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Let R be a separable metric space and L, .1 a (Z2n+ 1)-dimensional
cube in a (2n+1)-dimensional Euclidean space. Then the set of all
continuous mappings of R into Ip,.; turns out to be a complete
metric space L),., if we define a metric as usually: p(f,g) = S\%E

p(f@), g()), where we denote by p the metric in I, .

The purpose of the present note is to establish the following
theorem.

Theorem. Let Ay, As,..., A, be a finite number of closed sets
m o separable metric space R of dimension at most n. Then the set
@ of all continuous mappings [ of R into I, such that

FAD. fAD). ... FA) = & Ay Ay

is a dense Geset in L), . In particular, in case A1 Ax.... A, =0,
@ 1s open.

In the case where m =2 and A;4; is a comvpact set, this
theorem has already been proved by C. Kuratowski and applied to
the problem of compactifications of regularly one-dimensional spaces?.
It is to be noted that for a finite open covering U = {U;,...., U}
of R a continuous mapping f of R into Is,..1 is a U-mapping in the
sense of W. Hurewicz and H. Wallman? if and only if AR—U))....
fIR—U.,) = 0, and that a mapping which is a 1l,-mapping for every
% is a homeomorphism if My, 11, .... form a basic sequence of cover-
ings of R£. Thus the theorem stated above seems indispensable for
discussing the problem of compactifications of iopologleal spaces by
the method of functional spaces.

Now we proceed to the proof of the theorem. For this purpose
it is sufficient to prove the theorem for the case m = 2. In this
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case we write, for the sake of simplicity, 4, B instead of A4,, 4,,
and assume that A-B==0; for the case that 4-B =0 the proof
may be carried out easily.

For any positive number € let us denote by @(¢) the set of all
continuous mappings f of R into [, such that

where S(X, €} means the set of all points & for which plz, X) <e.

“Then the theorem will be established by Baire’s theorem if the
following three lemmas are proved.
Lemma 1. @ = 1T a(1)5).
e

Lemma 2. For any positive number ¢ the set @{e) is an open
set in Io, 1.

Lemma 3. For ¢ >0 the set @(e) is dense in L', . ‘
Lemma 1 is proved easily ; we have only to recall that f(4-B)-=
IT S(f(AB), 1}3).

Proof of Lemma 2. Let us assume that f. belongs to @(g).
Then for any point 2 of f(A4)- f(B) we have p(z, JlA-B)) <e. Since
AA)- f(B) is compact, we have

0L < €, where «= sup p, f(4d5).
& € J(A) J(8)
Take a numbar 8 such that « <8< e. Then we have for some
positive integer m ‘
S(fid), Tjm) . S(fiB), 1im) T S(AAB), B),

since I,.1 is compact and

FA)- fB) = 11 ST, 17)-STAB, 1)) < S(AA-B), B).
Let & be a positive number ‘such that <_1_, 0<e—pf.
' : o m
If p(f, 9) << & for ge Ly, we bave

AA)-gbB) < SR, 5)- SABY, 8) < SRAY, Timy- S(FB), 1jm)
T S(AAB), B) T S(@A-B), B+8) T S(glA-B), &),
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and hence ge @(¢). This proves that @(e) is open.
Proof of Lemma 3. Let f be an arbitrary continuous mapping
of R into I, and let us construct open sets H,, ...., H, such that

Doy = Hit Hob -+ Hy; SH)< /2, i=1,....,m.

By the hypothesis that dim R < n there is a closed covering {F1, .... ,
F.} of R such that F, TS '(H), 1=1,...., m and the order of
{F, ...., F,} does not exceed n+1. Moreover we can .eonstruet
open sets Ly, ...., L, such that

(1) F, Ly, LilfFUHY, i=1,...., m;

2y {Li...., L, A,B} is similar to {F,...., ., A, B}.
For a set of indices {4, ...., 4,} satisfying the condition

@) L ... Li-A=k0, Ly ....L Bk, Ly .... L, -A-B =0,

we can construct an open set L{4;, ...., 4. such that

(4) A-B LGy vy 1),
() Ly, vy Vi/;)‘[zi, R Zs,g] =
This is possible, since the condition (3) implies /. .... F, AB=0

and hence we have L, .... L, A-B =0 by (2).
Denote by L, the intersection of all L{¢,...., %) for which
{i1, . ..., ixp satisfies the condition (3), and put

Gi=F Ly, 1=1,2,...., m.

Then the relations

(6) G, ...G  A=%0, G...G -B=0
imply: the relation
%) Giovv Go A-B 0,
Because, if G, . G, A-B =0, we have L; . L; A-B =20, since

A-B T Ly, and hence {u, AU #8 satasﬁes the conmtxon {3), and
consaquently we have G,',J - G Ly L, ... L, =0 by (5), since
Lo 1{iy, oo .., 1) ; this ccmtradlcts (6).

Now let us assume that
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B-G;==0,1=1,2, ....,7r; A-B-G,=0,1i=0r+1,....,m.

Then there exist open sets Uy, ...., U, such that
(8) G, < Uf, U@ <f—](Hi), 'Z: = 1, e g 17 R

9 {U,...., U, A, B} is similar to {Gy,....,G,, 4, B}.

Since the order of {Gi,...., G.} is not greater than #+1 and
dim R <m, we can construct an open covering {X,, Y, Z;, i =1,

2,....,7;7=1,2,....,m} such that
(10) GCX,U, 71=1,2,....,7,
(11) Y;<(~R—‘—B)f“(H;), Zi (B=A)THy), =12, ....,m,
(12) the order of {X;, ...., X, Yo, ..., Yo, Z1, oo oo, Zu}

<n-+1,

according to an addition theorem in dimension theory.?
Then the relations

(13) X;’...~X:K:'A#O, X‘i....AX-;k'B%:O
ilglp]y the relation
(14) Xioooo Xi s A-B=R0.

Because Xrﬁ R sz; intersects both A and B, and hence U, .... U,
intersects A and B, and consequently G‘f, e G}k intersects A and B
(by (9)), that is, G, .... G, satisfies the condition (6); this proves
(14) by (7) and (10)

Since the diameters of the sets f(X)), AYS), f(Z 7 are all less than
e/2, we can find points 2, ¥;, z; of I, such that 2, y;, 2, (0 = 1, 2, ,
r; 7=1,2,....,m) lie in general position and the diameters of
the sets a;+ (X)), v+ AYy), =+ A(Z,) are all less than /2. We shall
define a baryeentric mapping g of R into ., as follows: Assign .
to each of the points z; the weight p(p, R—X.) and to each of the
points y; the weight p(p, R—Y;) and to each of ths points z; the
weight p(p, R—Z;), and denote by g(p) the center of gravity of the
system " of pomts zr;b, Ynze G=1,2,....,7; 7=1,2,....,m) with

’) Ix Morita On the dxmenswn of normal spaces, iorthcommg in Jap. Joul
Math. Cf. also. On the sum theorem in dimension theory, Suvgaku, Vol. 1 No. 3
(194%) (in Japanese).

[Sc. Rep. T.B.D. Sect. A
(132)



A generalization of a theorem of C. Kuratowski 155

these weights. Here p means a metric in R. Then it is easy to
see that

(15) geIZf-}l) P(fy g)<€‘
We shall show that
(16) g e O(e).

Denote by P.» the sum of simplexes [w;,...., «;] such that
.. . X;-A-B==0, and denote by P, the sum of simplexes
. Y- A<=0,

and by Pz the sum of simplexes [w,...., #:, 2, , ...., 2] such
that X; .... X, -Z;1.... Zyo B==0. Then these P, Ps, P.p are
all polytopes and it is seen that

X,
[@iys v voey @ayy Ysp g oo o e 5 Ys] SUCK that X, ... X, - T,

1ttt

a7 g(A) TP, 9(B) T Ps, 9(A-B) CPas.
We shall now prove that
(18) PA PJr = P_,1_]3.

It is evident that Pss < P4-Pr, and so we have only to prove that
Py Py P, From (11) we see that a simplex belonging to F4-Pp
must be of the form [x;,....,x;]. Then we have X, .... X -4
=0, X; .... X, -B=£0 and bence by (14) X; .... X; A-B==0. This
proves that [, ...., ;] T Pas. Therefore Ps Py C Pis. Thus
the equality (18) is verified.

Let [@;,...., %] be a ‘“Grundsimplex’ of (the complex as-
sociated with) P, For any point p of X, .... X;,+A-B we have
P, ;) < €/2, v=1,2,...., %k and hence the diameter of the

simplex [w,...., ;] is less than e. On the other hand, g(p)

belongs to [2,...., ;). Hence we have [z, ...., 2, | S(gp), €)
and therefore
(19) PA~B ( S(Q(A 'B), E).

From (17), (18), (19) it follows that

9(A)-g(B) C Pa- Py = P.s TS(g(A-B), ¢),

that is, ge ®(c).
From (15), (16) it is seen that @(¢) is dense in L.,. This com-
pletes the proof of Lemma 3.
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