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Abstract 

Thanks to the rapid progress in deep learning technology, the text-to-speech (TTS) method 

has achieved the same quality as human speech. In this thesis, we propose a method for 

text-to-speech synthesis and estimation that utilizes phonetic and prosodic features. And, 

we propose a method for speech synthesis that allows for the adjustment of acoustic 

features. 

In 2023, speech synthesis technology will be in practical use in many applications. 

Throughout its evolution, speech synthesis technology has progressed from deep neural 

network (DNN)-based statistical speech synthesis to sequence-to-sequence (seq2seq) with 

attention-based text-to-speech (TTS). Notably, seq2seq with attention-based TTS reached 

subjective evaluation equivalence with human-recorded speech following the introduction 

of WaveNet, a neural network-based speech generation technology. However, challenges 

arose in implementing seq2seq-based speech synthesis for Japanese. The issue stemmed 

from the fact that Japanese character strings possess multiple readings, causing a mismatch 

between the strings and speech, leading to suboptimal learning outcomes. 

This thesis proposes a method for Japanese speech synthesis utilizing seq2seq with 

attention-based TTS which using phonetic and prosodic features. The incorporation of 

reading phonetic and prosodic features as high/low pitch accent controls, corresponding to 

pitch-accented languages, is crucial for achieving accurate Japanese pronunciation. This 

paper introduces a method for Japanese speech synthesis incorporating the phonetic and 

prosodic features, along with a technique for inferring phonetic and prosodic features from 

speech. We also propose a method capable of estimating phonetic and prosodic features 

directly from speech. This approach enables the estimation of phonetic and prosodic 

features based solely on speech input, facilitating the generation of labels for speech 

synthesis. Additionally, we propose a method for adjusting acoustic features in speech 

synthesis. 
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Chapter 1 

Introduction 

1.1. Background 

Thanks to the rapid progress in deep learning technology, the text-to-speech (TTS) method 

has achieved the same quality as human speech. Deep neural network (DNN)-based 

statistical speech synthesis [1], which emerged in 2013, significantly improved the quality 

of synthesized speech. Additionally, sequence-to-sequence (seq2seq) with attention-based 

TTS [2], now a mainstream approach, was introduced in 2017. Yet, when seq2seq speech 

synthesis first emerged, no method had been introduced to support Japanese. The purpose 

of this thesis is to explore phonetic and prosodic features (PPF) in conjunction with seq2seq 

acoustic modeling, with the aim of achieving seq2seq-based Japanese speech synthesis and 

estimating PPFs from speech. Moreover, there currently exists no DNN-based statistical 

speech synthesis system capable of dynamically adjusting speaking style, pitch, and speech 

rate. Furthermore, there is a lack of versatile speech synthesis solutions suitable for a wide 

range of content. 

In this thesis, we propose three methods to address this issue. First, the seq2seq models 

for speech synthesis [2] delivers high-quality speech but does not accommodate Japanese 

pitch accents. Second, we propose the novel method for estimating Japanese prosodic 

features in speech. There was no method for realizing phonetic and prosodic labels 

estimation from speech [3]. Third, we propose a method for analytically adjusting acoustic 

features within the intermediate process of the DNN statistical parametric speech synthesis 

pipeline [1] to vary the acoustic features and to learn various speaking styles [4] and 

speakers in a single model. 
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1.2. Prosodic Features Control by Symbols as Input of Sequence-

to-Sequence Acoustic Modeling for Neural TTS 

To achieve high-quality speech synthesis in Japanese that matches the sound quality of 

recorded human speech, it was necessary to develop sequence-to-sequence with attention 

(seq2seq)-based TTS specifically for Japanese [5]. In 2017, speech synthesis using the 

seq2seq models emerged [6]. This method demonstrated performance similar to end-to-end 

speech synthesis in English. However, unlike English, Japanese characters encompass 

various types of kanji, katakana, and hiragana. With multiple readings associated with kanji 

characters, there is no direct correspondence between character strings and their phonemes. 

Consequently, the mismatch between character features and acoustic features prevents 

successful training [7]. In addition, katakana alone has the problem of irregularly changing 

accents. To address this issue, we propose a novel prosodic features control method for 

Japanese speech and develop a speech synthesis that can leverage the seq2seq-based TTS 

for Japanese. This advancement has allowed us to achieve high-quality speech synthesis. 

1.3. Phonemes and Prosodic Feature Recognition 

Japanese is a pitch accent language and accent rules operates on binary information [8]. 

This accentual rule plays a crucial role in understanding how speech is delivered in 

Japanese. For instance, similar to Japanese diacritics, pitch accent information is utilized 

in Japanese accent dictionaries [9], which are indispensable tools for the professional 

anchors, voice actors and Japanese learners. The conventional approach to estimating 

accentual information through machine learning from the F0 of the speech signal [10] often 

yields a low recognition rate and is unsuitable for training data in speech synthesis. But our 

novel phonetic and prosodic labels data are proprietary and available in limited quantities 

data. Therefore, it was necessary to devise methods to improve recognition accuracy with 

a small amount of data. In response to this challenge, we propose a method for estimating 

labels using the self-supervised learning acoustic modeling (AM) estimation approach [3]. 

This method can be effectively trained even with a limited amount of data. 
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1.4. Speech Synthesis with Adjustable Acoustic Features 

DNN-based statistical parametric speech synthesis (SPSS) [1] was limited in its ability to 

adjust speaking style, speech rate, pitch, and intonation. However, audio contents require 

various types of speech features, and professional anchors have access to it, thereby 

enhancing the content's quality. In 2018, Hojo proposed a speech synthesis method that can 

switch speakers [11]. However, a method for controlling speaking style has not been 

proposed. To address these limitations and enable flexible adjustments of speech 

characteristics, we have a proposed method capable of modifying speaking style, speaker, 

speech rate, pitch, and intonation [12]. While there are various potential applications, our 

focus lies on two methods. The first method involves training a corpus with multiple 

speaking styles and speakers in a single model, controlling for them to enhance overall 

quality. The second involves adjusting the intermediate acoustic features of the DNN-based 

SPSS [12] to correct speech rate, pitch, and intonation. 

1.5. Overview of Thesis 

This thesis consists of four parts. In Chapter 2, we propose a Japanese text-to-speech 

method that utilizes the seq2seq model which PP labels [5] to accurately represent speech 

through symbols. Additionally, we discuss the evaluation metrics employed in this study. 

In Chapter 3, we propose phonetic and prosodic labels estimation method for speech [3]. 

Finally, in Chapter 4, we propose the concept of speech synthesis with speaking styles and 

speakers adjustable acoustic features [4]. 
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Chapter 2 

Prosodic Features Control by Symbols as 
Input of Sequence-to-Sequence Acoustic 
Modeling for Neural TTS 

2.1. Introduction 

One of the seq2seq-based TTS methods, also known as Tacotron 2 [2] has achieved speech 

quality on par with human speech in English. The conventional TTS method, known as 

DNN-based SPSS [1], was only able to develop a neural network for acoustic features, 

while other components relied on analytical methods, resulting in low sound quality. 

Consequently, we decided to develop neural networks for all components and initiate 

research on Japanese speech synthesis using seq2seq [5] to improve the synthesized speech. 

However, we encountered difficulties in training seq2seq TTS for Japanese due to the 

high/low pitch accent and the presence of kanji with over two thousand types of characters 

and multiple readings. Japanese consists of three types of characters: Kanji, hiragana, and 

katakana. Specifically, there are 2,136 commonly used kanji characters [13], and over 30% 

of them have multiple readings, making them challenging to train. The emergence of 

seq2seq-based TTS allowed the training data to transition from specially formatted data 

for speech synthesis to human-use character strings. However, even with seq2seq-based 

TTS, training kanji characters presented issues due to a large variety of kanji characters 

and multiple readings. Of the 2,136 kanji characters in the regular use set, slightly more 
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than 30% have multiple readings. Seq2seq-based TTS is a method for matching strings 

and acoustic features. Consequently, when there are numerous patterns in which strings 

and acoustic features do not align, the training process becomes challenging. On the other 

hand, katakana, a common way of representing Japanese readings, does not provide 

information about high/low pitch accents to indicate the correct reading. In seq2seq, 

English stress accents have been confirmed to be trained correctly [2], but a notation for 

representing high/low pitch accents used in Japanese has not been proposed. We propose 

a method to utilize the Dictionary of Japanese Pronunciation and Accentuation [9] as input 

for seq2seq-based TTS, employing katakana and prosodic features to represent Japanese 

speech. We have confirmed that the phonetic and prosodic labels (PP labels) can be applied 

effectively to various types of seq2seq-based TTS. Since the introduction of seq2seq-based 

TTS in 2017, there has been no method of speech synthesis capable of directly training 

raw Japanese character strings, even as of 2023.

2.2. Conventional Method and Its Problems 

The conventional methods contain two types of TTS method (Figure 2.1). First is hidden 

Markov model (HMM)-based statistical parametric speech synthesis [14], second is DNN-

 

Figure 2.1:  Transition of Speech Synthesis Method. 
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based SPSS. DNN-based TTS [15] was developed using HMM-based statistical parametric 

speech synthesis [14]. Training data of this method, full-context (FC), contains many 

features and have low readability. It also requires manually corrected phoneme alignment, 

which is expensive to work with. End-to-end speech synthesis has been actively researched 

ever since Tacotron 2 [16] first produced English speech comparable in quality to that of 

human speech. Tacotron 2 uses a seq2seq model, as do similar methods such as Tacotron 

[17], Char2Wav [6], VoiceLoop [18], Deep Voice 3 [19], and Transformer-based TTS [20].  

In related research, seq2seq AM with a dependency on accent input is proposed. The 

system of Yasuda [7] considered input pitch-accent information in Tacotron, but the system 

controlled only accent information, and the quality of the synthesized speech was worse 

than that of conventional SPSS. Moreover, it was only compatible with Tacotron. Yasuda's 

method inputs a phoneme sequence and accentual-type sequence separately and embeds 

them separately. Our method differs from Yasuda’s in terms of the accent sequence format. 

In our method, the PP labels are merged into one sequence and thus more readable than 

their method that has to separately input sequences. In addition, Fujimoto [21] conducted 

an experiment comparing the suitability of phoneme and mora as units of the input 

sequence, which are one-hot vectors or linguistic features, of seq2seq AM. The sequence 

in the phoneme method is about twice as long as that in the mora method, but long 

sequences tend to occur alignment error [22]. There is a possibility that the phoneme 

method causes more alignment errors than the mora method even though there is no 

difference between phoneme and mora in terms of pronunciation. The system of Okamoto 

[23] inputted FC labels [24] to Tacotron 2, but it could not input symbols directly and was 

only compatible with FC labels that have poor readability. Although seq2seq AM can 

handle symbols directly, the system of Okamoto does not take advantage of the benefits of 

simple input symbols. Furthermore, it is only compatible with Tacotron 2. Shechtman [25] 

proposed a method that reproduces prosody information. The attention section in the 

seq2seq AM of this method has a recurrent architecture. The method produces expressive 

speech and can control the duration, but it cannot replicate prosodic features. While the 

present study is related to these recent approaches in seq2seq AM, it is compatible with 
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multiple seq2seq AM methods, controls prosodic features, and has directly readable and 

writable data descriptions, aspects that were not considered in the earlier studies. 

2.2.1. Overview of Text-to-Speech Synthesis 

The TTS can be broadly divided into three sections (Figure 2.2). The first is “text analysis,” 

the second is “acoustic modeling” and the third is “waveform synthesis.” The text analysis 

section estimates the type of sequences generated from the text, making it the section that 

determines pronunciation, commonly referred to as grapheme-to-phoneme (G2P) [26]. It 

mainly uses natural language processing (NLP) technology for this purpose. The acoustic 

modeling section estimates acoustic features by inputting specific strings and affects sound 

quality as a result. This section has undergone significant improvements in performance 

due to contributions from deep learning. Training data of conventional SPSS is FC labels 

[24]. Acoustic features of SPSS estimate duration time (time alignment) of phoneme and 

 

Figure 2.2:  Overview of Common Text-to-Speech Method. 
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vocoder parameter consist of fundamental frequency (F0), spectral envelope and 

aperiodicity. In many cases, SPSS consist of feedforward DNN or long short-term memory 

(LSTM) [27] waveform synthesis section transforms acoustic features to waveforms. This 

part is referred to as a vocoder also known as “statistical vocoder [28]” or “neural vocoder 

[29].” 

2.2.2. Text-to-Speech Synthesis 

With the introduction of HMM-based TTS, the capability of generating speech for arbitrary 

sentences became a reality in speech synthesis. However, HMMs exhibited low accuracy. 

The advent of DNN-based TTS marked a significant improvement in quality. Both methods 

supported input formats using FC labels and demonstrated proficiency in training and 

inference within specific formats. The appearance of a waveform generation method called 

WaveNet [30] in 2016 and that of the seq2seq method [2] [6] of TTS in 2017 brought the 

quality of TTS to a level equivalent to that of human speech. In addition, the training data 

became simpler and less expensive to produce. In the context of seq2seq-based TTS, the 

input string is a sequence, the nature of which varies based on the language. For languages 

like English, where strings and pronunciations closely align, seq2seq-based TTS exhibited 

smooth training. However, for pitch accent languages such as Japanese, where a single 

character can have multiple readings, as in the case of kanji, the need to devise a specific 

string for training arose. In the instance of a pitch accent language like Japanese, a tailored 

learning string was imperative. 

2.2.3. Text Analysis 

The text analysis section consists of the method that converts graphemes of text spelled out 

into phonemes, which is why it is called a grapheme-to-phoneme (G2P) method [26]. If 

not done well, this estimation of phonemes will negatively affect pronunciation, resulting 

in strange intonation. If the intonation of synthesized speech is felt to be unnatural, the 

reason for this is thought to be the quality of G2P. The G2P method differs from one 

language to another. In the case of English, many words can be straightforwardly converted 

because many of them are one-to-one conversion in graphemes and phonemes, but because 

some words have multiple readings, using deep learning methods has been proposed [26]. 
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We propose novel G2P method for acoustic modeling of pitch-accent language [5]. 

2.2.4. Acoustic Features Estimation and Speech Generation 

Waveform audio file consist of 48k discrete data points per second in CD quality, resulting 

in a substantial amount of data for generation. Consequently, the task of speech synthesis, 

which aims to produce accurate speech data from a limited representation of linguistic 

feature, is often divided into “acoustic features estimation (acoustic modeling)” and 

“speech generation (waveform synthesis).” The acoustic features are estimated from 

linguistic features obtained through text analysis. In DNN-based SPSS, DNNs are trained 

to estimate acoustic features from FC labels. Although this acoustic feature information is 

less comprehensive than raw data speech, it retains the linguistic information of the speech 

and is used in speech visualization methods. 

The task of accurately generating waveforms is challenging due to the limited amount 

of data available for acoustic features and the significantly larger amount of data required 

for waveforms. To address this issue, various methods have been proposed, including 

analytically calculating waveforms from acoustic features such as F0, spectral envelope, 

and aperiodicity. Additionally, methods involving the estimation of waveforms from mel-

spectrograms using convolutional neural networks (CNNs) [31] have been introduced.
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2.3. Proposed Method 

We develop a method of controlling the prosodic features that works by inputting a symbol 

between phonetic symbols. Seq2seq AM corresponds to inputs of phonetic symbols [17], 

but it has been confirmed that the accents cannot be reproduced by training input consisting 

of Japanese phonetic symbols [32] due to the lack of accent information. Furthermore, 

normal Japanese text contains multiple readings of characters, which makes it unsuitable 

for seq2seq AM training. To solve these problems, we propose a notation method that 

represents the synthesized speech uniquely by using PP labels. The prosodic symbols 

(Table 2.1) complement the acoustic features between phonetic symbols and can reproduce 

accurate speech. We conducted experiments show that the proposed method is effective for 

pitch-accent languages such as Japanese.  

PP labels can be generated automatically and using them to make annotations is simple. 

The conventional DNN-based SPSS [1] [30] uses time-aligned FC labels. A high-quality 

SPSS method requires accurate time alignments, and the cost of accurately determining 

time alignments is high. Our method does not require time alignment because the seq2seq-

based TTS can train directly from the input symbols. We propose a way of automatically 

converting FC labels into PP labels. FC labels contain linguistic features such as phoneme, 

accent information, accentual phrase boundary, end-of-sentence (EOS), and pause. This 

information is rearranged according to the proposed rules, and the results are natural 

synthesized speech in seq2seq AM. Evaluations have shown that using PP labels yields 

more natural speech than conventional SPSS. This shows the possibility of their general 

use with seq2seq AM methods. We conducted objective and subjective experiments, and 

the results indicated that placing prosodic symbols between phonetic symbols can control 

accents, pause breaks, accentual phrase boundary, and EOS. We confirmed that PP labels 

can control prosodic features by using three seq2seq AM methods in TTS for Japanese. 

2.3.1. Sequence-to-Sequence Acoustic Modeling for Neural TTS 

Seq2seq AM is a method that generates mel-spectrograms representing inputted symbols. 
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Since the advent of WaveNet [30], it has enabled high-quality speech to be generated from 

mel-spectrograms. The advantage of this approach is that mel-spectrogram can be 

converted directly into a waveform. To reproduce prosodic-acoustic features such as accent 

for seq2seq AM, we insert prosodic symbols between phonetic symbols and use the result 

as the input of seq2seq AM. This method represents the synthesized speech uniquely, 

especially pitch accents, and should be easily readable by people. It is highly readable, so 

the labels can be read and understood directly, and a front-end is not required, depending 

on how it is used. 

The right side of Figure 2.3 shows an overview of a TTS system incorporating the 

proposed method. This diagram consists of three parts. The first part is the PP label 

generation. By combining the FC label conversion method with the front-end, the PP labels 

can be automatically generated from the text. In addition, the FC labels can be used and 

the information in the existing labels, can be discarded. The second part is the mel-

spectrogram estimation with seq2seq AM. This part can be replaced with other seq2seq 

architectures. The third part is waveform generation methods convert acoustic features, 

such as mel-spectrograms, into waveforms, which are discrete signals. WaveNet, which 

uses CNN, and Griffin-Lim vocoder, which estimates phase from acoustic features, are 

common methods. Recently, WaveNet is computationally expensive, so faster methods 

using generative adversarial network (GAN) [33] and generative flow (GLOW) [34] are 

 

Figure 2.3:  Diagram of TTS Using Seq2seq AM and PLP Labels.  
（Copyright (C) 2021 IEICE, [5] Fig. 1） 

Front-end

FC label
Conversion method

Vocoder
(WaveNet
Griffin-lim)

Speech
waveform

Mel-
spectrogram

Encoder

Decoder
Attention

Text

Direct
annotation

PLP 
symbols

Hand-
editing

Seq2seq AM

Full-context
label



 
2.3. Proposed Method 

   12 

commonly used.  

2.3.2. Prosodic Symbols 

Table 2.1 lists the PP labels. We specified the prosodic symbols with reference to the 

Japanese ToBI label model [35] as follows. The prosodic symbols consist of initial rising 

(which denotes a rapid rising of F0 after the symbol), accent nucleus (which denotes a rapid 

falling of F0 after the symbol), accentual phrase boundary, EOS, and pause symbols. An 

accent-phrase is a unit that forms an accent during pronunciation. This description method 

uses arbitrary symbols, but has a simple representation. Because the symbols are arbitrary, 

this method can be applied to other languages besides Japanese. 

2.3.3. English and Japanese Accent System and Our Notation 
Method 

Tacotron 2 employs the ARPAbet [36] notation for training English. ARPAbet represents 

phonemes and allophones of General American English with distinct sequences of ASCII 

characters. The conventional method for converting English text to ARPAbet is through 

G2P language processing in English. In Japanese, the G2P approach is used, as shown in 

Chapter 2.1. The conventional method for Japanese speech production involves a seq2seq 

method with a dependency component. Meanwhile, we propose a versatile Japanese 

Table 2.1:  Examples of Prosodic Symbols. 

 

Feature Prosodic 
symbols

Initial rising ^
Accent nucleus !

Accentual phrase boundary #
EOS (Declarative) (

EOS (Interrogative) ?
Pause ___
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language method that is based on PP labels as input.  

Figure 2.4 illustrates our notation method for representing high (H) and low (L) pitch 

between mora for seq2seq AM. The Japanese language has a pitch-accent feature that can 

be represented as a sequence of binary F0 levels in mora units [37] [38]. Japanese pitch 

accents in Tokyo dialect have the following rules. 

• A rapid rise or fall in F0 must take place between the first mora and the second mora. 

• The maximum number of rapidly rising patterns of F0 between two consecutive morae in 

a word is one. 

• The maximum number of rapidly falling patterns of F0 between two consecutive morae 

in a word is one. 

We have added these rules to the notation method for seq2seq AM and made up the label 

format for seq2seq AM. Figure 2.4 shows the procedure of producing phonetic and 

prosodic symbols. First, we conduct morphological analysis [39] for obtaining PP labels to 

represent phonetic symbols and accent prediction [40] for obtaining accent information. 

Second, we combine these sequences and the representations for the phonetic symbols and 

prosodic features. Finally, we follow the accent rules in Table 2.1; we place the prosodic 

symbols between the phonetic symbols and obtain phonetic and prosodic symbols. In the 

 

Figure 2.4:  Procedure of Producing Phonetic and Prosodic Symbols. 
（Copyright (C) 2021 IEICE, [5] Fig. 2） 
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inputted PP labels, the initial rising “^” and accent nucleus “!” prosodic symbols make the 

prosodic-acoustic feature appropriate high or low pitch until the next prosodic symbol 

appears in the input of seq2seq AM. 

2.3.4. Text Analysis and FC-Label-to-PP-Label Conversion 

Open JTalk [40] is a TTS system that contains a Japanese front-end, and it converts 

Japanese text into FC label [24]. Open JTalk contains Japanese text analysis functions, 

including grapheme-to-phoneme conversion, and a morphological analysis called Mecab 

[39]. Figures 2.5 and 2.6, and Tables 2.2 and 2.3 explain the FC label converter to PP label. 

The FC label has linguistic and acoustic information; we pick up the phonemes and features 

listed in Table 2.1 and convert the sequences into PP symbols. On the other hand, Japanese 

kanji characters potentially contain mismatches between input symbols and acoustic 

features, which can potentially cause alignment errors in the encoder outputs and decoder 

inputs due to the kanji having multiple readings. These mismatches may in turn cause 

alignment errors depending on conversion errors in the text of the corpus. 
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Figure 2.5:  Algorithm of Full-Context Label Converter. 
          （Copyright (C) 2021 IEICE, [5] Fig. 3） 

 

Algorithm: Full-context label conversion method
Input: Full-context label, N =number of phonemes
Output: Phonetic and prosodic symbols
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Figure 2.6:  Overview of Converting Full-Context Label into 
Phonetic and Prosodic Symbols. 

     （Copyright (C) 2021 IEICE, [5] Fig. 4） 
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Table 2.2:  List of Context Feature Templates. 

 

Table 2.3:  List of Context Feature Templates. 

 

Index Feature templates
Order of phoneme symbol
Phoneme identifies
Accent type and position
Part-of-speech, inflected and conjugation of previous word
Part-of-speech, inflected and conjugation of current word
Part-of-speech, inflected and conjugation of next word
Information on previous accent phrase
Information on current accent phrase
Information on next accent phrase
Information on previous breath group
Information on current breath group
Information on next breath group
Number of breath groups, accent phrases and moras
Symbols of phonetic and prosodic features

𝑛
𝑝#
𝑎#
𝑏#
𝑐#

𝑒#
𝑓#
𝑔#
ℎ#
𝑖#
𝑗#
𝑘#

𝑑#

𝑃𝑃#

Index Feature templates

The current phoneme identity
The difference between accent type and position 
of the current mora identity
Position of the current mora identity in the current 
accent phrase (forward)
Position of the current mora identity in the current 
accent phrase (backward)
Whether the previous accent phrase interrogative 
or not (0: not interrogative, 1: interrogative)
The number of moras in the current accent phrase

pau Information on pause

sil Information on silence

𝑎",$

𝑒",&

𝑓",$

𝑎",(

𝑎",&

𝑝",&
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2.3.5. Hand-Editing and Direct Description 

The PP labels are simple and can be edited by hand. This enables direct annotation without 

an FC label converter. Compared with time-aligned FC labels, PP labels do not require the 

boundary positions of the phonemes, the identification of which is a time-consuming task 

because the boundaries between phonemes are ambiguous. In particular, with PP labels, we 

can read and annotate them directly. Meanwhile, it is not possible to read FC labels because 

of their complicated expression.

2.4. Experiments 

We conducted objective evaluations on the encoder-decoder alignments, synthesized mel-
spectrograms and F0. We also conducted subjective evaluations of the naturalness of the 
synthesized speech. 
 

2.4.1. Datasets and Experimental Conditions 

We used the JSUT [41] corpus, which is a large-scale open Japanese speech corpus. The 

whole corpus contains 10 hours of speech and corresponding normal Japanese text. It 

contains 7,696 utterances. The corpus was split into 7,596 samples for training and 100 

samples for testing. The test set included 30 samples for evaluations and four samples for 

the evaluators’ training. FC labels with time alignments were generated by Open JTalk and 

Julius [42] [43] and PP labels were generated by Open JTalk and the FC label conversion 

method (see Section 2.3.4). The number of training iterations for the WaveNet vocoder [29] 

was 860,000. The sampling rate was 22 kHz, 16-bit.  

We conducted experiments comparing four types of input sequences consisting of 

commonly used Japanese characters and three types of seq2seq AM methods and 

implementations. We automatically prepared the Japanese PP labels by using the method 

described in Section 2.3.4. The first type was normal Japanese text consisting of kanji and 

hiragana (KH). Hiragana has the same reading as katakana. The second type was 

automatically generated plain katakana (KT) which represented readings without accent 

information; the characters were represented by mora. The third type was phonetic symbols 
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consisting of Roman alphabet (phoneme) and prosodic symbols (PP (phon.)). The fourth 

type was phonetic symbols consisting of katakana (mora) and prosodic symbols (PP 

(mora)). The PP labels and KT included misread kanji converted by Open JTalk, but they 

were used in the training without making any hand-edited corrections to them. In Sections 

2.4.3 and 2.4.6, we also used the PP (phon.) for comparison with PP (mora). These types 

of sequences composed the input of the proposed method. Table 2.4 lists the systems that 

were tested in the experiment, and Table 2.5 shows an example of input symbols.  

Mel-spectrograms generated from seq2seq AM were converted into waveforms by 

using WaveNet or a Griffin-Lim vocoder. The mel-spectrogram features of all methods had 

80 dimensions, a 125 - 7600-Hz frequency band, and a 46 ms window size. 
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Table 2.4:  Systems Compared in the Experiments. 

 
 
 

Table 2.5:  Example of Input Symbols. 

 
 

System AM method and implementation Input feature

T2KH Tacotron 2 [43] KH

T2KT Tacotron 2 [43] KT

T2PP (phon.) Tacotron 2 [43] PP (phon.)

T2PP (mora) Tacotron 2 [43] PP (mora)

DV3KH Deep Voice 3 [42] KH

DV3KT Deep Voice 3 [42] KT

DV3PP Deep Voice 3 [42] PP (mora)

TRKH Transformer-based TTS [20] KH

TRKT Transformer-based TTS [20] KT

TRPP Transformer-based TTS [20] PP (mora)

Input features Example of input symbols Number of
symbols

KH 私の席は、あの婦⼈の横ですか。 15

KT ワタシノセキワ、アノフジンノヨコデスカ。 20

PP (phon.) wa^tashino#se!kiwa_a^no#fu^jiNno#yo^kodesu!ka( 46

PP (mora) ワ^タシノ#セ!キワ_ア^ノ#フ^ジンノ#ヨ^コデス!カ( 29
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2.4.2. Visualization of the Encoder-Decoder Alignment 

Figure 2.7 shows the alignments of T2PP (mora), T2KT, and T2KH. The iterations and 

batch size of Tacotron 2 were 600,000 and 48, respectively. Figure 2.7 (a) shows a slightly 

non- smooth alignment. In this case, the combination of a phonetic and a prosodic symbol 

expressed an acoustic information of a mora as decoder timesteps.  

The figure indicates that the alignment monotonically increased and was continuous. 

Figure 2.7 (b) shows a smoother alignment; there was a one-on-one correspondence 

between the encoder which represented a mora character and the decoder timestep which 

represented the mora mel-spectrogram. Figure 2.7 (c) shows unclear and discontinuous 

alignments in some timesteps, suggesting that T2KH had difficulty training the model. 

2.4.3. Objective Evaluation of Prosodic Symbols 

Figures 2.8 and 2.9 compare the mel-spectrograms and F0 of T2PP (mora), T2KT, and 

T2KH. The iterations and batch size of Tacotron 2 were 600,000 and 48, respectively. The 

proposed method (T2PP (mora)) was better at reconstructing the details in the red 

rectangles, and they replicated pauses and the falling and rising of tone and pitch. The 

ground truth and T2PP (mora) had similar features both overall and in detail. In contrast, 

T2KT produced overall flat speech; it did not reproduce the pitch- accents and pauses in 

the red rectangles. The T2KH was not similar in shape to the ground truth.  

Moreover, the results in Figures 2.8 and 2.9 confirmed that the accent nucleus “!”  

 
Figure 2.7:  Alignment of Encoder and Decoder.  
            （Copyright (C) 2021 IEICE, [5] Fig. 5） 
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Figure 2.8:  Comparison of Mel-Spectrograms for “私の席は、あの婦

人の横ですか。 (Is My Seat Next to That Lady?).” 
（Copyright (C) 2021 IEICE, [5] Fig. 6） 
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Figure 2.9:  Comparison of F0 for “私の席は、あの婦人の横ですか。 

(Is My Seat Next to That Lady?).” 
（Copyright (C) 2021 IEICE, [5] Fig. 7） 
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and initial rising “^” symbols are effective. In the T2PP (mora) results of Figure 2.8, we 

can see a rapid falling of F0 corresponding to “セ!キワ” and a rapid rising of F0 

corresponding to “ア^ノ.” In T2PP (mora) results of Figure 2.8, we can see a reproduced 

silence corresponding to a pause “_”. Overall, the results shown in these figures indicate 

that prosodic symbols can control acoustic features such as accent and pause information.  

Table 2.6 compares the F0 correlations of T2PP (phon.), T2PP (mora), T2KT, and 

T2KH. The iterations and batch size of Tacotron 2 were 600,000 and 48, respectively. We 

used the WaveNet implementation [44] as the vocoder; The resynthesized results of the 

WaveNet vocoder are indicated as ReWN. The results of this experiment showed that the 

F0s of the two T2PPs were more similar than the F0s of the other systems. As well, T2PP 

(phon.) and T2PP (mora) with prosodic symbols had a higher evaluation value than T2KT. 

This result suggested that prosodic symbols replicate F0 and accentual features. 

2.4.4. Comparing Manual and Automatic Generated Labels 

Table 2.7 lists the matching rates of the manual and automatically generated labels. We 

prepared automatically generated and hand-edited PP labels made from 5,000 hand-edited 

FC labels [45]. They were made from 5,000 utterances of the JSUT corpus. We compared 

these labels and used the python difflib Sequence Matcher function [46] [47] to calculate 

the strings’ similarity. Table 2.7 shows that the similarity in the case of using automatically 

generated PP labels is lower than that of kana. This experiment was conducted because it 

Table 2.6:  Comparison of F0 Correlation. 

 
 

Table 2.7:  Similarity and Matching Rate of Strings. 

 Strings’ 
similarity 

Whole strings’ 
matching rate 

PP (mora) 0.90 1.68% 
KT 0.94 22.6% 

 
 

Systems T2KH T2KT T2PP (phon.) T2PP (mora) ReWN
F0 

correlation 0.23 0.27 0.40 0.38 0.48
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is known that the accuracy of the labels affects the evaluation results [48].  

The Python difflib function implements the Ratcliff-Obershelp algorithm [47]. The 

similarity of two strings 𝑆1 and 𝑆2 is determined by the formula: 

𝐷 = 2・min (|𝑆1|, |𝑆2|)
|𝑆1| + |𝑆2|

              (1) 

The whole strings’ matching rate is calculated by counting the truth value of whole 

strings matching. Input two sets of sentences, 𝑆1 and 𝑆2, into the whole strings' matching 

function in Figure 2.10, counting the number of the truth value outputs generated by the 

function. Divide this number by the total number of sentences, and calculate the matching 

rate for the entire strings. 

 
 

Figure 2.10:  Algorithm of Whole Strings’ Matching. 

 

Algorithm: Whole strings matching.

function whole_strings_matching(S1,S2)
count←0
Iter←0
for S1∈l do

if len(S1)=len(S2)
if S1(Iter)=S2(Iter)

count←count+1
else

break
end if

Iter←Iter+1
else

break
end if

end for
if count=len(S1)

return true
end if

end function

Input: S1, S2

Output: Truth value
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Moreover, the matching rates were significantly different. The matching rate in the PP 

case was 1.68%, while that of kana was 22.6%. These results suggest that it is difficult to 

generate strings that perfectly match the hand-edited labels. Considering the difference in 

matching rates, predicting prosodic features is considered more difficult than kana. The 

prosodic features of Japanese depend on the context and potentially contain multiple 

patterns, so it is difficult to estimate them only from sentences without any acoustic features 

of speech. 

2.4.5. Counting Errors in Miss-Synthesized Speech 

Table 2.8 lists the number of synthesized utterances that were not generated correctly, 

comparing manually and automatically generated labels with synthesized speech. Seq2seq 

AMs have been reported to have synthesis errors that include deletions and repetitions of 

words [32]. These errors often occur at the end of a sentence. Even though a different sound 

is produced compared with the input sentence and it is a natural mistake for a sentence, it 

cannot be judged in subjective evaluations or from alignment errors. In this experiment, we 

prepared automatically generated PP labels (AUTO) and hand-corrected PP labels (HAND) 

made from the JSUT corpus 4,900 corrected FC labels [43]. The experiment was conducted 

using the ESPnet-Tacotron 2 [49] implementation and using the Griffin-Lim vocoder. 

There were 200 epochs, and we selected 50 texts and compared the input sentences with 

the synthesized speech by listening to them. We manually counted the errors in the 

synthesized speech. Table 2.8 shows that inputting the hand-corrected PP labels did not 

cause mis-synthesized speech. This means that PP labels are suitable input for seq2seq AM. 

Kanji conversion seemed to be the cause of the errors in the automatically generated PP 

labels; that is, PP labels did not cause the errors. 

 

Table 2.8:  Number of Miss-Conversions in Synthesized Speech. 

 

HAND AUTO
Miss-synthesized 0 /50 5 / 50
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2.4.6. Subjective Evaluation 

Four subjective evaluations were conducted using the 100 test samples as the evaluation 

stimuli. The evaluators were 200 speakers of standard Japanese (Tokyo dialect). The 

evaluated speech stimuli did not use any of the training data for the model. One audio 

sample was evaluated 20 times. Mean opinion scores (MOS) on a scale of 1-to-5 (1: bad, 

5: excellent) and 95% confidence intervals were obtained from all the evaluators. 

2.4.7. Effectiveness of Prosodic Symbols 

The systems listed in Table 2.4 were compared in terms of the naturalness of the speech 

they produced. We estimated the mel-spectrograms (MELSPC) by using three seq2seq AM 

models and generated the audio by using the Griffin-Lim vocoder [50] (60 iterations). 

ReGL in the figure means re-synthesized audio created using the Griffin-Lim vocoder. The 

number of iterations and batch size of Tacotron 2 and Deep Voice 3 were 600,000 and 48, 

respectively. The number of iterations and batch size of Transformer-based TTS were 

75,900 and 12, respectively. The results are summarized in Figure 2.11. All methods that 

inputted PP labels had evaluation values greater than those of KT and KH. It can be seen 

that the PP labels worked effectively on all of the seq2seq AM methods. These results 

suggest that prosodic symbols can be applied to various architectures with attention-based 

seq2seq AM. 

In addition, we conducted an experiment with different types of phonetic symbols to 

evaluate the effectiveness of prosodic symbols in Figure 2.12. The systems listed in Table 

2.4 and T2PP contained two types of phonetic symbol: Roman alphabet (phoneme) as T2PP 

(phon.) and katakana (mora) as T2PP (mora). The number of iterations and batch size of 

Tacotron 2 were 600,000 and 48. We generated the audio by using the WaveNet vocoder. 

The number of iterations and batch size for the vocoder were 200,000 and 48. The results 

are summarized in Figure 2.11. T2PP (phon.) and T2PP (mora) had evaluation values 

greater than T2KT and T2KH. It can be seen that the PP labels worked well for every type 
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of than T2KT and T2KH. It can be seen that the PP labels worked well for every type of 

phonetic symbol. In this experiment, the comparison between T2PP (phon.) and T2PP 

(mora) showed a significant difference in T2PP (mora). These results suggest that prosodic 

symbols can be applied to various phonetic symbols with seq2seq AM and that T2PP 

(mora) is more effective for naturalness than T2PP (phon.) in this method. 

2.4.8. Comparison with Conventional SPSS 

We built the TTS systems listed in Table 2.9. All of them used automatically generated 

 
Figure 2.11:  Effectiveness of Linguistic Phonological Symbols. 

（Copyright (C) 2021 IEICE, [5] Fig. 8） 

  
Figure 2.12:  Effectiveness of Tacotron 2 and WaveNet with PP Labels. 

（Copyright (C) 2021 IEICE, [5] Fig. 9） 
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labels as training data. The conventional SPSS [51] employed Open JTalk [40] and Julius 

[52] [52] as a front-end. There were 281 errors due to forced alignment by Julius. 

Consequently, the training set had 7,324 sentences instead of 7,596, the test set had 91 

instead of 100, and the evaluation object had 30. We used WORLD [28] as the vocoder, 

60-dimensional mel-cepstral coefficients (MCCs), 2-dimensional band periodicities 

(BAPS), log F0 at 5 msec frame intervals (the acoustic features of VOCODER), and three 

recurrent hidden layers; each hidden layer had 512 LSTM (long short-term memory) units 

 
Figure 2.13:  Comparison with Conventional SPSS. 

          （Copyright (C) 2021 IEICE, [5] Fig. 10） 

 
Figure 2.14:  Effect of Changing the Volume of Training Data. 

（Copyright (C) 2021 IEICE, [5] Fig. 11） 

 
Table 2.9:  Conventional Systems Used in the Experiments. 
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ReWD Re-synthesis VOCODER WORLD [27]

ReWN Re-synthesis MELSPC WaveNet [44]

MWD Merlin [51] VOCODER WORLD [27]

MWN Merlin [51] VOCODER WaveNet [28]

T2PP Tacotron 2 [43] MELSPC WaveNet [44]



Chapter 2. Prosodic Features Control by Symbols as Input of Sequence-to-Sequence 
Acoustic Modeling for Neural TTS 

   
29 

 

as duration and acoustic models. 

The results are summarized in Figure 2.13. Our method scored significantly higher 

than MWN and MWD, which are conventional SPSS methods. This result confirms the 

effectiveness of the proposed method without time alignment information. The reason for 

ReWN’s score being lower than that of ReWD is that synthesized speech rarely contains 

unnatural sounds. A similar issue has been reported in experiments with neural vocoders. 

2.4.9. Effect of Changing the Volume of Data 

We subjectively evaluated the effect of changing the volume of the training data of T2PP 

(mora). We generated the audio by using the WaveNet vocoder. The number of iterations 

and the batch size in this experiment were 200,000 and 48. Figure 2.14 shows that the 

evaluation values gradually increased with the number of hours of training. The systems 

trained on sets with less data tended to yield sentences that were perceived as mis-phrased 

and poorly accented. As the learning data was increased, the reproducibility of the phonetic 

 
Figure 2.15:  Effectiveness of Auto-Generated Labels.  

（Copyright (C) 2021 IEICE, [5] Fig. 12） 

 

Figure 2.16:  Results of Pairwise Comparison of Auto-Generated Labels and 
Hand-Edited Labels with 95% Confidence Interval. 

（Copyright (C) 2021 IEICE, [5] Fig. 13） 
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and prosodic features increased, as did their naturalness. 

2.4.10. Comparison of Using Automatically Generated Labels 
and Hand-Corrected Labels 

We subjectively evaluated the effectiveness of automatically generated PP labels in Figures 

2.15 and 2.16. For this experiment, we prepared automatically generated (AUTO) and hand 

corrected (HAND) labels made from 5,000 hand-corrected FC labels [30]. We generated 

the audio from the predicted mel-spectrograms by using the Griffin-Lim vocoder. It is 

logical to think that this experiment should have no effect on the evaluation result for any 

type of vocoder, because it does not affect high/low pitch accent information. For this 

reason, we used the Griffin-Lim vocoder. The corpus contains 5,000 utterances of the JSUT 

corpus; the training set includes 4,900 utterances, the test set 100. We randomly selected 

30 sentences. The evaluators were 60 speakers of standard Japanese (Tokyo dialect). The 

evaluated speech stimuli did not use any of the training data for the model. One audio 

sample was evaluated 30 times. There were 200 epochs, and we conducted a 1-to-5 

evaluation (MOS score) and a pairwise comparison of the naturalness of the synthesized 

speech.  

Figures 2.14 and 2.15 show that hand corrected PP labels was rated higher than 

automatically generated ones. These results suggest that the correctness of the labels affects 

the results of the evaluation. As described in Section 2.4.4, automatic labels contain errors 

due to miss-conversions, while prosodic features, which contain accent information, are 

difficult to estimate; these issues caused the low evaluations. Mistakes in the prosodic 

features might have affected the reproducibility of the accents, etc., and reduced their 

naturalness.

2.5. Discussion 

2.5.1. Experimental Findings 

We confirmed the effectiveness of automatic generated labels for pitch-accent language in 

Japanese. The experiments showed that symbols can be used to control the accentual 
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acoustic feature. Figures 2.8 and 2.9 confirm the controllability of the prosodic feature by 

comparing mel-spectrograms and F0. Until now, there has been no generic accent control 

method for Japanese seq2seq AM. The proposed method potentially solves the accentual 

control problems. Moreover, the prosodic features work with multiple seq2seq methods; 

this is in contrast to conventional SPSS, which requires extensive manual labor for 

correcting pronunciations by using labels describing the boundaries of phonemes. Although, 

the automatically generated labels were evaluated as worse than the hand-corrected ones, 

this could be attributed to miss-converted labels. Because the overall similarity is high, the 

phoneme alignments were correct, but the reproduced accents contained errors. 

In Section 2.4.5, it was shown that PP labels are suitable for the input of seq2seq AMs. 

Seq2seq AMs rarely cause miss-syntheses that are different from the sentence input at the 

end of the word. These sounds are often linguistically correct, but they do not express the 

same sound as the input text [32]. We experimentally confirmed how often errors occurred 

through the contribution of hand-edited labels [45] and found that no such errors occurred 

in the case of PP labels in the experiment described in Section 2.4.5. Prosodic features 

affect tone and pitch, and in Section 2.4.6, we showed it is possible for these acoustic 

features to be accurately represented by putting them between phonemes. For this reason, 

it may be possible that problems that cannot be learned with phonemes only, such as 

accurate accents, can be learned accurately by using PP labels. 

2.5.2. How to Improve the Automatically Generated Labels 

The production cost of controllable TTS is high in the conventional SPSS method using 

manual labeling. As described in Section 2.4.6, we conducted subjective evaluation 

experiments confirming that seq2seq AM with our method produces more natural speech 

than SPSS does. However, while this would solve the cost problem, the quality of the 

automatically generated labels remained lower than that of the hand-corrected labels. If this 

problem in pitch-accent languages can be solved, high-quality TTS can be realized without 

the need to use hand-edited labels. 

The results of the subjective evaluation suggested that the prosodic symbols are 

effective. In Section 2.4.4, despite that automatically generated label contained miss-
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converted symbols, the PP labels estimated tones of accent, etc. The experimental results 

showed that the prosodic symbols had other functions besides controlling phonemes. They 

also can be used to control the prosodic features, which do not correspond to the phonemes. 

Moreover, as shown in Section 2.4.6, the prosodic features could be adapted to seq2seq 

AMs that have not been proposed yet, and this might mean that we do not need to develop 

any new seq2seq AM models to input accent information. Accordingly, we can avoid 

developing new structures for accent control to support new seq2seq AMs. 

In Section 2.4.6, it was shown that the prosodic features can control the accent, but we 

could not estimate the labels correctly. It was found that the Tacotron 2 used in this 

experiment could produce relatively correct speech even though there were some miss-

converted labels. Moreover, it was found that an increase in accent estimation accuracy 

improved the evaluation results. Increasing the accuracy of accent estimation will lead to 

higher quality in the future. 

The prosodic features potentially contain multiple expressions, so finding methods of 

linguistic analysis for accurately determining phonemes and acoustic analysis for 

accurately estimating accent remains an issue. In this study, we used linguistic analysis 

only for automatically generating labels; in the future, we would like to confirm the 

effectiveness of adding a prosodic symbol estimation method using acoustic analysis. In 

summary, the results of this study suggest that the prosodic features are effective for 

Japanese seq2seq AM. Moreover, because the input of seq2seq AM is merely symbols, the 

prosodic features may work in languages other than Japanese. 

2.5.3. Points to be Confirmed in Future Experiments 

The evaluation of ReWN described in Section 2.4.7 gave an unclear result. In this regard, 

we used mel-spectrograms extracted from raw audio to train the ReWN model; 

nevertheless, the result was not good. The reproduced consonants in ReWN may not have 

been good. In particular, confusion in the perception of the reproduced consonants may 

have influenced the results of the evaluation. However, ReWN did not seem to affect the 

results of the proposed method, because ReWN seemed to have no effect on the 

experimental results of T2PP (mora), MWD or MWN.  
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2.6. Conclusion 

We proposed a method to control prosodic features by inserting symbols representing these 

features between phonetic symbols in various architectures with attention-based seq2seq 

AM. The addition of prosodic symbols resulted in more accurate replication of accents, 

pauses, and sentence ending acoustic expressions and improved the evaluation value 

compared with methods inputting only plain phoneme sequences. Moreover, we found that 

the proposed method in combination with a front-end could automatically generate speech 

without imposing a large annotation workload. But an evaluation of the automatically 

generated labels and hand-edited labels showed that the hand-edited labels were still better, 

so the automatic estimation method for labels should be improved. The naturalness of the 

speech indicated in the evaluations was higher than that of conventional SPSS. Our method 

has the potential for application to various languages and to work in as yet undeveloped 

seq2seq acoustic modeling methods. 
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Chapter 3 

Phonemes and Prosodic Feature 
Estimation 

3.1. Introduction 

We present a method for estimating Japanese prosodic features [3]. Our proposed approach 

accurately discerns not just accent features, but also phonemes, pauses, and accented 

phrases. It serves a dual purpose: automatic label generation for speech synthesis [3] and 

aiding language learners in speech production training [53] [54]. The former serves as an 

automatic label generation method for speech synthesis [3], while the latter aims to assist 

in training for pitch accent languages [38]. In speech training, this enables learners to 

visualize prosodic information in their speech and utilize it for practice. While prior pitch-

based accent recognition methods faced challenges in symbol consistency, our speech 

synthesis model exhibits promise for prosodic symbol training. To gather ample labeled 

training data, we propose a self-supervised acoustic model integrating the Transformer [55]. 

This model achieves precise recognition of Japanese readings and accents with just around 

5 hours of training data, achieving an impressive 96% recognition rate, showcasing its 

precision.

3.2. Conventional Method and Its Problems 

We utilize two conventional approaches: the initial being an acoustic modeling and PP label 

conversion method [3], while the latter involves the seq2seq acoustic modeling approach 
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[56]. Traditional Japanese accent identification typically relies on analyzing F0 [10]. 

However, Japanese accent rules are rooted in linguistic principles, particularly high/low 

pitch accents, rather than technical specifications. Hence, the F0 of speech data may not 

inherently signify high/low pitch accents. Although there exists a method for analyzing F0 

and estimating accents through machine learning [10], the recognition rate for accents 

remains modest, approximately 76%. In the domain of speech synthesis, the challenge is 

compounded by the utilization of PP labels in the training data, resulting in an even lower 

recognition rate due to the necessity to encompass both accent patterns and the reading of 

kana characters. The recognition rate of the method outlined in [10] is inferior to that 

observed in the preliminary experiment. 

Various alternative conventional methods have been proposed. Ishi introduced an 

analysis method which organized the classification tree of F0 [58], yet evaluation outcomes 

are subpar. Hatano proposed a method for DNN-based pitch accent estimation from F0 

trajectories [7], however, evaluation outcomes are also unsatisfactory. Koriyama proposed 

the TTS method employing semi-supervised prosody modeling with a deep gaussian 

process model [59] [60]. Nevertheless, this method appears proficient in recognizing accent 

features but falters in estimating that information due to TTS. Yufune proposed a method 

based on variational autoencoder (VAE) and vector quantization (VQ)-VAE-based method, 

in which linguistic and acoustic features are inputted into the encoder [61]. It can merely 

recognize accents on a word-by-word basis, and its applicability is constrained because it 

necessitates the addition of linguistic information. Our investigation illustrates that 

prosodic symbols can effectively regulate high/low pitch accents in speech synthesis 

(Chapter 2). Common to these conventional methods is their inability to estimate prosodic 

features solely from speech; they solely estimate accentual features. All methods 

necessitate supplementary linguistic information, which encompasses speech. Additionally, 

all methods can only recognize accurate features. The proposed approach aims to redress 

these shortcomings. 

Hence, we employ two conventional methods which exclusively train speech data 

for evaluating effectiveness. The first traditional method (Figure 3.1) entails the cascaded 

acoustic modeling to estimate sentences containing a mixture of kanji and kana characters 

[32] and the speech synthesis language processing unit to estimate PP labels (Chapter 2).  
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Furthermore, the first method, which is incapable of directly estimating actual accents from 

speech data, also yields a diminished recognition rate. The second traditional method 

(Figure 3.2) involves training and estimating PP labels using seq2seq acoustic modeling, 

typically utilized as a speech recognition method [60] [61] [62]. 

3.3. Proposed Method 

The study herein focuses on phonemes and prosodic feature recognition, employing self-

supervised acoustic modeling [60]. Additionally, practical illustrations of TTS applications 

are introduced. To validate the efficacy of Chapter 2, we propose that seq2seq acoustic 
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modeling can estimate PP labels from speech. Nonetheless, it's crucial to acknowledge that 

seq2seq acoustic modeling typically demands several thousand hours of training data [56], 

significantly surpassing the usual 10 hours requisite for speech synthesis (Section 2.4.8). 

Consequently, while models trained with this method can identify PP labels, the recognition 

rate is anticipated to be comparatively low. We showcase the effectiveness of the proposed 

method in contrast to these two approaches, emphasizing its effectiveness even with a 

restricted amount of data.  

3.3.1. Phonetic and Prosodic Feature Estimation 

We presented an approach for integrating PP labels into Japanese speech synthesis in 

Chapter 2. Waveform and PP labels constitute language-specific data pairs, often 

challenging to collect in abundance for speech recognition purposes. Hence, we directed 

our attention towards Baevski's self-supervised learning acoustic modeling method [36] 

[37] [38] [61], adept at learning from scanty data using self-supervised learning techniques 

[61]. Moreover, recognition outcomes frequently exhibit phoneme inaccuracies. In our 

endeavor to rectify character strings plagued by phoneme errors, we endeavored to enhance 

recognition precision by employing Text-to-Text Transformer (T5) [62]. 

Experimentation revealed that this methodology could discern pitch accent through 

its application in PPF estimation. Typically, the training data available for TTS purposes 

barely exceeds ten hours, insufficient for the extensive data demands of PPF estimation, 

which necessitates several hundred hours. Nonetheless, our self-supervised learning 

approach facilitated the development of a recognition method with just five hours of data 

in our trials. To bolster recognition accuracy with minimal data, we leveraged a publicly 

available pre-trained model of self-supervised learning acoustic modeling [63], trained on 

a vast corpus of 56,000 hours of speech data encompassing 53 languages [64]. 

Wav2vec 2.0 stands as a self-supervised acoustic modeling speech recognition 

paradigm, harnessing 56,000 hours of extensive speech data spanning 53 languages, trained 

sans labels, serving as a pre-training model. Employing CNNs, Wav2vec 2.0 trains on 

speech data to derive latent speech representations Z (Figure 3.3). Renowned for its 

adeptness in speech recognition with few-shot inputs, Wav2vec 2.0 boasts high-quality 
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outcomes. The Transformer component within the model autonomously refines contextual 

representations C by inferring from one of the Z, following the training paradigm akin to 

BERT [61], a notable self-supervised learning technique in natural language processing 

(NLP). 

In our proposed methodology, PP labels, scarce in availability, undergo fine-tuning 

with a pre-training model to serve as a PP labels recognizer. Through fine-tuning, the 

quantized representation Q assimilates phoneme data from diverse languages accrued 

during pre-training, culminating in superior recognition accuracy despite limited speech 

data. 

Despite achieving commendable recognition accuracy, this method still contends 

with prevalent errors in recognizing consonants in Japanese speech. These consonantal 

recognition anomalies are frequently assuaged by the language processing unit in speech 

recognition systems. We posit that implementing a mechanism to diminish errors in 

consonantal phonemes could further enhance recognition rates. To this end, we advocate 

for a system wherein the Transformer rectifies the most probable phoneme errors through 

training on recognition outcomes inclusive of phoneme errors from authentic speech inputs 

to the recognizer, complemented by manually corrected labels (Figure 3.4). Augmenting 

the T5 training data involved devising a phonetic and accentual error generator via random 

character deletions and consonant substitutions.  

  

Figure 3.3:  Fine-tuning Quantized Representation on Information  
  of Phonemes from Various Languages with Pre-training. 
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However, it's important to acknowledge that Transformers typically necessitate 

millions of sentences for training. In our scenario, we have access to only approximately 

20,000 sentences, equivalent to about 10 hours of data. To mitigate this constraint, we have 

chosen to augment our sentence data utilizing data augmentation as a pre-training 

mechanism. Specifically, we randomly extract symbols from Japanese texts, substitute 

consonants with alternative consonants, and/or remove phonemes themselves. This 

strategy employs data augmentation to amplify the training dataset. The subsequent 

equations and algorithm demonstrate data augmentation for substituting consonants in PP 

labels to train the pre-trained model. Consonantal phonemes (Cp), randomly selected 

consonants (Cr), vowels (V), and prosodic features (P) constitute string sets: 

𝑪𝒑 = {𝑐𝑝1, 𝑐𝑝2, ⋯ , 𝑐𝑝𝑙} = {/𝑘/,/𝑠/,/𝑡/, ⋯ ,/𝑠ℎ/,/∅/} 

𝑽 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} = {/𝑎/,/𝑖/,/𝑢/,/𝑒/,/𝑜/} 

𝜬 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑘} = {/Initial rising/,/𝐸𝑂𝑆/,/𝑃𝑎𝑢𝑠𝑒/, 

      /𝐴𝑐𝑐𝑒𝑛𝑡 𝑝ℎ𝑟𝑎𝑠𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦/,/𝐴𝑐𝑐𝑒𝑛𝑡 𝑛𝑢𝑐𝑙𝑒𝑢𝑠/,/∅/} 

 

 
 

 

Figure 3.4:  Algorithm of Consonant Error Generator. 

else
Cr .remove

if random.random() < replacement_probability

end for
return Cr

end function

Algorithm: Consonants error generator.

Output: Random replaced consonants set (Cr )

end if

function cons_random(Cp )
for i     range(len(Cp )) do

Cr←random.choice(Cp )

Input: Consonants set (Cp ), replacement_probability

∈



 

3.3. Proposed Method 

   40 

The algorithm delineating the consonantal error generator from Cp to Cr is depicted in 
Figure 3.4. The input sequence of tokens 	𝑿	(𝑥!, 𝑥", ⋯ , 𝑥#)  and a target sequence 
𝒀	(𝑦!, 𝑦", ⋯ , 𝑦#) are illustrated below: 
 

𝑿 = {
∈ 𝑪𝒑    𝑖 = 1, 4,7, ⋯ , 𝑁 − 2          
∈ 𝑽       𝑖 = 2, 5,8, ⋯ , 𝑁 − 1          
∈ 𝑷       𝑖 = 3, 6,9, ⋯ , 𝑁               

       (1) 

𝒀 = {
∈ 𝑪𝒓    𝑖 = 1, 4,7, ⋯ , 𝑁 − 2          
∈ 𝑽       𝑖 = 2, 5,8, ⋯ , 𝑁 − 1          
∈ 𝑷       𝑖 = 3, 6,9, ⋯ , 𝑁               

       (2) 

 

The condition probability of the pre-trained model for X and Y are shown below: 

𝑃 (𝑿|𝒀 ) = ∏ 𝑃 (𝑦𝑛|(𝑦1, 𝑦2, ⋯ , 𝑦𝑛−1), 𝑿)
𝑁

𝑛=1
      (3) 

In Figure 3.5, we undertook fine-tuning utilizing observational data on the pre-trained 

model. We trained the PP labels inferred from the waveform with the SSL-based AM 

alongside the manually edited PP labels. This enables SSL to refine observed phonetic 

discrepancies from the fine-tuned wav2vec 2.0 estimation model.  

Subsequently, the pre-training model is trained with this augmented data, and fine-

tuning ensues using phoneme error data generated by the actual recognizer to formulate a 

 

Figure 3.5:  Phoneme-Error-Correction Transformer. 
 

Figure 3.3:  Figure 3.5: Pre-training Model and Finetuning of Phoneme Error 
Correction Transformer. 
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phoneme error correction Transformer. Therefore, we propose a combined approach 

involving self-supervised learning acoustic modeling and a phoneme error correction 

Transformer to attain high-quality PP label recognition (Figure 3.6). 

3.4. Evaluation Experiment 

To evaluate the effectiveness of the proposed method, we performed an evaluation 

experiment on the accuracy of recognizing PPF. We used the recorded speech of in-house 

anchors in a studio booth and manually corrected PPF in speech datasets for fine-tuning 

the pre-trained model of wav2vec 2.0. 

3.4.1. Experimental Conditions for Phonetic and Prosodic 
Feature Recognition 

We prepared a dataset of four males and a dataset of 3 females. The manuscript of dataset 

consisted of news, weather forecast, and lifestyle information. The sampling frequency was 

16 kHz, and the bit rate was 16 bits. In addition, the text data for pre-training of T5 was 

used for automatic generated PPF, which our proposed G2P (Section 2.3.4) [5] generated 

from 631,014 sentences of news script obtained from NHK NEWS WEB [65] in the period 

 

Figure 3.6:  SSL-Based Phonetic and Prosodic Labels Estimation Method. 
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from April 2018 to April 2021. For a wav2vec 2.0 pre-trained model, we used XLSR-

Wav2Vec2 [63] which contains approximately 56,000 hours of speech data for 53 

languages as data for pre-training. We performed fine-tuning against this pre-trained model 

using speech and manually corrected Japanese kana characters and prosodic symbols and 

then performed model training. Additionally, we trained the T5 used for correcting PPF 

errors by automatically creating characters for the 631,014 sentences of news manuscripts 

using our proposed G2P tool (Section 2.3.4). The following data augmentation of T5 

processing was performed against the above data to create training data. 

 

・ PPF was deleted at a rate of 5% or less. 

・ Consonants of PPF were substituted at a rate of 10% or less 

 

We fine-tuned the pre-trained model generated with data used for pre-training as 

described above by using a training set consisting of 23,024 sentences of manually 

corrected PP label. In conformance with the properties of PP labels, prosodic symbols 

consisted of initial rising, accent nucleus, accentual phrase boundary, pause, and end of 

sentence, which related accentual and pause information. PPF estimation by wav2vec 2.0 

was taken to be proposed Prop. 1 and correcting the PPF estimated by wav2vec 2.0 by T5 

for correcting phoneme errors was taken to be proposed Prop. 2. Additionally, since the 

amount of training data in the dataset for TTS was insufficient to use the speech-recognition 

method for comparison purposes, we decided for this experiment to convert speech into 

PPF by using a pre-trained model for Japanese speech recognition released by ESPnet ASR 

[5] that uses seq2seq speech-recognition method. We also used the process of automatically 

converting that speech into PPF using our proposed G2P [5] as a conventional method 

(Conv.) for comparison. 

Table 12 Evaluation results of  

increased data volume. 

Hour CER % 

1.0 9.3 

2.5 8.3 

5.0 7.5 

10.0 7.7 

20.0 7.8 
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3.4.2. Experiment 1 

We used the speech in the dataset of one male and that of one female (2541 sentences, 5.69 

hours) to fine-tune wav2vec 2.0 in proposed methods Prop. 1 and Prop. 2. We also used 

character strings of manually corrected PP labels (23,024 sentences) to fine-tune T5 for 

correcting phoneme errors in proposed method Prop. 2. As for the test dataset, we used the 

dataset of two males and one female (1558 sentences, 3.73 hours). In the experiment, we 

calculated the character error rate (CER) between the estimated labels obtained by each 

method and ground truth and compared results. We use seq2seq acoustic modeling-based 

PP label recognition method as conventional method, referred to Section 3.3 and Figure 

3.2. 

Experimental results are listed in Table 3.1. Proposed methods Prop. 1 and Prop. 2 had 

lower values of CER than the conventional method. Moreover, comparing proposed 

methods Prop. 1 and Prop. 2, the value for proposed method Prop. 2 that incorporated T5 

for correcting phoneme errors was lower, which demonstrated the effectiveness of using 

T5. 

3.4.3. Experiment 2 

In this experiment, we examined the impact of varying amounts of training data, ranging 

from 1.0 to 20.0 hours. We employed a corpus containing both male and female speech for 

fine-tuning in wav2vec 2.0, without the use of a Transformer for error correction. The 

experimental conditions were as follows: M001 and F001 served as variable training sets. 

M002, F002, and M004 (consisting of 1558 sentences totaling 3.73 hours) were utilized as 

 

Table 3.1:  Comparison of Proposed Method and 
                Seq2seq Acoustic Modeling-Based PP Label Estimation. 

 

 

Method CER %

Conv. Seq2seq AM + Open JTalk 22.6

Prop. 1 Wav2vec 2.0 8.5

Prop. 2 Wav2vec 2.0 + Transformer (T5) 4.7
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the test set. For the phoneme error correction Transformer, 631,014 sentences from news 

manuscripts sourced from NHK NEWS WEB were employed to simulate phoneme errors 

by randomly deleting letters and replacing consonants. The data enhanced pretrain model 

was then applied to 23,024 manually corrected sentences for label fine-tuning on the 

training set. Self-supervised acoustic modeling was pre-trained using Facebook's “XLSR-

Wav2Vec2 [63].”  

The evaluation results, presented in Table 3.2, illustrate the outcomes with different 

data quantities. According to the experimental findings, the highest performance was 

achieved with 5 hours of data. 

3.4.4. Experiment 3 

In this experiment, we conducted a comparison between the proposed method and seq2seq 

acoustic modeling by utilizing seq2seq acoustic modeling to train the PP labels. This 

confirmed the effectiveness of self-supervised learning. Since seq2seq typically requires 

large amount of training data, we prepared 10 hours of data, surpassing the volume used in 

the experimental results obtained in Chapter 2, in order to match the experimental 

conditions. While the conventional method of seq2seq acoustic modeling was trained 

solely on this dataset, the proposed method made use of a publicly available pre-training 

model with 10 hours of fine-tuning data. The training data for both methods is same. We 

use seq2seq acoustic modeling-based PP label recognition method as conventional method, 

Table 3.2:  Evaluation Results of Increased Data Volume. 

 

Hour CER %

1.0 9.3

2.5 8.3

5.0 7.5

10.0 7.7

20.0 7.8
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referred to Section 3.3 and Figure 3.2. 

The experimental conditions were as follows: F001 (1834 sentences, 3.00 hours), 

M001 (1834 sentences, 4.8 hours), M002 (55 sentences, 0.11 hours), M003 (114 sentences, 

0.22 hours), and M006 (663 sentences, 2.01 hours), resulting in a total of 10.14 hours of 

training data. For the test set, we used M004, M005, F002, and F003 (total 250 sentences, 

0.53 hours). Self-supervised acoustic modeling was pre-trained using Facebook's XLSR-

Wav2Vec2 [63]. 

The experimental results revealed that the proposed method achieved a significantly 

lower CER compared to the conventional method (Table 3.3). This confirms that the self-

supervised learning method enhances the recognition rate, even when the data volume is 

limited.

3.5. Discussion 

We demonstrated the effectiveness of the proposed method in Experiment 1. Through this 

experiment, we gained knowledge on how prosodic symbols could be estimated by using 

“Wav2vec 2.0 + Transformer (T5)” with high accuracy from only speech. Conventional 

methods cannot estimate PPF that reflects acoustic features. We found that the proposed 

method Prop. 2 could estimate high-quality PP labels. According to Experiment 2, the 

evaluation value of the training data is constant at over 5 hours. We proved that a small 

amount of training data is sufficient to obtain good label estimation results.

 

Table 3.3:  Comparison of Proposed Method and Seq2seq Acoustic 
Modeling-Based PP Label Estimation. 

 

Conventional: Seq2seq acoustic
modeling-based PP label

recognition method

Proposed: Self-supervised
acoustic modeling-based PP
labels recognition method

CER % 10.6 6.8
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3.6. Conclusions 

We have introduced a method capable of estimating PP labels from speech. Our approach 

includes PP labels estimation method that leverages a large-scale pre-training model and a 

self-supervised learning based acoustic modeling. We have confirmed the effectiveness of 

this proposed method in accurately estimating labels through self-supervised learning 

acoustic modeling and a phoneme error correction Transformer. In 2023, there has been no 

method available for directly estimating PPF from speech. This method presents 

applications for labels estimation in the proposed Japanese TTS method and for the training 

of Japanese speech. 
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Chapter 4 

Speech Synthesis with Adjustable 
Acoustic Features 

4.1. Introduction 

Deep learning-based text-to-speech is used in various situations and the sound quality is 

close to that of humans. We previously develop DNN-based SPSS [1] method and also 

developed our DNN-TTS for controlling speaking style, speaker, speech rate, pitch, and 

intonation. More specifically, this method enables the changing of specific speaking styles, 

such as news speaking style that mimics various style. In this chapter, we propose the 

method of controlling speaking style, speaker, speech rate, pitch, and intonation, and 

evaluate its effectiveness. 

4.2. Conventional Method and Its Problems 

In 2013, the DNN-TTS method based on SPSS [1] was proposed and showed significant 

improvement in speech quality. This conventional method could only train one style and 

speaker; therefore, it could not train a single model even if there was a corpus of various 

speakers and styles. In 2018, Hojo proposed a speech synthesis method that can switch 

speakers [11]. However, a method for controlling speaking style has not been proposed. 

Additionally, it lacked the ability to adjust speech rate, pitch, and intonation. The 

conventional method could only process speech in the waveform after speech synthesis had 

taken place, making it impossible to adjust these features at the intermediate processing 
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acoustic feature stage before input to the vocoder [28].

4.3. Proposed Method 

The proposed method combines the controllable speaking style method with the control of 

speech rate, pitch, and intonation. An overview of the proposed method is presented in 

Figure 4.1. The speech rate [66] is regulated by modifying the full-context label [24]. Pitch 

and intonation are manipulated by directly editing the acoustic features generated by the 

acoustic model [28]. The adjusted acoustic features are then fed into the source filter 

vocoder to generate speech. As speaking style cannot be quantitatively adjusted, the style 

is managed by modifying the DNN model. 

4.3.1. DNN Speech Synthesis with Controllable Speaking Style 

We propose the method for controlling speaking styles which developed for our DNN-TTS 

method and has reproduced speaking styles and speaker identity. We develop a method to 

control each of the style and speaker code by inputting them into both the duration model 

and the acoustic model (Figure 4.2). Typically, only one speaker and style can be trained 

for each feature. However, by controlling and training with these features, it is possible to 

train a single model for speech with a variety of features. This approach increases the 

amount of speech data that can be learned by a single model and is expected to improve 

  

Figure 4.1:  Overall Speaking Style and Acoustic Features Control in  
DNN-Based Statistical Speech Synthesis. 
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overall naturalness. When controlling emotion and speaker variables, incorporate the 

emotion code and speaker code into both the duration model and acoustic model. 

Subsequently, through training a corpus divided by emotion and speaker, it becomes 

possible to learn how to adjust both emotion and speaker.  

4.3.2. Method for Controlling Speech Rate, Pitch, and Intonation 

We propose a DNN-TTS method utilizes a source-filter vocoder [28] in the waveform 

synthesis part. This vocoder conducts numerical simulations of speech, combining sound 

sources such as the vocal cords and vocal tract [28]. By adjusting the parameters of the 

acoustic features, proposed method is possible to modify speech rate, pitch, and intonation. 

These adjustments are controlled by changing the parameters of the DNN models employed 

in the DNN speech synthesis processing. Figure 4.3 illustrates our method of controlling 

acoustic feature parameters. Using this approach, acoustic features parameters are modified 

to directly reflect the acoustic features estimated from the DNN models. This allows for 

the alteration of speaking styles, minimizing sound quality deterioration before the vocoder 

step that generates the waveform. The advantages of these methods empower us to produce 

various types of high-quality speech. The acoustic features of the source filter vocoder, 

 

 

Figure 4.2:  Controlling Speaking Styles for DNN-Based Statistical 
Speech Synthesis. 
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generated by the acoustic model, are decomposed into mel-generalized cepstrum (MGC) 

[67], logarithmic F0 (LF0) [68], voice/unvoiced (VUV) flag, and band-aperiodicity (BAP) 

[67]. The acoustic features of the filter vocoder are further decomposed into MGC and LF0. 

The acoustic features, adjusted by the equation shown in Figure 4.3, can be calculated using 

maximum likelihood parameter generation (MLPG) [69] and then converted to a spectral 

envelope, F0 and aperiodic index [28]. Each feature is then input into the source filter 

vocoder to generate speech.

4.4. Evaluation Experiments 

We conducted two experiments to evaluate the effectiveness of the proposed method: the 

first experiment aimed to examine the method's effectiveness in training multiple corpora 

into a single model, and the second experiment evaluated the effectiveness of the proposed 

method in a specific task. We assessed whether the speech generated by the proposed 

method improves the understanding of Japanese by non-native learners. Through these two 

experiments, we demonstrated the effectiveness of the proposed method's model and 

provided examples of its successful application. 

 

Figure 4.3:  Procedure for Speaking Style and Acoustic Features Control. 
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In the first experiment, subjective evaluation experiment on the effectiveness of speech 

various style control methods. We examine whether the quality increases with the total 

amount of data, even when dealing with a corpus of limited size. This experiment aims to 

test the effectiveness of using speaker codes for training, especially with an increase in 

training data. The pairwise comparison method was employed to assess speech generated 

by training on multiple corpora versus speech generated by a model trained on a single 

style and speaker corpus. The parameters under scrutiny include the “degree of expression” 

and “naturalness.” The training corpus consists of male speech, 5 speakers, and 4 emotions 

(normal, happy, angry, sad), with 495 sentences in each corpus. Four subjects, randomly 

presented with headphones, participated in the evaluation, which involved 20 sentences 

distinct from the training corpus and employed two methods of synthesized sounds. 

The results are summarized in Figure 4.4. Regarding the “degree of expression,” 

reflecting emotional expression in speech, the proposed method scored 73.4%, whereas the 

conventional method scored 26.6%. The proposed method demonstrated a significantly 

higher evaluation in terms of the emotional aspect of the speech. Furthermore, for 

“naturalness,” assessing sound quality and other aspects of speech, the proposed method 

achieved a significantly higher score (83.3%) compared to the conventional method 

(16.3%). These findings indicate that the proposed method received significant 

effectiveness in terms of emotional expression and overall naturalness. The model, which 

 

Figure 4.4:  Comparison of DNN-Based Statistical Speech Synthesis Trained 
with Multiple Styles Using the Paired Comparison Method. 
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trained multiple styles using style and speaker codes, was highly evaluated. 

In the second experiment, synthesized speech with manuscripts expressed in easy 

Japanese, which were checked and corrected by an editor and released on News Web Easy, 

were evaluated in terms of preference. We used an internal corpus of 21 hours of speech 

(11,716 sentences) uttered by a professional female narrator. The corpus was split into 

11,612 sentences for training and 104 samples for testing. They conducted subjective 

evaluations of understanding on a crowd sourcing website. The evaluated speech stimuli 

did not use any of the training data for the models. One audio sample was evaluated 20 

times. We prepared five types of speech, which were recorded as RAW and DNN TTS 

synthesized files. RAW is a recording of a speech spoken slowly by a news anchor. 

TTS_Direct is just TTS synthesized speech. ORG is speech published daily on the 

homepage and composed by Japanese language teachers. These teachers manipulate the 

speech rate by adjusting it for slower speech, shifting the higher pitch of the speech, and 

manually correcting the accent. SS is a speech that converts TTS_Direct by using a generic 

speech rate conversion application [66]. The speech length of ORG and SS was set by the 

utterance length of RAW and was 25% longer than the average utterance length of 

TTS_Direct. PH is a speech that has a higher pitch than the average pitch frequency of 

TTS_Direct. The pitch shift rate of PH was determined by ORG’s pitch shift rate. The test 

set included 125 samples for evaluation and five samples for training the participants as 
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evaluators. The mean opinion scores (MOSs) on a scale of 1 to 5 (1: bad, 5: excellent) and 

95% confidence intervals were obtained from all participants. 

The results are summarized in Figure 4.5. The ratings of ORG and SS (Prop.) tended 

to be higher than that of TTS_ Direct. There was a significant difference between 

TTS_Direct and SS (Prop.). These results indicate that the effectiveness of slow speech 

rate is high. And there was no significant difference between ORG and SS (Prop.). This 

suggests that the difference between speech rate conversion using a vocoder and generic 

speech rate conversion methods did not affect the experimental results. These results 

indicate that the understanding of a manuscript increases as the speech rate decreases, and 

there is little effect of pitch shift. In this section, we demonstrate the effectiveness of 

adjusting acoustic features in specific tasks. Speech synthesis finds diverse applications, 

and its efficacy cannot be solely assessed by evaluation methods focused on speech 

naturalness. Here, we investigate the method's effectiveness in a task designed for learners 

of Japanese—one of the more constrained applications of speech synthesis. Our findings 

reveal that, in this particular task, the proposed method enhances Japanese comprehension 

  

Figure 4.5:  Synthesized Speech with Manuscripts  
Expressed in Easy Japanese News. 
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by slowing down speech rate in the acoustic features. This underscores a correlation 

between speech rate and Japanese comprehension.

4.5. Conclusion 

In this chapter, we have developed DNN-based SPSS with speaking style and acoustic 

features control. Through this method, we demonstrate that a diverse corpus consisting of 

various speakers and speaking styles can be effectively trained within a single model. 

Furthermore, by directly manipulating the acoustic features of the DNN-TTS, it is possible 

to make adjustments with minimal degradation in sound quality. In the specific scenario, 

the evaluation significantly improved compared to the evaluation conducted before 

adjusting the acoustic features. 
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Chapter 5 

Conclusion 
In this thesis, we present three achievements. The first pertains to Japanese speech synthesis. 

We have demonstrated that prosodic symbols can effectively control the acoustic features 

of pitch accents in the seq2seq acoustic modeling. It is known that seq2seq-based TTS can 

be achieved by training phonemes in various languages, and it was successful in training 

hiragana and katakana in Japanese. However, Japanese speech synthesis faced challenges 

due to the inability to reproduce pitch accents. The proposed method was found to 

effectively reproduce pitch accents, thereby enabling Japanese speech synthesis in seq2seq-

based TTS. As the input features consist of symbol sequences, the proposed method 

exhibits a high affinity with other NLP methods [70]. Experiments have shown the 

effectiveness of this method.  

The second achievement is the successful utilization of PP labels estimation method 

from speech. Prior to this research, there was a notable absence of a method to estimate 

phonetic and prosodic features from speech using the self-supervised learning based- 

acoustic model estimation approach. The amount of data for PP labels is small. Therefore, 

a method had to be devised to achieve inference even with a limited dataset, utilizing self-

supervised learning. 

The third achievement revolves around speech synthesis with adjustable acoustic 

features. We have developed speech synthesis with speaking style control, enhancing the 

quality of synthesized speech. This quality improvement is a direct result of training a 

single model with a diverse corpus encompassing various speaking styles. Furthermore, by 

manipulating the acoustic features, which represent intermediate features in DNN-TTS 
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systems, our research has achieved the ability to adjust the features of speech. These 

methods have also been seamlessly integrated into the seq2seq framework. This method 

has also been applied to seq2seq based TTS. 

Utilizing the findings from this three research, NHK has implemented Japanese speech 

synthesis in its news programs [71]. Seq2seq-based TTS can accurately reproduce the 

speech of professional news anchors. The anchors employing this text-to-speech method 

feature prominently in NHK's daily nationwide news programs, reaching a substantial 

audience and thereby establishing them as highly influential.  

Furthermore, our demonstration establishes the applicability of this method to a 

diverse range of seq2seq-based TTS models through training on symbol sequences. Given 

its versatility and high-quality performance, the method has been incorporated into major 

open-source projects for speech signal processing, including ESPnet [32]. Consequently, it 

has found widespread adoption in variety of research and development initiatives as a 

Japanese seq2seq-based TTS, currently recognized as the mainstream approach for 

Japanese speech synthesis. Presently, speech-based large language models (LLMs) are 

experiencing a surge in development, with numerous emerging speech synthesis methods. 

However, the majority of LLMs are grounded in the Transformer architecture, making this 

method highly applicable. Consequently, the implementation of LLS based-multilingual 

text-to-speech synthesis [72] [73] also integrates Japanese grapheme-to-phoneme (G2P) 

method [5] [40], encompassing our proposed ideas. Given the intricacies of the Japanese 

language, characterized by multiple readings of kanji characters and linguistic properties 

that influence phonetic and prosodic features in speech symbols, our thesis methods hold 

promise for future applications. 
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