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A Hausdorff space R is called semibicompact, after L. Zippin 1), 

if for any point p of R and any neighbourhood U of p there exists 
an open set V such that p EVe U and B( V) is bicompact "\ For 
such a space H. Freudenthal has established a theory of "ends "3). 

His theory is concerned with the uniquely determined bicompacti­
fication ,(R) of a ,semibicompact space R, but he has dealt primarily 
with the perfectly separable case. In the present paper we shall 
discuss the same problem from the standpoint of the theory of 
completions of spaces with respect to uniformities 4

) andsuppl~ment 

the theory by the removal of the second axiom of countability for 
R and by the determination of the character of the bicompacti­
fication ,(R). 

§ 1. The bicompactification ,(R) 

Let R be a semibicompact Hausdorff space. Then R is easily 
shown to be a regular space. For convenience an open or closed 
set A of R will be called ,-open or ,-closed if its boundary B(A) is 
bicompact, and a finite covering' composed of ,-open sets will be 
called a ,-covering. 

Lemma 1. FO?~ any ,-covering {G1, ••• , Gm } there exists a ,­
covering {HI' •. " H lIJ such that Hi C Gi , i=l, 2, ... , m. 

1) L. Zippin: On semicompact spaces, Amer. Jour. of Math., 57 (1935), 
327-341. 

2) Here as well as in the sequel we denote by B(X) the boundary of a subset 
X of R: B(X)=X.R-X. 

3) H. Freudenthal: Neuaufbau der Endentheorie, Ann. of Math., 43 (19·12), 
261-279. 

'4) A. Weil: Sur les espaces a structure uniforme et sur la topologie generale, 
Act. Sci. Ind. 551, 193'7; J.W. Tukey: convergence and uniformity in topology, 
1940; K. Morita: On the simple extension of a space with respect to a uniformity, 
1. II. III. IV, Proc. Acad. Japan 27 (1951), 65:-72, 130-137, 166-171, . These 
notes of ours will be cited with S. I, S. II, S. III, S. IV' respectively. 
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Proof. From the bicompactness of B(Gi ) and the regularity 
of R it follows that there exist a finite number of r-open sets 
VI' ... , Vn such that 

m m n 

(2:: B(Gi))(R- 2:: Gi ) C 2:: V h ~ C G1• 
i=2 i=2 i=l 

m _ 11 

If we put HI = (R - 2:: Gi ) + ~ Vi' then we see that lL C G1 and 
i=2 i=l 

{HB Gz, G3 , " •• , GnJ is a r-covering. Repeated application of such 
a process proves Lemma' 1. 

As an immediate consequence of Len1n1a 1 we have 

Lemma 2. FO?" any r-covm"ing therre exists a star rrefinernent 
which is a r-covering. 

Theorem 1. Let R be a semibicO?npact Hausdorif~ space. Then 
R is a c01npletely rregular space and the?Oe exists a bicO?npact Haus­
d011f space S ~{)ith the following p?"operties: 

( a) S contains R as a dense subspace. 
( b) For any point p of S and any neighbourhood U of p thmoe 

exists an open set V of S such that p E: V C U and B( V) CR. 
(c) For any bic01npact HausdO?1f space S' with the p?'ope?"ties 

(a), (b) there exists a continuous mapping of S onto 8' 
which leaves each point of R invariant. 

Such a space S is essentially unigue and will be denoted by r(R). 

Remarl}. In case S has a countable basis, the condition (b) is 
equivalent to the condition 

(b)' dim (S-R):::;: o. 
H. Freudenthal uses (b') instead of (b); he deals primarily with the 
separable case. 

In case R is topologically complete in the sense of E. Cech, the 
condition (b) is likewise equivalent to (b'). Inde'ed in this case 
S - R is an Fa-set and hence. if we express S - R as a. sum of 
bicompact sets An(n=1, 2, ... ) then (b') implies dim An:::;: 0 and 
consequently by a theorem on dimension theory 5) we have (b). 

Proof .oj TheO?oem 1. Let {9Jea;; a En} be the family of all 
r-coverings of R. Then {~J(a;} is a completely regular T-uniformity 

5) K. Morita, On the dimension of normal spaces I, Jap. Jour. of Math. vol. 
20 (19~O) pp. 5-36, Theorem 3.-4. 
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agreeing with the topology (cf. S. 1.), that is, R is a uniform space 
with a uniformity {mea;} in the sense of A. Weil and J. W. Tukey. 
By S. II, § 4, the simple extension (=completion) R* of R with 
res~ect to {mea;} can be considered as the bicompact extension of R 
with respect to a closed basis composed of all r-closed sets. Hence 
if G is a r-open set of R, then G and R-G are also r-closed and 

:::: ------- ~ -G·(R-G)=G·(R-G)=G·(R-G), 

since (J. (R-G) is bicompact, where "'-" denotes the closure opera-
~ ~ ~ --' 

tion in R*. Since G=G=G* and R-G=R*-G*, we have 

(J*. (R*-G*)=G· (R-G). 

Hence R* has the properties (a) and (b). 
Let Sf be any bicompact Hausdorff space with the properties 

(a), (b). If we denote by {~A} the family of all finite open cover­
ings ~A of Sf such that the boundary of any set of mA is contained 
in R, then {mA} is a completely regular T-uniformity of Sf agreeing 
with the topology and S' is complete with respect to {m;,j. If we 
put ?fcA = {V·R; VEmA}, then ?rCA is a r-covering of R and, by S. 
IV, Theoren1 2, Sf can be considered as the simple extension of R 
with respect to {geJ. Hence by S. IV, Theorem 3 there exists a 
continuous mapping of R* onto S' which leaves each point of R 
invariant. Thus R* has the property (c). 

If Sf has further the property (c), {?lcA} is equivalent to {9JcaJ 
by virtue of S. IV? Theorem 3, 'and hence there exists a home­
omorphism of R* onto S' which leaves each point of R invariant. 
This completes our proof 5a

). 

§ 2. A characterization of r(R) 

Theorem 2. r(R) is characterized as a bicompact Hausdorff 
space S with the properties (a) , (b), and ( c)' : 

(c) f Any two disjoint r-closed sets A, B of R have disjoint 
closures in S. 

Proof. As is shown in the proof of Theorem 1, any bicompact 
Hausdorff space S satisfying (a), (b) may be considered as the simple 

5a) The space constructed by Freudenthal is essentially coincident with r(R). 
H. Nakano communicated to me a different proof for the existence of a bicompact 
Hausdorff space S satisfying (a), (b). 
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extension of R with respect to a completely regular T-unifornlity {9c.\} 
consisting of ,-coverings. By the remark at the end of § 2 in S. 
II, the condition (c /) is equivalent to the condition that for any binary 
,-covering there exists a refinement 91.\ E {91,\}. The latter condi­
tion means that {91)J is equivalent to {~1J'£l)}. This proves our theorem. 

Theorem 3. Any r-closed set F of R is semibic01npact as a space 
and reF) is homeornorphic to the closurre of F in the space ,(R). 

Proof. The first part of the theorenl is obvious. Any ,-closed 
subset of the space F is also a ,-closed subset in' the whole space 
R. Hence the second part of the theorem follows readily from 
Theorem 2. 

§ 3. The character of ,CR) 
By the characte1~ of a space we mean the least cardinal nUIn ber 

111 such that there exists an open basis of cardinal nunl ber 111. 

Theorem 4. Let 11t be the cha?~acter of a semibic01npact space R 
and 11 the cardinal nU1nber oj the family of all open-closed sets of 
R, and let m* and 11* be the corresponding ca?~dinal nU1nbers for the 
space ,(R). Then we have m*=mn, that is, 111* is equal to llt OT n 
according as lit:::: n or llt < n. Here we assume that m is infinite. 

Proof. It is sufficient to prove 

( 1 ) 

( 3 ) 

11 - 11*, 

m*>m, 

( 2 ) 

(4) 

m* > n* 

111* ::;;: 111n. 

If A is an open-closed set of R, then its closure A in ,(Fl) 
is open-closed, and conversely if C is open-closed in ,(R), so is C· R 

.---......--
in Rand C=C·R. This proves (1). 

If ®* is an open basis of cardinal number m* for r(R), then any 
open-closed set A of ,(R) is expressible as a finite sum of sets of 0.:>* 
because of the bicompactness of A and hence we have (2). The 
relation (3) is obvious. 

We shall now prove (4). Let @ be an open basis of cardinal 
number 111 for R which consists of r-open sets 6), and let ~ be the 
family of all finite sums of sets of @. We 'denote by ~ the family 
of all the sets K of the form: K=H+P, where HE ~ and P is 

6) If {Ga,} is an open basis of cardinal number nt, then each Ga, is expressoble 
as a sum of r-open sets Ga,YJ nt in number. We may put ~={Ga,")'}. 
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an open-closed set of the subspace R-H. As is easily shown, K is 
open and B(K) C B(H), and hence any set 'of ~ is r-open. 

We shall first show that the cardinal number of ~ is at most 
mn. For this purpose it is sufficient to prOV2 that the family S3(H) 
of an open-closed sets of the subspace R-H has cardinal number 
at most 111n. 

a) If P E B( H) and p. B(H)=O, the~ P is an open-closed set of 
R. Hence the cardinal number of the famiiy of such P is at most n. 

fJ) If PEB(H) and P·B(H)+O, then X-==P·B(H) is an open­
closed set of the subspace B(H). By the same argument as in the 
proof of (2) we see that the cardimd number of the family of all 
open-closed sets of the space B(H) .is at most m. If we have 
X=Q·B(H) for another Q E B(H), then P-Q and Q- P are sets of 
the type discussed in a) and Q is obtained from P by 
Q= {P-(P-Q)} +(Q-P). Hence the cardinal number of the family 
{P;P·B(H) =1==0, P E B(H)} is also at most 111n. 

Thus the cardinal number of 5t is at most mn. We shall next 
prove that for r-open sets L, M such that MeL there exists a set K 
of st such that Me K C L. Since B(M) is bicompact there exists a 
set H of .£) such that B(M) C He L. As is easily shown, (R-H)· M 
is an open-closed set of the subspace R-H. Hence if we put 
K=H+(R-H)M we have MCKCL and KEf{. 

Therefore, in view of Lemma 1, the family {9'C,\,} of all the 
coverings which consist of a finite number of sets of 5t is equivalent 
to the uniformity {mal} consisting of an r-coverings. Hence r(R) 
may be considered as the simple extension of R with respect to 
{91,J and consequently we have (4). This completes our proof. 

As an immediate, consequence we obtain 
Theorem 5. Let R be a semibicompact space with a countable 

basis. Then r(R) has a countable basis if and only if there exist at 
most a countable number of open-closed sets in R. 

The above proof of Theorem 4 shows the validity of the follow­
ing theorems. 

Theore~ ,6. If a Hausdorff space R is zero-dimensional in the 
sense of Menger-U rysohn, so is r(R). 

Theorem 7. If a Hausdorff space R is regularly one-dimensional 
(that is, each point has an arbitrarily small neighbourhood with a 
boundary consisting of a finite number of points), so also is r(R). 

[Sc. Rep. 'F~B.D. Sect. A. 
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§ 4 The quasi .. component space., 

Let {3>J be the family of all finite coverings of R which consist 
of mutually disjoint open-closed sets. If we identify two points x, y 

of R such that x E S(y, .8)J for every ,8,\ and introduce a new topology 
in R by taking the fanlily of all open-closed sets ofR as a basis 
of open sets for this new topology, then the identification space of 
R with this new topology is called the quasi-conlponent space of R 
and it will be denoted by L(R). The mapping f of R onto L(R) 
induced by the above identification is a unifol'lnly continuous map­
ping of R onto L(R), where we consider R as a space with a 
uniformity {Wl,J (cf. the proof of Theorenl 1) and L(R) as a space 
with a uniformity {f(B.\)} consisting of finite open coverings 'which 
are obtained as the images of 3,\ by f. Then by S. II. Theorem 3 
f can be extended to a continuous nlapping -f* frOln r(R) into 
r(L(R)). It is easy to see that f* induces a hOnle01110rphisnl of 
L(r(R) onto r(L(R)). Hence we have 

Theorem 8. The quasi-component space L(r(R) of r(R) is 
homeomorphic to ,(L(R)). 

The character of L(R) is not greater than 11, where the .meaning 
of m and 11 are the SaIne as in § 3, and hence the character of 
r(L(R» is equal to n by Theorem 4 in case 11 is infinite. The latter 
fact is also seen from (1) in § 3 and Theorem 8. If n:S: ~ 0, any 
decreasing sequence of non-enlpty open-closed sets of R has a non­
empty intersection, since otherwise there would exist a countable 
number of non-empty open-closed sets V n , n=l, 2, .. , such that 

co 

R= b V n , Vi' Vj=O for i <}~ and hence we would have 11 > ~ 0' I 

n=l 

Hence we have LCR)=r(L(R)). 'Conversely if L(R) is a compactum 
then we have r(L(R»)=L(R) and n < ~ o. Therefore we have by 
Theorem 5 

Theorem 9. For a semibicompact Hausdorff' space R with a 
countable basis, rCR) has a countable basis if and only 1f the quasi­
component space L(R) is a compactum. 

The original formulation of Freudenthal will then be obtained 
from Theorem 9 if LCR) is replaced by r(L(R))7). 

§ 5 The case where R has a countable basis. 

Theorem 10. Let R be a semibicompact Hausdorff space with a 

7) H. Freudenthal, loco cit. Satz V 1. 
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countable basis. Then there exists a compactum S with the proper­
ties (a), (b) in Theorrem 1. 

piroof. By the assumption there is a uniformity {Un; n=l, 2, ... } 
. which consists of a countable number of r-coverings and agrees 
with the topology. For a covering @ of R and a subset X of R 
we denote by (@ I X) the family {G; G·X=\=O, GE @}. We can 
then construct a countable number of r-coverings ~n' n=l, 2, .... 
with the fonowing properties: 

Un) ~n is a star refinment of ~n-l • 

(3,.) ~n is a refinement of Un0 

rn) ~n is a refinement of the coverings 

{V)i\ R- VSi\ (~n-ll B(VSi
))} for i=l, 2, ... , n-1; 

j=l, ... ,ri , where ~i= {VSi
); j=l, 2, ... , r.l }. 

This construction is possible by induction with the aid of Lemma 2. 
Then {~n} is a completely regular T-uniformity agreeing with the 
topology. Let R* be the simple extension of R with respect to {~1n}. 

~ 

By S. II. Theorem 2 the boundary of (V)i)*=R*-(R- VSO) in R* 
coincides with the boundary of VSi

) in R (cf. the proof of Theorem 
1). Hence R* is a compactum with the properties (a), (b). 

As an application of Theorem 10 we can now prove the follow­
ing theorem of L. Zippin7a

). 

Theorem 11. If R is a semibicompact, sepa?~able metric space 
and topologically complete in the sense of M. Frechet, then there 
exists a com pactum S such that S contains R as a dense subset and 
S -R consists of a countable number of points. 

P?·oof. By the assumption R is a Go-set in the compact metric 
space R* constructed in Theorem 10, so that there exists a count­
able number of compact sets An, n=l, 2, ... such that 
R*-R=A1 +A2 +···. The subspace (Al+···+Ai)-(Al+ ···+Ai - l ) 

is a locally compact separable metric space of dimension at most zero, 
and hence it is expressible as a su~ of a countable number of 
disjoint compact sets. 

Therefore there exists a countable number of disjoint compact 
sets X n , n= 1, 2, ... such that 

7a) Cf. L. Zippin, loco cit. 

[Sc. Rep. T.B.D. Sect. A. 

(206 ) 



On Bicompactiffcations of Semibicompact Spaces 229 

00 

R*-R= b Xn; Xi·Xj=O for i==Fj. 
1),=1 

Since dim Xi < 0, there exist a finite number of disjoint compact 
sets Xij (j = 1, 2, ... ,Si) of diameter less than 1/ i such that 
Xi=Xa +X12 + ... +XlSi' On changing the notations we see that 
there can be found a countable number of closed sets Cn, n= 1, 2, ... 
such that 

(5) R*-R=~Cn; Ci·Cj=O for i==Fj, 
)1,=1 

(6) the diameter of Ct converges to zero as i -+ 00. 

It is easy to see that the collection of the sets en" n=l, 2, ... and 
the points p of R defines an upper semi-continuous decon1position 
of R*. By constructing this decomposition space we have a desired 
space S. 

Remarrk. The above proof gives likewise a proof of a theorem. 
of G. Nobeling to the effect that any regularly one- dimensional 
separable metrizable space can be imbedded in a regularly one­
dimensional compactum 8). 

8) G. N6beling, Math. Ann. 104 (1931), 81-91; C. Kuratowski, Fund. Math. 
30 (1938), 8-13; for the theorem used by Kuratowski cf. also K. Morita, Sci. Rep. 
of Tokyo Bunrika Daigaku, Sec. A, 4 (1949), No. 84, 151-155. 
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