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A Hausdorff space R is called semibicompact, after L. Zippin®,
if for any point p of R and any neighbourhood UV of p there exists
an open set V such that pe VCU and B(V) is bicompact™. For
such a space H. Freudenthal has established a theory of “ends”®.
His theory is concerned with the uniquely determined bicompacti-
fication y(R) of a semibicompact space R, but he has dealt primarily
with the perfectly separable case. In the present paper we shall
discuss the same problem from the standpoint of the theory of
completions of spaces with respect to uniformities® and supplement
the theory by the removal of the second axiom of countability for
R and by the determination of the character of the bicompacti-
fication y(R).

§ 1. The bicompactification 7(R)

Let R be a semibicompact Hausdorff space. Then R is easily
shown to be a regular space. For convenience an open or closed
set A of R will be called y-open or 7-closed if its boundary B(A4) is
bicompact, and a finite covering composed of r-open sets will be
called a y-covering.

Lemma 1. For any r-covering {Giy, ..., G,} there ewists a -
covering {H, ..., H,} such that H C G, i=1,2, ..., m.

1) L. Zippin: On semicompact spaces, Amer. Jour. of Math., 57 (1935),
327-341.

2) Here as well as in the sequel we denote by B(X) the boundary of a subset
Xof R: BX)=X-BE-X.

3y H. Freudenthal: Neuaufbau der Endentheorie, Ann. of Math., 43 (1942),
261-279.

4) A. Weil: Sur les espaces a structure uniforme et sur la topologie générale,
Act. Seci. Ind. 551, 1937; J.W. Tukey: convergence and uniformity in topology,
1940 ; K. Morita: On the simple extension of a space with respect to a uniformity,
I. II. IIL. IV, Proc. Acad. Japan 27 (1951), 65-72, 130-137, 166-171, . These
notes of ours will be cited with S. I, S.II, S.III, S.IV respectively.
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On Bicompactifications of Semibicompact Spaces

Proof. From the bicompactness of B(G,) and the regularity
of R it follows that there exist a finite number of jy-open sets
Vi --., V, such that

(S BENER- 3603 Vi, TG

If we put H1=(R——i(7i)+ i V., then we see that H, C G, and
f=2 i=1 .

{(H,y Gyy Gy - .., G} I8 a 7-covering. Repeated application of such
a process proves Lemma - 1.
As an immediate consequence of Lemma 1 we have
Lemma 2. For any r-covering there exists « star refinement
which 18 a 7-covering.
Theorem 1. Let R be a semibicompact Hausdor(l space. Then
R s a completely regular space and there exists a bicompact Haus-
dorff space S with the following properties :
(a) S contains R as a dense subspace.
(b) For any point » of S and any neighbourhood U of p there
exists an open set V of S such that pe VU and B(V)R.
(e¢) For any bicompact Hausdorff space S’ with the properties
(@), (b) there exists a continuous mapping of S onto S’
which leaves each point of R invariant.
Such a space S is essentially unigue and will be denoted by 7(R).
Remark. In case S has a countable basis, the condition (b) is
equivalent to the condition '

(b’ dim (S—R) < 0.

H. Freudenthal uses (b’) instead of (b); he deals primarily with the
separable case.

In case R is topologically complete in the sense of E. Cech, the
condition (b) is likewise equivalent to (b’). Indeed in this case
S—R i3 an F,-set and hence if we express S—R as a sum of
bicompact sets A,(n=1,2, ...) then (b’) implies dim A4, <0 and
consequently by a theorem on dimension theory® we have (b).

Proof of Theorem 1. Let {M,; acQ} be the family of all
r-coverings of R. Then {IM,} is a completely regular T-uniformity

5) K. Morita, On the dimension of normal spaces I, Jap. Jour. of Math. vol.
20 (1950) pp. 5-36, Theorem 3.-4.
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agreeing with the topology (cf. S. I.), that is, R is a uniform space
with a uniformity {IM,} in the sense of A. Weil and J. W. Tukey.
By S. II, §4, the simple extension (=completion) B* of R with
resnect to {M,} can be considered as the bicompact extension of &
with respect to a closed basis composed of all y-closed sets. Hence
if G is a r-open set of R, then G and R—@G are also y-closed and

G-B—0)=C-(B—0)=G-(R—G),

since G-(R—G) is bicompact, where ~ denotes the closure opera-
tion in R*. Since G=G=G* and R—G=R*—G*, we have

G - (R —GN=G-(R—G).
Hence R* has the properties (a) and (b).

Let S’ be any bicompact Hausdorff space with the properties
(@), (b). If we denote by {&8,} the family of all finite open cover-
ings B, of S’ such that the boundary of any set of %, is contained
in R, then {3,} is a completely regular T-uniformity of S’ agreeing
with the topology and S’ is complete with respect to {8,}. If we
put N, ={V-R; VeQ,}, then N, is a r-covering of R and, by S.
IV, Theorem 2, S’ can be considered as the simple extension of R
with respect to {9,}. Hence by S. IV, Theorem 3 there exists a
continuous mapping of R* onto S’ which leaves each point of £
invariant. Thus R* has the property (c).

If S’ has further the property (c), {:,} is equivalent to {0, }
by virtue of S. IV, Theorem 3, and hence there exists a home-
omorphism of R* onto S’ which leaves each point of R invariant.
This completes our proof®,

§ 2. A characterization of 7(R)

Theorem 2. 7(R) is characterized as a bicompact Hausdorff
space S with the properties (2), (b), and (¢)':

(e)) Any two disjoint y-closed sets A, B of R have disjoint
closures in S.

Proof. As is shown in the proof of Theorem 1, any bicompact
Hausdorff space S satisfying (a), (b) may be considered as the simple

5a) The space constructed by Freudenthal is essentially coincident with 7(R).
H. Nakano communicated to me a different proof for the existence of a bicompact
Hausdorff space S satisfying (a), (b).
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On Bicompactifications of Semibicompact Spaces 225

extension of K with respect to a completely regular T-uniformity {J,}
consisting of y-coverings. By the remark at the end of §2 in S.
II, the condition (¢’) is equivalent to the condition that for any binary
y-covering there exists a refinement N, e {N,}. The latter condi-
tion means that {9,} is equivalent to {M,}. This proves our theorem.

Theorem 3. Any r-closed set F of R is semibicompact as a space
and y(F) is homeomorphic to the closure of F' in the space y(R).

Proof. The first part of the theorem is obvious. Any 7-closed
subset of the space I is also a y-closed subset in the whole space
R. Hence the sscond part of the theorem follows readily from
Theorem 2.

§3. The character of 7(R)

By the character of a space we mean the least cardinal number
m such that there exists an open basis of cardinal number m.
Theorem 4. Let m be the character of a semibicompact space R
and n the cardinal nmumber of the family of all open-closed sets of
R, and let m* and n* be the corresponding cardinal numbers for the
space 7(R). Then we have wm*=uwm, that is, m* is equal to m or
accordeng as m=n or m<n. Here we assume that m s infinite.
Proof. 1t is sufficient to prove

(1)  w—=n (2)  wrxn
(3) m* >, (4) m* < mn.

If A is an open-closed set of R, then its closure A in 7(R)
is open-closed, and conversely if C is open-closed in y(R), sois C-R
in B and Czé‘\é. This proves (1).

If ®&* is an open basis of cardinal number m* for y(R), then any
open-closed set A of 7(R) is expressible as a finite sum of sets of &*
because of the bicompactness of A and hence we have (2). The
relation (3) is obvious.

We shall now prove (4). Let & be an open basis of cardinal
number m for B which consists of y-open sets®, and let § be the
family of all finite sums of sets of &. We denote by & the family
of all the sets K of the form: K=H+P, where He 9 and P is

6) If {G} is an open basis of eardinal number m, then each G, is expressoble
as a sum of y-open sets Gy, m in number. We may put @={Gx}.
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an open-closed sst of the subspace R—H. As is easily shown, K is
open and B(K) C B(H), and hence any set-of & is r-open.

We shall first show that the cardinal number of & is at most
mn. For this purpose it is sufficient to prove that the family £(H)
of all open-closed sets of the subspace R—H has cardinal number
at most mn. '

a) If Pe®(H) and P-B(H)=0, then P is an open-closed set of
R. Hence the cardinal number of the famiiy of such P is at most n.

B) If Pe%(H) and P-B(H)==0, then X=P-B(H) is an open-
closed set of the subspace B(H). By the same argument as in the
proof of (2) we see that the cardinal number of the family of all
open-closed sets of the space B(H) is at most m. If we have
X=Q-B(H) for another Qe &(H), then P—@Q and Q—P are sets of
the type discussed in «) and @ is obtained from P by
Q={P—(P—Q)} +(Q—P). Hence the cardinal numbar of the family
{P;P-B(H)==0, Pe&(H)} is also at most mn.

Thus the cardinal number of & is at most mn. We shall next
prove that for r-open sets L, M such that M < L there exists a set K
of & such that M C K L. Since B(M) is bicompact there exists a
gset H of § such that B(M)C H L. Asis easily shown, (R—H)-M
is an open-closed set of the subspace R—H. Hence if we put
K=H+(R—H)M we have MC K L and Ke 8.

Therefore, in view of Lemma 1, the family {9,} of all the
eoverings which consist of a finite number of sets of & is equivalent
to the uniformity {9t,} consisting of all y-coverings. Hence 7(R)
may bs congidered as the simple extension of R with respect to
{MN,} and consequently we have (4). This completss our proof.

As an immediate. consequernice we obtain

Theorem 5. Let R be a semibicompact space with a countable
basis. Then y7(R) has a countable basis if and only if there exist at
most a countable number of open-closed sets in R.

The above proof of Theorem 4 shows the validity of the follow-
ing theorems. ‘

Theorem 6. If a Hausdorff space R is zero-dimensional in the
sense of Menger-Urysohn, so is r(R).

Theorem 7. If a Hausdorff space R is regularly one-dimensional
(that s, each point has an arbitrarily small neighbourhood with a
boundary consisting of a finite number of points), so also is 7(R).

[Se. Rep. T.B.D. Sect. A.
(204



On Bicompactifications of Semibicompact Spaces 227

§4 The quasi-component space..

Let {&} be the family of all finite coverings of R Whlch consist
of mutually disjoint open-closed sets. If we identify two points z, y
of R such that xe S(y, &) for every ¢, and introduce a new topology
in R by taking the family of all open-closed sets of R as a basis
of open sets for this new topology, then the identification space of
R with this new topology is called the quasi-component space of R
and it will be denoted by L(R). The mapping f of R onto L(R)
induced by the above identification is a uniformly continuous map-
ping of R onto L(R), where we consider R as a space with a
uniformity {M,} (cf. the proof of Theorem 1) and L(R) as a space
with a uniformity {f(%,)} consisting of finite open coverings which
are obtained as the images of ¥, by f. Then by S. II. Theorem 3
S can be extended to a continuous mapping -f* from y(R) into
r(I{R)). It is easy to see that f* induces a homeomorphism of
L(y(R)) onto y(L(R)). Hence we have

Theorem 8. The quasi-component space L(r(R)) of 7(R) s
komeomorphic to y(L(R)).

The character of L(R) is not greater than n, where the meaning
of m and n are the same as in §3, and hence the character of
r(L(R)) is equal to n by Theorem 4 in case n is infinite. The latter
fact is also seen from (1) in §8 and Theorem 8. If n<C =, any
decreasing sequence of non-empty open-closed sets of R has a non-
empty intersection, since otherwise there would exist a countable
number of non-empty open-closed sets V,, n=1,2, ... such that
R= i V., Vi-V,=0 for i< j, and hence we would have n > s,
Hence we have L(R)=7(L(R)). Conversely if L(R) is a compactum
then we have 7(L(R))=L(R) and n< s, Therefore we have by
Theorem 5

Theorem 9. For a semibicompact Hausdorfl space R with o
countable basis, y(R) has a countable basis if and only if the quasi-
component space L(R) is a compactum.

The original formulation of Freudenthal will then be obtained
from Theorem 9 if L(R) is replaced by r(L(R))".

§5 The case where R has a countable basis.
Theorem 10. Let R be a semibicompact Housdorff space with a

7) H. Freudenthal, loc. cit. Satz VI.
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countable basis. Then there ewists a compactum S with the proper-
ties (a), (b) in Theorem 1.

Proof. By the assumption there is a uniformity {I1,;n=1,2,...}
which congists of a countablée number of y-coverings and agrees
with the topology. For a covering & of B and a subset X of R
we denote by (&|X) the family {G;G-X=0, Ge®}. We can
then construct a countable number of y-coverings B, n=1,2, ....
with the following properties:

u,) B, is a star refinment of ¥, _, .
£ B, is a refinement of U,.
72) B, is a refinement of the coverings

{V$D, R—-T_/'(j@, B, | B(VP)} for ¢=1,2,..., n—1;
j=1, ..., 7, where B,={V{P;5=1,2,...,7].

This construction is possible by induction with the aid of Lemma 2.
Then {%B,} is a completely regular T-uniformity agreeing with the
topology. Let R* be the simple extension of I with respect to {8,}.
By S. II. Theorem 2 the boundary of (V¢)*=R*—(R— V) in R*
coincides with the boundary of V¢ in R (cf. the proof of Theorem
1). Hence R* is a compactum with the properties (a), (b).

As an application of Theorem 10 we can now prove the follow-
ing theorem of L. Zippin™.

Theorem 11. If R is a semibicompact, separable metric space
and topologically complete in the semse of M. Fréchet, then there
exists a compactum S such that S contains R as a dense subset and
S—R consists of a countable number of points.

Proof. By the assumption B is a Gs-set in the compact metric
space R* constructed in Theorem 10, so that there exists a count-
able number of compact sets A4,, n=1,2, ... such that
R*—R=A4,4+A,+---. The subspace (4,+---+A4)—(4,+---+A4,)
is a locally compact separable metric space of dimension at most zero,
and hence it is expressible as a sum of a countable number of
disjoint compact sets.

Therefore there exists a countable number of disjoint compact
sets X,, n=1, 2, ... such that

7a)y Cf. L. Zippin, loc. cit.
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R*—R=3SX,; X,-X,=0 for i==j.

N=1

Since dim X,<0, there exist a finite number of disjoint compact
sets X,;(7=1,2,...,s) of diameter less than 1/¢ such that
X,;=X,+X,+ - +Xi5,- On changing the notations we see that
there ean be found a countable number of closed sets C,, n=1, 2, ...
such that

(6) R*—R=3,C,; CiCy=0 for izkj,
(6) the diameter of C, converges to zero as ¢ — co.

It is easy to see that the collection of the sets C,, n=1, 2, ... and
the points p of R defines an upper semi-continuous decomposition
of R*. By constructing this decomposition space we have a desired
space S. .

Remark. The above proof gives likewise a proof of a theorem
of G. Nobeling to the effect that any regularly one- dimensional
separable metrizable space can be imbedded in a regularly one-
dimensional compactum?®.

8) G. Nébeling, Math. Ann. 104 (1981), 81-91; C. Kuratowski, Fund. Math.
30 (1938), 8-13; for the theorem used by Kuratowski cf. also K. Morita, Sci. Rep.
“of Tokyo Bunrika Daigaku, Sec. A, 4 (1949), No. 84, 151-155.
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