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Abstract

While developing a new interaction method, it is crucial to explore how a com-
puter detects user intent to interact with the computer. In particular, gaze-based
interaction, which utilizes human natural eye behavior such as fixation, saccade,
vergence, smooth pursuit, and pupil diameter, has been the primary focus of the
researcher for exploring user intent detection methods. Human eyes have some
common functions, such as subconsciously observing visual information and show-
ing our attention and intent through the eye. Therefore, it is possible to detect
user attention and intent by observing changes in eye behaviors without requir-
ing additional behavior for users. This implicitness of eye behavior is attractive
for interaction, and hence gaze-based interaction, which utilizes eye behavior, has
been widely researched. We developed the user intent detection methods for dwell
selection, which is a gaze-based interaction.

Dwell selection method utilizes the human eye behavior of “looking.” For dwell
selection on the object that users want to select, users are required to find the
object and keep looking at it. More systematically, in a 2D display, dwell selection
is triggered when the x and y gaze coordinates on display are inside a graphical
user interface (GUI) object for a certain duration, referred to as dwell time. Dwell
time is an indispensable parameter for detecting user intent to select a GUI, and
gaze coordinates are an indispensable parameter for determining which GUIs are
desirable to the user. Although utilizing “looking” without any additional action
is attractive from the aspect of implicit use of eye behavior, it may result in a
mis-detection of user intent. The mis-detection causes unwanted selection, referred
to as Midas-touch, and solving Midas-touch has been the goal of dwell selection
research. However, it has been 30 years since dwell selection was first researched,
and the solution has not been derived yet. Furthermore, solving Midas-touch with
intent detection using only dwell time seems challenging.

In this thesis, we show user intent detection models to extend the determination
of dwell time and the method itself. One model extends the current determination
of dwell time by incorporating natural eye behavior and human decision-making

1il



processes. The current determination is based on the optimization of the speed
and accuracy of dwell selection. Although dwell time plays a significant role in user
intent detection for dwell selection, the determination method of dwell time lacks
incorporation of the human decision-making process. Another model extends user
intent detection by incorporating multiple natural eye behaviors. While natural
eye behaviors potentially reflect user intent, because they generally rely on users,
ambient environment, and interaction situations, identifying the eye behaviors and
characteristics that are useful for interpreting user intent is not simple. Therefore,
to interpret the user intent from such eye behaviors, we adopted a machine learning
(ML) based method and developed an ML model that can interpret the intent
using eye behavior features. Lastly, we demonstrate the use of our models for
dwell selection and how our model extends the gaze-based interaction.
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Chapter 1

INTRODUCTION

This thesis introduces eye behavior-based user intent detection methods and their
use in dwell selection. Eye behavior is a natural human behavior that allows hu-
mans to subconsciously obtain visual information and show their attention and
intent. Interaction with eye behavior is referred to as gaze-based interaction. Pre-
vious research on gaze-based interaction primarily focused on solving unwanted
interactions caused by misdetection of user intent for interaction using only eye be-
havior. To solve this unwanted interaction, we base our work on previous human-
computer interaction (HCI) research wherein the human natural eye behaviors were
used as an input modality. In particular, we focused on dwell selection, a funda-
mental interaction method of “selection” in gaze-based interaction, presented by
Jacob [Jac90]. In dwell selection, unwanted interaction, i.e., unwanted selection, in
this case, is observed, and several efforts have been made to establish an ideal so-
lution. Furthermore, we review previous work on gaze-based interaction, describe
dwell selection and its issues and why we focus on dwell selection, investigate the
relation between eye behaviors and user intent for interaction, and present two
models based on the relation to address the issues.

1.1 User Intent Detection For Interaction

While developing an interaction method, the accurate detection of user intent is
important to achieve accurate interactions. Various human body parts, such as
the hand, head, foot, and mouth, serve as modalities for detecting user intent.
As an example of mouse-based interaction, which is currently one of the most
established interaction methods, users can express their intent to interact or not
interact with a computer through actions like “left-click,” “right-click,” and “scroll”
in a mouse-based interaction. Touch-based interaction offers another example,
where a simple “tap” with fingers signifies the user’s intent to interact with a
smartphone. Moreover, hand gestures and voice are also used as modalities to
detect user intent. Using a mouse or hand, users can manipulate a graphical user
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interface (GUI) by searching an object, landing a cursor, or moving a finger on the
object, and then performing a “left clicking” or “tap”; the selection is triggered on
the object. All those modalities enable users to explicitly show their intent. This
capability arises from humans’ dexterity in moving their hands and fingers with
precision, enabling them to perform distinct gestures and vocalize specific words
crucial for detecting user intent.

In recent years, interfaces have been designed to offer information linked to the
user’s surrounding environment, aligned with the concept of establishing ubiqui-
tous computing. Ubiquitous computing envisions “a new way of thinking about
computers in the world, one that takes into account the natural human environ-
ment and allows the computers themselves to vanish into the background” [Wei91].
Lots of researchers have put their effort into establishing ubiquitous computing as
the future world. An example of such an interface in ubiquitous computing is the
adaptive interface wherein a user’s gaze upon a food, item triggers the presentation
of additional information, such as the calorie count and allergen details. This adap-
tation with the user intent occurs seamlessly, requiring no further explicit actions.
To make the computers in the background, the development of an intent detection
method based on users’ subconscious and natural behavior has garnered attention.
Especially the multifaceted roles of human eyes in gathering information about the
environment and signaling attention to others.

Furthermore, regarding the aspect of user intent detection based on human nat-
ural behavior, the exploration into the brain’s electrical activity is also researched.
The interaction utilizing the brain’s electrical activity is known as brain-computer
interaction (BCI), which operates sans physical movement of body parts, leverag-
ing analysis of the brain’s electrical signals to discern user intent. Since bodily
movements are directed by signals originating in the brain, utilizing the brain’s
electrical activity can expand the interaction space beyond those dependent nat-
ural eye behavior. However, there are existing limitations in the approaches to
sensing the brain signal (e.g., usability, technical challenges, and ethical challenge).
In this context, our focus centers on utilizing the human eyes, given their prox-
imity compared to the other body parts, as a means of reflecting subconscious
human intent. Further rationale behind our emphasis on gaze-based interaction is
elaborated upon in the next section.

1.2 Gaze-Based Interaction

Human eyes perform specific functions in our daily life, such as subconsciously
observing visual information and showing our attention and intent through the eye.
Based on the proverb “The eyes say more than the mouth,” we can possibly detect
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the attention and intent of others by observing the subtle/unsubtle changes in their
eye behaviors. Such eye behaviors could be a powerful modality for interaction if a
computer could detect user intent to interact with itself through eye behaviors. The
interaction using such eye behavior has been researched as gaze-based interaction.
In this thesis, the word “gaze” is defined as the direction in which users look, and
gaze-based interaction uses “gaze,” which is detected through an eye tracker.

The interaction method based on eye behaviors, which are sampled through eye
trackers, as a modality is called gaze-based interaction. In previous studies, “look-
ing,” "moving the eyes,” and “blinking” have been used for user intent detection for
gaze-based interaction. For example, users can manipulate a GUI by searching for
an object and constantly “looking” at the object for a while; the selection is then
triggered on the object. The functionality that the eyes move faster than other
body parts, e.g., hands, feet, head, and mouth, is attractive for faster interaction.
An interaction method that allows users to interact with a computer faster is the
preferred method in the HCI field. Moreover, gaze-based interaction can be used as
hands-free interaction. For accessibility, users with limited motor control, such as
those who have amyotrophic lateral sclerosis (ALS), can interact with a computer
using gaze-based interaction [Dyn21]. Such aspects of natural human eye behaviors
have the potential to extend current interaction. Therefore, gaze-based interaction
has been focused on the next interaction method following mouse- and touch-based
interaction, which are the most established methods, as of 2023.

Eye-tracking technology has been developed for over 100 years and has been
used to detect human visual attention. The pupil-center corneal reflection is one
of the most commonly used techniques. The basic concept is to illuminate the eye
and capture its image. The eye image is then used to identify the pupil center and
reflection of the illuminators on the cornea. Further, image-processing algorithms
are used to estimate a 3D model of the eyes and the position of the eye in space.
Gaze is a direction that users look at, and it can be calculated using the reflection
and pupil position. This 3D model also derives the user pupil position and diameter.

For developing an eye tracker, an improvement in its performance and a de-
crease in cost helped researchers further explore gaze-based interaction. While
the roots of gaze-based interaction are in the 1980s [WM87, HWM™89], the eye-
tracking system was not a widely adopted commercial equipment because it did
not demonstrate sufficient eye-tracking performance in terms of frequency, accu-
racy, and precision. In the late 2010s, eye-tracking systems such as eye trackers by
Tobii became more common commercial equipment for desktop computing. Cur-
rently, the eye-tracking system for head-mounted displays (HMD) (e.g., HTC Vive
Pro Eye and HoloLens 2) has been developed and has become commercial equip-
ment. Therefore, because researchers and developers can easily obtain precise eye
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behaviors, gaze-based interaction has attracted significant attention.

To the best of our knowledge, the first gaze-based interaction research was
conducted by Colin and Mikaelian [WMS87] in 1987. Numerous studies have been
conducted to establish gaze-based interaction as a common interaction method
to date. We categorize gaze-based interaction into three types: implicit, explicit,
and multimodal gaze interactions. A detailed explanation is given in the following
sections and Chapter 2.

Implicit Gaze Interaction

Generally, implicit interaction does not require any explicit action in addition to
natural human behavior. User intent is detected using natural human behavior,
and thus, the detection is implicitly done. Then, an interaction is triggered. Reli-
able intent detection is essential for implicit interaction, which has facilitated the
research on intent detection based on natural human behavior.

Because most eye behaviors are subconsciously performed behaviors, their use
for interaction is suitable to ensure implicit interaction. We categorize implicit
interaction, specifically utilizing only natural human eye behavior, as implicit gaze
interaction. Among various gaze-based interactions, the dwell selection, which uti-
lizes the natural eye behavior of “looking,” is the most relevant interaction method
to implicit gaze interaction. A computer with dwell selection detects user intent
from one natural eye behavior of “looking” at objects. Reliable intent detection
is essential for implicit interaction, which has facilitated research on intent detec-
tion using natural human behavior. The implicit gaze interaction can deliver the
potential of natural eye behaviors for good interaction. However, this has resulted
in unwanted selection owing to the mis-detection of user intent from natural eye
behaviors. Our goal is to establish a dwell selection that retains the benefits of
interaction using natural eye behaviors while addressing the issue of the difficulty
of user intent detection.

Explicit Gaze Interaction

In general, explicit interaction requires user-predefined actions, such as “clicking”
with a mouse or moving hands or eyes in a specific manner. Such interactions are
currently the mainstream interaction. Actions such as moving hands, eyes, head, or
the whole body in a specific manner are referred to as gestures. The most important
advantage of using explicit actions is the ease of accurate user intent detection
because actions used for an interaction are designed to differentiate natural human
behavior.
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We categorize explicit interaction, specifically utilizing voluntary human eye
behavior, as explicit gaze interaction. Most voluntary eye behaviors are adopted to
be distinguishable from natural eye behaviors and realize the easiness of accurate
user intent detection. Therefore, the probability of occurrence of mis-detection of
user intent is less than implicit gaze interaction. Moreover, assigning commands
to eye behaviors allows users to trigger the commands.

Multimodal Gaze Interaction

In contrast to the first two interactions that use eye behavior as a modality, mul-
timodal gaze interaction employs eye behavior as an assistive modality alongside
other modalities.

We categorize explicit interaction, specifically utilizing voluntary human eye
behavior, as explicit gaze interaction. In the multimodal gaze interaction, eye
behaviors are used as a cue to indicate user attention, whereas other modalities
are used as a cue to indicate user intent to interact. One example is the look-and-
touch principle, wherein a touch interaction is triggered where users look [SD12b].
Multimodal gaze interactions incorporate natural eye behaviors, which implicitly
show user attention and ease of user intent detection of mouse, hand, and voice
interaction.

1.3 Dwell Selection and Issues

The dwell selection method utilizes a human eye behavior of “looking,” defined
by Jacob [Jac90] as “if the user continues to look at the object for a sufficiently
long time, it is selected without further operations.” More systematically, in a 2D
display, dwell selection is triggered when the x and y gaze coordinates on display
are inside a GUI object for a certain duration called the dwell time. For dwell
selection on the object that the users want to select, users are required to find the
object and keep looking at the object. Ideally, the dwell selection does not require
users to do any actions besides finding an object.

The user intent to select a GUI object is detected when measuring a duration
that the gaze coordinates keep inside a GUI object over dwell time. For example,
if we determine 1s as the dwell time, a computer infers that a user wants to select
the target that the user looks at when gaze coordinates keep being inside the target
for over 1s. Therefore, dwell time is an indispensable parameter for detecting user
intent to select with a GUI, and gaze coordinates are an indispensable parameter
for which GUIs are the user-desired GUI. Because dwell time roles detect user
intent to select, researchers have explored the size of dwell time that should be
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used for developing a dwell selection and for comparing the performance of other
interaction methods with dwell selection.

The goal of the research on dwell selection is to solve the long-time unsolved
issue of Midas-touch, coined by Jacob [Jac90]. Its definition states, “Everywhere
you look, something is activated; you cannot look anywhere without issuing a com-
mand.” Therefore, Midas-touch is an issue where an object is accidentally selected.
The cause of Midas-touch is mainly attributed to dwell time. In particular, a
smaller dwell time may induce the mis-detection of user intent. For example, with
the smallest dwell time (i.e., 0ms), when gaze coordinates accidentally enter an
object, the object is immediately selected, and hence, Midas-touch occurs. There
is a possibility of correct detection of user intent. However, the detection becomes a
mis-detection considering that most interaction with GUI requires users to search
the GUI (i.e., looking at an object, understanding it, and deciding to select it),
and may require a long duration. By using a larger dwell time, which is a simple
solution, the mis-detection of user intent can be prevented; however, the time re-
quired for interaction becomes large, and even when using a large dwell time, if
users continuously look at a target while thinking about something or observing
the target, Midas-touch will occur. Therefore, researchers have explored a smaller
dwell time that can prevent Midas-touch.

Because our eyes are constantly directed at something and moving, careful
consideration of how we detect user intent from eye behavior is necessary to solve
the Midas-touch. A majority of the methods involve adjusting dwell time according
to the selection situations. For example, in dwell typing (i.e., dwell selection on a
key), researchers used 180-600ms as dwell times based on two perspectives: user
preference and robustness against Midas-touch (e.g., [MAv09]). To select a key
that is likely to be selected, using a small dwell time enables faster selection while
using a large dwell time can prevent Midas-touch for a key that is unlikely to be
selected. Hence, previous research on solving Midas-touch has explored a smaller
dwell time that can prevent Midas-touch and allows faster interaction. Although
it has been 30 years since dwell selection was developed, the solution has not been
derived yet, and it looks difficult to solve Midas-touch with intent detection using
only dwell time for solving Midas-touch.

Summary Intent detection for dwell selection is based on time-based (dwell time)
and gaze coordinates. If the duration that the users continuously look at an object
exceeds the dwell time, the selection is triggered on the object. An ideal dwell selec-
tion does not require additional voluntary eye behaviors and is suitable for implicit
gaze interaction. However, dwell time-based user intent detection faces the issue
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of Midas-touch, which is an unwanted selection. Assuming we could solve Midas-
touch using only natural human eye behavior without any additional voluntary eye
behavior or voluntary behavior of other modalities, the potential of natural eye
behaviors for gaze-based interaction, which is accessible for various users and fast
interaction, is delivered. Therefore, we focus on developing a user intent detection
method from the viewpoints of exploring dwell time and incorporating multiple
natural eye behaviors.

1.4 Research Questions

This thesis aims to reveal how user intent to select or not select is detected by
natural eye behaviors and establish dwell selection as a daily interaction method.
To achieve this goal, we aim to develop a user intent detection method by utilizing
natural human eye behaviors during the interaction. Concerning the aforemen-
tioned factors, we pose two research questions about eye behaviors and user intent
in the context of dwell selection.

RQ1 How should we determine dwell time? While previous research explored
dwell time by focusing on the speed and accuracy of dwell selection, we
intend to determine dwell time by incorporating natural human eye behaviors
and human decision-making processes. By revealing a relationship between
natural human eye behaviors and human decision-making processes, we aim
to demonstrate a new determination method of dwell time.

RQ2 Can eye behavior reveal user intent to interact? Dwell selection has relied on
gaze coordinates and time-threshold-based user intent detection. However,
we are interested in combining multiple eye behavior to improve a user intent
detection method and investigating how the method helps solve Midas-touch.

1.5 Methodology

To answer the two research questions, we developed models that derived dwell time
based on the relation between eye behaviors and human decision-making processes
(Chapter 3) and detected user intent from eye behaviors using machine learning
(Chapter 4). These models are based on the empirical data obtained through data
collection experiments.

We addressed RQ1 by developing a model that derives dwell time. Previous
research has determined dwell time to optimize the speed and accuracy of dwell
selection. While dwell time plays an important role in user intent detection for
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FIGURE 1.1: Overview of our work.

dwell selection, the method for determining dwell time does not involve the human
decision-making process. We used the model human processor (MHP) shown by
Card [CNM83]. The MHP is a well-known context in HCI that indicates a process
until decision-making during a selection task against a visual stimulus. Because
very few studies have explored a relation between dwell selection and MHP, we first
explore the relation through user studies. Then, we developed the model using the
relation (Figure 1.1, left).

We then addressed RQ2 by developing a user intent detection model. While
intent detection for dwell selection has mainly relied on the time-based threshold
(i.e., dwell time), we designed two intent detection methods (Figure 1.1, right). In
this thesis, we refer to dwell time-based dwell selection as DT selection. One of
our methods uses gaze coordinate dispersion in addition to dwell time; a dispersion
of gaze coordinates during a dwell time is smaller than the dispersion threshold.
By incorporating the dispersion threshold with dwell time, we aim to detect more
careful user-looking action to prevent Midas-touch caused by mis-detection that
the gaze coordinates are inside an object. We refer to this selection using dwell
time and gaze dispersion as a dwell time-dispersion (DTD) selection. Furthermore,
we used machine learning (ML)-based intent detection with multiple eye behavior
for dwell selection in addition to DTD selection. We refer to this selection as DTD-
ML selection. Lastly, we evaluated these two dwell selections to demonstrate that
eye behavior can reveal user intent to select an object.
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1.6 Contributions

The contributions of this thesis can be summarized as follows:

e Model deriving dwell time based on the relation between fixation
and the model human processor. We demonstrate the relation between
the natural human behavior of fixation, which indicates human attention
and intention, and the human decision-making process, which is described
by MHP. We develop our model based on the relation. Lastly, we show how
the dwell time for five selection situations can be determined.

e Model detecting user intent to select an object through multiple
eye behavior and ML. This model incorporates multiple eye behaviors to
enhance the accuracy of intent detection in dwell selection. We demonstrate
that this model can reduce the occurrence of Midas-touch, which is a long-
standing issue in gaze-based interactions.

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 explains human natural eye behaviors used for gaze-based interac-
tion. We then provide an overview of gaze-based interaction in various environ-
ments. Furthermore, we cover how researchers have determined dwell times and
attempted to solve Midas-touch, which is the main challenge in dwell selection.

Chapter 3 introduces a study on determining dwell selection through a model
that incorporates eye behavior and human decision-making processes. Based on
the data obtained from experiments, we analyze human eye behavior during target
selection tasks. The outcome is a detailed description of the relationship between
the human natural eye behavior of fixation and the model human processor. The
work presented in this chapter was originally published in the Proceedings of the
ACM on Human-Computer Interaction (PACM HCI) [IYS23a).

Chapter 4 introduces a dwell selection using an ML model for user intent de-
tection using multiple eye behaviors. Based on an experiment, we obtained data
sets of eye behaviors during dwell selection with ground-truth labels of user intent,
and developed an ML model using these datasets. Based on a comparison of the
baseline dwell selection, we demonstrate the performance of our dwell selection
with the ML model. The work presented in this chapter was originally published
in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies (PACM IMWUT) [1YS22].
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Lastly, we conclude this thesis by summarizing the study and describing the
uses of our findings for future gaze-based interaction in Chapter 5.
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Chapter 2

RELATED WORK

This thesis studies user intent detection to interact with a computer based on nat-
ural human eye behaviors. To contextualize our work, we first present types of eye
behaviors used for gaze-based interaction. We then review gaze-based interaction
research by first examining how users can interact with computers based on eye
behaviors with three types of interaction methods. Because the focus of this thesis
is on dwell selection, we also describe existing issues of dwell selection and how
they have been addressed.

2.1 Eye Behaviors for Gaze-Based Interaction

Humans perceive visual stimuli through their eyes. They can see an object sharply
when the light hits the fovea, which is a small region in the retina. Light enters
through the cornea and the pupil, passes through the lens, and hits the retina. Eye
movements help see an object sharply and ensure that the light directly hits on
the small region of the fovea. The pupil regulates the amount by changing its size
by contracting or relaxing the iris. These eye movements are aimed at controlling
the amount of light, and focusing the lights on the fovea may be attributed to the
movement of the extraocular muscles.

Although we cannot detect muscle movements through eye trackers, we can
detect “gaze,” which is a direction where users look. In a 2D display, gaze often
represents the coordinations on the x-axis and y-axis; in a 3D environment, such
as for an HMD, the gaze often represents directions to the x-; y-, and z-axes. The
gaze itself does not have a powerful meaning as a cue of user attention and intent.
Most eye behaviors used for gaze-based interaction are calculated using the gaze
and timestamp when the gaze is sampled. Further, there is no strong definition of
the calculation; it depends on what researchers want to know from eye behaviors.
In the following sections, we review such eye behaviors (Figure 2.1) to deepen our
understanding of how gaze-based interaction is developed.

11
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FIGURE 2.1: Eye behavior used for gaze-based interaction.
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Saccade is a rapid and conjugate (both eyes do the same thing) eye movement
that humans make when re-orienting the fovea to a new spatial location.
Saccades are often described as ballistic eye movements, meaning that their
direction is not altered once they start moving the eyes. Moreover, based
on recent eye-tracking research, humans are generally assumed to be blind
during saccades; many researchers focus more on what is being looked at and
how long it was looked at for, and hence, the saccade is not widely adopted as
a cue for user attention and intention. However, their duration, amplitude,
direction, and peak velocity have been used to indicate how users move their
eyes or how their attention shifts.

Fixation is a stable eye movement wherein the eyes almost stop allowing the light
hit the fovea. Humans can take in detailed information on what is being
looked at by fixation. A fixation is typically done before or after saccades
and is often used as a cue of human attention to analyze human behavior.
The important metrics are location (can be derived from gaze) and duration
(can be derived from timestamp) of fixation, meaning how long a human
attentively looks at a point. The duration of fixation is typically between
200-600 ms, but it can be much shorter or longer.

The eyes move slightly during fixation; the eye movements are referred to
as microsaccade, which is a small saccade, a drift, which is a slow change
in location, and a tremor, which is a muscle contraction and relaxation.
Such small eye movements occur in a fixation. The microsaccade is the
largest movement, with less than 0.4 degrees while the tremor is the smallest
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eye movement, with approximately 0.004 degrees. While the microsaccades
can be detected using a high-performance eye tracker (e.g., the Tobii Pro
Spectrum by Tobii and the EyeLink 1000 Plus by SR Research Ltd.), which
has a fast sampling rate and high level of precision, it is difficult to detect
the tremors using such eye trackers.

In the HCI field, saccades and fixations are often detected using the algorithm
proposed by Salvucci and Goldberg [SG00]. They proposed three algorithms
based on velocity, dispersion, and area. The velocity-based algorithm is re-
ferred to as Velocity-Threshold Identification (I-VT) algorithm. This algo-
rithm uses the two velocity thresholds: low velocities (e.g., <100 deg/s) for
fixation detection and high velocities (e.g., >300 deg/s) for saccade detec-
tion. The dispersion-based algorithm is referred to as Dispersion-Threshold
Identification (I-DT) algorithm, and it detects only fixation with a disper-
sion threshold for user gaze coordinates. The I-DT algorithm requires two
thresholds for duration and dispersion. The dispersion threshold is 0.5°-1.0°.
The duration threshold varies between 100-200ms [Wid84], depending on
the tasks. The centroid of gaze coordinates is regarded as the fixated point.
The area-based algorithm is referred to as Area-of-Interest Identification (I-
AQI) algorithm. In contrast, the I-AOI algorithm only identifies fixations
within the specified target area. The fixations are detected with a duration
threshold similar to the I-DT algorithm. Other eye movements outside the
specified target are regarded as saccades. Those thresholds are determined
based on interchanging for each research.

Smooth Pursuit is a smooth eye movement for following a moving object that
humans originally fixated on. This allows humans to maintain the light hit-
ting on the fovea, which causes the light to move. Similar to saccade and
fixation, smooth pursuit is also naturally done by humans. If humans follow
a moving object with a saccade, the light hits on the fovea is reduced because
humans are assumed to be blind during the saccade. A smooth pursuit is of-
ten detected by calculating the correlation coefficient of the gaze coordinates
and the moving object [VBG13].

Vestibulo-ocular reflex (VOR) is an eye movement that follows the head move-
ment. VOR ensures that the light keeps hitting the object on which humans
originally fixated on the fovea even if the head moves, by that the eyes rotate
in the opposite direction to the head rotation.

Vergence is the movement of the eyes in the opposite direction when shifting
the focus between near and far objects. During vergence, the eyes rotate
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inward and outward to focus on near and far objects, respectively. This allows
humans to take light on the fovea from a distant point. In HCI research, a
vergence is often detected by calculating the difference in pupil positions of
both eyes or the difference in gaze directions on the x-axis of both eyes or
inter-pupillary distance.

Pupillary Response can often be shown when the pupil regulates the amount of
light hitting on the fovea. Therefore, this generally depends on the ambient
light conditions. If the light is strong (e.g., under the sun), the pupil contracts
to decrease the amount, and in dark conditions, the pupil relaxes to take in
a large amount of the light [HP60]. Moreover, it is known that this response
is affected by human interest and emotion [HP60].

Blinking technically is not a movement of the eye itself but a semi-autonomic
rapid eyelid closing. However, blinking has an important role in hitting the
light on the fovea by clearing away particles from the eyes and lubricating
the eyeballs to maintain the eyes to ensure a smooth surface. The maximum
duration of a single blink of closure duration is 500 ms [CEU03, SGBGOS].

2.2 Gaze-Based Interaction

Gaze-based interaction uses human eye behaviors of looking at a point (fixation)
and moving the eyes (saccade) by interpreting that these eye behaviors have a
role of indicating attention and shifting the attention towards another point, re-
spectively. Therefore, researchers have developed various gaze-based interactions.
The first research to develop a selection method was conducted by Ware and
Mikaelian [WMS87]. They explored how left-clicking in mouse-based interaction
can be imitated using eye behavior. Furthermore, researchers have extended gaze-
based interaction to involve the command triggering method and assistive role for
other modalities. We categorize gaze-based interaction into three types: implicit,
explicit, and multimodal gaze interactions.

2.2.1 Implicit Gaze Interaction

Our eyes are implicitly used to indicate attention and intent and to guide action for
ourselves. As we reach for and interact with objects in the physical world through
our hands, our gaze first moves to the object, and we move our hands toward the
object. Similarly, to interact with GUI objects, our gaze first moves toward the
objects, and we then move the cursor toward the object. Indicating our attention
to others is attractive for incorporating eye behaviors into interaction, and the
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implicit gaze interaction is based on this factor. Numerous studies have used the
user gaze as a cursor and other modalities for triggering interaction; we explain
such interaction as multimodal gaze interaction later.

As an implicit gaze interaction, dwell selection, which utilizes the natural eye
behavior of looking as both cursor and modality for triggering selection, is the most
researched interaction method. The natural eye behaviors are used for an attentive
user interface, automatically adapting the user interface for user attention [Ver03].
For example, an interface that shows translation according to a user reading eye
behavior [HMARO0] and suggests self-confidence to the users to help in decision-
making [IMKD20] is studied. Several researchers have used natural eye behaviors of
fixations, saccades, and pupillary changes to detect attention (e.g., [AL13, XSB16]),
cognitive states (e.g., [HB05]), and decision intent (e.g., [LHO1, JSSV15]). Such
detection has been used for gaze-based interaction and designing a web page or
visualizing user intent.

2.2.2 Explicit Gaze Interaction

There are various types of explicit gaze interactions, including voluntary saccade,
vergence, pursuit, and eye-gesture. While these eye behaviors are natural eye behav-
iors, explicit gaze interaction utilizes user voluntary eye behaviors. These voluntary
eye behaviors are used as an indicator of user intent. Because voluntary eye be-
haviors used for explicit gaze interaction are designed to distinguish from natural
human eye behaviors, Midas-touch rarely occurs. We described the explicit gaze
interaction with three interaction methods by integrating the confirmation button,
moving object and smooth pursuit, and eye-gestures.

Interaction with Confirmation Button

The confirmation button, an additional arranged button, which allows a computer
to detect user intent to select the button, has been adopted to prevent Midas-touch.
Ware and Collins [WM87] conducted the first research that adopts the confirmation
button, which pops up next to the target after looking at the target. The users can
select the target by first looking at it, moving their eyes to its confirmation button,
and then dwelling on it; that is, this interaction requires a saccade in addition
to dwell selection. Significant research is conducted toward improving interaction
with the confirmation button [MGFY18, LPW15, SLW19, FF18, PLW13, WMS&7,
SRT11, CSO22]. As an additional saccade is incorporated, the dwell time for
dwell selection on the confirmation button can be smaller than for an original
dwell selection. However, placing the confirmation button next to the GUI object
causes unwanted selections considering that users may accidentally look at the
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confirmation button. As the interaction method extends the confirmation button,
the ActiGaze [LPW15] principle is applied. Following this principle, potential
targets are colored, and the colored confirmation buttons corresponding to the
color of targets are arranged at the periphery of users (e.g., side of the display).
Users can select the desired target by dwelling on the confirmation button, whose
colors correspond to the target to prevent unwanted selection; unless users look
at the confirmation button, no selection is triggered. Moreover, in the ActiGaze
principle, the multiple confirmation buttons potentially solve the issue of selecting a
small and/or closed target, which is another issue of gaze-based interaction caused
by the low eye tracker performance. This is because the size and arrangement of
the confirmation buttons can be freely determined, and the confirmation buttons
are generally larger than the target and are arranged with some margins between
buttons.

While the above confirmation button requires a horizontal and vertical gaze
movement (i.e., saccade) for selection, selection with a vergence, which is a gaze
movement for the depth direction is also explored. Users can select the target by
first looking at it and then refocusing and dwelling on the confirmation button,
which is arranged either behind or in front of the display [KB16, KOH*13].

Interaction with Smooth Pursuit

In gaze-based interaction, smooth pursuits are induced by the motion of an object,
which is the target itself [VBG13] or additionally arranged moving object(s) [VCKM18,
SDRD17, DKA18, EVBG15, SIK*16, DHI17, ASLL20, SCN*+23]. Users can trigger
an interaction by constantly looking at a moving object. The computer measures
a correlation between the target and eye movement to detect user intent in or-
der to interact with the target and identify the target that the users follow. If a
command is assigned to a moving object (a command name is labeled), detect-
ing smooth pursuit for such objects triggers a command [DHI17]. This is because
the interaction is not triggered unless users keep looking at moving objects, and
thus, Midas-touches can be solved. Moreover, the issue of selecting a small and/or
closed target caused by a low eye-tracking performance is solved as this interac-
tion only uses the correlation, and the absolute gaze coordinates are not necessary.
These properties are useful for gaze-based interaction for a small device such as a
smartwatch [EVBG15].

Interaction with Eye-Gesture

Eye-gesture is designed to trigger commands, such as “copy” and “paste.” The
gestures are determined beforehand and users can trigger a command by moving
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their eyes to form such gestures. The most simple gesture is the one that uses a
single stroke (right-to-left or left-to-right) of eye movement [MHL13b, MHLGO09,
MHL13a, MLGH10, RH18]. In terms of robustness against unwanted interaction, a
gesture comprising two or more strokes of eye movements [DS07, IHIT10, WRSDO08,
IYS20] is better. However, it is difficult to move the eyes on a larger number of
strokes or at a larger distance owing to its complexity. Therefore, visual guidance
(e.g., amenu) has been adopted to help users easily trigger a command; for example,
an additionally displayed window [WRSDO0S8], a semi-transparent region [ULH10],
or a physical object [JHF17]. Moreover, a combination of dwell selection and eye-
gesture is proposed. For example, by using a pie menu, the menu is displayed after
fixation, and the command is activated when the gaze crosses the edges of the
menu [HU08, ULH10, ASP*21a]. Similarly, several eye-gestures for the marking
menu [Kur93| are researched [KHAL22a].

Moreover, interaction using blink and wink is studied. In contrast to the above
eye-gestures, which are for triggering a command, voluntary blinking and winking
are used as eye-gestures to trigger a selection. A computer detects user intent to
interact with a computer through the eye-gesture of closing and then opening the
eyes; such a gesture is used as a cue for detecting the user intent. For example,
users can trigger a selection by a voluntary blink [GBLT03, KS19, MB10]. Be-
cause blinking (closing and opening both eyes) is a natural human eye behavior,
accurate voluntary blinking detection has been researched, similar to dwell selec-
tion. Researchers have explored a duration threshold that distinguishes natural
and voluntary blinking for interaction. For example, because the closure duration
of a single blink requires at most 500 ms [CEU03, SGBGO08|, a duration longer
than 500 ms is used for detecting a voluntary user blinking [GBL*03]. However, a
duration over 500 ms of eye closure can be regarded to as the natural human eye
behavior of microsleep; therefore, it can be difficult to prevent mis-detection with
only a duration threshold, similar to dwell time. Recent research utilized winking,
the gesture of closing and opening one eye [RGCSG21]. Compared to blinking,
winking rarely occurs in natural eye behavior. Thus, to detect winking, a dura-
tion threshold of 250 ms is used [RGCSG21], which is smaller than that used for
detecting blinking. Because humans can voluntarily open and close each eye and
keep either eye closed while gazing with the other [JW15], moving one eye while
closing another eye allows for mimicking a mouse-based interaction of “drag and
drop” [RGCSG21]. Users can hold a target by looking at it and then closing one
eye; they can then drop it by opening the closed eye after moving another toward
the desired position.
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2.2.3 Multimodal Gaze Interaction

In contrast to implicit and explicit gaze interactions, which utilize eye behaviors
as the primary modality, multimodal gaze interaction employs eye behaviors as an
assistive modality alongside other modalities. In multimodal gaze interaction, eye
behaviors are used as a cursor and other modalities are used as a cue to indicate
the user intent. Similar to the explicit gaze interaction, the Midas-touch rarely
occurs.

Incorporating eye behaviors into hand-based interaction, which uses a mouse,
touchpanel, and hand gestures, is researched. The first work to incorporate natural
eye behaviors with hand-based interaction is the MAGIC pointing proposed by Zhai
et al. [ZMI99]. They argued that “it is unnatural to overload a perceptual channel
such as vision with a motor control task.” As a result, they proposed a pointing
method that replaces moving a cursor with the mouse by looking at the desired
point on display. The experiment indicated that MAGIC pointing could reduce
physical effort compared to mouse-based interaction.

The original work of MAGIC pointing is aimed at mouse-based interaction,
which has been extended in various situations and hand-based interactions. By
adopting the MAGIC pointing for gaze-based interaction, manipulating smart-
phone and tablet devices with touch-based or pen-based interaction with eye be-
havior is shown [PACG14, SD12b, KAH"16, PAC*15, NSA*23]. For mouse- and
touch-based interactions, the primary role of eye behavior in MAGIC pointing is
to make the interaction faster. Moreover, eye behavior allows users to interact
with distant objects, such as a large tablet, public displays, and a virtual reality
environment [SD12a, SD12b, SD13, TABG15, PACG14, PMMG17, CXH15|. For
gaze-based interaction in HMD-based interaction, the use of VOR has been stud-
ied [SG19b, SG19a, PLLB17]. These multimodal gaze interactions have higher in-
teraction performance than implicit and explicit gaze interactions [CXH15, SG19b].

Similarly, an implicit use of eye behavior as a cue of user attention to sup-
port voice-based interaction is used [MLH20, KNBV22]. Current voice assistants,
such as Alexa by Amazon and Siri by Apple, do not use contextual informa-
tion regarding user attention while users speak commands. Applying the implicit
use of eye behavior as contextual information for voice assistants has been stud-
ied [MLH20, KNBV22|. Because both gaze and voice are ambiguous in user at-
tention and spoken command using each as a stand-alone, mis-detections tended
to occur. A combination of both could resolve the ambiguities and enable faster
interaction [ZIGMO04].

As highlighted by the aforementioned studies, complementing the gaze with
some other modalities can extend current interaction to more useful interaction
that cannot be established using current primary modalities such as only hands.
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2.3 Dwell Selection Challenges

In this thesis, we address two research questions related to eye behaviors and user
intent in the context of dwell selection (RQ1 and RQ2). We introduce research
that addresses two questions.

2.3.1 Dwell Time for Dwell Selection

A majority of the studies on exploring dwell time focused on optimizing dwell
time to achieve fast and accurate dwell selection. Researchers on dwell typing
(i.e., dwell selection on a key) used dwell times between 180-600 ms from two per-
spectives: user preference and robustness against the Midas-touch [MAv09, RO12,
PS17, NDAT17, vM04]. To select a key that is most likely to be selected, a small
dwell time is ideal since it enables a faster selection, while using a large dwell time
prevents Midas-touch for a key that is unlikely to be selected. Dwell times dynam-
ically decrease/increase along with the previously typed keys and the probability
of the next typed key.

Although dwell time plays a significant role in intent detection for dwell selec-
tion, there is a lack of human decision-making processes in the existing determi-
nation approaches for dwell time. However, although the concept of incorporating
the human decision-making process aims for a faster selection, the difference from
the current dwell time determination method is that the dwell time should not
be considerably small. For example, we previously found that using a small dwell
time (100ms for selecting a simple colored object) decreases usability from the
questionnaire in the experiment; participants answered [ felt that the target was
acquired before I looked at the target [TAST18]. Another previous research reported
that a participant answered When the dwell time was too short, the selection was
completed before I could recognize the panel. [CSO22]. This suggests that even if
Midas-touch is entirely solved, a smaller dwell time or 0s is not always an optimal
solution, which contradicts the previous research pursuing a smaller dwell time for
preventing Midas-touch.

Dwell time should also be determined for the dwell selection used to compare
the performance with other interaction methods, such as dwell selection vs. eye-
gesture or dwell selection vs. multimodal gaze interaction (e.g., [SCN123, CS022]).
Researchers have adopted their own dwell time that is determined by referring to
previous research or conducting the preliminary study. However, a detailed de-
scription has been skipped in their research. Because eye behaviors vary according
to tasks, conditions, and situations, the dwell time should also be carefully deter-
mined.
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2.3.2 Midas-touch and Solution

Gaze-based interaction has faced Midas-touch, an unwanted selection. The origin
of the phrase “Midas-touch” is in Greek mythology about King Midas for his ability
to turn everything he touched into gold. Midas-touch occurs owing to the difficulty
in accurate user intent detection. Solving Midas-touch has always been the focal
topic of gaze-based interaction research.

Many researchers have attempted to detect the user’s intent to prevent Midas-
touch. One approach aims at adjusting the dwell time by making it larger or smaller
according to the situation or users. The easiest solution is to use a longer dwell
time; however, this solution decreases usability. Moreover, even a long dwell time
(e.g., 5s) cannot prevent the Midas-touch problem when the user continuously looks
at a target while thinking about something. Therefore, researchers sought to find
solutions while keeping a shorter dwell time. To achieve fast, robust DT selection,
most researchers adjust the dwell time depending on the situation. In dwell-typing
research, the dwell time is adjusted according to the probability of a key being
typed [MAv09, RO12, HJHT03, MAR04, MMAR06, MWWM17, PSD12, PS17].
Another approach is to adjust the dwell time according to the target [NDAT17] or
the eye movement before landing on the target [IAST18]. However, even though
the task’s cognitive load strongly affects the occurrence of Midas-touches [ZXZZ11],
these studies are aimed at selecting colored targets or simple images. A few stud-
ies have developed an ML-based intent detection system using eye behaviors of
fixations, saccades, and pupillary response during selection tasks [BVH12|. How-
ever, because their ML-based system requires eye behaviors after the selection is
triggered, the system cannot work in a real-time interaction.

2.4 Position of This Thesis

Each gaze-based interaction has certain advantages. Implicit interaction can bene-
fit from using natural eye behaviors for gaze-based interaction, which is accessible
for various users and fast interaction. Explicit interaction allows users to trig-
ger various interactions, not limited to selection. Triggering various interactions
is important to enable gaze-based interaction toward everyday interaction. Multi-
modal gaze interaction utilizes eye behaviors to extend current interaction methods,
thereby improving the usability of those interactions. Studying all interactions is
indispensable for extending the current interactions for more users and situations;
there is no unique and best interaction method, and they should be improved in
each and reciprocally. Because all gaze-based interactions are based on an implicit
use of eye behavior that indicates a cue of user attention and intent, the precise
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detection of user attention and intent is important for improvement across whole
gaze-based interaction. In this thesis, we aim to extend gaze-based interaction by
developing the user intent detection method through natural human eye behavior
for implicit gaze interaction of dwell selection.

To improve the dwell selection, we find two aspects through previous research.
First, the determination of dwell time, an indispensable parameter of dwell selec-
tion, is based on the speed and accuracy of selection. While dwell time plays an im-
portant role in user intent detection for dwell selection, the determination method
of dwell time lacks the incorporation of the human decision-making process. Sec-
ond, solving Midas-touch has primarily relied on dwell time and eye movement,
although there are other eye behaviors indicating user intent. In this thesis, we
investigate eye behaviors during selection tasks and leverage multiple eye behaviors
to tackle fundamental dwell selection challenges.
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Chapter 3

DETERMINATION OF DWELL
TIME THROUGH FIXATION
AND MHP

This chapter explores the determination of dwell time that incorporates natural
human eye behavior and the human decision-making process. We focus on fixa-
tion, which indicates user attention, and the MHP [CNMS83], which shows human
perception and cognition processes in decision-making.

We develop a model that derives dwell time and allows dwell selection after
a user completes the decision-making process based on their behavior. We first
propose three hypotheses regarding the relations between the fixation information
and the decision-making process. Based on the experimental findings, we justify
those hypotheses and develop our model to derive the dwell time using the number
of fixations that a user performs for a target (Nfxation) and the duration of fixations
that a user performs for a target (Dyiyation). During the experiment, we measured
Neixation and Digiyation for an instructed target. Because the decision-making process
varies for different tasks, we conducted five selection tasks with different difficulties,
and we then evaluated our hypotheses and developed our model.

In this chapter, we first describe the human decision-making process that is
interpreted by the MHP [CNMS83], propose hypotheses on the relation between fix-
ation and MHP, validate the hypotheses through experiments, develop our model,
and demonstrate the applications of our model.

The contributions of this work are summarized as follows.

o We proposed three hypotheses about fixation during selection and validated
them through an experiment involving five tasks with different difficulties.

o We developed a model that derives dwell time and allows dwell selection after
a user completes the decision-making process by incorporating the natural
human eye behavior of fixation and the human decision-making process.

23



Chapter 3. DETERMINATION OF DWELL TIME
Section 3.1. Human Decision-Making Process via Model Human Processor

LONG-TERM MEMORY

Sum =
Mg = %
Kiw = Semantic

WORKING MEMORY

= 3 [2.5~4.1) chunks

Hwm
VISUsl;lé:IIEAGE AUDPTSOTZLIEMAGE 150 ke

Sum = T 5~226] sec
Sy (1 chunk) = 73 [73~226 | sec
Sy (3 chunks) = 7 [5~34] sec
Acoustic or Visual

Syis = 200 (70~1000] msec|5ys = 1500 [900~3500 | msec
pys = 17 |T~17] letters  fupg =5 [4.4~6.2] leters
xyg = Physical Kkas = Physical

B

Perceptual W
Processor ‘
p = 100 [50~200 ]
msee Motor

Processor
7w = 70 [30~100|
msec

Kwm =

Cognitive
Processor

Eye movement = 230 [70~700 | msec

FIGURE 3.1: Overview of MHP. Image from Card et al. [CNMS83].

o We showed how our model derives dynamically changing dwell times based
on user behavior, especially Nyation-

3.1 Human Decision-Making Process via Model
Human Processor

The MHP demonstrates human perceptual behavior in response to the visual (and
auditory) stimulus by dividing the information-processing system into three sub-
systems: perception, cognition, and motor systems (Figure 3.1). The perception
subsystem completes perceiving a visual stimulus and encodes it into a visual code
within 7,=100 [50-200] ms. Each range indicates that the Fastman (e.g., an expert)
takes the minimum time, and the Slowman (e.g., a novice) takes the maximum time.
The cognition subsystem completes recognizing the visual code, classifying the rec-
ognized code into a meaning, matching the meaning and instruction loaded on the
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TABLE 3.1: Tasks and their instructions described in [CNMS83].

Task | Instruction (Push a button if..) | Example
Simple reaction | an object is displayed -

Physical match | the shape of the object is correct ‘a’ v.s. ‘a’
Name match the name of the object is correct ‘a’ v.s. ‘A’
Class match the content of the object is correct | letter vs. letter

TABLE 3.2: Tasks and their required processes described in

[CNMB83].
Task ‘ Required process
Simple reaction | perceive request | act
Physical match | perceive match | request | act
Name match perceive | recognize match | request | act
Class match perceive | recognize | classify | match | request | act

working memory beforehand, and requesting to act process to the motor subsystem.
Therefore, the request process can be regarded as the process of decision-making
for tasks described in [CNM83]. The time taken for one cognitive process (7.) is
70 [25-170] ms. The motor subsystem completes acting (i.e., pushing a button for
tasks described in [CNMS83]) along with the request from the cognition subsystem
within 7,,=70 [30-100] ms.

3.1.1 Selection Tasks in MHP

Card et al. [CNM83] described the required decision-making process for completing
a task, which differs between tasks, and gave examples of four selection tasks (Ta-
ble 3.1) and their required processes (Table 3.2). The tasks are consistent in the
sense that participants push the button located under their hand in response to
the visual stimulus (an object) shown in the display. Here, the differences are in
the task instructions. The simplest task in [CNMS83] is the simple reaction task,
where the instruction is to push a button when an object is displayed. The required
processes are perceive, request, and act because participants only make a decision
when they perceive a visual stimulus; thus, no further cognitive subsystem is re-
quired. The second simplest task is the physical match task, where the instruction
is to push a button if the shape of the object matches the instruction. The required
processes are perceive, match, request, and act. For example, if the instruction is ‘a’
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and the stimulus is ‘a,” then the participant should press a button; if the instruc-
tion is ‘a’ and the stimulus is ‘A,” then the participant should not press a button;
participants require a match process to match whether both stimuli are same (i.e.,
the physical shapes are same in this case) or not in addition to the required task
of the simple reaction task. The third simplest task is the name match task, where
the instruction is to push a button if the name of the object matches the instruc-
tion. For example, because the names ‘a’ and ‘A’ are both ‘a,” if the instruction is
‘a’ and the stimulus is ‘A,” participants push a button. The required processes are
perceive, recognize, match, request, and act. In addition to the required processes of
the physical match task, humans are required the recognize to recognize the objects
(i.e., the name of stimuli in this case). The most difficult task is the class match
task. Here, the instruction is to push a button if the class of the object matches
the instruction. For example, as ‘a’ and ‘b’ are both letters, if the instruction is ‘a’
and the stimulus is ‘b,” participants push a button; conversely, if the instruction is
‘a’ and the stimulus is ‘3,” the participants should not push a button. The required
processes are perceive, recognize, classify, match, request, and act. In addition to
the processes required for the name match task, the classify process is required for
the classification of the objects (i.e., the class (image, letter, or number, as well as
the image of dog, cat, bird) of the stimuli.

3.1.2 Time Required for Competing Tasks

Because the MHP describes the required processes and requires considerable time
to complete one process, we can estimate the duration from the beginning of per-
ceiving a stimulus to the end of pushing a button. The time for completing the
simple reaction task, whose required processes are perceive, request, and act, is:

240 [105—470] = 7, + Te + T = 100 + 70 + 70.

The time for completing the physical match task, whose required processes are
perceive, match, request, and act, is:

310 [130—640] = T, + 27, + 75, = 100 + 140 + 70.

The time for completing the name match task, whose required processes are per-
ceive, recognize, match, request, and act, is:

380 [155—810 = 7, + 37 + 7y = 100 + 210 + 70.
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FIGURE 3.2: Participants’ preferred dwell time for image selection
task in our previous work [IYS21].

The time for completing the class match task, whose required processes are perceive,
recognize, classify, match, request and act, is:

450 [180—980] = 7, + 47 + 7, = 100 + 280 + 70.

All tasks require perceive, request, and act. Therefore, the main difference among
tasks lies in the required processes on the cognition subsystem of recognize, classify,
and match.

3.1.3 Relation Between Dwell Time and MHP

We previously showed the relation between dwell time and MHP [IYS21]. We
asked 16 participants to complete an image selection task that imitates a class
match task in [CNMS83] with two selection methods: gaze-button and dwell selec-
tions. In the gaze-button selection, users can select a target by looking at and
pushing an enter key on a keyboard placed at the participant’s hand. Through the
experiment, we observe two times: the button press time and user-preferred dwell
time. The button press time is measured from when the participant’s gaze enters
a target to when the participant pushes a button to select. Because we imitated
the task as a class match task in [CNMS83], the button press time ideally equals the
time required to complete the task. The preferred dwell time is obtained by asking
participants their preferences for each dwell time after they try all dwell times of
100, 200, 300, ..., 1000, 1500, and 2000 ms. For example, we asked, “Do you prefer
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FiGURE 3.3: Button press time for image selection task in our
previous work [IYS21].

xxms as dwell time?” Through analysis, we found the following. First, all partic-
ipants preferred 500 ms and 600 ms as a dwell time for an image selection task as
shown in Figure 3.2. Second, the button press time averaged 662 ms (SD=251) as
shown in Figure 3.3. Third, the number of fixations that participants perform for
a target during the selection task averaged 2.30 (SD=0.82); 11.4%, 56.4%, 24.8%,
5.8%, and 1.5% of button selections are completed with one, two, three, four, and
five fixations, respectively.

In the MHP, the requesting process on the cognition subsystem can be regarded
as the process of decision-making, and the act process on the motor subsystem is
not involved in the decision-making processes. Therefore, we consider that 7, is
subtracted from button press time as the time required for the decision-making;
the decision-making requires 592 ms (=662—70ms). The difference between par-
ticipants’ preferred dwell time and the time required for decision-making seemed
to be caused by the required duration range for each MHP process.

The required processes for completing the image selection task that we imi-
tate the class match task in [CNMS83] are perceive, and Ngyation times of recognize,
classify, and match. The difference in required processes among tasks shown in
[CNMS83] is the number of required processes for the cognition subsystem, as shown
in Table 3.2. Considering this and the experimentally observed button press time
and the number of fixations, we showed the first model determining dwell time
from Nexation as:

Tp + <3Nfixation + 1)Tc' (31)

This model can be interpreted such that the dwell time should include the time
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required for perceive, Ngyation times of recognize, classify, and match, and request.
Note that because pushing a button is not necessary for completing the task with
dwell selection, the time required for act process is not counted in the model.
With this model, we can determine the dwell time for an image selection task with
predicted Nyation required for completing the task, as shown below.

380 ms [150—880] =100+ (3 x 1+ 1) x 70 (Ngiation = 1),
590 ms [225—1,390] = 100 + (3 X 24 1) X 70 (Ngxation = 2), and
800 ms [300—1,900] = 100 + (3 x 34 1) x 70 (Nfixation = 3)-

Because half or more participants preferred dwell times of 300-800 ms, the dwell
time determined through this model that ranged into 380-800ms seemed to be
fitted. In other words, by using this model, it may be possible to determine user-
preferred dwell time according to the decision-making processes.

This previous work is the first work to explore a relation between fixation and
the human decision-making process using the MHP. However, Ngyation prediction
required for completing a task is challenging, and the applicable task is only for
image selection (i.e., the class match task in MHP). In this thesis, we improved our
previous model to be applicable for five selection tasks on five different targets: a
simple colored object, letter, key, word, and image.

3.1.4 Models of Human Cognition and Behavior for Visual
Search Tasks

In many studies in the HCI field, human cognition and behavior were modeled
in a manner similar to [CNM83]. For instance, the adaptive control of thought—
rational (ACT-R) model [AML97, AMD95] is a representative model of the human
cognition process, including visual attention. The ACT-R model interprets that a
human takes 186 ms to shift attention with or without eye movement. In a visual
search task, three processes occur repeatedly: 1) responding “yes” (i.e., a looking
candidate is a target), taking a “base” time of 208 ms, 2) shifting attention, taking a
“shift” time of 186 ms, and 3) responding “no” (i.e., there is no target after searching
all candidates), taking a “base” time and “neg” time of 133 ms (i.e., 208 + 133 =
241ms)!. Another representative model is Fitts’ law [Fit54, Mac91], which is aimed
at pointing behavior. The time for pointing is expressed as axloga(A/W + 1) 4+ b,
where A is the distance between the position of a cursor and target, W is the
target size, a is the time required for the motor process (e.g., moving a hand for

!These values depend on the difference in the types of targets and distractors (e.g., letters
versus numbers) and the number of candidates present in a visual search task.
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a mouse-based interaction), and b is the time required for the decision-making
and triggering action. Moreover, numerous models have been proposed for GUIs
(e.g., [CGGO7, BOBH14, PL18)).

These models provide a precise representation of human cognition processes
and behaviors, including the time required for each process. In this work, we adopt
the MHP to explore a new dwell time determination method for the following rea-
sons. We can interpret the human decision-making process through six processors
based on three subsystems by using MHP. The required duration for all processors
is reported in [CNMS83]; 7, for the process in the perception subsystem, 7, for the
processes in the cognition subsystem, and 7, for the process in the motor sub-
system. Card et al. [CNMS83] describe the required processes for completing four
tasks. This description is also useful for determining dwell time against various
tasks, as Zhang et al. [ZXZZ11] reported that the dwell time should be determined
for each task.

3.2 Hypotheses

We first propose the following hypotheses to understand the relationship between
the natural human eye behavior of fixation and the human decision-making process.
We mainly focus on the fixation information of Nyation @and Deation-

H1. Ngcation Tequired for selecting a target increases along with the difficulty of
our task. We assume that users need to fixate on the target several times
for completing more difficult tasks, which includes selecting a more complex
target, before deciding to select it.

H2. Dgyation of the fization, when the target is selected, decreases as total Npyation
increases. We assume that users can decide to select the target by fixating
on it for a shorter period when they previously fixated on the target many
times and recognized the target beforehand.

H3. Drigation for large Nexation converges to the duration required for completing
decision-making processes for a simple reaction task regardless of the task.
We assume that if a user has already recognized a target, they can make a
decision to select the target with the duration regardless of the target type. In
particular, the time required for decision-making converges to the duration
required to complete decision-making processes for a simple reaction task,
which is the easiest task in the MHP.
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FIGURE 3.4: Experimental environment.

3.3 Experiment

We used five selection tasks with different difficulties to verify the hypotheses and
determine the Niyation required for a selection and Dgyation-

3.3.1 Participants and Apparatus

We recruited 20 university students (one female and 19 males, all Japanese) aged
20-26 (M =22.9). They used GUI-based interfaces daily. Fifteen of them previ-
ously participated in an experiment using an eye tracker. Each received JPY 2,500
(~USD 18).

We used the Tobii Pro Spectrum, which samples gaze data at 1200 Hz (0.833
ms/sample) with an accuracy of 0.6° and a precision of 0.06°. The eye tracker was
attached to the bottom of a 24inch (1920 x 1080 pixels) non-glare display. The
participants’ heads were positioned 65 cm away from the display. The participants
used a wire-connected keyboard to control the task. The experimental environment
is shown in Figure 3.4. The experiment was conducted in a room with fluorescent
light at approximately 810 lux.

3.3.2 Selection Method

We used gaze-button selection, which is performed on the gaze coordinate when
pushing the ‘Enter’ key of the keyboard. Selection is allowed when the gaze co-
ordinate is inside a target; else, no selection is performed even if the participants
push the key.
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TABLE 3.3: Tasks and their difficulties. “Known candidates” means
whether or not a participant knew which keys/icons/words/images
were shown in candidates before a task began. We assigned “diffi-
culties” in accordance with the row “Similar task in MHP,” where
each task requires a different number of required decision-making
processes. The difference in “Known candidates” between the key
and icon tasks results in a different difficulty even though the task
in the MHP is the same.

Tasks H Target type ‘ Known candidates ‘ Similar task in MHP ‘ Difficulty of task

Simple || colored object beforehand simple reaction 1 (minimum)
Key key beforehand physical match 2

Icon desktop icon beforehand physical match 3
Word menu item depend on candidate name match 4
Image image none class match 5 (max)

3.3.3 Selection Task and Interface

For gaze-button selection, we asked the participants to complete five selection tasks:
simple, key, word, icon, and image. One trial involved completing a selection. Each
task consisted of 51 trials. We used this number by considering the concentration
and fatigue of the participants and used the first trial as a training trial (not used
for our analysis). The order of the tasks among the participants was randomized.
Before beginning the experiment, we calibrated the eye tracker with Tobii’s 9-
point calibration for each participant. The task began with the instruction display,
which gave instructions to the participants for each task. The participants read the
instructions and then pushed the space key to proceed. The task display was then
shown, and the participants were asked to select a target using the gaze-button
selection. Between the tasks, we asked the participants to take rest for at least one
minute. The experiment took approximately 25 min. The task display included
candidates specific to the task and one target. We did not give the participants
visual feedback for all tasks to eliminate any potential side effects. We determined
the target size at which the eye-tracking performance (i.e., the offset and precision)
did not affect the selection, as described in each section describing tasks.

Although eye behaviors should be collected from various tasks, it is difficult
to experiment with such diverse tasks. Therefore, we used these five tasks that
represented daily interaction situations [IYS22]. We list the relationship between
tasks and difficulties in Table 3.3.
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(a) Simple Task (b) Key Task

FI1GURE 3.5: Displays for five selection tasks.

33



Chapter 3. DETERMINATION OF DWELL TIME
Section 3.3. Experiment

Simple Task

The simple task involves selecting a red rounded rectangle target (Figure 3.5a).
We instructed the participants to “select a red object.” This task is similar to the
simple reaction task wherein a participant pushes a button after the visual stimulus
is displayed [CNM83]. We displayed one red target and 19 white candidates in a
random position in an 8x5 grid. The size of each target was 2.5°x2.5°.

Because there is one red target and the others are white, the participants need
to not search for it and would know all candidates before the task. This selection
corresponds to a real situation of a preprogrammed selection wherein users can
select the target by just looking at it for a small duration. For example, a close
button of the web browser can be selected by looking at it for a small duration.
Such buttons are positioned at the top corner of the browser?, and the user knows
the content before looking at it. Selecting the most frequently selected targets is
another real situation that this task imitates. Because these situations would be
the easiest interaction situations, we defined the difficulty of the simple task as the
lowest among the tasks.

Key Task

The key task involves selecting a key (Figure 3.5b). For example, we instructed
the participants to “select [a] key.” This task is similar to the physical-match task
wherein a participant pushes a button if a visual shape of a candidate and an
instruction are the same [CNMS83]. We displayed 26 keys in a qwerty alignment.
One of the 26 keys was randomly chosen as the target. The size of each target was
2.5°%x2.5°.

Because we used a qwerty alignment, which the participants were familiar with,
they had already known the position of all candidates and the content (i.e., a key).
However, more recognition is needed to confirm a target than in the simple task.
This task corresponds to a real situation of a key selection and a selection of a
radio button with a character, such as selecting @), ®), (©), and @).

Icon Task

The icon task involves selecting a target that resembles a desktop icon (Figure 3.5¢).
For example, we instructed the participants to “select a [call] icon.” This task
is similar to the name-match task wherein a participant pushes a button if the
meaning of a candidate and instruction are the same [CNM83]. We used an icon
set comprising 20 icons that resemble desktop icons. As opposed to the key task,

2top-right in Microsoft Edge and top-left in Safari
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the instruction and target differ (i.e., verbal instruction and visual target). We
displayed one target and 19 candidates in a random position in an 8x5 grid. The
size of each target was 2.5°x2.5°.

Before beginning the task, we asked the participants to memorize the corre-
spondence between the images and instructions to eliminate preconceptions based
on previous experience. The participants were required to recognize the object and
then match the meanings of the object and instructions before pushing the button.
This selection task corresponds to the real situation of a relatively simple image
selection. For example, the desktop icons and tab-icons of the web browser whose
position and image are already known by the user before looking at them.

Word Task

The word task involves selecting a one- or two-word target consisting of at least
seven characters (Figure 3.5d). For example, we instructed the participants to
“select a [copy text].” We created a word set comprising 20 words extracted from
text- and image-editing interfaces such as Microsoft Word and Adobe PhotoShop.
Similar to the key task, both the instruction and target are verbal. The only
difference is the character length: one character vs. at least seven characters. We
randomly selected one target and 19 candidates from the word set in a random
position in a 4x5 grid. The size of each target was 5.5°x2.5°.

Unfortunately, there is no similar task in the MHP [CNMS83]; however, the
word task was used as the task that requires a higher cognition level than the
one-character task [ZXZZ11]. Therefore, completing the word task is more difficult
than the simple, key, and icon tasks.

Image Task

The image task involves selecting an image target (Figure 3.5e). For example, we
instructed the participants to “select a [dog] icon.” We used the image set extracted
from Visual Genome?®. Contrary to the icon task, we did not show all images to
participants beforehand. While the icon and image tasks are both selection tasks
against nonverbal candidates, there is a difference in whether the participants knew
or did not know which images/icons were shown as candidates before a task has
begun. This task is similar to the class-match task wherein a participant pushes
a button if a class (e.g., a letter or digit) of a candidate and instruction are the
same [CNMS83]. We displayed one target and 39 candidates randomly selected from

3https://visualgenome.org/, licensed under CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/). (Retrieved October 13th, 2022)
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FIGURE 3.6: Fixations we used (a and b) and did not use for the
subsequent analysis (c and d).

the image set in a random position in an 8x5 grid. The size of each target was
3.5°%3.5°.

The participants needed to recognize the object, classify it into an image type
(e.g., an image of a dog), and match the classes of the object and instruction before
pushing the button. This selection task corresponds to a real situation of relatively
more complex image selection than that in the icon task. For instance, the images
in an image-search result and an image that a user rarely sees. Therefore, the
image task is the most difficult among all the tasks shown by Card et al. [CNM83].

3.3.4 Results

We measured Neyation and Deyation performed by the participant on a target before
pushing the button. Accordingly, we validated our hypotheses and developed our
model that derives the dwell time, which allows dwell selection to be performed
after a user completes a cognitive process based on their behavior.

We discarded the first trial of each task as practice, and thus we used 1000
(= (51 — 1) trials x 20 participants) trials for each task. Before detecting a fixation,
we first excluded eye-tracking noise by applying the median filter with a window
size of six samples, which is equal to 5ms with 1200 Hz of the eye tracker. We
then applied the I-DT algorithm [SG00] with a dispersion threshold of 30° and
used 100 ms as the minimum duration of the fixation. Thus, in this analysis, the
fixation consists of the gaze coordinates wherein the velocity of gaze movement
is below 30°/s over 100 ms. We used specific fixations wherein the fixation point
(i.e., the centroids of gaze coordinates during the fixation) was inside the target.
Furthermore, we used trials wherein the participant pushed a button and success-
fully selected during fixation (Figure 3.6a and b), making trials consistent in the
analysis. We did not use the trials wherein selection was not done during a fixation
(Figure 3.6¢), and the fixation was outside a target (Figure 3.6d). This process of

36



Chapter 3. DETERMINATION OF DWELL TIME
Section 3.3. Experiment

TABLE 3.4: Niixation required for completing each task. The number
in the parentheses is that of the participants. For example, twelve
participants required two fixations in 20 trials to complete the key

task.
Task Nfixation 1 2 3 4 5 6 7
simple 087 (20) | 3(3)| 0(0)]0(0)[0(0)0(0)]0(0)
key 946 (19) | 20 (12) | 0(0) |0 (0) [0 (0) |0 (0) ] 0 (0)
icon 865 (20) | 87(20)| 6(6)|5(5) | 0(0)|0(0)|0/(0)
word 768 (20) | 172 (20) | 23 (14) |3 (3) | 1 (1) | 0 (0) | 0 (0)
image 548 (20) | 308 (20) | 79 (20) [3(3) [2(2) | 2(2) [0 (0)

fixation detection was necessary owing to the eye-tracking noise and our definition
of fixation. For example, some noise may have remained and been affected by the
algorithm. Given that we did not use the trials wherein selection was not made
during a fixation (Figure 3.6¢), these trials were determined as errors, although the
participant successfully selected a target.

Number of Fixations

We show the Ngyation that the participants are required to complete each task in
Table 3.4. In total, we detected fixations for 4,828 trials; we could not detect
fixations in 172 trials (3.4% of all trials). We did not instruct participants on the
selection strategy (e.g., select a target with a small Nation) to observe participants’
natural selection behavior. Although the participants did not frequently require
a large Nfixation, they seemed to require it (e.g., Nfixation=> 3) for completing tasks
with high difficulties (i.e., icon, word, and image tasks). Thus, we concluded that
this result verifies H1 that Ngyation Tequired for selecting a target increases along
with the difficulty of our task.

Duration of Fixation

We first measured the Dgyation Of the last fixation (i.e., fixation when the target
was selected). Because the last fixation included the participant’s button pushing
in our analysis, we used the Dgyation Of the last fixation as the duration required
for recognizing the target and making a decision thereafter. We show the average
Drixations of the last fixation for each Ngyation required for completing a trial in Fig-
ure 3.7. The average Dyixation tends to decrease Niyation increases. When Niation
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FIGURE 3.7: Dgixation Of the last fixation for each task and each

Niixation- For example, for image task, Dgixation averaged in 330 ms
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FIGURE 3.8: Dyixation Of last fixation against the sum of Dgyations
before last fixation.
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TABLE 3.5: Regression results for each task on a linear model of
Equation 3.2: a + bX(Ngixation-1)-

Simple ‘ Key ‘ Icon ‘ Word ‘ Image
R? =1.0 R?=1.0 R?=0.918 R*=0.860 R?=0.935
a =244.2 a = 420.4 a = 480.5 a= 677.7 a = 834.1
b=10.2 b=-794 b=-53.9 b =-99.0 b =-109.2
AIC =-111.8 | AIC=-110.5 | AIC =385 | AIC=58.5 | AIC = 67.8

TABLE 3.6: Regression results for each task on a logarithmic model
of Equation 3.3: a + b X loga(Nfixation)-

Simple ‘ Key ‘ Icon ‘ Word ‘ Image
R?=1.0 R?=1.0 R%=0.972 R?=0.907 R%=0.972
a=244.2 a=420.4 a = 494.3 a="721.9 a = 905.8
b=10.2 b=-794 b=-82.6 b=-175.4 | b=-2179
AIC=-111.8 | AIC'=-110.5 | AIC =341 | AIC=56.5 | AIC = 62.8

was one (i.e., the participant fixated a target once), Dyation increased as the diffi-
culty of the tasks increased. We then investigated the relation between the Dgyation
of the last fixation and the sum of Dgyagions before the last fixation (Figure 3.8).
For example, if Niyation 18 three, we calculate the sum of the first two Dgyations; and
if Nfixation iS one, the sum becomes zero. This relation indicates that the Dgyation
of the last fixation decreases as the sum increases, indicating that when the par-
ticipant fixated on a target for a long time, they could make a decision in a small
duration. Although certain Dgyations did not decrease as the difficulty increased,
and the sum of Dyyagions before the last fixation (e.g., between one and two Niiyation
for the simple task as shown in Figure 3.7), these results may verify H2 Dgyation 0f
the fixation, when the target is selected, decreases as total Ngyation TNCTEAGSES.

3.4 Model Deriving Dwell Time

In this section, we show the model using the results of the experiment and the MHP.
Then, we explain how we developed the model by validating the three hypotheses.
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FIGURE 3.10: Regression results with average Dfxation and logarith-
mic equation (Equation 3.3) for each task. Gray plots are average
Diixation for each participant. Red plots are average for each Neigation-

3.4.1 Equations of Model

To evaluate our model, we first examined where Ny ation linearly affects the duration
using the following equation:

y=a + b x (Nfixation - 1) (32)

We then explored the following equation as a more precise model wherein Ngyation
logarithmically affects the duration:

y=a + b X logZ(Nfixation)~ (33)

In these two models, y indicates the duration in a certain Nyation, @ indicates the
duration when Ngyation is one, and b indicates a change in the Dgyation Of the last
fixation as Nixation 111CIEASES.

We show the regression results of the linear model in Table 3.5 and Figure 3.9
and the logarithmic model in Table 3.6 and Figure 3.10. The R? in Equation 3.3
was higher than that in Equation 3.2 for the icon, word, and image tasks. Because
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the maximum Ngyation Was two in the simple and key tasks, R? was 1.0. Be-
cause a human can remember a stimulus (visual image in this work) and proceed
with the processes in cognition subsystems by referring to the preprocessed stim-
ulus [ZXZZ11], the time required for the processes seemed to decrease as Niixation
increased. We assumed that this is what caused a higher R? in Equation 3.3

Further, we compared the AIC values [Aka74] of the two models to determine
an appropriate model statistically. As a brief guideline, a model with a lower AIC
is better, and a model with AIC' < (AIChinimum + 2) is probably comparable with
better models [BA03]. Thus, we determined to use loga(Niixation) as an independent
variable of the expression in our model.

3.4.2 Slope in Our Model

To interpret slope b based on the relation that was derived from the regression
result and the slope estimated by MHP, we justify H3. The slopes of the equations
(i.e., b in Equation 3.3) show a downward trend from 10.2 (simple task) to —217.9
(image task) as the difficulty of the task increases. We compare the slopes and
the estimated slopes using the MHP, as shown in Table 3.7. The estimated slopes
using MHP are Oms (07.), 70ms (17.), 140ms (27.), and 210ms (37.) in simple
reaction, physical match, name match, and class match tasks, respectively. The
differences between the slope with our model and the estimated slope are under
35.4ms. Because the original 7, also ranged from 25ms to 170 ms, this difference
could be considered to be covered by the range. Thus, we can estimate slope b
from the number of required processes of recognize, classify, and match multiplying
by 7. (70 ms).

3.4.3 Minimum Dg,iion for Each Task

We investigate the minimum Dgyation, that is, Deixation fOr that Neyation is the largest
considering that we showed the Dgyation Of the last fixation decreased as Nixation
increased in Section 3.3.4%*. The minimum Dgyation Was 244.2ms (Ngyation=1) for
the simple task, 341.0ms (Ngyation=2) for the key task, 329.3ms (Ngyation=4) for
the icon task, 314.6 ms (Nfation=>) for the word task, and 342.5 ms (Nfiyation=06)
for the image task. There is a difference of approximately 90 ms between the simple
task (244.2ms) and other tasks (331.9ms on average) owing to the fact that the
simple task requires only requesting, while the others require at least one process
of recognize, classify, and match in addition to requesting. Moreover, the value
of 90 ms is within the range of 7. (25-170 ms). Therefore, we concluded that the

4except for the simple reaction task.

41



Chapter 3. DETERMINATION OF DWELL TIME
Section 3.4. Model Deriving Dwell Time

TABLE 3.7: Relation between slope and estimated slope using MHP.
Units of all digits are in milliseconds. The estimated slope was cal-
culated with the number of required processes recognizing, classi-
fying, matching for each task. For example, in image task, four
processes of recognizing, classifying, matching, and requesting, re-
quire 47.. Because a request process can be regarded as the process
of decision-making for tasks described in [CNMB83|, we exclude 7.
for request from one cognitive cycle, the estimated slope with MHP
is similar to 37.= 210 ms.

Task | Required cognitive process | Slope (ours) | Slope (MHP) | Diff.
Simple request 10.2 0.0 (07.) | 10.2
Key match  request —79.4 =70 (1) | 9.4
Icon match  request —82.6 =70 (17.) | 12.6
Word | recognize match  request —1754 —140 (27,) | 35.4
Image | recognize classify match request —217.9 —210 (37,) 7.9

difference in the Dgyation Of the last fixation between the simple task and other tasks
could be interpreted due to the difference in the required processes for decision-
making.

Because users can generally select the target in a well-familiarized interface
without careful fixation, even if the target is a key, icon, word, or image, there
is a possibility of selecting a target without a cognitive process. In other words,
there is a possibility that they can make a decision as being equal to the simple
task. For example, because users who are familiar with the current interface in
Windows and MacOS know that the home icons are often located in the corner,
they can potentially select the icon without careful fixation. Thus, we concluded
that one minimum Dyyati0n exists regardless of the task and Dgyation converges to the
one in the simple task (i.e., 244 ms), which verifies H3: Dgxation for large Neixation
converges to the duration required for completing decision-making processes for a
simple reaction task regardless of the task.

3.4.4 Range of Dgyation

In addition to the aforementioned analysis focusing on average values, we analyzed
how the Dgication in each Niyation varied among participants (Figure 3.10). These
ranges may be attributed to the same factor as in the MHP, that is, the Fastman
can complete a task with minimum duration, and the Slowman requires maximum
duration. Because we did not instruct participants on the selection strategy, Dexation
also varied for each participant and selection. Personality and background may
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TABLE 3.8: Summary of regression results for each task.

Task ‘ Equation ‘ Max Niixation ‘ Smallest dwell time
Simple | 174.2 + 10.2 x loga(Nixation) 2 174.2
Key 350.4 - 79.4 x logs(Nfixation) 2 271.0
Icon 424.3 - 82.6 x logs(Nrixation) 4 259.3
Word | 651.9 - 175.4 X loga(Nixation) 5 244.6
Image | 835.8 - 217.9 X logs(Nixation) 6 272.5

have also affected the results. For example, a user carefully searching for a target
requires a large 7., and a user familiar with a target (e.g., a user has used the
menu item in the word task) requires a small 7.. Therefore, using average values
is a generally simple solution to reflect the duration that a human requires for
the decision-making process. However, using a calibrated 7. for users is a better
solution to estimate a more precise duration.

3.5 Applying Our Model for Dwell Selection

In this section, we describe how our model can be applied to dwell selection. Be-
cause no action of pushing a button is required for dwell selection, we first subtract
a duration of 7,,=70ms from the model. By using Equation 3.3 and the regression
results, we define the adapted model for each task. We summarize the equations
and dwell times derived using our model for each task in Table 3.8, which indicates
that we can dynamically change dwell times using our model. For example, in an
image-selection task, if a user fixates on a target three times beforehand, we can
use 490.4 ms as the dwell time (=835.8 - 217.9 x logy(3)); if six times, we can use
272.5ms (=835.8 - 217.9 X logs(6)).

We consider a span that keeps counting Neyation- First, our idea is to use average
durations for the trial (i.e., from displaying a target to finishing a selection) in the
experiment as the span; the duration was 609, 996, 2,455, 3,620, and 23,565 ms for
the simple, key, icon, word, and image tasks, respectively. For example, for the
task of selecting an image, the system keeps counting Nyation during 23,565 ms and
calculates the dwell time with the counted Ngyation. We did not consider Nexation
more than those observed in our experiment (more than max Nyagion in Table 3.8)
and determined the minimum Ngyaiion for each task. However, as described in
Section 3.4.3, the minimum Dgyation may become one for the simple task (i.e.,
174.2 ms). Of course, if users prefer a faster interaction, they can use under 174.2 ms
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at will. Such a small dwell time can be considered when users are familiar with the
situation.

Although we have described the use of our model in a real interaction, we cannot
strongly conclude that it is useful mainly owing to the limitations of our experi-
mental conditions and results. Therefore, further investigation with an application
adopting dwell selection with our model should be conducted.

3.6 Conclusions

In this chapter, we developed a model that derives the dwell time, which enables
dwell selection after a user completes the decision-making process based on their
eye behavior.

We first conducted an experiment involving five tasks of different difficulties
to measure the number of fixations and their duration based on the eye behaviors
of participants during the selection task. We then validated our three hypotheses
related to fixations and developed our model using the fixations and durations by
referring to the MHP. Then, we demonstrated how our model derives the dwell
time.

We positioned this work as a first step work to answering RQ1: How should we
determine dwell time? more deeply. The results showed that the dwell time can be
determined using a fixation behavior that users subconsciously did for completing
selection tasks and knowledge of decision-making processes. Based on these find-
ings, we showed that we could determine dwell times that answered the question.

However, our model is not the only model to answer the question; there are lim-
itations and huge design space for developing a dwell time determination method.
First, our findings are limited by the experimental conditions. It is unclear whether
our findings, i.e., the duration that a human requires to finish a cognitive process,
would hold under other conditions. Regarding the selection tasks, there are nu-
merous situations of real interactions, for example, selecting a thumbnail, which
comprises an image and sentence and object of a movie. Second, because 7,, 7,
and 7, were derived from certain user attributes [CNM83], our model may not
be suitable for users whose attributes differ from those of the participants in this
experiment (e.g., different ages, experience with computer interaction, and experi-
ence with gaze-based interaction). However, this is only a hypothesis, and we could
not make specific conclusions from our current results; therefore, further investiga-
tion for a large number of participants and more diverse participants is required.
Although we concluded that our model based on Equation 3.3 could effectively
derive duration, it is necessary to evaluate the model under other experimental
conditions.
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We developed our model from the perspectives of linear- and logarithmic-
based equations and the MHP [CNMS83]. Similar to Fitts’ Law [Fit54] and ACT-
R [AMD95, AML97|, which has numerous variations of a model regarding the
context, we can explore a variation of our model for a specific context or user
attributes. For example, the keystroke-level model [CMN80] indicates that the
time to complete a typing (i.e., key selection) task varies depending on the context
and the user’s typing skill. Similar to previous studies on adjusting dwell time
(e.g., [MWWM17]), our model can be improved using the keystroke-level model.
Similarly, we used the MHP to interpret human decision-making processes; how-
ever, there are numerous models for interpreting human cognitive processes (not
limited to the decision-making processes), as discussed above. Therefore, we should
further consider and compare our model with various models for the development
of a more accurate and plausible dwell time determination method.
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Chapter 4

USER INTENT DETECTION
WITH MULTIPLE NATURAL
EYE BEHAVIORS FOR DWELL
SELECTION

In this chapter, we present a model that detects user intents to interact with a
computer, especially for selecting a GUI object, by incorporating multiple natural
human eye behaviors. We then apply the model to dwell selection to solve Midas-
touch, which is a long-term issue in gaze-based interaction.

We use eye movement, saccade, fixation, pupil diameter, and vergence as eye
behaviors for intent detection, which can be calculated from the data sampled
by the eye tracker. These eye behaviors may involve user attention and intent,
and hence they have been used in various studies [DJPZ*21, BVH12, SA00]. Be-
cause eye behaviors generally rely on users, ambient environment, and interaction
situations, identifying which eye behaviors and their characteristics are useful to
interpret user intent can be challenging. For example, it is difficult to interpret user
intent from threshold-based methods, such as “if the pupil diameter enlarges over
1mm, that behavior indicates user intent to interact” because the pupil diameter
generally depends on the ambient light. Therefore, we adopt a machine learning
(ML)-based method to interpret user intent from these eye behaviors. We do not
focus on each behavior in detail but focus on the possible features calculated from
those eye behaviors as cues of user intent. We collect the eye behaviors from five
different tasks to investigate how the eye behavior differs among tasks and attempt
to develop a general ML model for users and tasks.

We first introduce the overview of our dwell selection (i.e., DTD-ML selection),
investigate natural human eye behavior during the selection task, develop a user
intent detection model using the obtained eye behaviors, and then evaluate the
performance of our dwell selection.
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gaze coordinates binary clasification centroid (x, y)
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dwell detected when dispersion is -~ EE—

smaller than threshold + intent not to select

FI1GURE 4.1: Overview of the DTD-ML selection system.

The contributions of this work are as follows.

o« We develop a user intent detection model based on ML by incorporating
multiple natural human eye behavior and apply the model for dwell selection
(DTD-ML selection).

o We collect labels for creating an ML-based intent detection model from five
different tasks, representing four interactive situations and one everyday sit-
uation without manipulation.

o We show that our intent detection model achieves an area under the curve
(AUC) of the receiver operator characteristic (ROC) curve of 0.903; it also
achieves high AUC values independent of the user and eye-tracking frequency;,
as described in Section 4.3.

o We show that the DTD-ML can prevent 40.2% of unwanted selections com-
pared to DTD selection and has equal or better usability than both the DT
and DTD selection methods.

4.1 Our Dwell Selections

Figure 4.1 shows how a system detects user intent, either to select or not to select
and triggers selection. Our system comprises three parts: DTD-based user intent
detection (DTD detection), MIL-based user intent detection, and selection.

48



Chapter 4. USER INTENT DETECTION THROUGH EYE BEHAVIORS
Section 4.1. Our Dwell Selections

0.0 1.0
TL (0.25, 0.25) TR (0.75, 0.25)
- -
C (0.5, 0.5)
-
L ] -
BL (0.25, 0.75) BR (0.75, 0.75)
1.0

FIGURE 4.2: The display used for investigating dispersion in
the preliminary experiment to determine the dispersion threshold.
Points were instructed points where participants looked.
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FIGURE 4.3: Results of the preliminary experiment to determine
dispersion threshold: dispersion results for each dwell time (a) and
position (b).
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4.1.1 Dwell Time and Dispersion (DTD) Based User Intent
Detection (DTD Detection)

In our system, DTD-based user intent detection contributes to a rough screening
of the user’s intent to select and trigger ML-based intent detection. The DTD
detection system detects a dwell if the dispersion during the dwell time is less
than a dispersion threshold. Owing to the dispersion threshold, the user needs to
dwell more intentionally than in DT selection. However, this helps prevent the
Midas-touch problem.

We determined the dwell time and dispersion threshold from a preliminary
investigation considering there is no detailed investigation of suitable thresholds,
although DTD detection has been used in commercial software [HWM'89, SJ00,
SRT11, TAO8] and for other interactions [ULH10, IYS20, HC05, HCH04, KMS10,
Dyn21]. In particular, we investigated the dispersion in the user’s gaze in a certain
dwell time while intentionally dwelling on a point. Fourteen male volunteers (aged
21-25) participated in this investigation. We used a Tobii Eye Tracker 4C (sampling
rate: 90 Hz) with a pro license for research; we attached this to the bottom of the
24 inch (1980 x 1080 pixels) non-glare display. The participant’s head was positioned
at a distance of approximately 65 cm from the display. We asked the participants
to calibrate the eye tracker before starting the first task. Participants looked at
each of the five points on display, as shown in Figure 4.2, for 2000 ms. We collected
70 attempts (14 participants x 5 points) in total.

We first eliminated eight attempts that included a saccade with the I-VT algo-
rithm whose velocity threshold was 100°/s [SG00]. To obtain stable gaze data, we
used the last 1,000 ms of gaze coordinates from the remaining 62 attempts to calcu-
late the thresholds. We then calculated the standard deviation of gaze coordinates
in the visual degree for 10 dwell times (100, 200, 300, ..., 900, 1000 ms; if the dwell
time is 100 ms, we used the gaze coordinates in the visual degree of the first 100 ms
(i.e., 1,000 ms to 1,100 ms out of 2000 ms.)) as the dispersion. The results showed
that the dwell time did not affect the dispersion. Moreover, all dispersions were less
than 0.3° regardless of the dwell time and the position (Figure 4.3). Therefore, we
used 0.3° as the dispersion threshold and 600 ms as the dwell time in our system.
This study chose 600 ms as dwell time for two reasons; first, it is not a large dwell
time compared to those in previous studies; second, it is an appropriate dwell time
for the cognition model [TYS21]'. Tuning these thresholds for the user, position,
and other aspects such as the task and familiarity with gaze input would further
clarify the user’s intent, and this should be addressed as future work.

!The work in Chapter 4 is done before the work in Chapter 3. Thus, we did not use the dwell
time by using our model in Chapter 3.
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4.1.2 Intent Detection with an ML Model

After dwell detection, the system detects the intent either to select or not select
(i.e., binary classification task) using the ML model. The system first calculates
features from the window size (2000 ms in this work, as described in Section 4.3.4)
of the gaze data before a dwell is detected. For the features, we use eye behaviors
of saccades, fixations, vergences, pupil changes, and quantitative data of eye move-
ment distances and durations, which have been described in detail in Section 4.3.2.

4.1.3 Target Selection

If the detected intent is to select, we calculate the centroid of the gaze coordinates,
C,/y, during the dwell. The system then activates selection to C,/,,.

4.2 Experiment 1: Labeling of User Intent

In this experiment, we collected ground-truth labels that represent the user intent
to either select or not select.

4.2.1 Participants and Apparatus

We recruited 24 university students (five females and 19 males, all Japanese) aged
20-26 (M = 22.9). 15 participated in the experiment using an eye tracker. Each
received JPY 5,000 (~USD 45).

We used the Tobii Pro Spectrum and Tobii Pro Fusion as eye trackers; both
were attached to the bottom of the 24 inch (1980x 1080 pixels) non-glare display.
We used two different eye trackers since it was necessary to investigate whether we
could use our ML model with different eye trackers, considering the eye-tracking
frequency generally differs from one device to another. Additionally, some partici-
pants could not calibrate the Tobii Pro Fusion due to the incompatibility of pupil
detection for Asians?.

12 participants used the Tobii Pro Spectrum at 1200 Hz, eight used the Tobii
Pro Fusion at 250 Hz, and four used the Tobii Pro Spectrum at 120 Hz; most
commercial eye trackers sample gaze data at 120 Hz (e.g., the Tobii Eye Tracker 5
and HTC VIVE PRO EYE). The participant’s head was positioned approximately
65 cm from the display. The participant used a keyboard to control the task. The

2For the details of the pupil detection method, see https://www.tobiipro.com/learn-and-
support/learn/eye-tracking-essentials/what-is-dark-and-bright-pupil-tracking/. From communi-
cation with staff at Tobii, we decided to use the Tobii Pro Spectrum.
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FIGURE 4.4: Displays used for tasks.

experimental environment is shown in Figure 3.4. The experiment was conducted
in a room with fluorescent light at approximately 810 lux.

4.2.2 Tasks

Because eye behaviors vary according to the task, environment, and visual stimulus,
the experiment should be conducted in diverse conditions. However, it is difficult
to incorporate all of the diverse conditions. In this work, we collected labels and eye
behaviors from five different tasks: a letter task, a word task, a sentence task, an
image task, and a movie task, which represent four interactive situations (selecting
a letter, word, sentence, or image) and one everyday situation without any intent
to select (watching a movie).

The participants selected the target appropriate to each instruction using DTD
selection with a 600 ms dwell time and a 0.3° dispersion threshold. We asked them
to intentionally dwell on a point in the object rather than looking at it peripherally.
For example, to select the sentence “This is a pen,” we asked them to pick one letter
(e.g., “p”) and dwell on it. Similarly, to select an image of a dog, they picked a
point in the image (e.g., the nose) and dwelled on it. Because we asked them
to label the positive class when they performed target selection, we adopted this
instruction to unify the action of “intentional dwell” in this experiment.

Figure 4.4 shows the display used for each task. We determined the size of the
target at which the eye-tracking performance (i.e., the offset and precision) did
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not affect the selection. The participants read the task instruction and pushed the
space key to move on. Regardless of the participant’s intent, the system displayed
the labeling form, which contained only a questionnaire regarding the intent when
it detected a dwell. To eliminate any potential side effects, we did not give the
participants visual feedback for all tasks; however, they could recognize that a
dwell was detected through the labeling form’s appearance, except in the movie
task.

Letter Task

The participants successively selected keys on a displayed keyboard. The size of
each key was 3.5°x3.5°. The keyboard comprised 10 digits, qwerty-arranged keys,
a space key, a delete key, and an enter key. The task involved typing the date and
the participant’s name, age, and hobby; e.g., one instruction was “write today’s
date.” For example, for the instruction “write today’s date,” the participants typed
the date using the displayed keyboard. There was no specific format, and thus, the
participants could enter the date freely, e.g., “20210801” or “0801.” They finished
the trial by selecting the enter key and labeling their intent for each key selection.

We assume that this task represents a situation wherein the user selects a letter;
a selection of a radio button with a character, such as selecting @), ®), (©, and @)
is another possible situation.

Word Task

The participants manipulated a three-layer hierarchical menu and selected an item
that was written in word(s). The size of each item was 4.5°x3.0°. The partic-
ipants performed 20 selections for randomly chosen instructions. After selecting
an item in the third layer, they moved on to the next instruction. For example,
for the instruction “select Japan,” the participants selected “Country” — “Asia”
— “Japan.” We asked the participants to search for the target as appropriately as
possible; if they could not find one, we asked them to select an arbitrary target. We
did not limit the number of times the menu could be opened or the time to select
the target. The participants labeled their intent for each menu item selection.

We assume that this task represents a situation where the user selects a word;
directory manipulation is another possible situation.
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Sentence Task

We asked the participants to select appropriate Japanese meanings (sentences) for
idiomatic phrases (instructions). We used 100 pairs of phrases and meanings®. The
size of each sentence was 11.0°x2.5°. Each participant performed 30 selections for
randomly chosen phrases. From the 100 pairs, we arranged 18 choices, comprising
one correct meaning and 17 randomly chosen meanings, in a 3x6 grid. We asked
the participants to select the choice as correctly as possible; if they could not find
one or did not know the meaning, we asked them to select the most plausible choice.
They labeled their intent for each selection.

We assume that this task represents a situation wherein the user reads sentences
and selects one, such as a hyperlink on a web page.

Image Task

We asked the participants to select an image that was appropriate for a given
verbal instruction. We used a set of 64332 images?®, and the size of each image
was 3.5°x3.5°. Each participant performed 100 selections for randomly chosen
instructions. We arranged 40 choices comprising at least one correct image along
with randomly chosen images in an 8x5 grid. We asked the participants to select
the image as correctly as possible; however, if they could not find it, we asked them
to select the most plausible image. They labeled their intent for each selection.

We assume that this task represents a situation wherein the user searches for
an image and selects it, such as an image search on a web page or icon selection in
a desktop window.

Movie Task

Contrary to the other tasks, we informed the participants that it was unnecessary
to select a target and instead asked them to watch a movie as if they were watching
it on YouTube or Netflix. We used 500 movies from ActivityNet [FCHN15] and
streamed them using a full-screen mode of Windows Media Player without a UI.
Each participant watched movies for 10 min. They were allowed to be absent-
minded if a movie was not attractive.

Although this task involves simply watching a movie on a desktop computer, the
gaze data collected through it involves various kinds of information. For example,
because we chose the movies regardless of the participants’ interests, we could

3From https://www.wiktionary.org/, licensed under CC BY-SA 3.0 (https://
creativecommons.org/licenses/by-sa/3.0/)

1From https://visualgenome.org/, licensed wunder CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/)
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TABLE 4.1: Guidelines for intent labeling.

Situation wherein labeling form was displayed \ Labeling guideline
Intentionally dwelling on point in correct target Yes (positive class)
Intentionally dwelling on point not in correct target Yes (positive class

Correct target viewed before the form was displayed but
participant still thinking about target’s correctness
Participant thinking, searching, or lost in thought No (negative class

)
No (negative class)
)

collect various kinds of intent, attention, and interest depending on the movie,
content, and period. Similarly, the direction, distance, and duration of users’ gaze
movements, saccades, and fixations varied. Therefore, we conducted this movie
task to collect negative data representing gaze data that did not involve intentional
manipulation in daily life. In the movie task, we did not instruct participants to
label their intent.

Intent labeling

The participants gave their intent concerning dwell detection with a physical key-
board following the guidelines listed in Table 4.1. In the following analysis, we used
the detected dwells that were labeled “Yes” and “No” as the positive and negative
classes, respectively. The selection labeled as the negative class was treated as an
unwanted selection. Note that there was no selectable Ul for the movie task, and
the participants did not label their intent; accordingly, we labeled all the detected
dwells in the movie task as negative classes.

4.2.3 Procedure

We asked each participant to calibrate the eye tracker before starting the first task.
The task order was randomized among the participants. They were allowed to take
an optional break when the instruction form was displayed. The experiment took
an average of 68 min per participant.

4.2.4 Labeling Results

The labeling results are summarized in Table 4.2. Even without the ML-based
intent detection, there were fewer negative classes for the letter task than for the
other tasks owing to the fact that the letter task possesses a lower cognitive load
than the others. Contrary to the letter task, participants said that the sentence
task was challenging because it was difficult to find the correct meaning of the
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TABLE 4.2: Numbers of labeled classes.

Task \ Positive classes ([%]) \ Negative class ([%])

Letter 788 (99.12) 7 (0.88)

Word 1,474 (93.23) 107 (6.77)

Sentence 425 (59.03) 205 (40.97)

Image 2,053 (85.54) 347 (14.46)

Total of four tasks above 4,740 (86.34) 756 (13.76)
Movie None 10,586 (100.0)

Japanese phrase. This indicates that they spent much time reading and thinking
about the sentence, resulting in more Midas-touches. Therefore, the negative class
percentage was the highest for the sentence task. For the movie task, there is a
total of 10586 negative classes, which suggests that there are many possibilities for
the mis-detection of user intent and occurrence of Midas-touch during everyday
situations.

Note that although balancing the number of labels for each task is preferable,
in this study, we used imbalanced labels to create an ML model that was robust
against both false negatives and false positives. For example, if we ignore data
collected from the letter task, whose labels were biased positively, the detection
may result in false negatives. In contrast, if we ignore data collected from the
movie task, whose labels were biased negatively, the detection may result in false
positives. Given the trade-off between the Midas-touch problem and the ease of
selection, we decided to use both positively and negatively biased data.

4.3 Model Detecting User Intent for Dwell Selec-
tion

We used the results of EXPERIMENT 1 to create an ML model for intent detection.

4.3.1 Data Processing

As listed in Table 4.2, the positive-to-negative class ratio was unbalanced for each
task. Accordingly, we used the negative classes for the movie task to alleviate the
imbalance. In particular, to achieve a 50:50 ratio, we randomly chose negative
classes from the movie task for each participant.

To calculate the features, we used 2000 ms as the window size of the gaze data
before a dwell was detected; a detailed explanation is given in Section 4.3.4. The
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FIGURE 4.5: Example of raw data for (a) pupil and (b) its down-
sampled values.

gaze data were the x/y coordinates ([0.0 (top left) —1.0 (bottom right)]) on display,
the pupil diameter ([mm]), and the timestamp. These data were collected for
both the left and right eyes. For each timestamp, we calculated the average of
the left and right pupil diameters (pupil), the averages of the x/y coordinates for
the left and right eyes (x and y), and the difference between the x coordinates of
the left and right eyes (diffy). We then downsampled these values to 20 values,
i.e., the average values for every 100ms of the gaze data. Figure 4.5 shows an
example for pupil. Next, we calculated the relative values between the last (204,)
value and each i-th (i = 1,3,...,19) value (19 changes). Based on the changes
(instead of the original values), we eliminated the gaze data dependence on the
user, environment, and task. We adopted this process to observe how the gaze
data changed over 2,000 ms rather than in a short span (e.g., every 0.833ms for
1200 Hz) because gaze data do not change within a short span [Cly62], and eye-
tracking data contains noise. Moreover, we adopted downsampling to cover the
difference in the eye-tracking frequencies; this process helped us create a general
ML model that was independent of the eye-tracking frequencies.

In addition, we used the I-VT algorithm [SGO0] to detect fixations and saccades
with the original x/y coordinates. For the parameter of the I-VT algorithm, we
used 10°/s for fixation detection and 100°/s for saccade detection. Moreover, to
exclude eye-tracking noise, we used 100 ms as the minimum duration of fixation
and 30ms as the minimum duration of a saccade.

4.3.2 Features

We used the following gaze data to calculate the features that are listed in Table 4.3.

x and y: Changes in the x/y coordinate values indicate how the gaze moved during
the 2,000 ms before dwell detection. Using changes gave more independent
information than using an absolute gaze position on the display.
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TABLE 4.3: Calculated features. In total, we used 127 (= 80435+
12) features for ML.

Features ‘ Numbers

plus, minus, absolute, and all (19) values of average, standard deviation (SD), 80
changes in x, y, diffy, and pupil amplitude, skewness, kurtosis (4x4x5)
durations of saccades, durations of fixations, average, first value, last value, 35
distances of saccades, distances of fixations, last value minus first value, (5x7)
velocities of saccades minimum value, max value, amplitude

. . . 1st value, 19th value, 12
Changes in X, y, diff, and pupil difference between 19th and 1st values | (4x3)

diff;: Changes in diffy indicate whether the focus moved from or to the display
(i.e., whether a vergence occurred) during the 2,000 ms before dwell detection.
Although we could have determined how far the focus was from the display
if we used the original values of diffy, the eye-tracking accuracy and the
individual’s eyesight may have affected the values. Thus, we used the changes
in diff,.

pupil: Changes in pupil indicate how the user’s interest, emotions, or awareness
shifted during the 2,000 ms before dwell detection. We used the changes
in pupil because the original values depended on the individual and the
brightness of the location and the display.

saccades and fixations: In addition to x and y, saccades and fixations indicate
how the user’s attention shifted during the 2,000 ms before dwell detection.

The features in the first and second rows of Table 4.3 are consistent with those used
in previous works [BVH12, DJPZ*21]. Because these statistical values summarize
the original data and would allow the detection model to focus on the important
characteristics, the detection result may be better than using the original data. In
general, the directions of the changes are important: for example, when we read
a sentence, the gaze moves from left to right, resulting in positive changes in this
environment. Thus, we calculate these statistical values for each sign and with both
signs. In addition, we use the features in the third row because the first and last
(19th) values and their differences represent how the data changes. These features
are promising for determining the user’s intent; still, it is difficult to decide the
thresholds for each feature. We thus use ML-based detection.
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TABLE 4.4: Summary of our intent detection. Values except for all

are average values. MCC means Matthews correlation coefficient.

We highlighted important results with aspects of contribution (red)
and limitation (blue).

‘ AUC ‘ accuracy ‘ recall ‘ precision ‘ F1 ‘ MCC

all 0.903 0.826 0.839 0.818 0.828 | 0.652
all (hyper-parameters) 0.905 | 0.829 | 0.845 0.819 | 0.832 | 0.659
each-participant 0.893 0.819 0.831 0.817 0.822 | 0.64
each-task 0.964 | 0.952 0.965 0.972 0.968 | 0.746
each-frequency 0.909 0.835 0.85 0.827 0.838 | 0.67
leave-one-participant-out | 0.898 0.812 0.828 0.81 0.812 | 0.634
leave-one-task-out 0.601 0.689 0.721 0.853 0.778 | 0.084
leave-one-frequency-out | 0.880 0.793 0.808 0.79 0.792 | 0.595

4.3.3 Metrics for Evaluation

We used the area under the curve (AUC) of the receiver operating characteristic
curve (ROC) [Bra97] as the primary metric for evaluating the detection perfor-
mance. A higher AUC value indicates a greater chance of achieving both a high
true positive rate (TPR) and a high true negative rate (TNR), and this helps our
detection system deal with the trade-off between the Midas-touch problem and the
ease of selection.

4.3.4 Creating ML Model

We created detection models for all data (all), the participants (each-participant
and leave-one-participant-out), the tasks (each-task and leave-one-task-out), and
the eye-tracking frequencies (each-frequency and leave-one-frequency-out), and we
tested each model.

For each-XXX, we split the classes for one participant, task, or frequency into
training, validation, and test data. For leave-one-XXX-out, we used the classes
for one participant, task, or frequency as the test data, and we split the remaining
classes into training and validation data. We performed five-fold cross-validation for
training, validating, and testing the models. For the classifier, we used Light GBM,
because it gave AUC values that were higher than those of the other classifiers that
we tested (see Section 4.3.4).
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Overall detection Results

Table 4.4 summarizes the detection results. For all, the AUC, accuracy, recall, pre-
cision, F1, and Matthews correlation coefficient (MCC) were 0.903, 0.826, 0.839,
0.818, 0.828, and 0.652, respectively. We calculated the TPR and TNR values
with respect to the detection probability threshold. The curves of TPR and TNR
intersected at a value of 0.825, where the threshold was 0.524. With 0.80 as the
threshold, we could achieve a TNR of 0.900, while the TPR fell to 0.696. Accord-
ingly, similar to the dwell time, there is a trade-off between the TPR and TNR.

We also provide the detection results obtained using hyper-parameters that
we determined by using Light GBM Tuner from Optuna [ASY*19]. The tuned
parameters were “lambda_17: 6.25e-06; “lambda_12”: 4.07e-06; “num_ leaves”:
28; “feature_fraction” 0.4; “bagging fraction”: 0.75; “bagging freq”: 5; and
“min_ child_samples”: 20. For all with these hyper-parameters, the AUC, accu-
racy, recall, precision, F1, and MCC were 0.905, 0.829, 0.845, 0.819, 0.832, and
0.659, respectively.

Detection Results for Participants

The AUC values were high for both each-participant and leave-one-participant-
out: they averaged 0.894 [0.802-0.967] and 0.898 [0.839-0.963], respectively. These
results demonstrate that the model can detect the user’s intent and can thus be
used as a general model independent of the user. Given the limited diversity of the
participants, their small age range may have resulted in high AUC values. However,
because we did not use the original values for pupil and diffy, which vary according
to individual, as features, similar results may be achievable for users with different
attributes.

Detection Results for Tasks

A high average AUC value of 0.964 [0.898-0.994] was achieved for each-task; how-
ever, the value was 0.601 [0.443-0.703] for leave-one-task-out. Although we used
the changes in the gaze data, they still depended on the task, and thus, the AUC
values for leave-one-task-out were not sufficient to make detections, especially for
the sentence task, whose AUC value was 0.443.

Because the movie task had one class, we did not create a detection model
for each-task for the movie task. As for leave-one-task-out, we trained the model
with the classes of the letter, word, sentence, and image tasks. Before training, we
downsampled the positive classes of these four tasks to equalize the class ratio. The
testing yielded a TNR of 0.463 when the detection probability threshold was 0.5.
With a higher threshold of 0.9, the TNR was 0.914. The high AUC for each-task
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and low AUC for leave-one-task-out highlight the significance of using more various
tasks when creating a gaze-based intent detection model.

Detection Results for Frequencies

The AUCs for both each-frequency and leave-one-frequency-out were high, with
respective averages of 0.909 [0.895-0.917] and 0.880 [0.859-0.902]. These results
indicate the validity of the features used for the model with eye trackers possessing
different frequencies. However, eye trackers mounted on an HMD and different
eye-tracking (or pupil-tracking) methods may yield different results.

Detection Results for Window Size

We examined the detection results for all with features that were created using
window sizes for the gaze data of 600-2,900ms, in 100 ms steps. The metrics
increased with the window size: for example, the AUC value was 0.773 at 600 ms,
0.845 at 1,000 ms, 0.877 at 1,500 ms, 0.903 at 2,000 ms, 0.923 at 2,500 ms, and 0.934
at 2,900 ms. Although larger window sizes should be investigated, we could not do
so because some of the gaze data collected within a task were shorter than 3,000 ms.
Thus, when we used 3,000 ms as the window size, approximately 20% of the tasks
were eliminated compared to when 600 ms was used as the window size. Another
issue is that a larger window size may cause overfitting for these tasks with regard
to display designs or target alignments. Based on these results, we created features
using a window size of 2,000 ms, which was the smallest one that achieved an AUC
value greater than 0.900.

Detection Results for Other Classifiers

We examined the detection results for all with various classifiers: support vec-
tor machine, random forest, logistic regression, and LightGBM. The AUC values
were 0.781, 0.825, 0.781, and 0.903, respectively. We thus used Light GBM as the
classification algorithm, as mentioned previously.

Use of Task- and Participant-dependent Gaze Data

We did not use the original values in the gaze data because they depended on the
user, environment, and task. For example, if the interface design differs from that
in Experiment 1, these values, especially x and y, will differ. Moreover, the original
values of pupil depend on the light conditions or the type of visual stimulus [HP60].
While the use of those values increases the AUC values for all (>0.940), they may
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FIGURE 4.6: Feature importance for our intent detection method.

have caused overfitting that could not be displayed in the detection test with the
current data.

Feature Importance

The top 10 gains among the features were the average and kurtosis of the absolute
values of the x and y, the amplitude of all values of x, y, and pupil, the standard
deviation and average of the plus values of pupil, and the last value of pupil, as
shown in Figure 4.6. This result suggests the significance of how the gaze moves
and how the pupil changes. Notably, the plus values of pupil and the last value
of pupil seemed to have a significant impact because the diameter increases with
interest or emotion [HP60].

4.4 Experiment 2: Performance Evaluation

We tested how DT, DTD, and DTD-ML selection work in a real interactive situa-
tion. In particular, we focused on how the dispersion threshold screened the user’s
intent and how the ML model detected the intent.

4.4.1 Participants and Apparatus

We recruited 12 university students (four females and eight males, all Japanese)
aged 20-24 (M =22.9). Six participated in Experiment 1 and nine participated
in an experiment with a gaze-based interface. This experiment used the same
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FIGURE 4.7: Interface used in Experiment 2.

apparatus and environment as Experiment 1. In particular, we used the Tobii Pro
Spectrum at 1200 Hz as the eye tracker in Experiment 2.

4.4.2 Task

The task was to interact with a dictionary-like interface, shown in Figure 4.7, using
dwell selection. We roughly classified the targets in the interface into two types:
the known target, wherein the participants knew the location and content, and the
search target, wherein the participants had to search for or understand the content.
We used keys, tab-labels, icons, and a search-icon as known targets because their
locations and content remained the same throughout the experiment; other targets
(i.e., thumbnails, movies, and suggest-labels) were used as search targets. The
sentences and images in the target contents were taken from Wikipedia®, while the
movies were the same as that used in Experiment 1. When any target was selected,
the labeling form was displayed. The participant gave their intent for selection as
in Experiment 1.

The target sizes were 2.0°x2.0° for keys and icons, 4.0°x2.0° for tab-labels and
suggest-labels, 4.0°x4.0° for thumbnails, 8.0°x4.0° for a movie, and 10.0°x2.0° for
a search-icon. We determined these sizes by choosing a minimum target size and
enlarging other targets appropriately to be able to understand their meaning. We

Shttps://en.wikipedia.org/, licensed under CC BY-SA 3.0 (https://creativecommons.org/
licenses/by-sa/3.0/)
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chose the minimum size as 2.0°, which was approximately 2.3 cm on the screen used
here, thereby making the size similar to that suggested in [FWT*17] (for filtered
data, a target size of 1.9x2.35cm enables reliable interaction for at least 75% of
users).

We used a dwell time of 600 ms and a dispersion threshold of 0.3°. The window
size was 2000 ms. The detection threshold was 0.800. We used the same ML model
that gave the results for all (hyper-parameter) shown in Section 4.3.4.

4.4.3 Procedure

We asked each participant to calibrate the eye tracker before beginning the task.
The order of the selection methods was randomized. We asked the participants
to search for a target whose content was attractive and to select that target. We
did not limit the method of searching and told them to interact freely with the
interface. We asked the participants to interact for ten minutes for each selection
method. We did not calibrate or adjust the ML model for each participant, nor
did we allow the participant to train each selection method.

After the ten minutes of interaction, the participants answered the System Us-
ability Scale (SUS) [Bro96] and the NASA-TLX [HS88] tests. They then rested for
at least five minutes before moving to the next method. The experiment took an
average of 53 min per participant. Each received JPY 5,000 (~USD 45).

4.4.4 Results
Quantitative Results

For quantitative measures, we used the ratio of unwanted selections, the occurrence
of unwanted selections, and the time to search for a target. The ratio was calculated
from the number of selections labeled as “No” and the number of total selections.
The occurrence was calculated according to the number of total selections. The
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FIGURE 4.9: Quantitative results for the selection of search targets.
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time was calculated by subtracting the time at which the labeling form closed from
the time at which a target was selected. Figures 4.8 and 4.9 show the results for
selecting the known and search targets, respectively. For DT, DTD, and DTD-ML
selections, the ratio and occurrence decreased in the order of DT, DTD, and DTD-
ML selections, whereas the time increased in the order, regardless of the target.

To compare the three selection methods, we used the Friedman test (o = 0.05)
and the Bonferroni correction test (o = 0.05) for ratio, occurrence, and time.
We found significant differences in the ratio and occurrence for search targets,
which indicated that the screening of user intent with DTD detection and the
intent detection with an ML model works well; DTD-ML selection (ratio: 24.02)
prevented 40.2% of unwanted selection compared to DTD selection (ratio: 64.16),
and DTD selection prevented 24.4% compared to DT selection (ratio: 88.56). For
known targets, there were no significant differences in the ratio and occurrence.
This confirms both the usefulness of DT selection for known targets and the result
of the letter task in Experiment 1. In the case of time, there were significant
differences between DT and the other selection methods for both known and search
targets. Both the DTD and DTD-ML selection methods allowed the participants
to search for a target more carefully. However, this also suggests that the DT
selection allows faster selection compared to the DTD and DTD-ML selections.

For the ratio, occurrence, and time with DTD-ML selection, there was no signif-
icant difference between the participants who participated and did not participate
in Experiment 1. Because we used the ML-based intent detection model created
via Experiment 1, this result validates the model’s user independence.

Qualitative Results

Figures 4.10 and 4.11 show the NASA-TLX and SUS results, respectively, for each
selection method. We tested significant differences in the scores of the three selec-
tion methods with the same Friedman and Bonferroni correction tests.
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FIGURE 4.10: NASA-TLX test results; lower values indicate better
scores.

The averages and ranges of the overall NASA-TLX scores were 47.5 [32.33-58.0],
24.58 [14.67-33.0], and 20.31 [11.33-29.67] for DT, DTD, and DTD-ML selection,
respectively. There were significant differences between DT selection and the other
methods. Because the task was to interact with a dictionary-like interface without
any temporal limitation and the dwell interface did not require physical activity, the
scores for the mental, physical, and temporal demands were smaller than the other
scores. In terms of the performance and frustration scores, the DT selection was
inferior to DTD and DTD-ML selection, which is consistent with the quantitative
results.

The averages and ranges of the overall SUS were 31.88 [22.5-40.0], 60.62 [47.5-70.0],
and 69.38 [55.0-77.5] for DT, DTD, and DTD-ML selection, respectively. There
were significant differences between the DT selection and the other selections. For
all questions except Q6, “I thought there was too much inconsistency in this sys-
tem,” the scores for DT, DTD, and DTD-ML selection increased in order. Regard-
ing inconsistency, the DTD selection had the highest score. The DTD-ML selection
achieved the best ratio; however, some intents to select were mistakenly detected as
intent not to select. In other words, false negatives affected this result. For Q10, “I
needed to learn a lot of things before I could get going with this system,” there was
no significant difference among the selection methods. Because we did not conduct
a practice session for each method and the participants could interact with the in-
terface using each method, the scores became high with no significant differences.
This indicates that the learning cost for dwell selection seems less regardless of the
methods.

Detection Delays

We also measured the time required to create features and detect intent. The
experimental PC was an Alienware Aurora R9 (CPU: Intel(R) Core™ i9-9900 @
3.10 GHz; RAM: 32.0 GB; OS: Windows 10 Version 21H2). The averages and
ranges of the times for feature creation and detection were 3.55ms [2.22-14.12]
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FIGURE 4.11: SUS test results. (a) Bar chart showing adjusted

scores for each question in order of DT, DTD, and DTD-ML selec-

tion, where 0 (black) indicates the worst score and 4 (red) indicates

the best score. (b) Box plot showing overall scores (higher is better)
among participants.

and 0.21ms [0.12-1.37], respectively. The delay in comparison to DTD selection
averaged 3.76 ms [2.35-14.60]. As the eye-tracking frequency in Experiment 2 was
1200Hz (i.e., 0.83 ms/sample), the detection could not be finished within one
sample. However, when using DTD-ML selection for interaction, such a delay may
not seem significant.

4.5 Discussion

4.5.1 Limitations on Applicable Interfaces and Interaction
on DTD-ML

We showed that DTD-ML works for a dictionary-like interface whose contents are
a size of at least 2.0° in size (2.3 cm in this experimental setting). We limited the
target size to avoid issues related to eye-tracking accuracy. However, sizes smaller
than 2.0° are used for tab-icons on the Windows 10 desktop and close buttons
on a web browser. A target size of approximately 2.0° reflects the desktop icons
for the “medium icons” setting on Windows 10, which justifies our experimental
setting. Moreover, some contents in image search on Microsoft Edge are often
larger than 4.0° (approximately 4.5 cm in the experimental setting) with a display
zoom setting of 100%, and these contents are positioned in a grid layout with small
margins between contents, which is similar to the interface used in Experiment 2.
Therefore, the DTD-ML would work for a common interface design with a content
size of at least 2.0°. Although the leave-one-task-out result possessed an insufficient
AUC value, the results of Experiment 2, whose interface and task differed from
those of Experiment 1, are robust against the Midas-touch problem. However, the
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capability for the selection of objects other than a character, word, sentence, or
image is still unexplored; therefore, further investigation is needed.

Moreover, the use of DTD-ML is limited to “selection.” Other interactions
such as activating a command and opening a menu are also necessary for a more
realistic use of gaze-based interaction. One solution using DTD-ML would be the
two-step manipulation, similar to right-clicking: the first selection would open a
menu on a dwelled target, and the second selection would activate a command
mapped to the dwelled menu item on the target. While this design is not new,
since DTD-ML offers a robust trigger for opening a menu, it can prevent occlusion
due to unwanted opening of the menu. This would also be useful for eye-gesture
research, which uses dwell selection for trigger gesture detection (e.g., [ULH10,
IYS20, DHI17, ASP*21b, KHAL22b]). Another solution would be to combine
with a second modality (e.g., [PACT15, PACG14, CXH15, PMMG17]). Note that
the main contribution of this work is the establishment of an essential “selection”
system like left-clicking a mouse, and hence, these limitations should be explored.

4.5.2 Participant Dependency

We achieved strong detection results for the participants considering the features
did not include user-dependent gaze data. Moreover, in Experiment 2, users whose
gaze data had not been used for the ML model could use the DTD-ML to select
targets with similar effectiveness to users whose gaze data had been used. Be-
cause we did not use the original values for pupil, we eliminated the effect of
pupil diameters. However, pupil diameter decreases with age [BCB50], and further
investigation is needed to test our method on a diverse range of users.

4.5.3 Application to DT Selection

By changing the threshold of the detection probability, we can deal with the trade-
off between the robustness against the Midas-touch problem and the ease of selec-
tion. This is similar to the research on tuning the dwell time to prevent the Midas-
touch and achieve fast selection, and our work can contribute to this. For example,
we could reduce the probability threshold for dwell-typing according to the prob-
ability that a key is typed. Moreover, the basic concept of DTD-ML detection is
the same as that of DT detection, wherein only the dwell time is used. Thus, we
can also apply our method to the research on DT selection (e.g., [ZRZ08, CSO20])
to improve performance.
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4.5.4 Exploring Parameters

There is space for tuning the parameters used, e.g., the dwell time and dispersion
threshold. The DTD detection roughly screens the user’s intent to select; therefore,
improvement in the accuracy of DTD detection would further alleviate the Midas-
touch problem. The dwell time and dispersion threshold used were determined
based on a preliminary investigation. Although we used 0.3° for the dispersion
threshold, a lower value or the one adjusted for the target position would be ideal
for improved screening.

As for the window size, as described in Section 4.3.4, a large window size yielded
a high AUC; however, we should investigate the use of larger window sizes with
data collected from a wider range of tasks. As described in Section 4.5.3, tuning
the detection probability threshold would also improve the performance.

4.5.5 Feature Exploration

We reanalyze effective features for intent detection performance in different inter-
action situations. Owing to the myriad of interaction situations, it is challenging to
examine them all exhaustively. As the first step toward understanding features for
interactions, we retrained our model by changing features to explore how detection
performance changes when different features are used. In particular, we focused on
the perspective of dimensionality reduction and adaptation to different tasks.
This discussion is based on our work published on Eyes4ICU which is a work-

shop in ETRA 2023 [IYS23b].

Dimensionality Reduction We investigated features to improve our model in
terms of dimensionality reduction. While many studies use saccade and fixation
information as a primary feature indicating a user’s intent, we found that the
gaze movement and pupil changes were significant in detecting user intent in our
model. Among the top 30 feature gains shown in Figure 4.6, only peak-to-peak
saccade distance was considered as an important feature in saccade information.
This indicates that saccade and fixation information may not be as important as
other features for our model.

Therefore, we retrained an ML model with features that excluded saccade and
fixation information, and we observed that the overall AUC improved from 0.903
to 0.904 while the number of features decreased from 127 to 92. While it is difficult
to clearly explain the specific reasons behind the performance improvement due to
the use of an ML approach, we speculate that the saccades behavior between the
negative and positive classes did not differ significantly. For example, the distance
of saccades was 4.5° and 3.9° in the negative and positive classes, respectively.
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Here, 1.0° corresponds to 1.1 mm in the experimental environment, and 0.6° of
difference may account for a small difference. Note that we used under 5.0° as the
target size, which may account for both under 5.0° and a small difference (approx.
0.6°) in the distance. For an ML model detecting a user’s intent that is unrelated
to dwelling, such as [SZL"22], the saccade and fixation counts may vary even
more significantly than those in our results. Therefore, despite many studies using
saccade and fixation information as indicators of a user’s intent, it is important to
carefully consider the inclusion of such features.

Adaptation to Different Task Our model suffered from overfitting to the
tasks, as demonstrated through the inadequate results of leave-one-task-out cross-
validation (AUC=0.601). We examined the use of features in relation to the tasks.
We utilized the gaze movement direction as a feature, represented by plus and mi-
nus values of x and y. However, these values may be affected by various factors,
including the type of content being viewed, the aspect ratio of the interface, size,
and the arrangement of content. Therefore, the use of gaze movement direction
concerning tasks must be carefully considered.

Consequently, we re-trained an ML model by excluding plus and minus values
of changes in x and y. Consequently, the AUC improved to 0.627 in the leave-
one-task-out cross-validation, up from the initial AUC of 0.601; the overall AUC
increased to 0.913 from 0.903. Although this improvement is still insufficient,
excluding features that depend on the task can be a potential solution for overfitting
that should be considered while developing an ML model.

4.6 Conclusion

We developed an ML-based model that detects user intent for selection with nat-
ural human eye behaviors. As features for the ML-based detection, we used gaze
movement, fixation, saccade, pupil diameter, and vergence, which are linked to a
user dwell action. To develop the intent detection model, we first conducted Ex-
periment 1 on labeling user intent with five tasks and then calculated the features.
The results showed that our model could detect a user’s intent with a high AUC
value of 0.903: specifically, 0.898 for detection independent of the user and 0.880
for detection independent of the eye tracker. The results of Experiment 2 showed
that the DTD-ML selection could prevent 40.2% of unwanted selection compared to
the DTD selection and that it yielded equal or better NASA-TLX and SUS scores
than DT and DTD selection. Our approach to intent detection should significantly
contribute to system development for various interactive situations, and further
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advancement based on our research may potentially allow the use of gaze-based
intent detection.
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Chapter 5

CONCLUSIONS

In this chapter, we discuss ways in which researchers can utilize our findings on
gaze-based interaction and conclude this thesis.

5.1 Use of Our Dwell Time Determination Model

In the research on preventing Midas-touch, a faster and more accurate dwell selec-
tion has been developed (i.e., the best solution has been regarded as 0 ms of dwell
time and zero Midas-touches); however, this seems to be difficult since no study has
achieved this using dwell time-based user intent detection. However, if we can use a
larger dwell time with a valid reason, there is a possibility that the solution is closer
than now. For example, our model derives the dwell time, enabling dwell selection
after a user completes the decision-making process required; we think such dwell
time (i.e., 174ms for a simple colored target selection task and 274 ms for other
tasks) can be used as a target dwell time to achieve zero Midas-touches. Moreover,
a dwell time smaller than the aforementioned dwell times potentially decreases
the usability of dwell selection, as reported in previous studies [TAST18, CSO22].
Assuming that dwell time derived from our model does not decrease the usabil-
ity of dwell selection, our model is helpful for future researchers addressing the
Midas-touch.

Moreover, the dwell time that is determined based on our model can be used
to determine the dwell time as one experimental condition. Researchers using
dwell selection as a comparison method to evaluate the performance of interac-
tion methods, such as dwell selection vs. explicit and multimodal gaze interaction
(e.g., [CSO22, NAG™23]) may utilize dwell time. The dwell times for method-
comparison experiments were often determined through a preliminary study con-
ducted in each research without detailed information. This is because there is no
baseline dwell time that researchers can refer to, although dwell time is a parameter
effect on a tradeoff between the speed and accuracy of dwell selection. We believe
that researchers have not done this; however, if they want a result wherein their
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interaction system has a smaller error rate than dwell selection, they can adopt a
small dwell time. As an example of dwell time as an experimental condition, we
suggest using dwell times of at least 174.2, 350.4, 424.3, 651.9, and 835.8 ms for
simple colored objects, key, icon, word, and image selection tasks, respectively. Of
course, if the researchers consider the Midas-touch, a larger dwell time can be used;
however, smaller dwell times are not appropriate unless experimental tasks do not
require “searching” for a target.

In terms of extension for various interaction methods, our model may extend
the implicit interaction, especially an interaction driven by user intent detection
incorporating human natural behaviors. For example, there are studies on selection
methods for GUI objects wherein the selection is done just before a user performs
an explicit action of left-clicking [ASKT05, PW14, MW14]). Moreover, a recent
study has shown that an interaction system automatically corrects an error input
through intent detection using eye behaviors [PLZ"22]; the “undo” interaction that
revokes the previously triggered interaction is triggered. Unfortunately, for these
interactions, the time when such interactions should be triggered has not been
investigated in detail. Similar to a recent study wherein it was reported that a
shorter dwell time decreases usability, this time should also be carefully considered.
In these scenarios, same as the dwell time in our work, we hope to adopt time
determined by incorporating human eye behavior and the decision-making process.

5.2 Use of Our Intent Detection Model

We utilized the user intent detection model for dwell selection only. There have
been various applications of eye behavior-based intent detection. For example, the
area of interest is detected by using gaze coordinates, and the duration of the gaze
stays at a point, similar to dwell time-based dwell detection. The area of interest is
often used to create a heatmap of user interest to analyze the Ul design. However,
because dwell selection has failed when using a time threshold to detect user intent
alone, the current detection of the area of interest successfully reflects whether or
not the user’s true interest is questionable. Moreover, we expect that our model
will be useful for other interactions. The most promising application is the gaze-
supported system combining gaze and other modalities (i.e., the multimodal gaze
interaction), which other researchers have attempted to develop as the AR/VR
interface (e.g., [DJPZ™21, PPET21, LDB21]). In general, the intent not to select
entails many aspects, such as paying attention or expressing intent in terms of why
the user looks at something. It would be difficult for our model to detect such
varied intents owing to its current limitations in the types of detectable intent.
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However, advancement based on this research should lead to further use of gaze-
based intent detection and the development of real-world applications. We expect
our user intent detection model or the methodology of developing the model to
help detect more accurate user interest.

Dwell selection is often used as a condition for interaction method comparison
experiments. However, because no dwell selection solves Midas-touch, all results on
the performance of dwell selection are affected by Midas-touch. Consequently, re-
searchers concluded that dwell selection has poor usability owing to the occurrence
of Midas-touch or the necessity of looking more than necessary to prevent occurring
Midas-touch. However, we think that this comparison is unfair from the aspect of
dwell selection because they used dwell time even though they know Midas-touch
occurs (actually, there has been no choice of Midas-touch free dwell selection). The
experimental result may be changed if we use dwell selection where Midas-touch
rarely occurs, such as our DTD-ML selection. Therefore, by using our intent detec-
tion model that prevents Midas-touch, we can evaluate interaction methods under
more fair and ideal conditions again and can observe different findings, although
the comparison has already been made in numerous research.

When utilizing ML-based intent detection that employs human eye behavior,
such as the approach we have developed, for dwell selection with no Midas-touch,
it becomes possible to set a dwell time of Oms as for dwell selection. This is
because intent detection is based on the user’s eye behavior prior to starting the
dwell action. In this case, the size of dwell time roles the delay from when the
user looks at an object to when the target is selected. In this context, the dwell
time serves as the interval between the user’s gaze entering an object and the
subsequent selection of the target. Consequently, a dwell time of O ms indicates
that the selection is triggered as soon as the system detects the user’s gaze entering
the target. However, as our 1st contribution involving the determination of dwell
time based on the human decision-making process, it becomes apparent that a
dwell time of Oms is not ideal. Introducing a certain delay has the potential to
improve the usability of the dwell selection. For example, when selecting a simple
colored object, we suggest that a minimum dwell time of 170 ms be selected for
optimized results. Therefore, by incorporating our findings, the possibility arises
to develop a dwell selection that mitigates Midas-touch while improving usability.

5.3 Conclusions

This thesis revealed how the user intent to either select or not select is detected
using natural eye behaviors and established dwell selection as a daily interaction
method.
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In Chapter 3, we showed the development of a model that determined the
dwell time from the relation between natural human eye behavior of fixation and
the decision-making process, which is described in MHP. Because the decision-
making process differs depending on the tasks, we conducted five selection tasks
with different difficulties in completing the tasks to obtain eye behaviors during
each selection task. Based on the analysis, we justified three hypotheses regarding
the relation between fixation during the gaze-button selection task and MHP. The
model results in fitting to the experimentally obtained data with over 0.9 of R? for
all four tasks. Our model revealed dwell times for selecting an object that users
fixate on it for the first time, for an object that users fixate on it at least two times;
the smallest dwell time should be used to consider the human decision-making
processes.

In Chapter 4, we showed the development of a model that detected user intent
to select a target; the detection was based on ML that utilized features calculated
from the natural eye behaviors during the dwell selection task. To develop the
model, we conducted five tasks to obtain eye behavior from those tasks for the
same reason as in the previous chapter. Based on the obtained eye behaviors, we
developed the model. Our model could classify user intent to select or not to select
with an AUC value of 0.903. The DTD-ML selection, which utilizes our intent
detection model for dwell selection, prevented 40.2% and 90% of Midas-touches
compared to DTD and DT selections, respectively. Moreover, we demonstrated
that the DTD selection yielded equal or better qualitative results of NASA-TLX
and SUS scores than the DT and DTD selections.

Lastly, we demonstrated how the two models can be used for future interaction
on gaze-based interaction.

This thesis reports two models for the detection of user intent to interact with
a computer. However, we have only scratched the surface of how natural human
eye behavior can be used to reveal user intent for gaze-based interaction. There
are more functions and characteristics in natural human eye behaviors that were
not considered in this thesis. Considering our work is a first step toward an in-
depth understanding of the implicitness of natural eye behaviors for gaze-based
interaction, we believe our work has opened a new pathway that extends toward
becoming gaze-based interaction as a common interaction method.
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APPENDIX

Supplementary for Chapter 3

TABLE 5.1: 220 Words used in word task.

Accessibility
Add Cursor

Add Image

Add Ttem

Add List

Add Text
Applications
Arrange All
Asian Layout
Auto Save
AutoFormat
AutoText
Background
Bluetooth

Bold Italic
Bookmark

Bring Forward
Calculate Now
Calculate Sheet
Calculation Options
Change Case
Change Icon
Change Name
Character Count
Check Accessibility
Clipboard

Close Editor

Format Painter
Formatting
From CSV
From Range
From Table
From Text
From Web

Full Screen
Get Help

Get Started
Gridlines

Help Center
Highlighting
Histogram
Hyperlink
Increase Indent
Insert Cell
Insert Function
Join Channel
Join Room
Last Modified
Last Printed
Membership
Merge Cells
More Functions
Mouse Pointer
Move Line

Recording
Rectangle
Reference
Related Dates
Release Note
Remove Arrows
Remove Duplicates
Report Issue
Revert File
Save As

Save Document
Save File

Save Image
Save Text
Searching
Select All
Selection Pane
Send Backward
Sheet Options
Shortcut

Show Comment
Show Comments
Show Formulas
Show Icon
Show Image
Show Minimap
Show Text
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TABLE 5.1: (continued)

Close File
Close Folder
Close Text
Close Window
Collaboration
Component
Connection
Contact Us
Copy Line
Create Shortcut
Custom Footer
Custom Header
Customize
Data Types
Date Time
Decimal Places
Decrease Indent
Define Name
Delete All
Delete Cell
Delete File
Delete Item
Dictionary
Disable All
Document
Document Map
Don’t Show
Download
Draw Table
Duplicate Directory
Duplicate File
Duplicate Item
Duplicate Letter
Duplicate Line
Duplicate Text
Duplicate Word
Enable All

Environment

My Account
Name Manager
Negative Numbers
New Comment
New Folder
New Page

New Terminal
New Text

New Window
Next Comment
Next Editor
Next Page
Notification
Open File
Open Folder
Open Here
Open Recent
Open Text
Organization
Overwrite

Page Numbers
Page Setup
Page Setup
Paragraph
Paste Special
Permission
Personalization
Photography
Plot Graph
Prev Page
Previous Comment
Previous Editor
Print Area
Print Layout
Print Preview
Print Titles
Privacy Statement
Project setting

Shrink Selection
Shut Down
Spell Check
Split Cells
Split Down
Split Left

Split Right
Split Table
Split Terminal
Spreadsheet
Start-Up
Strikethrough
Summarize
Superscript
Switch To
Task Manager
Task Pane
Text Alignment
Text Box

Text Color
Text Cursor
Text Direction
Text Size
Three Columns
Three Rows
Thumbnails
Toolbars
ToolBox

Track Change
Translate

Two Columns
Two Rows
Type Here
Underline
Uninstall
Version History
Video Tutorial
View License
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TABLE 5.1: (continued)

Error Checking
Evaluate Formula
Expand Selection
File Search

Fit Text

Flash Fill

Flip Layout
Footnotes
Foreground

Proofread
Properties
Preference

Quick Access
Recent File
Recent Source
Recently Used
Recommendation

Watch Window
Web Browser
Web Capture
Web Layout
Web Page
Word Count
Word Wrap
Workspace
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FIGURE 5.1: Icons and instructions used for icon task.
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TABLE 5.2: Three-layer hierarchical menu used for the word task.

First layer ‘ Second layer ‘ Third layer

Asia Japan, Korea, China, Thailand
Country Europe France, England, Germany, Spain
America Canada, United States, Cuba, Mexico
Africa Egypt, Ghana, Ethiopia, Kenya
Fish Salmon, Lobster, Tuna, Octopus
Animal Insect Ant, Bee, Ladybug, Beetle
Mammal Gorilla, Monkey, Dog, Horse
Bird Duck, Crow, Sparrow, Hawk
Alcohol Wine, Beer, Whiskey, Sake
Drink Non-Alcohol | Water, Cocoa, Milk, Coffee
Fruit Orange, Apple, Peach, Grape
Tea Earl Grey, Darjeeling, Green Tea, Assam
File Copy, Paste, Open, Undo
Edit Color Red, Green, Blue, White
Window Show, Close, Show All, Close All
Option Preference, Account, Language, Help
Spring March, April, May
Summer June, July, August
Month Fall September, October November
Winter December, January, February

Supplementary for Chapter 4

TABLE 5.3: 300 sentences used in sentence task in Experiment 1.

Instruction Sentence

—~ISeidRE FEDZ XX, FADDLTHEDZ L TT
5, 2L DOMLERNEND T L,

ERGE ENTEKRTE, 552288 SE,. LDk

WUED LI NEETHE I

S SWN)

T, RADKFFHDRFH JIRE T, &
CERDUBSERDEND T,

B E O M I

HEWHIZHOTWD & ZIHIZHIOEWHIZ
HOZl, REXKENELRDLZL,
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TABLE 5.3: (continued)

Instruction Sentence

T AR ENCHDZEDDZ L, HOOTEIID
WTHETNDORELE UTHWBHIRZ N

HEDHDIEITINZERT BNZBEIDH D NIETNZE TENIZOT 5

MUY LBRNnWEWDS ZEDzE Z,

BOWNZIZEN D B

ADPEDERL 728 DX, BIZE-7-2E5D
DOFIZIE, BOBRITTRVWEDLH D,

S e FHRDHINZNEY), KB, £7-. THhIZ
¥IdH0D, BREWEEELITYODR,

HEH A D] FHOIZU TP A, BliEeenlisf
WZTDDEDNRVERIZE D Z ENLW

EEELE LXMDY, AR H-D 8, TP

DOWRENTRTENEE)IZRD L

—HE-oTx/-—%

— DD SHEHE E T ITHIDFHED )
IS Z L, IRZITSKHENE->TL B2 L,

HEZEMIRENSEEST, FEMLZEN
WZAEST WD E NS EDTIER N E WD E
IR

AREIFIZDOLOLRDIZ, OLTHFELLAE
I, Nk, FEINDIELZOBNID-
&z

BAIZERE
B = Epy
AR RL %

JEmH & Hak-> T, Y25k U T,
FENH2HEMW, Uo ez fi> Tk
%

BENS>FIHIZIEE» D

AIZBED NS < 50D AD FA, THIZH
2B, BeEINnEL2eNTILEDT
HB,

15K D

INBLEFANBVIREET, wstilYdize
7528, BVPBOVREIZHEZELS, ED
nsdze,

PR EY RS

MEENY LT, ke HIT LS & T517
e I RTE IRUTHRZRS Z
= ANAN

T3

FAINETES NI L, MARk%c T, EIC
BER BN HDBZ &, EHITTORET,
THE B
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Instruction

TABLE 5.3: (continued)

Sentence

BETCHzZH5

(B2 A 2N THLEE ZAND)
DEDIGFXRDTNRI I TRELRSEZ
"o,

i PR

FTMRAT, PE 2 7 ST AMED R VRV C,
BRA ZRATENZHLD M A CTHREZFIFL & 5
LgH L

LI A

MANMEETEHDDEAZFZ LD T DH,
AT N%2 LENT 05 BTN EE
A0 EED

HNZDFEIRRD

JERIZ99 4 UWRASE D FIXFEHRIZO >
TLERRZEDELHIT, EfER W, fEHE
ANV

SR B

SIWVENTRNVEDBIEIZ RS L5, FEh
DFENN, TDOFEFHEREIENEZ LT DE
ZriRAED L,

EIVED -3

H DD, AR LA U Cildf=
2HIZTH, BOU, PRV, - KT
eIl T 5,

HEIZ—RIZ»d

AP STEE Nz 2 AT, ERIZED
DHTHLEFRERL THEZHD LD )
I B RN,

MNE DRI

HinNE D, BALWE DL, MAZ > THa
IDINEZ O, BIRARNTHRZ<Z>TUL
FHELWVHI L,

A & ) FEAL

VL, HimveikeEzdbNNim U TH.,
HIEDEH & BE L TORITIIEEZRT
HhBEWNWHT &,

ZYHE DR

ZONE DIFEMNELS T UTENTHEY
B2ZBDRBENHLHDT, @MOEDEED &
DIEZEWVWDS Z &,

—H (W5 U) WHE (FAD)

—ODIZ L TETHHIINE LS>T, &
BIX—D2DENWZZEITT, Z2Ih6Mo
HEWERIZEATS 5,

KD FIEEE

() PR EBIBE L TR ETARTOAN
AN IZHU) bR TR R S RN L
> 7k B DA,
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TABLE 5.3: (continued)

Instruction Sentence

AN R BEOLDRHD L, MTERNZ EIZETR
AUKERULNZY, BEODKED 2
D9 5EDTHD,

REVEEITIEZD FlE% et D/ CREEZ 727212, YFHE
M COREPHE 2T, TOHT > & &
IBRTNNEEND,

AN IETE EAREAY <> T, BEoESTIFRARNWTD
& MHEDRIER NI I DR LN, JAAAD
Vo 53 LR R

R NOWAN S THERIES & &, TNEZBATIMEEE L

MBEMTHET S, AL, MELRKRLT
EVNHEDEND T &,

EBEOD—DOHEZ

WAT-F%E, BREICE>THRY BRUMAMIC
DITESZL, WOLRAULILEEIA
EHITTED 2L

Yt

FHBEIZESTHRZBENT, %HIE
52k, F AUEZRRD AT
MREzBEIES 2L,

SE k)

Py

DWECEDH, BRVPEI &, BAR
ENV 2720 & —HUTHULSRDH, [#
Bl 1E -89 5 DKk

PNEVNCE FEXS

RKENITHNIE, DNIWPOHRIZEH
WHNDS, ROVICE S THEITIE., NIl
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ISESRIERTT

TG BUTHhoN) ULTWBFET. =
TAAMBEZT, LiITT0WdZ L, [H
& TEel & eEL,

EEEE-

HATEWZRIZ, Ao THEWEZE (1FE]
HONE) 2IRADHE, AN TEL W%
ThA%HEHNTEDDH,

EEES

LI T, B ZHRIZHED, RITIC
BRI, TAHR] © THE] £ HE1X8%
REIZLBENWZ & OF

W2 & B P

(M SHFHEZEENELTET, £
N EFLODOHFIZADENS,) BN
ITRWEEIZEEFND Z &,
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Instruction

TABLE 5.3: (continued)

Sentence

— TR

(B — BRI TEIInwd Az TR
WORT L) —EIZERERZzZL T
<HIG A, FBIZENS Z &,

HEFT

BHEDREN 63, RalLx»hit. F
DRI DY 2, k-
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TH e KK

KRR EDFHAE, ADPDABREHDLIZ
HBZENEZBNDT, IFHIZE K% 5] S
DERNITHDOELED &,

AT B AR

AR AT, KR ZRY IR LR S HIIZ
EDNTNL WD 5, KBZRREY K
LR OMIRIEZRD Z &,

—Er4 T

— AN TCTTANFEDOBUIKT UMR Z D 1FE iR
Zr, BETTERLS, A EIZENZF
BEXREBOFKLEIZNLULTEED

RIS

PRV IR I DIMD Y | e 25 2
Co MERFZBSTEHONEIL, Rere &
LR DLV ENDL,

S i

EABIMDENEFRLETHoTH, Ll
DR SEEEIZH > TE, WU 2 (o)
LEHEddEDTHdEND I L

JE D RAR

(U RERDES IZESRE T 0ENE
OMNTETHENMIR S RN EnE) (R
ENDRRE LS THRISE BN &,

Y

HOHSZ DT -0, s L0
BEZEINULTEADZ L, HODF %
TEMTIEEEBLUEDS Z %N

&~ H 36

MEIZEDODINT, BOD’ED F FITHMN
WELT I, (ZLDGE. BFEIZE-S
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Instruction

TABLE 5.3: (continued)

Sentence

DOV IZIEREZ IE &

LU WREBREZBODIFERETS7-0,. b
WWFIFEEYRZ CTEVEWEIE L&D
HOBORIZEENEDES I NS,
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22
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WEND TR T, W) K->TH
FIZEHE->TLBINE, HFDZOTE D
%

ESETE

BWTWZ U2 AZIERWIERV, EODTD
U ANZIEEN RO H D, DFD, X
D7 FF VI U TOHRNDIR->TL B LW
> H

— R

(Betk. WL TRIUMERED LIZEFENELD
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AL EDEeRELESL, THOE--HE
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H& ¥,

EADEIZNLD TEADEBEEIZE OV THEE2T R L,
F-THTBHILIZEY, AKX EEE
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52k,

BOTOIFED MAD 7= DIZE SIS U TEHRBE I AR

VR, BEU T, ANFINTETES S - 1597
252k, FLTOEOBRANOHIZ, HD
TDEE,
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TABLE 5.3: (continued)

Instruction

Sentence

REHITIIEIZYE 25

RWSES6HBES E BTROND LD
BREHIZE->-D)TF 5, Uor LTk
RBOWODIZ, REFZRfTEIZE I TREITRY
L DOWD,

HH &5 1E 7K
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—EIZ IR, Rl - IETH -2, FEH
WZEZTH-72DFT2EDIE, BIZE-T
IS XAEZE LA EDOIH % ZFh 5 Z 2 127%
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HEZ A > TITIBIZE 2

Z DM CUISER ) IZA-72 5,
B O & B> TWTE, T il
(£H) DEEPEMIZH > 72178% L D
REIThH5,

EHTED Y
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HLWERS L XISk EDTH D, Wiz
HLWEESTWBEIH WO ETEHERL
EDOTIEARWN

W € J5

IDBREFEIZH->TlE, JifE (FB)
ELUTHEEZSDLSZEEHD, EWnHZehn
O, KEIREEFORITIE, B ERDOLN
5EWVWH &,

RINICALT AR F 25T

(TEMEATHBERIZALZRTNIED T
2EDZEIFHRRN] L nWHZEens)
BRZERAEMZ LR UE, kihds 2
bl =4 AN

BIZHOVETIZHDY

RLEZLEH>EULTEH, EZTHILR A
DEWZD ULTWE 632\, i
2 BHITR/NRPTVEDENS, EEL
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Instruction

TABLE 5.3: (continued)

Sentence

[EZS R

XE, R4 o lkd R GEIRRE) D
Mt ORGSR, 1A TR, 5 24)
M3 TRA] ) B 3RS THRA) |, 55 4 AU T
1 Thd,

FSYNEIEED

AR THWEXLY ELZETRWEZE>
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AN EFTDE, BNMIX-228) Th-o
TH, AUHIBIZHD ZLE2RETARE
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KIZTHETES
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HMETHEZ LFENPRNEWVDNE =DD
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Instruction

TABLE 5.3: (continued)

Sentence

HIIRIT 5N

AT A T ITHNR, JeEBARTNT S
2RI ARV TV ZEDHTITFEL 72k
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Hhd e, BOERTI DML ITE
FTEIRNITHDEDHZ, widk., KEIZH
F25ED, T F—4E0DE %
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mA (GEN) Dfl, kY EIF2LHLGE
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L DODHIZHR - DEETIE, fiDFEIC
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Instruction

TABLE 5.3: (continued)

Sentence

GMEIZE DR
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Instruction

TABLE 5.3: (continued)

Sentence
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TABLE 5.4: SUS questions in Experiment 2.

Question ‘ Sentence

1 I think that I would like to use this system frequently

2 I found the system unnecessarily complex

3 I thought the system was easy to use
I think that I would need the support of a technical person

4 e
to be able to use this system

5 I found the various functions in this system were well inte-
grated

6 I thought there was too much inconsistency in this system

. I would imagine that most people would learn to use this
system very quickly

8 I found the system very cumbersome to use

9 I felt very confident using the system

10 I needed to learn a lot of things before I could get going with

this system

Results of ROC curves
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True positive rate

ROCs for each-participant

ROCs for each-task

ROCs for each-freaquency

1.0 4
0.5 -
AUC (max) = 0.967 AUC (max) = 0.994 AUC (max) = 0.917
AUC (average) = 0.894 AUC (average) = 0.964 AUC (average) = 0.909
AUC (min) = 0.802 AUC (min) = 0.898 AUC (min) = 0.895
0.0 0.0 0.0 4
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ROCs for leave-one-participant-out ROCs for leave-one-task-out ROCs for leave-one-freaquency-out
1.0 4 1.0 4
0.5 1 0.5
AUC (max) = 0.963 AUC (max) = 0.681 AUC (max) = 0.902
AUC (average) = 0.898 AUC (average) = 0.617 AUC (average) = 0.880
AUC (min) = 0.839 AUC (min) = 0.489 AUC (min) = 0.859
00 - T T T T T T 00 L T T T T T T 00 L T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

False positive rate

FIGURE 5.2: ROC curves for each-XXX and leave-one-XXX-out.
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