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.

• Proof by symmetry Immediate from applying SP→P̃ (see (20.0.2(p.136) )) to Tom 23.3.3(p.243) .

23.3.7 Conclusion 6 (Search-Enforced-Model 3)

This model (search-Enforced-model) is reduced to either of the following two cases (see (23.1.3(p.239) )):

Case A we have M/M̃:3[R/P][E] � M/M̃:2[R/P][E] where

1. M:3[R][E] � rM:2[R][E]; see Tom 23.3.1(p.243) (a),

2. M̃:3[R][E] � rM̃:2[R][E]; see Tom 23.3.1(p.243) (a),

3. M:3[P][E] � rM:2[P][E]; see Tom 23.3.2(p.243) (a), 23.3.2(p.243) , and 23.3.3(p.243) (a,b2i),

4. M̃:3[P][E] � rM̃:2[P][E]; see Tom 23.3.3(p.244) (a), 23.3.4(p.244) , and 23.3.5(p.244) (a,b2i).

Case B We have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop where

1. For M:3[R][E], see Tom 23.3.1(p.243) (b),

2. For M̃:3[R][E], see Tom 23.3.1(p.243) (b),

3. For M:3[P][E], see Tom 23.3.2(p.243) (b),23.3.3(p.243) (b1,b2ii),

4. For M̃:3[P][E], see Tom 23.3.3(p.244) (b),23.3.5(p.244) (b1,b2ii).

23.4 Conclusions of Model 3
This model (whether search-Enforced-model or search-Allowed-model) is reduced to either of the following two cases (see Con-
clusions 5 (p.242) and 6 (p.244) ):

C1. We have M/M̃:3[R/P][A/E] � M/M̃:2[R/P][A/E].
C2. We have odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.



Chapter 24

Conclusions of Part 3 (No-Recall-Model)

Below is the summary of Sections 21.3(p.156) , 22.3(p.237) , and 23.4(p.244) .

24.1 Models 1/2

C1. Mental Conflict

Here let the adverb “always” means “whether search-Allowed-model or search-Enforced-model, whether selling model or
buying model, and whether R-mechanism-model or P-mechanism-model”. Then, C1(p.156) and C1(p.237) cwn be rewritten as
follows.

a. Model 1

Let β ≤ 1 and s ≥ 0. Then, on F , we always have the normal mental conflict, which coincides with expectations in
Examples 1.3.1(p.5) - 1.3.4(p.6) .

b. Model 2

1. Let β = 1 and s = 0. Then, on F+, we always have the normal mental conflict, which coincides with expectations
in Examples 1.3.1(p.5) - 1.3.4(p.6) .

2. Let β < 1 or s > 0. Then, on F+, we always have the abnormal mental conflict, which does not coinside with
expectations in Examples 1.3.1(p.5) - 1.3.4(p.6) .

C2. Symmetry

a. On F+:

1. Let β = 1 and s = 0. Then, for both Model 1 and Model 2, the symmetry is always inherited (see C2b(p.156) and
C2a(p.237) ).

2. Let β < 1 or s > 0. Then,for both Model 1 and Model 2, the symmetry may collapse (see C2c(p.156) and C2b(p.237) ).

C3. Analogy

a. Model 1 On F+:

1. Let β = 1 and s = 0. Then the analogy is inherited (see C5b3(p.157) ).

2. Let β < 1 or s > 0. Then analogy is may collapses (see C3c(p.156) ).

b. Model 2 On F+:

1. For any β ≤ 1 and s ≥ 0, the analogy may collapse (see C3a(p.237) ).

C4. Optimal Initiating Time (OIT)

On F+:

a. Let β = 1 and s = 0.

1. For Model 1, only ⃝⃝s N is possible (see C2b2(p.139) and C4aA(p.155) ).

2. For Model 2, only ⃝⃝s N and•dd ∥ are possible (see C4aA(p.200) and C4aA(p.236) ). What is remarkable here is that•dd ∥

(deadline-engulfing) occurs even in the simplest case of “β = 1 and s = 0” (see C4aA(p.236) ).

b. Let β < 1 or s > 0.

1. For Model 1, ⃝⃝s N, }∥, }△, }N,•dd∥, and•dd△ are possible (see C4b(p.156) ).

2. For Model 2, ⃝⃝s △,⃝⃝s N, } ∥, } △, } N,•dd ∥,•dd △, and•dd N are possible.

245
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Joining Tables 21.3.1(p.157) and 22.3.1(p.237) produces the following table:

Table 24.1.1: Occurance percents of ⃝⃝s , } , and•dd on F

⃝⃝s } •dd
44.4%/ 68 22.2%/ 34 33.4%/ 51

⃝⃝s ∥ ⃝⃝s △ ⃝⃝s N }∥ }△ }N •dd∥ •dd△ •ddN
− possible possible possible possible possible possible possible possible

–%/ – 5.9%/ 9 38.6%/ 59 12.4%/ 19 7.2%/ 11 2.6%/ 4 19.0%/ 29 11.1%/ 17 3.2%/ 5

C5. Null-time-zone and deadline-engulfing

From Table 24.1.1(p.246) above, we see that on F :

a. See Remark 8.2.2(p.45) for the noteworthy implication of the symbol N (strict optimality).

b. As a whole, we have ⃝⃝s , } , and•dd at 44.4%, 22.2%, and 33.4% respectively where

1. ⃝⃝s ∥ cannot be defined due to Preference Rule 8.2.1(p.45) .

2. }∥ is possible (12.4%).

3. •dd∥ is possible (19.0%).

4. ⃝⃝s △ never occur (5.9%).

5. }△ is possible (7.2%).

6. •dd△ is possible (11.1%).

7. ⃝⃝s N is possible (38.6%) (see Remark 8.2.2(p.45) ),

8. }N is possible(2.6%).

◦ Tom 21.2.2(p.143) (c2iii2)

◦ Tom 22.2.2(p.204) (c3i2,c3ii1ii2,c3ii2i).

9. •ddN is possible (3.2%).

◦ Tom 22.2.4(p.207) (d2i,d2ii).

◦ Tom 22.2.5(p.218) (c2,c3i2,c3i3).

The following three are especially noteworthy findings:

A. } and•dd causing the null-time-zone occur at the percentage of 55.6% (= 22.2% + 33.4%).

B. •dd causing the deadline-engulfing occurs at the percentage of 33.4%.

C. } N and•dd N causing the deadline-engulfing occurs at the percentages of 2.6% and 3.2% respectively.

D. •dd ∥ causing the deadline-engulfing occurs even in the simplest case of “β = 1 and s = 0” (see C4a2(p.245) ).

C6. Diagonal symmetry

See C6(p.157) and C6(p.238) .

C7. C S (Conduct Skip) (see Def. 2.2.1(p.12) and Remark 8.2.1(p.44) )

It is only for M:2[R][A]+ and M:2[P][A]+ with β < 1 or s > 0 (see Table 22.1.4(p.201) ) that we have observed C S . It is usual
to assume that once conducting a search is optimal, it will become optimal to continue conducting the search afterward.
However, we demonstrated that this expectation does not always hold. In other words, it can become optimal to skip the
search after initially continuing it for a while.

24.2 Models 3

C9. Reduction

Model 3 is reduced to the following two cases (see Section 23.4(p.244) ):

a. We have the model-running-back M/M̃:3[R/P][A/E] � M/M̃:2[R/P][A/E].
b. We have the odr-reduction odr 7→ Acceptτ≥t≥0(ρ) ◃ Stop.
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Chapter 25

Definitions of Models

25.1 Future Subjects�� ���� ��F.S. 2 (future subject) In the recall-model with R-mechanism it suffices to memorize only the best of prices which have
been rejected so far. Against this, in the recall-model with P-mechanism it is hard to define the best price itself. For this reason,
in this chapter we exclude the application of the integrated-theory to the latter model, which is left as a subject to be tackled in
the future (see F2(p.297) ).

For convenience of reference, below let us copy Table 3.2.2(p.16) where represents the model excluded for the above
reason.

Table 25.1.1: The 24 recall-models

ASP[R] ABP[R] ASP[P] ABP[P]

Q{rM:1[A]} = { rM:1[R][A], rM̃:1[R][A], rM:1[P][A] , rM̃:1[P][A] }
Q{rM:1[E]} = { rM:1[R][E], rM̃:1[R][E], rM:1[P][E] , rM̃:1[P][E] }

Q{rM:2[A]} = { rM:2[R][A], rM̃:2[R][A], rM:2[P][A] , rM̃:2[P][A] }
Q{rM:2[E]} = { rM:2[R][E], rM̃:2[R][E], rM:2[P][E] , rM̃:2[P][E] }

Q{rM:3[A]} = { rM:3[R][A], rM̃:3[R][A], rM:3[P][A] , rM̃:3[P][A] }
Q{rM:3[E]} = { rM:3[R][E], rM̃:3[R][E], rM:3[P][E] , rM̃:3[P][E] }

25.2 Model 1
25.2.1 Search-Enforced-Model 1: Q{rM:1[E]} = {rM:1[R][E], rM̃:1[R][E], rM:1[P][E], rM̃:1[P][E]}

25.2.1.1 rM:1[R][E]
This is the most basic model of the selling model with recall, which is identical to M:1[R][E] (see Section 4.1.1.1.1(p.19) ) except
that the price to be accepted is the best among the prices rejected so far.

25.2.1.2 rM̃:1[R][E]
This is the most basic model of the buying model with recall, which is the same as M̃:1[R][E] (see Section 4.1.1.1.2(p.20) ) except
that the price to be accepted is the best of prices rejected so far.

25.2.2 Search-Allowed-Model 1: Q{rM:1[A]} = {rM:1[R][A], rM̃:1[R][A], rM:1[P][A], rM̃:1[P][A]}

This is the same model as the one described in Section 25.2.1(p.249) , except that the search is allowed.

25.3 Model 2
This model is defined by adding the terminal quitting penalty price ρ to Model 1 as described in Section 25.2(p.249) .

25.4 Model 3
This model is defined by adding the intervening quitting penalty price ρ to Model 2 as described in Section 25.3(p.249) .
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25.5 Best Price

Definition 25.5.1 (best price)

(a) In the selling model M (buying model M̃) let us refer to the highest y of buying prices (the highest y of selling prices)
which have been offered and rejected as the best price y.

(b) By Acceptt⟨y⟩ (Rejectt⟨y⟩) let us denote “Accept (Reject) the best price y at time t”.

Remark 25.5.1 When the process initiates at a given time t, there exist no best price since no search activity is conducted
before that.



Chapter 26

Systems of Optimality Equations

For this model we consider only R-mechanism-model (see
�� ��F.S 2(p.249) ).

26.1 Model 1
26.1.1 Search-Allowed-Model 1

26.1.1.1 rM:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (26.1.1)

vt(y) = max{y, Vt(y)}, t > 0, (26.1.2)

V1 = βE[ξ]− s = βµ− s, (26.1.3)

Vt = max{βE[vt−1(ξ)]− s, βVt−1} t > 1, (26.1.4)

where Vt(y) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = max{βE[vt−1(max{ξ, y})]− s, βvt−1(y)}, t > 0. (26.1.5)

The system of optimality equations of this model is given by

SOE{rM:1[R][A]} = {(26.1.1(p.251) )− (26.1.5(p.251) )}. (26.1.6)

For convenience let us define
V0(y) = y. (26.1.7)

Then (26.1.2(p.251) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (26.1.8)

From (26.1.4(p.251) ) and (26.1.5(p.251) ) with t = 1 we have respectively

V1(y) = max{βE[max{ξ, y}]− s, βy} (26.1.9)

= max{K (y) + y, βy} (from (6.1.10(p.25) ) with λ = 1) (26.1.10)

= max{L (y) + βy, βy} (from (6.1.9(p.25) )). (26.1.11)

= max{L (y), 0}+ βy. (26.1.12)

Let us here define

St = β(E[vt−1(ξ)]− Vt−1)− s, t > 1. (26.1.13)

Then, (26.1.4(p.251) ) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 1, (26.1.14)

implying that
St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 1. (26.1.15)

More strictly

St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (26.1.16)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.1.17)

St > (<) 0 ⇒ ConducttN (SkiptN). (26.1.18)

251
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Furthermore let us define

St(y) = β(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (26.1.19)

Then (26.1.5(p.251) ) can be rewritten as

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (26.1.20)

implying that
St(y) ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (26.1.21)

More strictly

St(y) ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (26.1.22)

St(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.1.23)

St(y) > (<) 0 ⇒ ConducttN (SkiptN). (26.1.24)

From the comparison of the two terms within { } in the right-hand side of (26.1.2(p.251) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt
†

}
t > 0 (26.1.25)

26.1.1.2 rM̃:1[R][A]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (26.1.26)

vt(y) = min{y, Vt(y)}, t > 0, (26.1.27)

V1 = βE[ξ] + s = βµ+ s, (26.1.28)

Vt = min{βE[vt−1(ξ)] + s, βVt−1} t > 1, (26.1.29)

where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = min{βE[vt−1(min{ξ, y})] + s, βvt−1(y)}, t > 0. (26.1.30)

The system of optimality equations of this model is given by

SOE{rM̃:1[R][A]} = {(26.1.26(p.252) )− (26.1.30(p.252) )}. (26.1.31)

For convenience let us define
V0(y) = y. (26.1.32)

Then (26.1.27(p.252) ) holds for t ≥ 0, i.e.,

vt(y) = min{y, Vt(y)}, t > 0. (26.1.33)

Let us define
S̃t = β(E[vt−1(ξ)]− Vt−1) + s, t > 1. (26.1.34)

Then (26.1.29(p.252) ) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 1, (26.1.35)

implying that
S̃t ≤ (≥) 0 ⇒ Conductt (Skipt), t > 1. (26.1.36)

More strictly
S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (26.1.37)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.1.38)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (26.1.39)

Let us define

S̃t(y) = β(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (26.1.40)

Then (26.1.30(p.252) ) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (26.1.41)

implying that

†The symbol “ / ” means “or”, i.e., “CONDUCTt or SKIPt”.
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S̃t(y) ≤ (≥) 0 ⇒ Conductt (Skipt), t > 0. (26.1.42)

More strictly
S̃t(y) ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (26.1.43)

S̃t(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.1.44)

S̃t(y) < (>) 0 ⇒ ConducttN (SkiptN). (26.1.45)

From the comparison of the two terms within { } in the right-hand side of (26.1.27(p.252) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (26.1.46)

26.1.2 Search-Enforced-Model 1

26.1.2.1 rM:1[R][E]
This is the most basic model with recall [43,Sak1961], the system of optimality equations of which is given as below. By vt(y)
(t ≥ 0) and Vt (t > 0) let us denote the maximum total expected present discounted profit from initiating the process at time t
with the best price y and with no best price respectively, expressed as

v0(y) = y, (26.1.47)

vt(y) = max{y, Vt(y)}, t > 0, (26.1.48)

Vt = βE[vt−1(ξ)]− s, t > 0, (26.1.49)

where Vt(y) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = βE[vt−1(max{ξ, y})]− s, t > 0. (26.1.50)

The system of optimality equations of this model is given by

SOE{rM:1[R][E]} = {(26.1.47(p.253) )− (26.1.50(p.253) )}. (26.1.51)

For convenience let us define

V0(y) = y. (26.1.52)

Then (26.1.48(p.253) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (26.1.53)

From (26.1.49(p.253) ) and (26.1.50(p.253) ) with t = 1 we have respectively

V1 = βE[ξ]− s = βµ− s, (26.1.54)

V1(y) = βE[max{ξ, y}]− s (26.1.55)

= K (y) + y (from (6.1.10(p.25) ) with λ = 1) (26.1.56)

= L (y) + βy (from (6.1.9(p.25) )). (26.1.57)

From the comparison of the two terms within { } in the right-hand side of (26.1.48(p.253) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (26.1.58)

26.1.2.2 rM̃:1[R][E]
By vt(y) (t ≥ 0) and Vt (t > 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = y, (26.1.59)

vt(y) = min{y, Vt(y)}, t > 0, (26.1.60)

Vt = βE[vt−1(ξ)] + s, t > 0, (26.1.61)

where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = βE[vt−1(min{ξ, y})] + s, t > 0. (26.1.62)
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The system of optimality equations of this model is given by

SOE{rM̃:1[R][E]} = {(26.1.59(p.253) )− (26.1.62(p.253) )}. (26.1.63)

For convenience let us define V0(y) = y. (26.1.64)

Then (26.1.60(p.253) ) holds for t ≥ 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (26.1.65)

From the comparison of the two terms within { } in the right-hand side of (26.1.60(p.253) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (26.1.66)

26.2 Mode 2
26.2.1 Search-Allowed-Model 2

26.2.1.1 rM:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (26.2.1)

vt(y) = max{y, Vt(y)}, t > 0, (26.2.2)

V0 = ρ, (26.2.3)

Vt = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (26.2.4)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (26.2.5)

The system of optimality equations of this model is given by

SOE{rM:2[R][A]} = {(26.2.1(p.254) )− (26.2.5(p.254) )}. (26.2.6)

For convenience let us define

V0(y) = ρ. (26.2.7)

Then (26.2.2(p.254) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0, (26.2.8)

From (26.2.4(p.254) ) and (26.2.5(p.254) ) with t = 1 we have respectively

V1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} (26.2.9)

= max{K(ρ) + ρ, βρ} (see (6.1.10(p.25) )) (26.2.10)

= max{L(ρ) + βρ, βρ} (see (6.1.9(p.25) )) (26.2.11)

= max{L(ρ), 0}+ βρ, (26.2.12)

V1(y) = max{λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}} (26.2.13)

= max{λβE[max{ξ,max{y, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{K (max{y, ρ}) + max{y, ρ}, βmax{y, ρ}} (see (6.1.10(p.25) )) (26.2.14)

= max{L (max{y, ρ}) + βmax{y, ρ}, βmax{y, ρ}} (see (6.1.9(p.25) )) (26.2.15)

= max{L (max{y, ρ}), 0}+ βmax{y, ρ}. (26.2.16)

Now let us define
St = λβ(E[vt−1(ξ)]− Vt−1)− s, t > 0. (26.2.17)

Then, (26.2.4(p.254) ) can be rewritten as

Vt = max{St, 0}+ βVt−1, t > 0, (26.2.18)
implying that

St ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (26.2.19)

More strictly
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St ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (26.2.20)

St = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.2.21)

St > (<) 0 ⇒ ConducttN (SkiptN). (26.2.22)
In addition, let us define

St(y) = λβ(E[vt−1(max{ξ, y})]− vt−1(y))− s, t > 0. (26.2.23)

Then (26.2.5(p.254) ) can be rewritten as, for any y,

Vt(y) = max{St(y), 0}+ βvt−1(y), t > 0, (26.2.24)
implying that

St(y) ≥ (≤) 0 ⇒ Conductt (Skipt), t > 0. (26.2.25)

More strictly
St(y) ≥ (≤) 0 ⇒ Conductt△ (Skipt△). (26.2.26)

St(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.2.27)

St(y) > (<) 0 ⇒ ConducttN (SkiptN). (26.2.28)

From the comparison of the two terms within { } in the right-hand side of (26.2.2(p.254) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (26.2.29)

26.2.1.2 rM̃:2[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (26.2.30)

vt(y) = min{y, Vt(y)}, t > 0, (26.2.31)

V0 = ρ, (26.2.32)

Vt = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (26.2.33)

where Vt(y) (t > 0) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (26.2.34)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][A]} = {(26.2.30(p.255) )− (26.2.34(p.255) )}. (26.2.35)

For convenience, let us define

V0(y) = ρ. (26.2.36)

Then (26.2.31(p.255) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (26.2.37)
Let us define

S̃t = λβ(E[vt−1(ξ)]− Vt−1) + s, t > 0. (26.2.38)

Then (26.2.33(p.255) ) can be rewritten as

Vt = min{S̃t, 0}+ βVt−1, t > 0, (26.2.39)

implying that

S̃t ≤ (≥) 0 ⇒ Conductt (Skipt). (26.2.40)

More strictly

S̃t ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (26.2.41)

S̃t = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.2.42)

S̃t < (>) 0 ⇒ ConducttN (SkiptN). (26.2.43)

In addition, let us define

S̃t(y) = λβ(E[vt−1(min{ξ, y})]− vt−1(y)) + s, t > 0. (26.2.44)

Then (26.2.34(p.255) ) can be rewritten as, for any y,

Vt(y) = min{S̃t(y), 0}+ βvt−1(y), t > 0, (26.2.45)
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implying that
S̃t(y) ≤ (≥) 0 ⇒ Conductt (Skipt), t > 0. (26.2.46)

More strictly
S̃t(y) ≤ (≥) 0 ⇒ Conductt△ (Skipt△). (26.2.47)

S̃t(y) = (=) 0 ⇒ Conductt∥ (Skipt∥). (26.2.48)

S̃t(y) < (>) 0 ⇒ ConducttN (SkiptN). (26.2.49)

From the comparison of the two terms within { } in the right-hand side of (26.2.31(p.255) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
t > 0 (26.2.50)

26.2.2 Search-Enforced-Model 2

26.2.2.1 rM:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (26.2.51)

vt(y) = max{y, Vt(y)}, t > 0, (26.2.52)

V0 = ρ, (26.2.53)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0, (26.2.54)

where Vt(y) (t > 0) is the maximum total expected present discounted profit from rejecting the best price y, expressed as

Vt(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (26.2.55)

The system of optimality equations of this model is given by

SOE{rM:2[R][E]} = {(26.2.51(p.256) )− (26.2.55(p.256) )}. (26.2.56)

For convenience, let us define
V0(y) = ρ. (26.2.57)

Then (26.2.52(p.256) ) holds for t ≥ 0, i.e.,

vt(y) = max{y, Vt(y)}, t ≥ 0. (26.2.58)

From (26.2.54(p.256) ) and (26.2.55(p.256) ) with t = 1 we have respectively

V1 = λβE[max{ξ, ρ}] + (1− λ)βρ− s

= K(ρ) + ρ (from (6.1.10(p.25) )) (26.2.59)

= L(ρ) + βρ (from (6.1.9(p.25) )), (26.2.60)

V1(y) = λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s

= λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s

= K (max{y, ρ}}) + max{y, ρ} (from (6.1.10(p.25) )) (26.2.61)

= L (max{y, ρ}}) + βmax{y, ρ} (from (6.1.9(p.25) )). (26.2.62)

From the comparison of the two terms within { } in the right-hand side of (26.2.52(p.256) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0 (26.2.63)

26.2.2.2 rM̃:2[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (26.2.64)

vt(y) = min{y, Vt(y)}, t > 0, (26.2.65)

V0 = ρ, (26.2.66)

Vt = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (26.2.67)
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where Vt(y) is the minimum total expected present discounted cost from rejecting the best price y, expressed as

Vt(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (26.2.68)

The system of optimality equations of this model is given by

SOE{rM̃:2[R][E]} = {(26.2.64(p.256) )− (26.2.68(p.257) )}. (26.2.69)

For convenience, let us define
V0(y) = ρ. (26.2.70)

Then (26.2.65(p.256) ) holds for t ≥ 1, i.e.,

vt(y) = min{y, Vt(y)}, t ≥ 0. (26.2.71)

From the comparison of the two terms within { } in the right-hand side of (26.2.65(p.256) ) we see that the decision “whether or
not to accept the best price y” can be prescribed as follows:

y ≤ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0 (26.2.72)

26.3 Mode :3
26.3.1 Search-Allowed-Model 3

26.3.1.1 rM:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ} (26.3.1)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (26.3.2)

V0 = ρ, (26.3.3)

Vt = max{ρ, Ut}, t > 0. (26.3.4)

where Ut(y) in (26.3.2(p.257) ) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as

Ut(y) = max{λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, βvt−1(y)}, t > 0. (26.3.5)

where Ut in (26.3.4(p.257) ) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = max{λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, βVt−1}, t > 0, (26.3.6)

The system of optimality equations of this model is given by

SOE{rM:3[R][A]} = {(26.3.1(p.257) )− (26.3.6(p.257) )}. (26.3.7)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (26.3.8)

Then (26.3.2(p.257) ) holds for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (26.3.9)

26.3.1.2 rM̃:3[R][A]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (26.3.10)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (26.3.11)

V0 = ρ, (26.3.12)

Vt = min{ρ, Ut}, t > 0, (26.3.13)

where Ut(y) in (26.3.11(p.257) ) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = min{λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, βvt−1(y)}, t > 0. (26.3.14)

and where Ut in (26.3.13(p.257) ) is the minimum total expected present discounted cost from rejecting ρ, expressed as
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Ut = min{λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, βVt−1}, t > 0, (26.3.15)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][A]} = {(26.3.10(p.257) )− (26.3.15(p.258) )}. (26.3.16)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (26.3.17)

Then (26.3.11(p.257) ) and (26.3.13(p.257) ) hold for t ≥ 0 instead of t > 0 , i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (26.3.18)

26.3.2 Search-Enforced-Model 3

26.3.2.1 rM:3[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0)let us denote the maximum total expected present discounted profit from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = max{y, ρ}, (26.3.19)

vt(y) = max{y, ρ, Ut(y)}, t > 0, (26.3.20)

V0 = ρ, (26.3.21)

Vt = max{ρ, Ut}, t > 0. (26.3.22)

where Ut(y) in (26.3.20(p.258) ) is the maximum total expected present discounted profit from rejecting both y and ρ, expressed as

Ut(y) = λβE[vt−1(max{ξ, y})] + (1− λ)βvt−1(y)− s, t > 0. (26.3.23)

and where Ut in (26.3.22(p.258) ) is the maximum total expected present discounted profit from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 − s, t > 0. (26.3.24)

The system of optimality equations of this model is given by

SOE{rM:3[R][E]} = {(26.3.19(p.258) )− (26.3.24(p.258) )}. (26.3.25)

For convenience, let us define

U0(y) = ρ · · · (1), U0 = ρ · · · (2). (26.3.26)

Then (26.3.20(p.258) ) and (26.3.22(p.258) ) hold for t ≥ 0 instead of t > 0, i.e.,

vt(y) = max{y, ρ, Ut(y)} · · · (1), Vt = max{ρ, Ut} · · · (2), t ≥ 0. (26.3.27)

26.3.2.2 rM̃:3[R][E]
By vt(y) (t ≥ 0) and Vt (t ≥ 0) let us denote the minimum total expected present discounted cost from initiating the process
at time t with the best price y and with no best price respectively, expressed as

v0(y) = min{y, ρ} (26.3.28)

vt(y) = min{y, ρ, Ut(y)}, t > 0, (26.3.29)

V0 = ρ, (26.3.30)

Vt = min{ρ, Ut}. (26.3.31)

where Ut(y) in (26.3.29(p.258) ) is the minimum total expected present discounted cost from rejecting both y and ρ, expressed as

Ut(y) = λβE[vt−1(min{ξ, y})] + (1− λ)βvt−1(y) + s, t > 0. (26.3.32)

and where Ut in (26.3.31(p.258) ) is the minimum total expected present discounted cost from rejecting ρ, expressed as

Ut = λβE[vt−1(ξ)] + (1− λ)βVt−1 + s, t > 0, (26.3.33)

The system of optimality equations of this model is given by

SOE{rM̃:3[R][E]} = {(26.3.28(p.258) )− (26.3.33(p.258) )}. (26.3.34)

For convenience, let us define
U0(y) = ρ · · · (1), U0 = ρ · · · (2). (26.3.35)

Then (26.3.29(p.258) ) and (26.3.31(p.258) ) hold for t ≥ 0 instead of t > 0, i.e.,

vt(y) = min{y, ρ, Ut(y)} · · · (1), Vt = min{y, Ut} · · · (2), t ≥ 0. (26.3.36)
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26.4 Reservation Value
⟨a⟩ t-reservation-value (no-recall-model).

Consider the selling model with no recall. Here recall (8.2.2(p.43) ), i.e.,

w ≥ (≤) Vt ⇒ Acceptt⟨w⟩ (Rejectt⟨w⟩), (26.4.1)

meaning that the reservation value of the model is given by Vt, which depends on t. Then we say that Vt is the t-dependent
reservation-value or t-reservation-value for short.

⟨b⟩ t-reservation-value (recall-model).

Consider the selling model with recall. Here, by At(y) let us represent the profit from accepting the best price y at a
given time t, so At(y) = y, and by Rt(y) the profit from rejecting the best price y at a given time t, so Rt(y) = Vt(y)
(see (26.1.48(p.253) )). Here let us define

ARt(y)
def
= At(y)− Bt(y) = y − Vt(y). (26.4.2)

Then suppose that there exists y∗
t such that

ARt(y) ≥ (≤) 0⇔ y ≥ (≤) Vt(y)⇔ y ≥ (≤) y∗
t ⇒ Acceptt⟨y⟩ (Rejectt⟨y⟩) (see (26.1.58(p.253) )), (26.4.3)

implying that the reservation value of the model is given by y∗
t , which depends on t. Then we say that y∗

t is the
t-reservation-value.

⟨c⟩ c-reservation-value.

If Vt and y∗
t are constant in t, then we say that each of Vt and y∗

t is the constant reservation-value or the c-reservation-value
for short.

26.5 Systems of Optimality Equations
Below are the systems of optimality equations for the 12 models.

rM:1[R][A] → Section 26.1.1.1(p.251) , rM̃:1[R][A] → Section 26.1.1.2(p.252) ,

rM:1[R][E] → Section 26.1.2.1(p.253) , rM̃:1[R][E] → Section 26.1.2.2(p.253) ,

rM:1[R][A] → Section 26.2.1.1(p.254) , rM̃:1[R][A] → Section 26.2.1.2(p.255) ,

rM:1[R][E] → Section 26.2.2.1(p.256) , rM̃:1[R][E] → Section 26.2.2.2(p.256) ,

rM:1[R][A] → Section 26.3.1.1(p.257) , rM̃:1[R][A] → Section 26.3.1.2(p.257) ,

rM:1[R][E] → Section 26.3.2.1(p.258) , rM̃:1[R][E] → Section 26.3.2.2(p.258) ,
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Chapter 27

Analysis of Model 1

27.1 Search-Allowed-Model 1

27.1.1 rM:1[R][A]
27.1.1.1 Lemmas

27.1.1.1.1 Preliminary

Lemma 27.1.1 (rM:1[R][A]) We have ⃝s dOITsτ>0⟨τ⟩ △.

• Proof Since Vt ≥ βVt−1 for t > 1 from (26.1.4(p.251) ), we have Vt ≥ βVt−1 for τ ≥ t > 1, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVτ−2,
· · · , V2 ≥ βV1, leading to Vτ ≥ βVτ−1 ≥ β2Vτ−1 ≥ · · · ≥ βτ−1V1. Thus, we have t∗τ = τ for τ > 0, i.e., ⃝s dOITsτ>0⟨τ⟩ △.

Lemma 27.1.2 (rM:1[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0 respectively.†

(c) Vt is nondecreasing in t > 0.

• Proof (a) v0(y) is nondecreasing in y from (26.1.1(p.251) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreasing
in y from (26.1.5(p.251) ), hence vt(y) is nondecreasing in y from (26.1.8(p.251) ). Accordingly, by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is nondecreasing in y for t > 0 from (26.1.5(p.251) ). In
addition, V0(y) is nondecreasing in y from (26.1.7(p.251) ), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0

(b) Clearly v1(y) ≥ y = v0(y) for any y from (26.1.2(p.251) ) with t = 1 and (26.1.1(p.251) ). Suppose vt−1(y) ≥ vt−2(y) for
any y. Then, from (26.1.5(p.251) ) we have Vt(y) ≥ max{βE[vt−2(max{ξ, y})] − s, βvt−2(y)} = Vt−1(y) for any y. Hence, from
(26.1.8(p.251) ) we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is nondecreasing in t ≥ 0 for any
y. Since vt−1(y) is nondecreasing in t > 0 for any y, it follows that Vt(y) is nondecreasing in t > 0 for any y from (26.1.5(p.251) ).

(c) From (26.1.4(p.251) ) with t = 2 we have V2 ≥ βE[v1(ξ)]− s. In addition, since v1(ξ) ≥ ξ for any ξ from (26.1.2(p.251) ) with
t = 1, we have V2 ≥ βE[ξ] − s = βµ − s = V1 due to (26.1.3(p.251) ). Suppose Vt−1 ≥ Vt−2. Now, since Vt−1(ξ) ≥ Vt−2(ξ) from
(b), we have vt−1(ξ) = max{ξ, Vt−1(ξ)} ≥ max{ξ, Vt−2(ξ)} = vt−2(ξ) for any ξ due to (26.1.8), hence from (26.1.4(p.251) ) we
have Vt ≥ max{βE[vt−2(ξ)]− s, βVt−2} = Vt−1. Thus, by induction Vt ≥ Vt−1 for t > 1, i.e., Vt is nondecreasing in t > 0.

Since 1 = E[1] = E[I(ξ > y) + I(ξ ≤ y)], we can rewrite (26.1.19(p.252) ) as follows.

St(y) = β
(
E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− vt−1(y)(E[I(ξ > y) + I(ξ ≤ y)])

)
− s

= β
(
E[vt−1(max{ξ, y})I(ξ > y) + vt−1(max{ξ, y})I(ξ ≤ y)]− E[vt−1(y)I(ξ > y) + vt−1(y)I(ξ ≤ y)]

)
− s

= βE[(vt−1(max{ξ, y})− vt−1(y))I(ξ > y) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= βE[(vt−1(ξ)− vt−1(y))I(ξ > y)]− s, t > 0. (27.1.1)

Note here that

max{vt−1(ξ)− vt−1(y), 0} = max{vt−1(ξ)− vt−1(y), 0}(I(ξ > y) + I(ξ ≤ y))

= max{vt−1(ξ)− vt−1(y), 0}I(ξ > y) + max{vt−1(ξ)− vt−1(y), 0}I(ξ ≤ y).

Now, due to Lemma 27.1.2(p.261) (a), if ξ > y, then vt−1(ξ) ≥ vt−1(y) or equivalently vt−1(ξ) − vt−1(y) ≥ 0 and if ξ ≤ y, then
vt−1(ξ) ≤ vt−1(y) or equivalently vt−1(ξ)− vt−1(y) ≤ 0. Hence we have

†From (26.1.10(p.251) ) and (26.1.7(p.251) ) we have V1(y) − V0(y) = max{K(y),−(1 − β)y}. Let xK < y and β < 1. Then K(y) < 0 due
to Lemma 11.2.2(p.57) (j1) and −(1 − β)y < 0 for a y > 0, hence V1(y) − V0(y) < 0, i.e., V1(y) < V0(y). Thus Vt(y) does not become
nondecreasing in t ≥ 0 for any y.
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max{vt−1(ξ)− vt−1(y), 0} = (vt−1(ξ)− vt−1(y))I(ξ > y).

Thus (27.1.1(p.261) ) can be rewritten as

St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (27.1.2)
Then, we have

S1(y) = βE[max{v0(ξ)− v0(y), 0}]− s

= βE[max{ξ − y, 0}]− s (← (26.1.1(p.251) ))

= βT (y)− s (← (6.1.1(p.25) ))

= L(y) (← (6.1.3(p.25) ) with λ = 1). (27.1.3)

Lemma 27.1.3 (rM:1[R][A])
(a) St(y) is nonincreasing in y for t > 0.
(b) St(y) ≤ L(y) for any t > 0 and y.
(c) Let xL ≤ y. Then St(y) ≤ 0 for t > 0.

• Proof (a) Immediate from (27.1.2(p.262) ) and Lemma 27.1.2(p.261) (a).

(b) First, (27.1.2(p.262) ) can be rewritten as

St(y) = βEmax{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ) + max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s

= βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] + βE[max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)]− s · · · ((1)).
Next, we have:

◦ Let y ≤ ξ · · · ((2)).† Now v0(ξ)− v0(y) = ξ − y ≤ ξ − y from (26.1.1(p.251) ). Suppose

vt−1(ξ)− vt−1(y) ≤ ξ − y · · · ((3)) (induction hypothesis).

From (26.1.8(p.251) ) we have
vt(ξ)− vt(y) ≤ max{ξ − y, Vt(ξ)− Vt(y)} · · · ((4)).

Then, from (26.1.5(p.251) ) we have

Vt(ξ)− Vt(y) = max
{
βEξ′ [vt−1(max{ξ′, ξ})]− s, βvt−1(ξ)

}
−max

{
βEξ′ [vt−1(max{ξ′, y})]− s, βvt−1(y)

}‡

≤ max{βEξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], β(vt−1(ξ)− vt−1(y))}

= βmax{Eξ′ [vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y})], vt−1(ξ)− vt−1(y)}.

Here from (3) we have

vt−1(max{ξ′, ξ})− vt−1(max{ξ′, y}) ≤ max{ξ′, ξ})−max{ξ′, y} ≤ max{0, ξ − y}.

From this and (3) we obtain

Vt(ξ)− Vt(y) ≤ βmax{Eξ′ [max{0, ξ − y}], ξ − y}

= βmax{max{0, ξ − y}, ξ − y}

= βmax{ξ − y, 0}.
In addition, since ξ − y ≥ 0 due to (2) , we have

Vt(ξ)− Vt(y) ≤ β(ξ − y) ≤ ξ − y.

Hence, from (4) we have vt(ξ)− vt(y) ≤ ξ − y. Accordingly, by induction it follows that vt(ξ)− vt(y) ≤ ξ − y for t ≥ 0,
so vt−1(ξ)− vt−1(y) ≤ ξ − y for t > 1. Thus we have

βE[max{vt−1(ξ)− vt−1(y), 0}I(y ≤ ξ)] ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] · · · ((5)).

◦ Let ξ < y. Then vt−1(ξ) ≤ vt−1(y) from Lemma 27.1.2(p.261) (a) or equivalently vt−1(ξ) − vt−1(y) ≤ 0 = max{ξ − y, 0},
hence

βE[max{vt−1(ξ)− vt−1(y), 0}I(ξ < y)] ≤ βE[max{max{ξ − y, 0}, 0}I(ξ < y)]

= βE[max{ξ − y, 0}I(ξ < y)] · · · ((6)).
From (1) and from (5) and (6) we have

St(y) ≤ βE[max{ξ − y, 0}I(y ≤ ξ)] + βE[max{ξ − y, 0}I(ξ < y)]− s

= βE[max{ξ − y, 0}(I(y ≤ ξ) + I(ξ < y))]− s

= βE[max{ξ − y, 0}]− s

= βT (y)− s (see (6.1.1(p.25) ))

= L(y) (see (6.1.3(p.25) )).

(c) If xL ≤ y, then L(y) ≤ 0 from Corollary 11.2.1(p.57) (a), hence St(y) ≤ 0 from (b).

†Note here that this inequality means a group of all pairs (ξ, y) satisfying this inequality itself. Hence, if max{ξ′, y} ≤ max{ξ′, ξ}, the
pair (max{ξ′, y},max{ξ′, ξ}) is also an element of the group.

‡ Eξ′ represent the expectation as to ξ′.
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27.1.1.1.2 Case of s = 0

Lemma 27.1.4 (rM:1[R][A]) Let s = 0. Then St(y) ≥ 0 for all y and t > 0.

• Proof If s = 0, from (27.1.2(p.262) ) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for all y and t > 0.

27.1.1.1.3 Case of β = 1 and s > 0

Lemma 27.1.5 (rM:1[R][A]) Let β = 1 and s > 0.

(a) Let y ≥ xK . Then y = Vt(y) for t ≥ 0.

(b) Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

(c) y ≤ Vt(y) for any y and t > 0.

• Proof Let β = 1 and s > 0.

(a,b) Evident for t = 0 from (26.1.7(p.251) ). Suppose that y ≥ (≤) xK ⇒ y = (≤) Vt−1(y) (induction hypothesis).

◦ Let y ≥ xK , hence K(y) ≤ 0 · · · ((1)) from Lemma 11.2.2(p.57) (j1). Due to the induction hypothesis we have vt−1(y) =

y · · · ((2)) from (26.1.2(p.251) ). Then, from Lemma 27.1.3(p.262) (b) we have St(y) ≤ L(y) = T (y)− s = K(y) from (6.1.3(p.25) ))

and (6.1.4(p.25) ) due to the assumptions β = 1 and λ = 1, so St(y) ≤ 0 due to (1) . Hence, from (26.1.20(p.252) ) we have
Vt(y) = βvt−1(y) = vt−1(y), thus Vt(y) = y from (2) . This completes the induction.

◦ Let y ≤ xK , hence K(y) ≥ 0 · · · ((3)) from Lemma 11.2.2(p.57) (j1). From (26.1.5(p.251) ) we have

Vt(y) ≥ E[vt−1(max{ξ, y})] − s. Since vt−1(max{ξ, y}) ≥ max{ξ, y} for any ξ and y from (26.1.8(p.251) ), we get Vt(y) ≥
E[max{ξ, y}] − s = K(y) + y from (6.1.10(p.25) ) with β = 1 and λ = 1. Thus, we obtain Vt(y) ≥ y due to (3) . This
completes the induction.

(c) Immediate from (a,b).

27.1.1.1.4 Case of β < 1 and s > 0

27.1.1.1.4.1 Case of κ > 0

Lemma 27.1.6 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ > 0.

(a) Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ xK . Then xK ≥ Vt(y) ≥ y for t ≥ 0.

• Proof Let β < 1 and s > 0 and let κ > 0. Then, from Lemma 11.2.3(p.58) (d) we have xL > xK > 0 · · · ((1)).

(a,b) The two assertions are evident for t = 0 from (26.1.7(p.251) ). Suppose that

y ≥ (≤) xK ⇒ y ≥ Vt−1(y) · · · ((2)) (y ≤ Vt−1(y) ≤ xK · · · ((3))) (induction hypothesis),

hence y ≥ (≤) xK ⇒ vt−1(y) = y · · · ((4)) (vt−1(y) = Vt−1(y) · · · ((5))) from (26.1.2(p.251) ).

◦ Let y ≥ xK · · · ((6)), hence 0 < y · · · ((7)) due to (1) . Then vt−1(y) = y · · · ((8)) due to (4) .

1. Let xL ≥ y (≥ xK ) · · · ((9)). Then L(y) ≥ 0 · · · ((10 )) due to Lemma 11.2.1(p.57) (e1) and K(y) ≤ 0 · · · ((11 )) due to

Lemma 11.2.2(p.57) (j1). Now, since St(y) ≤ L(y) · · · ((12 )) for any y from Lemma 27.1.3(p.262) (b), from (26.1.20(p.252) ) and

from (12) , (4) , and (10) we have Vt(y) ≤ max{L(y), 0}+ βy = L(y) + βy = K(y) + y ≤ y due to (6.1.9(p.25) ) and (11) .

2. Let y ≥ xL (> xK ) · · · ((13 )), hence L(y) ≤ 0 · · · ((14 )) due to Lemma 11.2.1(p.57) (e1). Then we have St(y) ≤ L(y) ≤
0 · · · ((15 )) from Lemma 27.1.3(p.262) (b), hence from (26.1.20(p.252) ) we have Vt(y) = βvt−1(y) = βy ≤ y due to (4) and (7) .

From the above, if y ≥ xK , then whether for xL ≥ y or for y ≥ xL , we have y ≥ Vt(y) for t ≥ 0. This completes the
induction, i.e., it follows that (a) holds.

◦ Let y ≤ xK · · · ((16 )), hence K(y) ≥ 0 · · · ((17 )) from Lemma 11.2.2(p.57) (j1). Since Vt(y) ≥ βE[vt−1(max{ξ, y})] − s

from (26.1.5(p.251) ) and since vt−1(max{ξ, y}) ≥ max{ξ, y} from (26.1.8(p.251) ), we have Vt(y) ≥ βE[max{ξ, y})] − s =
K(y) + y from (6.1.10(p.25) )) with λ = 1, hence Vt(y) ≥ y due to (17) . Since max{ξ, y} ≤ max{ξ, xK } for any ξ due
to (16) , from Lemma 27.1.2(p.261) (a) we have vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((18 )) for any ξ. Furthermore, since

max{ξ, xK } ≥ xK for any ξ, due to (2) we have Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any ξ, hence from (26.1.8(p.251) ) we
have vt−1(max{ξ, xK }) = max{ξ, xK } for any ξ, so from (18) we have vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ. In addi-
tion, since vt−1(y) = Vt−1(y) ≤ xK due to (5) and (3) , from (26.1.5(p.251) ) we have Vt(y) ≤ max{βE[max{ξ, xK }]−s, β xK },
hence from (6.1.10(p.25) ) with λ = 1 we have Vt(y) ≤ max{K(xK ) + xK , β xK } = max{xK , β xK } = xK since xK > 0 due
to (1) . This completes the induction.
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27.1.1.1.4.2 Case of κ ≤ 0

Lemma 27.1.7 (A {rM:1[R][A]}) Let β < 1 and s > 0 and let κ ≤ 0.

(a) Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

(b) Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

• Proof Let β < 1 and s > 0 and let κ ≤ 0. Then, from Lemma 11.2.3(p.58) (d) we have xL ≤ xK ≤ 0 · · · ((1)). Due to

(26.1.7(p.251) ) the two assertions clearly hold for t = 0. Suppose that y ≥ (≤) 0 ⇒ Vt−1(y) ≤ (≥) y (induction hypothesis), hence
vt−1(y) = y (vt−1(y) = Vt−1(y)).

(a) Let y ≥ 0 · · · ((2)). Then, since xL ≤ y from (1) , we have St(y) ≤ 0 for t > 0 due to

Lemma 27.1.3(p.262) (c). Therefore, from (26.1.14(p.251) ) we obtain Vt(y) = βVt−1(y), hence due to the induction hypothesis we
have Vt(y) ≤ βy ≤ y due to β < 1 and (2) . This completes the induction.

(b) Let y ≤ 0 · · · ((3)). Now, since Vt(y) ≥ βvt−1(y) from (26.1.5(p.251) ) and since vt−1(y) ≥ y from (26.1.8(p.251) ), we have

Vt(y) ≥ βy ≥ y due to β < 1 and (3) . This completes the induction.

27.1.1.2 Analysis

�� Tom 27.1.1 (A {rM:1[R][A]})
(a) Let s = 0. Then rM:1[R][A] # rM:1[R][E].
(b) Let s > 0.

1. We have ⃝s dOITsτ>0⟨τ⟩ △.†

2. ♣Let β = 1. Then y ≤ Vt(y) for any y and t ≥ 0.

3. Let β < 1.

i. Let κ > 0.

1. ♠Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

ii. Let κ ≤ 0.

1. ♢Let y ≥ 0 (i.e., F+). Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ 0 (i.e., F−). Then y ≤ Vt(y) for t ≥ 0.

• Proof (a) Let s = 0. Then, from Lemma 27.1.4(p.263) we have St(y) ≥ 0 for all y and t > 0, hence it is optimal to Conductt
for all y and t > 0 due to (26.1.21(p.252) ). This fact implies that rM:1[R][A] which is originally a search-Allowed-model migrates
( # ) over to rM:1[R][E] (see Def. 12.2.2(p.63) ) which is a search-Enforced-model.

(b) Let s > 0.

(b1) The same as Lemma 27.1.1(p.261) .†

(b2) The same as Lemma 27.1.5(p.263) (c).

(b3) Let β < 1.

(b3i-b3i2) The same as Lemma 27.1.6(p.263) .

(b3ii-b3ii2) The same as Lemma 27.1.7(p.264) .

27.1.1.3 Flow of Optimal Decision Rules

♣ Flow-ODR 1 (rM:1[R][A]) (Accept0(y) ◃ Stop) Let s > 0 and β = 1 (see Tom 27.1.1(p.264) (♣b2)) or let s > 0, β < 1, κ ≤ 0,
and y ≤ 0 (see Tom 27.1.1(p.264) (♣b3ii2) (F−)). Then, the inequality y ≤ Vt(y) for any t and y means that even if the process is
initiated at any time t, it is optimal to reject the best price y at that time. Accordingly, it follows that each time a price ξ is
proposed, the current best price y continues to be enlarged to y

def
= max{y, ξ}, and the process terminates by accepting the best

price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 2 (rM̃:1[R][A]) (c-reservation-price) From Tom 27.1.1(p.264) (♠ b3i1,♠b3i2)
and (26.1.25(p.252) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by xK , which is constant in t.

♢ Flow-ODR 3 (rM:1[R][A]) (Acceptt∗τ (y) ◃ Stop) Let s > 0, β < 1, κ ≤ 0, and y ≥ 0 (see Tom 27.1.1(p.264) (♢b3ii1) (F+)). Then

the inequality y ≥ Vt(y) for t ≥ 0 implies that when the process initiates at the optimal initiating time t∗τ , it is optimal to accept
the best price y at that time and stop the process.

†Note that we have ⃝s dOITsτ>0⟨τ⟩ △ also for any s ≥ 0.
†This is true also for s = 0.



265

Definition 27.1.1 (reduction) In Tom 27.1.1(p.264) (a) we demonstrated an example that a search-Allowed-model migrates over
to a search-Enforced-model, represented as

rM:1[R][A] # rM:1[R][E]. (27.1.4)

Accordingly, adding “model-migration” and “odr-Accept/Stop” to “model-running-back” and “ odr-Accept/Stop” in (23.1.3(p.239) ),
we have

Reduction

 model reduction

{
model-running-back ( �)

model-migration ( # )

odr reduction
{
odr-Accept/Stop ( 7→ )

(27.1.5)

27.1.1.4 Market Restriction

27.1.1.4.1 Positive Restriction

� Pom 27.1.1 (A {rM:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then rM:1[R][A]+ # rM:1[R][E]+.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. Let β = 1. Then we have odr 7→ Accept0(y) ◃ Stop.

3. Let β < 1.

i. Let βµ > s. Then we have c-reservation-price.

ii. Let βµ ≤ s. Then we have • dOITdτ>0⟨1⟩ ∥ → →•dd
• Proof Suppose a > 0, hence it suffices to consider y such that 0 < a < y < b · · · ((1)). Then κ = βµ − s · · · ((2)) from

Lemma 11.3.1(p.59) (a) with λ = 1.

(a) The same as Tom 27.1.1(p.264) (a).

(b) Let s > 0.

(b1) The same as Tom 27.1.1(p.264) (b1).

(b2) Evident from Tom 27.1.1(p.264) (b2) and ♣ Flow-ODR 1.

(b3) Let β < 1.

(b3i) Let βµ > s, hence κ > 0 due to (2) . Thus, it suffices to consider
only Tom 27.1.1(p.264) (♠b3i1,♠b3i2), hence we have ♣ Flow-ODR 2.

(b3ii) Let βµ ≤ s, hence κ ≤ 0 · · · ((3)) due to (2) . In this case, due to (1) it suffices to consider only

Tom 27.1.1(p.264) (♢ b3ii1). Then, since it suffices to consider ξ such that 0 < a < ξ < b, we have ξ ≥ Vt−1(ξ) for t > 1, hence
vt−1(ξ) = ξ from (26.1.8(p.251) ). Thus, from (26.1.4(p.251) ) we have Vt = max{βE[ξ] − s, βVt−1} = max{βµ − s, βVt−1} =
max{κ, βVt−1} for t > 1. First V1 = βµ − s = κ ≤ 0 from (26.1.3(p.251) ) and (3) or equivalently V1 = β0κ ≤ 0. Suppose
Vt−1 = βt−2κ ≤ 0. Then Vt = max{κ, ββt−2κ} = max{κ, βt−1κ} = βt−1κ ≤ 0 due to (3) . Thus by induction we have
Vt = βt−1κ ≤ 0 for t > 1. Accordingly, we have Vt − βVt−1 = βt−1κ − ββt−2κ = βt−1κ − βt−1κ = 0, hence Vt = βVt−1 for
t > 1. Accordingly, we get Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−1V1 , i.e., t

∗
τ = 1 for τ > 1 or equivalently • dOITdτ>1⟨1⟩ .

27.1.1.4.2 Mixed Restriction

Omitted.

27.1.1.4.3 Negative Restriction

� Nem 27.1.1 (A {rM:1[R][A]−}) Suppose b < 0.

(a) Let s = 0. Then rM:1[R][A]− # rM:1[R][E]−.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. We have odr 7→ Accept0(y) ◃ Stop.

• Proof Suppose b < 0, hence it suffices to consider y such that a < y < b < 0 · · · ((1)). Then, since κ = −s from

Lemma 11.3.1(p.59) (a), we have κ ≤ 0 · · · ((2)) for any s ≥ 0.

(a) The same as Tom 27.1.1(p.264) (a).

(b) Let s > 0.

(b1) The same as Tom 27.1.1(p.264) (b1).

(b2) In this case, due to (1) it suffices to consider only Tom 27.1.1(p.264) (♣b3ii2). If β = 1, then y ≤ Vt(y) for t ≥ 0 from
Tom 27.1.1(p.264) (♣b2) and if β < 1, then from Tom 27.1.1(p.264) (♣b3ii2) we have y ≤ Vt(y) for t ≥ 0. Hence, whether β = 1 or
β < 1, we have y ≤ Vt(y) for t ≥ 0. Accordingly, it follows that we have Accept0(y) ◃ Stop from ♣ Flow-ODR 1.
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27.1.2 rM̃:1[R][A]
27.1.2.1 Preliminary

For almost the same reason as in Section 27.2.2.1(p.274) it can be confirmed that SOE{rM̃:1[R][A]} (see
(26.1.31(p.252) )) is symmetrical to SOE{rM:1[R][A]} (see (26.1.6(p.251) )). Hence it follows that Scenario[R](p.75) can be applied also to
A {rM:1[R][A]}.

27.1.2.2 Derivation of A {rM̃:1[R][A]}

�� Tom 27.1.1 (A {rM̃:1[R][A]})
(a) Let s = 0. Then rM̃:1[R][A] # rM̃:1[R][E].
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. ♣Let β = 1. Then y ≥ Vt(y) for t ≥ 0 and any t.

3. Let β < 1.

i. Let κ̃ < 0.

1. ♠Let y ≤ x
K̃ . Then y ≤ Vt(y) for t ≥ 0.

2. ♠Let y ≥ x
K̃ . Then y ≥ Vt(y) for t ≥ 0.

ii. Let κ̃ ≥ 0.

1. ♢Let y ≤ 0 (i.e., F−). Then y ≤ Vt(y) for t ≥ 0.

2. ♣Let y ≥ 0 (i.e., F+). Then y ≥ Vt(y) for t ≥ 0.

• Proof by symmetry Immediate from applying SR→R̃ (see in (20.0.1(p.136) )) to Tom 27.1.1(p.264) .

27.1.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 4 (rM:1[R][A]) (Accept0(y) ◃ Stop) Let s > 0 and β = 1 (see Tom 27.1.1(p.266) (♣b2)) or let s > 0, β < 1, κ̃ ≤ 0,
and y ≤ 0 (see Tom 27.1.1(p.266) (♣b3ii2) (F+)). Then, the inequality y ≥ Vt(y) for any t and y means that even if the process is
initiated at any time t, it is optimal to reject all prices proposed. Accordingly, it follows that each time a price ξ, the current
best price y continues to be reduced to y

def
= max{y, ξ} (min{y, ξ}), and the process terminates by accepting the best price y at the

deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 5 (rM̃:1[R][A]) (c-reservation-price) From Tom 27.1.1(p.266) (♠ b3i1,♠b3i2) and
(26.1.46(p.253) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by x
K̃ , which is constant in t.

♢ Flow-ODR 6 (rM:1[R][A]) (Acceptt(y) ◃ Stop) Let s > 0, β < 1, κ̃ ≥ 0, and y ≤ 0
(see Tom 27.1.1(p.266) (♢b3ii1) (F−)). Then the inequality y ≤ Vt(y) for t ≥ 0 implies that when the process initiates at the optimal
initiating time t∗τ , it is optimal to accept the best price y at that time and stop the process.

27.1.2.4 Market Restriction

27.1.2.4.1 Positive Restriction

� Pom 27.1.2 (A {rM̃:1[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then rM̃:1[R][A]+ # rM̃:1[R][E]+.
(b) Let s > 0.

1. We have ⃝s dOITsτ>1⟨τ⟩ △ → → ⃝⃝s
2. We have odr 7→ Accept0(y) ◃ Stop.

• Proof Suppose a > 0. Below consider only y with 0 < a ≤ y ≤ b, hence y ≥ 0 · · · ((1)). Moreover, since κ̃ = s from

Lemma 13.6.6(p.83) (a), we have κ̃ ≥ 0 · · · ((2)) for any s ≥ 0.

(a) The same as Tom 27.1.1(p.266) (a).

(b) Let s > 0.

(b1) The same as Tom 27.1.1(p.266) (b1).

(b2) If β = 1, then y ≥ Vt(y) for t ≥ 0 from Tom 27.1.1(p.266) (b2). If β < 1, then due to (2) and (1) it suffices to consider
only Tom 27.1.1(p.266) (♣ b3ii2), hence we have y ≥ Vt(y) for t ≥ 0. Accordingly, whether β = 1 or β < 1, we have y ≥ Vt(y) for
t ≥ 0. Thus, it follows that we have Accept0(y) ◃ Stop (♣ Flow-ODR 4).

Remark 27.1.1 (diagonal symmetry) Pom 27.1.2 can be also derived by applying SR→R̃ (see (20.0.1(p.136) )) to Nem 27.1.1.
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27.1.2.4.2 Mixed Restriction

Omitted.

27.1.2.4.3 Negative Restriction

Unnecessary.

27.1.3 Conclusion 7 (Search-Allowed-Model 1)

The following six cases are possible:

C1 We have A {rM̃:1[R][A]}+ |∼ A {rM:1[R][A]}+.
C2 We have rM/M̃:1[R][A]+ # rM/M̃:1[R][E]+.
C3 We have odr 7→ Accept0(y) ◃ Stop for rM/M̃:1[R][A]+.
C4 We have ⃝⃝s △ for rM/M̃:1[R][A]+.
C5 We have•dd ∥ for rM:1[R][A]+.
C6 We have c-reservation-price for rM:1[R][A]+.

C1 Compare Pom 27.1.2(p.266) and Pom 27.1.1(p.265) .

C2 See Pom 27.1.1(p.265) (a) and Pom 27.1.2(p.266) (a).

C3 See Pom 27.1.1(p.265) (b2) and Pom 27.1.2(p.266) (b2).

C4 See Pom 27.1.1(p.265) (b1) and Pom 27.1.2(p.266) (b1).

C5 See Pom 27.1.1(p.265) (b3ii).

C6 See Pom 27.1.1(p.265) (b3i).

27.2 Search-Enforced-Model 1

27.2.1 rM:1[R][E]
Below let us define

Vt
def
= Vt − βVt−1, t > 1. (27.2.1)

27.2.1.1 Some Lemmas

Lemma 27.2.1 (rM:1[R][E])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) vt(y) and Vt(y) are nondecreasing in t ≥ 0 and t > 0† respectively for any y.

(c) Vt is nondecreasing in t > 0.

• Proof (a) v0(y) is nondecreasing in y from (26.1.47(p.253) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreas-
ing in y from (26.1.50(p.253) ), hence vt(y) is nondecreasing in y from (26.1.48(p.253) ). Thus, by induction vt(y) is nondecreasing in
y and t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (26.1.50(p.253) ).
In addition, V0(y) is nondecreasing in y from (26.1.52(p.253) ), hence it follows that Vt(y) is nondecreasing in y for t ≥ 0.

(b) Clearly v1(y) ≥ y = v0(y) for any y from (26.1.48(p.253) ) with t = 1 and (26.1.47(p.253) ). Suppose vt−1(y) ≥ vt−2(y) for
any y. Then, from (26.1.50(p.253) ) we have Vt(y) ≥ βE[vt−2(max{ξ, y})] − s = Vt−1(y) for any y. Hence, from (26.1.48(p.253) )
we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) ≥ vt−1(y) for t > 0 and any y, i.e., vt(y)
is nondecreasing in t ≥ 0 for any y. Accordingly, since vt−1(y) ≥ vt−2(y) for t > 1 and any y, from (26.1.50(p.253) ) we have
Vt(y) ≥ βE[vt−2(y)]− s = Vt−1(y) for t > 1 and any y, hence Vt(y) is nondecreasing in t > 0 for any y.

(c) We have vt−1(y) is nondecreasing in t > 0 for any y due to (b), hence Vt is nondecreasing in t > 0 from (26.1.49(p.253) ).

Lemma 27.2.2 (rM:1[R][E])
(a) Let xK ≤ y. Then Vt(y) ≤ y for t ≥ 0.

(b) Let y ≤ xK . Then y ≤ Vt(y) ≤ xK for t ≥ 0.

• Proof ‡ (a) Let xK ≤ y. Then K (y) ≤ 0 · · · ((1)) from Corollary 11.2.2(p.58) (a). Now, from (26.1.52(p.253) ) we clearly have

V0(y) ≤ y. Suppose Vt−1(y) ≤ y, hence vt−1(y) = y from (26.1.48(p.253) ). Then, since xK ≤ y ≤ max{ξ, y} for any ξ, we have
vt−1(max{ξ, y}) = max{ξ, y}. Accordingly, from (26.1.50(p.253) ) we have Vt(y) = βE[max{ξ, y}] − s = K (y) + y · · · ((2)) due to

(6.1.10(p.25) ) with λ = 1, hence Vt(y) ≤ y due to (1) . This completes the induction.

(b) Let y ≤ xK · · · ((3)). ThenK (y) ≥ 0 · · · ((4)) from Corollary 11.2.2(p.58) (b). Now, from (26.1.53(p.253) ) we have vt−1(max{ξ, y}) ≥
max{ξ, y} for any t > 0, ξ, and y, hence from (26.1.50(p.253) ) and (6.1.10(p.25) ) with λ = 1 we have Vt(y) ≥ β[max{ξ, y}] − s =

†It cannot be always guaranteed that V1(y) ≥ V0(y). For example, let β < 1 or s > 0 and let y > xK . Then, from (26.1.56(p.253) ) and
(26.1.52(p.253) ) we have V1(y)− V0(y) = K(y) < 0 due to Lemma 11.2.2(p.57) (j1), i.e., V1(y) < V0(y).

‡Although (a) and (b) are already proven in [43,Sakaguchi,1961], we anew prove herein the two by using properties of the underlying
function K (x).
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K(y) + y for t > 0, so Vt(y) ≥ y for t > 0 due to (4) . In addition, since V0(y) ≥ y from (26.1.52(p.253) ), it follows that
Vt(y) ≥ y for t ≥ 0. Now, since max{ξ, y} ≤ max{ξ, xK } for any ξ due to (3) , from Lemma 27.2.1(p.267) (a) we have
vt−1(max{ξ, y}) ≤ vt−1(max{ξ, xK }) · · · ((5)) for any ξ and t > 0. Since xK ≤ max{ξ, xK } for any ξ, due to (a) we have

Vt−1(max{ξ, xK }) ≤ max{ξ, xK } for any ξ and t > 0, hence vt−1(max{ξ, xK }) = max{max{ξ, xK }, Vt(max{ξ, xK })} =
max{ξ, xK } for any ξ and t > 0 from (26.1.53(p.253) ), so from (5) we have vt−1(max{ξ, y}) ≤ max{ξ, xK } for any ξ and t > 0.
Thus, from (26.1.50(p.253) ) and (6.1.10(p.25) ) with λ = 1 we have Vt(y) ≤ βE[max{ξ, xK }]− s = K (xK ) + xK = xK for t > 0.

Since Vt(y) is nondecreasing in t > 0 from Lemma 27.2.1(p.267) (b) and is upper bounded in t from
Lemma 27.2.2(p.267) (a,b), it converges to a finite V (y) as t → ∞, hence so also do vt(y), Vt, and Vt (see (27.2.1(p.267) )). Then,
defining these limits by v(y), V , and V, from (26.1.50(p.253) ), (26.1.48(p.253) ), (26.1.49(p.253) ), and (27.2.1(p.267) ) we have:

V (y) = βE[v(max{ξ, y})]− s, (27.2.2)

v(y) = max{y, V (y)}, (27.2.3)

V = βE[v(ξ)]− s, (27.2.4)

V = (1− β)V. (27.2.5)

Lemma 27.2.3 (rM:1[R][E])

(a) Let xK ≤ y. Then V (y) ≤ y.

(b) Let y ≤ xK . Then y ≤ V (y) ≤ xK .

• Proof Immediate from Lemma 27.2.2(p.267) .

Lemma 27.2.4 (rM:1[R][E]) Let β < 1.

(a) Let y ≤ xK . Then V (y) = xK .

(b) v(y) = max{y, xK } for any y.

(c) V = xK .

(d) Let κ > (= (<)) 0. Then V > (= (<)) 0.

• Proof Let β < 1.

(a) Let y ≤ xK · · · ((1)). Now, (27.2.2(p.268) ) can be rewritten as

V (y) = βE[v(max{ξ, y})I(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((2)).

If xK < ξ, then y < ξ from (1) , hence xK < ξ = max{ξ, y}. Thus, from Lemma 27.2.3(p.268) (a) we have V (max{ξ, y}) ≤
max{y, ξ} = ξ, so from (27.2.3(p.268) ) we have v(max{ξ, y}) = max{max{ξ, y}, V (max{ξ, y})} = max{y, ξ} = ξ due to .
Therefore, (2) can rewritten as

V (y) = βE[ξI(xK < ξ)] + βE[v(max{ξ, y})I(ξ ≤ xK )]− s · · · ((3)).

In addition, since v(max{ξ, y}) = max{max{ξ, y}, V (max{ξ, y})} from (27.2.3(p.268) ) for ξ and y, we can rewrite (3) as

V (y) = βE[ξI(xK < ξ)] + βE[max{max{ξ, y}, V (max{ξ, y})}I(ξ ≤ xK )]− s. · · · ((4))
To prove (a) it suffices to show the following two:

1. Any given function V ′(y) = xK · · · ((5)) with y ≤ xK is a solution of the functional equation (4) , i.e.,

V ′(y) = βE[ξI(xK < ξ)] + βE[max{max{ξ, y}, V ′(max{ξ, y})}I(ξ ≤ xK )]− s. · · · ((6))

To prove this, first let us show that substituting the equality V ′(y) = xK with y ≤ xK for the r.h.s. of (6) yields xK ,
hence, as a result, its l.h.s. becomes equal to xK , i.e., V ′(y) = xK , implying that (5) is a solution of the functional equation
(6) . Below let us show this.

Let ξ ≤ xK . Then max{y, ξ} ≤ max{ xK , xK } = xK · · · ((7)) due to (1) , hence V ′(max{y, ξ}) = xK due to (5) .

Consequently, we get

r.h.s of (6) = βE[ξI(xK < ξ)] + βE[ xK I(ξ ≤ xK )]− s

= βE[max{ξ, xK }I(xK < ξ)] + βE[max{ξ, xK }I(ξ ≤ xK )]− s

= βE[max{ξ, xK }]− s

= K(xK ) + xK (See (6.1.10(p.25) )) with λ = 1

= xK .

Accordingly, it follows that V ′(y) = xK with y ≤ xK is a solution of the functional equation (4) .
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2. The solution is unique Suppose there exists another solution Z(y) with y ≤ xK where V ′(y) ̸= Z(y) for at least one

y ≤ xK . Then, let z(y)
def
= max{y, Z(y)} · · · ((8)) with y ≤ xK (see (27.2.3(p.268) )). Accordingly, we have (see (3) )

Z(y) = βE[ξI(xK < ξ)] + βE[z(max{ξ, y})I(ξ ≤ xK )]− s. · · · ((9))

Hence, from (3) and (9) we have

|V ′(y)− Z(y)| =
∣∣βE[(v′(max{ξ, y})− z(max{ξ, y}))I(ξ ≤ xK )]

∣∣
≤ βE[

∣∣v′(max{ξ, y})− z(max{ξ, y})
∣∣I(ξ ≤ xK )]. · · · ((10)).

Now, in general

|v′(y)− z(y)| = |max{y, V ′(y)} −max{y, Z(y)}| ≤ max{0, |V ′(y)− Z(y)|} = |V ′(y)− Z(y)|

for any y, hence we have ∣∣v′(max{ξ, y})− z(max{ξ, y})
∣∣ ≤ ∣∣V ′(max{ξ, y})− Z(max{ξ, y})

∣∣ · · · ((11 )).
for any y and ξ. Thus, from (10) we have

|V ′(y)− Z(y)| ≤ βE[
∣∣V ′(max{ξ, y})− Z(max{ξ, y})

∣∣I(ξ ≤ xK )] · · · ((12 )).

Let ν = maxy≤xK |V ′(y) − Z(y)| · · · ((13 )) where ν > 0 · · · ((14 )), hence |V ′(y) − Z(y)| ≤ ν · · · ((15 )) for y ≤ xK . If ξ ≤ xK ,

then max{ξ, y} ≤ max{xK , xK } = xK · · · ((16 )), hence |V ′(max{ξ, y})−Z(max{ξ, y})| ≤ ν due to (15) . Accordingly, from

(12) we have

|V ′(y)− Z(y)| ≤ βE[νI(ξ ≤ xK )] = βνE[I(ξ ≤ xK )] = βν Pr{ξ ≤ xK } = βνF (xK ).

Thus, we have ν ≤ βνF (xK ) · · · ((17 )) due to the definition (13) . In addition, since βνF (xK ) ≤ βν due to F (xK ) ≤ 1, we

have ν ≤ βν from (17) , leading to the contradiction 1 ≤ β due to (14) . Accordingly, the solution of (4) must be unique.
Since the original V (y) satisfy (4) , it eventually follows that V (y) = xK with y ≤ xK must be the unique solution of (4) .

(b) If xK ≤ y, from Lemma 27.2.3(p.268) (a) and (27.2.3(p.268) ) we have v(y) = y = max{y, xK }. If y ≤ xK , then from
Lemma 27.2.3(p.268) (b) and (27.2.3(p.268) ) we have v(y) = V (y) and from (a) we have V (y) = xK , hence it follows that v(y) =
V (y) = xK = max{y, xK }. Thus, whether xK ≤ y or y ≤ xK , we have v(y) = max{y, xK }.

(c) Since v(ξ) = max{ξ, xK } for any ξ due to (b), from (27.2.4(p.268) ) we have V = βE[max{ξ, xK }]−s = K(xK )+ xK = xK

(see (6.1.10(p.25) )).

(d) Let κ > (= (<)) 0. Then, since xK > (= (<)) 0 due to Lemma 11.3.1(p.59) (b), from (c) we have V > (= (<)) 0, hence
the assertion becomes true from (27.2.5(p.268) ).

Here, let us define
ℓt(y)

def
= vt(y)− βvt−1(y), t > 0. (27.2.6)

Then, from (27.2.1(p.267) ) and (26.1.49(p.253) ) we have

Vt = βE[vt−1(ξ)]− s− β(βE[vt−2(ξ)]− s) (27.2.7)

= βE[vt−1(ξ)− βvt−2(ξ)]− (1− β)s (27.2.8)

= βE[ℓt−1(ξ)]− (1− β)s, t > 1. (27.2.9)

Here, for any y let us define
A(y)

def
= ℓ2(y)− ℓ1(y). (27.2.10)

Lemma 27.2.5 (rM:1[R][E])
(a) Let xK ≤ y. Then A(y) = 0.

(b) Let y ≤ xK . Then A(y) is nondecreasing in y.

(c) A(y) ≤ 0 for any y.

• Proof (a) Let xK ≤ y. Then V2(y) ≤ y and V1(y) ≤ y from Lemma 27.2.2(p.267) (a), hence from (26.1.53(p.253) ) we have
v2(y) = v1(y) = y. In addition, v0(y) = y from (26.1.47(p.253) ). Thus, since ℓ2(y) = v2(y) − βv1(y) = (1 − β)y and ℓ1(y) =
v1(y)− βv0(y) = (1− β)y, we have A(y) = 0 · · · ((1)).

(b) Let y ≤ xK · · · ((2)). Now, from Lemma 27.2.2(p.267) (b) with t = 1, 2 and (26.1.48(p.253) ) with t = 1, 2 we have

v1(y) = V1(y) = βE[max{ξ, y}]− s (see (26.1.55(p.253) )) (27.2.11)

= K (y) + y (see (6.1.10(p.25) ) with λ = 1), (27.2.12)

v2(y) = V2(y) = βE[v1(max{ξ, y})]− s (see (26.1.50(p.253) ) with t = 2). (27.2.13)
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Hence, we have

ℓ1(y) = v1(y)− βv0(y) = v1(y)− βy (see (26.1.47(p.253) )),

ℓ2(y) = v2(y)− βv1(y) = βE[v1(max{ξ, y})]− s− βv1(y),

from which we obtain

A(y) = βE[v1(max{ξ, y})]− s− (1 + β)v1(y) + βy,

which can be rewritten as

A(y) = βE[v1(max{ξ, y})I(ξ < xK ) + v1(max{ξ, y})I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy. (27.2.14)

If ξ < xK , due to (2) we have max{ξ, y} ≤ max{xK , xK } = xK , hence from (27.2.12(p.269) ) we have

v1(max{ξ, y}) = K (max{ξ, y}) + max{ξ, y}. (27.2.15)

If xK ≤ ξ, then since xK ≤ ξ ≤ max{ξ, y} for any y, from Lemma 27.2.2(p.267) (a) we have V1(max{ξ, y}) ≤ max{ξ, y}, hence
from (26.1.48(p.253) ) with t = 1 we obtain

v1(max{ξ, y}) = max{ξ, y}. (27.2.16)

Accordingly, from (27.2.14(p.270) ), (27.2.15(p.270) ), and (27.2.16(p.270) ) we have

A(y) = βE[
(
K (max{ξ, y}) + max{ξ, y}

)
I(ξ < xK ) + max{ξ, y}I(xK ≤ ξ)]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}(I(ξ < xK ) + I(xK ≤ ξ))]− s− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK ) + max{ξ, y}]− s− (1 + β)v1(y) + βy†

= βE[K (max{ξ, y})I(ξ < xK )] + βE[max{ξ, y}]− s − (1 + β)v1(y) + βy. (27.2.17)

Using (27.2.11(p.269) ), we can rewrite the above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )] + v1(y)− (1 + β)v1(y) + βy

= βE[K (max{ξ, y})I(ξ < xK )]− β(v1(y)− y). (27.2.18)

Furthermore, since v1(y)− y = K(y) due to (27.2.12(p.269) ), we can rewrite (27.2.18(p.270) ) above as

A(y) = βE[K (max{ξ, y})I(ξ < xK )]− βK (y)

= βE[K (max{ξ, y})I(ξ < xK )−K (y)]

= βE[B(ξ, y)] (27.2.19)

where

B(ξ, y)
def
= K (max{ξ, y})I(ξ < xK )−K (y). (27.2.20)

Now we have:

1 Let xK ≤ ξ. Then, since I(ξ < xK ) = 0, we have B(ξ, y) = −K(y), which is nondecreasing in y ≤ xK from
Lemma 11.2.2(p.57) (b).

2 Let ξ < xK . Then, since I(ξ < xK ) = 1, we have B(ξ, y) = K (max{ξ, y}) − K (y) for y ≤ xK . Thus, if y ≤ ξ, then
B(ξ, y) = K (ξ)− K (y), which is nondecreasing in y ≤ ξ due to Lemma 11.2.2(p.57) (b) and if ξ < y, then since ξ < xK due
to (2) , we have I(ξ < xK ) = 1, hence B(ξ, y) = K (y)− K (y) = 0 for y ≤ xK , which can be regarded as nondecreasing in
y > ξ. Therefore, whether y ≤ ξ or ξ < y it follows that B(ξ, y) is nondecreasing in y ≤ xK .

From the above two results, whether xK ≤ ξ or ξ < xK it follows that B(ξ, y) is nondecreasing in y ≤ xK . Hence, from
(27.2.19(p.270) ) we see that A(y) is nondecreasing in y ≤ xK .

(c) Immediate from (a,b) and the fact that A(y) is continuous on (−∞,∞).

Lemma 27.2.6 (rM:1[R][E])
(a) ℓt(y) is nonincreasing in t > 0 for any y.

(b) Vt is nonincreasing in t ≥ 1.

• Proof (a) From Lemma 27.2.5(p.269) (c) and (27.2.10(p.269) ) we have ℓ2(y) ≤ ℓ1(y) for any y. Suppose that ℓt−1(y) ≤ ℓt−2(y)
for any y (induction hypothesis).

1. Let xK ≤ y. Then, since Vt(y) ≤ y for t ≥ 0 due to Lemma 27.2.2(p.267) (a), we have Vt−1(y) ≤ y for t ≥ 1, hence vt(y) = y
for t ≥ 0 and vt−1(y) = y for t ≥ 1 from (26.1.53(p.253) ). Thus, from (27.2.6(p.269) ) we have ℓt(y) = (1 − β)y for t ≥ 1, hence
ℓt−1(y) = (1 − β)y for t ≥ 2, so ℓt(y) = ℓt−1(y) for t ≥ 2, thus ℓt(y) ≤ ℓt−1(y) for t ≥ 2. Accordingly, it follows that ℓt(y)
is nonincreasing in t ≥ 1 or equivalently in t > 0 on xK ≤ y.

†I(ξ < xK ) + I(xK ≤ ξ) = 1.



271

2. Let y ≤ xK . Then, since y ≤ Vt(y) for t ≥ 0 and y ≤ Vt−1(y) for t > 0 from Lemma 27.2.2(p.267) (b), we have vt(y) = Vt(y)
for t ≥ 0 and vt−1(y) = Vt−1(y) for t ≥ 1 from (26.1.53(p.253) ), hence from (27.2.6(p.269) ) and (26.1.50(p.253) ) we have

ℓt(y) = Vt(y)− βVt−1(y)

= βE[vt−1(max{ξ, y})]− s− β
(
βE[vt−2(max{ξ, y})]− s

)
= βE[vt−1(max{ξ, y})− βvt−2(max{ξ, y})]− (1− β)s

= βE[ℓt−1(max{ξ, y})]− (1− β)s, t ≥ 1.

Thus, we have
ℓt−1(y) = βE[ℓt−2(max{ξ, y})]− (1− β)s, t ≥ 2.

Here, since ℓt−1(max{ξ, y}) ≤ ℓt−2(max{ξ, y}) due to the induction hypothesis, we have

ℓt(y) ≤ βE[ℓt−2(max{ξ, y})]− (1− β)s = ℓt−1(y), t > 1.

Accordingly, by induction we have ℓt(y) ≤ ℓt−1(y) for t ≥ 2 on y ≤ xK , i.e., ℓt(y) is nonincreasing in t ≥ 1 on y ≤ xK .

From the above two results, whether xK ≤ y or y ≤ xK it follows that ℓt(y) is nonincreasing in t > 0.

(b) Immediate from (a(p.270) ) and (27.2.9(p.269) ).

27.2.1.2 Analysis

From (26.1.49(p.253) ) with t = 2 we have

V2 = βE[v1(ξ)]− s

= βE[max{ξ, V1(ξ)}]− s (see (26.1.48(p.253) ) with t = 1)

= βE[max{ξ, K (ξ) + ξ}]− s (see (26.1.56(p.253) ) with y = ξ)

= βE[max{0, K (ξ)}+ ξ]− s

= βE[max{0, K (ξ)}] + βE[ξ]− s

= βE[max{0, K (ξ)}] + βµ− s.

Then (27.2.1(p.267) ) with t = 2 can be rewritten as

V2 = V2 − βV1

= βE[max{0, K (ξ)}] + βµ− s− β(βµ− s) (see (26.1.54(p.253) ))

= βE[max{0, K (ξ)}] + (1− β)(βµ− s)

= βE[max{0, K (ξ)}I(ξ < xK ) + max{0, K (ξ)}I(xK ≤ ξ)] + (1− β)(βµ− s).

Due to Corollary 11.2.2(p.58) (a) we have K (ξ) > 0 for ξ < xK and K (ξ) ≤ 0 for xK ≤ ξ, hence we have

V2 = βE[K (ξ)I(ξ < xK )] + (1− β)(βµ− s). (27.2.21)

Let us define

S18 ⃝
s N } △ } N = { For any τ > 1 there exists t•τ (t◦τ ≥ t•τ > 1) such that

⃝s dOITst•τ≥τ>1⟨τ⟩ N, } ndOITt◦τ≥τ>t•τ ⟨t
•
τ ⟩ △, and } ndOITτ>t•τ ⟨t

•
τ ⟩ N. }

�� Tom 27.2.1 (A {rM:1[R][E]}) For any τ > 1 :

(a) We have:

1. ♣Let y ≥ xK . Then y ≥ Vt(y) for t ≥ 0.

2. ♣Let y ≤ xK . Then y ≤ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △.
(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.
2. Let βµ− s < 0 and βµ− s < a. Then • dOITdτ>1⟨1⟩ N.
3. Let βµ− s < 0 and βµ− s ≥ a (hence a < 0).

i. Let V2 ≤ 0. Then • dOITdτ>1⟨1⟩ △.
ii. Let V2 > 0.

1. Let κ ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.
2. Let κ < 0. Then we have S18(p.271) ⃝s N } △ } N . 7→ →}N
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• Proof Since λ = 1 is assumed in the model, we have δ = 1 (See (11.2.1(p.56) )), hence (λβµ − s)/δ = βµ − s · · · ((1)) and

K (a) = βµ− s− a · · · ((2)) from (11.2.4 (1) (p.57) ).

(a1,a2) The same as Lemma 27.2.2(p.267) (a,b).

(b) Let β = 1. Then, from (27.2.1(p.267) ) we have Vt = Vt − βVt−1 = Vt − Vt−1 for t > 1, hence Vt ≥ 0 for t > 1 due
to Lemma 27.2.1(p.267) (c) or equivalently Vt ≥ βVt−1 for t > 1. Thus, since Vt ≥ βVt−1 for τ ≥ t > 1, we have Vτ ≥ βVτ−1,
Vτ−1 ≥ βVτ−2, · · · , V2 ≥ βV1, hence Vτ ≥ βVτ−1 ≥ β2Vτ−2 ≥ · · · ≥ βτ−1V1, so t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ △.

(c) Let β < 1.

(c1) Let βµ− s ≥ 0, hence V1 ≥ 0 from (26.1.54(p.253) ). Then Vt ≥ Vt−1 ≥ V1 ≥ 0 for t > 1 from
Lemma 27.2.1(p.267) (c). Hence, from (27.2.1(p.267) ) we have Vt = Vt − βVt−1 ≥ Vt−1 − βVt−1 = (1 − β)Vt−1 ≥ 0 for t > 1. Then,
since Vt ≥ βVt−1 for t > 1, for the same reason as in the proof of (b) we have ⃝s dOITsτ ⟨τ⟩ △.

(c2) Let βµ− s < 0 · · · ((3)) and βµ− s < a. Then, from (2) we have K (a) < 0, hence xK < a from Lemma 11.2.2(p.57) (j1).

Below it suffices to consider only y ∈ [a, b] such that xK < a ≤ y. Then, since Vt(y) ≤ y for t ≥ 0 from Lemma 27.2.2(p.267) (a), we
have vt(y) = y for t ≥ 0 from (26.1.53(p.253) ), hence vt−1(y) = y for t > 0, so from (27.2.6(p.269) ) we have ℓt(y) = vt(y)−βvt−1(y) =
y − βy = (1 − β)y for t > 0. Accordingly, since ℓt−1(ξ) = (1 − β)ξ for t > 1 and ξ ∈ [a, b], from (27.2.9(p.269) ) we obtain
Vt = Vt − βVt−1 = βE[(1− β)ξ]− (1− β)s = β(1− β)E[ξ]− (1− β)s = β(1− β)µ− (1− β)s = (1− β)(βµ− s) < 0 for t > 1
due to (3) . Then, since Vt < βVt−1 for t > 1, we have Vt < βVt−1 for τ ≥ t > 1. Accordingly, since Vτ < βVτ−1, Vτ−1 < βVτ−2,
· · · , V2 < βV1, we have Vτ < βVτ−1 < β2Vτ−2 < · · · < βτ−1V1 , hence t∗τ = τ for τ > 1, i.e., • dOITdτ>1⟨1⟩ N.

(c3) Let βµ − s < 0 · · · ((4)) and βµ − s ≥ a, hence a < 0. Then, since K (a) ≥ 0 from (2) , we have a ≤ xK · · · ((5)) from

Lemma 11.2.2(p.57) (j1).

(c3i) Let V2 ≤ 0. Then, since Vt ≤ 0 for t > 1 from Lemma 27.2.6(p.270) (b), we have Vt ≤ 0 for τ ≥ t > 1. Hence,
since Vτ − βVτ−1 ≤ 0 for τ ≥ t > 1 from (27.2.1(p.267) ), we have Vτ ≤ βVτ−1 for τ ≥ t > 1. Accordingly, since Vτ ≤ βVτ−1,
Vτ−1 ≤ βVτ−2, · · · , V2 ≤ βV1, we have Vτ ≤ βVτ−1 ≤ · · · ≤ βτ−1V1 , so t∗τ = 1 for τ > 1, i.e., • dOITdτ>1⟨1⟩ △.

(c3ii) Let V2 > 0 · · · ((6)).

(c3ii1) Let κ ≥ 0. Then V ≥ 0 due to Lemma 27.2.4(p.268) (d). Hence, from (6) and
Lemma 27.2.6(p.270) (b) we have Vt ≥ 0 for t > 1, hence we obtain ⃝s dOITsτ>1⟨τ⟩ △ for the same reason as in the proof of (c1).

(c3ii2) Let κ < 0. Then V < 0 due to Lemma 27.2.4(p.268) (d). Hence, from (6) , and
Lemma 27.2.6(p.270) (b) it follows that there exist t◦τ and t•τ (t◦τ ≥ t•τ > 1) such that

V2 ≥ · · · ≥ Vt•τ−1 ≥ Vt•τ > 0 ≥ Vt•τ+1 ≥ Vt•τ+1 ≥ · · · ≥ Vt◦τ > Vt◦τ+1 ≥ · · ·
or equivalently

Vt > 0 · · · (1∗), t•τ ≥ t > 1, 0 ≥ Vt · · · (2∗), t◦τ ≥ t > t•τ , 0 > Vt · · · (3∗), t > t◦τ .

[1] Let t•τ ≥ τ > 1. Then, since Vt > 0 for τ ≥ t > 1 due to (1∗), for almost the same reason as in the proof of (b) we have
Vτ > βVτ−1 > · · · > βτ−1V1 · · · ((7)), hence t∗τ = τ for t•τ ≥ τ > 1, i.e., ⃝s dOITst•τ≥τ>1⟨τ⟩ N · · · ((8)). From (7) with τ = t•τ we

have
Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1.

[2] Since Vt•τ+1 ≤ 0 due to (2∗), we have Vt•τ+1 ≤ βVt•τ from (27.2.1(p.267) ). Hence

Vt•τ+1 ≤ βVt•τ > β2Vt•τ−1 > β3Vt•τ−2 > · · · > βt•τV1 · · · ((9)),

so t∗t•τ+1 = t•τ or equivalently } ndOITt•τ+1⟨t•τ ⟩ △ · · · ((10 )). Since Vt•τ+2 ≤ 0 due to (2∗), we have Vt•τ+2 ≤ βVt•τ+1. Hence,

from (9) we have

Vt•τ+2 ≤ βVt•τ+1 ≤ β2Vt•τ > β3Vt•τ−1 > β4Vt•τ−2 > · · · > βt•τ+1V1,

so t∗t•τ+2 = t•τ or equivalently we have } ndOITt•τ+2⟨t•τ ⟩ △ · · · ((11 )). Similarly we obtain } ndOITt•τ+3⟨t•τ ⟩ △ · · · ((12 )),
} ndOITt•τ+4⟨t•τ ⟩ △ · · · ((13 )), · · · . Since Vt◦τ ≤ 0 due to (2∗), we have Vt◦τ ≤ βVt◦τ−1. Hence

Vt◦τ ≤ βVt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ > βt◦τ−t•τ+1Vt•τ−1 > · · · > βt◦τ−1V1 · · · ((14 )),

so t∗t◦τ = t•τ or equivalently } ndOITt◦τ ⟨t
•
τ ⟩ △ · · · ((15 )). Hence, from (10) , (11) , (12) , (13) , · · · , (15) we have } ndOITt◦τ≥τ>t•τ ⟨t

•
τ ⟩ △

· · · ((16 )).

[3] Since Vt◦τ+1 < 0 due to (3), we have Vt◦τ+1 < βVt◦τ , hence from (14) we get

Vt◦τ+1 < βVt◦τ ≤ β2Vt◦τ−1 ≤ · · · ≤ βt◦τ−t•τVt•τ ≤ βt◦τ−t•τ+1Vt•τ > βt◦τ−t•τ+2Vt•τ−1 > · · · > βt◦τV1,

so t∗t• + 1 = t•τ or equivalently } ndOITt◦τ+1⟨t•τ ⟩ N. Similarly, since Vt◦τ+2 < 0, we have } ndOITt◦τ+3⟨t•τ ⟩ N. In general, we

have } ndOITτ>t◦τ ⟨t
•
τ ⟩ N · · · ((17 )).

From [1]-[3] above we see that (8) , (16) , and (17) can be summarized as S18(p.271) ⃝s N } △ } N .
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27.2.1.3 Flow of Optimal Decision Rules

♣ Flow-ODR 7 (rM:1[R][E]) (c-reservation-price) From Tom 27.2.1(p.271) (♣ a1,♣ a2) and
(26.1.58(p.253) ) we have the following decision rule for τ ≥ t > 0 :

{ y ≥ xK ⇒ Acceptt⟨y⟩ and the process stops

y ≤ xK ⇒ Rejectt⟨y⟩ and the search is conducted

Namely, the optimal reservation value is given by xK , which is constant in t.

Definition 27.2.1 (myopic property) c-reservation-price implies that the optimal decision of any point in time t > 1 is
identical to that of time 1 at which the process terminates a period hence, i.e., the deadline, implying that the optimal decision
is the same as “behave as if the process terminates a period hence”, called the myopic property .

27.2.1.4 Market Restriction

27.2.1.4.1 Positive Restriction

� Pom 27.2.1 (A {rM:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price (♣ Flow-ODR 7).

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △
(c) Let β < 1.

1. Let βµ− s ≥ 0. Then ⃝s dOITsτ>1⟨τ⟩ △
2. Let βµ− s < 0. Then • dOITdτ>1⟨1⟩ N

• Proof Suppose a > 0 · · · ((1)). Then κ = βµ− s from Lemma 11.3.1(p.59) (a).

(a) Clear from Lemma 27.2.1(p.271) (♣a1,♣a2) and ♣ Flow-ODR 7.

(b) The same as Tom 27.2.1(p.271) (b).

(c) Let β < 1.

(c1) The same as Tom 27.2.1(p.271) (c1).

(c2) Let βµ− s < 0. Then, since βµ− s < a due to (1) , we have Tom 27.2.1(p.271) (c2).

27.2.1.4.2 Mixed Restriction

Omitted.

27.2.1.4.3 Negative Restriction

� Nem 27.2.1 (A {rM:1[R][E]−}) Suppose b < 0.

(a) We have c-reservation-price (♣ Flow-ODR 7).

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △
(c) Let β < 1.

1. Let βµ− s < a. Then • dOITdτ>1⟨1⟩ N
2. Let βµ− s ≥ a.

i. Let V2 ≤ 0. Then • dOITdτ>1⟨1⟩ △
ii. Let V2 > 0.

1. Let s = 0. Then ⃝s dOITsτ>1⟨τ⟩ △
2. Let s > 0. Then we have S18(p.271) ⃝s N } △ } N

• Proof Suppose b < 0. Then a < µ < b < 0, hence βµ < 0, so βµ − s < 0 · · · ((1)) for any s ≥ 0. Then κ = −s · · · ((2)) from

Lemma 11.3.1(p.59) (a).

(a) Clear from Lemma 27.2.1(p.271) (♣a1,♣a2) and ♣ Flow-ODR 7.

(b) The same as Tom 27.2.1(p.271) (b).

(c) Let β < 1.

(c1) Let βµ− s < a. Then, due to (1) we have Tom 27.2.1(p.271) (c2).

(c2) Let βµ− s ≥ a. Then, due to (1) we have Tom 27.2.1(p.271) (c3i-c3ii2).

(c2i) Let V2 ≤ 0. Then we have Tom 27.2.1(p.271) (c3i).

(c2ii) Let V2 > 0.

(c2ii1) Let s = 0. Then κ = 0 due to (2) , hence we have Tom 27.2.1(p.271) (c3ii1).

(c2ii2) Let s > 0. Then κ < 0 due to (2) , hence we have Tom 27.2.1(p.271) (c3ii2).



274

27.2.2 rM̃:1[R][E]
27.2.2.1 Symmetry of SOE{rM:1[R][E]} and SOE{rM̃:1[R][E]}
Here let us show that SOE{rM̃:1[R][E]} (see (26.1.63(p.254) )) is symmetrical to SOE{rM:1[R][E]} (see (26.1.51(p.253) )), which is a
necessary condition under which A {rM̃:1[R][E]} can be derived by applying SR→R̃ (see (20.0.1(p.136) )) to A {rM:1[R][E]} given by
Tom 27.2.1(p.271) .

1. For convenience of reference, below let us copy (26.1.47(p.253) )-(26.1.50(p.253) ):

(1∗): v0(y) = y, (2∗): vt(y) = max{y, Vt(y)}, (3∗): Vt = βE[vt−1(ξ)]− s,

(4∗): Vt(y) = βE[vt−1(max{ξ, y})]− s. Then we have

SOE{rM:1[R][E]} = {(1∗), (2∗), (3∗), (4∗)}.

2. Applying the reflection operation R to the above four equalities yields:

(1∗)′ : −v̂0(−ŷ) = −ŷ, (2∗)′ : −v̂t(−ŷ) = max{−ŷ,−V̂t(−ŷ)} = −min{ŷ, V̂t(−ŷ)}, (3∗)′ : −V̂t = βE[−v̂t−1(−ξ̂)]− s,

(4∗)′ : −V̂t(−ŷ) = βE[−v̂t−1(max{−ξ̂,−ŷ})]− s = βE[−v̂t−1(−min{ξ̂, ŷ})]− s,

which can be rearranged as:

(1∗)′: v̂0(−ŷ) = ŷ, (2∗)′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′: V̂t = βE[v̂t−1(−ξ̂)] + s,

(4∗)′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ̂, ŷ})] + s. Then we have

R[SOE{rM:1[R][E]}] = {(1∗)′, (2∗)′, (3∗)′, (4∗)′}.

3. We have E[v̂t−1(−ξ̂)] = E[v̂t−1(ξ)] =
∫∞
−∞ v̂t−1(ξ)f(ξ)dξ =

∫∞
−∞ v̂t−1(ξ)f̌(ξ̂)dξ (see Lemma 13.3.1(p.72) (a): the appli-

cation of the correspondence replacement operation CR). Let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then E[v̂t−1(−ξ̂)] =

−
∫ −∞
∞ v̂t−1(−η)f̌(η)dη =

∫∞
−∞ v̂t−1(−η)f̌(η)dη = Ě[v̂t−1(−η)] · · · (�). Similarly we have

E[v̂t−1(−min{ξ̂, ŷ})] = Ě[v̂t−1(−min{η, ŷ})]. Hence (1∗)′ - (4∗)′ can be rewritten as:

(1∗)′′: v̂0(−ŷ) = ŷ, (2∗)′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′: V̂t = β Ě[v̂t−1(−η)] + s,

(4∗)′′: V̂t(−ŷ) = β Ě[v̂t−1(−min{η, ŷ})] + s, so we have

CRR[SOE{rM:1[R][E]}] = {(1∗)′′, (2∗)′′, (3∗)′′, (4∗)′′}.

4. Let us replace f̌(η) by f(η) in (�) (see Lemma 13.3.3(p.73) (a); the application of the identity replacement operation IR).
Then, (�) can be rearranged as Ě[v̂t−1(−η)] =

∫∞
−∞ v̂t−1(−η)f(η)dη =

∫∞
−∞ v̂t−1(−ξ)f(ξ)dξ† = E[v̂t−1(−ξ)]. Similarly

Ě[v̂t−1(−min{η, ŷ})] + s = E[v̂t−1(−min{ξ, ŷ})] + s. Accordingly (1∗)′′ - (4∗)′′ can be rewritten as;

(1∗)′′′: v̂0(−ŷ) = ŷ, (2∗)′′′: v̂t(−ŷ) = min{ŷ, V̂t(−ŷ)}, (3∗)′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′: V̂t(−ŷ) = βE[v̂t−1(−min{ξ, ŷ})] + s. Then we have

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′, (2∗)′′′, (3∗)′′′, (4∗)′′′}.

5. Since (1∗)′′′ - (4∗)′′′ hold for any given y ∈ (−∞,∞), they holds also for ŷ ∈ (−∞,∞), hence (1∗)′′′ - (4∗)′′′ hold for ˆ̂y ∈
(−∞,∞). Accordingly, since ˆ̂y = y, it follows that they hold also for any given y. Thus, we obtain the following:

(1∗)′′′′: v̂0(−y) = y, (2∗)′′′′: v̂t(−y) = min{y, V̂t(−y)}, (3∗)′′′′: V̂t = βE[v̂t−1(−ξ)] + s,

(4∗)′′′′: V̂t(−y) = βE[v̂t−1(−min{ξ, y})] + s. Then we have

IRCRR[SOE{rM:1[R][E]}] = {(1∗)′′′′, (2∗)′′′′, (3∗)′′′′, (4∗)′′′′}. (27.2.22)

6. Note here that SOE{rM̃:1[R][E]} can be given by (26.1.59(p.253) )-(26.1.62(p.253) ), i.e.,

(1∗)′′′′′: v0(y) = y, (2∗)′′′′′: vt(y) = min{y, Vt(y)}, (3∗)′′′′′: Vt = βE[vt−1(ξ)] + s,

(4∗)′′′′′: Vt(y) = βE[vt−1(min{ξ, y})] + s. Then we have

SOE{rM̃:1[R][E]} = {(1∗)′′′′′, (2∗)′′′′′, (3∗)′′′′′, (4∗)′′′′′}. (27.2.23)

7. From (1∗)′′′′ and (1∗)′′′′′ we have v̂0(−y) = y = v0(y) for any y, i.e., (1∗)′′′′ = (1∗)′′′′′ for t = 0. Suppose v̂t−1(−y) = vt−1(y)
for any y. Thus (3∗)′′′′ = (3∗)′′′′′. Then, from (4∗)′′′′ we have V̂t(−y) = βE[vt−1(min{ξ, y})] + s = Vt(y), so (4∗)′′′′ =
(4∗)′′′′′for any y. Hence, from (2∗)′′′′ we have v̂t(−y) = min{y, Vt(y)} = vt(y), so (2∗)′′′′ = (2∗)′′′′′. Accordingly, by induction
v̂t−1(−y) = vt−1(y) for any t > 0, so (1∗)′′′′ = (1∗)′′′′′. Thus it follows that (27.2.22(p.274) ) is identical to (27.2.23(p.274) ), so we
have

SOE{rM̃:1[R][E]} = IRCRR[SOE{rM:1[R][A]}] = SR→R̃[SOE{rM:1[R][A]}] (see (13.5.30(p.77) )),

meaning that SOE{rM̃:1[R][E]} is symmetrical to SOE{rM:1[R][E]}

†without loss of generality
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27.2.2.2 Derivation of A {rM̃:1[R][E]}
As it was demonstrated that SOE{rM̃:1[R][E]} is symmetrical to SOE{rM:1[R][E]}, we see that A {rM̃:1[R][E]} can be obtained by
applying Scenario[R](p.75) to A {rM:1[R][E]} given by Tom 27.2.1(p.271) . Before conducting its application, let us apply SR→R̃ to V2

given by (27.2.21(p.271) ). First let us apply the reflection operation R to V2 given by (27.2.21(p.271) ). Here note that (27.2.21(p.271) )
is expressed as

V2 = β
∫∞
−∞ K (ξ)I(ξ < xK )f(ξ)dξ + (1− β)(−βµ+ s).

Hence we have

R[V2] = V̂2 = −V2 = β
∫∞
−∞−K (ξ)I(−ξ > −xK )f(ξ)dξ + (1− β)(−βµ+ s)

= β
∫∞
−∞ K̂ (ξ)I(ξ̂ > x̂K )f(ξ)dξ + (1− β)(βµ̂+ s) · · · (∗).

Then, applying the replacement η = ξ̂ = −ξ (hence dη = −dξ), µ̂ = µ̌, K̂ (ξ) = ˇ̃K (ξ̂), and x̂K = xˇ̃K (see
Lemma 13.3.1(p.72) (b,e,h)) to (∗) leads to

R[V2] = −β
∫ −∞
∞

ˇ̃K (ξ̂)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (η)I(η > xˇ̃K )f̌(η)dη + (1− β)(βµ̌+ s)

= β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dx+ (1− β)(βµ̌+ s) (without loss of generality)

Since the above replacement means the application of CR to R[V2], i.e., CRR[V2] = R[V2], we have

CRR[V2] = β
∫∞
−∞

ˇ̃K (ξ)I(ξ > xˇ̃K )f̌(ξ)dξ + (1− β)(βµ̌+ s).

Furthermore, applying the identity replacement operation IR to this (see Lemma 13.3.3(p.73) (e,h)) yields

IRCRR[V2] = β
∫∞
−∞ K̃ (ξ)I(ξ > x

K̃ )f(ξ)dξ + (1− β)(βµ+ s))

= βE[K̃ (ξ)I(ξ > x
K̃ )] + (1− β)(βµ+ s).

Noting (13.5.30(p.77) ), we can rewrite the above as

Ṽ2
def
= SR→R̃[V2] = βE[K̃ (ξ)I(ξ > x

K̃ )] + (1− β)(βµ+ s).

Then we have the following Tom.

�� Tom 27.2.1 (A {rM̃:1[R][E]})

(a) We have :

1. ♣Let y ≤ x
K̃ . Then y ≤ Vt(y) for t ≥ 0.

2. ♣Let y ≥ x
K̃ . Then y ≥ Vt(y) for t ≥ 0.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △.
(c) Let β < 1.

1. Let βµ+ s ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.

2. Let βµ+ s > 0 and βµ+ s > b. Then • dOITdτ>1⟨1⟩ N.
3. Let βµ+ s > 0 and βµ+ s ≤ b (hence b > 0).

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △.
ii. Let Ṽ2 < 0.

1. Let κ̃ ≤ 0. Then ⃝s dOITsτ>1⟨τ⟩ △.
2. Let κ̃ > 0. Then we have S18(p.271) ⃝s N } △ } N .

• Proof by symmetry Immediately obtained from applying SR→R̃ to Tom 27.2.1(p.271) .

27.2.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 8 (rM̃:1[R][E]) (c-reservation-price) From Tom 27.2.1(p.275) (♣ a1,♣ a2) and
(26.1.66(p.254) ) we have the following decision rule for τ ≥ t > 0.

y ≤ x
K̃ ⇒ Acceptt⟨y⟩ and the process stops

y ≥ x
K̃ ⇒ Rejectt⟨y⟩ and the search is conducted

}
t > 0. (27.2.24)

Namely, the optimal reservation value is given by x
K̃ , which is constant in t.
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27.2.2.4 Market Restriction

27.2.2.4.1 Positive Restriction

� Pom 27.2.2 (A {rM̃:1[R][E]+}) Suppose a > 0.

(a) We have c-reservation-price.

(b) Let β = 1. Then ⃝s dOITsτ>1⟨τ⟩ △
(c) Let β < 1.

1. Let βµ+ s > b. Then • dOITdτ>1⟨1⟩ N
2. Let βµ+ s ≤ b.

i. Let Ṽ2 ≥ 0. Then • dOITdτ>1⟨1⟩ △
ii. Let Ṽ2 < 0.

1. Let s = 0. Then ⃝s dOITsτ>1⟨τ⟩ △
2. Let s > 0. Then we have S18(p.271) ⃝s N } △ } N

• Proof Suppose a > 0. Then µ > a > 0, hence βµ > 0, so βµ + s > 0 · · · ((1)) for any s ≥ 0. Then κ̃ = s from

Lemma 13.6.6(p.83) (a).

(a) Clear from Lemma 27.2.1(p.275) (♣a1,♣a2) and ♣ Flow-ODR 8.

(b) The same as Tom 27.2.1(p.275) (b).

(c) Let β < 1.

(c1) Let βµ+ s > b. Then, due to (1) we have Tom 27.2.1(p.275) (c2).

(c2-c2ii2) Let βµ+ s ≤ b. Then, due to (1) we have Tom 27.2.1(p.275) (c3i-c3ii2).

Remark 27.2.1 (diagonal symmetry) Since Pom 27.2.2 can be derived by applying SR→R̃ to
Nem 27.2.1(p.273) , we see that the diagonal symmetry holds between both, i.e.,

A {Pom 27.2.2(p.276) } = SR→R̃[A {Nem 27.2.1(p.273) }]

27.2.2.4.2 Mixed Restriction

Omitted.

27.2.2.4.3 Negative Restriction

Unnecessary.

27.2.3 Conclusion 8 (Search-Enforced-Model 1)

The following five cases are possible:

C1. We have A {rM̃:1[R][E]}+ |∼ A {rM:1[R][E]}+.
C2. We have ⃝⃝s △N for rM/M̃:1[R][E]+.
C3. We have }△N for rM̃:1[R][E]+.
C4. We have•dd△N for rM/M̃:1[R][E]+.
C5. We have c-reservation-price for rM/M̃:1[R][E]+.

C1 Compare Pom 27.2.2(p.276) and Pom 27.2.1(p.273) .

C2 See Pom 27.2.1(p.273) (b,c1) and Pom 27.2.2(p.276) (b,c2ii1,c2ii2).

C3 See Pom 27.2.2(p.276) (c2ii2).

C4 See Pom 27.2.1(p.273) (c2) and Pom 27.2.2(p.276) (c1,c2i).

C5 See Pom 27.2.1(p.273) (a) and Pom 27.2.2(p.276) (a).



Chapter 28

Analysis of Model 2

28.1 Search-Allowed-Model 2

28.1.1 rM:2[R][A]
28.1.1.1 Preliminary

Let us define

V ⋄
t (y)

def
= Vt(y)− y, t ≥ 0, (see (26.2.7(p.254) ) and (26.2.5(p.254) )) (28.1.1)

v⋄t (y)
def
= vt(y)− y = max{0, V ⋄

t (y)}, t ≥ 0, (see (26.2.8(p.254) )) (28.1.2)

where
V ⋄
0 (y) = V0(y)− y = ρ− y (see (26.2.7(p.254) )), (28.1.3)

v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (26.2.1(p.254) )). (28.1.4)

Then, from (26.2.5(p.254) ) we have

V ⋄
t (y) = max{λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s, β(v⋄t−1(y) + y)} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s, βv⋄t−1(y) + βy} − y

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y) + y, βv⋄t−1(y) + βy} − y (see (6.1.10(p.25) ))

= max{λβE[v⋄t−1(max{ξ, y})] + (1− λ)βv⋄t−1(y) +K(y), βv⋄t−1(y)− (1− β)y}, t > 0. (28.1.5)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 for t ≥ 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t > 0. (28.1.6)

If multiple solutions exist, it is defined to be the smallest of them. Let us define

Vt
def
= Vt − βVt−1, t > 0. (28.1.7)

Then, from (26.2.12(p.254) ) and (26.2.3(p.254) ) we have

V1 = V1 − βV0 = max{L(ρ), 0}. (28.1.8)

From (26.2.1(p.254) ) and (26.2.3(p.254) ) we have v0(ξ)− V0 = max{ξ, ρ} − ρ = max{ξ − ρ, 0}, hence from
(26.2.17(p.254) ) with t = 1 we get

S1 = λβE[v0(ξ)− V0]− s

= λβE[max{ξ − ρ, 0}]− s

= λβT (ρ)− s = L(ρ) (see (6.1.1(p.25) ) and (6.1.3(p.25) )). (28.1.9)

Now (26.2.23(p.255) ) can be rewritten as

St(y) = λβE[(vt−1(max{ξ, y})− vt−1(y))]− s

= λβE[(vt−1(max{ξ, y})− vt−1(y))I(y < ξ) + (vt−1(max{ξ, y})− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ) + (vt−1(y)− vt−1(y))I(ξ ≤ y)]− s

= λβE[(vt−1(ξ)− vt−1(y))I(y < ξ)]− s. (28.1.10)

From (26.2.1(p.254) ) we have v0(ξ) − v0(y) = max{ξ, ρ} −max{y, ρ} ≤ max{ξ − y, 0} for any ξ and y, hence from (28.1.10(p.277) )
with t = 1 we have

S1(y) = λβE[(v0(ξ)− v0(y))I(y < ξ)]− s ≤ λβE[max{ξ − y, 0}I(y < ξ)]− s.

Then, since max{ξ − y, 0} ≥ 0 and I(y < ξ) ≤ 1, we get max{ξ − y, 0}I(y < ξ) ≤ max{ξ − y, 0}, hence

S1(y) ≤ λβE[max{ξ − y, 0}]− s (28.1.11)

= λβT (y)− s = L(y) (see (6.1.1(p.25) ) and (6.1.3(p.25) )). (28.1.12)
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28.1.1.2 Preliminary

Lemma 28.1.1 (rM:2[R][A])
(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.
(b) V ⋄

t (y) is nonincreasing in y for t ≥ 0.

• Proof (a) Clearly v0(y) is nondecreasing in y from (26.2.1(p.254) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y)
is nondecreasing in y from (26.2.5(p.254) ), hence vt(y) is nondecreasing in y from (26.2.8(p.254) ). Thus by induction vt(y) is
nondecreasing in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0
from (26.2.5(p.254) ). In addition, since V0(y) can be regarded as nondecreasing in y from (26.2.7(p.254) ), it follows that Vt(y) is
nondecreasing in y for t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (28.1.3(p.277) ). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (28.1.2(p.277) ). In addition, since K (y) and −(1− β)y are both nonincreasing in y (see Lemma 11.2.2(p.57) (b)), it follows
from (28.1.5(p.277) ) that V ⋄

t (y) is also nonincreasing in y. Thus, by induction V ⋄
t (y) is also nonincreasing in y for t ≥ 0.

If y < (≥) ξ, then vt−1(ξ) ≥ (≤) vt−1(y) for t > 0 due to Lemma 28.1.1(p.278) (a) or equivalently vt−1(ξ)− vt−1(y) ≥ (≤) 0 for
t > 0. Then, since

max{vt−1(ξ)− vt−1(y), 0}

= max{vt−1(ξ)− vt−1(y), 0}I(y < ξ) + max{vt−1(ξ)− vt−1(y), 0}I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ) + 0× I(y ≥ ξ)

= (vt−1(ξ)− vt−1(y))I(y < ξ),

we can rewrite (28.1.10(p.277) ) as

St(y) = λβE[max{vt−1(ξ)− vt−1(y), 0}]− s, t > 0. (28.1.13)

Lemma 28.1.2 (rM:2[R][A]) Let β = 1 or s = 0.
(a) Let β = 1. Then y ≤ Vt(y) for any y and t > 0.
(b) Let s = 0. Then St(y) ≥ 0 for any y and t > 0.

• Proof (a) If β = 1, from (26.2.5(p.254) ) and (26.2.2(p.254) ) we have Vt(y) ≥ βvt−1(y) = vt−1(y) ≥ y for any y and any t > 0.

(b) If s = 0, from (28.1.13(p.278) ) we have St(y) = βE[max{vt−1(ξ)− vt−1(y), 0}] ≥ 0 for any y and t > 0.

Lemma 28.1.3 (rM:2[R][A]) Let β < 1 and s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) = −∞ for t > 0.

(c) The solution y⋄
t exists for t > 0 such that

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0.

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0.

• Proof Let β < 1 and s > 0.

(a) Obviously V ⋄
0 (y) → ∞ as y → −∞ from (28.1.3(p.277) ). Suppose V ⋄

t−1(y) → ∞ as y → −∞. Then v⋄t−1(y) → ∞ as
y → −∞ from (28.1.2(p.277) ). Hence, from (28.1.5(p.277) ) we have V ⋄

t (y) → ∞ as y → −∞ due to the facts that K(y) → ∞ as
y = −∞ due to (11.2.4 (1) (p.57) ) and that −(1− β)y →∞ as y → −∞. Thus, by induction V ⋄

t−1(y)→∞ as y → −∞ for t ≥ 0,
i.e., limy→−∞ V ⋄

t (y) =∞ for t ≥ 0.

(b) Evidently v⋄0(y) → 0 as y → ∞ from (28.1.4(p.277) ). Suppose v⋄t−1(y) → 0 as y → ∞. Noting that K(y) → −∞ as
y → ∞ from (11.2.5 (2) (p.57) ) and that −(1 − β)y → −∞ as y → ∞, from (28.1.5(p.277) ) we have V ⋄

t (y) → −∞ for t ≥ 0 as
y →∞. Hence, from (28.1.2(p.277) ) we have v⋄t (y)→ 0 as y →∞. Thus, by induction v⋄t (y)→ 0 for any t ≥ 0 as y →∞, hence
v⋄t−1(y)→ 0 for any t > 0 as y →∞. Then, for the same reason as just above we have V ⋄

t (y)→ −∞ for t > 0 as y →∞, i.e.,
limy→∞ V ⋄

t (y) = −∞ for t > 0.

(c) From (a,b) and Lemma 28.1.1(p.278) (b) we see that there exists the solution y⋄
t , and then clearly we have ≥ (≤) y⋄

t ⇒
V ⋄
t (y) ≤ (≥) 0 ⇔ Vt(y) ≤ (≥) y for t > 0 from (28.1.1(p.277) ).

Lemma 28.1.4 (rM:2[R][A]) Let β < 1 and s > 0.

(a) Let y ≤ 0. Then Vt(y) ≥ y for t > 0.
(b) Let y > 0.

1. Let y ≥ y⋄
t . Then Vt(y) ≤ y for t > 0,

2. Let y ≤ y⋄
t . Then Vt(y) ≥ y for t > 0

where y⋄
t ≥ 0 for t > 0.

• Proof Let β < 1 and s > 0. Since V1(y) ≥ K(max{y, ρ}) +max{y, ρ} for any y from (26.2.14(p.254) ) and since max{y, ρ} ≥ y
for any y, we obtain V1(y) ≥ K(y) + y · · · ((1)) for any y due to Lemma 11.2.2(p.57) (e).

(a) Let y ≤ 0 · · · ((2)). Since Vt(y) ≥ βvt−1(y) for t > 0 from (26.2.5(p.254) ) and since vt−1(y) ≥ y for t > 0 from (26.2.2(p.254) ),

we have Vt(y) ≥ βvt−1(y) ≥ βy for t > 0. Then, since βy ≥ y due to (2) , we have Vt(y) ≥ y for t > 0.

(b) Let y > 0 · · · ((3)).

(b1,b2) The same as Lemma 28.1.3(p.278) (c1,b1).
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28.1.1.3 Analysis

�� Tom 28.1.1 (A {rM:2[R][A]})
(a) Let s = 0. Then rM:2[R][A] # rM:2[R][E].
(b) Let β = 1.

1. ♣We have y ≤ Vt(y) for any y and t ≥ 0.

2. We have the future-subject
�� ���� ��F.S. 3 (the conditions for ⃝⃝s , } , and•dd )

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.
2. ♣Let y ≤ 0. Then y ≤ Vt(y) for t ≥ 0.

3. Let y ≥ 0.

i. ♠Let y ≥ y⋄
t . Then Vt(y) ≤ y for t ≥ 0.

ii. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

• Proof (a) Let s = 0. Then, from Lemma 28.1.2(p.278) (b) we see that it is always optimal to Conductt the search due
to (26.2.25(p.255) ), implying that rM:2[R][A], which is originally a search-Allowed-model, is substantially reduced to rM:2[R][E],
which is a search-Enforced-model. In other words, rM:2[R][A] migrates to rM:2[R][E], represented as rM:2[R][A] # rM:2[R][E]
(see Def. 12.2.2(p.63) ).

(b) Let β = 1.

(b1) The same as Lemma 28.1.2(p.278) (a).

(b2) The subject of future study——

(c) Let β < 1 and s > 0.

(c1) From (26.2.4(p.254) ) we have Vt ≥ βVt−1 for τ ≥ t > 0, hence Vτ ≥ βVτ−1, Vτ−1 ≥ βVt−2, · · · , V1 ≥ βV0, so
Vτ ≥ βVτ−1 ≥ β2Vt−2 ≥ · · · ≥ βτV0. Accordingly, we have t∗τ = τ for τ ≥ 0, i.e., ⃝s dOITsτ≥0⟨τ⟩ △.

(c2) The same as Lemma 28.1.4(p.278) (a).

(c3-c3ii) The same as Lemma 28.1.4(p.278) (b-b2).

28.1.1.4 Flow of Optimal Decision Rules

♣ Flow-ODR 9 (rM:2[R][A]) (Accept0(y) ◃ Stop) Let β = 1. Then, the inequality y ≤ Vt(y) for any y and t ≥ 0 (see Tom 28.2.1(p.285) (♣a1))
means that even if the process is initiated at any time t, it is optimal to reject the best price y at that time. Accordingly, it
follows that each time a price ξ is proposed, the current best price y continues to be enlarged to y

def
= max{y, ξ}, and the process

terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 10 (rM:2[R][A]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 28.1.1(p.279) (♠c3i,♠c3ii) and (26.2.29(p.255) ) we have the following relations for τ ≥ t ≥ 0:

y ≥ y⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
(28.1.14)

Namely, the optimal reservation value is given by y⋄
t , which is constant in t.

28.1.1.5 Market Restriction

28.1.1.5.1 Positive Restriction

� Pom 28.1.1 (A {rM:2[R][A]}+) Suppose a > 0.

(a) Let s = 0. Then rM:2[R][A]+ # M:2[R][E]+.
(b) Let β = 1.

1. We have odr 7→ Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 3(p.279) (the conditions for ⃝⃝s , } , and•dd ).

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ → → ⃝⃝s
2. We have t-reservation-price.

• Proof Suppose a > 0. Then it suffices to consider only y with y > a > 0.

(a) The same as Tom 28.1.1(p.279) (a).

(b) Let β = 1.

(b1) Clear from ♣ Flow-ODR 9.

(b2) The subject of future study ——

(c) Let β < 1 and s > 0.

(c1) The same as Tom 28.1.1(p.279) (c1).

(c2) Clear from Tom 28.1.1(p.279) (♠c3i,♠c3ii).
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28.1.1.5.2 Mixed Restriction

Omitted.

28.1.1.5.3 Negative Restriction

Omitted.

28.1.2 rM̃:2[R][A]

28.1.2.1 Derivation of A {rM̃:2[R][A]}
For almost the same reason as in Section 27.2.2.1(p.274) it can be confirmed that SOE{rM̃:2[R][A]} (see
(26.2.35(p.255) )) is symmetrical to SOE{rM:2[R][A]} (see (26.2.6(p.254) )). This results implies that applying SR→R̃ (see (20.0.1(p.136) ))
to Tom 28.1.1(p.279) for rM:2[R][E] (selling model) yields lemmas for rM̃:2[R][E] (buying model).

�� Tom 28.1.1 (A {rM̃:2[R][A]})
(a) Let s = 0. Then rM̃:2[R][A] # rM̃:2[R][E].
(b) Let β = 1.

1. ♣ We have y ≥ Vt(y) for t ≥ 0.

2. We have the same unsolved subject as
�� ��F.S 3(p.279) .

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △.
2. ♣ Let y ≥ 0. Then y ≥ Vt(y) for t ≥ 0.

3. Let y ≤ 0.

i. ♠ Let y ≤ ỹ⋄
t . Then y ≤ Vt(y) for t ≥ 0.

ii. ♠ Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

• Proof by symmetry Obtained by applying SR→R̃ to Tom 28.1.1(p.279) .

28.1.2.2 Flow of Optimal Decision Rules

♣ Flow-ODR 11 (rM:2[R][E]) (Accept0(y) ◃ Stop) Let β = 1 (see Tom 28.1.1(p.280) (♣b1)). Then, the inequality y ≥ Vt(y) for
any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y at that time.
Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be reduced to y

def
= min{y, ξ},

and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 12 (rM:2[R][E]) (t-reservation-price) Let β < 1 and s > 0 and let y ≤ 0. Then, from
Tom 28.1.1(p.280) (♠c3i,♠c3ii) and (26.2.50(p.256) ) we have the following relations for τ ≥ t ≥ 0:

y ≤ ỹ⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

}
. (28.1.15)

Namely, the optimal reservation value is given by ỹ⋄
t , which is constant in t.

28.1.2.3 Market Restriction

28.1.2.3.1 Positive Restriction

� Pom 28.1.2 (A {rM̃:2[R][A]+}) Suppose a > 0.

(a) Let s = 0. Then rM̃:2[R][A]+ # rM̃:2[R][E]+.
(b) Let β = 1.

1. ♣We have odr 7→ Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 3(p.279) .

(c) Let β < 1 and s > 0.

1. We have ⃝s dOITsτ≥0⟨τ⟩ △ → → ⃝⃝s
2. ♣We have odr 7→ Accept0(y) ◃ Stop.

• Proof Suppose a > 0. Then it suffices to consider only y > a > 0.

(a) The same as Tom 28.1.1(p.280) (a).

(b) Let β = 1.

(b1) Immediate from Tom 28.1.1(p.280) (♣b1) and ♣ Flow-ODR 11(p.280) .

(b2) The subject of future study ——

(c) Let β < 1 and s > 0.

(c1) The same as Tom 28.1.1(p.280) (c1).

(c2) Immediate Tom 28.1.1(p.280) (♣c2) and ♣Flow-ODR 9.
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28.1.2.3.2 Mixed Restriction

Omitted.

28.1.2.3.3 Negative Restriction

Omitted.

28.1.3 Conclusion 9 (Search-Allowed-Model 2)

The following six cases are possible:

C1 We have A {rM̃:2[R][A]}+ |∼ A {rM:2[R][A]}+.
C2 We have rM/M̃:2[R][A]+ # rM/M̃:2[R][E]+.
C3 We have ⃝⃝s △ for rM/M̃:2[R][A]+.
C4 We have odr 7→Accept0(y) ◃ Stop for rM/M̃:2[R][A]+ (i.e.,•dd ).

C5 We have t-reservation-price for rM:2[R][A]+.
C6 We have the future subject

�� ��F.S 3.

C1 Compare Pom 28.1.2(p.280) and Pom 28.1.1(p.279) .

C2 See Pom 28.1.1(p.279) (a) and Pom 28.1.2(p.280) (a).

C3 See Pom 28.1.1(p.279) (c1) and Pom 28.1.2(p.280) (c1).

C4 See Pom 28.1.1(p.279) (b1) and Pom 28.1.2(p.280) (b1,c2).

C5 See Pom 28.1.1(p.279) (c2).

C6 See Pom 28.1.1(p.279) (b2) and Pom 28.1.2(p.280) (b2).

28.2 Search-Enforced-Model 2

28.2.1 rM:2[R][E]

28.2.1.1 Preliminary

Let us define

v⋄t (y) = vt(y)− y, t ≥ 0, (28.2.1)

V ⋄
t (y) = Vt(y)− y, t ≥ 0. (28.2.2)

Then, from (26.2.58(p.256) ) we have

v⋄t (y) = max{0, V ⋄
t (y)} ≥ 0, t ≥ 0, (28.2.3)

where

v⋄0(y) = v0(y)− y = max{0, ρ− y} (see (26.2.51(p.256) )), (28.2.4)

V ⋄
0 (y) = V0(y)− y = ρ− y (see (26.2.57(p.256) )) (28.2.5)

Furthermore, from (26.2.55(p.256) ) we have

V ⋄
t (y) = λβE[v⋄t−1(max{ξ, y}) + max{ξ, y}] + (1− λ)β(v⋄t−1(y) + y)− s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) + λβE[max{ξ, y}] + (1− λ)βy − s− y

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y) + y − y t > 0 (← (6.1.10(p.25) ))

= λβE[v⋄t−1(max{ξ, y})] + (1− λ)β v⋄t−1(y) +K(y), t ≥ 0. (28.2.6)

By y⋄
t let us denote the solution of the equation V ⋄

t (y) = 0 if it exists, i.e.,

V ⋄
t (y⋄

t ) = 0, t ≥ 0. (28.2.7)

If multiple solutions exist, it is defined to be the smallest of them.

28.2.1.2 Lemmas

Lemma 28.2.1 (rM:2[R][E])

(a) vt(y) and Vt(y) are nondecreasing in y for t ≥ 0.

(b) V ⋄
t (y) is nonincreasing in y for t ≥ 0.
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• Proof (a) v0(y) is nondecreasing in y from (26.2.51(p.256) ). Suppose vt−1(y) is nondecreasing in y. Then Vt(y) is nondecreas-
ing in y from (26.2.55(p.256) ), hence vt(y) is also nondecreasing in y from (26.2.58(p.256) ). Thus, by induction vt(y) is nondecreasing
in y for t ≥ 0. Then vt−1(y) is nondecreasing in y for t > 0, hence Vt(y) is also nondecreasing in y for t > 0 from (26.2.55(p.256) ).
In addition, since V0(y) can be regarded as nondecreasing in y from (26.2.57(p.256) ), it follows that Vt(y) is nondecreasing in y for
t ≥ 0.

(b) V ⋄
0 (y) is nonincreasing in y from (28.2.4(p.281) ). Suppose V ⋄

t−1(y) is nonincreasing in y, hence v⋄t−1(y) is also nonincreasing
in y from (28.2.3(p.281) ). Accordingly, from (28.2.6(p.281) ) and Lemma 11.2.2(p.57) (b)) we see that V ⋄

t (y) is also nonincreasing in y.
This completes the induction.

Lemma 28.2.2 (rM:2[R][E]) Let β = 1 and s = 0. Then Vt(y) ≥ y for any y and t > 0.

• Proof Let β = 1 and s = 0, henceK(y) = λT (y) from (6.1.4(p.25) ). Then, from (28.2.6(p.281) ) we have V ⋄
t (y) = λE[v⋄t−1(max{ξ, y})]+

(1 − λ)v⋄t−1(y) + λT (y) for t ≥ 0. Now, for any ξ and y we have that v⋄t−1(max{ξ, y}) ≥ 0 and v⋄t−1(y) ≥ 0 for t > 0 from
(28.2.3(p.281) ) and that T (y) ≥ 0 due to Lemma 11.1.1(p.55) (g), hence it follows that V ⋄

t (y) ≥ 0 for any y and t > 0 or equivalently
Vt(y) ≥ y for any y and t > 0 from (28.2.2(p.281) ).

Lemma 28.2.3 (rM:2[R][E]) Let β < 1 or s > 0.

(a) limy→−∞ V ⋄
t (y) =∞ for t ≥ 0.

(b) limy→∞ V ⋄
t (y) < 0 for t > 0.

(c) The sequence y⋄
1 , y

⋄
2 , · · · exists where

y ≤ (≥) y⋄
t ⇒ V ⋄

t (y) ≥ (≤) 0. (28.2.8)

• Proof Let β < 1 or s > 0.

(a) We have V ⋄
0 (y) → ∞ as y → −∞ from (28.2.5(p.281) ). Suppose V ⋄

t−1(y) → ∞ as y → −∞. Then v⋄t−1(y) → ∞ as
y → −∞ from (28.2.3(p.281) ). In addition, since K(y) → ∞ as y = −∞ due to (11.2.4 (1) (p.57) ), from (28.2.6(p.281) ) we see that
V ⋄
t (y)→∞ as y → −∞. This completes the induction.

(b) We have v⋄0(y) → 0 as y → ∞ from (28.2.4(p.281) ). Suppose v⋄t−1(y) → 0 as y → ∞. Then, the first and second terms
of the right-hand side of (28.2.6(p.281) ) converge to 0 as y → ∞. In addition, due to (11.2.5 (2) (p.57) ), if β = 1, then s > 0 due
to the assumption “β < 1 or s > 0”, hence K(y) = −s < 0 for any y and if β < 1, then K(y) → −∞ < 0 as y → ∞,
so limy→∞ K(y) < 0 whether β = 1 or β < 1. Hence, it follows that limy→∞ V ⋄

t (y) < 0. Thus, from (28.2.3(p.281) ) we have
v⋄t (y) → 0 as y → ∞. Hence, by induction we have v⋄t (y) → 0 as y → ∞ for t ≥ 0. Accordingly, since v⋄t−1(y) → 0 as y → ∞
for t > 0, for quite the same reason as the above we have limy→∞ V ⋄

t−1(y) < 0 for t > 0.

(c) Immediate from (a,b) and Lemma 28.2.1(p.281) (b).

Lemma 28.2.4 (rM:2[R][E]) Let ρ ≤ xK . Then for any y ∈ [a, b] we have :

(a) vt(y) and Vt(y) are nondecreasing in t ≥ 0.

(b) vt(y) and Vt(y) converges to finite v(y) and V (y) respectively as t→∞.

(c) V ⋄
t (y) is nondecreasing in t ≥ 0.

(d) y⋄
t is nondecreasing in t > 0.

(e) Vt is nondecreasing in t ≥ 0.

• Proof Let ρ ≤ xK and consider only y ∈ [a, b] · · · ((1)). Then K(ρ) ≥ 0 · · · ((2)) from Corollary 11.2.2(p.58) (b).

(a) Since max{y, ρ} ≥ ρ for any y, from (26.2.61(p.256) ) and Lemma 11.2.2(p.57) (e) we have V1(y) ≥ K(ρ) + ρ ≥ ρ · · · ((3)) due

to (2) . Hence, from (26.2.52(p.256) ) with t = 1 we have v1(y) = max{y, V1(y)} ≥ max{y, ρ} = v0(y) for any y from (26.2.51(p.256) ).
Suppose vt−1(y) ≥ vt−2(y) for any y. Then, from (26.2.55(p.256) ) we have Vt(y) ≥ λβE[vt−2(max{ξ, y})]+ (1−λ)βvt−2(y)− s =
Vt−1(y) for any y. Hence, from (26.2.58(p.256) ) we have vt(y) ≥ max{y, Vt−1(y)} = vt−1(y) for any y. Thus, by induction vt(y) is
nondecreasing in t ≥ 0 for any y. Then vt−1(y) is nondecreasing in t > 0 for any y, hence Vt(y) is nondecreasing in t > 0 for any
y from (26.2.55(p.256) ). From (3) and (26.2.57(p.256) ) we have V1(y) ≥ V0(y). Accordingly, it follows that Vt(y) is nondecreasing in
t ≥ 0 for any y.

(b) Below let us consider only y ∈ [a, b] and ξ ∈ [a, b]†; in addition, consider a sufficiently large M > 0 such that b ≤ M
and ρ ≤ M . Then we have V0(y) ≤ M from (26.2.57(p.256) ). Suppose Vt−1(y) ≤ M · · · ((4)) for any y ∈ [a, b], hence from

(26.2.52(p.256) ) we have vt−1(y) ≤ max{M,M} = M . Then, since max{ξ, y} ≤ max{M,M} = M and max{ξ, y} ∈ [a, b], we have
Vt−1(max{ξ, y}) ≤ M due to (4) . Thus, from (26.2.52(p.256) ) we have vt−1(max{ξ, y}) = max{max{ξ, y}, Vt−1(max{ξ, y})} ≤
max{M,M} = M . Hence, from (26.2.55(p.256) ) we have Vt(y) ≤ λβE[M ]+(1−λ)βM−s = λβM+(1−λ)βM−s = βM−s ≤M ,
i.e., Vt(y) is upper bounded in t. Accordingly, due to (a) it follows that Vt(y) converge to a finite V (y) as t→∞.

(c) Immediate from (28.2.2(p.281) ) and (a).

(d) Evident from Lemma 28.2.1(p.281) (b), Lemma 28.2.4(p.282) (c), and Lemma 28.2.3(p.282) (c) (see Figure A 7.2(p.323) (I)).

(e) From (26.2.59(p.256) ) and (2) we have V1 ≥ ρ = V0 from (26.2.53(p.256) ). Suppose Vt−1 ≥ Vt−2. Since vt−1(ξ) ≥ vt−2(ξ) for
any ξ due to (a), from (26.2.54(p.256) ) we have Vt ≥ λβE[vt−2(ξ)] + (1− λ)βVt−2 − s = Vt−1. This completes the induction.

Lemma 28.2.5 (rM:2[R][E]) Let β < 1 or s > 0.

†a ≤ y ≤ b ≤M and a ≤ ξ ≤ b ≤M .
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(a) Let y ≥ y⋄
t . Then y ≥ Vt(y) for t > 0.

(b) Let y ≤ y⋄
t . Then y ≤ Vt(y) for t > 0.

• Proof The same as Lemma 28.2.3(p.282) (c) and (28.2.2(p.281) ).

From (26.2.63(p.256) ) and the two inequalities in Tom 28.2.5(p.282) (a,b) we have the following decision rule:

y ≥ y⋄
t ⇒ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
(28.2.9)

28.2.1.3 Analysis

�� Tom 28.2.1 (A {rM:2[R][E]})
(a) Let β = 1 and s = 0.

1. ♣We have y ≤ Vt(y) for any y and t ≥ 0.

2. We have the future subject
�� ���� ��F.S. 4 (the conditions for ⃝⃝s , } , and•dd ).

(b) Let β < 1 or s > 0.

1. ♠Let y ≥ y⋄
t . Then y ≥ Vt(y) for t ≥ 0.

2. ♠Let y ≤ y⋄
t . Then y ≤ Vt(y) for t ≥ 0.

3. We have the future subject
�� ���� ��F.S. 5 (the conditions for ⃝⃝s , } , and•dd ).

• Proof (a) Let β = 1 and s = 0.

(a1) The same as Lemma 28.2.2(p.282) .

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1,b2) The same as Lemma 28.2.5(p.282) .

(b3) The subject of future study——

28.2.1.4 Flow of Optimal Decision Rules

♣ Flow-ODR 13 (rM:2[R][E]) (Accept0(y) ◃ Stop) Let β = 1 and s = 0 (see Tom 28.2.1(p.283) (♣a1)). Then, the inequality y ≤
Vt(y) for any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y
at that time. Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be enlarged to
y

def
= max{y, ξ}, and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 14 (rM:2[R][E]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 28.2.1(p.283) (♠b1,♠b2)
and (26.1.25(p.252) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≥ y⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≤ y⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by y⋄
t , which is constant in t.

28.2.1.5 Market Restriction

28.2.1.5.1 Positive Restriction

� Pom 28.2.1 (A {rM:2[R][E]}+) Suppose a > 0.

(a) Let β = 1 and s = 0.

1. We have Accept0(y) ◃ Stop (see ♣Flow-ODR 13).

2. We have the same unsolved subject as
�� ��F.S 4(p.283) .

(b) Let β < 1 or s > 0.

1. We have t-reservation-price (see ♣Flow-ODR 14).

2. We have the same unsolved subject as
�� ��F.S 5(p.283) .

• Proof Suppose a > 0.

(a) Let β = 1 and s = 0.

(a1) Obvious from Tom 28.2.1(p.283) (♣a1).

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1) Evident from Tom 28.2.1(p.283) (♠b1,♠b2).

(b2) The subject of future study——
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28.2.1.5.2 Mixed Restriction

Omitted.

28.2.1.5.3 Negative Restriction

Unnecessary.

28.2.2 rM̃:2[R][E]
28.2.2.1 Preliminary

Let us define
ṽ⋄t (y) = vt(y)− y, t ≥ 0, (28.2.10)

Ṽ ⋄
t (y) = Vt(y)− y, t ≥ 0. (28.2.11)

Then, from (26.2.71(p.257) ) we have

ṽ⋄t (y) = min{0, Ṽ ⋄
t (y)}, t ≥ 0. (28.2.12)

By ỹ⋄
t let us denote the solution of the equation Ṽ ⋄

t (y) = 0, t > 0, it exists, i.e.,

Ṽ ⋄
t (ỹ⋄

t ) = 0. (28.2.13)

If multiple solutions exist, it is defined to be the largest of them. Now, we have

ṽ⋄0(y) = min{0, ρ− y} (← (26.2.64(p.256) )), (28.2.14)

Ṽ ⋄
0 (y) = ρ− y (← (26.2.70(p.257) )). (28.2.15)

Lemma 28.2.6 (rM̃:2[R][E]) We have ỹ⋄
t = ŷ⋄

t (= −y⋄
t ) for t > 0 (see (28.2.7(p.281) ) for y⋄

t ).

• Proof First, note that (26.2.68(p.257) ) can be rewritten as follows.

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f(ξ)dξ + (1− λ)βvt−1(y) + s, t > 0.

Next, replacing f(ξ) in the above expression by f̌(ξ̂) (see (13.1.8(p.69) )) leads to

Vt(y) = λβ
∫∞
−∞ vt−1(min{ξ, y})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(min{−ξ̂,−ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ̂, ŷ})f̌(ξ̂)dξ + (1− λ)βvt−1(y) + s, t > 0.

Then, let η
def
= ξ̂ = −ξ, hence dη = −dξ. Then, the above expression can be rearranged as

Vt(y) = −λβ
∫ −∞
∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{η, ŷ})f̌(η)dη + (1− λ)βvt−1(y) + s

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f̌(ξ)dξ + (1− λ)βvt−1(y) + s (without loss of generality).

= λβ
∫∞
−∞ vt−1(−max{ξ, ŷ})f(ξ)dξ + (1− λ)βvt−1(y) + s (see (13.1.10(p.70) )).

Applying the reflection operation R to the above expression yields

−V̂t(−ŷ) = −λβ
∫∞
−∞ v̂t−1(−max{ξ, ŷ})f(ξ)dξ − (1− λ)βv̂t−1(−ŷ) + s

= −λβE[v̂t−1(−max{ξ, ŷ})]− (1− λ)βv̂t−1(−ŷ) + s, t > 0.

Multiplying the above expression by −1 yields

V̂t(−ŷ) = λβE[v̂t−1(−max{ξ, ŷ})] + (1− λ)βv̂t−1(−ŷ)− s, t > 0. · · · ((1)).

Now, since (1) holds for any y with −∞ < y <∞, it holds also for ŷ since ∞ > ŷ > −∞ or equivalently −∞ < ŷ <∞, hence
we have

V̂t(−ˆ̂y) = λβE[v̂t−1(−max{ξ, ˆ̂y})] + (1− λ)βv̂t−1(−ˆ̂y)− s, t > 0. · · · ((2)).

Since ˆ̂y = y, we can rewrite (2) as

V̂t(−y) = λβE[v̂t−1(−max{ξ, y})] + (1− λ)βv̂t−1(−y)− s · · · ((3)).
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◦ Below let us temporarily represent the symbols “v” and “V ” used in rM:2[R][E] in Section 26.2.2.1(p.256) by “z” and “Z”
respectively. Then (26.2.51(p.256) ), (26.2.52(p.256) ), (26.2.57(p.256) ), and (26.2.55(p.256) ) can be rewritten as respectively

z0(y) = max{y, ρ} · · · ((4)),

zt(y) = max{y, Zt(y)} · · · ((5)), t > 0,

Z0(y) = ρ · · · ((6)),

Zt(y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s · · · ((7)), t > 0.

In addition, let Z⋄
t (y)

def
= Zt(y)−y · · · ((8)) and z⋄t (y)

def
= zt(y)−y = max{0, Z⋄

t (y)}. Then we have Z⋄
t (y

⋄
t ) = 0 and zt(y

⋄
t )−y⋄

t = 0

(see (28.2.7(p.281) )).

◦ Since V0(y) = ρ · · · ((9)) from (26.2.70(p.257) ), we have −V̂0(−ŷ) = −ρ̂, hence V̂0(−ŷ) = ρ̂. Since the equality holds for any

y ∈ (−∞,∞) and any ρ ∈ (−∞,∞), so also does for ŷ ∈ (−∞,∞) and ρ̂ ∈ (−∞,∞). Hence since V̂0(−ˆ̂y) = ˆ̂ρ, we have
V̂0(−y) = ρ · · · ((10 )).

◦ From (10) and (6) we have V̂0(−y) = ρ = Z0(y). Suppose V̂t−1(−y) = Zt−1(y). Then, from (26.2.71(p.257) ) we have

vt−1(y) = min{−ŷ,−V̂t−1(−ŷ)} = −max{ŷ, V̂t−1(−ŷ)} = −max{ŷ, Zt−1(ŷ)} = −zt−1(ŷ)

due to (5) . Hence, since v̂t−1(y) = zt−1(ŷ), we have

v̂t−1(−y) = v̂t−1(ŷ) = zt−1(ˆ̂y) = zt−1(y),

hence since v̂t−1(−max{ξ, y}) = zt−1(max{ξ, y}). Accordingly, (3) can be rewritten as

V̂t(−y) = λβE[zt−1(max{ξ, y})] + (1− λ)βzt−1(y)− s = Zt(y) (see (7) ).

Hence, since −Vt(−y) = Zt(y), we have Vt(−y) = −Zt(y). Since the equality holds for any y ∈ (−∞,∞), so also does for
ŷ ∈ (−∞,∞), hence Vt(−ŷ) = −Zt(ŷ), so Vt(y) = −Zt(ŷ). Now, from (28.2.13(p.284) ) and (28.2.11(p.284) ) we have

0 = Ṽt(ỹ
⋄
t ) = Vt(ỹ

⋄
t )− ỹ⋄

t = −Zt(ˆ̃y
⋄
t )− ỹ⋄

t = −Zt(ˆ̃y
⋄
t ) + ˆ̃y⋄

t = −(Zt(ˆ̃y
⋄
t )− ˆ̃y⋄

t ) = −Z⋄
t (ˆ̃y

⋄
t )

due to (8) or equivalently Z⋄
t (ˆ̃y

⋄
t ) = 0. Hence, we have y⋄

t = ˆ̃y⋄
t by definition, or equivalently ˆ̃y⋄

t = y⋄
t , so −ỹ⋄

t = y⋄
t , hence

ỹ⋄
t = −y⋄

t = ŷ⋄
t .

28.2.2.2 Derivation of A {rM̃:2[R][E]}
For almost the same reason as in Section 27.2.2.1(p.274) it can be confirmed that SOE{rM̃:2[R][E]} (see (26.2.69(p.257) )) is symmet-
rical to SOE{rM:2[R][E]} (see (26.2.56(p.256) )). This results implies that applying SR→R̃ (see (20.0.1(p.136) )) to Tom 28.2.1(p.283) for
rM:2[R][E] yields lemmas for rM̃:2[R][E].
�� Tom 28.2.1 (A {rM̃:2[R][E]})
(a) Let β = 1 and s = 0.

1. ♣We have y ≥ Vt(y) for t ≥ 0 and any y.

2. We have the same unsolved subject as
�� ��F.S 4(p.283) .

(b) Let β < 1 or s > 0.

1. ♠Let y ≤ ỹ⋄
t . Then Vt(y) ≥ y for t ≥ 0.

2. ♠Let y ≥ ỹ⋄
t . Then y ≥ Vt(y) for t ≥ 0.

3. We have the same unsolved subject as
�� ��F.S 5(p.283) .

• Proof by symmetry Immediate from applying SR→R̃ (see (20.0.1(p.136) )) to Tom 28.2.1(p.283) .

From (26.2.63(p.256) ) and the two inequalities in Tom 28.2.5(p.282) (a,b) we have the following decision rule:

y ≤ ỹ⋄
t ⇒ y ≥ Vt(y) ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ y ≤ Vt(y) ⇒ Rejectt⟨y⟩ and the search is conducted

}
(28.2.16)

28.2.2.3 Flow of Optimal Decision Rules

♣ Flow-ODR 15 (rM:2[R][E]) (Accept0(y) ◃ Stop) Let β = 1 and s = 0 (see Tom 28.2.1(p.285) (♣a1)). Then, the inequality y ≤
Vt(y) for any y and t ≥ 0 means that even if the process is initiated at any time t, it is optimal to reject the best price y
at that time. Accordingly, it follows that each time a price ξ is proposed, the current best price y continues to be reduced to
y

def
= min{y, ξ}, and the process terminates by accepting the best price y at the deadline t = 0, i.e., Accept0(y) ◃ Stop.

♠ Flow-ODR 16 (rM:2[R][E]) (t-reservation-price) Let β < 1 or s > 0. Then, from
Tom 28.2.1(p.285) (♠b1,♠b2)
and (26.1.25(p.252) ) we have the following relations for τ ≥ t ≥ 0:

{ y ≤ ỹ⋄
t ⇒ Acceptt⟨y⟩ and the process stops

y ≥ ỹ⋄
t ⇒ Rejectt⟨y⟩ and Conductt/Skipt

Namely, the optimal reservation value is given by ỹ⋄
t , which is constant in t.
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28.2.2.4 Market Restriction

28.2.2.4.1 Positive Restriction

� Pom 28.2.2 (A {rM̃:2[R][E]}+) Assume a > 0.

(a) Let β = 1 and s = 0.
1. ♣We have Accept0(y) ◃ Stop.

2. We have the same unsolved subject as
�� ��F.S 4(p.283) .

(b) Let β < 1 or s > 0.
1. ♠We have t-reservation-price.

2. We have the same unsolved subject as
�� ��F.S 5(p.283) .

• Proof Suppose a > 0.

(a) Let β = 1 and s = 0..

(a1) Obvious from Tom 28.2.1(p.285) (♣a) and ♣Flow-ODR 15.

(a2) The subject of future study——

(b) Let β < 1 or s > 0.

(b1) Evident from Tom 28.2.1(p.285) (♠b1,♠b2) and ♠Flow-ODR 16.

(b2) The subject of future study——

28.2.2.4.2 Mixed Restriction

Omitted.

28.2.2.4.3 Negative Restriction

Unnecessary.

28.2.3 Conclusion 10 (Search-Enforced-Model 2)

The following four cases are possible:

C1 We have A {rM̃:2[R][E]}+ ∼ A {rM:2[R][E]}+.
C2 We have odr 7→ Accept0(y) ◃ Stop for rM/M̃:2[R][E]+ (i.e.,•dd ).

C3 We have t-reservation-price for rM/M̃:2[R][E]+.
C4 We have the same unsolved subject as

�� ��F.S 4(p.283) and
�� ��F.S 5(p.283) for rM/M̃:2[R][E]+.

C1 Compare Pom 28.2.2(p.286) and 28.2.1(p.283) .

C2 See Pom 28.2.1(p.283) (a1) and Pom 28.2.2(p.286) (a1).

C3 See Pom 28.2.1(p.283) (b1) and Pom 28.2.2(p.286) (b1).

C4 See Pom 28.2.1(p.283) (a2,b2) and Pom 28.2.2(p.286) (a2,b2).



Chapter 29

Analysis of Model 3

29.1 Search-Allowed-Model 3

Lemma 29.1.1 We have

(a) vt(y) is nondecreasing in t ≥ 0 for any y.

(b) Let ρ ≤ 0. Then Ut is nondecreasing in t ≥ 0.

(c) Let ρ ≥ xK and ρ ≥ 0. Then Ut ≤ ρ for t ≥ 0 and vt(y) ≤ max{y, ρ} for t ≥ 0.

• Proof (a) From (26.3.2(p.257) ) with t = 1 and (26.3.1(p.257) ) we have v1(y) ≥ max{y, ρ} = v0(y) for any y. Suppose vt−1(y) ≥
vt−2(y) for any y. Then, from (26.3.5(p.257) ) we have

Ut(y) ≥ max{λβE[vt−2(max{ξ, y})] + (1− λ)βvt−2(y)− s, βvt−2(y)} = Ut−1(y)

for any y, so from (26.3.2(p.257) ) we have vt(y) ≥ max{y, ρ, Ut−1(y)} = vt−1(y) for any y. Thus, by induction we have vt(y) ≥
vt−1(y) for any y and t > 0. Accordingly, it follows that vt(y) is nondecreasing in t ≥ 0.

(b) Let ρ ≤ 0. From (26.3.6(p.257) ) with t = 1 and (26.3.3(p.257) ) we have U1 ≥ βV0 = βρ ≥ ρ = U0 from (26.3.8 (2) (p.257) ).
Suppose Ut ≥ Ut−1. Then, since vt−1(ξ) ≥ vt−2(ξ) for any ξ from (a) and since Vt ≥ max{ρ, Ut−1} = Vt−1 from (26.3.4(p.257) ),
we have

Ut ≥ max{λβE[vt−2(ξ)] + (1− λ)βVt−2 − s, βVt−2} = Ut−1

from (26.3.6(p.257) ). This completes the induction.

(c) Let ρ ≥ xK and ρ ≥ 0 · · · ((1)). Then, we have K(ρ) ≤ 0 · · · ((2)) from Corollary 11.2.2(p.58) (a) and we have K(max{y, ρ}) ≤
0 · · · ((3)) for any y due to max{y, ρ} ≥ ρ ≥ xK . Clearly, we have U0 ≤ ρ from (26.3.8 (2) (p.257) ) and v0(y) ≤ max{y, ρ} for any y

from (26.3.1(p.257) ). Suppose Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} · · · ((4)) for any y, hence Vt−1 = ρ from (26.3.4(p.257) ). Then, from

(26.3.6(p.257) ) we have

Ut ≤ max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ}

from (6.1.10(p.25) ), hence Ut ≤ max{ρ, βρ} = ρ due to (2) and (1) . Since vt−1(max{ξ, ρ}) ≤ max{ξ, ρ} for any ξ and y due to
(4) , from (26.3.5(p.257) ) we have

Ut(y) ≤ max{λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s, βmax{y, ρ}}

= max{K(max{y, ρ}) + max{y, ρ}, βmax{y, ρ}}

from (6.1.10(p.25) ). Hence Ut(y) ≤ max{max{y, ρ}, β{max{y, ρ}} = max{y, ρ} due to (3) and max{y, ρ} ≥ ρ ≥ 0 for any y.
Accordingly, from (26.3.2(p.257) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} = max{y, ρ}. This complete the inductions.

�� Tom 29.1.1 (A {rM:3[R][A]})
(a) Let ρ ≤ xK or ρ ≤ 0. Then we have rM:3[R][A] � rM:2[R][A].
(b) Let ρ ≥ xK and ρ ≥ 0. Then we have ⃝⃝s △ where odr 7→ Acceptτ (ρ) ◃ Stop.

• Proof From (26.3.6(p.257) ) with t = 1, (26.3.1(p.257) ), and (26.3.3(p.257) ) we have

U1 = max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} · · · ((1))
due to (6.1.10(p.25) ).

(a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((2)) from Corollary 11.2.2(p.58) (b). Since vt−1(ξ) ≥ max{ξ, ρ} for any ξ and t > 0 from

(26.3.2(p.257) )) and since Vt ≥ ρ for t > 0 from (26.3.4(p.257) )), from
(26.3.6(p.257) )) and (6.1.10(p.25) ) we have

Ut ≥ max{λβE[max{ξ, ρ}] + (1− λ)βρ− s, βρ} = max{K(ρ) + ρ, βρ} ≥ K(ρ) + ρ ≥ ρ

287
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for any t > 0 due to (2) . Let ρ ≤ 0, hence −(1− β)ρ ≥ 0. From (1) we have U1 − ρ = max{K(ρ),−(1− β)ρ} ≥ 0, so U1 ≥ ρ;
accordingly, we have Ut ≥ ρ for t > 0 from Lemma 29.1.1(p.287) (b). Consequently, whether ρ ≤ xK or ρ ≤ 0, it follows that
Ut ≥ ρ for t > 0. This fact means that “Reject the intervening quitting penalty price ρ for all t > 0”, implying “Behave as if
there does not exist the intervening quitting penalty price ρ”; in other words, it eventually follows that rM:3[R][A] is reduced to
the model without the intervening quitting penalty price ρ, i.e., rM:2[R][A].

(b) Let ρ ≥ xK and ρ ≥ 0. Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 29.1.1(p.287) (c), meaning “Accept the intervening
quitting penalty price ρ and the process stops” for τ ≥ t > 0; in other words, we have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ τ > 0
(see (23.1.2(p.239) )). The proof of ⃝⃝s △ is the same as the proof of Tom 29.2.1(p.288) (b2) for ρ ≥ 0.

29.1.1 rM̃:3[R][A]
In the same way as in Section 27.2.2.1(p.274) we can easily verify that SOE{rM̃:3[R][A]} = SR→R̃[SOE{rM:3[R][A]}] (see (26.3.16(p.258) )
and (26.3.7(p.257) )). Hence, we can apply SR→R̃ (see (20.0.1(p.136) )) to Tom 29.1.1(p.287) , yielding the following Tom (see Lemma 13.10.1(p.87) ).

�� Tom 29.1.1 (A {rM̃:3[R][A]})
(a) Let ρ ≥ x

K̃ or ρ ≥ 0. Then we have rM̃:3[R][A] �rM̃:2[R][A].
(b) Let ρ ≤ x

K̃ and ρ ≤ 0. Then we have ⃝⃝s △ where odr 7→ Acceptt(ρ) ◃ Stop.

29.1.2 Conclusion 11 (Search-Allowed-Model 3)

The following two cases are possible:

C1. We have rM/M̃:3[R][A] �rM/M̃:2[R][A].
C2. We have odr 7→ Acceptτ (ρ) ◃ Stop where ⃝⃝s △ for rM/M̃:3[R][A].

C1 See Tom 29.1.1(p.287) (a) and Tom 29.1.1(p.288) (a).

C2 See Tom 29.1.1(p.287) (b) and Tom 29.1.1(p.288) (b).

29.2 Search-Enforced-Model 3

29.2.1 rM:3[R][E]
Lemma 29.2.1 Let ρ ≥ xK . Then Ut ≤ ρ and vt(y) ≤ max{y, ρ} for any y and t ≥ 0.

• Proof Let ρ ≥ xK , hence max{y, ρ} ≥ ρ ≥ xK for any y. Then, from Corollary 11.2.2(p.58) (a) we have K(ρ) ≤ 0 · · · ((1)) and
K(max{y, ρ}) ≤ 0 · · · ((2)) for any y. Now U0 ≤ ρ from (26.3.26 (2) (p.258) ) and v0(y) ≤ max{y, ρ} for any y from (26.3.19(p.258) ). Sup-

pose Ut−1 ≤ ρ and vt−1(y) ≤ max{y, ρ} for any y, hence Vt−1 = ρ from (26.3.22(p.258) ) and vt−1(max{ξ, y}) ≤ max{max{ξ, y}, ρ}
for any ξ and y. Then, from (26.3.24(p.258) ) we have

Ut ≤ λβE[max{ξ, ρ}] + (1− λ)βρ− s = K(ρ) + ρ

due to (6.1.10(p.25) ), hence Ut ≤ ρ due to (1) . In addition, from (26.3.23(p.258) ) we have

Ut(y) ≤ λβE[max{max{ξ, y}, ρ}] + (1− λ)βmax{y, ρ} − s

= λβE[max{ξ,max{y, ρ}}] + (1− λ)βmax{y, ρ} − s

= K(max{y, ρ}) + max{y, ρ}

from (6.1.10(p.25) ), hence Ut(y) ≤ max{y, ρ} from (2) . Accordingly, from (26.3.20(p.258) ) we have vt(y) ≤ max{y, ρ,max{y, ρ}} =
max{y, ρ}. This complete the inductions.

�� Tom 29.2.1 (A {rM:3[R][E]})
(a) Let ρ ≤ xK . Then we have rM:3[R][E] � rM:2[R][E].
(b) Let ρ ≥ xK .

1. We have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t ≥ 0.

2. Let ρ ≥ 0 (ρ ≤ 0). Then we have ⃝⃝s △ (•dd△).
• Proof (a) Let ρ ≤ xK , hence K(ρ) ≥ 0 · · · ((1)) from Corollary 11.2.2(p.58) (b). Since Vt−1 ≥ ρ for t > 0 from (26.3.22(p.258) ))

and since vt−1(y) ≥ max{y, ρ} for any y, ρ, and t > 0 from (26.3.20(p.258) )), from (26.3.24(p.258) )) we have

Ut ≥ λβE[max{ξ, ρ}] + (1− λ)βρ− s = K(ρ) + ρ, t > 0

from (6.1.10(p.25) ), hence Ut ≥ ρ for t > 0 from (1) . This fact means that “Reject the intervening quitting penalty price ρ for
all t > 0”, implying “Behave as if there does not exist the intervening quitting penalty price ρ”; in other words, it follows that
rM:3[R][E] is reduced to the model without the intervening quitting penalty ρ”, i.e., rM:2[R][E].

(b) Let ρ ≥ xK .

(b1) Then, we have Ut ≤ ρ for τ ≥ t ≥ 0 from Lemma 29.2.1(p.288) , meaning that “Always accept the intervening quitting
penalty ρ and the process stops” is optimal for τ ≥ t > 0; in other words, we have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t > 0 (see
(23.1.2(p.239) )). Then since Vt = ρ for τ ≥ t ≥ 0 from (26.3.22(p.258) ), we have Itτ = βτ−tVt = βτ−tρ for τ ≥ t ≥ 0 from (8.2.3(p.44) ).

(b2) If ρ ≥ 0, then since β0ρ ≥ β1ρ ≥ · · · ≥ βτρ, we have Iττ ≥ Iτ−1
τ ≥ · · · ≥ I0τ , hence ⃝s dOITsτ ⟨τ⟩ △ and if ρ ≤ 0, then

since β0ρ ≤ β1ρ ≤ · · · ≤ βτρ, we have Iττ ≤ Iτ−1
τ ≤ · · · ≤ I0τ , hence • dOITdτ ⟨0⟩ △.
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29.2.2 rM̃:3[R][E]
In the same way as in Section 27.2.2.1(p.274) we can easily verify that SOE{rM̃:3[R][E]} = SR→R̃[SOE{rM:3[R][E]}] (see (26.3.34(p.258) )
and (26.3.25(p.258) )). Hence we can apply SR→R̃ to Tom 29.2.1(p.288) , yielding the following Tom.

�� Tom 29.2.1 (A {rM̃:3[R][E]})
(a) Let ρ ≥ x

K̃ . Then we have rM̃:3[R][E] � rM̃:2[R][E].
(b) Let ρ ≤ x

K̃ .

1. We have odr 7→ Acceptt(ρ) ◃ Stop for τ ≥ t ≥ 0.

2. If ρ ≤ 0 (ρ ≥ 0), then we have ⃝⃝s △ (•dd△).
29.2.3 Conclusion 12 (Search-Enforced-Model 3)

The following three cases are possible:

C1. We have rM/M̃:3[R][E] � rM/M̃:2[R][E].
C2. We have odr 7→ Acceptτ (ρ) ◃ Stop if ρ ≥ 0 (i.e., ⃝⃝s △) and Accept0(ρ) ◃ Stop if ρ < 0 (i.e.,•dd△).
C1 See Tom 29.2.1(p.288) (a) and Tom 29.2.1(p.289) (a).

C2 See Tom 29.2.1(p.289) (b1,b2).
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Chapter 30

Conclusion of Part 4 (Recall-Model)

For details, see Conclusions 7 (p.267) , 8 (p.276) , 9 (p.281) , 10 (p.286) , 11 (p.288) , and 12 (p.289) .

30.1 Models 1/2

C1. Mental Conflict

a. For rModel 1 we have the c-reservation-price (see C6(p.267) and C5(p.276) ), which is calledmyopic property (see Def. 27.2.1(p.273) ).

b. For rModel 2 we have the t-reservation-price (see C5(p.281) and C3(p.286) ).

c. Now, it was already shown in [43,Sak1961] that rModel 1 (sE-model) has c-reservation-price, and after that any
variation of this model with the myopic property has not been posed and examined to date; for this reason, we have
continued to think as if this property is a general one for all recall models. However, we demonstrated above that this
property does not hold in rModel 2; in other words, it follows that this is not a property holding for all recall-models.

C2. Symmetry

a. For rModel 1, the symmetry collapses for both sA-model (see C1(p.267) ) and sE-model (see C1(p.276) ).

b. For rModel 2, the symmetry collapses for sA-model (see C1(p.281) ) but is inherited for sE-model (see C1(p.286) ).

C3. Optimal Initiating Time

For rModel 1 with a more complicated structure than no-recall-model, at the beginning we imagined that it would be rather
difficult to mathematically (analytically) find conditions for ⃝⃝s , } , and•dd . However, fortunately we succeeded in finding
the conditions: see C4(p.267) and C2(p.276) for ⃝⃝s , C3(p.276) for } , and C5(p.267) and C4(p.276) for•dd What should be noted here
is that also }N and•ddN (strictness) exist (see C3(p.276) and C4(p.276) ).

C4. Future study

In rModel 2 we did not succeed in finding the conditions for } and•dd . Mathematical analyses identifying these conditions
are left as a future study (see

�� ��F.S 3(p.279) ,
�� ��F.S 4(p.283) , and

�� ��F.S 5(p.283) ).

C5. Reduction

a. We have the mode-migration rM/M̃:1/2[R][A]+ # rM/M̃:1[R][E]+ (see C2(p.267) /C2(p.281) ).

b. We have the odr-reduction odr 7→ Accept0(y) ◃ Stop for sA-model 1/2 (see C3(p.267) /C4(p.281) ).

30.2 Models 3
C6. Reduction

a. We have the model-running-back rM/M̃:3[R][A/E] � rM/M̃:2[R][A/E] (see C1(p.288) and C1(p.289) ).

b. We have the odr-reduction odr 7→ Acceptτ (ρ) ◃ Stop (see C2(p.289) and C2(p.288) ).
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Chapter 31

Overall Conclusions of This Paper

31.1 List of Conclusions
Below we list a variety of conclusions presented in Chaps. 9(p.49) , 20(p.135) , 24(p.245) , and 30(p.291) .

C1. Conclusion of Part 1 (Prologue)

See Chap. 9(p.49) , which can be summarized as follows.

a. Two motives of the study This study was initiated by the two motives described Section 1.1(p.3) .

b. Decision theory as physics The Philosophical foundation of this paper rooted in the concept of “decision theory as
physics” (see Section 1.2(p.3) ), which supports this study.

c. Quadruple-asset-trading-problems We provided an overview of asset trading problems addressed in the paper, ref-
fered to as the quadruple-asset-trading-problems (see Section 1.3(p.4) ). Our key focus is not on analyzing each problem
independently but on clarifing the interconnectedness among these problems.

d. Mental conflict As illustrated in Examples 1.3.1(p.5) -1.3.4(p.6) , the normal (typical) mental conflict experienced by a
leading trader (see Remark 8.4.1(p.48) ) can be intuitively understood. However, the abnormal mental conflict (see Re-

mark 8.4.2(p.48) ) is more challenging to grasp immediately. Nontheless, it is indeed possible to understand it (see C??(p.??) ).

e. Discount factor A selling problem is framed as a profit maximization problem, while a buying problem is a cost
minimization problem. The managerial and economical implications of the discount factor for profit have been well-
documented in many standard textbooks [39, Ross]. In this paper, we offer a persuasive explanation of its implication
for cost (see A12(p.13) ).

f. Underlying function The underlying functions T , L, K, and L defined in Chap. 6(p.25) are essential for analyzing all the
models discussed in this paper. While the function T has been previousely defined in existing literature, the other three
functions are introduced here for the first time.

g. Time concepts Among the various novel concepts introduced in this paper, the following five time points are particularly
noteworthy; recognizing time tr, starting time ts, initiating time τ , stopping time t, and deadline 0 (see H1(p.7) and
Section 8.1(p.43) ).

h. Optimal initiating time The best of conceivable initiating times tr ≥ τ ≥ 0 is called the optimal initiating time (OIT),
represented by t∗τ (see (8.2.4(p.44) )). If t∗τ = ts, then it is denoted by ⃝⃝s . If ts > t∗τ > 0, then } . If t∗τ = 0, then •dd
(see Section 8.2.4.3(p.45) ).

i. Null-Time-Zone and Deadline-Engulfing The introduction of the optimal initiating time naturally leads to the concepts
of the null-time-zone (see Sections 8.2.4.5(p.46) ) and the deadline engulfing (see 8.2.4.6(p.46) ). These two concepts are novel
and were first introduced in this paper. It is no exaggeration to say that they represent the most significant discoveries
in this study. These results suggest the need for a comprehensive re-examination of conclusions in nearly all conventional
studies conducted by veriouse researchers up to this point.

C2. Conclusion of Part 2 (Integrated-Theory)

See Chap. 20(p.135) , which can be summarized as follows.

a. Symmetry and analogy In Chaps. 13(p.69) and 15(p.101) , we clarified the symmetrical relationship between an asset sell-
ing problem and an asset buying problem, whether using the R-mechanism or the P-mechanism. Additionally, in
Chaps. 14(p.89) and 16(p.111) we derived the analogous relationship between an asset trading problem with the R-mechanism
and an asset buying problem with the P-mechanism, regardless of whether it is a selling or buying problem.

b. Construction of integrated theory The integrated-theory (see Chap. 17(p.115) ) is constructed through a dual-directional
combination of the four symmetry theorems (Theorems 13.5.1(p.80) ,13.8.1(p.87) , 13.5.1(p.80) , and Theorems 15.5.2(p.107) ) and
four analogy theorems (Theorems 14.3.1(p.97) ,14.3.2(p.98) ,
16.2.1(p.112) ,and 16.2.2(p.112) ).
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c. Collapse of symmetry and analogy The integrated-theory is built on the premise that the price ξ, whether a reservation
price or a posted price, is defined on the total market F , i.e., on ξ ∈ (−∞,∞). This implies that the price ξ can
become negative, which is irrational from a practical standpoint. To avoid this irrationality, the price must be defined
on the positive market F+, i.e., ξ ∈ (0,∞). We refer to the restriction of (−∞,∞) to (0,∞) as the market restriction

(see Chap. 18(p.117) ). This restriction leads to the collapse of symmetry and analogy (see C2a2(p.245) and C3b1(p.245) ).

d. Diagonal Symmetry We demonstrated in Section 19.2.3(p.133) that the market restriction introduces the interesting
event where “a selling problem on F− can always become symmetrical to a buying problem on F+”, termed diagonal
symmetry (see Chap. 19(p.129) ). This becomes a useful tool for the analysi of models.

C3. Cconclusion of Part 3 (No-Recall-Model)

See Chap. 24(p.245) , which can be summarized as follows.

a. Mental Conflict Here again refer to C1(p.245) , which can be rewritten as follows. It is only for Model 2 with β < 1 and
s > 0 that we have the abnormal mental conflict; in other words, for all the other cases we have the normal mental
conflict.

b. Symmetry For details, see C2(p.245) ; On F+, whether Model 1 or Model 2, the symmetry is inherited if β = 1 and s = 0,

or else it may collapse (see C2(p.245) ).

c. Analogy For details, see C3(p.245) ; On F+, for Model 1, the analogy is inherited if β = 1 and s = 0, or else it is may
collapses, and for Model 1, whether “β = 1 and s = 0” or “if β < 1 or s > 0”, the analogy may collapse.

d. Optimal initiating time For details, see C4(p.245) ; What is remarkable here is that•dd ∥ (deadline-engulfing) occurs even in

the simplest case of “β = 1 and s = 0” (see C4a2(p.245) ).

e. Null-time-zone and deadline-engulfing For details, see C5(p.246) ; } and •dd causing the null-time-zone occur at 55.6%

(see C5A(p.246) ) and•dd causing the dead-engulfing occur at 33.4% (see C5B(p.246) ).

f. Diagonal Symmetry For details, see C6(p.246) .

g. C S (Conduct Skip) For details, see C7(p.246) ; It is only for M:2[R][A]+ and M:2[P][A]+ that this rare event becomes

possible. For details, see C7(p.246)

h. Reduction For details, see C9(p.246) .

C4. Conclusion of Part 4 (Recall-Model)

See Chap. 30(p.291) , which can be summarized as follows.

a. Monotonicity of opt-R/P-price For details, See C1(p.291) ; It is only for rModel 1 that we have c-reservation-price

(see C1a(p.291) ). This property is called the myopic property (see Def. 27.2.1(p.273) and C1c(p.291) ).

b. Symmetry For details, See C2(p.291) ; For rModel 1, the symmetry collapses for both sA-model and sE-model, and for
rModel 2, it collapses for sA-model but is inherited for sE-model.

c. Optimal initiating time For details, See C3(p.291) ; It is only for rM:1[R][E] (see Tom 27.2.1(p.271) ) that the analytical discus-

sions for ⃝⃝s , } , and•dd become possible (see C3(p.291) ). Discussions for other models are all left for future studies.

d. Reduction For details, see C5(p.291) and C6(p.291) ,

e. Future studies While mathematical analyses identifying the conditions for } and •dd are possible for Model 1/2

(see C3(p.291) ), it is impossible for Model 3, which is left for future studies (see C4(p.291) ).

31.2 General Overview of Conclusions
Distilling the essence from all conclusions listed in Section 31.1(p.293) leads us to the following general overview, which constitute
the bedrock of this entire paper.

C5. Philosycal Backgroung

The study in this paper was proposed by Prof. Shizuo Senju on March 31, 1966, and a while later I (Ikuta) was led to the
following two naive motivations (see Section 1.1(p.3) ).

Motive 1: Is a buying problem always symmetrical to a selling problem ?
Motive 2: Is it possible for a general theory integrating quadruple-asset-trading-problems to exist?

Enlightened by the thought background of the professor who is “a doctor of engineering”, a few years later I (Ikuta, the first
author of this paper) obtained PhD (Eng.) under his research guidance. Before long, I found myself down the middle of
the philosophy of “decision theory as physics” (see Section 1.2(p.3) ). On a different note, more than 10 years later, Mr.Kang
(the second author) who was a student in my seminar, also obtained PhD (Mgt. Sci.&Eng.) under my research guidance.
After that, he actively worked for several years as a business consultant. During that time, he matured into a person with
a sense of realism while retaining a scholarly perspective. However, his intellectual curiosity about the underlying structure
of various questions in real-world problems eventually led him back into the academic world. Many discussions with him
were very valuable for me, which exerted considerable influence on the writing of this paper.
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C6. Time Concepts

Before long, we (Ikuta and Kang), as natural scientists, were led, as an inevitable result, to the concepts of the four time
points: recognizing time, starting time, initiating time, and deadline (see H1(p.7) and Section 8.1(p.43) ).∗

C7. Null-Time-Zone and Deadline-Engulfing

Now, it is natural that the concept of the “initiating time” inevitably yields the concept of “optimal initiating time”
(see (8.2.4(p.44) )). Then, it can be immediately recognized that there exists the three types of optimal initiating time; ⃝⃝s
(starting time), } (nondegenerate time), and •dd (deadline) (see Section 8.2.4.3(p.45) ), and we were then led to discover
two unexpected phenomena; null-time-zone (see Section 8.2.4.5(p.46) ) and deadline-engulfing (see Section 8.2.4.6(p.46) and
Alice 3(p.46) ). These two phenomena were the most significant discoveries in this entire study , as they necessitate a
comprehensive re-examination of almost all results obtained thus far in conventional researches, which had not introduced
the concept of initiating time. As seen from Table 24.1.1(p.246) , the two optimal initiating times, } and•dd , that cause the
singular properties, null-time-zone and deadline-engulfing, can occur at notable percentages of 22.2% and 33.4% respectively.
In addition, the strictly optimal initiating times, }N and•ddN are possible at the percentages of 2.6% and 3.2%. What is

furthermore striking is that these occurrences are possible even in the simplest case of β = 0 and s = 0 (see C5D(p.246) ).

C8. Integrated-Theory

We have previousely assumed, without strong evidence, that the existence of the symmetrical relationship between a selling
problem and a buying problem is intuitively predictable, and indeed we succeeded in theoretically proving it. As a result,
we successfully derived two symmetry theorems, Theorem 13.5.1(p.80) and Theorem 13.8.1(p.87) , which are connected with an
operation defined by (13.5.29(p.77) ). On the other hand, at earlier stage of this study, we did not anticipate the existence
of a relationship between a trading problem with a R-mechanism and a trading problem with a P-mechanism. However,
through countless arrangements and rearrangements, similarly to solving a jigsaw puzzle, we noticed similarities between
the two problems. Constantly, we developed two lemmas, Lemmas 11.1.1(p.55) and 14.2.1(p.93) , which are connected with an
operation defined by (14.2.1(p.93) ). This led to the derivation of two analogy theorems, Theorems 14.3.1(p.97) and 14.3.2(p.98) ,
combining the above two problems. The integrated-theory that we aimed to construct in this paper is represented by a
quadrangular structure bi-directionally connected by these four theorems (see Figure 17.1.1(p.115) ). This accomplished the
aim of the objective in Motive 2(p.3) .

C9. Collapse of Symmetry

At that time, we were grappling with the conflict between mathematical thinking and physical thinking; “A price ξ should
be defined whether on (−∞,∞) or on (0,∞)”. It is clear that defining the price ξ on (−∞,∞) makes its mathematical
treatment easier than on (0,∞); however, it should be defined on (0,∞) in the usual transaction market of this actual world.
Then, we brought solutions to this problem by formulating the methodology of transforming results obtained on (−∞,∞)
into ones on (0,∞)”, i.e., the market restriction (see Chap. 18(p.117) ). Now, since the construction of the integrated-theory is
based on the premise that the price ξ is defined on the total market F = (−∞,∞), restricting the market to the positive
domain F+ = (0,∞) naturally leads to the collapses of symmetry and analogy; indeed, we demonstrated in Parts 3(p.137)

that both collapses occur. This achieved the aim of the objective in Motive 1(p.3) .

C10. Mental Conflict It will be the first in this paper that the normal mental conflict and the abnormal mental conflict are
clearly defined and discussed. Although the former would have been implicitly understooded, there would be no researchers
so far who noticed the existence of the latter. In this sense, this existence can be said to be one of the most significant
discoveries.

C11. Reduction Refer to C3h(p.294) for no-recall-model and to C4d(p.294) for recall-model.

C12. Others

a. Finiteness of the plannning horizon Here note that the existence of the deadline implies that decision problems dealt
with in this paper are all process with the finite planning horizon (see H1d(p.7) ).

b. Recall model Although the above conclusions, C5(p.294) -C12(p.295) , are all based on asset trading problems with no recall,
the same holds also for asset trading problems with recall except for discussions on trading problems with P-mechanism

(see F2(p.249) ) and on conditions for ⃝⃝s , } , and•dd (see C4(p.291) ).

This study ends with the above general overview today, September 16, 2024.

∗At this stage the term “initiating time” was not yet defined.
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Chapter 32

Future Study

32.1 Future Subjects

F1. See
�� ��F.S 1(p.24)

In Capter 5(p.23) , we presented 9 variations of the basic models of asset trading problems. Since there are three models
(Models 1/2/3 (see (B(p.15) ))) exist for each variation, there are a total 27 = 9×3 variations. Furthermore, since each variation
has 2 types of models (selling model and buying model (see (A(p.15) ))), there are 54 = 27×2 variations in total. Moreover, since
each variation has 2 types of models (search-Enforced-model and search-Allowed-model (see (D(p.15) ))), there are 108 = 54×2
variations. In addition, since each variation has the 2 models (R-mechanism-model and P-mechanism-model (see (C(p.15) ))),
there are 216 = 108× 2 variations overall. Finally, discussions involving the optimal initiating time (see Section 8.2.4(p.44) )
are added, and the following mixed variations can be independently proposed:

◦ Model with several search areas and limited search budget

◦ Model with uncertain deadline and mechanism switching

◦ Model with limited search budget, uncertain deadline, and mechanism switching

◦ Model with several search areas, limited search budget, uncertain deadline, and mechanism switching

◦ Model with recall, several search areas, limited search budget, uncertain deadline, and mechanism switching

◦ Model with uncertain recall, uncertain deadline, and mechanism switching
...

From all the above, it is clear that the number of variations to be addressed is astronomical. In dealing with the vast
amount of these variations, the integrated-theory will become a powerful tools; analyzing them without this theory would
be nearly impossiblet.

F2. See
�� ��F.S 2(p.249)

In Part 4(p.247) we applied the integrated theory to the recall-model with R-mechanism, where it is sufficient to memorize
only the best of once-rejected prices. However, in the recall-model with P-mechanism, we face the difficulty of determining
which of the once-rejected prices should be memorized. This problem remains one of the most perplexing unsolved issues.

F3. See
�� ��F.S 3(p.279) ,

�� ��F.S 4(p.283) , and
�� ��F.S 5(p.283)

In the recall-model, under what conditions do each of ⃝⃝s , } , and •dd occur ? This is one of the most challenging study
subjects remaining in this paper. However, at present, we unfortunately do not have any theoretical (mathematical)
methodologies for addressing this problem. It remains a thorny issue that affects all models proposed in F1 above.

F4. Numerical Experiment

In general, numerical calculation involves computing a given expression by substituting numerical values for constants,
parameters, variables, etc. In this paper, we perform numerical calculations from two distinct perspectives. One is to
reconfirm results that have already been proven, and the other is to exemplify expectations that are difficult to prove
theoretically and/or mathematically. We refer to the former as the numerical example and the latter as the numerical
experiment, i.e.,

numerical calculation =

{
numerical example,

numerical experiment.
(32.1.1)

Throughout the paper we have:

Numerical Example’s 1(p.126) , 2(p.126) , 3(p.127) , 4(p.153) , 5(p.198) , and 6(p.233)

Numerical Experiment 1(p.325) .

When confronting problems that are analytically difficult to address, such as those in F1(p.297) -F3(p.297) , the only methodology
available to us will presumably be numerical experiments.
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A1 Direct Proof of Underlying Functions of Type R
In this appendix we provide the direct proofs for all lemmas in Section 13.6(p.81) in which they were proven by using Theo-
rem 13.5.1(p.80) (symmetry theorem).

A1.1 A {T̃R }
For convenience of reference, below let us copy Lemma 13.6.1(p.81) .

Lemma A1.1 (A {T̃R }) For any F ∈ F :

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) + x is nondecreasing on (−∞,∞).

(e) T̃ (x) + x strictly increasing on (−∞, b].

(f) T̃ (x) = µ− x on [b,∞) and T̃ (x) < µ− x on (−∞, b).

(g) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(h) T̃ (x) ≤ min{0, µ− x} on x ∈ (−∞,∞).

(i) T̃ (0) = 0 if a > 0 and T̃ (0) = µ if b < 0.

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x > y and b > y, then T̃ (x) + x > T̃ (y) + y.

(m) λβT̃ (λβµ+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

(n) b > µ.

• Proof First, for any x and y let us prove the following two inequalities:

−(x− y)F (y) ≥ T̃ (x)− T̃ (y) ≥ −(x− y)F (x) · · · ((1)),

(x− y)(1− F (y)) ≥ T̃ (x) + x− T̃ (y)− y ≥ (x− y)(1− F (x)) · · · ((2)).

Then, let T̃ (x, y)
def
= E[(ξ − x)I(ξ < y)] for any x and y.‡ Since 1 ≥ I(ξ < y) ≥ 0 and since min{ξ − x, 0} ≤ 0 and

min{ξ − x, 0} ≤ ξ − x, we have min{ξ − x, 0} ≤ min{ξ − x, 0}I(ξ < y) ≤ (ξ − x)I(ξ < y), hence from (6.1.11(p.25) ) we get
T̃ (x) ≤ E[(ξ − x)I(ξ < y)] = T̃ (x, y). Accordingly, for any x and y we have

T̃ (x)− T̃ (y) ≤ T̃ (x, y)− T̃ (y) = E[(ξ − x)I(ξ < y)]− E[(ξ − y)I(ξ < y)] = −(x− y)E[I(ξ < y)].

Since I(ξ ≥ y) + I(ξ < y) = 1, we have T̃ (x)− T̃ (y) ≤ −(x− y)(E[1− I(ξ ≥ y)]) = −(x− y)(1− E[I(ξ ≥ y)]). Then, since

E[I(ξ ≥ y)] =
∫∞
−∞ I(ξ ≥ y)f(ξ)dξ =

∫∞
y

1× f(ξ)dξ =
∫∞
y

f(ξ)dξ = Pr{ξ > y} = 1− Pr{ξ ≤ y} = 1− F (y),

‡If a given statement S is true, then I(S) = 1, or else I(S) = 0.



299

we have T̃ (x)− T̃ (y) ≤ −(x− y)F (y), hence the far left inequality of (1) holds. Multiplying both sides of the inequality by −1
leads to −T̃ (x) + T̃ (y) ≥ (x− y)F (y) or equivalently T̃ (y)− T̃ (x) ≥ −(y − x)F (y). Then, interchanging the notations x and y
yields T̃ (x)− T̃ (y) ≥ −(x− y)F (x), hence the far right inequality of (1) holds. (2) is immediate from adding x− y to (1) . Let
us note here that T̃ (x) defined by (6.1.11(p.25) ) can be rewritten as

T̃ (x) = E[min{ξ − x, 0}I(b ≥ ξ)] + E[min{ξ − x, 0}I(ξ > b)]. · · · ((3))

= E[min{ξ − x, 0}I(ξ ≥ a)] + E[min{ξ − x, 0}I(a > ξ)]. · · · ((4)).

(a,b) Immediate from the fact that min{ξ − x, 0} is continuous and nonincreasing in x ∈ (−∞,∞) for any given ξ.

(c) Let x > y > a. Then, since −(x − y) < 0 and F (y) > 0 due to (2.2.1 (2,3) (p.12) ), we have −(x − y)F (y) < 0, hence
0 > T̃ (x)− T̃ (y) from (1) , i.e., T̃ (y) > T̃ (x), so T̃ (x) is strictly decreasing on (a,∞) · · · ((5)). Suppose T̃ (a) = T̃ (x) for any x > a,

hence x − a > 0. Then, for any sufficiently small ε > 0 such that x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence
T̃ (a) = T̃ (x) < T̃ (a+ ε) ≤ T̃ (a) due to (5) and (b), which is a contradiction. Thus it must be that T̃ (a) ̸= T̃ (x) for any x > a,
i.e., T̃ (a) > T̃ (x) or T̃ (a) < T̃ (x) for any x > a. Since the latter is impossible due to (b), it follows that T̃ (a) > T̃ (x) for any
x > a. From this and (5) it eventually follows that T̃ (x) is strictly decreasing on [a,∞) instead of (a,∞).

(d) Evident from the fact that T̃ (x) + x = E[min{ξ, x}] from (6.1.11(p.25) ) and that min{ξ, x} is nondecreasing in x for any
ξ.

(e) Let b > x > y, hence F (x) < 1 due to (2.2.1 (1,2) (p.12) ). Then, since (x− y)(1− F (x)) > 0, we have T̃ (x) + x > T̃ (y) + y
from (2) , i.e., T̃ (x) + x is strictly increasing on (−∞, b) · · · ((6)). Suppose T̃ (b) + b = T̃ (x) + x for any x < b. Then, for any

sufficiently small ε > 0 such that b− x > ε we have x < x+ ε < b, hence T̃ (b) + b = T̃ (x) + x < T̃ (x+ ε) + x+ ε ≤ T̃ (b) + b due
to (6) and (d), which is a contradiction. Thus, T̃ (x) + x ̸= T̃ (b) + b for x < b, i.e., T̃ (x) + x > T̃ (b) + b or T̃ (x) + x < T̃ (b) + b
for x < b. Since the former is impossible due to (d), it must be that T̃ (x) + x < T̃ (b) + b for x < b. From this and (6) it follows
that T̃ (x) + x is strictly increasing on (−∞, b].

(f) Let x ≥ b. If b ≥ ξ, then x ≥ ξ, hence min{ξ − x, 0} = ξ − x, and if ξ > b, then f(ξ) = 0 due to (2.2.3 (3) (p.13) ). Thus,
from (3) we have T̃ (x) = E[(ξ − x)I(b ≥ ξ)] + 0 = E[(ξ − x)I(b ≥ ξ)] + E[(ξ − x)I(ξ > b)] = E[(ξ − x)(I(b ≥ ξ) + I(ξ >
b))] = E[ξ − x] = µ − x,† hence the former half is true. Then, since T̃ (b) = µ − b or equivalently T̃ (b) + b = µ, if b > x, from
(e) we have T̃ (x) + x < T̃ (b) + b = µ, hence T̃ (x) < µ− x, so the latter half is true.

(g) Let a ≥ x. If ξ ≥ a, then ξ ≥ x, hence min{ξ − x, 0} = 0 and if a > ξ, then f(ξ) = 0 due to (2.2.3 (1) (p.13) ), hence

E[min{ξ − x, 0}I(a > ξ)] = 0. Accordingly, we have T̃ (x) = 0 from (4) , hence the latter half is true. Let x > a. Then, since
T̃ (x) < T̃ (a) from (c) and since T̃ (a) = 0 from the fact stated just above, we have T̃ (x) < 0 for x > a, hence the former half is
true.

(h) From (f) we have T̃ (x) ≤ µ−x for any x and from (g) we have T̃ (x) ≤ 0 for any x, thus it follows that T̃ (x) ≤ min{0, µ−x}
for any x.

(i) From (6.1.11(p.25) ) we have T̃ (0) = E[min{ξ, 0}] = E[min{ξ, 0}I(a ≤ ξ ≤ b)]. If a > 0, then 0 ≤ ξ, hence min{ξ, 0} = 0,
so T̃ (0) = E[0] = 0, and if b < 0, then ξ < 0, hence min{ξ, 0} = ξ, so T̃ (0) = E[ξ] = µ.

(j) If β = 1, then βT̃ (x) + x = T̃ (x) + x, hence the assertion is true from (d).

(k) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (d).

(l) Let x > y and b > y. If x ≥ b, then T̃ (x) + x ≥ T̃ (b) + b > T̃ (y) + y due to (d,e), and if b > x, then b > x > y, hence
T̃ (x) + x > T̃ (y) + y due to (e).

(m) From (6.1.11(p.25) ) we have

λβT̃ (λβµ+ s) + s = λβE[min{ξ − λβµ− s, 0}] + s

= E[min{λβξ − (λβ)2µ− λβs, 0}] + s

= E[min{λβξ − (λβ)2µ+ (1− λβ)s, s}],

which is nondecreasing in s and strictly increasing in s if λβ < 1.

(n) Evident from (2.2.2(p.12) ).

A1.2 A {L̃R }, A {K̃R }, A {L̃R }, and κ̃R

From (6.1.13(p.25) ) and (6.1.14(p.25) ) and from Lemma A1.1(p.298) (f) we obtain, noting (11.2.1(p.56) ),

L̃ (x)

{
= λβµ+ s− λβx on [b,−∞) · · · (1),

< λβµ+ s− λβx on (−∞, b) · · · (2),
(A 1.1)

K̃ (x)

{
= λβµ+ s− δx on [b,∞) · · · (1),

< λβµ+ s− δx on (−∞, b) · · · (2).
(A 1.2)

†I(b ≥ ξ) + I(ξ > b) = 1.
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In addition, from (6.1.14(p.25) ) and Lemma A1.1(p.298) (g) we have

K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 1.3)

hence we obtain
K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 1.4)

Then, from (A1.2 (1) (p.299) ) and (A 1.3 (2) (p.300) ) we get

K̃ (x) + x =

{
λβµ+ s+ (1− λ)βx on [b,∞) · · · (1),

βx+ s on (−∞, a] · · · (2).
(A 1.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (6.1.14(p.25) ) and (6.1.13(p.25) ), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 1.6)

Lemma A1.2 (A {L̃R })
(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβµ+ s)/λβ ≥ (<) b ⇔ x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b.

• Proof (a-c) Immediate from (6.1.13(p.25) ) and Lemma A1.1(p.298) (a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A1.1(p.298) (g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for
x > a, hence x

L̃ = a by the definition of x
L̃ (see Section 6.2(p.27) (b)), so x

L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by
contraposition. In addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.

(e) Let s > 0.

(e1) From (A1.1 (1) (p.299) ) and from λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such that x ≥ b. In
addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A1.1(p.298) (g). Hence, from (c) it follows that x

L̃ uniquely exists.
The inequality x

L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβµ + s)/λβ ≥ (<) b, from (A1.1(p.299) ) we have L̃ ((λβµ + s)/λβ) = (<) λβµ + s − λβ(λβµ + s)/λβ = 0, hence
x
L̃ = (<) (λβµ+ s)/λβ ≥ (<) b from (e1).

Corollary A 1.1 (A {L̃R})
(a) x

L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.
(b) x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof (a) “⇒” is immediate from Lemma A1.2(p.300) (d,e1). “⇐” is evident by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 or equivalently x
L̃ = x ⇒ L̃ (x) = 0, hence x

L̃ = x ⇒
L̃ (x) ≤ 0. Accordingly, it follows that x

L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A1.3 (A {K̃R })
(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K̃ (x) + x is strictly increasing on (−∞, b].

(h) If x > y and b > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.
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2. (λβµ+ s)/δ ≥ (<) b ⇔ x
K̃ = (<) (λβµ+ s)/δ.

3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

• Proof (a-c) Immediate from (6.1.14(p.25) ) and Lemma A1.1(p.298) (a-c).

(d) Immediate from (6.1.14(p.25) ) and Lemma A1.1(p.298) (b).

(e) From (6.1.14(p.25) ) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion holds from Lemma A1.1(p.298) (d).

(f) Obvious from (1) and Lemma A1.1(p.298) (d).

(g) Clearly from (1) and Lemma A1.1(p.298) (e).

(h) Let x > y and b > y. If x ≥ b, then K̃ (x) + x ≥ K̃ (b) + b > K̃ (y) + y due to (e,g), and if b > x, then b > x > y, hence
K̃ (x) + x > K̃ (y) + y due to (g). Thus, whether x ≥ b or b > x, we have K̃ (x) + x > K̃ (y) + y

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (6.1.14(p.25) ), from Lemma A1.1(p.298) (g) we have K̃ (x) = 0 for
a ≥ x and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (see Section 6.2(p.27) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0.
The inverse holds by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (A 1.3 (2) (p.300) ). If β < 1, then K̃ (x) > 0 for any sufficiently small x < 0 with x ≥ a and if s > 0, then, whether
β < 1 or β = 1, we have K̃ (x) > 0 for any sufficiently small x < 0 with x ≤ a. Hence, whether β < 1 or s > 0, we have
K̃ (x) > 0 for any sufficiently small x < 0 with x ≤ a.

• Next note (A 1.2 (1) (p.299) ). Then, since δ > 0 from (11.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) < 0 for any
sufficiently large x > 0 with x ≥ b.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution x
K̃ is unique from (d).

◦ Let s > 0. If β < 1, the solution x
K̃ is unique for the reason just above. If β = 1, we have K̃ (a) = s > 0 from (A1.3 (2) (p.300) ),

hence x
K̃ > a due to (c), so K̃ (x) is strictly decreasing on the neighbourhood of x = x

K̃ due to (c), thus the solution x
K̃

is unique. Therefore, whether β < 1 or β = 1, it follows that the solution x
K̃ is unique.

◦ Hence, whether β < 1 or s > 0, it follows that the solution x
K̃ is unique.

From all the above, whether β < 1 or s > 0, it eventually follows that the solution x
K̃ uniquely exists.

(j2) Let (λβµ + s)/δ ≥ (<) b. Then, from (A1.2 (1(2)) (p.299) ) we have K̃ ((λβµ + s)/δ) = (<) λβµ + s − δ(λβµ + s)/δ = 0,
hence x

K̃ = (<) (λβµ+ s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0 from (6.1.17(p.25) ), hence x
K̃ < (= (>)) 0 from (j1).

Corollary A 1.2 (A {K̃R})

(a) x
K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.

(b) x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 due to Lemma A1.3(p.300) (i,j1). The inverse holds by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 or equivalently x
K̃ = x ⇒ K̃ (x) = 0, hence x

K̃ = x ⇒
K̃ (x) ≤ 0. Accordingly, it follows that x

K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Lemma A1.4 (A {L̃R /K̃R })

(a) Let β = 1 and s = 0. Then x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (>)) 0.

• Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A1.2(p.300) (d) and x

K̃ = a from
Lemma A1.3(p.300) (i), hence x

L̃ = x
K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A1.6 (1) (p.300) ), hence x
K̃ = x

L̃ from Lemma A1.3(p.300) (j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A1.2(p.300) (d).

◦ If a < 0, then x
L̃ < 0, hence K̃ ( xL̃ ) > 0 from (A1.6 (1) (p.300) ), hence x

L̃ < x
K̃ from Lemma A1.3(p.300) (j1), and if a = (>) 0,

then x
L̃ = (>) 0, hence K̃ ( xL ) = (<) 0 from (A1.6 (1) (p.300) ), so x

L̃ = (>) x
K̃ from

Lemma A1.3(p.300) (j1). Accordingly, we have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first
relation “⇔ ” holds.
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◦ If a < 0, from (6.1.17(p.25) ) we have K̃ (0) = λβT̃ (0) < 0 due to Lemma A1.1(p.298) (g), hence x
K̃ < 0 · · · ((2)) from Lemma A1.3(p.300) (j1),

and if a = (>) 0, from (6.1.17(p.25) ) we have K̃ (0) = λβT̃ (0) = 0 due to Lemma A1.1(p.298) (g), hence x
K̃ = 0 from Lemma A1.3(p.300) (j1)

or equivalently x
K̃ = (=) 0. Accordingly, we have the second relation “⇒ ”.

(d) Let β < 1 and s > 0. Now, since κ̃ = K̃ (0) from (6.1.17(p.25) ), if κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0, thus
x
K̃ < (= (>)) 0 · · · ((3)) from Lemma A1.3(p.300) (j1). Accordingly L̃ ( xK̃ ) < (= (>)) 0 from (A1.6 (2) (p.300) ), hence x

L̃ < (= (>) x
K̃

from Lemma A1.2(p.300) (e1). Thus “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. The last “⇒” is immediate
from (3) .

Lemma A1.5 (A {L̃R })

(a) L̃ (s) is nondecreasing in s and strictly increasing in s if λβ < 1.

(b) Let λβµ ≤ a.

1. x
L̃ ≥ λβµ+ s.

2. Let s > 0 and λβ < 1. Then x
L̃ > λβµ+ s.

(c) Let λβµ > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβµ+ s.

• Proof (a) From (6.1.15(p.25) ) and (6.1.13(p.25) ) we have L̃ (s) = L̃ (λβµ+ s) = λβT̃ (λβµ+ s) + s · · · ((1)), hence the assertion

holds from Lemma A1.1(p.298) (m).

(b) Let λβµ ≤ a. Then, from (1) we have L̃ (0) = λβT̃ (λβµ) = 0 · · · ((2)) due to Lemma A1.1(p.298) (g).

(b1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (2) or equivalently L̃ (λβµ + s) ≥ 0 due to (1) , hence
x
L̃ ≥ λβµ+ s from Corollary A 1.1(p.300) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L̃ (s) > L̃ (0) = 0 · · · ((3)) due to (2) or equivalently L̃ (λβµ + s) > 0,

hence x
L̃ > λβµ+ s from Lemma A1.2(p.300) (e1).

(c) Let λβµ > a. From (1) we have L̃ (0) = λβT̃ (λβµ) < 0 due to Lemma A1.1(p.298) (g). Noting (A 1.1 (1) (p.299) ), for any
sufficiently large s > 0 such that λβµ + s ≥ b and λβµ + s > 0 we have L̃ (s) = L̃ (λβµ + s) = λβµ + s − λβ(λβµ + s) =
(1− λβ)(λβµ+ s) ≥ 0. Accordingly, due to (a) it follows that there exists the solution sL̃ > 0 of L̃ (s) = 0. Then L̃ (s) < 0 for
s < sL̃ and L̃ (s) ≥ 0 for s ≥ sL̃ or equivalently L̃ (λβµ + s) < 0 for s < sL̃ and L̃ (λβµ + s) ≥ 0 for s ≥ sL̃ . Hence, from
Corollary A 1.1(p.300) (a) we get x

L̃ < λβµ+ s for s < sL̃ and x
L̃ ≥ λβµ+ s for s ≥ sL̃ .

Lemma A1.6 (κ̃R) We have:

(a) κ̃ = s if a > 0 and κ̃ = λβµ+ s if b < 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof (a) Immediate from (6.1.16(p.25) ) and Lemma A1.1(p.298) (i).

(b) Let β < 1 or s > 0. Then, if κ̃ < (= (>)) 0, we have K̃ (0) < (= (>)) 0 from (6.1.17(p.25) ), hence x
K̃ < (= (>)) 0 from

Lemma A1.3(p.300) (j3). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A2 Direct Proof of Underlying Functions of Type P
A2.1 A {TP }
For convenience of reference, below let us copy Lemma 14.2.1(p.93) .

Lemma A2.1 (A {TP }) For any F ∈ F we have:

(a) T (x) is continuous on (−∞,∞).

(b) T (x) is nonincreasing on (−∞,∞).

(c) T (x) is strictly decreasing on (−∞, b].

(d) T (x) + x is nondecreasing on (−∞,∞).

(e) T (x) + x is strictly increasing on [a⋆,∞).

(f) T (x) = a− x on (−∞, a⋆] and T (x) > a− x on (a⋆,∞).

(g) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(h) T (x) ≥ max{0, a− x} on (−∞,∞).

(i) T (0) = a if a⋆ > 0 and T (0) = 0 if b < 0.

(j) βT (x) + x is nondecreasing on (−∞,∞) if β = 1.

(k) βT (x) + x is strictly increasing on (−∞,∞) if β < 1.

(l) If x < y and a⋆ < y, then T (x) + x < T (y) + y.

(m) λβT (λβa− s)− s is nonincreasing in s and strictly decreasing in s if λβ < 1.

(n) a⋆ < a.
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A2.2 A {LP }, A {KP }, A {LP }, and κP

Noting Lemma A2.1(p.302) (f), from (6.1.20(p.26) ) and (6.1.21(p.26) ) we obtain

L (x)

{
= λβa− s− λβx on (−∞, a⋆] · · · (1),
> λβa− s− λβx on (a⋆,∞) · · · (2),

(A 2.1)

K (x)

{
= λβa− s− δx on (−∞, a⋆] · · · (1),
> λβa− s− δx on (a⋆,∞) · · · (2).

(A 2.2)

In addition, from (6.1.21(p.26) ) and Lemma A2.1(p.302) (g) we have

K (x)

{
> −(1− β)x− s on (−∞, b) · · · (1),
= −(1− β)x− s on [b,∞) · · · (2),

(A 2.3)

from which we obtain
K (x) + x ≥ βx− s on (−∞,∞). (A 2.4)

Then, from (A2.2 (1) (p.303) ) and (A 2.3 (2) (p.303) ) we get

K (x) + x =

{
λβa− s+ (1− λ)βx on (−∞, a⋆] · · · (1),
βx− s on [b,∞) · · · (2).

(A 2.5)

Since K (x) = L (x)− (1− β)x from (6.1.21(p.26) ) and (6.1.20(p.26) ), if xL and xK exist, then

K (xL) = −(1− β) xL · · · (1), L (xK) = (1− β)xK · · · (2). (A 2.6)

Lemma A2.2 (A {LP })
(a) L (x) is continuous on (−∞,∞).

(b) L (x) is nonincreasing on (−∞,∞).

(c) L (x) is strictly decreasing on (−∞, b].

(d) Let s = 0. Then xL = b where xL > (≤) x ⇔ L (x) > (=) 0 ⇒ L (x) > (≤) 0.
(e) Let s > 0.

1. xL uniquely exists with xL < b where xL > (= (<)) x ⇔ L (x) > (= (<)) 0.

2. (λβa− s)/λβ ≤ (>) a⋆ ⇔ xL = (>) (λβa− s)/λβ > (≤) a⋆.

• Proof (a-c) Immediate from (6.1.20(p.26) ) and Lemma A2.1(p.302) (a-c).

(d) Let s = 0. Then, since L (x) = λβT (x), from Lemma A2.1(p.302) (g) we have L (x) > 0 for x < b and L (x) = 0 for
b ≤ x, hence xL = b by the definition of xL (see Section 6.2(p.27) (a)), thus xL > (≤) x ⇒ L (x) > (=) 0. The inverse is true by
contraposition. In addition, since L (x) = 0 ⇒ L (x) ≤ 0, we have L (x) > (=) 0 ⇒ L (x) > (≤) 0.

(e) Let s > 0.

(e1) From (A2.1 (1) (p.303) ) and from λ > 0 and β > 0 we have L (x) > 0 for a sufficiently small x < 0 such that x ≤ a⋆. In
addition, we have L (b) = λβT (b)− s = −s < 0 from Lemma A2.1(p.302) (g). Hence, from (a,c) it follows that xL uniquely exists.
The inequality xL < b is immediate from L (b) < 0. The latter half is evident.

(e2) If (λβa − s)/λβ ≤ (>) a⋆, from (A2.1 (1(2)) (p.303) ) we have L ((λβa − s)/λβ) = (>) λβa − s − λβ(λβa − s)/λβ = 0,
hence xL = (>) (λβa− s)/λβ from (e1).

Corollary A 2.1 (A {LP})
(a) xL > (≤) x ⇔ L (x) > (≤) 0.
(b) xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

• Proof (a) “⇒” is immediate from Lemma A2.2(p.303) (d,e2). “⇐” is evident by contraposition.

(b) Since xL > (≤) x ⇒ L (x) > (≤) 0 due to (a) and since L (x) > (≤) 0 ⇒ L (x) ≥ (≤) 0, we have xL > (≤) x ⇒
L (x) ≥ (≤) 0. In addition, if xL = x, then L (x) = L ( xL ) = 0 or equivalently xL = x ⇒ L (x) = 0, hence xL = x ⇒
L (x) ≥ 0. Accordingly, it follows that xL ≥ (≤) x ⇒ L (x) ≥ (≤) 0.

Lemma A2.3 (A {KP })
(a) K (x) is continuous on (−∞,∞).

(b) K (x) is nonincreasing on (−∞,∞).

(c) K (x) is strictly decreasing on (−∞, b].

(d) K (x) is strictly decreasing on (−∞,∞) if β < 1.

(e) K (x) + x is nondecreasing on (−∞,∞).
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(f) K (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on [a⋆,∞).

(h) If x < y and a⋆ < y, then K(x) + x < K(y) + y.

(i) Let β = 1 and s = 0. Then xK = b where xK > (≤) x⇔ K (x) > (=) 0 ⇒ K (x) > (≤) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists xK where xK > (= (<)) x⇔ K (x) > (= (<)) 0.

2. (λβa− s)/δ ≤ (>) a⋆ ⇔ xK = (>) (λβa− s)/δ.

3. Let κ > (= (<)) 0. Then xK > (= (<)) 0.

• Proof (a-c) Immediate from (6.1.21(p.26) ) and Lemma A2.1(p.302) (a-c).

(d) Immediate from (6.1.21(p.26) ) and Lemma A2.1(p.302) (b).

(e) From (6.1.21(p.26) ) we have K (x)+x = λβT (x)+βx− s = λβ(T (x)+x)+ (1−λ)βx− s · · · ((1)), hence the assertion holds

from Lemma A2.1(p.302) (d).

(f) Obvious from (1) and Lemma A2.1(p.302) (d).

(g) Clearly from (1) and Lemma A2.1(p.302) (e).

(h) Let x < y and a⋆ < y. If x ≤ a⋆, then K(x) + x ≤ K(a⋆) + a⋆ < K(y) + y due to (e,g). If a⋆ < x, then a⋆ < x < y,
hence K(x) + x < K(y) + y due to (g). Thus, whether x ≤ a⋆ or a⋆ < x, we have K(x) + x < K(y) + y

(i) Let β = 1 and s = 0. Then, since K (x) = λT (x) due to (6.1.21(p.26) ), from Lemma A2.1(p.302) (g) we have K (x) = 0 for
b ≤ x and K (x) > 0 for x < b, so that xK = b due to the definition in Section 6.2(p.27) (a). Hence xK > (≤) x⇒ K (x) > (=) 0.
The inverse holds by contraposition. In addition, since K (x) = 0 ⇒ K (x) ≤ 0, we have K (x) > (=) 0 ⇒ K (x) > (≤) 0.

(j) Let β < 1 or s > 0.

(j1) This proof consists of the following six steps:

• First note (A 2.3 (2) (p.303) ). If β < 1, then K (x) < 0 for any sufficiently large x > 0 with x ≥ b and if s > 0, then, whether
β < 1 or β = 1, we have K (x) < 0 for any sufficiently large x > 0 with x ≥ b. Hence, whether β < 1 or s > 0, we have
K (x) < 0 for any sufficiently large x > 0 with x ≥ b.

• Next note (A 2.2 (1) (p.303) ). Then, since δ > 0 from (11.2.2 (1) (p.56) ), whether β < 1 or s > 0 we have K (x) > 0 for any
sufficiently small x < 0 with x ≤ a⋆.

• Hence, whether β < 1 or s > 0, it follows that there exists the solution xK .

◦ Let β < 1. Then, the solution xK is unique from (d).

◦ Let s > 0. If β < 1, the solution xK is unique for the reason just above. If β = 1, we have K (b) = −s < 0 from
(A2.3 (2) (p.303) ), hence xK < b due to (c), so K (x) is strictly decreasing on the neighbourhood of x = xK due to (c), thus
the solution xK is unique. Therefore, whether β < 1 or β = 1, it follows that the solution xK is unique.

◦ Hence, whether β < 1 or s > 0, it follows that the solution xK is unique.

From all the above, whether β < 1 or s > 0, it eventually follows that the solution xK uniquely exists.

(j2) Let (λβa− s)/δ ≤ (>) a⋆. Then, from (A2.2 (1(2)) (p.303) ) we have K ((λβa− s)/δ) = (>) λβa− s− δ(λβa− s)/δ = 0,
hence xK = (>) (λβa− s)/δ due to (j1). The inverse is true by contraposition.

(j3) If κ > (= (<)) 0, then K (0) > (= (<)) 0 from (6.1.24(p.26) ), hence xK > (= (<)) 0 from (j1).

Corollary A 2.2 (A {KP})
(a) xK > (≤) x ⇔ K (x) > (≤) 0.
(b) xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

• Proof (a) Clearly xK > (≤) x⇒ K (x) > (≤) 0 due to Lemma A2.3(p.303) (i,j1). The inverse holds by contraposition.

(b) Since xK > (≤) x ⇒ K (x) > (≤) 0 due to (a) and since K (x) > (≤) 0 ⇒ K (x) ≥ (≤) 0, we have xK > (≤) x ⇒
K (x) ≥ (≤) 0. In addition, if xK = x, then K (x) = K (xK ) = 0 or equivalently xK = x ⇒ K (x) = 0, hence xK = x ⇒
K (x) ≥ 0. Accordingly, it follows that xK ≥ (≤) x ⇒ K (x) ≥ (≤) 0.

Lemma A2.4 (A {LP /KP })
(a) Let β = 1 and s = 0. Then xL = xK = b.

(b) Let β = 1 and s > 0. Then xL = xK .

(c) Let β < 1 and s = 0. Then b > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ > (= (<)) 0 ⇒ xL > (= (<)) xK > (= (<)) 0.

• Proof (a) If β = 1 and s = 0, then xL = b from Lemma A2.2(p.303) (d) and xK = b from
Lemma A2.3(p.303) (i), hence xL = xK = b.

(b) Let β = 1 and s > 0. Then K (xL) = 0 from (A2.6 (1) (p.303) ), hence xK = xL from
Lemma A2.3(p.303) (j1).

(c) Let β < 1 and s = 0. Then xL = b · · · ((1)) from Lemma A2.2(p.303) (d).
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◦ If b > 0, then xL > 0, hence K ( xL ) < 0 from (A2.6 (1) (p.303) ), so xL > xK from Lemma A2.3(p.303) (j1), and if b = (<) 0,
then xL = (<) 0, hence K ( xL ) = (>) 0 from (A2.6 (1) (p.303) ), so xL = (<) xK from Lemma A2.3(p.303) (j1). Accordingly, we
have “⇒ ” holds and its inverse “⇐ ” is immediate by contraposition. Thus the first relation “⇔ ” holds.

◦ If b > 0, from (6.1.24(p.26) ) we haveK (0) = λβT (0) > 0 due to Lemma A2.1(p.302) (g), hence xK > 0 · · · ((2)) from Lemma A2.3(p.303) (j1),

and if b = (<) 0, from (6.1.24(p.26) ) we have K (0) = λβT (0) = 0 due to Lemma 22.2.1 (p.237) (g), hence xK = 0 from
Lemma A2.3(p.303) (??) or equivalently xK = (=) 0. Accordingly, we have the second relation “⇒ ”.

(d) Let β < 1 and s > 0. Now, from (6.1.24(p.26) ) and (6.1.23(p.26) ), if κ > (= (<)) 0, then K (0) > (= (<)) 0, thus
xK > (= (<)) 0 from Lemma A2.3(p.303) (j1). Accordingly L (xK ) > (= (<)) 0 from (A2.6 (2) (p.303) ), hence
xL > (= (<)) xK from Lemma A2.2(p.303) (e1).

Lemma A2.5 (A {LP })
(a) L (s) is nonincreasing in s and is strictly decreasing in s if λβ < 1.

(b) Let λβa ≥ b.

1. xL ≤ λβa− s.

2. Let s > 0 and λβ < 1. Then xL < λβa− s.

(c) Let λβa < b. Then, there exists a sL > 0 such that if sL > (≤) s, then xL > (≤) λβa− s.

• Proof (a) From (6.1.22(p.26) ) and (6.1.20(p.26) ) we have L (s) = L (λβa − s) = λβT (λβa − s) − s, hence the assertion holds
from Lemma A2.1(p.302) (m).

(b) Let λβa ≥ b. Then, from (6.1.22(p.26) ) and (6.1.20(p.26) ) we have L (0) = L (λβa) = λβT (λβa) = 0 · · · ((1)) due to

Lemma A2.1(p.302) (g).

(b1) Since s ≥ 0, from (a) we have L (s) ≤ L (0) = 0 due to (1) or equivalently L (λβa− s) ≤ 0, hence xL ≤ λβa− s from
Corollary A 2.1(p.303) (a).

(b2) Let s > 0 and λβ < 1. Then, from (a) we have L (s) < L (0) = 0 due to (1) or equivalently L (λβa − s) < 0, thus
xL < λβa− s from Lemma A2.2(p.303) (e1).

(c) Let λβa < b. From (6.1.22(p.26) ) we have L (0) = λβT (λβa) > 0 due to Lemma A2.1(p.302) (g). Noting (A 2.1 (1) (p.303) ), for
any sufficiently large s > 0 such that λβa − s ≤ a⋆ and λβa − s < 0 we have L (s) = L (λβa − s) = λβa − s − λβ(λβa − s) =
(1− λβ)(λβa− s) ≤ 0. Accordingly, due to (a) it follows that there exists the solution sL > 0 of L (s) = 0. Then L (s) > 0 for
s < sL and L (s) ≤ 0 for s ≥ sL or equivalently L (λβa − s) > 0 for s < sL and L (λβa − s) ≤ 0 for s ≥ sL . Hence, from
Corollary A 2.1(p.303) (a) we get xL > λβa− s for s < sL and xL ≤ λβa− s for s ≥ sL .

Lemma A2.6 (A {κP}) We have:

(a) κ = λβa− s if a⋆ > 0 and κ = −s if b < 0.

(b) Let β < 1 or s > 0, Then κ > (= (<)) 0 ⇔ xK > (= (<)) 0.

• Proof (a) Immediate from (6.1.23(p.26) ) and Lemma A2.1(p.302) (i).

(b) Let β < 1 or s > 0. Then, if κ > (= (<)) 0, we have K (0) > (= (<)) 0 from (6.1.24(p.26) ), hence xK > (= (<)) 0 from
Lemma A2.3(p.303) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A3 Direct Proof of Underlying Functions of T̃ype P
A3.1 A {T̃P }
Lemma A3.1

(a) Let x ≤ a. Then z(x) = a

(b) Let a < x. Then a < z(x) < x.

(c) z(x) ≤ b for any x.

• Proof (a) Let x ≤ a. If a < z · · · (II), then x < z, hence p̃(z)(z − x) > 0 due to (6.1.41 (2) (p.27) ), and if z ≤ a · · · (I), then
p̃(z)(z − x) = 0 due to (6.1.41 (1) (p.27) ) (see Figure A 3.1(p.305) below). Hence z(x) = a due to Def. 6.1.2(p.27) .

-
a
•◦ z

-z ≤ a

(I)
� a < z

(II)

Figure A 3.1: Case x ≤ a
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(b) Let a < x. If x ≤ z · · · (III), then p̃(z)(z− x) ≥ 0, if a < z < x · · · (II), then p̃(z)(z− x) < 0 due to (6.1.41 (2) (p.27) ), and if
z ≤ a · · · (I), then p̃(z)(z − x) = 0 due to (6.1.41 (1) (p.27) ) (see Figure A 3.2(p.306) below). Hence, z(x) is given by z on a < z < x,
i.e., a < z(x) < x.

-
a
•◦

x
◦• z

-z ≤ a

(I)

-� a < z < x

(II)

� x ≤ z

(III)

Figure A 3.2: Case a < x

(c) Assume that z(x) > b for a certain x. Then, since p̃(z(x)) = 1 = p̃(b) due to (6.1.42 (2) (p.27) ), from (6.1.38(p.27) ) we have
T̃ (x) = z(x)− x > b− x = p̃(b)(b− x) ≥ T̃ (x), which is a contradiction. Hence, it must be that z(x) ≤ b for any x.

Corollary A 3.1 a ≤ z(x) ≤ b for any x.

• Proof Evident from Lemma A3.1(p.305) .

Lemma A3.2 p̃(z) is nondecreasing on (−∞,∞) and strictly increasing in z ∈ [a, b].

• Proof The former half is immediate from (6.1.31(p.26) ). For a ≤ z′ < z ≤ b we have p̃(z)− p̃(z′) = Pr{ξ ≤ z}−Pr{ξ ≤ z′} =
Pr{z′ < ξ ≤ z} =

∫ z

z′ f(ξ)dξ > 0 (See (2.2.3 (2) (p.13) )), hence p(z) > p(z′), i.e., p(z) is strictly increasing on [a, b].

Lemma A3.3 z(x) is nondecreasing on (−∞,∞).

• Proof From (6.1.38(p.27) ), for any x and y we have

T̃ (x) = p̃(z(x))(z(x)− x)

= p̃(z(x))(z(x)− y)− (x− y)p̃(z(x))

≥ T̃ (y)− (x− y)p̃(z(x))

= p̃(z(y))(z(y)− y)− (x− y)p̃(z(x))

= p̃(z(y))
(
z(y)− x+ (x− y)

)
− (x− y)p̃(z(x))

= p̃(z(y))(z(y)− x) + (x− y)(p̃(z(y))− p̃(z(x)))

≥ T̃ (x) + (x− y)(p̃(z(y))− p̃(z(x))).

Hence 0 ≥ (x − y)(p̃(z(y)) − p̃(z(x))). Let x > y. Then 0 ≥ p̃(z(y)) − p̃(z(x)) or equivalently p̃(z(x)) ≥ p̃(z(y)) · · · ((1)). Since

a ≤ z(x) ≤ b and a ≤ z(y) ≤ b from Corollary A 3.1(p.306) , if z(x) < z(y), then p̃(z(x)) < p̃(z(y)) from Lemma A3.2(p.306) , which
contradicts (1) . Hence, it must be that z(x) ≥ z(y), i.e., z(x) is nondecreasing in x ∈ (−∞,∞).

Lemma A3.4

(a) T̃ (x) is continuous on (−∞,∞).

(b) T̃ (x) is nonincreasing on (−∞,∞).

(c) T̃ (x) is strictly decreasing on [a,∞).

(d) T̃ (x) < 0 on (a,∞) and T̃ (x) = 0 on (−∞, a].

(e) T̃ (x) ≤ b− x on (−∞,∞).

(f) T̃ (x) + x is nondecreasing on (−∞,∞).

(g) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1.

(h) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1.

(i) T̃ (x) ≤ min{0, b− x} for any x ∈ (−∞,∞).

(j) λβT̃ (λβb+ s) + s is nondecreasing in s and is strictly increasing in s if λβ < 1.

• Proof (a,b) Immediate from the fact that p̃(z)(z − x) in (6.1.32(p.26) ) is continuous and nonincreasing in x ∈ (−∞,∞) for
any z.

(c) Let x′ > x > a. Then z(x) > a from Lemma A3.1(p.305) (b). Accordingly, since p̃(z(x)) > 0 due to (6.1.41 (2) (p.27) ) and
since z(x)− x > z(x)− x′, from (6.1.38(p.27) ) we have T̃ (x) = p̃(z(x))(z(x)− x) > p̃(z(x))(z(x)− x′) ≥ T̃ (x′), i.e., T̃ (x) is strictly
decreasing on (a,∞) · · · ((1)). Assume T̃ (a) = T̃ (x) for a given x > a, so x − a > 0. Then, for any sufficiently small ε > 0 such

that x − a > 2ε > 0 we have a < a + ε < x − ε < x, hence T̃ (a) = T̃ (x) < T̃ (a + ε) ≤ T̃ (a) due to the strict unceasingness
shown just above and the nonincreasingness in (b), which is a contradiction. Thus, since T̃ (x) ̸= T̃ (a) for any x > a, we have
T̃ (x) < T̃ (a) or T̃ (x) > T̃ (a) for any x > a. However, the latter is impossible due to (b), hence only the former holds, i.e.,
T̃ (x) < T̃ (a) for any x > a. From this and (1) it eventually follows that T̃ (x) is strictly decreasing on [a,∞) instead of on
(a,∞).

(d) Let x ≤ a. Then, since z(x) = a from Lemma A3.1(p.305) (a), we have p̃(z(x)) = 0 due to (6.1.41 (1) (p.27) ), hence
T̃ (x) = p̃(z(x))(z(x)− x) = 0 on (−∞, a], so T̃ (a) = 0. Let x > a. Then, from (c) we have T̃ (x) < T̃ (a) = 0, i.e., T̃ (x) < 0 on
(a,∞).
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(e) From (6.1.32(p.26) ) and (6.1.42 (2) (p.27) ) we see that T̃ (x) ≤ p̃(b)(b− x) = b− x for any x on (−∞,∞).

(f) For x′ < x we have, from (6.1.38(p.27) ),

T̃ (x) + x = p̃(z(x))(z(x)− x) + x

= p̃(z(x))z(x) + (1− p̃(z(x)))x

≥ p̃(z(x))z(x) + (1− p̃(z(x)))x′

= p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

hence it follows that T̃ (x) + x is nondecreasing in x on (−∞,∞),

(g) If β = 1, then βT̃ (x) + x = T (x) + x, hence the assertion is true from (f).

(h) Since βT̃ (x) + x = β(T̃ (x) + x) + (1− β)x, if β < 1, then (1− β)x is strictly increasing in x, hence the assertion is true
from (f).

(i) Since T̃ (x) ≤ b−x for any x from (e) and T̃ (x) ≤ 0 for any x from (d), we have T̃ (x) ≤ min{0, b−x} for any x ∈ (−∞,∞).

(j) From (6.1.32(p.26) ) we have

λβT̃ (λβb+ s) + s = λβminz p̃(z)(z − λβb− s) + s

= min
z

p̃(z)(λβz − (λβ)2b− λβs) + s.
Then, for s > s′ we have

λβT̃ (λβb+ s) + s− λβT̃ (λβb+ s′)− s′

= minz p(z)(λβz − (λβ)2b− λβs)−minz p(z)(λβz − (λβ)2b− λβs′) + (s− s′)

≥ minz −p(z)λβ(s− s′) + (s− s′)†

≥ minz −(s− s′)λβ + (s− s′) (due to p(z) ≤ 1 and s− s′ > 0)

= −(s− s′)λβ + (s− s′)

= (s− s′)(1− λβ) ≥ (>) 0 if λβ ≤ (<) 1.

Hence, since λβT̃ (λβb+ s) + s ≥ (>) λβT̃ (λβb+ s′) + s′ if λβ ≤ (<) 1, it follows that λβT̃ (λβb+ s) + s is nondecreasing in s
and strictly increasing in s if λβ < 1.

Let us define

h̃(z) = p̃(z)(z − b)/(1− p̃(z)), z < b,

h̃⋆ = infz<b h̃(z),

Below, for any x let us define the following successive four assertions:

A1(x) = ⟨⟨ z(x) < b ⟩⟩,

A2(x) = ⟨⟨ T̃ (b, x) > T̃ (z′, x, ) for at least one z′ < b ⟩⟩,

A3(x) = ⟨⟨ b− h̃(z′) > x for at least one z′ < b ⟩⟩,

A4(x) = ⟨⟨ supz<b{b− h̃(z)} > x ⟩⟩.
Proposition A3.1 For any x we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

• Proof Letting T̃ (z, x)
def
= p̃(z)(z − x), we can rewrite (6.1.32(p.26) ) as T̃ (x) = minz T̃ (z, x) = T̃ (z(x), x) (see (6.1.38(p.27) )).

1. Let A1(x) be true for any x. Suppose T̃ (b, x) ≤ T̃ (z′, x) for all z′ < b. Then the minimum of T̃ (z, x) is attained at z = b
(see Def. 6.1.2(p.27) ), i.e., z(x) = b, which contradicts A1(x). Hence it must be that T̃ (b, x) > T̃ (z′, x) for at least one z′ < b,
thus A2(x) becomes true. Accordingly, we have A1(x) ⇒ A2(x). Suppose A2(x) is true for any x. Then, if z(x) = b, we
have T̃ (b, x) > T̃ (z′, x) ≥ T̃ (x) = T̃ (z(x), x) = T̃ (b, x), which is a contradiction, hence it must be that z(x) < b due to
Lemma A3.1(p.305) (c); accordingly, we have A2(x)⇒ A1(x). Thus, it follows that we have A1(x)⇔ A2(x) for any given x.

2. Since p̃(b) = 1 from (6.1.42 (2) (p.27) ), for z′ < b we have

T̃ (b, x)− T̃ (z′, x)

= p̃(b)(b− x)− p̃(z′)(z′ − x)

= b− x− p̃(z′)(z′ − x)

= b− x− p̃(z′)(b− x+ z′ − b)

= b− x− p̃(z′)(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))(b− x)− p̃(z′)(z′ − b)

= (1− p̃(z′))
(
b− x− p̃(z′)(z′ − b)/(1− p̃(z′))

)
= (1− p̃(z′))(b− x− h̃(z′))

= (1− p̃(z′))(b− h̃(z′)− x).

†min a(x)−min b(x) ≥ min{a(x)− b(x)}.
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Accordingly, noting 1 > p̃(z′) due to (6.1.42 (1) (p.27) ), we immediately see that A2(x)⇔ A3(x) for any given x.

3. Let A3(x) be true for any x. Then clearly A4(x) is also true, i.e., A3(x) ⇒ A4(x). Let A4(x) be true for any x. Then
evidently b− h̃(z′) > x for at least one z′ < b, hence A3(x) is true, so we have A4(x)⇒ A3(x). Accordingly, it follows that
A3(x)⇔ A4(x) for any given x.

From all the above we have A1(x)⇔ A2(x)⇔ A3(x)⇔ A4(x).

Lemma A3.5

(a) −∞ < h̃⋆ < 0.

(b) x̃⋆ = b− h̃⋆ > b.

(c) x̃⋆ > (≤) x⇔ z(x) < (=) b.

(d) b⋆ > b.

• Proof (a) For any infinitesimal ε > 0 such that a < a + ε < b · · · (II) we have 0 < p̃(a + ε) < 1 from (6.1.41 (2) (p.27) ) and
(6.1.42 (1) (p.27) ), hence, h̃(a+ ε) = p̃(a+ ε)(a+ ε− b)/(1− p̃(a+ ε)) < 0. If z ≤ a · · · (I), then p̃(z) = 0 due to (6.1.41 (1) (p.27) ),
hence h̃(z) = 0 for z ≤ a. From the above we have h̃⋆ < 0 (finite) or h̃⋆ = −∞.

-
a
•◦

b
◦• z

-z ≤ a

(I)
-� a < z < b

(II)
� b ≤ z

(III)

?
h̃(a+ ε) < 0

Figure A 3.3: h̃(z) = 0 for z ≤ a and h̃(a+ ε) < 0

Assume that h̃⋆ = −∞. Then, there exists at least one z′ on a < z′ < b such that h̃(z′) ≤ −N for any given N > 0. Hence, if the
N is given by M/

¯
f (see (2.2.4(p.13) )) with any M > 1, i.e., N = M/

¯
f , we have h̃(z′) ≤ −M/

¯
f , so p̃(z′)(z′−b)/(1−p̃(z′)) ≤ −M/

¯
f .

Hence, noting (6.1.31(p.26) ), we have

p̃(z′)(z′ − b) ≤ −(1− p̃(z′))M/
¯
f = −(1− Pr{ξ ≤ z′})M/

¯
f = −Pr{z′ < ξ}M/

¯
f · · · (∗)

where Pr{z′ < ξ} =
∫ b

z′ f(w)dw ≥
∫ b

z′
¯
fdw = (b− z′)

¯
f . Accordingly, since p̃(z′)(z′ − b) ≤ −(b− z′)

¯
fM/

¯
f = (z′ − b)M , we have

p̃(z′) ≥M > 1 due to z′ − b < 0, which is a contradiction. Hence, it must follow that h̃⋆ > −∞.

(b) Since A1(x)⇒ A4(x) due to Proposition A3.1, we can rewrite (6.1.40(p.27) ) as

x̃⋆ = sup{x
∣∣ supz<b{b− h̃(z)} > x}

= supz<b{b− h̃(z)} · · · ((1))

= b− infz<b h̃(z) = b− h̃⋆ > b

due to (a), hence (b) holds.

(c) Let x̃⋆ > x, hence supz<b{b − h̃(z)} > x from (1) , so z(x) < b due to A4(x) ⇒ A1(x). Let x̃⋆ ≤ x, hence supz<b{b −
h̃(z)} ≤ x from (1) . Now, since supz<b{b − h̃(z)} ≤ x ⇒ z(x) ≥ b due to the contraposition of A4(x) ⇔ A1(x), we obtain
z(x) = b due to Lemma A3.1(p.305) (c).

(d) First note T̃ (x) ≤ p̃(z′)(z′ − x) for any x and z′. Accordingly, for any sufficiently small ε > 0 such that a < b − ε we
have p̃(b− ε) > 0 from (6.1.41 (2) (p.27) ), hence T̃ (b) ≤ p̃(b− ε)(b− ε− b) = −p̃(b− ε)ε < 0, so adding b to the both sides of this
inequality yields T̃ (b) + b < b, so T̃ (x) + x ≤ T̃ (b) + b < b for x ≤ b due to Lemma A3.4(p.306) (f). Accordingly, if b⋆ ≤ b, we have
T̃ (b⋆) + b⋆ ≤ T̃ (b) + b < b, hence from Lemma A3.4(p.306) (a) we have T̃ (b⋆ + ε) + b⋆ + ε < b for any sufficiently small ε > 0, so
T̃ (b⋆ + ε) < b− (b⋆ + ε), which contradicts the definition of b⋆ (see (6.1.39(p.27) )). Therefore, it must follow that b⋆ > b.

Lemma A3.6

(a) T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) T̃ (x) = b− x on [b⋆,∞) and T̃ (x) < b− x on (−∞, b⋆).

(c) T̃ (0) = b if b⋆ < 0 and T̃ (0) = 0 if a > 0.

(d) If x > y and b⋆ > y, then T̃ (x) + x > T̃ (y) + y.

• Proof (a) From (6.1.38(p.27) ) we have

T̃ (x) + x = p̃(z(x))(z(x)− x) + x = p̃(z(x))z(x) + (1− p̃(z(x)))x. · · · ((1))

◦ Let x̃⋆ > x. Then z(x) < b from Lemma A3.5(p.308) (c), hence p̃(z(x)) < 1 due to (6.1.42 (1) (p.27) ), so 1 − p̃(z(x)) > 0. If
x > x′, from (1) we have

T̃ (x) + x > p̃(z(x))z(x) + (1− p̃(z(x)))x′ = p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

i.e., T̃ (x) + x is strictly increasing on (−∞,∞), hence understandably so also on (−∞, b⋆].
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◦ Let x̃⋆ ≤ x. Then z(x) = b from Lemma A3.5(p.308) (c), hence p̃(z(x)) = 1 from (6.1.42 (2) (p.27) ), so T̃ (x) = p̃(z(x))(z(x)−x) =
b− x · · · ((2)). Suppose b⋆ > x̃⋆. Then, since b⋆ > b⋆ − 2ε > x̃⋆ for an infinitesimal ε > 0, we have b⋆ > b⋆ − ε > x̃⋆ + ε > x̃⋆

or equivalently x̃⋆ < b⋆ − ε; accordingly, due to (2) we obtain T̃ (b⋆ − ε) = b− (b⋆ − ε) · · · ((3)). Now, due to (6.1.39(p.27) ) we

have T̃ (b⋆ − ε) < b − (b⋆ − ε), which contradicts (3) . Accordingly, it must be that x̃⋆ ≥ b⋆. Let x′ < x < b⋆. Then, since
x̃⋆ > x, we have z(x) < b Lemma A3.5(p.308) (c), hence p̃(z(x)) < 1 due to (6.1.42 (1) (p.27) ) or equivalently 1 − p̃(z(x)) > 0.
Thus, from (1) we have

T̃ (x) + x > p̃(z(x))z(x) + (1− p̃(z(x)))x′ = p̃(z(x))(z(x)− x′) + x′ ≥ T̃ (x′) + x′,

implying that T̃ (x) + x is strictly increasing on (−∞, b⋆) · · · ((4)). Now let us assume T̃ (b⋆) + b⋆ = T̃ (x) + x for any

x < b⋆. Then, for any sufficiently small ε > 0 such that b⋆ − x > 2ε > 0 we have x < x + ε < b⋆ − ε < b⋆, hence
T̃ (b⋆) + b⋆ = T̃ (x) + x < T̃ (x+ ε) + x+ ε ≤ T̃ (b⋆) + b⋆ due to (4) and Lemma A3.4(p.306) (f), which is a contradiction. Thus,
T̃ (x) + x ̸= T̃ (b⋆) + b⋆ for x < b⋆, i.e., T̃ (x) + x > T̃ (b⋆) + b⋆ or T̃ (x) + x < T̃ (b⋆) + b⋆ for x < b⋆; however, the former is
impossible due to the nondecreasing in Lemma A3.4(p.306) (f), hence it follows that T̃ (x) + x < T̃ (b⋆) + b⋆ for x < b⋆. From
this and (4) it inevitably follows that T̃ (x) + x is strictly increasing on (−∞, b⋆] instead of (−∞, b⋆).

Accordingly, whether x̃⋆ > x or x̃⋆ ≤ x, it follows that T̃ (x) + x is strictly increasing on (−∞, b⋆].

(b) Due to (6.1.39(p.27) ) we have T̃ (x) < b− x for x < b⋆, i.e., T̃ (x) < b− x on (−∞, b⋆), hence the latter half is true. Since
T̃ (x) ≤ b − x on (−∞,∞) due to Lemma A3.4(p.306) (e), we have T̃ (x) + x ≤ b · · · ((5)) on (−∞,∞). Suppose T̃ (b⋆) + b⋆ < b.

Then, for an infinitesimal ε > 0 we have T̃ (b⋆ + ε) + b⋆ + ε < b due to Lemma A3.4(p.306) (a), i.e., T̃ (b⋆ + ε) < b − (b⋆ + ε),
which contradicts the definition of b⋆ (see (6.1.39(p.27) )). Consequently, it must be that T̃ (b⋆) + b⋆ = b · · · ((6)) or equivalently

T̃ (b⋆) = b− b⋆. Let x > b⋆. Then, from Lemma A3.4(p.306) (f) we have T̃ (x) + x ≥ T̃ (b⋆) + b⋆ = b. From this and (5) it must be
that T̃ (x) + x = b on (b⋆,∞), hence T̃ (x) = b− x on (b⋆,∞). From this and (6) it follows that T̃ (x) = b− x on [b⋆,∞). Hence
the former half is true.

(c) Let b⋆ < 0. Then, since 0 ∈ [b⋆,∞), we have T̃ (0) = b from the former half of (b). Now we have T̃ (0) = minz p̃(z)z · · · ((7))
from (6.1.32(p.26) ). Let a > 0. Then, if z ≤ a, we have p̃(z)z = 0 from (6.1.41 (1) (p.27) ) and if z > a (> 0), then p̃(z)z > 0 from
(6.1.41 (2) (p.27) ). Hence it follows that T̃ (0) = 0 due to (7) .

(d) Let x > y and b⋆ > y. If x ≥ b⋆, then T̃ (x) + x ≥ T̃ (b⋆) + b⋆ > T̃ (y) + y due to Lemma A3.4(p.306) (f) and (a), and if
b⋆ > x, then b⋆ ≥ x > y, hence T̃ (x)+x > T̃ (y)+y due to (a). Thus, whether x ≥ b⋆ or b⋆ > x, we have T̃ (x)+x > T̃ (y)+y.

All the results obtained above (see Lemmas A3.1(p.305) -A 3.6(p.308) ) can be complied into Lemma A3.7(p.309) below.

Lemma A3.7 (A {T̃P }) For any F ∈ F we have:

(a) T̃ (x) is continuous on (−∞,∞) ← ← Lemma A3.4(p.306) (a)

(b) T̃ (x) is nonincreasing on (−∞,∞) ← ← Lemma A3.4(p.306) (b)

(c) T̃ (x) is strictly decreasing on [a,∞) ← ← Lemma A3.4(p.306) (c)

(d) T̃ (x) + x is nondecreasing on (−∞,∞) ← ← Lemma A3.4(p.306) (f)

(e) T̃ (x) + x is strictly increasing on (−∞, b⋆] ← ← Lemma A3.6(p.308) (a)

(f) T̃ (x) = b− x on [b⋆,∞) and T (x) < b− x on (−∞, b⋆) ← ← Lemma A3.6(p.308) (b)

(g) T̃ (x) < 0 on (a,∞) and T (x) = 0 on (−∞, a] ← ← Lemma A3.4(p.306) (d)

(h) T̃ (x) ≤ min{0, b− x} on (−∞,∞) ← ← Lemma A3.4(p.306) (i)

(i) T̃ (0) = b if b⋆ < 0 and T (0) = 0 if a > 0 ← ← Lemma A3.6(p.308) (c)

(j) βT̃ (x) + x is nondecreasing on (−∞,∞) if β = 1 ← ← Lemma A3.4(p.306) (g)

(k) βT̃ (x) + x is strictly increasing on (−∞,∞) if β < 1 ← ← Lemma A3.4(p.306) (h)

(l) If x > y and b⋆ > y, then T (x) + x > T (y) + y ← ← Lemma A3.6(p.308) (d)

(m) λβT̃ (λβb+ s) + s is nondecreasing in s and strictly increasing in s if λβ < 1 ← ← Lemma A3.4(p.306) (j)

(n) b⋆ > b ← ← Lemma A3.5(p.308) (d)

A3.2 A {L̃P }, A {K̃P }, A {L̃P }, and κ̃P

From (6.1.33(p.27) ) and (6.1.34(p.27) ) and from Lemma A3.7(p.309) (f) we obtain, noting (11.2.1(p.56) ),

L̃ (x)

{
= λβb+ s− λβx on [b⋆,−∞) · · · (1),
< λβb+ s− λβx on (−∞, b⋆) · · · (2),

(A 3.1)

K̃ (x)

{
= λβb+ s− δx on [b⋆,∞) · · · (1),
< λβb+ s− δx on (−∞, b⋆) · · · (2).

(A 3.2)

In addition, from (6.1.34(p.27) ) and Lemma A3.7(p.309) (g) we have
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K̃ (x)

{
< −(1− β)x+ s on (a,∞) · · · (1),

= −(1− β)x+ s on (−∞, a] · · · (2),
(A 3.3)

hence we obtain
K̃ (x) + x ≤ βx+ s on (−∞,∞). (A 3.4)

Then, from (A3.2 (1) (p.309) ) and (A 3.3 (2) (p.310) ) we get

K̃ (x) + x =

{
λβb+ s+ (1− λ)βx on [b⋆,∞) · · · (1),
βx+ s on (−∞, a] · · · (2).

(A 3.5)

Since K̃ (x) = L̃ (x)− (1− β)x from (6.1.34(p.27) ) and (6.1.33(p.27) ), if x
L̃ and x

K̃ exist, then

K̃ (xL̃ ) = −(1− β) xL̃ · · · (1), L̃ (xK̃ ) = (1− β) xK̃ · · · (2). (A 3.6)

Lemma A3.8 (L̃P )

(a) L̃ (x) is continuous on (−∞,∞).

(b) L̃ (x) is nonincreasing on (−∞,∞).

(c) L̃ (x) is strictly decreasing on [a,∞).

(d) Let s = 0. Then x
L̃ = a where x

L̃ < (≥) x ⇔ L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

1. x
L̃ uniquely exists with x

L̃ > a where x
L̃ < (= (>)) x ⇔ L̃ (x) < (= (>)) 0.

2. (λβb+ s)/λβ ≥ (<) b⋆ ⇔ x
L̃ = (<) (λβb+ s)/λβ < (≥) b⋆.

• Proof (a-c) Immediate from (6.1.33(p.27) ) and Lemma A3.7(p.309) (a-c).

(d) Let s = 0. Then, since L̃ (x) = λβT̃ (x), from Lemma A3.7(p.309) (g) we have L̃ (x) = 0 for a ≥ x and L̃ (x) < 0 for x > a,
hence x

L̃ = a by definition (see Section 6.2(p.27) (b)), so x
L̃ < (≥) x ⇒ L̃ (x) < (=) 0. The inverse is true by contraposition. In

addition, since L̃ (x) = 0 ⇒ L̃ (x) ≥ 0, we have L̃ (x) < (=) 0 ⇒ L̃ (x) < (≥) 0.
(e) Let s > 0.

(e1) From (A3.1 (1) (p.309) ) and the assumption of λ > 0 and β > 0 we have L̃ (x) < 0 for a sufficiently large x > 0 such
that x > b⋆. In addition, we have L̃ (a) = λβT̃ (a) + s = s > 0 from Lemma A3.7(p.309) (g). Hence, from (a,c) it follows that x

L̃

uniquely exists. The inequality x
L̃ > a is immediate from L̃ (a) > 0 and (c). The latter half is evident.

(e2) If (λβb + s)/λβ ≥ (<) b⋆, from (A3.1(p.309) ) we have L̃ ((λβb + s)/λβ) = (<) λβb + s − λβ(λβb + s)/λβ = 0, hence
x
L̃ = (<) (λβb+ s)/λβ from (e1).

Corollary A 3.2 (L̃P )

(a) x
L̃ < (≥) x ⇔ L̃ (x) < (≥) 0.

(b) x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
L̃ < (≥) x⇒ L̃ (x) < (≥) 0 from Lemma A3.8(p.310) (d,e1). The inverse is true by contraposition.

(b) Since x
L̃ < (≥) x ⇒ L̃ (x) < (≥) 0 due to (a) and since L̃ (x) < (≥) 0 ⇒ L̃ (x) ≤ (≥) 0, we have x

L̃ < (≥) x ⇒
L̃ (x) ≤ (≥) 0. In addition, if x

L̃ = x, then L̃ (x) = L̃ (xL̃ ) = 0 ≤ 0 or equivalently x
L̃ = x ⇒ L̃ (x) ≤ 0, hence it fol-

lows that x
L̃ ≤ (≥) x ⇒ L̃ (x) ≤ (≥) 0.

Lemma A3.9 (K̃P )

(a) K̃ (x) is continuous on (−∞,∞).

(b) K̃ (x) is nonincreasing on (−∞,∞).

(c) K̃ (x) is strictly decreasing on [a,∞).

(d) K̃ (x) is strictly increasing on (−∞,∞) if β < 1.

(e) K̃ (x) + x is nondecreasing on (−∞,∞).

(f) K̃ (x) + x is strictly increasing on (−∞,∞) if λ < 1.

(g) K (x) + x is strictly increasing on (−∞, b⋆].

(h) If x > y and b⋆ > y, then K̃ (x) + x > K̃ (y) + y.

(i) Let β = 1 and s = 0. Then x
K̃ = a where x

K̃ < (≥) x⇔ K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.
(j) Let β < 1 or s > 0.

1. There uniquely exists x
K̃ where x

K̃ < (= (>)) x⇔ K̃ (x) < (= (>)) 0.

2. (λβb+ s)/δ ≥ (<) b⋆ ⇔ x
K̃ = (<) (λβb+ s)/δ.
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3. Let κ̃ < (= (>)) 0. Then x
K̃ < (= (>)) 0.

• Proof (a-c) Evident from (6.1.34(p.27) ) and Lemma A3.7(p.309) (a-c).

(d) Evident from Lemma A3.7(p.309) (b) and (6.1.34(p.27) ).

(e) From (6.1.34(p.27) ) we have

K̃ (x) + x = λβT̃ (x) + βx+ s = λβ(T̃ (x) + x) + (1− λ)βx+ s · · · ((1)),

hence the assertion is immediate from Lemma A3.7(p.309) (d).

(f) Evident from (1) and Lemma A3.7(p.309) (d).

(g) Evident from (1) and Lemma A3.7(p.309) (e).

(h) Let x > y and b⋆ > y. If x ≥ b⋆, then K̃ (x) + x ≥ K̃ (b⋆) + b⋆ > K̃ (y) + y due to (e,g), and if b⋆ > x, then b⋆ > x > y,
hence K̃ (x) + x > K̃ (y) + y due to (g).

(i) Let β = 1 and s = 0. Then, since K̃ (x) = λT̃ (x) due to (6.1.34(p.27) ), from Lemma A3.7(p.309) (g) we have K̃ (x) = 0 for
a ≥ x and K̃ (x) < 0 for x > a, so x

K̃ = a by the definition of x
K̃ (See Section 6.2(p.27) (b)). Hence x

K̃ < (≥) x⇒ K̃ (x) < (=) 0.
The inverse is immediate by contraposition. In addition, since K̃ (x) = 0 ⇒ K̃ (x) ≥ 0, we have K̃ (x) < (=) 0 ⇒ K̃ (x) < (≥) 0.

(j) Let β < 1 or s > 0.

(j1) First note (A 3.3 (2) (p.310) ). Then, if β = 1, then s > 0, hence K̃ (x) = s > 0 for any x ≤ a and if β < 1, then K̃ (x) > 0
for any sufficiently small x < 0 such that x < a. Hence, whether β = 1 or β < 1 (for any 0 < β ≤ 1), we have K̃ (x) > 0 for
any sufficiently small x. Next, for any sufficiently large x > 0 such that x ≥ b⋆, from (A3.2 (1) (p.309) ) we have K̃ (x) < 0 since
to δ > 0 due to (11.2.2 (1) (p.56) ). Hence, it follows that there exists the solution x

K̃ for any 0 < β ≤ 1. Let β < 1. Then, the
solution is unique due to (d). Let β = 1, hence s > 0. Then, since K̃ (a) = s > 0 from (A3.3 (2) (p.310) ), we have x

K̃ > a, hence
K̃ (x) is strictly decreasing on the neighbourhood of x = x

K̃ due to (c), implying that the solution x
K̃ is unique. Therefore, for

any 0 < β ≤ 1 the solution is unique. Thus, the latter half is immediate.

(j2) Let (λβb + s)/δ ≥ (<) b⋆. Then, from (A3.2 (1(2)) (p.309) ) we have K̃ ((λβb + s)/δ) = (<) λβb + s − δ(λβb + s)/δ = 0,
hence x

K̃ = (<) (λβb+ s)/δ due to (j1). Its inverse is also true by contraposition.

(j3) If κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0 from (6.1.37(p.27) ), hence x
K̃ < (= (>)) 0 from (j1).

The corollary below is used when it is not specified whether s > 0 or s = 0.

Corollary A 3.3 (K̃P )

(a) x
K̃ < (≥) x ⇔ K̃ (x) < (≥) 0.

(b) x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

• Proof (a) Clearly x
K̃ < (≥) x⇒ K̃ (x) < (≥) 0 due to Lemma A3.9(p.310) (i,j1). The inverse is immediate by contraposition.

(b) Since x
K̃ < (≥) x ⇒ K̃ (x) < (≥) 0 due to (a) and since K̃ (x) < (≥) 0 ⇒ K̃ (x) ≤ (≥) 0, we have x

K̃ < (≥) x ⇒
K̃ (x) ≤ (≥) 0. In addition, if x

K̃ = x, then K̃ (x) = K̃ ( xK̃ ) = 0 ≤ 0, hence it follows that x
K̃ ≤ (≥) x ⇒ K̃ (x) ≤ (≥) 0.

Lemma A3.10 (L̃P/K̃P )

(a) Let β = 1 and s = 0. Then x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then x
L̃ = x

K̃ .

(c) Let β < 1 and s = 0. Then a < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (=)) 0.

(d) Let β < 1 and s > 0. Then κ̃ < (= (>)) 0 ⇒ x
L̃ < (= (>)) x

K̃ < (= (>)) 0.

• Proof (a) If β = 1 and s = 0, then x
L̃ = a from Lemma A3.8(p.310) (d) and x

K̃ = a from Lemma A3.9(p.310) (i), hence
x
L̃ = x

K̃ = a.

(b) Let β = 1 and s > 0. Then K̃ (xL̃ ) = 0 from (A3.6 (1) (p.310) ), hence x
K̃ = x

L̃ from
Lemma A3.9(p.310) (j1).

(c) Let β < 1 and s = 0. Then x
L̃ = a · · · ((1)) from Lemma A3.8(p.310) (d). Suppose a < 0. Then, since x

L̃ < 0, we have

K̃ (xL̃ ) > 0 from (A3.6 (1) (p.310) ), hence x
K̃ > x

L̃ from Lemma A3.9(p.310) (j1). Furthermore, from (6.1.37(p.27) ) and (6.1.36(p.27) )
we have K̃ (0) = λβT̃ (0) < 0 due to Lemma A3.7(p.309) (g), hence x

K̃ < 0 from Lemma A3.9(p.310) (j1). Suppose a = (>) 0. Then,
since x

L̃ = (>) 0 from (1) , we have K̃ (xL̃ ) = (<) 0 due to (A 3.6 (1) (p.310) ), hence x
L̃ = (>) x

K̃ from Lemma A3.9(p.310) (j1).
Furthermore, from (6.1.37(p.27) ) and (6.1.36(p.27) ) we have K̃ (0) = λβT̃ (0) = 0 due to Lemma A3.7(p.309) (g), hence x

K̃ = (=) 0
from Lemma A3.9(p.310) (j1).

(d) Let β < 1 and s > 0. Since κ̃ = K̃ (0) from (6.1.37(p.27) ), if κ̃ < (= (>)) 0, then K̃ (0) < (= (>)) 0, hence x
K̃ < (= (>)) 0

from Lemma A3.9(p.310) (j1). Accordingly L̃ (xK̃ ) < (= (>)) 0 from (A3.6 (2) (p.310) ), so x
L̃ < (= (>)) x

K̃ from Lemma A3.8(p.310) (e1).

Lemma A3.11 (L̃P )

(a) L̃ (s) is nondecreasing in s.

(b) If λβ < 1, then L̃ (s) is strictly increasing in s.

(c) Let λβb ≤ a.

1. x
L̃ ≥ λβb+ s.
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2. Let s > 0 and λβ < 1. Then x
L̃ > λβb+ s.

(d) Let λβb > a. Then, there exists a sL̃ > 0 such that if sL̃ > (≤) s, then x
L̃ < (≥) λβb+ s.

• Proof (a,b) From (6.1.35(p.27) ) and (6.1.33(p.27) ) we have L̃ (s) = λβT̃ (λβb+ s)+ s · · · ((1)), hence the assertions are true from

Lemma A3.7(p.309) (m).

(c) Let λβµ ≤ a. Then, from (1) we have L̃ (0) = λβT̃ (λβb) = 0 · · · ((2)) due to Lemma A3.7(p.309) (g).

(c1) Since s ≥ 0, from (a) we have L̃ (s) ≥ L̃ (0) = 0 due to (2) or equivalently L̃ (λβb + s) ≥ 0, hence x
L̃ ≥ βb + s from

Corollary A 3.2(p.310) (a).

(c2) Let s > 0 and λβ < 1. Then, from (b) we have L̃ (s) > L̃ (0) = 0 due (2) , hence L̃ (λβb+ s) > 0, so x
L̃ > λβb+ s from

Lemma A3.8(p.310) (e1).

(d) Let λβb > a. From (1) we have L̃ (0) = λβT̃ (λβb) < 0 due to Lemma A3.7(p.309) (g). Noting (A 3.1 (1) (p.309) ), for any
sufficiently large s > 0 such that λβb + s ≥ b⋆ and λβb + s > 0 we have L̃ (s) = L̃ (λβb + s) = λβb + s − λβ(λβb + s) =
(1− λβ)(λβb+ s) ≥ 0. Accordingly, due to (a) it follows that there exists a sL̃ > 0 where L̃ (s) < 0 for s < sL̃ and L̃ (s) ≥ 0
for s ≥ sL̃ , or equivalently, L̃ (λβb+ s) < 0 for s < sL̃ and L̃ (λβb+ s) ≥ 0 for s ≥ sL̃ . Hence, from Corollary A 3.2(p.310) (a) we
have x

L̃ < βb+ s for s < sL̃ and x
L̃ ≥ βb+ s for s ≥ sL̃ .

Lemma A3.12 (A {κ̃P}) We have:

(a) κ̃ = λβb+ s if b⋆ < 0 and κ̃ = s if a > 0.

(b) Let β < 1 or s > 0. Then κ̃ < (= (>)) 0 ⇔ x
K̃ < (= (>)) 0.

• Proof (a) Immediate from (6.1.36(p.27) ) and Lemma A3.7(p.309) (i).

(b) Let β < 1 or s > 0. Then, if κ̃ > (= (<)) 0, we have K̃ (0) > (= (<)) 0 from (6.1.37(p.27) ), hence x
K̃ > (= (<)) 0 from

Lemma A3.9(p.310) (j1). Thus “⇒” was proven. Its inverse “⇐” is immediate by contraposition.

A4 Direct Proof of Assertion Systems
A4.1 A {M̃:1[R][A]}
Since K̃ (x) + (1− β)x = L̃ (x) for any x due to (6.1.14(p.25) ) and (6.1.13(p.25) ), from (7.4.4(p.41) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0}, t > 1. (A 4.1)

Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1), hence

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.2)

2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.3)

Now, from (7.4.4(p.41) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.4)

Finally, from (A4.1(p.312) ) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (SkiptN)
†. (A 4.5)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.20) (b)) and that

λ = 1 · · · (1) (see A2(p.20) ), δ = 1 · · · (2) (see (11.2.1(p.56) )). (A 4.6)

� Tom A4.1 (A {M̃:1[R][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (6.1.14(p.25) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma A1.1(p.298) (g), hence from (7.4.4(p.41) ) and (1) we have
Vt = min{T̃ (Vt−1) + Vt−1, Vt−1} = min{T̃ (Vt−1), 0}+ Vt−1 = T̃ (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1) + V1, we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from
Lemma A1.1(p.298) (d) we have Vt ≥ T̃ (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

†See Section 7.1(p.29) .
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(b) Since V1 = µ from (7.4.3(p.41) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b > a, from (2) we have Vt >
T̃ (a) + a = a due to Lemma A1.1(p.298) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence Vt−1 > x

L̃ for t > 1 due to
Lemma A1.2(p.300) (d), thus L̃ (Vt−1) < 0 for t > 1 due to Lemma A1.2(p.300) (e1)), so L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from

(A4.1(p.312) ) we obtain Vt − βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1. Accordingly Vτ < βVτ−1 < · · · < βτ−1V1,
hence t∗τ = τ for τ > 1, i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.5(p.312) ).

Let us define

S19 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.2 (A {M̃:1[R][A]}) Let β < 1 or s > 0.

(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βµ ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βµ > a.

1. Let β = 1.

i. Let µ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let µ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let a < 0 ((κ̃ < 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)).

1. Let βµ+ s ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)).

1. Let βµ+ s ≥ b or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βµ+ s < b and sL̃ > s. Then S19(p.313) ◦N ∗∥ is true.

• Proof Let β < 1 or s > 0. Note here (A 4.6 (1,2) (p.312) ).

(a) Since x
K̃ ≤ (βµ + s)/δ = βµ + s = V1 due to Lemma A1.3(p.300) (j2) and (7.4.3(p.41) ), we have K̃ (V1) ≤ 0 due to

Lemma A1.3(p.300) (j1), hence V2 − V1 ≤ 0 from (A4.4(p.312) ), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from (7.4.4(p.41) ) and
Lemma A1.3(p.300) (e) we have Vt ≥ min{K̃ (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing
in t > 0. Consider a sufficiently small M < 0 such that βµ + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose Vt−1 ≥ M . Then,
from Lemma A1.3(p.300) (e) and (A 1.5 (2) (p.300) ) we have Vt ≥ min{K̃ (M) + M,βM} = min{βM + s, βM} ≥ min{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥ M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (7.4.4(p.41) ) we have V = min{K̃ (V ) + V, βV }, hence 0 = min{K̃ (V ),−(1− β)βV }. Thus, since
K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A1.3(p.300) (j1).

(b) Let βµ ≤ a · · · ((1)). Then x
L̃ ≥ βµ + s = V1 from Lemma A1.5(p.302) (b1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for

t > 1 from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 1.1(p.300) (a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1.

Hence, from (A4.3(p.312) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ .
Hence t∗τ = 1 for τ > 1 (see Preference Rule 8.2.1(p.45) ), i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βµ > a.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” of the lemma. Then (λβµ+s)/δ = µ+s · · · ((3)) due
to (2) and (A 4.6 (1,2) (p.312) ). In addition, since x

L̃ = x
K̃ · · · ((4)) from Lemma A1.4(p.301) (b), we have K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let µ+ s ≥ b. Then x
L̃ = x

K̃ = µ+ s = V1 from (4) , Lemma A1.3(p.300) (j2), (3) , and (7.4.3(p.41) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to Lemma A1.2(p.300) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let µ+ s < b. Then x
L̃ = x

K̃ < µ+ s = V1 < b from (4) , Lemma A1.3(p.300) (j2), and (7.4.3(p.41) ), hence b > Vt−1 for
t > 1 from (a). Suppose Vt−1 > x

L̃ , hence L̃ (Vt−1) < 0 from
Lemma A1.2(p.300) (e1). Then, from (A4.2(p.312) ), Lemma A1.3(p.300) (g), and (5) we have Vt > K̃ ( xL̃ ) + x

L̃ = x
L̃ . Accordingly,

by induction Vt−1 > x
L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from

Lemma A1.2(p.300) (e1). Thus, for the same reason as in the proof of Tom A4.1(p.312) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and
ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A1.4(p.301) (c ((d))). Now, since x
K̃ ≤ βµ + s due

to Lemma A1.3(p.300) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (7.4.3(p.41) ). Suppose x

K̃ ≤ Vt−1. Then, from
Lemma A1.3(p.300) (e) we have Vt ≥ min{K̃ ( xK̃ ) + x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction
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Vt−1 ≥ x
K̃ for t > 1, hence Vt−1 > x

L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.300) (a). Hence, for
the same reason as in the proof of Tom A4.1(p.312) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A1.4(p.301) (c ((d))).

(c2ii1) Let βµ + s ≥ b. Then, x
K̃ = βµ + s = V1 from Lemma A1.3(p.300) (j2) and (7.4.3(p.41) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.2(p.312) ) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.3(p.312) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βµ + s < b. Then, since V1 < b from (7.4.3(p.41) ), we have Vt−1 < b for t > 1 due to (a). In addition, we have
x
K̃ < βµ + s = V1 from Lemma A1.3(p.300) (j2). Suppose x

K̃ < Vt−1, hence x
L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0 due

to Lemma A1.2(p.300) (e1), from (A4.2(p.312) ) and Lemma A1.3(p.300) (g) we have Vt > K̃ ( xK̃ ) + x
K̃ = x

K̃ . Hence, by induction
x
K̃ < Vt−1 for t > 1, thus x

L̃ < Vt−1 for t > 1 due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 1.1(p.300) (a),
for the same reason as in the proof of Tom A4.1(p.312) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A1.4(p.301) (c ((d))).

(c2iii1) Let βµ+ s ≥ b or sL̃ ≤ s. First, let βµ+ s ≥ b. Then, since x
K̃ = βµ+ s = V1 from

Lemma A1.3(p.300) (j2), we have x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next, let sL̃ ≤ s. Then, since x
L̃ ≥ βµ + s due to

Lemma A1.5(p.302) (c), we have x
L̃ ≥ V1 from (7.4.3(p.41) ). Accordingly, whether βµ + s ≥ b or sL̃ ≤ s, we have x

L̃ ≥ V1, so
x
L̃ ≥ Vt−1 for t > 1 due to (a). Hence, since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 1.1(p.300) (a), for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βµ+s < b · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A1.5(p.302) (c) we have x
K̃ < x

L̃ < βµ+s = V1 · · · ((10 )),
hence K̃ (V1) < 0 · · · ((11 )) from Lemma A1.3(p.300) (j1). In addition, since V1 < b due to (9) and (7.4.3(p.41) ), we have Vt−1 < b for

t > 0 from (a). Now, from (A4.4(p.312) ) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from (7.4.4(p.41) )
and Lemma A1.3(p.300) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) , so V1 ≥ x
L̃ . Assume that Vt−1 ≥ x

L̃ for all t > 1, hence V ≥ x
L̃ .

Now, from (8) and V ≤ x
K̃ in (a) we have the contradiction of V ≤ x

K̃ < x
L̃ ≤ V . Hence, it is impossible that Vt−1 ≥ x

L̃ for
all t > 1, implying that there exists t•τ > 1 such that

V1 > V2 > · · · > Vt•τ−1 > x
L̃ ≥ Vt•τ > Vt•τ+1 > Vt•τ+2 > · · · , (A 4.7)

from which

Vt−1 > x
L̃ , t•τ ≥ t > 1, x

L̃ ≥ Vt−1, t > t•τ . (A 4.8)

Therefore, from Corollary A 1.1(p.300) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t•τ ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.1(p.312) (b) we have ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S19(p.313) (1) is true.

2. Let τ > t•. First, let τ ≥ t > t•τ . Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ from
(A4.3(p.312) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).

Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.1(p.312) ) we have Vt − βVt−1 < 0 for t•τ ≥ t > 1, i.e., Vt < βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ < βVt•τ−1 < β2Vt•τ−2 < · · · < βt•τ−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ < βτ−t•τ+1Vt•τ−1 < βτ−t•τ+2Vt•τ−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 8.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ ∥ for τ > 1. In addition, we have

ConducttN for t•τ ≥ t > 1 due to (12) and (A 4.5(p.312) ). Hence S19(p.313) (2) is true.

A4.2 A {M:1[P][A]}
Since K (x) + (1− β)x = L (x) for any x due to (6.1.21(p.26) ) and (6.1.20(p.26) ), from (7.4.6(p.41) ) we have

Vt − βVt−1 = max{L (Vt−1), 0} ≥ 0, t > 1. (A 4.9)

Accordingly:

1. If L (Vt−1) ≥ 0, then Vt − βVt−1 = L (Vt−1), hence

Vt = L (Vt−1) + βVt−1 = K (Vt−1) + Vt−1, t > 1. (A 4.10)
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2. If L (Vt−1) ≤ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.11)

Now, from (7.4.6(p.41) ) with t = 2 we have

V2 − V1 = max{K (V1),−(1− β)V1}. (A 4.12)

Finally, from (A4.9(p.314) ) we see that

L (Vt−1) > (<) 0⇒ ConducttN (SkiptN). (A 4.13)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.20) (b)) and that

λ = 1 · · · (1) (see A2(p.20) ), δ = 1 · · · (2) (see (11.2.1(p.56) )). (A 4.14)

� Tom A4.3 (A {M:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nondecreasing in t > 0.

(b) ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (6.1.21(p.26) ) we have K (x) = T (x) ≥ 0 · · · ((1)) for any x due to

Lemma A2.1(p.302) (g), hence from (7.4.6(p.41) ) and (1) we have
Vt = max{T (Vt−1) + Vt−1, Vt−1} = max{T (Vt−1), 0}+ Vt−1 = T (Vt−1) + Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T (V1) + V1, we have V2 ≥ V1 due to (1) . Suppose Vt−1 ≤ Vt. Then, from
Lemma A2.1(p.302) (d) we have Vt ≤ T (Vt)+Vt = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing in t > 0.

(b) Since V1 = a from (7.4.5(p.41) ), we have V1 < b. Suppose Vt−1 < b. Then, noting a⋆ < a < b due to Lemma A2.1(p.302) (n),
from (2) we have Vt < T (b) + b = b due to Lemma A2.1(p.302) (c,g). Accordingly, by induction Vt−1 < b for t > 1, hence
L (Vt−1) > 0 for t > 1 due to Lemma A2.2(p.303) (d), so L (Vt−1) > 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.9(p.314) ) we obtain

Vt − βVt−1 > 0 for τ ≥ t > 1, i.e., Vt > βVt−1 for τ ≥ t > 1. Accordingly Vτ > βVτ−1 > · · · > βτ−1V1, hence t∗τ = τ for τ > 1,
i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.13(p.315) ).

Let us define

S20 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.4 (A {M:1[P][A]}) Let β < 1 or s > 0.

(a) Vt is nondecreasing in t > 0 and converges to a finite V ≥ xK as t→∞.

(b) Let βa ≥ b. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βa < b.

1. Let β = 1.

i. Let a− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let a− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)).

i. Let b > 0 ((κ > 0)). Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let b = 0 ((κ = 0)).

1. Let βa− s ≤ a⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

iii. Let b < 0 ((κ < 0)).

1. Let βa− s ≤ a⋆ or sL ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βa− s > a⋆ and sL > s. Then S20(p.315) ◦N ∗∥ is true.

• Proof Let β < 1 or s > 0. First note (A 4.14(p.315) )

(a) Since xK ≥ (λβa − s)/δ = βa − s = V1 due to Lemma A2.3(p.303) (j2) and (7.4.5(p.41) ), we have K (V1) ≥ 0 due to
Lemma A2.3(p.303) (j1), hence V2 − V1 ≥ 0 from (A4.12(p.315) ), i.e., V1 ≤ V2. Suppose Vt−1 ≤ Vt. Then, from (7.4.6(p.41) ) and
Lemma A2.3(p.303) (e) we have Vt ≤ max{K (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≤ Vt for t > 1, i.e., Vt is nondecreasing
in t > 0. Consider a sufficiently large M > 0 such that βa − s ≤ M and b ≤ M , hence V1 ≤ M . Suppose Vt−1 ≤ M . Then,
from Lemma A2.3(p.303) (e) and (A 2.5 (2) (p.303) ) we have Vt ≤ max{K (M) +M,βM} = max{βM − s, βM} ≤ max{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≤ M for t > 0, i.e., Vt is upper bounded in t. Accordingly Vt converges to a
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finite V as t→∞. Then, from (7.4.6(p.41) ) we have V = max{K (V ) + V, βV }, hence 0 = max{K (V ),−(1− β)βV }. Thus, since
K (V ) ≤ 0, we have V ≥ xK from Lemma A2.3(p.303) (j1).

(b) Let βa ≥ b · · · ((1)). Then xL ≤ βa − s = V1 from Lemma A2.5(p.305) (b1) with λ = 1 and δ = 1, hence xL ≤ Vt−1 for

t > 1 from (a). Accordingly, since L (Vt−1) ≤ 0 for t > 1 due to Corollary A 2.1(p.303) (a), we have L (Vt−1) ≤ 0 for τ ≥ t > 1.

Hence, from (A4.11(p.315) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ ,
hence t∗τ = 1 for τ > 1 due to Preference Rule 8.2.1(p.45) , i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c) Let βa < b.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption“β < 1 or s > 0” of the lemma. Then (λβa− s)/δ = a− s · · · ((3))
due to (2) and (A 4.14 (2) (p.315) ). In addition, since xL = xK · · · ((4)) from Lemma A2.4(p.304) (b), we have K ( xL ) = K (xK ) =

0 · · · ((5)).

(c1i) Let a− s ≤ a⋆. Then xL = xK = a− s = V1 from (4) , Lemma A2.3(p.303) (j2), (3) , and (7.4.5(p.41) ). Accordingly, since
xL ≤ Vt−1 for t > 1 from (a), we have L (Vt−1) ≤ 0 for t > 1 due to Lemma A2.2(p.303) (e1). Hence, for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let a− s > a⋆. Then xL = xK > a− s = V1 > a⋆ from (4) , Lemma A2.3(p.303) (j2), and (7.4.5(p.41) ), hence a⋆ < Vt−1

for t > 1 from (a). Suppose Vt−1 < xL , hence L (Vt−1) > 0 from
Lemma A2.2(p.303) (e1). Then, from (A4.10(p.314) ), Lemma A2.3(p.303) (g), and (4) we have Vt < K ( xL )+ xL = K (xK )+ xL = xL .
Accordingly, by induction Vt−1 < xL for t > 1, hence L (Vt−1) > 0 for t > 1 from Lemma A2.2(p.303) (e1). Thus, for the same
reason as in the proof of Tom A4.3(p.315) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let b > 0 ((κ > 0)) . Then xL > xK > 0 · · · ((6)) from Lemma A2.4(p.304) (c ((d))). Now, since xK ≥ βa − s due

to Lemma A2.3(p.303) (j2) with λ = 1 and δ = 1, we have xK ≥ V1 from (7.4.5(p.41) ). Suppose xK ≥ Vt−1. Then, from
Lemma A2.3(p.303) (e) we have Vt ≤ max{K (xK ) + xK , β xK } = max{xK , β xK } = xK due to xK > 0. Accordingly, by
induction Vt−1 ≤ xK for t > 1, hence Vt−1 < xL for t > 1 from (6) , thus L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.303) (a).
Hence, for the same reason as in the proof of Tom A4.3(p.315) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and conducttN for τ ≥ t > 1.

(c2ii) Let b = 0 ((κ = 0)) . Then xL = xK · · · ((7)) from Lemma A2.4(p.304) (c ((d))).

(c2ii1) Let βa − s ≤ a⋆. Then, xK = βa − s = V1 from Lemma A2.3(p.303) (j2) and (7.4.5(p.41) ). Suppose Vt−1 = xK , hence
Vt−1 = xL from (7) , thus L (Vt−1) = L ( xL ) = 0. Then, from (A4.10(p.314) ) we have Vt = K (xK ) + xK = xK . Accordingly, by
induction Vt−1 = xK for t > 1, hence Vt−1 = xL for t > 1 due to (7) . Then, since L (Vt−1) = L ( xL ) = 0 for t > 1, we have
Vt = βVt−1 for t > 1 from (A4.11(p.315) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βa−s > a⋆. Then, since V1 > a⋆, we have Vt−1 > a⋆ for t > 1 due to (a). In addition, we have xK > βa−s = V1

from Lemma A2.3(p.303) (j2) and (7.4.5(p.41) ). Suppose xK > Vt−1, hence xL > Vt−1 from (7) . Then, since L (Vt−1) > 0 due to
Corollary A 2.1(p.303) (a), from (A4.10(p.314) ) and Lemma A2.3(p.303) (g) we have Vt < K (xK ) + xK = xK . Hence, by induction
xK > Vt−1 for t > 1, thus xL > Vt−1 for t > 1 due to (7) . Accordingly, since L (Vt−1) > 0 for t > 1 due to Corollary A 2.1(p.303) (a),
for the same reason as in the proof of Tom A4.3(p.315) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1 and ConductτN for τ ≥ t > 1.

(c2iii) Let b < 0 ((κ < 0)) . Then xL < xK · · · ((8)) from Lemma A2.4(p.304) (c ((d))).

(c2iii1) Let βa− s ≤ a⋆ or sL ≤ s. First, let βa− s ≤ a⋆. Then, since xK = βa− s = V1 from
Lemma A2.3(p.303) (j2), we have xL < V1 from (8) , hence xL ≤ V1. Next, let sL ≤ s. Then, since xL ≤ βa − s due to
Lemma A2.5(p.305) (c), we have xL ≤ V1 and (7.4.5(p.41) ). Accordingly, whether βa − s ≤ a⋆ or sL ≤ s, we have xL ≤ V1, so
xL ≤ Vt−1 for t > 1 due to (a). Hence, since L (Vt−1) ≤ 0 for t > 1 from Corollary A 2.1(p.303) (a), for the same reason as in the
proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βa − s > a⋆ · · · ((9)) and s < sL . Then, from (8) and Lemma A2.5(p.305) (c) we have xK > xL > βa − s =

V1 · · · ((10 )), hence K (V1) > 0 · · · ((11 )) from Lemma A2.3(p.303) (j1). In addition, since V1 > a⋆ due to (9) , we have Vt−1 > a⋆ for

t > 0 from (a). Now, from (A4.12(p.315) ) and (11) we have V2−V1 > 0, i.e., V2 > V1. Suppose Vt−1 < Vt. Then, from (7.4.6(p.41) )
and Lemma A2.3(p.303) (g) we have Vt < max{K (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 < Vt for t > 1, i.e., Vt

is strictly increasing in t > 0. Note that V1 < xL due to (10) . Assume that Vt−1 ≤ xL for all t > 1, hence V ≤ xL . Now,
from (8) and V ≥ xK due to (a) we have the contradiction V ≥ xK > xL ≥ V . Hence, it is impossible that Vt−1 ≤ xL for
all t > 1, implying that there exists t•τ > 1 such that

V1 < V2 < · · · < Vt•τ−1 < xL ≤ Vt•τ < Vt•τ+1 < Vt•τ+2 < · · · , (A 4.15)

from which
Vt−1 < xL , t•τ ≥ t > 1, xL ≤ Vt−1, t > t•τ . (A 4.16)

Therefore, from Corollary A 2.1(p.303) (a) we have L (Vt−1) > 0 · · · ((12 )) for t•τ ≥ t > 1 and L (Vt−1) ≤ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L (Vt−1) > 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.3(p.315) (b) we have ⃝s dOITsτ ⟨τ⟩ N for t•τ ≥ τ > 1 and ConducttN for τ ≥ t > 1. Hence S20(p.315) (1) is true.

2. Let τ > t•τ . Firstly, let τ ≥ t > t•τ . Then, since L (Vt−1) ≤ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ
from (A4.11(p.315) ), thus
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Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).

Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.9(p.314) ) we have Vt − βVt−1 > 0 for t•τ ≥ t > 1, i.e., Vt > βVt−1 for t• ≥ t > 1,
hence

Vt•τ > βVt•τ−1 > β2Vt•τ−2 > · · · > βt•τ−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ > βτ−t•τ+1Vt•τ−1 > βτ−t•τ+2Vt•τ−2 > · · · > βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 8.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ ∥ for τ > t•τ . In addition, we have

ConducttN for t• ≥ t > 1 due to (12) and (A 4.13(p.315) ). Hence S20(p.315) (2) is true.

A4.3 A {M̃:1[P][A]}
Since K̃ (x) + (1− β)x = L̃ (x) due to (6.1.34(p.27) ) and (6.1.33(p.27) ), from (7.4.8(p.41) ) we have

Vt − βVt−1 = min{L̃ (Vt−1), 0} ≤ 0, t > 1. (A 4.17)

Accordingly:

1. If L̃ (Vt−1) ≤ 0, then Vt − βVt−1 = L̃ (Vt−1) or equivalently

Vt = L̃ (Vt−1) + βVt−1 = K̃ (Vt−1) + Vt−1, t > 1. (A 4.18)

2. If L̃ (Vt−1) ≥ 0, then Vt − βVt−1 = 0 or equivalently

Vt = βVt−1, t > 1.. (A 4.19)

Now, from (7.4.8(p.41) ) with t = 2 we have

V2 − V1 = min{K̃ (V1),−(1− β)V1}. (A 4.20)

Finally, from (A4.17(p.317) ) we see that

L̃ (Vt−1) < (>) 0⇒ ConducttN (Skipt). (A 4.21)

In this model let us note that the search must be necessarily conducted at time t = 1 (see Remark 4.1.3(p.20) (b)) and that

λ = 1 · · · (1) (see A2(p.20) ), δ = 1 (see (11.2.1(p.56) )). (A 4.22)

� Tom A4.5 (A {M̃:1[P][A]}) Let β = 1 and s = 0.

(a) Vt is nonincreasing in t > 0.

(b) We have ⃝s dOITsτ ⟨τ⟩ N where Conductτ≥t>1N.

• Proof Let β = 1 and s = 0. Then, from (6.1.34(p.27) ) we have K̃ (x) = T̃ (x) ≤ 0 · · · ((1)) for any x due to

Lemma A3.7(p.309) (g), hence from (7.4.8(p.41) ) and (1) we have Vt = min{T̃ (Vt−1)+Vt−1, Vt−1} = T̃ (Vt−1)+Vt−1 · · · ((2)) for t > 1.

(a) Since V2 = T̃ (V1)+V1 from (2) , we have V2 ≤ V1 due to (1) . Suppose Vt−1 ≥ Vt. Then, from (2) and Lemma A3.7(p.309) (d)
we have Vt ≥ T̃ (Vt) + Vt = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing in t > 0.

(b) Since V1 = b from (7.4.7(p.41) ), we have V1 > a. Suppose Vt−1 > a. Then, noting b⋆ > b > a due to Lemma A3.7(p.309) (n),
from (2) we have Vt > T̃ (a) + a = a due to Lemma A3.7(p.309) (l,g). Accordingly, by induction Vt−1 > a for t > 1, hence
L̃ (Vt−1) < 0 for t > 1 due to Lemma A3.8(p.310) (d), thus L̃ (Vt−1) < 0 · · · ((3)) for τ ≥ t > 1. Hence, from (A4.17(p.317) ) we obtain

Vt − βVt−1 < 0 for τ ≥ t > 1, i.e., Vt < βVt−1 for τ ≥ t > 1. Accordingly Vτ < βVτ−1 < · · · < βτ−1V1, hence t∗τ = τ for τ > 1,
i.e., ⃝s dOITsτ ⟨τ⟩ N for τ > 1. Then ConducttN for τ ≥ t > 1 due to (3) and (A 4.21(p.317) ).

Let us define

S21 ⃝
s N } ∥ = { For any τ > 1 there exists t•τ > 1 such that

(1) ⃝s dOITst•τ≥τ>1⟨τ⟩ N where Conductτ≥t>1N,

(2) } ndOITτ>t•τ ⟨t
•
τ ⟩ ∥ where Conductτ≥t>1N.

}
� Tom A4.6 (A {M̃:1[P][A]}) Let β < 1 or s > 0.
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(a) Vt is nonincreasing in t > 0 and converges to a finite V ≤ x
K̃ as t→∞.

(b) Let βb ≤ a. Then • dOITdτ>1⟨1⟩ ∥.

(c) Let βb > a.

1. Let β = 1.

i. Let b+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

ii. Let b+ s < b⋆. Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

2. Let β < 1 and s = 0 ((s > 0)) .

i. Let a < 0 ((κ̃ < 0)) . Then ⃝s dOITsτ>1⟨τ⟩ N where Conductτ≥t>1N.

ii. Let a = 0 ((κ̃ = 0)) .

1. Let βb+ s ≥ b⋆. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆. Then ⃝s dOITsτ ⟨τ > 1⟩ N where Conductτ≥t>1N.

iii. Let a > 0 ((κ̃ > 0)) .

1. Let βb+ s ≥ b⋆ or sL̃ ≤ s. Then • dOITdτ>1⟨1⟩ ∥.

2. Let βb+ s < b⋆ and s < sL̃ . Then S21 ◦N ∗△ is true.

• Proof Let β < 1 or s > 0. First note (A 4.22 (1,2) (p.317) ).

(a) Since x
K̃ ≤ (βb + s)/δ = βb + s = V1 due to Lemma A3.9(p.310) (j2) and (7.4.7(p.41) ), we have K̃ (V1) ≤ 0 due to

Lemma A3.9(p.310) (j1), hence V2 − V1 ≤ 0 from (A4.20(p.317) ), i.e., V1 ≥ V2. Suppose Vt−1 ≥ Vt. Then, from (7.4.8(p.41) ) and
Lemma A3.9(p.310) (e) we have Vt ≥ min{K̃ (Vt)+Vt, βVt} = Vt+1. Hence, by induction Vt−1 ≥ Vt for t > 1, i.e., Vt is nonincreasing
in t > 0. Consider a sufficiently small M < 0 such that βb + s ≥ M and a ≥ M , hence V1 ≥ M . Suppose Vt−1 ≥ M . Then,
from Lemma A3.9(p.310) (e) and (A 3.5 (2) (p.310) ) we have Vt ≥ min{K̃ (M) + M,βM} = min{βM + s, βM} ≥ min{M,M} = M
due to β ≤ 1 and s ≥ 0. Hence, by induction Vt ≥ M for t > 0, i.e., Vt is lower bounded in t. Accordingly Vt converges to a
finite V as t→∞. Then, from (7.4.8(p.41) ) we have V = min{K̃ (V ) + V, βV }, hence 0 = min{K̃ (V ),−(1− β)βV }. Thus, since
K̃ (V ) ≥ 0, we have V ≤ x

K̃ from Lemma A3.9(p.310) (j1).

(b) Let βb ≤ a · · · ((1)). Then x
L̃ ≥ βb+s = V1 from Lemma A3.11(p.311) (c1) with λ = 1 and δ = 1, hence x

L̃ ≥ Vt−1 for t > 1

from (a). Accordingly, since L̃ (Vt−1) ≥ 0 for t > 1 due to Corollary A 3.2(p.310) (a), we have L̃ (Vt−1) ≥ 0 for τ ≥ t > 1. Hence,

from (A4.19(p.317) ) we have Vt = βVt−1 for τ ≥ t > 1. Thus, we have Vτ = βVτ−1 = · · · = βτ−1V1 , i.e., I
τ
τ = Iτ−1

τ = · · · = I1τ ,
hence t∗τ = 1 for τ > 1, i.e., • dOITdτ ⟨1⟩ ∥ for τ > 1 due to Preference Rule 8.2.1(p.45) .

(c) Let βb > a.

(c1) Let β = 1 · · · ((2)), hence s > 0 due to the assumption “β < 1 or s > 0” of the lemma. Then, we see that (λβb +

s)/δ = b + s · · · ((3)) due to (2(p.318) ) and (A 4.22(p.317) ). In addition, since x
L̃ = x

K̃ · · · ((4)) from Lemma A3.10(p.311) (b), we have

K̃ (xL̃ ) = K̃ (xK̃ ) = 0 · · · ((5)).

(c1i) Let b + s ≥ b⋆. Then x
L̃ = x

K̃ = b + s = V1 from (4) , Lemma A3.9(p.310) (j2, (3) , and (7.4.7(p.41) ). Accordingly, since
x
L̃ ≥ Vt−1 for t > 1 from (a), we have L̃ (Vt−1) ≥ 0 for t > 1 due to
Corollary A 3.2(p.310) (a). Hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c1ii) Let b + s < b⋆. Then x
L̃ = x

K̃ < b + s = V1 < b⋆ from (4) , Lemma A3.9(p.310) (j2), and (7.4.7(p.41) ), hence b⋆ > Vt−1

for t > 1 from (a). Suppose Vt−1 > x
L̃ , hence L̃ (Vt−1) < 0 from

Corollary A 3.2(p.310) (a). Then, from (A4.18(p.317) ), Lemma A3.9(p.310) (g), and (5) we have Vt > K̃ ( xL̃ ) + x
L̃ = x

L̃ . Accordingly,
by induction Vt−1 > x

L̃ for t > 1, hence, L̃ (Vt−1) < 0 for t > 1 from
Corollary A 3.2(p.310) (a). Thus, for the same reason as in the proof of Tom A4.5(p.317) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and
ConducttN for τ ≥ t > 1.

(c2) Let β < 1 and s = 0 ((s > 0)) .

(c2i) Let a < 0 ((κ̃ < 0)) . Then x
L̃ < x

K̃ < 0 · · · ((6)) from Lemma A3.10(p.311) (c ((d))). Now, since x
K̃ ≤ βb + s due

to Lemma A3.9(p.310) (j2) with λ = 1 and δ = 1, we have x
K̃ ≤ V1 from (7.4.7(p.41) ). Suppose x

K̃ ≤ Vt−1. Then, from
Lemma A3.9(p.310) (e) we have Vt ≥ min{K̃ ( xK̃ ) + x

K̃ , β x
K̃} = min{ xK̃ , β x

K̃} = x
K̃ due to x

K̃ < 0. Accordingly, by induction
Vt−1 ≥ x

K̃ for t > 1, hence Vt−1 > x
L̃ for t > 1 from (6) , thus L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.310) (a). Hence, for

the same reason as in the proof of Tom A4.5(p.317) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and CONDUCTtN for τ ≥ t > 1.

(c2ii) Let a = 0 ((κ̃ = 0)) . Then x
L̃ = x

K̃ · · · ((7)) from Lemma A3.10(p.311) (c ((d))).

(c2ii1) Let βb + s ≥ b⋆. Then, x
K̃ = βb + s = V1 from Lemma A3.9(p.310) (j2) and (7.4.7(p.41) ). Suppose Vt−1 = x

K̃ , hence
Vt−1 = x

L̃ from (7) , thus L̃ (Vt−1) = L̃ ( xL̃ ) = 0. Then, from (A4.18(p.317) ) we have Vt = K̃ ( xK̃ ) + x
K̃ = x

K̃ . Accordingly, by
induction Vt−1 = x

K̃ for t > 1, hence Vt−1 = x
L̃ for t > 1 due to (7) . Then, since L̃ (Vt−1) = L̃ ( xL̃ ) = 0 for t > 1, we have

Vt = βVt−1 for t > 1 from (A4.19(p.317) ), hence, for the same reason as in the proof of (b) we obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2ii2) Let βb+ s < b⋆. Then, since V1 < b⋆ from (7.4.7(p.41) ), we have Vt−1 < b⋆ for t > 1 due to (a). In addition, we have
x
K̃ < βb + s = V1 from Lemma A3.9(p.310) (j2). Suppose x

K̃ < Vt−1, hence x
L̃ < Vt−1 from (7) . Then, since L̃ (Vt−1) < 0 due

to Corollary A 3.2(p.310) (a), from (A4.18(p.317) ) and Lemma A3.9(p.310) (g) we have Vt > K̃ ( xK̃ ) + x
K̃ = x

K̃ . Hence, by induction
x
K̃ < Vt−1 for t > 1, thus x

L̃ < Vt−1 for t > 1 due to (7) . Accordingly, since L̃ (Vt−1) < 0 for t > 1 due to Corollary A 3.2(p.310) (a),
for the same reason as in the proof of Tom A4.5(p.317) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1.

(c2iii) Let a > 0 ((κ̃ > 0)) . Then x
L̃ > x

K̃ · · · ((8)) from Lemma A3.10(p.311) (c ((d))).
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(c2iii1) Let βb+ s ≥ b⋆ or sL̃ ≤ s. First let βb+ s ≥ b⋆. Then, since x
K̃ = βb− s = V1 from

Lemma A3.9(p.310) (j2), we have x
L̃ > V1 from (8) , hence x

L̃ ≥ V1. Next let sL̃ ≤ s. Then, since x
L̃ ≥ βb + s due to

Lemma A3.11(p.311) (d), we have x
L̃ ≥ V1. Accordingly, whether βb + s ≥ b or sL̃ ≤ s, we have x

L̃ ≥ V1, thus x
L̃ ≥ Vt−1 for

t > 1 due to (a). Hence, since L̃ (Vt−1) ≥ 0 for t > 1 from Corollary A 3.2(p.310) (a), for the same reason as in the proof of (b) we
obtain • dOITdτ ⟨1⟩ ∥ for τ > 1.

(c2iii2) Let βb + s < b⋆ · · · ((9)) and s < sL̃ . Then, from (8) and Lemma A3.11(p.311) (d) we have x
K̃ < x

L̃ < βb + s =

V1 · · · ((10 )), hence K̃ (V1) < 0 · · · ((11 )) from Lemma A3.9(p.310) (j1). In addition, since V1 < b⋆ due to (9) , we have Vt−1 < b⋆

for t > 0 from (a). Now, from (A4.20(p.317) ) and (11) we have V2 − V1 < 0, i.e., V2 < V1. Suppose Vt−1 > Vt. Then, from
Lemma A3.9(p.310) (g) we have Vt > min{K̃ (Vt) + Vt, βVt} = Vt+1. Accordingly, by induction Vt−1 > Vt for t > 1, i.e., Vt is
strictly decreasing in t > 0. Note that V1 > x

L̃ due to (10) . Assume that Vt−1 ≥ x
L̃ for all t > 1, hence V ≥ x

L̃ due to
(a). Then, from (8) and V ≤ x

K̃ due to (a) we have the contradiction of V ≤ x
K̃ < x

L̃ ≤ V . Hence, it is impossible that
Vt−1 ≥ x

L̃ for all t > 1, implying that there exists t•τ > 1 such that

V1 > V2 > · · · > Vt•τ−1 > x
L̃ ≥ Vt•τ > Vt•τ+1 > Vt•τ+2 > · · · , (A 4.23)

from which
Vt−1 > x

L̃ , t•τ ≥ t > 1, x
L̃ ≥ Vt−1, t > t•τ . (A 4.24)

Therefore, from Corollary A 3.2(p.310) (a) we have L̃ (Vt−1) < 0 · · · ((12 )) for t•τ ≥ t > 1 and L̃ (Vt−1) ≥ 0 · · · ((13 )) for t > t•τ .

1. Let t•τ ≥ τ > 1. Then, since L̃ (Vt−1) < 0 · · · ((14 )) for τ ≥ t > 1 from (12) , for the same reason as in the proof of

Tom A4.5(p.317) (b) we have ⃝s dOITsτ ⟨τ⟩ N for τ > 1, and ConducttN for τ ≥ t > 1. Hence S21(p.317) (1) is true.

2. Let τ > t•τ . Firstly, let τ ≥ t > t•τ . Then, since L̃ (Vt−1) ≥ 0 for τ ≥ t > t•τ from (13) , we have Vt = βVt−1 for τ ≥ t > t•τ
from (A4.19(p.317) ), thus

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ · · · ((15 )).

Next, let t•τ ≥ t > 1. Then, from (12) and (A 4.17(p.317) ) we have Vt−βVt−1 < 0 for t•τ ≥ t > 1, i.e., Vt < βVt−1 for t•τ ≥ t > 1,
hence

Vt•τ < βVt•τ−1 < β2Vt•τ−2 < · · · < βt•τ−1V1 · · · ((16 )).

From (15) and (16) we have

Vτ = βVτ−1 = β2Vτ−2 = · · · = βτ−t•τ Vt•τ < βτ−t•τ+1Vt•τ−1 < βτ−t•τ+2Vt•τ−2 < · · · < βτ−1V1,

hence we obtain t∗τ = t•τ for τ > t•τ due to Preference Rule 8.2.1(p.45) , i.e., } ndOITτ ⟨t•τ ⟩ for τ > t•τ . In addition, we have

ConducttN for t•τ ≥ t > 1 due to (12) and (A 4.21(p.317) ). Hence S21(2) is true.

A5 Optimal Initiating Time of Markovian Decision Processes
This section defines the optimal initiating time (OIT) for Markovian decision processes (MDP) [22,Howard,1960][39,Ross], which
can be regarded as the most general model of decision processes.

A5.1 Standard Definition of Markovian Decision Processes

A 5.1.1 Maximization MDP

Let the process be in a state i at a time t (see Figure 2.2.1(p.11) ), and if an action x is taken at that time, then a reward r(i, x)
can be obtained and the present state i changes into j at the next time t− 1 with a known probability p(j|i, x). By vt(i) let us
denote the maximum of the total expected present discounted profit gained over a given planning horizon starting from a time
t in a state i. Then we have

vt(i) = maxx

{
r(i, x) + β

∑
j p(j|i, x)vt−1(j)

}
, t > 0, (A 5.1)

where v0(i) is a profit specified for a reason inherent in the process; in many cases, v0(i) = maxx r(i, x). Let us call the decision
process the maximization MDP.

A5.1.2 Minimization MDP

This is the inverse of the maximization MDP where if an action x is taken at a given time t in a state i, a cost c(i, x) must be
paid. By vt(i) let us denote the minimum of the total expected present discounted cost over a given planning horizon from
starting a time t in a state i. Then we have

vt(i) = minx

{
c(i, x) + β

∑
j p(j|i, x)vt−1(j)

}
, t > 0, (A 5.2)

where v0(i) is a cost specified for a reason inherent in the process; in many cases, v0(i) = minx c(i, x). Let us call the decision
process the minimization MDP.
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A5.2 Optimal Initiating Time

A5.2.1 Initiating State i◦

Assume that a common state i◦ is defined for any given initiating time t ≥ 0, and let us define

Vt
def
= vt(i◦), t ≤ τ. (A 5.3)

A5.2.2 Relationship between V[τ ] and Vβ[τ ] (see Section 8.2.4.2(p.45) )

In this section, by using some examples, let us demonstrate that the monotonicity of

V[τ ] = {Vτ , Vτ−1, Vτ−2, · · · , Vtqd} (original sequence)

is not always inherited to

Vβ[τ ] = {Vτ , βVτ−1, β
2Vτ−2, · · · , βτVtqd} (β-adjusted sequence).

Below let

V[τ ] → · · · · ·
Vβ[τ ] → ◦ ◦ ◦ ◦ ◦

t∗τ → • (optimal initiating time)

� Example 1.5.1 (maximization MDP) Suppose V[τ ] is strictly increasing in t where

Vτ > Vτ−1 > Vτ−2 > · · · > V0 > 0.

In this case, as seen in Figure A 5.1(p.320) below, we have Vτ > βVτ−1 > β2Vτ−2 > · · · > βτV0 > 0, i.e., the monotonicity of V[τ ]

is inherited to Vβ[τ ] where the optimal initiating time is given by t∗16 = 16 (⃝⃝s ).
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Figure A 5.1: Inheritance of monotonicity

� Example 1.5.2 (maximization MDP) Suppose V[τ ] is strictly increasing in t where

Vτ > βVτ−1 > Vτ−2 > · · · > Vτ−t′ > 0 > Vτ−t′−1 > · · · > V0.

In this case, as seen in Figure A 5.2(p.320) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 16 (⃝⃝s ).
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Figure A 5.2: Collapse of monotonicity
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� Example 1.5.3 (maximization MDP) Suppose V[τ ] is strictly decreasing in t where

0 < Vτ < βVτ−1 < Vτ−2 < · · · < V0.

In this case, as seen in Figure A 5.3(p.321) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 6, i.e., nondegenerate (} ).
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Figure A 5.3: Collapse of monotonicity

� Example 1.5.4 (minimization MDP) Suppose V[τ ] is strictly decreasing in t where

0 < Vτ < βVτ−1 < · · · < Vτ−t′ < 0 < Vτ−t′−1 < · · · < V0.

In this case, as seen in Figure A 5.4(p.321) below, the monotonicity in V[τ ] collapses in Vβ[τ ] where the optimal initiating time is
given by t∗16 = 16 (⃝⃝s ).
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Figure A 5.4: Collapse of monotonicity

A6 Calculation of Solutions xK, xL, and sL

The following lemma is used to numerically calculate the solutions xK, xL, and sL (see Section 6.2(p.27) ).

Lemma A6.1 ( xK , xL , sL )

(a) min{a, (λβµ− s)/δ} ≤ xK ≤ max{b, 0}.
(b) min{a, (λβµ− s)/λ} ≤ xL ≤ b.

(c) 0 ≤ sL ≤ λβµ−min{a, 0}.

• Proof (a)

◦ Let x ≤ a · · · ((1)). Now, from (11.2.4 (1) (p.57) ) we have K (x) = δ
(
(λβµ − s)/δ − x

)
, hence K (x) ≥ 0 for x ≤ (λβµ − s)/δ.

From this and (1) we have K (x) ≥ 0 for x ≤ min{a, (λβµ− s)/δ}, hence K (min{a, (λβµ− s)/δ}) ≥ 0.

1. Let K (min{a, (λβµ− s)/δ}) > 0. Then min{a, (λβµ− s)/δ} < xK · · · ((2)) due to Corollary 11.2.2(p.58) (a).

2. Let K (min{a, (λβµ− s)/δ}) = 0.

· If β = 1 and s = 0, then min{a, (λβµ− s)/δ} ≥ xK due to Lemma 11.2.2(p.57) (i). Since min{a, (λβµ− s)/δ} ≤ a <
b = xK from Lemma 11.2.2(p.57) (i), we have min{a, (λβµ− s)/δ} = xK .

· If β < 1 or s > 0, then min{a, (λβµ− s)/δ} = xK due to Lemma 11.2.2(p.57) (j1).

Accordingly, whether “β = 1 and s = 0” or “β < 1 or s > 0”, we have min{a, (λβµ− s)/δ} = xK · · · ((3)).
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Thus, from (2) and (3) we have min{a, (λβµ− s)/δ} ≤ xK · · · ((4)).

◦ Let b ≤ x · · · ((5)). Now, from (11.2.5 (2) (p.57) ) we have K (x) ≤ 0 for 0 ≤ x. From this and (5) we have K (x) ≤ 0 for

max{b, 0} ≤ x, hence 0 ≥ K (max{b, 0}). Accordingly, we have xK ≤ max{b, 0} · · · ((6)) due to Corollary 11.2.2(p.58) (a).

From (4) and (6) the assertion becomes true.

(b)

◦ Let x ≤ a · · · ((7)). Now, from (11.2.3 (1) (p.57) ) we have L (x) = λβ
(
(λβµ−s)/λβ−x

)
, hence L (x) ≥ 0 for x ≤ (λβµ−s)/λβ.

From this and (7) we have L (x) ≥ 0 for x ≤ min{a, (λβµ− s)/λβ}, hence L (min{a, (λβµ− s)/λβ}) ≥ 0.

1. Let L (min{a, (λβµ− s)/λβ}) > 0. Then min{a, (λβµ− s)/λβ} < xL · · · ((8)) due to Corollary 11.2.1(p.57) (a).

2. Let L (min{a, (λβµ− s)/λβ}) = 0.

· If s = 0, then min{a, (λβµ−s)/λβ} ≥ xL due to Lemma 11.2.1(p.57) (d). Since min{a, (λβµ−s)/λβ} ≤ a < b = xL

from Lemma 11.2.1(p.57) (d), hence min{a, (λβµ− s)/λβ} = xL .

· If s > 0, then min{a, (λβµ− s)/λβ} = xL due to Lemma 11.2.1(p.57) (e1).

Accordingly, whether s = 0 or s > 0, we have min{a, (λβµ− s)/λβ} = xL · · · ((9)).

Thus, from (8) and (9) we have min{a, (λβµ− s)/λβ} ≤ xL · · · ((10 )).

◦ Let b ≤ x · · · ((11 )). Then, from (6.1.3(p.25) ) and Lemma 11.1.1(p.55) (g) we have L (x) = −s ≤ 0, hence 0 ≥ L (b). Accordingly,

due to Corollary 11.2.1(p.57) (a) we have xL ≤ b · · · ((12 )).

From (10) and (12) the assertion becomes true.

(c) From (6.1.5(p.25) ) and (6.1.3(p.25) ) we have L (0) = L (λβµ) = λβT (λβµ) ≥ 0 · · · ((13 )) due to

Lemma 11.1.1(p.55) (g). Now, for a sufficiently large s > 0 such that λβµ−s ≤ a and λβµ−s ≤ 0 · · · ((14 )) we have s ≥ λβµ−a and

s ≥ λβµ, hence s ≥ max{λβµ − a, λβµ} = λβµ +max{−a, 0} = λβµ −min{a, 0} · · · ((15 )). Then, from (6.1.5(p.25) ), (6.1.3(p.25) ),

and Lemma 11.1.1(p.55) (f) we have

L (s) = λβT (λβµ− s)− s = λβ(µ− λβµ+ s)− s = λβµ− λβ(λβµ− s)− s = (1− λβ)(λβµ− s).

Hence, since 1 ≥ λβ, due to (14) we have L (s) ≤ 0 for s ≥ λβµ−min{a, 0} due to (15) , so L (λβµ−min{a, 0}) ≤ 0. From this
and (13) we have L (0) ≥ 0 ≥ L (λβµ−min{a, 0}), hence due to Lemma 11.2.4(p.59) (a) we have 0 ≤ sL ≤ λβµ−min{a, 0}.

A6.1 Calculation of Solutions x
K̃, x

L̃ , and sL̃

Lemma A6.2 ( xK̃ , xL̃ , sL̃ )

(a) max{b, (λβµ+ s)/δ} ≥ x
K̃ ≥ min{a, 0}.

(b) max{b, (λβµ+ s)/λβ} ≥ x
L̃ ≥ a.

(c) 0 ≤ sL̃ ≤ −λβµ+max{b, 0}.

• Proof Applying the operation R to Lemma A6.1(p.321) leads to

⟨a⟩ min{−â, (−λβµ̂− s)/δ} ≤ − x̂K ≤ max{−b̂, 0}.
⟨b⟩ min{−â, (−λβµ̂− s)/λ}β ≤ − x̂L ≤ −b̂.
⟨c⟩ 0 ≤ sL ≤ −λβµ̂−min{−â, 0}.

The above can be rewritten as below:

⟨a⟩ −max{â, (λβµ̂+ s)/δ} ≤ − x̂K ≤ −min{b̂, 0}.
⟨b⟩ −max{â, (λβµ̂+ s)/λ}β ≤ − x̂L ≤ −b̂.
⟨c⟩ 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

The above can be rewritten as below:

⟨a⟩ max{â, (λβµ̂+ s)/δ ≥ x̂K ≥ min{b̂, 0}.
⟨b⟩ max{â, (λβµ̂+ s)/λ}β ≥ x̂L ≥ b̂.

⟨c⟩ 0 ≤ sL ≤ −λβµ̂+max{â, 0}.

Applying the operation CR (see Lemma 13.3.1(p.72) (b,g,h,i) to the above yields

⟨a⟩ max{b̌, (λβµ̌+ s)/δ} ≥ xˇ̃K ≥ min{ǎ, 0}.
⟨b⟩ max{b̌, (λβµ̌+ s)/λ}β ≥ xˇ̃L ≥ ǎ.

⟨c⟩ 0 ≤ sˇ̃L ≤ −λβµ̌+max{b̌, 0}.

Finally, applying the operation IR (see Lemma 13.3.3(p.73) (b,g,h,i), we obtain (a)-(c) of this lemma.
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A7 Others
A 7.1 Monotonicity of Solution

Proposition A7.1 In general, for the solution xt of a given equation gt(x) = 0 we have:

CaseA Let gt(x) is nondecreasing in x for all t.

(I) If gt(x) is nondecreasing in t for all x, then xt is nonincreasing in t.

(II) If gt(x) is nonincreasing in t for all x, then xt is nondecreasing in t.

CaseB Let gt(x) is nonincreasing in x for all t.

(III) If gt(x) is nondecreasing in t for all x, then xt is nondecreasing in t.

(IV) If gt(x) is nonincreasing in t for all x, then xt is nonincreasing in t.

• Proof Evident from Figures A 7.1(p.323) and A7.2(p.323) below:

(I)

x

gt(x) is nondecreasing in t (I)

• • •
xt′′′ xt′′← xt

′←

gt′′′ (x)
↑

gt′′ (x)

↑

gt′ (x)

(II)

0 x

gt(x) is nonincreasing in t (II)

• • •
xt′ xt′′→ xt′′′→

gt′ (x)
↓

gt′′ (x)

↓

gt′′′ (x)

Figure A 7.1: CaseA: gt(x) is nondecreasing in x

(III)

0 x

gt(x) is nondecreasing in t (III)

• • •
xt

′ → xt
′′ →xt

′′′
gt′′′ (x)↑
gt′′ (x)↑
gt′ (x)

(IV)

0 x

gt(x) is nonincreasing in t (IV)

• • •
xt

′′′← xt
′′ ←xt

′
gt′ (x)↓
gt′′ (x)↓
gt′′′ (x)

Figure A 7.2: CaseB: gt(x) is nonincreasing in x

A7.2 Uniform Probability Density Function

For given a and b such as −∞ < a < b <∞ let consider the uniform probability density function:

f(x) =


0, x < a,

1/(b− a), a ≤ x ≤ b,

0, b < x,

(A 7.1)

where the expectation is µ = 0.5(a+ b). Then we have:

T (x) =


0.5(a+ b)− x, x ≤ a, · · · (1),

0.5(b− x)2/(b− a), a ≤ x ≤ b, · · · (2),

0, b ≤ x, · · · (3),

(A 7.2)

where (1) and (3) are immediate from Lemma 11.1.1(p.55) (f,g). Let a ≤ x ≤ b · · · (2). Then, from (6.1.2(p.25) ) we have:

T (x) =
∫ b

a
max{ξ − x, 0}(b− a)−1dξ

=
∫ b

x
(ξ − x)(b− a)−1dξ

= (b− a)−1
∫ b−x

0
ηdη (η = ξ − x) = 0.5(b− x)2/(b− a).
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A7.3 Graphs of TR (x)

From Lemma 11.1.1(p.55) (b,f,g) one immediately sees that TR (x) can be depicted as in Figure A 7.3(p.324) (I) below. Similarly,
from Lemma 11.2.2(p.57) (b, (11.2.4 (1) (p.57) ), and (11.2.5 (2) (p.57) )) we immediately see that KR (x) can be depicted as in Fig-
ure A 7.3(p.324) (II) below.

ba

a

µ−
x

TR (x)

(I)

ba

λβµ−
s−

δx

KR (x)

(II)

−(1− β)x− s
−(1− β)b− s

Figure A 7.3: Graph of TR (x) and KP (x)

A7.4 Graph of TP (x)

From Lemma 14.2.1(p.93) (b,f,g) we immediately see that TP (x) can be depicted as in Figure A 7.4 below.

ba

a

a⋆

a−
x

TP (x)

Figure A 7.4: Graph of TP (x)

Here note that a⋆ < a (see Lemma 14.2.1(p.93) (n)).

When f(x) is the uniform distribution function (see (A 7.1(p.323) )), we can obtain the a⋆ as below. Then we have:

p(z) = 1 for z ≤ a from (6.1.28 (1) (p.26) ),

p(z) =
∫ b

z
f(ξ)dξ =

∫ b

z
1/(b− a)dξ = (b− z)/(b− a) for a ≤ z ≤ b from (6.1.18(p.26) ),

p(z) = 0 for b ≤ z from (6.1.29 (2) (p.26) ).

Hence we get

T (z, x)
def
= p(z)(z − x) =


z − x, z ≤ a · · · ((1)),
(b− z)(z − x)/(b− a), a ≤ z ≤ b · · · ((2)),
0, b ≤ z · · · ((3)).

Then (6.1.19(p.26) ) can be expressed as

T (x) = max
z

T (z, x) = T (z(x), x) · · · ((4)).
Here let us define

g∗(z, x) = (b− z)(z − x)/(b− a), z, x ∈ (−∞,∞),

which is a quadratic expression of z for any given x. By z∗(x) let us denote z attaining the maximum of g∗(z, x) for a given
x ∈ (−∞,∞). Then clearly

z∗(x) = (b+ x)/2 · · · ((5)).

Note that g∗(z, x) can be depicted as the three possible smooth curves (dotted curve) in Figure A 7.5(p.325) below, depending on
a value that z∗(x) takes on, i.e.,

z∗(x) ≤ a · · · (i)

a ≤ z∗(x) ≤ b · · · (ii)

b ≤ z∗(x) · · · (iii)

Accordingly, noting (1) - (3) , we see that T (z, x) can be depicted as the three possible broken curves (bold curve), each of which
has the line z − x with the angle 45◦ on z ≤ a and the horizontal line (z-axis) on b ≤ z.
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(iii) b ≤ z∗(x)

z∗(x)

g
∗ (z

, x
)

z −
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Figure A 7.5: Graph of g∗(z, x) (smooth curve) and T (z, x) (broken curve)

Here note that the T (z, x) is given by the broken curve (see (1) - (3) ) and that z maximizing the broken curve is given by z(x)
(see (4) ). Then, from (5) and Figure A 7.5(p.325) we see that

1. Let z∗(x) ≤ a · · · (1), i.e., (b+ x)/2 ≤ a, hence x ≤ 2a− b. Then, by definition we have

z(x) = a · · · ((6)), x ≤ 2a− b.

Hence, from (4) and (1) we have T (x) = T (a, x) = a− x · · · ((7)) on x ≤ 2a− b.

2. Let a < z∗(x) ≤ b · · · (2), i.e., a < (b+ x)/2 ≤ b, hence 2a− b < x ≤ b. Then, by definition we have

z(x) = z∗(x) = (b+ x)/2 > a · · · ((8)), 2a− b < x ≤ b.

Hence, from (4) and (2) we have

T (x) = T (z∗(x), x) = (b− z∗(x))(z∗(x)− x)/(b− a) = (b− x)2/4(b− a), 2a− b < x ≤ b.

Now, since

m(x)
def
= T (x)− a+ x = ((b− x)2 − 4(b− a)(a− x))/4(b− a),

we have
m′(x) = (x− 2a+ b)/2(b− a) > 0, 2a− b < x ≤ b,

hence m(x) is strictly increasing on 2a−b < x ≤ b. In addition to the fact, since it can be easily confirmed that m(2a−b) = 0,
it follows that m(x) > 0 on 2a−b < x ≤ b, hence m(x) = T (x)−a+x > 0 on 2a−b < x ≤ b or equivalently T (x) > a−x · · · ((9))
on 2a− b < x ≤ b.

3. Let b ≤ z∗(x) · · · (3), i.e., b ≤ (b+ x)/2, hence b ≤ x. Then, by definition we have

z(x) = b > a · · · ((10 )), b ≤ x.

Hence T (x) = T (b, x) = 0 from (4) , hence T (x) = 0 ≥ b− x > a− x · · · ((11 )) on b ≤ x.

Collecting up (7) , (9) , and (11) , we have

T (x)


= a− x, x ≤ 2a− b,

> a− x, 2a− b < x ≤ b,

> a− x, b ≤ x.

(A 7.3)

Accordingly, noting (6.1.26(p.26) ) and Figure A 7.4(p.324) , from (A7.3(p.325) ) we immediately see that

a⋆ = 2a− b · · · (1). (A 7.4)

Similarly, collecting up (6) , (8) , and (10) , we have

z(x)


= a, x ≤ 2a− b,

> a, 2a− b < x ≤ b,

> a, b ≤ x.

(A 7.5)

Accordingly, noting (6.1.27(p.26) ), we immediately see that

x⋆ = 2a− b · · · (2). (A 7.6)

Numerical Experiment 1 (Discontinuity of z(x) (Dr.Mong Shan Ee)) z(x) is not always continuous in x = x⋆; in fact we can
demonstrate a numerical example in which z(x) is not continuous in x = x⋆. For example let us consider F (w) with f(w) such
that f(w) ≈ 0.05701 on [0.1, 0.599], f(w) is a triangle on [0.599, 0.7] with its maximum at w = 0.6, and f(w) ≈ 0.06982 on
[0.7, 3.0]. Then we have z(x) ≈ 0.599 for x ≤ 0.48568 and z(x) ≈ 1.7 for x < 0.48568, i.e., z(x) is discontinuous at x = 0.48568.
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A7.5 Economic Implications of Market Partition

The three restricted markets defined in Section 18.2(p.117) implies the following:

◦ Positive market F+ In an asset trading problem in the real world, the price is usually positive, i.e., the problem is defined
on the positive market F+, called the input market in the sense that all goods are first input in the market.

◦ Mixed market F± For example, suppose you must waste a piece of well-worn furniture, say a book cabinet, sofa bed and
so on. For such a good, normally the two kinds of receiving-sides (buyers) may appear: One who pays some money on the
ulterior motive that some profit might be obtained by reselling it and the other who requires some money for the reason
that some cost may be incurred for its disposal. This market can be regarded as a market in which the positive market and
the negative market are mixed; let us call the market the secondhand market.

◦ Negative market F− The trading problem in A3.5(p.17) is defined on this market; let us call the market the junk market.

Remark A7.1 (life of durable goods) A new durable good (automobile, house furnishings, TV and so on) is first placed
on the positive market F+ (input market), deteriorates year by year, a while later is drove to the mixed market F± (second-
hand market), before long moves into the negative market F− (junk market), and then finally is recycled or dumped. This
deterioration flow implies that the probability density functions of price transfers from right to left as seen in Figure A 7.6(p.326)

below.
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f(w)
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a b
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a b
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Figure A 7.6: Deterioration transition of goods (life of goods)
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♡
Many decision theories discussed by researchers have traditionally been framed as mathematical theories. In contrast, this paper
approaches “decision” as a subject of study within the natural sciences (see Section 1.2(p.3) ). It is important to note that some
researchers may have objections to this viewpoint. However, one should recognize that the truth of mathematics resides within
mathematics itself, and the truth of physics resides within physics; there is no direct relationship between these two types of
truth. To illustrate, physicists sometimes refer to the term “mathematics” as “arithmetic”, using it merely as a tool, akin to
how carpenters use hammers. While a good hammer is necessary for building a good structure, it would be a mistake to think
that a good structure cannot be built without a good hammer. As Albert Einstein famously stated:

As far as the laws of mathematics refer to reality, they are not certain,

and as far as they are certain, they do not refer to reality.

— Albert Einstein —

♢

This paper, which began with a proposition by Dr. Professor Shizuo Senju on March 31, 1966

concludes with this apothegm on September 16, 2024.
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