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Abstract

We present epistemic logic REL� of reciprocal empathy with two persons, where recip-
rocal empathization, �to put oneself into the other�s shoes�, from one person to the other
and vice versa, is formalized. Logic REL� is an �xed-point extension of epistemic logic KD
adding perception operators Pci(�; �) for persons i = 1; 2; the point of REL� is that the
interpersonal epistemic depths are bounded by �; which can be as shallow as � = 3: In fact,
logic REL� captures the in�nity entailed by the �xed-point argument, which we call �latent
in�nity�. Our main objective is to study the syntactical logic REL� , but Kripke semantics is
needed for a full study; we prove the soundness/completeness of REL� . Using it, we provide
various properties of REL� ; using them, we show what the latent in�nity is and how it is
hidden. We apply REL� to an example of communication and coordination due to David
Lewis. It is formulated in terms of non-logical axioms within REL� : In this application, we
see di¤erent degrees of sharing common thoughts dependent upon on issues. This application
shows that our approach has great potential for studies of social problems.

Key words: Reciprocal empathy, Fixed-point logics, Boundedness of interpersonal epistemic
depths, Hilbert-style proof theory, Kripke semantics, Latent in�nity.

1 Introduction

An individual empathizes with another through the mental act �to put oneself into the other�s
shoes� in order to acquire what the other believes and/or thinks. In addition, he may think
that the other engages in the symmetric act. We call the �rst as mere empathization and to
the second as reciprocal empathization. We focus on the latter and formalize this reciprocity by
introducing new epistemic operators for empathized beliefs. The resulting logic, REL�; is a �xed
point extension of a KD type 2-person epistemic logic, where the extension is made by adding
individual inference abilities. Moreover, we introduce a bound � on depths of interpersonal
(and intrapersonal) reasoning. Our result reveals that the reciprocity of empathization implies
a hidden in�nity for any � � 3, and REL� still captures the central part of REL! (with no
bound) even for shallow ��s such as 3. We call this the �latent in�nity�.

�The authors thank for supports by Grant-in-Aids for Scienti�c Research 23K20588, 23K21869, Ministry of
Education, Science and Culture, Japan.

yDepartment of Economics, University of Bristol, England (taiwei.hu@bristol.ac.uk)
zUniversity of Tsukuba, Waseda University, Tokyo, Japan, (mkanekoepi@waseda.jp)
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Our target object is a social situation where interpersonal logical reasoning of an individual
person plays a crucial role. We follow the basic attitude that the syntactics and semantics are
complementary to each other in having a complete picture of a logical system. Logic REL� is
used to describe such a situation, and the semantics is used to suport the analysis in REL�: In
particular, to describe a social situation in details, we follow the traditional separation between
logic and (formal) theory ; we formalize a social situation as a theory. We explain theoretical
developments of logic REL� in Section 1.1, and discuss our motivational attitude and required
methodological changes in Section 1.2.

1.1 Theoretical developments

We adopt the syntactic approach to formalize reciprocal empathization. It is called reciprocal
empathy logic, REL�; in which we introduce a new operator, called perception (-empathization)
operator Pci(�; �) for each person i = 1; 2, and a depth restriction on interpersonal reasoning
parameterized by � � ! := f0; 1; :::g. The depth � is an upper bound for the nested depths of
belief operators Bi(�) as well as Pci(�; �) (i = 1; 2), which represents a bound on the ability to
conduct interpersonal (and/or intrapersonal) inferences for person i.

The operator Pci(�; �) connects the external world to person i�s mind, as the name suggests,
and conducts interpersonal reasonings. This interpretation is substantiated by one axiom and
one inference rule on each Pci(�; �); i = 1; 2. Thus, the operator plays two roles;

(i): person i�s perception of the state-of-a¤airs, including the other�s perception;

(ii): his logical reasoning, including his thinking of the other�s reasoning.

Empathization corresponds to (i) and is a source of i�s interpersonal beliefs. Then, (ii) may
develop such beliefs into more complex ones.1 These roles will be well observed in Lewis�s
example in Section 5.

We provide a series of logics REL� with 0 � � � !; depicted in Table 1:1, where REL� is a
sub-system of REL�0 for � < �0 � !. In particular, it is classical logic CL for � = 0, and it is
epistemic logic KD� for � = 1; 2. These logics do not allow for reciprocal empathization; mere
empathization appears for � = 2. Reciprocal empathization becomes possible in logic REL� for
� with 3 � � � !. When � = !; no interpersonal bounds are imposed.

Table 1:1; the series of REL� (0 � � � !)

REL0 ! REL1 ! REL2 ! REL3 ! � � � ! � � � REL!
q q q q
CL KD1 KD2 Re.Em. Re.Em.

We adopt the standard (serial) Kripke semantics, except for the restriction � on the set of
formulae for semantical valuation. Thus, the semantical models are uniform over REL� except
for the set of formulae: In Section 3.1, we provide the (soundness/ ) completeness theorem for
logic REL� (0 � � � !) with respect to Kripke semantics; a proof of completeness will be
given Sections 7 and 8. For � � 2; the operators Pci(�; �); i = 1; 2 do not appear; and the

1Dynamic epistemic logic takes these properties except for the reciprocity property, i.e. the last part of (i)
(cf., van Ditmarsch, et al. [13], and Benthem-Smets [6]). Here, dynamics is included in the semantics and then,
the axiomatization is considered. We separate dynamic as a formal theory from our logic, which will be discussed
in Section 5.
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Figure 1: Two mirrors and in�nite images

completeness theorem holds in simpler forms. For � � 3; the semantical structure includes an
in�nite structure with respect to interpersonal reasoning, but logic REL� with a �nite � includes
no explicit in�nity. This was mentioned above as latent in�nity.

The latent in�nity could be found in an analogy of an unbounded number of images created
between two mirrors with a person in the box in the middle as in Fig.1.1, who looks at Mirror
A: He �nds that the box is in the image of Mirror A, this image of Mirror A re�ects onto Mirror
B, this again re�ects onto Mirror A, and so on. The word �so on�means that the third image
becomes the same as the �rst image; after the 3rd step of re�ection in Mirror A; the same
argument could be repeated.

We interpret this analogy from the viewpoints of the reciprocal empathy logic REL� and the
corresponding Kripke semantics. From the syntactical perspective, reciprocity means returning
to the third image with the re�ection of the original mirror image that contains the whole
situation; this reciprocity is captured by the axioms and inference rules for Pci(�; �) in logic
REL� . From the semantical viewpoint, on the other hand, the unbounded number of re�ected
images is captured in a semantical model in that an unbounded number of truth valuations are
required across accessible possible worlds, but the formulae to be valuated are still restricted.
Thus, the latent in�nity is revealed from the semantical structure, but it is hidden in the series
of logics in Table 1.1 for REL� with � � 3, which will be discussed in Section 4.

To elucidate the concept of latent in�nity in logic REL� , we need a few meta-theorems,
which will be given in Sections 2, 3, and 4. First, logic REL�0 is a conservative extension of
REL� for � < �0 � !; the behavior of REL� is the same as in REL�0 as long as the formulae for
REL� are concerned. This is further conservatively extended into the in�nitary logic in Hu, et
al. [16]. These imply that REL� includes some in�nity, and its latency is discussed in Section
4; when � � !; Pci(C1; C2) is implicitly de�nable, i.e., its operational meaning is determined by
the axiom and inference rule for Pci(�; �); but it is not explicitly de�nable, i.e., it is not expressed
in terms of the persons�belief operators, but it is possible in the in�nitary logic of [16].

Lewis [23], Section I.3, talked about how deep the layers of interpersonal beliefs would be
required in a social situation. However, there is no de�nitive answer given in his analysis; in
p.32 and p.52, it is argued that people could not go to deep layers but �And the more orders
(degrees), the better�in p.33. Our study shows that the required depth � is 3 to have reciprocal
empathization.
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Reciprocal empathization has some similarity to the concept of common belief (/knowledge)
in that both are related to a situation shared by the two people in which interpersonal infer-
ence/beliefs are described. The di¤erence is: reciprocal empathization is individual inference
conducted by a person, but common belief describes the situation where interpersonal beliefs are
shared by the two persons. In this sense, our treatment is based on methodological individualism
(von Mises [27], Chap.I, Section 4). In Section 6, we consider how they di¤er mathematically. It
is shown that common belief is not expressible in logic REL�; but the extension of REL� having
self-consciousness of empathization can describe common belief:

These sections have focused on logical properties described in REL� ; which correspond to
(ii). The perceptions in (i) appear in the application of logic REL� in Section 5. Because we
need an additional methodological treatment from logic REL� for this application, we postpone
a explanation of it to Section 1.2, and will discuss methodological changes we adopt in the
present paper.

For the completeness proof of REL� given in Sections 7 and 8, we are indebted to the proof
of the common belief logic due to Fagin, et al. [15]2, but we need new arguments to treat
the bound � for the individualistic �xed-point arguments. In the unbounded case � = !, the
standard argument to construct a countermodel requires some modi�cations, but in the bounded
case � < !; more drastic modi�cations are required. We will take two steps of constructing a
full countermodel in Sections 7 and 8.

Finally, a small number of papers treating epistemic logics with bounded interpersonal rea-
soning. Kaneko-Suzuki [20] and [21] developed epistemic logics KD with bounds so that in-
terpersonal reasoning abilities are parallelly bounded in syntax and semantics. Their concern
was to give various meta-theorems for studies of game theoretical decision making; some will
be used for the study of latent in�nity in Section 4. Nevertheless, they touch neither reciprocal
empathization nor latent in�nity. Arthaud-Rinard [1], Larotonda-Primiero [22] studied com-
puter scienti�c complexity. Larotonda-Primiero [22] treated three-valued epistemic logic with
bounded semantic reasoning. The focusses of these papers remain in semantics.

1.2 An application of REL� and methodological remarks

As indicated above, our theoretical developments have deviated from the standard epistemic
logic in various manners. The deviations are motivated from the methodological perspective of
social science. We postpone a discussion on these issues to Section 9.1 after a full development
of logic REL�: Still, some comments on Sections 5 and 6 help understand the development.

As stated above, we take an example due to Lewis [23], p.52 in Sections 5:

(*): you and I have met, we have been talking together, you must leave before our business is done;
so you say you will return to the same place tomorrow. Imagine the case. Clearly, I will expect you
to return. You will expect me to expect to return. I will expect you to expect me to expect you
to return. Perhaps, there will be one or two orders more.

This situation is observed in our everyday lives. We formalize this situation as a theory within
the language of REL� ; following the distinction between a logic and a (formal) theory in the
tradition of �rst-order predicate logic (cf., Barwise [5], Mendelson [26]), though REL� is a
propositional logic.

2Some papers use di¤erent methods, cf., Meyer-van der Hoek [28].
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We describe (*) as a theory with �non-logical axioms�proper to the situation (*), which we
call postulates. As stated in Section 1.1, Pci(�; �) serves as an interface between the external
world and the individual�s mind; the postulates are the properties describing the interface and
reasonings in the mind of person i. Some postulates are about the physical source of empathized
beliefs and others are about the social contexts where the empathized beliefs emerge; these are
classi�ed in (i). Also, Pci(�; �) has an ability of conducting logical reasoning, which is in (ii). One
postulate, called the trustworthiness of words, is classi�ed in (ii), which formalizes the reciprocal
trust of the contents of the words being exchanged. Although (*) is simple and observed in our
everyday lives, it contains quite di¤erent bases for reciprocal empathization.

We have taken (*) for an object of our application through a theory within the language of
logic REL�; our motivational perspective is that social situations are objects of study. The bound
� on interpersonal reasoning is naturally introduced from this perspective. Our methodological
perspective di¤ers from most of the epistemic-logic literature (Fagin, et al. [15], Meyer-van der
Hoek [28], Benthem [7]) where semantic models and/or variants are the target objects. These
methodological principles will be discussed more in Section 9.1. These considerations address
suitable directions of further extensions of our approach, to be mentioned in Section 9.2.

The paper is organized as follows: Section 2 gives a language with a bound � on interpersonal
interactions, and develops a Hilbert-style proof theory. Section 3 formulates the Kripke model
of KD type, where the bound � enters only the de�nition of valuation of a formula. Then,
the soundness/completeness theorem is presented. Section 4 discusses latent in�nity. Section 5
formulates Lewis�s (*). Section 6 compares the concept of common belief with that of reciprocal
empathization. Sections 7 and 8 prove the completeness of logic REL� with respect to Kripke
semantics. Section 9 addresses some methodological re�ections and suitable directions of further
extensions of our approach.

2 Reciprocal Empathy Logic REL�

In this section, we prepare the set of formulae with a bound � for epistemic depths, and formulate
logic REL�: We give two theorems describing the properties of reciprocal empathy.

2.1 Language

We use the following primitive symbols:

propositional variables: p0;p1; :::;

logical connectives: : (not), � (imply), ^ (and);
unary belief operators: B1(�);B2(�);
binary reciprocal empathization operators: Pc1(�; �) and Pc2(�; �);
parentheses: (; ):

We denote the set of propositional variables by PV: The conjunction symbol ^ is applied to any
�nite nonempty set of formulae �: For i = 1; 2; the operator symbol Pci(�; �) describes person i�s
perception of �a state of a¤airs at a particular time�, which is binary operator with two object
formulae in the parentheses (�; �): We call the formula Pci(C1; C2) reciprocal empathized beliefs;
the reason for this term will be explained after the axiom and inference rule for it. We stipulate
that when person i is given, the other person is denoted as j:
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The formulae are de�ned by the following induction on the lengths of formulae:

(F-o): any propositional variable p is a formula;

(F-i): if A;B are formulae, so are (:A); (A � B);

(F-ii): if � is a �nite nonempty set of formulae, (^�) is a formula;
(F-iii): if A is a formula, so is Bi(A) for i = 1; 2;

(F-iv): if C1; C2 are formulae, so is Pci(C1; C2) for i = 1; 2:

We denote the set of all formulae by P:We abbreviate the parentheses, e.g., (A � B) and (^�)
as A � B and ^� and may use di¤erent parenthesis such as [; ]; when no confusions are expected:
Also, ^fA;Bg is often denoted as A^B; and (A � B)^ (B � A) is denoted as A � B: We also
write C = (C1; C2) and Pci(C) = Pci(C1; C2):We say that a formula A is an epistemic formula
i¤ it is expressed as Bi(C) or Pci(C1; C2) for i = 1; 2; which is abbreviated as an ep-formula.
We call Bi(C) and Pci(C); respectively, a b-formula and an pc-formula.

An pc-formula Pci(C1; C2) means that when person i is in a state of a¤airs with the other
person j; he observes the piece of information relevant for him expressed by formula Ci and the
piece Cj for player j: Thus, the pc-operator Pci(�; �) describes an interfaces between the external
world and the internal mind of i. Also, Pci(�; �) will serve as the source that player i uses
to start reciprocal empathization in an interaction with the other person. The two operators
Pci(�; �); i = 1; 2 will have intimate interactions with personal beliefs operators Bi(�); i = 1; 2.
Belief operator Bi(�) describes the internal beliefs and logical reasoning within himself. The
precise meaning of empathization will be given by the axiom and inference rule for Pci(�; �); i =
1; 2 in Section 2.2.

A crucial part of our theory is to investigate the depths of interpersonal reasoning needed
to achieve reciprocal empathization and the implications of cognitive bounds for the process of
reciprocal empathization. To this end, we introduce the depth measure � to count the nested
depths of Bi(�) and Pci(�; �); i = 1; 2. Formally, we de�ne � by the following induction;
(�-o): �(p) = 0 for all propositional variables p;

(�-i): �(:A) = �(A) and �(A � B) = max(�(A); �(B));

(�-ii): �(^�) = maxf�(A) : A 2 �g; where � is a �nite nonempty set of formulae;
(�-iii): �(Bi(A)) = �(A) + 1 for i = 1; 2;

(�-iv): for �(Pci(C1; C2)) = max(�(C1); �(C2)) + 1 for i = 1; 2:

For example, �(Pc1[B2(p1);B1Pc2(p1; p2)]) = max(�(B2(p1)); �(B1Pc2(p1; p2))+1 = max(1; 2)+
1 = 3: Note that we do not di¤erentiate between Bi(�) and Pci(�; �) (i = 1; 2) in the above de-
�nition of �. We note that �(Pc1(C)) = �(Pc2(C)) for any C = (C1; C2) in P � P: This fact
will be used without referring.

Let � is a natural number or the ordinal ! = f0; 1; :::g; i.e., � is from ! [ f!g: This �
is intended to be the upper bound for the depths of formulae �(C) up to which a person can
perform interpersonal reasoning. Since � is an ordinal number, we should write a constraint as,
say, 2+�(A) � �: However, since our main concern is the case � < !; we may write �(A) � ��2
for simplicity. When � = !; this means �(A) � � � 2 = !:

Let a bound � be given. Whenever an pc-formula Pci(C) = Pci(C1; C2) is allowed, we
require that person i can have two more layers of interpersonal reasoning relative to the pc-
formula. This requirement expressed by the following:

�(Pci(C)) � � � 2 for any subformula Pci(C) of A: (1)
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The set of formulae permissible by bound � is given as follows:

P� = fA 2 P : �(A) � � and (1) holds for Ag: (2)

That is, A 2 P� has at most depth � and if it contains Pci(C); it�s depth is at least than �� 2:
Condition (1) plays the crucial role in the present paper.

In Table 1.1, Pci(�; �) is allowed in P� with � � 3:When � = !; the set P! coincides with the
entire set of formulae P, since the restriction (1) is void. When � < !; (2) allows �(A) = � but
requires A to satisfy (1):When � � 2; the set P� has no occurrences of becomes Pci(�; �); i = 1; 2:
These cases have no instances of reciprocal empathization. When � = 0; P� has no ep-formulae.

The set P� is subformula-closed, i.e., if C 2 P� ; then any subformula C 0 of C is also in P�:
This fact is a key to our analysis, but since it is simple, we may not refer to it. However, when
we mention di¤erent sets of formulae, we should be conscious about subformula-closedness.

2.2 Formulation of logic REL�

The axioms and inference rules for REL� are stated as follows: For any A;B;C 2 P� and a
�nite nonempty set of formulae � in P�,

L1: A � (B � A);

L2: (A � (B � C)) � ((A � B) � (A � C));

L3: (:A � :B) � ((:A � B) � A);

L4: ^� � A; where A 2 �;

MP:
A � B A

B
and ^-Rule: fA � B : B 2 �g

A � ^� .

These axioms (schemata) and inference rules are drawn form classical propositional logic.3 ;4 We
adopt the following axiom schemata and inference rule for Bi(�): for all Bi(A);Bi(C) 2 P� and
i = 1; 2;

K: Bi(A � C) � (Bi(A) � Bi(C));
D: :Bi(:A ^A);

Nec:
A

Bi(A)
.

These K, D, and Nec, in addition to L1 - L4, MP, and ^-Rule compose the epistemic logic KD�
with the language P�: When � � 1; Axioms K, D, and Inference rule Nec are not vacuous in
that each has some instances in P�: Here, person i has the classical logical ability.

Finally, the reciprocal empathy logic REL� is de�ned as the system by adding Axiom (schema)
AEM and (Inference) Rule IEM to KD� : They express a �xed-point property of the perception
operators Pci(C); i = 1; 2:

AEM (Axiom for Empathization): For any Pcj(C) 2 P� and i = 1; 2;
3 In the literature of epistemic logic, it is typical to start with classical valid formulae instead of Axioms L1

to L4 and the inference rules. Our direct concern is shallow depth of interpersonal reasoning, but this is closed
related to shallow depths of intrapersonal reasoning, too. From this point of view, we start explicitly with Axioms
L1 to L4 and the inference rules.

4Here, Bi(A) and Pci(A1; A2) (i = 1; 2) in P� are treated as if propositional variables. In KD� below,
Pci(C); i = 1; 2 are similarly treated as if propositinal variables.
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Pci(C) � Bi(Ci) ^BiPcj(C):
IEM (Inference Rule for Empathization): For any Pci(C);Bj(Di) 2 P�; i = 1; 2;

Di � Bi(Ci) ^Bi(Dj) Dj � Bj(Cj) ^Bj(Di)
Di � Pci(C)

:

As mentioned in Section 1.1, the operator Pci(�; �) has two roles: (i) the interface from the
external world to person i�s internal mind and (ii) one�s logical reasoning including the other�s
reasoning. An example illustrating these roles will be discussed in Section 5. Axiom AEM and
Rule IEM describe interpersonal reasoning. Indeed, Axiom AEM directly includes interpersonal
reasoning. Rule IEM literally states that if other formulae Di and Dj satisfy the same property
as postulated by AEM, Di implies Pci(C); i.e., it is the deductively weakest in the formulae
having the property described by AEM. Incidentally, AEM and IEM form the �xed-point, which
will be shown in Theorem 2.2.

Now, a proof in logic REL� is a triple hX;>;'i with the following conditions:
P1: (X;>) is a �nite tree with the root x0;
P2: ' : X ! P� such that
(i): if x is a leaf of the tree (X;>), then '(x) is an instance of L1-L4, K, D, or AEM in P�;
(ii): for any non-leaf x 2 X;

f'(y) : y is an immediate predecessor of xg
'(x)

is an instance of MP, ^-rule, Nec, or IEM in P� .
When '(x0) = A; we call hX;>;'i a proof of A in REL� : We say that A is provable in REL�;
denoted by `� A; i¤ there is a proof of A in REL�:

When `� A; all formulae in the proof of A are required to be in P�. However, the negative
assertion 0� A can arise in two di¤erent cases:

(P-a): A 2 P� ; but there is no proof of A in REL� ; and (P-b): A =2 P� :
When A 2 P�; it is enough to think about candidate proofs of A in REL� ; which is unprovability
in the standard sense. In the alternative case A =2 P�; we have 0�0 A directly by the de�nition
of a proof of A:

An application of logic REL� to a social problem takes the form of a (formal) theory described
within logic REL�: For this, we introduce non-logical axioms in REL�: Let � be a subset of P�:
We de�ne � `� A i¤ `� A or `� ^� � A for some nonempty �nite subset � of �: If � = ;; this
is `� A: We can regard � as a set of non-logical axioms, and we will use this for an application
in Section 5.

Lemma 2.1 states some basic facts on the provability relation `� : These should be proved
since we adopt a particular axiomatization of classical logic and that of epistemic logic KD2

with the set of formulae P�: Proofs of h0i and h1i are found in Mendelson [26], p.31, and a proof
of h2i is in Kaneko [17], Lemma 11.1. A proof of h3i is given in [17], Lemma 4.1.(3), p.25. We
use them without referring to Lemma 2.1.

Lemma 2.1 For any A;B;C;^Bi(�) 2 P�; and i = 1; 2;
h0i: `� A � A; h1i: `� A � B and `� B � C imply `� A � C;

h2i: `� [A ^B � C] � [A � (B � C)]; h3i: `� Bi(^�) � ^Bi(�) and `� ^Bi(�) � Bi(^�):
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Here, we describe person i�s inference ability through the reciprocal empathization operator
Pci(�; �): Theorem 2.1 states that the KD-properties of the belief operator Bi(�) are preserved
by Pci(�; �) as an extension of the unary operator Bi(�) to the binary operator Pci(�; �). Proofs
of the assertions are given in Section 2.3; we follow the convention that the results given in each
section will be proved in the last subsection, except for the completeness part of Theorem 3.1.

Theorem 2.1 (Logical properties of Pci(�; �)) Let � be in N [ f!g with � � 3 and i = 1; 2:
Assume that all the formulae in the assertions are in P� :

h1i(Necessitation) If `� A1 ^A2; then `� Pci(A1; A2):

h2i(Unilateral K) `� Pci(A1 � B1; A2) ^Pci(A1; A2) � Pci(B1; A2) and

`� Pci(A1; A2 � B2) ^Pci(A1; A2) � Pci(A1; B2).

h3i(Bilateral K) `� Pci(A1 � B1; A2 � B2) ^Pci(A1; A2) � Pci(B1; B2):

h4i(Pci-^) `� Pci(^�; B2) � ^fPci(A1; B2) : A1 2 �g and

`� Pci(A1;^�) � ^fPci(A1; B2) : B2 2 �g:

h5i(D) `� Pci(?; B) � ? and `� Pci(A;?) � ?:

Thus, the inference properties owned by Pci(�; �) are parallel to the corresponding properties
of Bi(�): In addition to these, Theorem 2.2 shows the reciprocity of empathized beliefs: The
contrapositive of the only-if assertion of h2i is obtained in the sense of (P-b) above.

Theorem 2.2 (Fixed-point properties) Let Pci(C) 2 P and i = 1; 2:

h1i(Interpersonal �xed-point): If Pci(C) 2 P� ; then

`� Pci(C) � Bi[Ci ^Pcj(C)]: (3)

h2i(Depths for reciprocal empathized beliefs): �(Pci(C)) � � � 2 if and only if

`� Pci(C) � Bi[Ci ^Bj [Cj ^Pci(C)]]: (4)

The right-hand of (3) expresses the idea that person i perceives the current state of a¤air and
enters into the mind of person j to acknowledge j�s perception of the current state of a¤air. This
is one step of reciprocal empathization. Then, h2i asserts that the process returns to Pci(C) in
person i�s own perception through simulating j�s thinking. Thus, (4) is a �xed-point statement
with respect to Pci(C).

Calculating the depth of the formula in (4), we �nd �(Pci(C)) � � � 2; which implies
Pci(C) 2 P� by (2). This is coherent with our purpose to study reciprocal empathization. In
other words, when � � 2; logic REL� has no capacity to describe reciprocal empathization.
When � = 3; only non-epistemic formulae, i.e., �(C1) = �(C2) = 0; are the objects for reciprocal
empathization. This case will be used in an application in Section 5.

Theorem 2.2.h2i means that in the two mirrors example in Section 1.1, full reciprocity is
revealed in the second inner mirror image of A: As stated, it is enough to notice this reciprocity
for practical understanding of AEM and IEM. Latency and in�nity will be studied in more
detailed manner, which will be given in Section 4.

It may be better to put subscript i to the Axiom and Rule for Pci(�; �) as AEMi and IEMi

to emphasize that they describe person i�s logical inferences. In particular, the upper formulae
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of Rule IEM are symmetric for i and j: To emphasize person i�s inference, it may be helpful to
change it to the assertion for i = 1; 2 that for any Pci(C);Bj(Di) 2 P�; there is a Bi(Dj) 2 P�
such that the inference described above is assumed. Nevertheless, this formulation is equivalent
to the above for IEM.

2.3 Proofs

Proof of Theorem 2.1.h1i Suppose `� Ai for i = 1; 2: Let Di = Ai for i = 1; 2: Then, by
Nec, we have `� Bi(Dk) for i; k = 1; 2: Thus, `� Bi(D1)^Bi(D2): Since `� Bi(D1)^Bi(D2) �
(Di � Bi(D1) ^ Bi(D2)) by Axiom L1, we have `� Di � Bi(D1) ^ Bi(D2) for i = 1; 2; which
are expressed as `� Di � Bi(Ai) ^ Bi(Dj) for i = 1; 2: Since thy are the upper formulae of
inference IEM, we have `� Di � Pci(A1; A2) for i = 1; 2: Since Di = Ai for i = 1; 2; we have
`� Pci(A1; A2) for i = 1; 2:
h2i We show only `� Pci(A1; A2 � B2) ^ Pci(A1;A2) � Pci(A1; B2) for i = 1; 2: The other is
shown similarly. Denote Fi = Pci(A1; A2 � B2) ^ Pci(A1; A2) for i = 1; 2: By Axiom AEM,
`� F1 � B1(A1): Similarly, we have `� F2 � B2(A2) and `� F2 � B2(A2 � B2): Thus, `� F2 �
B2(B2): By Axiom AEM, we have `� Fi � Bi(Fj) for i = 1; 2: Thus, `� F1 � B1(A1) ^B1(F2)
and `� F2 � B2(B2) ^B2(F1): By Rule IEM, we have `� Fi � Pci(A1; B2) for i = 1; 2:
h3i Denote Fi = Pci(A1 � B1; A2 � B2)^Pci(A1; A2) for i = 1; 2: By Axiom AEM and Lemma
2.1.h3i, `� Fi � Bi(Ai � Bi) ^Bi(Ai): Hence, `� Fi � Bi(Bi) for i = 1; 2: Similarly, we have
`� Fi � Bi(Fj) for i = 1; 2: Thus, `� Fi � Bi(Bi) ^Bi(Fj) for i = 1; 2: By Rule IEM, we have
`� Fi � Pci(B1; B2):
h4i First, we show `� Pci(^�; A2) � ^fPci(A;A2) : A 2 �g: Let A be arbitrary in �: Then,
`� Pci(^� � A;A2 � A2) � (Pci(^�; A2) � Pci(A;A2)) by Lemma 2.1.h2i as well as h3i
above, and also `� Pci(^� � A;A2 � A2) by h1i: Hence, `� Pci(^�; A2) � Pci(A;A2). Since
A is arbitrary in �; we have `� Pci(^�; A2) � ^fPci(A;A2) : A 2 �g by ^-rule:

Consider the converse. Let Di = ^fPci(A;A2) : A 2 �g for i = 1; 2: Since `� D1 � B1(A)
for all A 2 � and `� D1 � ^B1(�); we have, by Lemma 2.1.h3i; `� D1 � B1(^�): Similarly,
we have `� D1 � B1(^fPc2(A;A2) : A 2 �g): Thus, `� D1 � B1(^�) ^ B1(^fPc2(A;A2) :
A 2 �g): Similarly, we have `� D2 � B2(A2) ^B2(^fPc1(A;A2) : A 2 �g: These are written
as `� D1 � B1(^�) ^ B1(D2) and `� D2 � B2(A2) ^ B2(D1). Regarding these as the upper
formulae of Rule IEM, we have `� Di � Pci(^�; A2) for i = 1; 2:
h5i We prove `� Pci(?; B) � ? for i = 1; 2: Let Di = Pci(?; B); i = 1; 2: By AEM, we have
`� D1 � B1(?) ^ B1(D2) and `� D2 � B2(B) ^ B2(D1): By Axiom D for B1(�); we have
`� D1 � ?: By the second, we have `� D2 � B2(D1): Hence, `� D2 � B2(?): By Axiom D for
B2(�) again; we have `� D2 � ?:�
Proof of Theorem 2.2.h1i: It su¢ ces to prove `� Bi(Ci) ^BiPcj(C) � Pci(C): Let Dk =
Bk(Ck) ^ BkPck0(C); k; k0 = 1; 2 (k 6= k0): We should prove that the upper formulae of Rule
IEM are provable in REL� ; that is,

`� Di � Bi(Ci) ^Bi(Dj) and `� Dj � Bj(Cj) ^Bj(Di): (5)

Once this is proved, we have `� Di � Pci(C) by Rule IEM: First, we observe �(Dk) =
�(Pck(C)) + 1 for k = 1; 2: Indeed, since �(Pcj(C)) + 2 � � by (1); we have �(Bk(Dk0)) =
�(Dk0) + 1 = �(Bk0Pck(C)) + 1 = (�(Pck(C)) + 1) + 1 = �(Pck(C)) + 2 � �: Thus, both
formulae of (5) are permissible in P�:
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By Lemma 2.1.h1i; `� Di � Bi(Ci) ^BiPcj(C): Noting �(Bi[Bj(Cj) ^BjPci(C)]) � � by
(1), by Nec, `� Bi[Pcj(C) � Bj(Cj)^BjPci(C)]; which implies, by Axiom K, `� BiPcj(C) �
Bi[Bj(Cj)^BjPci(C)]: Thus, `� Di � Bi(Ci)^ Bi[Bj(Cj)^BjPci(C)]; i.e., `� Di � Bi(Ci)^
Bi(Dj): This holds for i = 1; 2: Hence, we have both statements of (5).

h2i:(Only-if): By h1i, we have `� Pci(C) � Bi[Ci ^ Pcj(C)] for i = 1; 2: By Nec and K, we
have `� BiPcj(C) � Bi[Bj [Cj^Pci(C)]]:We have, abbreviating `�; the following calculation in
REL� ;Pci(C) � Bi(Ci)^Bi[Pcj(C)] � Bi(Ci)^Bi[Bj [Cj^Pci(C)]] �Bi[Ci^Bj [Cj^Pci(C)]]:
By (1); the last equivalent formulae are in P� :
(if): By de�nition of provability, the formula of (4) is in P�; i.e., Pci(C) 2 P�; which implies
�(Pci(C)) � � � 2 by (1).�

3 Kripke Semantics for REL�

Logic REL� (0 � � � !) is concise for presenting provable formulae, but the corresponding
Kripke semantics is complementary to have evaluations of negative and/or structural results in
REL� . The main result is the soundness/completeness theorem for REL� (0 � � � !) with
the restricted set of formulae P� given by (2). It reveals the hierarchal structure of our logics
indexed by depth � in Table 1.1 more clearly. Indeed, as an immediate corollary, we obtain a
conservative extension result over REL� and REL�0 with � < �0 � !.

3.1 Kripke models and valuations

We de�ne the Kripke frame for REL�; which is uniform over di¤erent depths � (0 � � � !):
A Kripke frame K = (W;R1; R2) is given as a triple of a nonempty set of possible worlds and
accessibility relations Ri; i = 1; 2: Each Ri is a binary relation over W satisfying the seriality
condition: for each w 2W; wRiu for some u 2W: A Kripke model M is a pair of a Kripke frame
K = (W ;R1; R2) and a truth assignment � : W � PV ! f>;?g: We focus on serial Kripke
models M = (K;�); which will be simply called a Kripke model.

We need one more concept; we say that a �nite sequence h(w0; i0); (w1; i1); :::; (w��1; i��1); w�i
is an al-chain (alternating chain) from (w; i) i¤ � � 1; w0;w1; :::; w� are possible worlds in W
and i0; i1; :::; i��1 are players in f1; 2g with (w0; i0) = (w; i) such that

wtRitwt+1 for t � � � 1 and it 6= it+1 for t � � � 2:

By seriality, for any w 2W and i = 1; 2; there is always an al-chain of any length h(w0; i0); (w1; i1); :::;
(w��1; i��1); w�i from (w; i): The set of al-chains is in�nite, even if W is a �nite set.

Now, we de�ne the valuation (unary) relation (M;w) j= C for any w 2 W inductively with
respect to the lengths of formulae by

V0: for any p 2 PV; (M;w) j= p if and only if �(w; p) = >;
V1: (M;w) j= :C if and only if (M;w) 2 C;
V2: (M;w) j= A � C if and only if (M;w) 2 A or (M;w) j= C;

V3: (M;w) j= ^� if and only if (M;w) j= C for all C 2 �;
for any Bi(C) 2 P� and i = 1; 2;

V4: (M;w) j= Bi(C) if and only if (M;u) j= C for any u 2W with wRiu;
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for any Pci(C) = Pci(C1; C2) 2 P� and i = 1; 2;
V5: (M;w) j= Pci(C) if and only if (M;w�) j= Ci��1 for any al-chain h(w0; i0); (w1; i1); :::;

(w��1; i��1); w�i from (w0; i0) = (w; i):

V0 to V4 are standard, but V5 is new and needs some comments. The right-hand side has
no constraints on the lengths of al-chains, i.e., (M;w�) j= Ci��1 is required even for any w�
with distance from w further than the distance � from w: Only in the both sides, the valuated
formulae are required to be in P� : This uniformity provides conservativeness, which will be
discussed after Theorem 3.1.

We say that a formula C 2 P� is valid i¤ (M;w) j= C for all models M = ((W;R1; R2); �)
and all w 2W: The validity of C is denoted by j= C:

We have the soundness-completeness theorem for logic REL� with respect to the above
semantics. A proof of the soundness (only-if) part is given in Section 3.2. The completeness (if)
part will be proved in Sections 7 and 8.

Theorem 3.1 (Soundness-completeness) Let � be any ordinal with 0 � � � ! and A 2 P� :
Then, `� A if and only if j= A:

This theorem covers the series of logics REL��s with 0 � � � ! in Table 1:1: It starts with
REL0 (classical logic), REL1 = KD1;REL2 = KD2; and then from REL3 to REL!: The operators
Pci(�; �); i = 1; 2 appear from REL3 to REL!; where reciprocal empathization is possible. In
REL3; no nested occurrences of Pci(�; �); i = 1; 2 are allowed, REL� with � � 4 has some
freedom, and REL! has no constraints on interpersonal reasoning. We are interested in reciprocal
empathization included from REL3 to REL!. From the viewpoint of applications, the logics
REL� with � = 3 or slightly higher are more important than those with large �. REL2 = KD2
is regarded as a logic of mere empathization, which will be discussed in Sections 5 and 9.5

In the proof of completeness, we construct a �nite countermodel. This implies the �nite
model property.

Theorem 3.2 (Finite model property) Let � be any ordinal with 0 � � � !: For any
A 2 P�, if 0� A; there is a �nite model M = (K;�) such that (M;w) 2 A for some w 2W:

Thus, we can restrict the semantics to the set of �nite models to have equivalence between
provability and validity.

The idea of a conservative extension is basic to comparisons between two logics (/theories)
in the literature of mathematical logic.6 In this paper, we give two results on conservative
extensions, which will play crucial roles in Section 4 for the consideration of latent in�nity in
terms of explicit/implicit de�nability of Pci(C1; C2). First, it is directly applied to comparisons
between logics REL� and REL�0 when �

0 > �:

Theorem 3.3 (Conservative extension 1) Let 0 � � � �0 � !. Then, for any C 2 P�;

`� C if and only if `�0 C: (6)

5KD1 is the KD system with no nested occurrences of Bi(�); i = 1; 2, and KD2 is the KD system allowing only
nest occurrences of depth 2: In general, KD� allows nest occurrences of Bi(�); i = 1; 2 up to �: These are special
cases of Kaneko-Suzuki [21]�s KD logics with shallow depths. In that approach, more individualistic versions of
nested structures are discussed with respect to Bi(�); i = 1; 2:

6For example, the axiomatic set theory NBG is an conservative extension of ZF (cf., Mendelson [26], Chap.4,
p.224).
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A proof is straightforward from Theorem 3.1. Speci�cally, for any C 2 P� with � � �0 � !;
the semantical valuation relation (M;w) j= C is uniform on �0 � !: Using this fact, when
� � �0 � ! and C 2 P� � P�0 ; it holds that `� C if and only if j= C if and only if `�0 C: Thus,
we have (6).

As mentioned in Section 1, our logical approach to social situations has emphasis on small
�. The left part, with small �; of Table 1 are more important than the right part with large
�: As long as the target formulae are restricted within the bound �; this already captures the
provability of REL�0 : We will see the power of conservativeness in the study of the �latent
in�nity�in Section 4.

Kaneko-Suzuki [21] gave various meta-theorems in epistemic logic KD! and its subsystems
with shallow epistemic depths. The following corollary is useful particularly for applications of
their meta-theorems. For � (0 � � � !); logic KD� is obtained from REL� by restricting P�
to fA 2 P� : A contains no Pci(�; �); i = 1; 2g: By Theorem 3.1, the soundness-completeness
theorem holds for KD�: The following corollary enables us to convert the meta-theorems given
in [21] to KD!.

Corollary 3.4 (Conservative extension 2) REL! is a conservative extension of KD!:

3.2 Proof of soundness

Soundness is proved by the induction over a proof h(X;>); 'i of a formula A in REL� from its
leaves. For a leaf x 2 X; '(x) is an instance of the axiom schemata L1-L4, K, D, and AEM.
We check the validity of each instance of these axioms. Then, the induction step is to show
that validity is preserved by the inference rules, MP, ^-Rule, Nec, and IEM. By the principle of
mathematical induction, we have the validity of A.

Let A be an instance of L1 to L4 or K, D. It is standard to show that (M;w) j= A for any
model M = (K;�) and any w 2 W: This does not depend upon depth �: Also, it is proved in
the standard manner that inference rules MP, ^-rule, and Nec preserve validity. This step does
not depend upon �; either.

Now, we prove that Axiom AEM is valid; for any Pci(C) = Pci(C1; C2) 2 P�; j= Pci(C) �
Bi(Ci)^BiPcj(C) for i = 1; 2: It su¢ ces to show for any Kripke modelM = ((W;R1; R2); �) and
any world w 2 W; (M;w) j= Pci(C) � Bi(Ci) ^ BiPcj(C): Suppose that (M;w) j= Pci(C):
By V5, it holds that (M;w�) j= Ci��1for any al-chain h(w0; i0); (w1; i1); :::; (w��1; i��1); w�i
with (w0; i0) = (w; i):When � = 1; this implies (M;w1) j= Ci0 (= Ci): Hence, (M;w) j= Bi(Ci):
Returning an arbitrary �; we have (M;w�) j= Ci��1 since (M;w) j= Pci(C):We focus on al-chain
h(w1; i1); :::; (w��1; i��1); w�i with (w1; i1) = (w1; j) from (w1; i1): Since this al-chain is arbitrary,
we have (M;w1) j= Pcj(C): Since w1 is arbitrary and wRiw1; we have (M;w) j= BiPcj(A):
Thus, (M;w) j= Pci(A) � Bi(Ai) ^BiPcj(A):

Finally, we prove that Rule IEM preserves validity j=. Suppose that for some Pci(C); Di 2
P� (i = 1; 2),

j= Di � Bi(Ci) ^Bi(Dj) for i; j = 1; 2 and j 6= i: (7)

Let M = ((W ;R1; R2); �) be any model and w any world in W: Suppose (M;w) j= Di: Let
h(w0; i0); (w1; i1); :::; (w��1; i��1); (w� ; i�); � � � i be an arbitrary in�nite sequence from (w0; i0) =
(w; i) so that for any �; its initial segment h(w0; i0); :::; (w��1; i��1); w�i is an al-chain from
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(w0; i0) = (w; i): It su¢ ces to show by induction over � � 1 that

(M;w�) j= Ci��1 for all � � 1: (8)

Once this is proved, by V5, we have (M;w) j= Pci(C). Thus, (M;w) j= Di � Pci(C) by V2.

Let us see (8). We focus on odd ��s, and prove by induction that for any odd � � 1;

(M;w�) j= Ci��1 ; (M;w�+1) j= Ci� ; and (M;w�+1) j= Di�+1 : (9)

This is enough for (8) including even ��s. The induction base and induction step are uniformly
proved, and we show it for any odd �: Since i��1 = i and w��1Ri��1w� ; we have (M;w�) j= Ci
and (M;w�) j= Dj , by the �rst statement of (7) and the induction hypothesis (M;w��1) j= Di��1
(this is the supposition of the entire proof when � = 1). Thus, we have shown (M;w�) j= Ci��1
and (M;w�) j= Di� : Now, we go to the case � + 1: By the second of (7), we have (M;w�) j=
Di� � Bi� (Ci� ) ^ Bi� (Di�+1): Hence, (M;w�) j= Bi� (Ci� ) ^ Bi� (Di�+1): Since w�Ri�w�+1; we
have (M;w�+1) j= Ci� and (M;w�+1) j= Di�+1 : We complete the proof of (9).�

4 Latent In�nity in Logic REL�

We elucidate the �latent in�nity� in logic REL�, by studying the two concepts, explicit de-
�nability and implicit de�nability (cf., Troelstra-Schwichtenberg [35], Maksimova [24]), for pc-
formulae Pci(�; �); i = 1; 2:7 In an in�nitary extension of REL� given in Hu, et al. [16], the
formula Pci(C) = Pci(C1; C2) is expressed as an in�nitary conjunction of b-formulae. We show
the explicit inde�nability in REL� for any � (3 � � � !) that there is no (�nitary) formula
to express Pci(C): On the other hand, it is shown that Pci(�; �) is operationally and uniquely
determined in logic REL� up to the formulae in P�. These mean that the latent in�nity in REL�
is hidden in the operational property for any � (3 � � � !); and become explicitly expressed in
the in�nitary logic of [16].

4.1 Explicit inde�nability of Pci(�; �) in logic REL�

The explicit de�nability of Pci(�; �) in REL� means that Pci(C) is expressed as a formula in
REL� including no occurrences of Pc1(�; �) and Pc2(�; �): First, Theorem 4.1 gives a necessary and
su¢ cient bound m for Pci(C) to entail Bi1 � � �Bim(Cim): We use the same term for a sequence
(i1; :::; im) of 1; 2 as an al-chain in Section 3; it is an al-chain i¤ it 6= it+1 for t = 1; :::;m� 1:

Theorem 4.1 (Surface to deeper layers) Let � � !; Pci(C) 2 P� ; and (i1; :::; im) an
al-chain with i1 = i and m � 1: Then, �(Pci(C)) +m� 1 � � if and only if

`� Pci(C) � Bi1 � � �Bim(Cim): (10)

Let � < !. When �(C1) = �(C2) = 0, the maximum length m is �; but if C contains some
pc-subformulae, m is smaller than �: When � = !; the former statement of the assertion is
vacuous, and the latter holds for all al-chains (i1; :::; im) with i1 = i and of any length m < !:
Nevertheless, in REL!; it is not allowed to take the conjunction of the set of these beliefs.

7Explicit de�nability and implicit de�nability are equivalent in the �rst-order theory, known as Beth�s theorem
(see Troelstra-Schwichtenberg [35]).
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On the other hand, we take the in�nitary logic, denoted by HKS, of Hu, et al. [16] with a
suitable choice of a language including the operator symbols Pci(�; �); i = 1; 2 with Axiom AEM
and Rule IEM, where its provability relation by HKS ` : Then, it holds:

HKS ` Pci(C) � ^fBi1 � � �Bim(Cim) : (i1; :::; im) is an al-chain with i1 = ig: (11)

The proof is straightforward in logic HKS. In this sense, Pci(C) is explicitly de�nable in logic
HKS. In fact, this logic is a conservative extension of REL� (� � !); the provability HKS `
coincides with `� within the set of formulae P� :8 Of course, since the above in�nitary formula is
not in P�; it could be conjectured that there is no formula in P� such that it expresses Pci(C)
in logic REL�:

The following theorem gives an a¢ rmative answer to this conjecture.

Theorem 4.2 (Explicit inde�nability Pci(�; �)) Let 3 � � � !: Let p1; p2 2 PV . Then,
there is no C 2 P� such that no pc-formula Pck(�; �); k = 1; 2 occurs as subformulae of C and
`� Pci(p1; p2) � C:

Theorem 4.2 asserts that Pci(p1; p2) cannot be expressed by any formula without including
Pck(�; �); k = 1; 2 in logic REL� for � � !: This result is perfect contrast to (11); explicit
de�nability never holds for REL� for any � � !; but explicit de�nability appears in in�nitary
logic HKS.

The rough idea of a proof is as follows: suppose that such a C exists in P�. Note �(C) < !:
Then `! Pci(p1; p2) � C: This and Theorem 4.1 for � = ! imply `! C � Bi1 � � �Bim(pim) for
any al-chain (i1; :::; im) with i1 = i and any m < !: We take an m > �(C): Then, a formula
Bi1 � � �Bim(pim) of depth m is derived from C with the smaller depth �(C) than m: Corollary
3.4 implies that Lemma 4.1 (the depth lemma of Kaneko-Suzuki [21]) can be applied and we
have `! :C. By Theorem 3.3 (conservativity), `� :C. This will be shown to be impossible. A
full proof will be given in Section 4.3.

4.2 Implicit de�nability of Pci(�; �) in REL�

Here, we show that Pci(C1; C2) is still implicitly de�nable in the sense that Pci(C1; C2) is
operationally determined uniquely in logic REL�: To formulate this concept, we add binary
operators Pc0i(�; �); i = 1; 2 to the list of basic symbols in Section 2.1. We de�ne the set of
formulae P 0� in the same manner in Section 2.1, except for one additional step, (F0-v), for
Pc0i(C

0
1; C

0
2); i = 1; 2; where C

0
1; C

0
2 are already de�ned by (F

0-o) to (F0-iv): The depth �(C 0) is
de�ned so that it is the maximum nested depth counting all occurrences of Bi(�); Pci(�; �) and
Pc0i(�; �) in C 0 for i = 1; 2. We assume the same axioms L1 to L4, K, D, Nec, ^-rule, Nec in
P 0�, while in addition to AEM and IEM for Pci(�; �); we add the corresponding AEM0 and IEM0

for Pc0i(�; �) in P 0� : This extended logic is denoted by (REL0�;P 0�); and its provability relation
by `0� : In fact, Theorem 4.1, where neither Pck(�; �) nor Pc0k(�; �); k = 1; 2 occurs in C, holds
for this extension (REL0�;P 0�); which is obtained by repeating the proof of Theorem 4.2. Hence,
explicit de�nability does not hold.

Let us focus on the operational meanings of Pci(�; �) and Pc0i(�; �) in (REL0� ;P 0�). The
following lemma states that Pci(�; �) and Pc0i(�; �) are deductively equivalent in REL0�: That

8 In fact, the soundness/completeness theorem for the above HKS needs small modi�cations of Kripke semantics
and the proof given in Hu, et. al [16]. But since (11) is proved within HKS, the modi�cations are insubstantive.
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is, although Pci(�; �) and Pc0i(�; �) are not expressed by a formula without including Pck(�; �) and
Pc0k(�; �); they are operationally equivalent.
Lemma 4.1 (Implicit de�nability 1): Let Pci(C);Pc0i(C

0) 2 P 0�: If `0� Ck � C 0k for k = 1; 2;
then, `0� Pci(C) � Pc0i(C 0) for i = 1; 2:

This states that Pci(�; �) and Pc0i(�; �) are operationally equivalent within (REL0�;P 0�). How-
ever, Pci(�; �) is originally in (REL� ;P�), and (REL0�;P 0�) is larger than (REL�;P�): To have
a full answer to the question of implicit de�nability for Pci(�; �), we return to (REL� ;P�) from
(REL0�;P 0�):

Before this, let us see how larger than P� the set P 0� is: Let C 2 P�: Let � be the number
of occurrences;Pci(D1; D2); i = 1; 2 in C: The cardinality of the set of formulae obtained from
C by substituting, or not, Pc0k(D1; D2); k = 1; 2 for Pck(�; �) is 2�: These formulae are all in
P 0�. Thus, the set P 0� is much larger than P� : Nevertheless, we can embed (REL0�;P 0�) into
(REL�;P�) :

We have the translation � from (REL0� ;P 0�) to (REL� ;P�); for any C 2 P 0�; �(C) is the
formula obtained from C by eliminating all occurrences �0�in C: Then, � is an onto map from
P 0� to P� : We have the following theorem, which means that Pci(C) is operationally de�ned
without ambiguity. Recall the assumption 3 � � � !:

Theorem 4.3 (Implicit de�nability 2): For any C 0 2 P 0� ; `0� C 0 if and only if `� �(C 0):

Thus, the extended logic (REL0�;P 0�) is the same as (REL�;P�) only with symbolic dif-
ferences. In other words, the operational property of Pci(C) is fully determined even in
(REL�;P�): This operational property is latent in the sense that it is not explicitly represented
in P�:

Finally, let us see the soundness/completeness of (REL� ;P�) is converted to the sound-
ness/completeness of (REL0� ;P 0�). First, we adopt the set of formulae P 0�; the valuations of V1
to V4 are the same forms, and V5 is applied to formulae Pc0i(C): Then, by induction on the
lengths of formulae, we have

j= C 0 if and only if j= �(C 0): (12)

Let C 0 2 P 0� and `0� C. This provability is translated into `� �(C 0) by Theorem 4.3: By Theorem
3.1, this is equivalent to j= �(C 0); and by (12), we have j= C.

4.3 Proofs

Proof of Theorem 4.1.(If): Let `� Pci(C) � Bi1 � � �Bim(Cim) (i = i1 = 1; 2): These formulae
are in P� by the de�nition of a proof in REL�. Hence, �(C1 ^ C2) +m � �: This is written as
�(Pci(C))� 1 +m � �; i.e., �(Pci(C)) +m� 1 � �:

(Only-If): We prove (10) by induction over k (1 � k � m)): By Axiom AEM, we have
`� Pci(C) � Bi(Ci) for i = 1; 2: These are the claims of (10) for k = 1: Suppose the induction
hypothesis that (10) holds for k (1 � k � m � 1): Consider player j 6= i: Then, since `�
Pcj(C) � Bj1 � � �Bjk(Cjk); we have `� BiPcj(C) � BiBj1 � � �Bjk(Cjk) by Nec and K: Since
`� Pci(C) � BiPcj(C) by AEM; we have `� Pci(C) � BiBj1 � � �Bjk(Cjk) for i = 1; 2: By the
induction principle, we have (10).�

To prove Theorem 4.2, we refer to a theorem for KD! (cf., Theorem 5.5, p.185 in Kaneko-
Suzuki [21]), which is regarded as a theorem in REL! by Corollary 3.4. The following lemma is
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a simpli�ed form needed for the proof of Theorem 4.2.

Lemma 4.2 (Depth lemma) Let C;D be non-pc-formulae in P! with �(C) < k: For a sequence
(i1; :::; ik) in f1; 2g; if KD! ` C � Bi1 � � �Bik(D), then KD! ` :C or KD! ` D.

We say that a formula C is consistent in REL� i¤ 0� :C:
Proof of Theorem 4.2: Suppose, on the contrary, that there is a non-pc-formula C 2 P� such
that `� C � Pci(p1; p2): First, we see that C is consistent in REL�. On the contrary, let C
be inconsistent, i.e., `� :C; which implies `� :Pci(p1; p2): Consider the model ((W;R1; R2); �)
so that W = fwg and Ri is re�exive for i = 1; 2; and �(w; p) = > for all p 2 PV: Then,
((W;R1; R2); �) j= Pci(p1; p2) by V5. By Theorem 3.1 (soundness), 0� :Pci(p1; p2); which is
impossible. Thus, C is consistent in REL�.

Since C 2 P�, �(C) := ` < ! even if � = !: Since `� C � Pci(p1; p2); we have `! C �
Pci(p1; p2): Thus, we have by Theorem 4.1,

`! C � Bi1 � � �Bi`+1(pi`+1); (13)

where (i1; :::; i`+1) is an al-chain with i1 = i: Since REL! is a conservative extension of KD! as
stated in Corollary 3.4; the provability relation `! in (13) can be replaced by the provability
relation KD! ` :

Now, we apply Lemma 4.2 to the formula in (13) with KD! `; thus, KD! ` :C or KD! `
pi`+1 : The latter is simply impossible. Hence, KD! ` :C; since REL! is an extension of KD!,
we have `! :C: By Theorem 3.2 again, we have `� :C: This is impossible since C is consistent
in REL�; i.e., 0� :C: In sum, the supposition of the existence of a non-pc-formula C such that
`� C � Pci(p1; p2) is wrong, we have the assertion of Theorem 4.2.�
Proof of Lemma 4.1. Since the two operators are symmetric, it su¢ ces to show that `0�
Pc0i(C

0) � Pci(C): Let Di = Pc0i(C
0); i = 1; 2: By AEM for P��, we have `0� Pc0i(C 0) �

Bi(C
0
i) ^BiPc0j(C 0) for i = 1; 2: These are expressed as `0� Di � Bi(C 0i) ^Bi(Dj) for i = 1; 2:

Since `0� Ck � C 0k for k = 1; 2; we have `0� Di � Bi(Ci)^Bi(Dj) for i = 1; 2: These are regarded
as the upper formulae of IEM for P��, we have `0� Di � Pci(C); i.e., `0� Pc0i(C) � Pci(C) for
i = 1; 2:�
Proof of Theorem 4.3. The if part means that REL0� is an extension of REL� : The only if
part is essential. Let C be a given formula in P 0� . Suppose that P = (X;>;') is a proof A in
REL0� :We prove by induction of the proof structure from its leaves that `� � �'(x) for all x 2 X:
Let x be a leaf in P: Then, '(x) = C is an instance of L1 to L4, K, D, and AEM. The formula
� �'(x) = �(C) preserves the structure of being the same axiom. Also, since �(C) 2 P�; we have
`� �(C): Now, consider a non-leaf node x: We make an induction hypothesis that `� � � '(y)
for any immediate predecessors y of x: We need to consider the four cases: MP, ^-Rule, Nec,
and IEM. The structures of MP, ^-Rule, and Nec are preserved by �; and these inferences can
be applied. Thus, `� � � '(x): Finally, consider Rule IEM, where there two possibilities:

Di � Bi(Ci) ^Bi(Dj) Dj � Bj(Cj) ^Bj(Dj)
Di � Pc0i(C1; C2)

;

and the other is the last formula in the lower case is Pci(C1; C2). The induction hypothesis is:
`� �(Di) � Bi(�(Ci))^Bi(�(Dj)) for i = 1; 2: Since these are upper formulae of IEM, we have
in `� �(Di) � Pci(�(C1); �(C2)) for i = 1; 2: In the other case, we have the same conclusion.

Thus, by the induction principle, we have `� � � '(x) for all x 2 X:�
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Figure 2: Interface betweem the external world and i�s mind

5 An Application of Logic REL�

Logic REL� provides a logical frame to describe a social situation where individuals think about
action taken with reciprocal empathization operators Pc1(�; �) and Pc2(�; �). However, a social
situation has its own structure not included in REL�: In Section 5.1, we take the quotation
(*) from Lewis [23] given in Section 1.2 and describe it as a theory within REL� ; specifying
suitable atomic formulae. We keep the theory simple and tractable to highlight the importance
of reciprocal empathization for each person�s thought and action taking. In Section 5.2, we give
a remark on the necessity of reciprocity, comparing with mere empathization.

5.1 A theory based on Lewis�s example

We redescribe the quotation (*) in Section 1.2 by adding some supplemental words, in order to
eliminate ambiguities, without changing the essential part of the story.

(**): Two persons i and j met today. At the end, both said, �I will come tomorrow.�
As they go home, each, re�ecting on what was said, forms beliefs of his and the
other�s plans tomorrow. These beliefs then lead to the actual meeting tomorrow.

We use the conceptual scheme to understand (**) from person i�s viewpoint:

(o): events in the external world;

(i): perception of an event in the incoming interface from the external world to i�s mind;9

(ii): processing the perceived information through reciprocal empathization within i�s mind;

(iii): bringing out an action in the outgoing interface from i�s mind to the external world.

In Fig.2, the rectangular represents the mind of person i. (o) happens in the external world,
and (i) and (iii) are the interface between the external world and i�s mind; yet in the opposite
directions. In (ii), his thought process works in his mind.

Based on the above scheme, we translate (**) into the language of REL� with � � 3. We
use the following atomic symbols, instead of pure propositional variables:

9 In dynamic epistemic logic, the incoming interface is formulated inside a logic from the viewpoint of semantics
(and then from the syntactical viewpoint). See Ditmarsch, et al. [13] and Benthem-Smets [6] .
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t0 : day t0 has arrived; and t1 : day t1 has arrived;

aci : person i comes; and syi(�) : person i says ���(i = 1; 2).

Symbols t0 and t1 are interpreted as �today� and �tomorrow�. Symbol aci means �person i
comes�, and syi(�) means that person i says ���. In (**), when they leave, each i (i = 1; 2) says
�I will come tomorrow�, which is formally expressed as

syi(t1 � aci): (14)

This is the verbal utterance, and an operational meaning is given by a non-logical axiom. We
abbreviate syi(t1 � aci) as Si for i = 1; 2; and S = (S1; S2): In this example, the set of (pseudo)
atomic formulae is given as PV = ft0; t1; S1; S2; ac1; ac2g. Here, Si; i = 1; 2 have internal
structures syi(t1 � aci):

We adopt the following non-logical axioms:

BSA (Beginning of the state of a¤airs): t0; S1; S2:

ESA (End of the state of a¤airs): t1:

These belong to (o), indicating the beginning and the ending of state of a¤airs in (**). Time t0
plays only the role of starting the situation; t0 occurs nowhere else in the following analysis. On
the other hand, t1 occurs as a subformula of Si = syi(t1 � aci); i = 1:2; and it plays a speci�c
role in the following.

The other non-logical axioms describe the two persons� observations, thoughts, and �nal
actions to be taken, which we call postulates. We note that each of the following postulates
is speci�c to person i; meaning that Pcj(�; �) occurs in the mind of i: Keeping this note, we
explain each postulate, say CTi; as CT1 and CT2 together. Later, we will return to the note on
individuality.

Persons 1 and 2 observe each of two points of time t0; t1; and also observe S1; S2 at time t0.

Postulate 0 (CTi)(Common perception of time): t � Pci(t; t), where t = t0; t1.

Postulate 1 (FFWi)(Face to face exchange of words): S1 ^ S2 � Pci(S1; S2):

These belong to category (i), stating that each of 1; 2 receives the symbolic pieces of information
and the other receiving them.

We postulate that the two persons trust each other with the contents of utterances; this
belongs to (ii).

Postulate 2 (TWi)(Trustworthiness of words): Pci[S1 � (t1 � ac1); S2 � (t1 � ac2)]:

TWi substantiates the symbolic utterances with the intended meanings, based on �inductive
standards and background information� (Lewis [23], p.53), which are shared between i and j:
This may be better understood by the equivalent formula, due to Theorem 2.2.h1i;

Bi((Si � (ti � aci)) ^Pcj [S1 � (t1 � ac1); S2 � (t1 � ac2)]): (15)

Person i extracts the content (ti � aci) from Si and believes that person j does the same, and
also believe that j empathizes with person i as well.

The next postulate connects person i�s internal thought with his action choice and anticipa-
tion of j�s action choice.
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Postulate 3 (ACi)(Action in the external world): Pci(ac1; ac2) � aci;

(SOi)(Simulating the other�s reasoning): Bi[Pcj(ac1; ac2) � acj ]:

ACi means that person i induces aci to be acted in the external world from i�s Pci(ac1; ac2):
For SOi; person i simulates person j�s reasoning by projecting ACi to person j, which forms
i�s anticipation of j�s action to be taken. The latter is better understood by recalling that the
premise of ACi is equivalent to Bi(aci ^ Pcj(ac1; ac2)) by Theorem 2.2.h1i; thus, it contains
Pcj(ac1; ac2) in the mind of person i: In this sense, ACi and SOi are regarded as two sides of
one postulate. Nevertheless, ACi is in (iii), but SOi remains in (ii).

Let i be either 1 and 2: Theorem 5.1 describes the thought process along the state-of-a¤airs
with/within i�s mind.

Theorem 5.1 (Thoughts along the state-of-a¤airs) Let � � 3: We have the following
thought process.

h1i(Receipts of words) ft0; S1; S2g [ fFFWig `� Pci(S):

h2ai(Trustworthiness of words) ft0; S1; S2g [ fFFWi;TWig `� Pci(t1 � ac1; t1 � ac2):

h2bi(Action to be taken at t1) ft0; S1; S2g [ fFFWi;TWig[ft1g [ fCTig `� Pci(ac1; ac2):

h3ai(Action taking) ft0; S1; S2g [ fFFWi;TWig[ft1g [ fCTi;ACig `� aci:

h3bi(Anticipation) ft0; S1; S2g [ fFFWi;TWig[ft1g [ fCTi;SOig `� Bi(acj):

The process is described in Fig.3 from the objective events t0; S1; S2 in the external world
to the information processing within the mind of person i, and, after he fully conducts relevant
(interpersonal) inferences, the process goes to the external word once more, except for his an-
ticipation in h3bi staying in his mind. Fig.3 can be regarded as simpli�ed proofs of h1i to h3ai
and h3bi. It is from the non-logical axioms BSA, ESA, and postulates CTi; FFWi; TWi; ACi
are connected by MP, (�); and (H) :

`� Pci(A1 � C1; A2 � C2) `� Pci(A1; A2)
`� Pci(C1; C2)

(�) `� Bi(A � C) `� Bi(A)
`� Bi(C)

(H) (16)

The left (�) is a permissible inference, derived from Theorem 2.1.h3i: The part above aci in Fig.3
is regarded as a formal proof in the sense of Section 2. The part to h3bi needs (H); the right
bottom part after Pci(ac1; ac2) is the formal derivation, except for the use of Theorem 2.2.h1i.
As stated above, the premise Bi(Pcj(ac1; ac2)) of SOi is derived from Pci(ac1; ac2): Based on
this, person i simulates person j�s reasoning to action taking. The whole diagram in Fig.3 is the
evolution of thoughts in the state of a¤airs (**).

The assertions in Theorem 5.1 are all about person i�s observations and thoughts in that
Pcj(�; �) occurs only in i�s mind. Thus, the postulates are purely individualistic in the method-
ological sense.

When all the postulates are assumed for both persons, each person comes and meets the
other at t1, ful�lling each person�s anticipation. Indeed, let �i = fCTi;FFWi;TWi;ACig and
��i = �i [ fSOig: The successful coordination of actions and anticipations is expressed as;

ft0; S1; S2g [ (�1 [ �2)[ft1g `� ac1 ^ ac2; (17)

ft0; S1; S2g [ (��1 [ ��2) [ ft1g `� B1(ac2) ^B2(ac1): (18)
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Figure 3: Thought dynamics of person i

If the postulates hold only for i but not for j; person i goes to see j but j does not show up.
Person i would then realize his anticipation was wrong; this would involve dynamic revisions
on his beliefs. We leave the analysis of such dynamic revision for future research. Instead, we
evaluate each postulate from the viewpoint of reciprocal empathization.

All of the postulates 0 to 3 include reciprocal empathization, but their bases for reciprocity
di¤er. First, CTi and FFWi are about person i�s perception of objective information; CTi is
about global time, and reciprocity is reasonable for people with basic education. FFWi is about
their face-to-face communication in a speci�c situation where vision plays a crucial role and
education/culture are not particularly important. The situation is similar to the two mirrors
example depicted in Fig.1 in the physical sense.10 In these postulates, reciprocal empathization
is objectively reasonable, yet upon di¤erent bases.

Postulate TWi di¤ers from the above in terms of its justi�cation. Trustworthiness can be
achieved only through convention of a society, and it has to be formed together with the soci-
ety through experiences and repeated interactions. Lewis emphasized the role of convention to
achieve coordination. Our formulation of how convention in�uences individuals�mental process,
however, is closer to Mead�s [25] concept of �generalized others�, whereby an individual may per-
ceive �common expectations�of physical or mental activities and project such expectations into
others�mental activities. Our reciprocal empathization capture this process. Both Lewis�and
Mead�s conceptions emphasize community dependence, and in this sense, TWi is community-
dependent.11

Reciprocal empathized beliefs occur in ACi and SOi as premises, that is, in the postulates,
the action and anticipation occur only when the reciprocal empathization is achieved. These
presume the coordination nature of the situation - - each individual would not have an incentive
to come unless there is a common expectation to do so. These beliefs could be deduced from the
reciprocal empathized beliefs in the other postulates. In this sense, these are of very di¤erent
types from CTi; FFWi; and TWi.

10This is reminiscent of Plato�s [32], book IV, 507, �the analogy of the sun�in that face-to-face communication
between the two persons leads sharing commonly what they communicate by the help of light.
11How �trustworthiness�comes between people is discussed in �elds of psychology, philosophy etc, where various

types of trustworthiness are discussed (cf., Moran [29], Räikkä [33]).
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Among the postulates except postulate 3, TWi is crucial in consideration of social behavior
of people, since the others hold almost independent from a society. The consideration of a failure
of coordination after (17) and (18) can be applied to the case where we remove the underlying
assumption for TWi; e.g., person 1 is from a community with a virtue of trustworthiness, but
2 is from a community without it. Person 1 may notice that the failure is caused by the
di¤erent cultural backgrounds between 1 and 2, and he may revise some attitude by learning 2�s
background.

5.2 Mere empathization

Up to now, we assumed that � � 3 and empathization is reciprocal. Consider now � = 2 and
hence each person is only capable of mere empathization, which is formulated as

Pcoi (C1; C2) := Bi(Ci) ^BiBj(Cj): (19)

This is the right-hand side of (4) of Theorem 2.2.h2i with the elimination of Pci(C1; C2): That
is, person i perceives his own situation, Ci, and is aware of j�s situation, Cj , but i does not
go further to think about j�s reasoning or expectations. Thus, person i�empathization is not
reciprocal.

How do we consider the state of a¤air (**) with mere empathization? Since each person
is still capable of receiving information, we can still formulate Postulates CTi and FFWi by
replacing Pci(�; �) by Pcoi (�; �). For the postulates TWi and ACi, we can mechanically proceed
on the same substitution; this is not for SOi since � = 2. With these substitutions, Theorem 5.1
still holds for Pcoi (�; �) up to h3ai; that is, as long as person i uses mere empathization operator
Pcoi (�; �) in Postulates 0 to 3 except for SOi; he deduces action aci. However, the operators
Pcoi (�; �) do not satisfy Axiom AEM, since Pcoi (C1; C2) � Bi(Ci) ^BiPcoj(C1; C2) is not in P2.
This implies that SOi is not available and h3bi does not hold; thus, person i has no anticipation
Bi(acj):

This lack of anticipation can be a serious threat to coordination. In case of reciprocal
empathization, both individuals arrive at the conclusion that he should go and anticipation of
the other�s coming based on ACi and SOi, and this anticipation would reinforces his motive to
come as he understands the reason for the other person�s coming In case of mere empathization,
however, the modi�ed ACi require person i to come based on his mere belief on j�s intention,
without thinking about j�s underlying reasoning. The same di¢ culty is found for TWi with the
mechanical substitution of Pcoi (�; �) for Pci(�; �); in the modi�ed TWi, i can only trust j�s words
without the reciprocal trust, and this is the sole basis of his own action.

6 Comparisons with the Concept of Common Belief

We studied reciprocal empathization based on individualistic reasoning: Common belief is an
interpersonal concept and is regarded as basic in game theory/economics.12 These interpersonal
12Aumann [2] de�ned the concept of common knowledge in the information partition model in game theory,

equivalently, the S5 Kripke model. He gave the de�nitions of common knowledge in terms of accessibility relations
and in terms of the minimal common coarsening of the information partitions. The latter may appear to have a
�nite structure, but in fact, the minimal common coarsening is the partition of the possible worlds so that each
cell includes all accessible worlds. In this sense, it is a super structure of the information partitions, which is very
opposite to our consideration.
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concepts are related; technically speaking, both are characterized in terms of the �xed-point
arguments (cf., Fagin, et al. [15], Meyer-van der Hoek [28]).13 The di¤erence is that reciprocal
empathization is conducted by an individual person, while common belief is an attribute of a
situation where beliefs of people are shared; since who conduct logical inference is not described in
the latter, it deviates from methodological individualism. Nevertheless, we can ask the question
of whether common belief is attained in terms of reciprocal empathization in REL� : We show a
general negative answer as well as some positive answer.

6.1 De�nition of common belief

We formulate common belief logic with the KD type base logic and a bound � on interpersonal
reasoning, which is denoted as CBL�. Comparisons are made in an extension of REL� and
CBL�. First, let us de�ne the extension of REL�.

In addition to the list of primitive symbols given in Section 2.1, we add the common belief
operator CB(�); which is a unary operator symbol: Then, the set of all formulae is denoted by P�
without a bound on interpersonal reasoning. Then, we de�ne the set of formulae P�� as follows;

�(CB(C)) � � � 2 for any subformula CB(C) of A; (20)

P�� = fA 2 P� : �(A) � � and (1) & (20) hold for Ag: (21)

This P�� is an extension of P� : For a study of the common belief concept CB(C) itself, the
condition �(CB(C)) � ��1 is enough instead of (20), but since we compare it with the reciprocal
empathized belief Pci(��); we assume it.

In addition to the logical axioms and Inference rules listed for REL� in Section 2, we adopt
the following logical axiom and inference rule for CB(�), where we denote B1(A) ^ B2(A) by
BN (A); for CB(A) 2 P��;

Axiom ACB: CB(A) � BN (A) ^BNCB(A);

Inference Rule ICB: for any D 2 P��;

D � BN (A) ^BN (D)
D � CB(A)

:

The logic de�ned is denoted as REL�� ; and its provability relation is by `�� : The common belief
logic CBL� is de�ned by restricting REL�� to the set PCB� := fA 2 P�� : A includes no occurrences
of Pci(C); i = 1; 2g; and its provability relation is denoted by `CB� : Now, we have the three
logics (REL�;P�); (REL�� ;P��); and (CBL�;PCB� ) for each � with 0 � � � !: Both P� and PCB�
are subsets of P�� ; i.e., P� � P�� � PCB� ; and (REL�� ;P��) is an extension of both (REL�;P�)
and (CBL� ;PCB� ):

The Kripke semantics is de�ned for P�� by extending the valuation relation j= by adding the
following V5CB to V0 to V5 in Section 3.1;

V5CB : (M;w) j= CB(A) if and only if (M;wm+1) j= A for any chain [w0; :::; wm; wm+1]

13Baltag et al. [3] considered the problem of common knowledge from the viewpoint of public announcement
logic, introducing an in�nitary knowledge operator.
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of any length m+ 1 with w0 = w;
where a chain is simply a sequence [w0; :::; wm; wm+1] with (wt; wt+1) 2 R1[R2 for t = 0; :::;m:

For the present purpose, we need only the soundness of (REL�� ;P��); which can be proved
similarly to the proof of soundness for (REL�;P�) in Section 3.2.

Lemma 6.1 (Soundness for REL��): For any C 2 P��; if `�� C; then j= C:

The �xed-point property holds for CB(A) in (REL��;P��) (and in (CBL�;Pcb� )) in a simpler
form than in Theorem 2.1.h1i and h2i: Indeed, for anyBNCB(C) 2 P�; it holds thatBNCB(C) 2
P�� if and only if

`�� CB(C) � BN (C) ^BNCB(C): (22)

This is proved in a similar manner to the proofs of Theorem 2.1.h1i and h2i:

Logics (REL�;P�) and (CBL�;PCB� ) di¤er in the subjects taking logical reasoning. Per-
ception/reciprocal empathization represented by Pci(�; �) is individualistic in that the subject
operating logical inference is an individual person. On the other hand, Axiom ACB and Rule
ICB determine the properties of distributed beliefs in a situation; who reasons in ACB and
ICB are unclear. We raise the question: Is there any way to represent CB(�) in terms of
Pci(�; �); i = 1; 2? If this is answered in an a¢ rmative way, the common belief CB(�) could be
regarded as representing a situation where the individual persons interact and reach common
belief. But the answers we give are not straightforward.

First, we observe the di¤erence between Pci(�; �) and CB(�) at two levels;

(C-i): Pci(�; �) allows two di¤erent target formulae C1 and C2; while CB(�) targets a single C;
(C-ii): even when C1 = C2 = C; operator Pci(C1; C2) may depend upon i = 1; 2;

but CB(C1) = CB(C2) are simply identical.

(C-i) means that each of C1; C2 in Pci(C1; C2) in Lewis�s example indicates the word uttered by
the corresponding person, and (C-ii) that even when the persons meet the same formula, they
may still take it di¤erently, possibly because the persons come from di¤erent communities. In
general, the same words are sometimes di¤erently understood by people, indicated in the end
of Section 5. In order to express CB(�) by Pci(�; �); i = 1; 2; we need to eliminate these two
dependences.

First, we drop the dependence of Ck upon k = 1; 2;

Pci(C) := Pci(C;C) for i = 1; 2: (23)

Then, we eliminate the dependence upon the subscript i of Pci(C) by

C�B(C) := Pc1(C) ^Pc2(C): (24)

The question is whether this formula C�B(C) expresses CB(C) for any C 2 P��: One way is
positively answered; a proof is given in Section 6.1. The result (25) relies only upon (23).

Lemma 6.2 Let � � 3 and C 2 P�� with CB(C) 2 P��: Then, `�� CB(C) � Pci(C) for i = 1; 2;
thus,

`�� CB(C) � C�B(C): (25)

However, the converse of (25) does not necessarily hold. Consider the model in Diagram
6:1: There, (M;w) j= Pc1(p) ^Pc2(p) but (M;w) 2 CB(p) since (M;v1) 2 p; we have (M;w) 2
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C�B(p) � CB(p): By Lemma 6.1 (soundness for REL��), we have 0�� C�B(p) � CB(p):

Diagram 6:1;M = ((W;R1; R2); �)

w :
�!1

&2

u1: p
�!1

&2

v1: : p 	1;2

u2: p 	12 v2: p 	1;2

Thus, the formula CB(C) � C�B(C) holds in REL�� but these have a gap: We consider two
possible adjustments to close the gap; each is to strengthen

(a): the formula C�B(C) in (P�;REL�); or (b): the requirement for Pci(�; �); i = 1; 2:

It would be nice if (a) is possible, because logic REL� would be enough for REL�� to consider
where common belief is achieved by individual reciprocal empathization Pci(�; �): However, we
have the following general negative result on representation of CB(C) in terms of formulae in
P�: A proof will be given in Section 6.2.

Theorem 6.1 (Impossibility of representation of CB(�) in REL��) For any � � 0; there is
no formula A�(p) 2 P� with p 2 PV such that `�� A�(p) � CB(p):

This theorem covers even the possibility that A�(p) may include Pci(C1; C2); i = 1; 2 and
C1 6= C2: Thus, this theorem is more general than the answer required for the question about
the comparison between CB(C) and C�B(C):

In fact, for the equivalence between CB(C) and C�B(C); it is enough to strengthen Ax-
iom AEM and Rule IEM. Now, we consider the general formulation of the extension of the
logic (P� ;REL�) and de�ne the strengthened version (P�;RELS� ) as follows: for Pci(C) =
Pci(C1; C2) 2 P�; i = 1; 2 and Bi[Di ^Dj ] 2 P�;

Axiom AEMS : Pci(C1; C2) � Bi(Ci) ^Bi[Pci(C1; C2) ^Pcj(C1; C2)]:

Rule IEMS :

Di � Bi(Ci) ^Bi[Di ^Dj ] Dj � Bj(Ci) ^Bj [Di ^Dj ]
Di � Pci(C)

:

The new logic obtained is denoted by RELS� : This strengthening is within the perspective of
individualistic inference.14

Now, we return to the problem of the representation of CB(C) by C�B(C): We consider
the extended logic (P�;RELS�� ) including the common belief formulae, where we allow Axiom
AEMS and Rule IEMS in RELS�� : We denote the provability relation in REL

S�
� by `S�� : Recall

C�B(C) = Pc1(C)^Pc2(C) has each person�s interpersonal empathization as well as his re�ection
on himself. In fact, this captures the common belief; the equivalence between CB(C) and C�B(C)
holds in REL�SR� : Now, we return to the problem of the representation of CB(C) by C�B(C):

Theorem 6.2 (Equivalence) `S�� CB(C) � C�B(C) for any CB(C) 2 P�� :

The gap between the common belief CB(C) and C�B(C) = Pc1(C)^Pc2(C) is ful�lled. It is
interpreted as meaning that common belief CB(C) is captured by C�B(C) in REL

S
� in the scope

of individualism. Nevertheless, this is not regarded simply as a resolution of the question of

14A study of RELS� together with the role of Axiom PI : Bi(C) � BiBi(C) in REL� remains open.
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whether the concept of common belief is achieved by e¤orts of individual persons. One reason
is that the above success is obtained only for the two-person case. For the case with jN j � 3, it
is standard to de�ne the common belief CB(C) in CBL� in terms of the same axiom and rule
as ACB and ICB. However, the binary version of Axiom AEM and Rule IEM are still basic for
reciprocal empathization. When jN j � 3; the common belief in CBL� is drastically di¤erent
from the reciprocal empathization in REL�.

Reciprocal empathization is interpersonal thinking, but the extension RELS� is obtained by
applying the same argument into one person�s internal re�ection upon himself. This order of
extension is interpreted as meaning that REL� is more foundational than RELS� : This view is
compatible with Mead�s [25] symbolic interactionism, which will be discussed in Section 9.1.

6.2 Proofs

6.2.1 Proofs of Lemmas 6.1 and Theorem 6.2

We prove of the lemmas and Theorem 6.2 �rst before Theorem 6.1, because its proof is longer
and complicated.

Proof of Lemma 6.1 It su¢ ces to add the following two steps to the proof of soundness for
REL� given in Section 3.2; j= CB(C) � BN (C) ^BNCB(C); and if j= D � BN (C) ^BN (D);
then j= D � CB(C): Either case can be proved in the same manners as the corresponding proofs
of Axiom AEM and Rule IEM in the soundness part of Theorem 3.1.�
Proof of Lemma 6.2 By Axiom ACB, we have `�� CB(C) � Bi(C) ^ BiCB(C) for i = 1; 2:
Let Di = CB(C); i = 1; 2: The previous statement is `�� Di � Bi(C) ^ Bi(Dj) for i = 1; 2:
Regarding these as the upper formulae of Rule IEM, we have `�� Di � Pci(C) for i = 1; 2: This
implies `�� CB(C) � Pc1(C) ^Pc2(C); i.e., `�� CB(C) � C�B(C):�

Proof of Theorem 6.2. Since `�� CB(C) � C�B(C) by Lemma 6.2, it su¢ ces to show `S��
C�B(C) � CB(C): By Axiom AEM, it holds that `�� C�B(C) � BN (C): First, let us see `S��
C�B(C) � BNC

�
B(C): By Axiom AEMS , it holds that `S�� Pci(C) � Bi[Pci(C) ^ Pcj(C)] for

i = 1; 2; which implies `S�� C�B(C) � BN (C
�
B(C)): Then, `S�� C�B(C) � BN (C) ^ BNC�B(C):

Letting D = C�B(C) and regarding `S�� D � BN (C) ^ BN (D) as the upper formula of Rule
IEMS , we have `S�� D � CB(C); i.e., `S�� C�B(C) � CB(C):�

6.2.2 Proof of Theorem 6.1

The theorem holds for � � 2 in the vacuous sense that for any A�(p) 2 P� ; the formula
A�(p) � CB(p) is not in P�� because of (20) and (21). In the following, we assume � � 3:

Throughout the following, we suppose that there is a formula A�(p) 2 P� such that

`�� A�(p) � CB(p): (26)

We abbreviate A�(p) as A� in the following:We will derive a contradiction from (26). First,
it follows from (26) that 0�� :A�: Indeed, if `�� :A�; then, `�� :CB(p); eliminating all ep-
operators from the proof of :CB(p) in REL��; we obtain a proof of :p in classical logic CL,
which is a contradiction; thus 0�� :A�. Since REL�� is an extension of REL�, `� :A� implies
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Figure 4: Extended Model

`�� :A�: The contrapositive is that 0�� :A� implies 0� :A�: Thus, 0� :A�: Applying Theorem
3.1 (completeness for REL�); there is a Kripke modelM = ((W;R1; R2); �) and a world w0 2W
such that

(M;w0) 2 :A�, equivalently, (M;w0) j= A�: (27)

We will extend the model M = ((W;R1; R2); �) to M� = ((W �; R�1; R
�
2); �

�) so that (M�; w0) j=
A� but (M�; w0) 2 CB(p); thus, (M�; w0) 2 A� � CB(p): By Lemma 6.1 (soundness for REL��),
we get 0�� A

� � CB(p); a contradiction to (26). This completes the proof; now, we construct a
model M� = ((W �; R�1; R

�
2); �

�):

Strategy of construction of a counter model: We denote �(A�) = �: We consider an al-
chain � = h(w0; i0); :::; (w�; i�); w�+1i in the model M = ((W;R1; R2); �); which is �xed in the
following. When these worlds are all distinct, the required M� = ((W �; R�1; R

�
2); �

�) is simple,
but some worlds need to be identical when �(A�) = � is larger than the cardinality of W:

Speci�cally, let v0; v1; � � � ; v�+1 be new symbols not in W: Consider the new chain � =
h(v0; i0); � � � ; (v��1; i��1); (v�; i��1); v�+1i; where � is not an al-chain since the persons assigned
to v��1 and v� is i��1: We de�ne the new frame (W �; R�1; R

�
2); W

� = W [ fv0; v1; � � � ; v�+1g
and the extended accessibility relations R�i ; i = 1; 2 are as follows:

AC1: for any t = 0; :::; �� 1; vtR�i u i¤ wtRiu or [u = vt+1 & i = it];

AC2: for v�; v�R�i u i¤ [w�Riu & i = i�] or [u = v�+1 & i = i��1];

AC3: for v�+1; v�+1R�i u i¤ u = v�+1.

The three cases are exclusive and exhaustive; each R�i is uniquely de�ned. AC1 says that for
t = 0; :::; � � 1; R�i at vt mimics Ri at wt; i.e., vtR�i u if and only if wtR�i u for i = 1; 2, but
additionally, person it connects vt to vt+1 except for t = �: AC2 states two scenarios from v�;
if i = i�; then h(v0; i0); � � � ; (v��1; i��1); (v�; i�); ui is an al-chain going to u = w�+1; and if
i = i��1; the chain becomes � = h(v0; i0); � � � ; (v��1; i��1); (v�; i��1); v�+1i; which is the unique
connection to v�+1: AC3 means that v�+1 is an end world with re�exivity for both persons.

Recall that Ri; i = 1; 2 are serial inW: By AC1 to AC3, each R�i ; i = 1; 2 has has an accessible
possible world for each v0; :::; v�; v�+1: Thus, we have the next lemma.

Lemma 6.3 R�i is a serial relation on W
� for i = 1; 2:
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The following lemma, immediate from AC1 to AC3; plays a crucial role in the following.

Lemma 6.4 In (W �; R�1; R
�
2); v0 has no predecessor, and for t = 0; :::; �; vt+1 has the unique

predecessor vt for R�it but no predecessors for R
�
jt
(jt 6= it).

We extend the assignment � to �� :W � �! f>;?g as follows: for any (w; q) 2W � � PV;

��(w; q) =

8<:
�(w; q) if w 2W
�(wt; q) if w = vt; t = 1; :::; �
? if w = v�+1:

(28)

Thus, �� is identical to � over W; it mimics � over w1; � � � ; w� for v1; :::; v�; and it takes ? at
v�+1 for any q 2 PV: Now, we have the extended Kripke model M� = ((W �; R�1; R

�
2); �

�):

The following is a simple observation.

Lemma 6.5 (M�; v0) 2 CB(p):

Proof. Since there is a chain from v0 to v�+1 and (M�; v�+1) 2 p by (28); we have (M�; v0) 2
CB(p) by V5CB:�

Finally, we show (M�; v0) j= A�: Once this is shown, we have (M�; v0) 2 A� � CB(p): By
Lemma 6.1 (soundness for REL��), we have the �nal target 0

�
� A

� � CB(p):

Veri�cation of (M�; v0) j= A�: Recall (M;w0) j= A� in (27). We will prove that this is
preserved in the extended model M�: The last connection from v� to v�+1 with i��1 prevents a
connection from v0 to v�+1 with an al-chain; so, Pci(�) in A� is not valuated at v�+1; A� is not
either since A� 2 P� : But CB(p) depends upon the valuation at v�+1 by V5CB: After all, the
extension M� is obtained from M in order to have these aims.

Now, we show that the valuation j= in M is preserved in M�:

Lemma 6.6 For any C 2 P�;

for any w 2W , (M�; w) j= C if and only if (M;w) j= C: (29)

Proof. The di¤erence between M� and M is that M� has fv0; :::; v�+1g additional to W:
However, Lemma 6.4 implies that at any w 2W; either person has no references to fv0; :::; v�+1g:
Hence, the valuation in (M�; w) is determined by the valuations in M: The exact proof is given
by induction on the lengths of formulae.�

Now, we prove (M�; v0) j= A�: For this, we decompose A� along the chain � = h(v0; i0); � � � ;
(v��1; i��1); (v��1; i��1); v�+1i from (v0; i0). For the decomposition, we use some concepts. Let
C 2 P�:We say that D is a maximal i-subformula of C i¤ its outmost symbol is Bi(�) or Pci(�; �)
and is not in the scope of an ep-subformula of C: We denote the set of maximal i-subformula of
C by Max(C; i) and de�ne Max(C) := [i=1;2Max(C; i): Also, let PVd(C) be the set of (direct)
propositional variables occurring in C but not in the scope of an ep-subformula of C: To follow
the chain �; C 2Max(C 0; i) is decomposed. For C = Bi(C0) or C = Pci(C01 ; C

0
2 ) 2Max(C 0; i);

C0 or C0i is the content formula of C:

Now, we de�ne two types of sets C(t) and E(t) along � = h(v0; i0); � � � ; (v��1; i��1); (v�; i��1);
v�+1i. The following induction de�nition is opposite to the process of generating formulae. In
step 0, we de�ne the two set;

C(0) = fA�g and E(0) =Max(A�) [ PVd(A�):
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First, C(0) = fA�g is given, and then, E(0) is the set of the maximal ep-formulae and direct
propositional formulae. To step 1; we do not keep propositional variables in E(0): The set
E(0) may have ep-formulae Bi(C0) and/or C = Pci(C

0
1 ; C

0
2 ) and i 6= i0: These formulae are

valuated by referring to W but not to v1: Hence, we consider the set C(1) = fD0 : D 2
[C2E(0)Max(C; i0)g collecting the content formulae D0 of D 2 [C2E(0)Max(C; i0). In step 1;
each D0 is decomposed in the same way in Step 0 from A�.

The induction step is based on the same idea. Suppose that the sets C(t) and E(t) are given
for vt (t � �� 1): E(t) is the set of ep-formulae and propositional variables. We de�ne the next
sets for vt+1:

C(t+ 1) = fD0 : D 2 [C2E(t)Max(C; it)g;
E(t+ 1) = [D02C(t+1)[Max(D0) [ PVd(D0)]:

When E(t) includes Bi(�) or Pci(�; �) (i 6= it; t � �); its valuation is done through referring to
some worlds in W . Thus, the pair C(t) and E(t) are de�ned up to step �; i.e., v�:

The above decomposition of A� is made along � = h(v0; i0); � � � ; (v��1; i��1); (v�; i��1); v�+1i
up to (v�; i��1). Incidentally, the valuation at v� referring to v�+1 is only through Ri���1 ; this
is necessary for Lemma 6.5.

The decomposition process is opposite to the construction of formula A�: Lemma 6.7 follows
the above decomposition.

Lemma 6.7 Let t = 0; :::; �: Any formula D0 2 C(t) is obtained from E(t) by some �nitely
repeated applications of logical connectives :;�; and ^:

We have the following.

Lemma 6.8.h1i For t = 0; :::; ��1; ifMax(C0; it) 6= ; for some C 2 E(t); then 0 � �(E(t+1) <
�(E(t)); and h2i �(E(�)) = 0:

Proof. h2i follows h1i: Consider h1i: Let Max(C0; it+1) 6= ; for some C 2 E(t): Then, E(t) has
an it-formula, and the outermost ep-operator of such a formula is eliminated. In this case, the
depths are decreased, i.e., �(E(t+ 1)) < �(E(t)):�

Now, we have the �nal lemma:

Lemma 6.9 For any C 2 C(t) [ E(t) and t = 0; :::; �;

(M�; vt) j= C if and only if (M;wt) j= C: (30)

Proof. Let us prove (30) by double induction on the decomposition process backwardly and on
the lengths of formulae for each t = �; :::; 0: Let t = �: Then, by Lemma 6.8, C 2 E(�) is a
propositional variable p 2 PV . This is the very base of our induction. By (28), we have (30) for
C: Now, let C 2 C(�): This C is constructed from p 2 E(�) by the connectives :; �; and ^: The
induction hypothesis is that (30) holds for any immediate subformulae of C. Then, (30) holds
for C: Thus, (30) holds for all C 2 C(�) [ E(�) by the induction on the lengths of formulae.

Diagram 6.2
� � � C(t) C(t+ 1) � � � C(�� 1) C(�)
� � � . " . " . � � � " . "
� � � E(t) E(t+ 1) � � � E(�� 1) E(�)

vt vt+1 � � � v��1 v�
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Suppose the induction hypothesis IDH(t+1) that (30) holds for any formula D 2 C(t+1)[
E(t + 1). We show that (30) holds for all C 2 E(t): IDH(t + 1) will be used only twice in the
following; Lemma 6.6 plays the corresponding role in various places.

Suppose that C 2 E(t): There are three cases: (i) C is a propositional variable, (ii) [C =
Bi(C

0); i = 1; 2]; and (iii) [C = Pci(C
0
1; C

0
2); i = 1; 2]: In (i), we have (30) by (28). In (ii) and

(iii), we need to cover both cases i = it and i 6= it:

Consider (ii): Suppose (M;wt) 2 Bi(C 0): Then, (M;u) 2 C 0 for some u 2 W with wtRiu:
By Lemma 6.6, we have (M�; u) 2 C 0: Also, since wtRiu implies vtR�i u by AC1, we have
(M�; u) 2 C 0: Thus, (M�; vt) 2 Bi(C 0): This case covers both i = it and i 6= it:

Conversely, suppose (M�; vt) 2 Bi(C 0): Then, (M�; u) 2 C 0 for some u 2 W � with vtR�i u:
Let u 2 W: Then (M;u) 2 C 0 by Lemma 6.6 and wtRiu by AC1; thus, (M;wt) 2 Bi(C 0): This
covers both i = it and i 6= it: Now, let u =2 W: Then vtR�i u implies u = vt+1 and i = it by
Lemma 6.4; moreover, C 0 2 C(t + 1): By IDH(t + 1), (M�; vt+1) 2 C 0 implies (M;wt+1) 2 C 0:
Since wtRitwt+1 and (M;wt+1) 2 C 0: Thus, (M;wt) 2 Bi(C 0):

Consider (iii), i.e., Pci(C 0) = Pci(C 01; C
0
2): Suppose that (M;wt) 2 Pci(C 0): Then, (M;u�+1) 2

C 0`� for some al-chain h(u0; `0); :::; (u� ; `�); u�+1i in W with (u0; `0) = (wt; i) in W: We change
this al-chain to h(vt; `0); (u1; `1); :::; (u� ; `�); u�+1i; i.e., only u0 is replaced by vt; which is an
al-chain in (W �; R�1; R

�
2) by AC1: By Lemma 6.6, (M

�; u�+1) 2 C 0`� : Thus, (M
�; vt) 2 Pci(C 0):

This step covers both cases i = it and i 6= it:

Next, suppose (M�; vt) 2 Pci(C 0): Then, (M�; u�+1) 2 C 0 for some al-chain h(u0; `0); :::;
(u� ; `�); u�+1i with (u0; `0) = (vt; i): In this case, there are two cases (A) u�+1 2 W and (B)
fu0; :::; u� ; u�+1g is included in fvt; :::; v�g: In (B), the case i 6= it is excluded by Lemma 6.4..

Consider case (A): First, u�+1 2 W and (M�; u�+1) 2 C 0`� ; so (M;u�+1) 2 C 0`� by Lemma
6.6. Suppose that the sequence u0; :::; u� ; u�+1 consists of two part u0 = vt; :::; uk = vk and
uk+1; :::; u�+1 inW:We consider the new al-chain h(wt; `0); :::; (wk; `k�t); (uk+1; `k�t+1); :::; (u� ; `�);
u�+1i in (W;R1; R2): Thus, (M;wt) 2 Pci(C 0): This step covers both cases i = it and i 6= it:

Consider case (B): fu0; :::; u� ; u�+1g is simply replaced by fwt; :::; wt+� ; wt+(�+1)g: By IDH(t+
1), (M�; u�+1) 2 C 0� if and only if (M;wt+(�+1)) 2 C 0`� :Hence, for the al-chain h(wt; it); :::; (wt+� ; it+�);
wt+(�+1)i from (wt; it), we have (M;wt+(�+1)) 2 C 0`� : Thus, (M;wt) 2 Pci(C 0):

It remains that the induction step t is to extend the equivalence of (30) for C 2 C(t): We
have the extension by the induction on the length of formulae from C 2 E(t) taking the cases
of :;^; and � : Thus, we have (30) for all t = �; :::; 1; 0:�

By Lemma 6.9, we have (M;w0) j= A� if and only if (M�; v0) j= A�: Since (M;w0) j= A�

by (27), we have (M�; v0) j= A�: By Lemma 6.5, we have (M�; v0) 2 A� � CB(p); and by
Lemma 6.1, 0�� A

� � CB(p): This is a contradiction to the existence of a formula A� in P� with
`�� A� � CB(p): We complete the proof of Theorem 6.1:

7 Completeness Proof of REL� : Step 1 for A with �(A) = � � 1

In Sections 7 and 8, we prove completeness of logic REL� ; that is, for any � with 0 � � � ! and
for any A 2 P� ; j= A implies `� A: As usual, we show its contrapositive, i.e., if 0� A; there is
a counter Kripke model for A: Nevertheless, the construction requires signi�cant modi�cations
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from the standard construction because of the restriction on the formulae by bound �. Moreover,
for a �nite �; the proof takes two steps; the �rst step is based on the standard construction, but
various modi�cations and new arguments are needed to accommodate Axiom AEM and Rule
IEM, because of the bound �: The two steps are;

Step 1: for any A 2 P� with 0� A and �(A) � � � 1; we construct a countermodel;

Step 2: for any A 2 P� with 0� A and �(A) = �; the countermodel of Step 1 is extended to A:

Steps 1 and 2 are given in Sections 7 and 8. Case �(A) = � is essential for our research program
because this gives the boundary of reciprocal empathization. When � = !; Step 1 is enough.

We give brief explanations of Steps 1 and 2, and the di¢ culties we encounter. First, we give
three remarks for Step 1.

(1a): Construction of a counter Kripke model is based on the standard idea of the epistemic
logic with common knowledge/belief (cf., Fagin, et al. [15]).

(1b): The fact that the operator Pci(�; �) is binary creates complications not present in the
common knowledge logic, and we prepare several basic lemmas to take care of them.

(1c): We still need the condition �(A) � � � 1 in this construction. The restriction (1) for the
set P� is not enough, because formulae like BiBjPci(C) with �(Pci(C)) = � � 2 is allowed
in P� but in the construction of a countermodel, we need to apply Rule IEM to a maximal
consistent set containing BiBjPci(C), which requires one layer deeper than what is allowed in
P�. Thus, Step 1 assumes that the target formula A satis�es �(A) � � � 1:

In Step 2, we take a new method to extend a countermodel for �(A) � � � 1 to the case
�(A) = �. The new method is as follows. First, we divide the set of subformulae of A into two
parts: the �rst set consists of subformulae C for which �(A) � � � 1 holds and the second set
consists of the remaining subformulae. Using this division, Step 1 is applied to the �rst set and
we have a Kripke model for them. Then, we extend this Kripke model to a model containing
the remaining subformulae, and show that the extended model is a counter model for A: This
extension is speci�c to the second set of formulae; we can avoid Rule IEM in the new part of
the extension.

This section has three subsections: Section 7.1 prepares various basic lemmas. Section 7.2
de�nes a Kripke model, and Section 7.3 proves that it is a countermodel of A 2 P� with
�(A) � � � 1 and 0� A: This section �nishes Step 1, and we have Step 2 in Section 8.

7.1 Preparations

We stipulate that ! � k = ! for any k < !; so when � = !, both (1) and �(A) � � � 1 hold
automatically. In Sections 7.1.1 and 7.1.2, some preparations are given.

7.1.1 Preparation 1

We prepare some basic facts: Let Aom = fA0; :::; Amg be a �nite set of formulae, where A0; :::; Am
are distinct, and A�m = Aom [ f:A : A 2 Aomg. By stipulating ^; to be (:p)_ p; the consistency
of a �nite, possibly empty, set of formulae � can be generally de�ned by 0� ^� � (:p) ^ p:
The empty set ; is consistent because of the soundness theorem for REL�. We say that a
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subset w of A�m is a maximal consistent subset i¤ ^w is consistent and for any A 2 Aom; A 2 w
or :A 2 w: Let W(A�m) be the set of maximal consistent subsets of A�m: We can construct
a maximal consistent set in the standard manner (cf., Chellas [9], Sec.2.6); thus, W(A�m) is
nonempty. We write 'w = ^w for w 2W(A�m):

We denote the set of all subformulae of A by Sub(A); and de�ne Sub(�) = [A2�Sub(A)
for a set of formulae �: The following lemma is basic and will be used in the main proof of
completeness. Note that by h1i of this lemma, each w 2W(A�m) has cardinality m+ 1.

Lemma 7.1.h0i For any consistent subset v of A�m; there is a maximal consistent subset u 2
W(A�m) with v � u;

h1i if w 2W(A�m); then either At 2 w or :At 2 w for each t � m:

h2i if w 2W(A�m); then w\Am�1 2W(A�m�1); and if w 2W(A�m�1); then w[fAmg 2W(A�m)
or w [ f:Amg 2W(A�m);

h3i for any consistent subset v � A�m; `� ^v � _v�w2W(A�m)'w;

h4i for any nonempty subset V of W(A�m); `� :(_w2(W(A�m)�V )'w) � _w2V 'w:

Proof The standard construction of a maximal consistent set guarantees h0i. We prove h1i,
h2i, and h3i. Taking v = ; in h3i; it follows that `� _w2W(A�m)'w: This is equivalent to `�
(_w2(W(A�m)�V )'w) _ (_w2V 'w); for any nonempty subset V of W(Am); which is equivalent to
h4i.

h0i: Suppose that neither belongs to w: Since w is maximal consistent, both w [ fAtg and
w [ f:Atg are inconsistent. This implies `� ^w � :At and `� ^w � ::At; which means that
w is inconsistent, a contradiction. Hence, At 2 w or :At 2 w: If both hold, then `� ^w � At
and `� ^w � :At; a contradiction. Thus, either At 2 w or :At 2 w:
h2i: Consider the former: Let w 2 W(A�m): Then, w \ A�m�1 is consistent. By h1i, w \ A�m�1
is maximal in A�m�1. Now consider the latter assertion. Let w 2W(A�m�1): Then w [ fAmg or
w [ f:Amg is consistent; in either case, it is maximally consistent in A�m by h1i.
h3i: Let V be the set of consistent subsets of A�m:We prove the assertion by the induction over V
with respect to the cardinality of v 2 V from the base case where v is a maximally consistent set
in V in the descending order. Now, consider the induction base where � is maximally consistent
in A�m: In this case, the assertion of h3i is written as `� ^v � _f'vg and the disjunction _f'vg
is equivalent to 'v = ^v and the result follows directly.

Now, let ` be a number with 1 � ` � m; we note jAmj = m+ 1: Let V` = fv 2 V : jvj = `g.
The induction hypothesis is that for each v0 2 V`+1;

`� ^v0 � _v0�u2W(A�m)'u: (31)

Now, we choose any v 2 V`; and let V(v) = fv [ fCg : v [ fCg 2 Vg: First, we prove `� 'v �
_v02V(v)'v0 : Let Aom(v) = fC 2 Aom : C 2 v or :C 2 vg: Then, we have

`� _v02V(v)'v0 � _C2Aom�Aom(v)[('v ^ C) _ ('v ^ :C)]:

Abbreviating `� and connecting the formulae directly by �; we have

_v02V(v)'v0 � _C2Aom�Aom(v)[('v ^ C) _ ('v ^ :C)]
� _C2Aom�Aom(v)'v ^ (C _ :C) � _C2Aom�Aom(v)'v � 'v:
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Thus, `� 'v � _v02V(v)'v0 : Now, we have;

_v02V(v)'v0 � _v02V(v) _v0�u2W(A�m) 'u (* (31))
� [_v�u2W(A�m)'u] _ [_v02V(v);jv0j=`+1 _v0�u2W(A�m) 'u]
� [_v�u2W(A�m)'u]:

Thus, `� 'v � _v�u2W(A�m)'u: We have completed the induction step. �

7.1.2 Preparation 2

We construct a model based on a given formula A 2 P� . Such a model is typically constructed
directly from the set of all subformulae of A: Here, we extend the set of all subformulae of A to
accommodate the �xed-point argument in Axiom AEM and Rule IEM. To have it, we focus on
the pc-subformulae of A: We de�ne

�(A) = fD : D is an pc-subformula of Ag: (32)

In the following, we assume that
�(A) is nonempty: (33)

The case �(A) = ; is covered by the following proof by ignoring the cases of an pc-formula.

Let D 2 �(A); i.e., D = Pcl(C) for l = 1 or 2 and some C = (C1; C2): We de�ne

SI(D) = fPci(C);Bi(Ci);BiPcj(C);Bi(Ci ^Pcj(C)) : i = 1; 2g: (34)

That is, we associate the set SI(D) with D. Note that Bi(Ci ^Pcj(C)) looks redundant but it
will be used in Lemma 8.5.

Then, we take all subformulae of A and all subformulae (of C) of SI(D); D 2 �(A); that is,

Subo(A) = fC : C is a subformula of Ag (35)

[fC : C is a sub-formula of SI(D); D 2 �(A)g:

The addition of the second set will be used when we handle pc-formulue in our induction steps
in Section 7.2. Then, we extend this set adding the negations of all formulae in Subo(A); that
is,

Sub�(A) = f:C; C : C 2 Subo(A)g: (36)

This is used to construct the set of possible worlds by taking all maximal consistent sets in it.

In the following, we denote �(Sub�(A)) = maxf�(C) : C 2Sub�(A)g:

Lemma 7.2 Sub�(A) is subformula-closed, and if �(A) � � � 1; then �(Sub�(A)) � � � 1:

Proof Subformula-closedness follows from de�nitions (35) and (36). For epistemic depths,
consider two cases. First, let D = Pcj(C) 2 �(A). Then, �(D) � � � 2 by (1). We should
consider any formulae BiPcj(C) added in (34); �(BiPcj(C)) = 1+ �(Pcj(C)) � 1+ (� � 2) =
�� 1: Let C 2 Sub�(A) but let C be not added in (34): Then, �(C) � �(A): Since �(A) � �� 1;
we have �(C) � �(A) � � � 1: Hence, �(Sub�(A)) � � � 1:�
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7.2 Construction of a countermodel for A 2 P� with �(A) � � � 1

Now, we focus on a formula A and assume

�(A) � � � 1 and 0� A: (37)

Our goal is to construct a model M = (F; �) = ((W;R1; R2); �) so that (M;w) 2 A for some
w 2W:

We can apply Lemma 7.1 by taking Subo(A);Sub�(A) as Aom;A�m. We denote the set of
maximal consistent subsets of Sub�(A), by

Con�(A) :=W(Sub�(A)): (38)

Since 0� A, we have the consistency of :A. By Lemma 7.1.h0i and h1i, there is a w 2 Con�(A)
such that

A =2 w: (39)

Then, we construct a modelM = ((W;R1; R2); �) withW = Con�(A) so that (M;w) 2 A; which
is the �nal goal.

The following observations are simple observations.

Lemma 7.3 For each w 2 Con�(A), we have
h1i: for any :C 2 Sub�(A), either C 2 w or :C 2 w;
h2i: for any (D � D0) 2 Sub�(A), (D � D0) 2 w if and only if D =2 w or D0 2 w;
h3i: for any ^� 2 Sub�(A), ^� 2 w if and only if C 2 w for any C 2 �:

Proof We look only at h1i. Let :C 2Sub�(A): Since w is maximal and consistent, it holds that
C 2 w or :C 2 w:�

We denote, by u�Bi , the set fC : Bi(C) 2 ug for any set of formulae u. We de�ne a model
M = (F; �) = ((W ;R1; R2); �) as follows:

M1: W = Con�(A) =W(Sub�(A));
M2: Ri = f(u; v) 2W 2 : u�Bi � vg for i = 1; 2;

M3: for any (w; p) 2W � PV , �(w; p) = > if and only if p 2 w:

The above M = (F; �) is a model for logic REL�: It su¢ ces to see the seriality for Ri; i = 1; 2.

Lemma 7.4 (Seriality) The relation Ri is serial for i = 1; 2.

Proof Let u 2W: It su¢ ces to show that u�Bi is consistent; then, there exists some v 2 Con�(A)
such that u�Bi � v; i.e., (u; v) 2 Ri. Indeed, if `� ^u�Bi � (:p ^ p) for some p 2 PV; by Nec
and Axiom K, `� ^u � Bi(:p^p); so by Axiom D, u is inconsistent, a contradiction to u 2W .�

We write �(w) = maxf�(C) : C 2 wg for w 2 W: Then, for any w 2 W , we have �(w) =
�(Sub�(A)) by Lemma 7.3.h1i. When �(A) � � � 1; by Lemma 7.2, it holds that �(w) =
�(Sub�(A)) = �(A) � � � 1. We write this fact as a lemma, because it is crucial in the proof of
the last induction step, speci�cally, in the if-part of the case C = Pci(C) = Pci(C1; C2).

Lemma 7.5 (Depth � � 1) Let �(A) � � � 1: Then, �(w) � � � 1 for any w 2W .
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7.3 Main part of the completeness proof of Step 1

Now, we show that for any C 2 Sub�(A) and any u 2W;

C 2 u if and only if (M;u) j= C: (40)

Once (40) is shown, we have (M;w) 2 A because A =2 w by (39). Thus, M = ((W;R1; R2); �) is
a countermodel for A. Nevertheless, for the connection to Step 2, i.e., �(A) = �; (40) will play
the role of the induction base of the proof to be taken in Section 8:

We prove (40) by induction on the subformula structure of A. Speci�cally, we consider the
partial ordering � by representing the immediate subformulae relation over Sub�(A): The pair
(Sub�(A);�) is regarded as a tree, though some paths may go through the same formula. Its
root is A; the leaves are propositional variables, and connections of nodes are made by inference
rules.

The induction base is for a propositional variable C = p 2 Sub�(A): In this case, by M3 and
V1,

p 2 u if and only if �(w; p) = > if and only if (M;u) j= p:

Now, we go to the induction step. Let C be a non-propositional formula. The possible cases
of the outmost connective of C are :; �; ^; Bi(�); and Pci(�; �): Now, we make the induction
hypothesis that for any immediate subformula C 0 of C;

C 0 2 u if and only if (M;u) j= C 0: (41)

The if part of case Pci(�; �) includes another induction argument along an al-sequence in an
entangled manner with the induction along (41).

Case (a) C = :C 0 : Since C 0 2 Sub�(A); we have :C 0 2 Sub�(A): It holds by the hypothesis
(41) that C 0 2 u if and only if (M;u) j= C 0; equivalently, C 0 =2 u if and only if (M;u) 2 C 0: The
former is equivalent to :C 0 2 u by Lemma 7.3.h1i, and the latter is equivalent to (M;u) j= :C 0:
Thus; we have :C 0 2 u if and only if (M;u) j= :C 0:

Case (b) C = F � G : Since F;G 2 Sub�(A); we have F � G 2 u if and only if F =2 u or
G 2 u by Lemma 7.3.h2i; by the induction hypothesis, the latter is equivalent to (M;u) 2 F or
(M;u) j= G; which is equivalent to (M;u) j= F � G:

The case of C = ^� is similar.

Case (c) C = Bi(C
0) : The induction hypothesis (41) is assumed for C 0: First, we show that

(M;w) j= Bi(C 0) implies Bi(C 0) 2 w. Suppose (M;w) j= Bi(C 0). We claim that w�Bi [ f:C 0g
is inconsistent. Suppose, on the contrary, it is consistent. Using Lemma 7.1.h0i, there exists
some u 2 W such that w�Bi [ f:C 0g � u; which implies C 0 =2 u. By the induction hypothesis,
(M;u) 2 C 0. Since w�Bi � u; we have wRiu by M2: Hence, (M;w) 2 Bi(C 0), a contradiction
to the starting supposition. Thus, w�Bi [ f:C 0g is inconsistent; so `� ^w�Bi � C 0. This
implies `� ^w � Bi(C

0): Thus, Bi(C 0) 2 w; since w is a maximal consistent set. Note that
�(^w) � � � 1.

Conversely, suppose that Bi(C 0) 2 w. Then, C 0 2 w�Bi : Take any u with wRiu; i.e.,
w�Bi � u: Hence, C 0 2 u: By the induction hypothesis, (M;u) j= C 0: This holds for any u with
wRiu: Thus, (M;w) j= Bi(C 0).

Now, we go to the last case.
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Case (d) C = Pci(C) = Pci(C1; C2). The if part is crucial.

(Only-if ): Suppose Pci(C) 2 w. Let h(w0; i0); :::; (w� ; i�); w�+1i be an arbitrary al-chain with
(w0; i0) = (w; i). We show, by induction along this al-chain, that Cik and Pcik+1(C) are in
wk+1 for all k (0 � k � �): Let k = 0: Then, w0 = w; i0 = i. Since Pci(C) 2 w and
`� Pci(C) � Bi(Ci)^BiPcj(C) by AEM, we have Bi(Ci);BiPcj(C) 2 w. Because wRiw1, we
have w�Bi � w1; so Ci 2 w1 and Pci1(C) 2 w1. This is the assertion of the induction base. Now,
suppose the induction hypothesis that Cik 2 wk+1 and Pcik+1(C) 2 wk+1. By Axiom AEM,
we have Bik+1(Cik+1) 2 wk+1 and Bik+1Pcik+2(C) 2 wk+1. Again, since wk+1Rik+1wk+2, i.e.,

w
�Bik+1
k+1 � wk+2, we have Cik+1 2 wk+2 and Pcik+2(C) 2 wk+2. This concludes the induction
argument for the al-chain. Thus, Cik�1 2 wk for k = 1; :::; � + 1: Focusing on k = � + 1;
we have Ci� 2 w�+1: By the induction hypothesis for (41), we have (M;w�+1) j= Ci� : Since
h(w; i0); ; :::; (w� ; i�); w�+1i is an arbitrary al-chain, we have (M;w) j= Pci(C):
(If ): Suppose (M;w) j= Pci(C). Since it was shown in Section 3.2 that Axiom AEM, i.e.,
Pci(C) � Bi(Ci) ^ BiPcj(C); is valid with respect to j=; we have (M;w0) j= Pcj(C) for all
w0 2W with wRiw0: The existence of such a w0 is ensured by the Lemma 7.4 (Seriality). Now,
we de�ne W l

C = fu 2 W : (M;u) j= Pcl(C)g for l = 1; 2: Because of (M;w) j= Pci(C) and
(M;w0) j= Pcj(C); it is guaranteed that

w 2W i
C and w

0 2W j
C : (42)

By Lemma 7.5, �(u) � � � 1 for all u 2 W l
C for l = 1; 2: Since 'u := ^u has the depth

�('u) = �(u) � � � 1; 'u belongs to P�; which holds for any u 2 W l
C : Let �W l

C
:= _f'u :

u 2 W l
Cg for l = 1; 2: This has the depth �(�W l

C
) = maxf�(u) : u 2 W l

Cg � � � 1; and
�(Bl(�W l0

C
)) = �(�

W l0
C
) + 1 � �: We will show that for l; l0 = 1; 2 (l 6= l0);

`� �W l
C
� Bl(Cl) ^Bl(�W l0

C
): (43)

These formulae are in P� and are regarded as the upper formulae of Rule IEM. Once (43) is
proved, we have, by Rule IEM, `� �W l

C
� Pcl(C) for l = 1; 2: Since `� 'w � �W i

C
by (42), we

have `� 'w � Pci(C): By Lemma 7.1.h1i, we have Pci(C) 2 w. Now, we have the if -part of
(41) in the case C = Pci(C); under the assumption that (43) is proved.

Now, we show (43); the proof is up to the end of this subsection. First, we show

`� �W l
C
� Bl(Cl) for l = 1; 2: (44)

Let u be an arbitrary world in W l
C . By the de�nition of �W l

C
; it holds that (M;u) j= Pcl(C):

By this and V4,
(M;v) j= Cl for any v with uRlv: (45)

Now, we claim that u�Bl [ f:Clg is inconsistent. Suppose, on the contrary, it is consistent. By
Lemma 7.1.h0i, there exists some v 2 W such that u�Bl [ f:Clg � v; which implies Cl =2 v
and uRlv. By the induction hypothesis for (41), (M;v) 2 Cl; a contradiction to (45). Thus,
u�Bl [ f:Clg is inconsistent; so `� ^u�Bl � Cl. This implies `� ^u � Bl(Cl); and furthermore
Bl(Cl) 2 u: Since this holds for an arbitrary u 2 W l

C , we have `� _f^u : u 2 W l
Cg � Bl(Cl);

that is, `� �W l
C
� Bl(Cl).

Finally, we show
`� �W l

C
� Bl(�W l0

C
) for l; l0 with l 6= l0: (46)
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We �rst derive an equivalent formula to (46).

Lemma 7.6 h1i `� �W l0
C
� :(_

v2W�W l0
C
'v) and h2i `� �W l0

C
� ^

v2W�W l0
C
:'v:

Proof Since `� :(_v2W�W l0
C
'v) � ^v2W�W l0

C
:'v by the classical de Morgan�s low, the above

two are equivalent. The implication `� :(_v2W�W l0
C
'v) � �

W l0
C
is by Lemma 7.1.h4i: Consider

the converse. By Lemma 7.1.h1i, if u; v are distinct in W; then there is a C 2 Sub�(A) such that
`� 'u � C and `� 'v � :C; the latter is equivalent to `� C � :'v: Thus, `� 'u � :'v: This
holds for all distinct u; v 2W:Hence, for any u 2W l0

C ; we have `� 'u � ^v2W�W l0
C
:'v; which im-

plies `� _u2W l0
C
'u � ^v2W�W l0

C
:'v: This is further equivalent to `� �W l0

C
� :(_

v2W�W l0
C
'v):�

Using Lemma 7.6.h2i, (46) is changed into `� �W l
C
� Bi(^v2W�W l0

C
:'v); which is written,

by Lemma 2.1.h3i, as
`� �W l

C
� ^

v2W�W l0
C
Bl(:'v): (47)

We consider the following assertion; since �W l
C
= _f'u : u 2 W l

Cg; (47) is derived from (48)
but not necessarily the converse;

`� 'u � Bl(:'v) for any u 2W l
C and any v 2W �W l0

C : (48)

Now, (48) implies (47), and (47) is equivalent to (46). Thus, it remains to show (48).

Suppose, on the contrary, that (48) does not hold for some u 2W l
C and some v 2W �W l0

C ;
that is, 0� 'u � Bl(:'v); i.e., 0� :('u ^ :Bl(:'v)); thus, 'u and :Bi(:'v) are consistent.
We have the following lemma.

Lemma 7.7 If 'u and :Bi(:'v) are consistent, then u�Bl � v:

Proof We prove the contrapositive; suppose u�Bl * v: That is, C 2 u�Bl but C =2 v for some
C. Then, :C 2 v; so, `� '� � :C; equivalently, `� C � :'v: Since �('v) � � � 1 by Lemma
7.5, we can apply NEC and K, and we have `� Bi(C) � Bi(:'v). Since Bi(C) 2 u; we have
`� 'u � Bi(C); so, `� 'u � Bi(:'v). Thus, 'u and :Bi(:'v) are inconsistent.�

Let us return to the proof of (48); we are still assuming that (48) does not hold. We
have Lemma 7.7; u�Bl � v; that is, uRlv: We show that this implies (M;v) j= Pcl0(C): Let
h(w1; i1); :::; (w� ; i�); w�+1i be any al-chain with (w1; i1) = (v; l0): Since uRiv; h(u; i); (w1; i1); :::;
(w� ; i�); w�+1i is an al-chain from (u; i): Since u 2 W l

C ; it holds that (M;u) j= Pcl(C): This
implies (M;w�+1) j= Ci� . Because h(w1; i1); :::; (w� ; i�); w�+1)i is any al-chain with (w1; i1) =
(v; l0); we have (M;v) j= Pcl0(C): This is a contradiction to the choice of v 2 W �W l0

C : We
derived a contradiction from the assumption that (48) does not hold. Thus, we have (48).

Now, we can return to the main target (43). We have (48), which implies (47), which is
equivalent to (46). Combining (46) with (44), we have `� �W l

C
� Bl(Cl)^Bl(�W l0

C
) for l = 1; 2:

This is (43).�

8 Completeness Proof of REL� : Step 2 with �(A) = �

Here, we eliminate the condition �(A) � � � 1 for completeness, and start simply with the
condition

�(A) = � and 0� A: (49)
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Figure 5: Process to the countermodel M�

The proof takes various steps describe in Fig.5. The large rectangle is the main part without
assuming 0� A; and then, its result is applied to 0� A in the top line. In the top left of the
rectangle, we start with a given formula A with �(A) = �, and transform the formula A to an
equivalent formula A0 by the function  so that �(A0) = � � 1: Then, Section 8.2 extracts the
part Ao of A0; satisfying the �(Ao) = � � 1; we construct a model for A0 as the model M given
of Section 7.2 is denoted by M��1: For this model, (41) of Section 7.3 holds. We will extend the
model M��1 to M� by adding a new part. Then, (41) is extended to (57) with  : This can be
applied to the top line. Then, we have a countermodel for A with (49):

8.1 New part of subformulae of A with �(A) = �

Let A 2 P� and �(A) = � � 3: We focus on the trunk part of the decomposition tree of formula
A up to the �rst occurrences of a propositional variable, a b-formula, or a pc-formula. The
obstacle for the method of Section 7 is the case where decomposition stops at a pc-formula
Pci(C1; C2); the valuations are di¢ cult to be controlled, since it is valuated by al-chains of
all lengths. We avoid this obstacle by substituting Bi(Ci^ Pcj(C1; C2)) for Pci(C1; C2); since
Pci(C1; C2) is equivalent to Bi(Ci^Pcj(C1; C2)) by Theorem 2.1. Then, we get the new formula
A0: An example is shown in Fig.5. It is a simple idea, but because the new decomposition tree
will be used in an induction proof, we need a rigorous de�nition.

We denote the binary relation � over the subformulae of A; for C;C 0 2 Sub(A); we de�ne
C � C 0 i¤ C 0 is an immediate subformula C: We say that � = [�0; �1; :::; �t] is a trunk path from
A i¤

(o): �0 = A and �k � �k+1 for k = 0; :::; t� 1;

(i): if t � 1; then, the outmost connectives of �0; �1; :::; �t�1 are :; �; or ^:

A trunk path starts with the root �0 = A with decompositions with logical connectives :;�; or ^:
We denote the set of all trunk paths from �0 = A by �trk:We say that � = [�0; �1; :::; �m] 2 �trk
is a maximal trunk path i¤ it is a trunk path and

(ii)(o-p): �m 2 PV ; (o-B): �m is a b-formula; or (o-PC): �m is a pc-formula.:

That is, � is an outcome of the decomposition process until (ii) holds. In the case m = 0;
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Figure 6: A trunk with no naked pc-formulae

A = Bi(C) for some C and i = 1; 2 and A is not an pc-formula since �(A) = � � 3. The set
�trk expresses the outcomes of the decomposition process from A: Fig.6 depicts two examples
of the trunks �trk(A) and �trk(A0):

As stated above, (o-PC) is an obstacle for constructing countermodel for A. Nevertheless, if
we �nd another formula A0 so that A0 is equivalent to A in REL� and only (o-p) or (o-B) of (ii)
holds for A0: Then, if M is a countermodel for A0; so is M for A:

Lemma 8.1 Let C;C 0 2 P� ; and M = ((W;R1; R2); �) a model: Let `� C � C 0: Then, for any
w 2W;

(M;w) j= C if and only if (M;w) j= C 0:

Proof Let `� C � C 0: By soundness for REL� ; it holds that (M;w) j= C � C 0 for all w 2 W:
For any w 2W; (M;w) j= C implies (M;w) j= C 0; and vice versa.�

Now, we construct the function  : �trk �! P� by induction from its maximal trunk paths:

(IB): For any maximal path � = [�0; �1; :::; �m] 2 �trk,

 (�) =

8<:
�m if �m 2 PV
Bi(C) if �m = Bi(C)

Bi(Ci ^Pcj(C)) if �m = Pci(C):

The case �m = Pci(C) is changed. Let � = [�0; �1; :::; �t] 2 �trk be non-maximal in �trk.
Suppose the induction hypothesis that  (� � �t+1) is already de�ned for all � � �t+1 2 �trk: Then,
(:): if �t = :�t+1; then  (�) = : (� � �t+1);
(�): if �t = �t+1 � �0t+1; then  (�) =  (� � �t+1) �  (� � �0t+1);
(^): if �t = ^�; then  (�) = ^f (� � �t+1) : �t+1 2 �g:

Conditions (IB); (:); (�); and (^) guarantee that this inductive de�nition gives a unique value
 (�) to each trunk path � 2 �trk: Since �(Pci(C)) � � � 2 if �m = Pci(C); it holds that
�(Bi(Ci ^ Pcj(C))) � � � 1: This implies that �(�) � � for all � 2 �trk: In Fig.5, the trunk
derived from A = ^fp � Pc2(C);B1(D)g is depicted as the left tree, where �(D) = D is
assumed, and the trunk obtained by  is depicted as the right tree with  ([�0]) = A0 = ^fp �
B2[C2 ^Pc1(C)];B1(D)g.
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If �trk has no naked pc-formulas, then  (�) = �t for all � = [�0; �1; :::; �t] 2 �trk: But our
concern is the case where �trk has some naked ps-formula. In this case, the equality  (�) = �t
becomes an equivalence in REL�:

Lemma 8.2 `�  (�) � �t for all � = [�0; �1; :::; �t] 2 �trk:

Proof We prove the assertion by induction on (�trk;�) from its maximal � 2 �trk. The
induction base is `�  (�) � �m for maximal � = [�0; �1; :::; �m] 2 �trk: If �m is a propositional
variable or a b-formula, then,  (�) = �m by IB; thus, `�  (�) � �m: If �m = Pci(C); it holds
by Theorem 2 1.h1i that `� Pci(C) � Bi(Ci ^Pcj(C)): By IB, `�  (�) � �m:

Now, suppose that � = [�0; �1; :::; �t] 2 �trk is non-maximal. Then, there are three cases to
be considered: (:) �t = :C; (�) �t = C � D; and (^) �t is ^�: The induction hypothesis is
that `�  (� � �t+1) � �t+1 for all � � �t+1 with �t � �t+1: We consider only (^); (:) and (�)
are similar. Then, �t = ^�: The induction hypothesis is expressed as `�  (� � C) � C for all
C 2 �: By Axiom L4 and Lemma 2.1.h1i, this implies `� ^ (� � C) � C for all C 2 �; thus,
`� ^f (� � C) : C 2 �g � ^� by ^-Rule. The converse can be proved in the same manner.
Thus, `� ^f (� � C) : C 2 �g � ^�; so, `�  (�) � �t by (^) and �t = ^�.�

8.2 Main part of the completeness proof

Recall A 2 P� with �(A) = �: Then, let A0 =  ([�0]) where �0 = A; and de�ne

�o = fC :  (�) = Bi(C) for some i and � is maximal in �trkg: (50)

In Fig.5, since the transformed A0 =  ([�0]) is ^fp � B2[C2 ^ Pc1(C)];B1(D)g; �o is the set
fC2 ^Pc1(C); Dg:

For a maximal � = [�0; �1; :::; �m] 2 �trk;  (�) is in PV or is a b-formula by (IB). In (50),
�o collects the contents of such b-formulae: Now, let Ao = ^�o: Since �(A) = �; we have

�(Ao) = � � 1: (51)

Section 7 gives a model for Ao, denoted by M��1 = ((W ��1;R��11 ; R��12 ); ���1):

We extend M��1 by adding the parts of A0 that are not in Ao: For this purpose, we write
Sub(A0;� � 1) and Sub(fA0; Aog) as:

Sub(A0;� � 1) = Sub(Ao); and Sub(A0;�) = Sub(fA0; Aog):

If  (�) = p for a maximal � 2 �trk and p 2 PV; then p 2 Sub(A0;�): For � = �� 1; �; we de�ne

Subo(A0;�) = Sub(A0;�) [ fC : C is a sub-formula of SI(D) for some D 2 �(A0)g; (52)

Sub�(A0;�) = f:C;C : C 2 Subo(A0;�)g:

The additional part of Subo(A0;�) in (52) is the same for � = � � 1; �; because of (34). The set
Sub�(A;� � 1) corresponds to Sub�(A) of Section 7.1.2:

For � = �� 1; �; the set of maximal consistent subsets of Sub�(A0;�) in REL� is denoted by

Con�(A0;�) :=W(Sub�(A0;�)): (53)
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It holds that Con�(A0;� � 1)\ Con�(A0;�) = ;, i.e., they are mutually exclusive: Indeed, since
�(w) = � for w 2 Con�(A0;�) and � = � � 1; �; any w 2 Con�(A0;� � 1) di¤ers from any
w0 2Con�(A0;�); we have mutual exclusiveness. In the new model M� , we adopt the union
Con�(A0;� � 1)[ Con�(A0;�) as the set of possible worlds.

Now, we extend the model M��1 = ((W ��1;R��11 ; R��12 ); ���1) for Ao by adding the re-
maining structure for A0. It would be convenient to write down the de�nition of M��1 =
((W ��1;R��11 ; R��12 ); ���1):

M1��1: W ��1 = Con�(A0;� � 1);
M2��1: R��1i = f(u; v) 2 [W ��1]2 : u�Bi � vg;
M3��1: for any (w; p) 2W ��1 � PV , ���1(w; p) = > if and only if p 2 w:

We extend M��1 to a model M� = ((W �;R�1 ; R
�
2 ); �

�) as follows:

M1� : W � =W ��1[ Con�(A0;�);
M2� : for i = 1; 2; R�i = f(u; v) 2 [W ��1]2 : u�Bi � v]g

[f(u; v) 2 Con�(A0;�)�W ��1 : u�Bi � v]g;
M3� : for any (w; p) 2W � � PV , ��(w; p) = > if and only if p 2 w:

Since Con�(A0;�� 1)\Con�(A0;�) = ;; the set of possible worlds W � is obtained by adding the
new part Con�(A0;�) to W ��1: The accessibility R�i has the two parts:

f(u; v) 2 [W ��1]2 : u�Bi � vg and f(u; v) 2 Con�(A0;�)�W ��1 : u�Bi � vg: (54)

The �rst part of (54) keeps the accessibility R��1i ofM2��1; and the second part represents the
connection from Con�(A0;�) to W ��1; which implies that a formula  (�); � 2 �trk is valuated
by referring to worlds in W ��1: Since W ��1 and Con�(A0;�) are mutually exclusive, so are
[W ��1]2 = [W ��1] � [W ��1] and Con�(A0;�) �W ��1: This allows us to separate applications
of the two accessibilities in (54). Also, ��(�; �) is an extension of ���1(�; �):

Lemma 8.3 (Seriality) R�i is serial over W
� for i = 1; 2:

Proof When w 2W ��1 = Con�(A0;�� 1); Lemma 7.4 can be regarded as this assertion. Now,
let w 2 Con�(A0;�): Then, w�Bi is consistent and is a subset of Sub�(A0;� � 1). Thus, there is
some v 2 Con�(A0;� � 1) with w�Bi � v: This means that R�i is serial.�

The new model M� preserves the previous model M��1 with respect to j=.
Lemma 8.4 (Preserving the previous valuation) For any u 2W ��1 and C 2 Sub�(A0;��
1);

(M�; u) j= C if and only if (M��1; u) j= C: (55)

C 2 u if and only if (M� ; u) j= C: (56)

Proof First, we see that (56) follows (55). Indeed, let u 2 W ��1 and C 2Sub�(A0;� � 1) be
arbitrarily chosen. We can apply the proof of Section 7.3 to obtain that C 2 u if and only if
(M��1; u) j= C: This and (55) imply (56). We prove (55) by induction on the length of a formula
in Sub�(A0;� � 1):

The induction base is the case: C = p 2 PV: Since u 2W ��1; it holds that (M�; u) j= p()
��(u; p) = > () p 2 u() ���1(u; p) = > () (M��1; u) j= p:

Consider a non-propositional formula in C 2 Sub�(A0;� � 1): The induction hypothesis is
that for any u 2W ��1; (55) holds for any immediate subformula C 0 of C:We have the �ve cases
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according to the outmost connectives of C; :; �; ^; Bi(�); and Pci(�; �) (i = 1; 2): We consider
the cases �; Bi(�), and Pci(�; �):

Let C = C 0 � C 00: Then, (M� ; u) j= C 0 � C 00 if and only if (M�; u) 2 C 0 or (M�; u) j= C 00 if
and only if (M��1; u) 2 C 0 or (M��1; u) j= C 00 if and only if (M��1; u) j= C 0 � C 00; where the
second equivalence is by the induction hypothesis.

Now, let Bi(C 0) 2 Sub�(A0;� � 1): Then, (M� ; u) j= Bi(C
0) if and only if (M� ; v) j= C 0

for all v with uR�v: Since u 2 W ��1; we have, by M1� and M2�; uR�v () [(u; v) 2 [w��1]2
& u�Bi � v]() uR��1v; we can apply the induction hypothesis to the last, it is equivalent to
(M��1; v) j= C 0 for all v with uR��1v; and further equivalent to (M��1; u) j= Bi(C 0):

Let Pci(C) 2 Sub�(A0;��1): By V5, (M� ; u) j= Pci(C) is equivalent to that (M�; w�+1) j=
Ci� for any al-chain h(w0; i0); :::; (w� ; i�); w�+1i with (w0; i0) = (w; i): Since u 2 W ��1; all
accessibilities in this al-chain are in (W ��1; R��11 ; R��12 ) by M2�: Hence, the above is equivalent
to (M��1; u) j= Pci(C):�

Finally, we show that the assertion of Lemma 8.4 is extended to Con�(A0;�) and M� with
the subformula tree (�trk;�) and the function  :

Lemma 8.5 For any � = [�0; :::; �t] 2 �trk and w 2 Con�(A0;�);

 (�) 2 w if and only if (M� ; w) j=  (�): (57)

Proof. We prove the assertion by induction over (�trk;�) from its maximal trunk paths. The
inductive base is essential. Let � = [�0; :::; �m] be a maximal path in �trk: By (IB),  (�) = p or
 (�) = Bi(C):

Let � = [�0; :::; �m] 2 �trk with �m = p 2 PV: Then,  (�) = p by (IB). Let w 2 Con�(A0;�):
Then, by M3�; p 2 w if and only if ��(w; p) = >: By V0, this is equivalent to (M� ; w) j= p:

Next, let �m be a b-formula Bi(C). Then,  (�) = Bi(C) and C belongs to Sub�(A0;� � 1):
If �m is an pc-formula Pci(C); then  (�) = Bi(Ci ^ Pcj(C)) and C = Ci ^ Pcj(C) belongs
to Sub�(A0;� � 1). Thus, in either case, C belongs to Sub�(A0;� � 1): We prove (57) for
 (�) = Bi(C):

Suppose Bi(C) 2 w 2 Con�(A0;�): Take any u 2 W � with wR�i u, i.e.,w
�Bi � u: By M2� ;

u 2 W ��1: Since C 2 w�Bi � u; we have C 2 u: By (56) of Lemma 8.4, we have (M� ; u) j= C:

Since u is arbitrary, we can write (M�; u) j= C for all u with wR�i u: That is, (M
�; w) j= Bi(C):

Conversely, suppose (M�; w) j= Bi(C):We claim that w�Bi[f:Cg is inconsistent. Suppose,
on the contrary, that w�Bi[f:Cg is consistent. Since w�Bi[f:Cg is a subset of Sub�(A;��1);
using Lemma 7.1.(0), there exists some u 2 Con�(A0;� � 1) such that w�Bi [ f:Cg � u; which
implies w�Bi � u and f:Cg � u: Hence, C =2 u: Since �(C) � � � 1 and u 2 Con�(A0;� � 1);
it holds that (M�; u) 2 C. Since w�Bi � u; we have wR�i u by M2

� : Hence, (M�; w) 2 Bi(C), a
contradiction to the starting supposition. Thus, w�Bi [f:Cg is inconsistent; so `� ^w�Bi � C.
This implies `� ^w � Bi(C): Thus, Bi(C) 2 w; since w is a maximal consistent subset of
Sub�(A0;�).

Thus, we have shown the inductive base. The next step is to go along �. We should consider
only the three cases where the outmost connective of �m is :; �; and ^: Here, we consider the
case :; i.e., �k = :C for some C: The other two cases are similar. By (:),  (�) = : (� � C):
The inductive hypothesis is (57) for  (� � C): First, suppose  (�) 2 w 2 Con�(A0;�): That is,
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: (� � C) 2 w: Hence,  (� � C) =2 w: By the inductive hypothesis, we have (M�; w) 2  (� � C):
This implies (M� ; w) j= : (� � C): The converse is obtained by tracing this argument back.�

Since 0� A by the starting assumption (49), it holds that :A is consistent. Recall the root
of �trk is � = [A]: Since  ([A]) = A0; by Lemma 8.2, `� A0 � A: Hence, :A0 is consistent. This
implies that there is a maximally consistent w in Con�(A0;�) such that :A0 2 w: Thus, A0 =2 w:
By Lemma 8.5, we have (M�; w) 2 A0: Thus, M� is a countermodel for A0. By Lemma 8.2, M�

is a countermodel for A, too:

9 Discussions from the Social Scienti�c Perspective

In the development of logic REL� , we have made quite a few deviations from the traditional
thoughts in epistemic logic. They are necessitated because we target social situations where
bounded interpersonal reasoning is prominent. We give some discussions on these deviations
from the social scienti�c perspective, which will be given in Section 9.1. Then, we mention
possible extensions of our approach in Section 9.2.

9.1 Methodological re�ections

First, we emphasize the principle of methodological individualism (MD) in the ontological sense
(von Mises [27], Chap.II, Section 4, and Kaneko [18], Chap.6) that an individual person is the
unit of mental/physical action taking in society.15 This may be regarded as a methodological
principle in epistemic logic, but the formulation of common belief CBL� is incompatible with
MD, i.e., Axiom ACB and Rule ICB are not individualistic as pointed out in Section 6. Axiom
ARE and Rule IRE for REL� are purely individualistic in the ontological sense.

From the social scienti�c perspective, MD has a more serious implications. Since social
science targets social situations with human beings, we should take boundedness of each in-
dividual�s abilities of memory/thought seriously. This aspect is captured by a bound � for
interpersonal (/intrapersonal) reasoning for a person. From the viewpoint of bounded rational-
ity, an individual person is limited in his cognitive/epistemic activity in various ways, cf., Simon
[34]. Theorem 3.1 for logic REL� captures one aspect of individual limitations in interpersonal
interactions. In this context, how reciprocal empathization is developed is not straightforward.
For this, we go to the notion of �the generalized other�due to Mead [25] (see also Collins [10],
Chap.7). It is developed in one�s societal background, which Mead calls the genesis.

By the genesis, he means that an individual person has gradually developed his intelligence
and his sense of self from his baby age to adulthood age in society such as home, neighbor-
hood, schools, and so on, emphasizing interactions with other people. After these, person i can
practice reciprocal empathization with another person, j who shares with the same community
background with i: The pc-operators Pci(�; �); i = 1; 2 together with Axiom AER and Rule IER
can be interpreted as expressing Mead�s concept of the generalized other. As we argued in Sec-
tion 5, the generalized other depends highly upon issues as well as the communities where they
come from.

In epistemic logic, self-introspection is typically assumed and is regarded as a basic axiom.

15This di¤ers from the reductionistic MD in that any cause for a social event can be reduced to some inner
elements of an individual person, without considering the level of a social structure.
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However, Mead [25], Supplementary Essay III, pp.354-378 argues that intrapersonal thinking is
rooted in interpersonal interactions. Consistent with his argument, we take the perspective that
interpersonal empathization is more basic and one�s introspection is a product from interpersonal
beliefs by projecting them on himself. This has the implication that logic RELS� given in Section
6.1 is a derivative of logic REL�:

9.2 Further extensions

(a): Possible extensions of logic REL�: Although we have focused on logic REL� with two
persons, it would be important to extend it to the n-person case with n < !. A basic extension
of REL� is logic REL�(n); where the number of persons is n but reciprocal empathization is kept
in a bilateral manner as in REL�: By the nature of reciprocal empathy, the bilateral assumption
is crucial. Still, we need to be careful with some notations; the pc-operator for i against j needs
the subscript such as Pci;j(Ci; Cj); Axiom AEM as AEMi;j ; and Rule IEM as IEMi;j . We need
to think about whether or not interactions between di¤erent pairs of persons should be taken
into account seriously. In such a case, the bound � may need to be rede�ned.

Mathematically speaking, there are many possible extensions where reciprocal empathization
takes more complex forms than the bilateral reciprocal one. Nevertheless, we should work on
an extension, keeping the conceptual bases discussed in Section 9.1.

(b): Extension of Lewis�s example: Lewis�s example in Section 5 demonstrated several
aspects crucial to our understanding of convention, empathization, and communication in social
situations. In general, the situation may involve more people, and in addition to (a), an extension
of Lewis�s example has its own speci�c problems. For example, one can study the situation
where people from various di¤erent communities who may or may not understand each other
depending upon issues. Then, we can discuss how people could communicate to have successful
coordination. These are indicative to have a new development of the concept of �convention�
due to Lewis [23] depending upon communities. These may include the present world issue
�selective empathy�, meaning that empathization is applied to some group of people but not to
some others (cf., Wang, et al. [36]).

(c): Applications to game theory: (a) and (b) indicate new potential directions for game
theory, when we take reciprocal empathy seriously. The central theme in game theory is to
study strategic behavior, and the standard solution concept is Nash equilibrium. The common
practice is to consider Nash equilibrium in the following manner: each player maximizes his
own payo¤, taking his anticipation of the other�s equilibrium behavior as given. However, the
process in which this anticipation is formed is rarely discussed in the literature. Such anticipation
formation is essentially a problem of empathization, in which each player attempts to simulate
the other�s thinking and may reach reciprocity as well. Our framework can be used to study
this problem directly and explore its various implications to strategic reasoning.

In this regard, our framework also uncovers a connection between this anticipation forma-
tion and Mead�s [25] concept of �generalized others�, as our analysis of the Lewis example in
Section 5 shows. Thus, our framework may allow for a more serious introduction of social back-
grounds and contexts into the current game theory (in which the game is analyzed as an isolated
phenomenon). A related problem has been treated by Kaneko-Matsui [19] in the context of dis-
crimination/prejudice, in which past experiences play a crucial role in players�expectations of
others�behavior, but the epistemic elements are not discussed there. This may lead to another
direction.
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