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§ 1. Introduction.

For an arbitrary field K a group & of finite order determines
an associative algebra I'(®, K), the group ring over K. Asis well
known, I'(®, K) is not semisimple if the characteristic of K is a
prime number p dividing the order of &. In the present paper
we shall study the structure of I'(®, K) for the case where the
radical of I'(®, K) is expressible as a prinecipal ideal.

“Let A be a ring with a unit element which satisfies the
minimum condition for left and right ideals. A is called to be
quasi-primary, if A is indecomposable as a two-sided ideal and 4
is a direct sum of indecomposable left ideals which have the same
multiplicity. If A is a direct sum of two-sided ideals which them-
selves are quasi-primary rings, we shall say that 4 is quasi-primary-
decomposable. In case A is an algebra over an algebraically closed
field K, the second condition in the definition of quasi-primary
rings amounts to saying that all irreducible representations of A
in K have the same degree. On the basis of these definitions it
will be shown that the radical of A is a principal left ideal as
well as a principal right ideal if and only if A is quasi-primary-
decomposable and generalized uni-serial in the sense of T. NAKa-
YAMA",

Let p be a fixed prime number and & a group of finite order
g = p'g’ with (p, ¢') == 1. We denote by § a p-Sylow-subgroup of
® and by $ the largest normal subgroup of & which has an order
prime to p. These designations shall be retained throughout the
present paper.

Let K be an algebraically closed -field of characteristic p. Then

1) T. NaAKAvaMA: On Frobeniusean algébras II, Ann, of Math., 42 (1941)-
pp. 1-21.



178 K. Morita :

it will be shown in §4 that I'(®, K) is quasi-primary-decomposa-
ble if and only if D9 iz a normal subgroup of & and the factor
group &/OP is commutative. In §5 we prove that the radical of
the group ring ['(®, K) is expressible ag a prineipal left ideal and
ag a principal right ideal if and only if HP is a normal subgroup
of & and P is a cyclic group.

In conclusion we shall mention a theorem that for a group &
with a eyelic p-Sylow-subgroup the normalizer of any subgroup of
an order p"(h > 0) has the group ring whose radical is a principal
ideal.

§ 2. Rings whose radicals are principal ideals.

Let 4 be a ring which has a unit element and satisfies the
minimum condition (whence also the maximum condition) for left
and right ideals.

Theorem. 1. In order that the radical N of a ring A be a
principal left ideal and o principal right ideal: N= Ac = dA, 1t is
necessary and suflicitent that A be quasi-primary-decomposable and
generalized uni-serial.

Proof. 1) Necessity. From the assumption that N = A¢c = dA
it follows that N =cA = Ad and A is a generalized uni-serial
ring?. Let A be a direct sum of indecomposable left ideals Ae,, :

A = Aen+--7+A8;_,(,)+--'+Ae¢,,+~-'+Aeﬂ.f(ﬂ),

where ¢,; are mutually orthogonal primitive idempotent elements,
Ae,; is isomorphic to Ae, for 1=1, 2, ..., flx) and Ae,; is not
isomorphic to Ae.; if k==r. )
Then it is easily seen that N” (= Ac® = ¢*A) is expressible as
a direct sum of Ac’e,:
n 1(K)

(1) NY =37 > Acve,, v=1,2, ...,

K=1 i=1

and similarly as a direct sum of Aec*:

n 1T
(2) N =3 Sdege,  v=1,2, .
T=1 j=1

2) T. NAKAYAMA: Note on uni-serial and generalized uni-serial rings, Proc.
Imp. Acad. Tokyo, 16 (1940), pp. 285-289. G. AzuMAYA and T. NaKAYAMA, On ab-
solutely uniserial algebras, Jap. Jour. of Math., 19 (1948), pp, 263-273, Theorem 4.
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On group rings over a modular field 179

Now we shall prove that

(3) Ace,; is isomorphic to Ace,, for ¢ =1, 2, ..., fl«),

(4) Ae;¢ is isomorphic to Ae.¢” for 7=1,2, ..., f(r),
(5) Ac’e,; i3 not izomorphic to Ac¥ey if «==+,

(6) Aec” is not isomorphic to Aeye® if r==«,

(7) Ac’e,; and Ae.;¢* are indecomposable left ideals,

where we exclude Ac’e;i and Ae.;¢’ such that Ae’e,;, = 0, Ae ¢’ =0.

Proof of (3) and (4) is obvious.

Proof of (5). Suppose that Ac’e,; = Ac’e;. Then we have
NYey | N ey = Aeu/ Ney,, NYey| N ey = Ae,./Ne,, for some e,
since A is generalized uni-serial. . If we take elements a, b such
that a€e, . NVe,:, bee,,Ney;, a e N°*', b N¥"', then it holds that
€.N*=aA =0bA. Hence e, N’ is homomorphic to e,A4 as well
as to e;A and so we have « = r.

Proof of (6) is obvious from the fact that Ae ¢’ is homomor-
phic to Ae.;.

Proof of (7). Ac’e. is homomorphic to some Ae,. and Aec’
is homomorphic to Ae.;. Since each Ae,, has only one composition
series, Ac¥e,; and Ade.c’ are indecomposable left ideals.

Thus (8), (4), (6), (6) and (7) are proved. Hence, by the Krull-
Schmidt theorem, there exists a one-to-one correspondence ¢ be-
tween the subsets of {1, 2, ..., »} such that

{ 8 ) Acvexl = Aewx). 1 Cv}y
(9) SFlk) = flple)),

where we exclude those Ac%,; and Aeyc¢® which reduce to zero.
From (8) it follows further that

(10) Nvem/'NvHe,ﬂ -(:—;Ae;(,c)_']/.Nez'»;(x)’j if Acve,cy # 0 .

Therefore the number f(«) is the same for any Ae,; contained
in a fixed indecomposable two-sided ideal. This shows that 4 is
quas’i-primary-decomposable.

2) Sufficiency. Let us put
Nem /Nzem = A&p(,;). 1/Ne¢(,;). 1

Vol. 4, No. 88.]
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180 K. Morita :

Then we find, as in the proof of (5), that «=F+ implies @(«)t=p(r)-
Since Ae,, and Ae,y, are contained in the same indecomposable
two-sided ideal, we have fl«) = f(®¢(«)), according to the assump-
tion that A is quasi-primary-decomposable. For an element ¢,;
such that ¢ € ey, Neg, ¢ € N°, we have
an Acy; = Ney, CeiA = e,y ;N .

Hence, if we put ¢'= Zfﬁ ¢, we obtain a direet sum decomposi-
tion: Ac=3"314c,.” By (11) we concludé that N=Ac. Similar-
ly ¢4 is a di";ecqg sum of ¢ A = ey, N, and N=c¢A. Thus the
proof of Theorem 1 is completed.

Remark. As is easily shown, a generalized uni-serial ring is
not quasi-primary-decomposable in general*.

Lemma 1. If A s generalized umi-serial and quasi-Froben-
susean?, then the length of a composition sertes of Ae,; is the same
for auny Ae,; contained in o fized indecomposable two-sided ideal.

Proof. Suppose that Ne./N?e. = Ae./Ne, . Since Ne, = Ab,
e N = bA for an element b such that bee.,Ne,, be N? the mapp-
ing ae., — ae.,b induces a homomorphism of Ae., onto Ab= Ne,,
and hence we have an isomorphism Ae./Ae,~IN) = Ne,. Since
A is quasi-Frobeniusean, we have [(N) = r(IN) and Ae,~r(N) is a
simple left ideal. Thus our lemma is proved.

Remark. From Lemma 1 it follows that for a symmetric
algebra A which is generalized uni-serial the factor groups ap-
pearing in the composition series of indecomposable left ideals
belonging to the same block have the following types:

‘43,;; : d; a«g PR am Of) LI %n LIRS am, (24}
Aeﬂ O Oy ... Q O e eae O cene O [22)
Ae}q 10 O .. Dl Qg o 000 Ol o v a0 Uy Oy s

where «; denotes a type of groups. Hence the Cartan matrix
corresponding to this block is of the form

a4 00
b e d)with
e . . e ¢Sy
coefficients in a given field is a generalized uni-serial ring, but not quasi-primary-
decomposable. ‘

3) T. NAkAvAmA: loc. cit., 1), p. 8.

2a) The set of those matrices of order 3 which are of the form (
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On group rings over a modular field 181

s+1 S .. s
s s+1....... s
s s s+1

8 3. The group ring I'(®, K) in the case where
HP is a normal subgroup of ®.

1. We assume throughout this section that DR is a normal
subgroup of &Y and that the ground field K is an algebraically
closed field of characteristic ».

The group ring (9, K), which we shall denote also by I(9)
for the sake of simplicity, is clearly semisimple, and hence it is
expressed as a direet sum of simple two-sided ideals. Let

N Ly

(12) HOES WL

k=1 =

be such a decomposition of /(9), where e, are mutually orthogonal
idempotent elements, and if we denote by &, the set of elements
G of & for which G le,G =e¢,, the following relations are as-
sumed to be wvalid:

(13) ®K={G;G—‘6K1G:ehf1}7 (“\j=@ACQI£1+..‘+@ATQh‘t,\:)
Q.‘ﬂ:E’ (@5:®x)=tx:

(14) Qm:_lem Qm’ = €y, 1= 1: 2’ ceey by,
(15) en=LSH, h=(9:E), t=1.
h Hed

For any element G of &, the mapping a— G'aG (a € I'(De.)
defines an automorphism of the simple ring I'(D)e. and hence
there exists an element M(G) of I'(9)e. such that

G 'aG = M(GF) 'aM(G3), for every element a of I'(D)e, .
The element M(G) is determined by G uniquely apart from a
factor belonging to the field K. Here we can put
M(H) = He,,, for any element H of $.

We choose representatives S,, S., ... from each coset S,9, S.9, ...
of &, mod $ (the representative of the coset § shall be a unit

4) For the significance of the subgroup © cf. the introductien.

Vol. 4, No. 88.]
(169)



182 K. Morita :
element E of ®), and determine M(S,), M(S.), ... in any way,
and define

M(HS,) = M(H)M(S,) , for He 9.

Then the factor set {¢(G,, Gu); Gy, G.€®,} arising from the rela-
tions ’

(16) M(G)M(F) = oGy, G)M(G,G>)
is essentially a factor set of &,./9, that is,
c(S, H, S.H) = ¢(HS,, HS.) = ¢(S,, S.)

for any H, He¢9. Hence we may denote ¢(S,,S:) by c(o, 7}
(O'y TE @r:/‘i))'
~ If we put

) HU(O') = SU'M(SO)—-X’ o€ @h/"b y
then we have
an uo(@)o(r) = (e, )" UoloT) -

Hence all the elements of the form

(18) SN xeu(o) - 2, € K

g€, H
constitute an algebra ®) over K and we have
(19) r(@x ’ K)em = F(@)em X @2‘ .

Moreover, if we put

(20) €, = €,y +e,cz+" .. +e,; £y
(21) d’ij = thiuieicl Qirjs ?:’ .7 = 17 sy tlc ’
ti ty
(22) u(o‘) = 4?_1\ Qm‘—]uo(a)Qm‘ = g da uu(a')dm P
tx 175
(23) EMJ. = ?:AI Qm‘._’CAp. Qm? = ; dil Clpdli y

where ¢,, are matrix-units in I'(9)e.: F(Den = 2 Ko, 12,
w<fl), then we can easily prove that

[Se. Rep. T.B.D. Sec. A.
(160)



On group rings over a modular feld 183

(24) (G, K)e, = A, xB. x D, ,
where

(25) A =S Kéy, = IN'(®)en =K e

(26) B, =>Kd,; = K,_,

(27) D, = e@%}/@u (K = D.

Therefore we obtain
28) I, K)e, = '(9, K)epx D, x K, .
and in particular

(29) I(®, Kye, = M®/9, K), e =en=LSH.
h fen

If we denote the centrum of I'(§) by 3 and define Gox = GaG™!
for any element x of 3, 3 may be considered as a left &/H-module.
By means of the basis e, ..., €., of 83 we have a representation
of & by permutations of the elements e,, ..., e, ., - On the other
hand, the totality of the sums of conjugate elements of H forms
a basis of 3, by which we obtain another representation of & by
permutations of the classes of conjugate elements of . The
number m is equal to the multiplicity of the 1l-representation in
the former representation. Hence the number m is equal to the
number of classes of conjugate elements of & contained in 9.

We summarize these results as follows™.

Theorem 2. Let © be the largest normal subgroup of & which
has an order prime to p, and let

m Ly
(12) I, K) = g 219, Klex:

be a decomposition of I'(D, K) into a direct sum of stmple two-sided
ideals I'(D, K)e.. and let us further assume that the relations (13),
(14), (15) hold.

5) Cf. A. H. CLIFForRD: Representations induced in an invariant subgroup, . .

Ann. of Math., 38 (1937), pp. 533-560; T. Nakavama and K. SHopa, Uber die
Darstellung einer endlichen Gruppe durch halblineare Transformationen, Jap. Jour.
of Math., 12 (1936), pp. 109-122.
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184 K. Morita :

Then +f we put
(20) ‘ e =¢€ntent --+eq ,

', K) is a direct sum of lwo-sided ideals I'(®, Ke,. , and
(28) 1(®, Kle, = 1'(D, Kle.xD.x K,_,
(29) I'(®, Kle.=1'(8/9, K),

where D, is isomorphic to the (generalized) group 7ving of &/ over
K with a factor set {c(e, )" '} (cf. (17), (18), (27)). The number m
of the direct summands I'(®, K)e. is equal to the number of the
classes of conjugate elements of & which are contained in D.

2. Now we shall state a lemma which is easily obtained from
a theorem of R. Brauer and C. Nesbitt®.

Lemma 2. The number of blocks of lowest kind of & 4s equal
to the number of classes of conjugate elements of It contained in N,
where N is the normalizer of a p-Sylow-subgroup B and M is the
largest normal subgroup of N which has an order prime to p. (It
is to be noted that the centralizer € of R is a direct product of
M and €~P).

According to Lemma 2 we obtain

Corollary to Theorem 2. In case DP s a normal subgroup
o &, I'(®, Ke, is the indecomposable two-sided ideal corresponding
to the first block of &.

If $ is a normal subgroup of &, then 9P is alse a normal
subgroup of ©, and we have N =, I = H in the notations of
Lemma 2. Since the blocks of & are all of lowest kmd then, we
obtain the following theorem.

Theorem 3. In case a p-Sylow-subgroup B is o normal sub-
group of & the decomposition of I'(S, K) described in Theorem 2 is
a direct sum decomposition into indecomposable two-sided ideals, that
23, I'(®, K)e. is indecomposable as a two-stded ideal for every ,
Ck=1,2, ..., m.

3. We shall now study the structure of ®,. Since DY} is a
normal subgroup of ® it is readily seen that (G, ~HP)/D is a p-
Sylow-subgroup of &,/$ and is normal in G,/$H. Let us put

6) R. BRAUER and C. NESBITT: On the modular characters of groups, Ann.
of Math., 42 (1941), pp. 5566-590, Theorem 2.

[Se. Rep. T.B.D. Sec. A.
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‘@\135' = @5»:’\@\‘13: 6/: = (‘Sj/r/'@

and denote B./H by . simply

Then there exists, by a theorem of 1. Schur, a subgroup £, such
that &, = 8. B, &,/P. =8.. Since K is a field of characteristic
», any factor set belonging to a p-group is associate to a factor
set 1 (such that ¢(G, G') = 1 for any elements G, G' of the group)
in K, and hence it is easily shown that we can determine the
elements v(G) = keu(@), ks€ K so that they satisfy the following
relations :

(30) v(P)u(Q) = v(PQ),
(31) »(PL) = v(P)(L),
(32) v(L) "' w(Pw(L) = v(L"'PL),

where P, Qe3, and LeQ,. Correspondiug to these v(G) we
obtain a factor set which shall be denoted by {e(G, ¢')}. Accord-
ing to the relations (80), (31), (32) it is seen that this factor set
is essentially a factor set of the group £.. Now let us put

R.= Z ‘ED (V(P)—v(E)) = 2 E v(L)(v(P) wWE)K .
We shall prove that R, is the radical of ®,. From the relations
(30), (81), (32) it follows that R, is a two-sided ideal. As is well
known?, Z (v(P)—-v(E))K constitutes the radieal of the group
ring 3 e @(P)K and hence it is easily verified that R, is a nilpotent

Pe P,
ideal, if we make use of the relations (80)-(32).

On the other hand, if we construct the (generalized) group
ring ®F of &, over K with a factor set {c¢(L, L'); L, L' € &} :

D => w(L)K,
LeQ

then DF is a semisimple algebra since the order of 8, is prime to
», and DR, =D¥. Therefore N, is the radical of D, and

7) S.A. JENNINGS: Trans. Amer. Math. Soc., 50 (1941), pp. 175-185. Since
2»(P)—v(®) is a nilpotent element, it follows readily from a theorem of Wedder-
burn that 3} (v(P)—o(E))K is the radical of the group ring X»(P)K. J. H. M.
‘WEDDERBURN, Ann. of Math., 38 (1937), p. 854.
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:ch = DOf +9{!§ ’ @éf\gtr =

4. If we decompose the semisimple algebra ®; into a direct
sum of simple left ideals: D = Diei+-.-+Dfe¥, then ef is a
primitive idempotent of 9, and D.ef is an indecomposable left
ideal of ®,. The representation obtained by D.ef/R.ef is an ir-
reducible representation of o, .

Let U,, ..., U, be the distinet indecomposable constituents of
the regular representation of @ in K and F,, ..., F, the distinct
irreducible representations of & corresponding to U,, ..., U.. We

denote the degree of F, by f. and that of U, by w,. Then, if
U, is obtained by an indecomposable left ideal of 1@, K)e,,
we have u, = pdrf,, where (B,:E) = pde, and we see that f
is divisible exactly by pe¢—dr. Since the degree of Djef over K
divides the order of £., fi/pe—dx divides ¢'.

Theorem 4. Suppose that HP 4s a mormal subgroup of ©.
Then, if U, belongs to a block of defect d we have u, = p*fi and
Falpe divides ¢', where g = p*¢’, (¢', p) = 1. a—d is the exact ex-
ponent to which p divides the degree of any m‘reduczble representa-
tion of & belonging to a block of defect d.

5. Suppose that G/ is commutative. Then 2, = &,./P,. is
also commutative. Let us denote by &, the set of elements L of
€, such that ¢(X, L) = ¢(L, X) for every elements X of .. Then
it is easily seen that %) is a subgroup of £, and

3= > v)K
Leg],
is the centrum of ®}. 3 isisomorphic to the group ring /'(¢;, K)
of ¥ over K, and hence it is a direct sum of ¢ simple ideals:
3=25386+ ---+8%, r=(2.: E). Therefore

Di = Df e+ ---+DfE,

is a direct decomposition of DF into simple two-sided ideals. Sup-
pose that the irreducible representation of ¥DFf:v(L)— D(L) is
obtained by regarding Dfe’ as a representation module of D,
Then we can easily prove that, for characters X and X' of ., the

irreducible representations of ®*

[Sc. Rep. T.B.D. Sec. A.
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D, : (L) - x(L)D(L), D, :v(L)— x'(L)D(L)

are distinet if and only if X and X' are distinet when considered
as characters of 2. Thus the representation obtained by Dref is
equivalent to some D, and hence we have (8.:FE) = (& :E)f?
where f* = (D}e; K),y~1 2, ..., T

Theorem 5. In case G/HP is a commutative group the degree
of F is the same as that of F, if F and F, belong to the same
block. Namely, in this case the group ring ['(S, K) is quasi-primary-
decom posable.

6. We conclude this section with the following remark Sup-
pose that HP is a normal subgroup of &. Then the blocks of &
are all of lowest kind if and only if P is a normal subgroup of &.
Let us assume that the blocks of & are all of lowest kind. Then
®, must contain HYP, and hence every element of P commutes
with every element of the centrum of I'(9, K). If we denote by
P* the intersection of the centralizer of § with P, L/P* may be
considered as a group of automorphisms of  which leave the
classes of conjugate elements of » invariant. Hence we have
P =P*). Thus PP is a normal subgroup of &. As is shown by
R. Brauer, the above statement does not hold in general w1thout
the assumption that HP is normal.

S§ 4. Quasi-primary-decomposable group rings.

1. Let '=1(®, K) be a quasi-primary-decomposable group
ring over an algebraically closed field K of characteristic p. If
e, is the indecomposable two-sided ideal corresponding to the first
block of & (to wh'ch the l-representation belongs) and e, is an
idempotent lying in the centrum of I', then the set of elements
G of & such that (e, = e, constitutes a normal subgroup of &.

As is pointed out by K. Iwasawa”, this group coincides with .
Let

D:G > D(G)

be a representation obtained by considering /e, as a representation
moda}e This is a faithful representation of &/9. By the assump-

8) Cf. A. SPEISER: Theorie der Gruppen von endlicher Ordnung, 1927, Satz
108. .
9) K. Iwasawa: Shijo Sugaku Danwa-kai, No. 246 (1942), p. 1589.
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tion that I" is quasi-primary-decomposable the irreducible con-
stituents of © are all of degree one, and so we can assume that
the coefficients d;(G) of the matrix D() are zero if ¢<7. Then
it is easily verified that the set of elements G such that d;(G) =1
for every 7 forms a p-Sylow-subgroup Eﬁ of G/H. Moreover  is
normal in /9 and (®/9)/P is commutative. This shows that for
a p-Sylow-subgroup B the group $HP is a normal subgroup of &
and G/ is commutative. Conversely, if HP is normal in & and
G/HP is commutative then (S, K) is quasi-primary-decomposable,
as is already shown by Theorem 5. Hence the following theorem
is established. '

Theorem. 6. Let $ be the largest normal subgroup of & which
has an order prime to p and P a p-Sylow-subgroup of &. Then the
group ring I'(®, K) of ® over an algebraically closed field K of
characteristic v s quasi-primary-decomposable i and only if 1) DB s
a normal subgroup of & and 2) G/OP is o commutative group.

Remark. Another proof of the “if’’ part of Theorem 6 is
obtained as follows. We shall first prove that the indecomposable
two-sided ideal corresponding to the first block is isomorphic to
['(®/9, K) (cf. Theorem 2). Then we can proceed in the same
way as in the proof of Lemma 2 in the paper of M. Osima'.

Corollary. In order that every trreducible m-dular representa-
tion of @ is of degree one it is necessary and sufficient that a p-Sylow-
subgroup. P of & is normal and S)P is commutative.

2. As a special case we have the following theorem due to
M. Osima™. . ‘

Theorem 7. I'(®, K) is primary-decomposable if and only if
it holds that & = $B. In this case the decomposition of I'(®, K)
described in Theorem 2 is a direct sum decomposition tnto inde-
composable two-sided ideals.

10) M. OsmmA: On primary decomposable group rings, Proc. Phys. -math.
Soc. Japan 24 (1942), pp. 1-9.

11) M. Osima: loc. cit. Let K be an algebraic number field such that every
absolutely irreducible representation can be written with coefficients in K. Our
Theorem 2 is valid for such a field K. Hence all the ordinary irreducible repre-
sentations of & remain irreducible as modular representations if (and only if)
@ = QP and D, is commutative for such a field K and for every «. This gives an
explanation to Osima’s theorem 8 in his paper cited above. -
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Proof. We have only to prove the ““if ’’ part and the second
part of the theorem. Since & = HP the group G./H in Theorem 2
may be regarded as a subgroup B, of P. Hence D, is isomorphie
to ["'(,, K) which is completely primary, and therefore I'(®, K)e,
is a primary ring. This completes the proof of the theorem.

§ 5. Group rings with radicals expressible as principal ideals.

1. We ghall now prove the following theorem.

Theorem 8. 1In order that the radical of the group ring I'(S, K)
be a principal left ideal as well as o principal right ideal it s
necessary and sufficient that 1) OB is a normal subgroup of & and
2) P is a cyclic group.
Proof. 1) Necessity. Suppose that the radical of I7'(®, K) is
a prinecipal left ideal and a principal right ideal. Then by Theorem
1 I'(®, K) is quasi-primary-decomposable. According to Theorem 6
HPB is a normal subgroup of ® and &/HY is commutative. The
indecomposable two-sided ideal of ['(®, K) corresponding to the
first block is equivalent to I'(&/9, K) as an algebra. Therefore
I'®/H, K) is quasi-primary and generalized uni-serial. We put
& = &/9 and denote a p-Sylow-subgroup of & by B. Then P is a
normal subgroup and €/P is commutative, and further I'(&, K)
is generalized uni-serial. As is well known, there exists a
subgroup & of & such thot & =, &/P=9Y Now we put
g = %—LZ}\L, [=(R:FE). Then ¢ig a primitive idempotent in /{3, K).
If we déi\iote the radical of ['(€, K) by N, then [I'{&, K)e, Ne, N’e,
is a composition series of (&, K)e, and the ,degree of
N'e/N**'e is one. On denoting the radical of ['(3, K) by N,, we
have [ (&, K)e = I"(p, K)e, N'e = Nie. Since Nje is isomorphic to
N, ag a left ['(P, K)-module, I'(P, K), No, N;, ... is a composi-
tion series of ['(P, K). This shows that the group ring I"(3, K)
is uni-serial. Therefore P is a cyclic group, as is well known™.
2) Sufficiency. Let us assume that HP is normal in @ and
P is a cyclie group. Then the factor group @&/HY is isomorphic
to a subgroup of the group of all automorphisms of . This
group of automorphisms is a eyclic group of order p*'(p—1),
when p>2 and (P: E) =p“. Therefore G/ is a cyelic group
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of an order dividing p—~1. Incasse p =2 we have @ = HP. There-
fore ['(®, K) is quasi-primary-decomposable, and the results of § 2
are applicable to our case. In this case the radical R, is expressed
in the form

m/: = SDICCJC = Cfc@r: y Cp = ,U(PK.)_/U(E') ’

where P, is a generator of P5,.. This shows that the radical of
(8, K)e, is expressible as a principal left ideal and as a principal
right ideal. Thus the theorem is completely proved.

2. Let the radical of ['(®, K) be a principal ideal. By the
notations in §2 we have G, ~HP = HP,., B, < B. Here &,./OP, is
isomorphic to a subgroup G, P/HP of G/HP and the latter is a
cyelic group of an order prime to p. Hence any factor set of the
group &,/HB. = &, is associate to 1 and so we have ‘

D = 11((‘5/:/@’ K) .

The above result holds if K is an algebraivcally closed field of
characteristic zero; for such a field K we have

I'®, K)e, = I'(D, K)ea x (6,9, K) x K,

since every g¢-Sylow-subgroup of &,./9 is cyelic for every prime
factor g of the order of .9 and consequently any factor set of
&,/9 is associate to 1 by a theorem of I. Schur™.

Assume that (P.: E)>0. If €, is the centralizer of ., the
centralizer of $P/H in G/H is E./H, as is shown eagily. By
Lemma 8 which will be proved in the next section, we see that
€, = HP. Hence the centralizer of HP,/H in G,/ is identical
with (G./H)~(OPR/D) = DB,/H. Thus the centralizer of the p-
Sylow-subgroup of &,/ coincides with itself, and the structure of
©,./9 is completely known. N

For an algebraically closed field K of characteristic p the group
ring ['(8,/D, K) is indecomposable as a two-sided ideal by virtue
of Lemma 2, and it is quasi-primary as well as generalized uni-
serial.

We can easily determine the ordinary and modular irreducible
representations of &,/ . The matrix of decomposition numbers

12) 1. ScHur: Uber die Darstellung der endlichen Gruppen durch gebrochene
lineare Substitutionen, Crelle 127 (1904), pp. 20-50.
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On group rings over a modular field 191

of G,/ and hence of the block of ®& corresponding to I'(®, K)e,
takes the following form: °

/10....0
01....0 My,
™~ dl.‘,~— |
D,;:- 00....1 s Sm:?"““"l3ma‘5p—1’
Ny
1 1. 1
11....1/

where (B, : E) = pde, m,=(®,: HP,). Hence the matrix of Cartan
invariants is

s.+1 s, - 1
+1 0
8 S Sk . .
o “1, which is equivalent to 1
........ 0
Se See--8:+ 1 pds

The form of the Cartan matrix is also known from the remark at
the end of § 1.

Thus we obtain the following theorem by applying a theorem
of R. Brauer and C. Nesbhitt™.

Theorem 9. Let the radical of the group ring (S, K) be a
principal ideal : I'(®, K)e = c¢['(®, K). Then the summand I'(®, K)e,
in the decomposition of Theorem 2 is tndecomposable as a two-sided
tdeal if (B,:FE)=pde >1. In case (B,: E) =1, that s, O,/ has
an order m, prime to p, ['(®, K)e,. is expressed as a direct sum of
m, stmple two-sided ideals. The number of blocks of positive defect
d 1s equal to the number of the classes 8, of p-regular elements such
that the order of the normalizer of any element of K, is divisible by
% but not by p*t.

§ 6. Some remarks concerning a group with a
cyclic p-Sylow.subgroup.

In this section we assume that the p-Sylow-subgroup P of ©
is a cyclic group. Let P, be the subgroup of £ with an order

13) R. BRAUER and C. NENsSBITT: log. eit., p. 569.
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192 K. Morita :

p* (d =1), and let us denote the centralizer and normalizer of L,
by €, and N, respectively. €, is a normal subgroup of N, and we
have !

$=$I’L>$d—1>.">q}|7 @'—:@ag@a—]g“'gg19
mzjeagmaAIS M ggzl-

N/E is a cycliec group of an order dividing p—1.

Lemma 3. Any two elements of €, which are conjugate in &
are also conjugate in N,

Proof is easy ; we have only to notice that for 3 there exists
only one subgroup with a given order since B is cyclic.

Lemma 4. N, =RNE,=C,N, N=N..

Proof. If GeRN,, then G'P,G =B, . Let usput Q = G'PG,
where P is a generator of 3,. Then we have P, QeP, = €.
Hence by Lemma 3 P and @ are conjugate in N, and there exists
an element N of N such that P= N"'QN. This shows that
GNe€,. Therefore Gel,9t. Thus we have N, S C, N = NE,.
Since it is clear that €, N < N,, Lemma 4 is proved.

Lemma 5. N~C,=8, €=G,.

Proof. It is sufficient to prove that NA~C, € for » > 2,
since In case p=2 we have N =€ {(and [(®, K) is primary-
decomposable). Let G be an element of N~E,. If the order of
G is divisible by p, G is expressed as a product of M and Q,
where - M, @ are both powers of G and the order of M is prime
to p and that of @ is a power of p. The elements M and Q be-
long to t~€,. Let P be a generator of P and put

M'*PM=PFP, (rip)=1.

If v is a primitive root mod p* and » is the smallest exponent for
which M" commutes with - P, then n|p—1, since M*'e€, and
there exists an integer %k such that

L2 —1)
r=v " (modpY, 0<k<m, (kyn)=1.

a—d

On the other hand, M belongs to G, and hence M-'PP" "M = pP*™*,
that is, we have p* *=rp*~? (mod p*) and consequently r=1 (mod p?).
Therefore

[Sc. Rep. T.B.D. Sect. A.
(170)
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P —1)
v " =1 (modp? .

Since 7 is also a primitive root mod p*d=1) and (k, n) =1,
n|p—1, we have n =1. This shows that M is an element of €.

The element @ belongs to P, since P is a p-Sylow-subgroup
of M and is normal in M. Thus we have G ¢ €, which implies that
NAC, S 6.

Lemma 6. 9¢,/6, = %R/C .

Proof is obvious from Lemmas 4 and 5.

Lemma 7. If 9P is a normal subgroup of &', then we have
96 AN, =6, PEAN=C.

Proof. Since it is easy to see that if G = HNeHC,~N.,
HeH, Ne€, and Pe B,, we have GPG'P'e HnP, = F, it follows
that $C,~N, = €,. The second part of the lemma now follows
directly from Lemma 5.

Lemma 8. Under the same assumption as in Lemma 7 we
have HC, = HP.

Proof. Since $€,= HP, we have only to prove that HC, <= HB.
First we remark that $€ = $P and G = HN, since the centralizer
or normalizer of HP/H in G/H is HE/H or HN/H. Hence we see
that G/HP = HN/HE = (HEOIN/HE = R/NAHE = N/E by Lemma 7.
On the other hand we have H§RN, = HN and so HN; = G . Further-
more by Lemmas 4 and 7 we see that G/HC, = (DCHN/HC, =N/C.
Since HC,; = HL, we have therefore HE, = HV.

Returning to the general case we obtain

Lemma 9. The totality of all the p-regular elements of €.
forms a normal subgroup WM, of N, and €, = M, P. Here we have
MEM S-S, . In case DP is a normal subgroup of & we
have further My < § .

~ Proof is obvious by a theorem of Burnside'™.

For a group & such that $P is normal in & we can put
M=, €, =P, N, =G by Lemma 9. This shows the peculi-
arity of such a group among the groups with cyclic p-Sylow-
. subgroups. '

~ 14) For the significance of the subgroug $ cf. the introduction.
15) Cf. A. SpEISER: loe. cit., Satz 120.
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According to Lemma 9 and Theorem 8 we obtain

Theorem 10. If a p-Sylow-subgroup P of & is a cyelic group,
then the mormalizer of any subgroup of an order p{d =1) satisfies
the conditions 1) and 2) wn Theorem 8. Its group ring possesses the
radical expressible as a principal idea’.

Finally we mention a theorem which follows readily from
Theorem 9, Lemma 8 end a theorem of R. Brauer'™.

Theorem 11. Let & be o group of finite order which has a
cyclic p-Sylow-subgroup. Then the number of p-blocks of a postiive
defect d s equal to the number of the classes &, of p-regular ele-
ments such that the order of the normalizer of any element of R, s
divistble by p* but not by p**'. The Cartan matriz corresponding to
a block of defect d has a determinant p“.

16) R. BRAUER: On the arithmetic in a group ring, Proc. Nat. Acad. Scad.
Sei. U.S.A., 30 (1944), pp. 109-114.
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