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Conventional materials possess mechanical properties dependent on their molecu-
lar or atomic composition. In contrast, mechanical metamaterials, composed of build-
ing blocks, possess properties dependent on their specific spatial arrangements. De-
signing the architectures paves a way for generating mechanical metamaterials with
unprecedented properties, such as negative Poisson’s ratio, negative mass density,
negative stiffness, vanishing shear modulus, and ultra-high strength-to-density ratio.
Over the last decade, extensive efforts have been paid on developing new mechanical
metamaterials via designing new architectures or using new functional constitutive
materials. However, some limitations are still required to address: 1) The design space
is hugely limited by the design methods, that is, creating these architectures are mainly
via computer-aided design (CAD) modeling, which does not guarantee optimal per-
formances and costs a large computational resource if the geometry is too complex
and elaborate. 2) mechanical metamaterials always harness zero-energy deformation
modes, resulting in a fixed mechanical response after fabrication. 3) most previous
design methods are forward design approach, that is, an architecture is created and
its mechanical properties are investigated by experiments or simulations. This work
aims to address the above-mentioned limitations.

To begin with, I propose a mathematically controlling method to simplify the con-
ventional modeling methods. The mathematically controlling method, implemented
by MATLAB codes with an implicit function, can generate a three-dimensional (3D)
auxetic metamaterial with optimal performance. The 3D auxetic metamaterial was
3D printed with a rubber-like material. The compression tests, along with simula-
tions, demonstrated that its auxetic behavior is dominated by buckling instability. A
nickel layer was then plated onto the surface of 3D-printed specimens to enhance their
stiffness, strength, and conductivity without loss of auxeticity and resilience. More
importantly, data maps of the Young’s moduli, critical buckling stresses and strains,
Poisson’s ratios, and conductivities provide guidance for functional applications of
the material.
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Further, I propose a new functionality, reprogrammability, to reprogram the me-
chanical responses of mechanical metamaterials. The reprogrammability was achieved
by using a light-responsive shape-memory polydimethylsiloxane (SM-PDMS) that pos-
sesses shape-memory and photothermal effects. To implement the reprogrammabil-
ity, I designed three different reprogrammable SM-PDMS metamaterials with differ-
ent mechanical responses, namely, an auxetic SM-PDMS, a chiral SM-PDMS, and a
buckling-induced SM-PDMS. Finally, a buckling-induced SM-PDMS was harnessed
to make a soft actuator with a reprogrammable preferred locomotion direction. This
strategy paves a way to change the mechanical responses of fabricated metamateri-
als. Furthermore, the designed flexible metamaterials have the potential for different
applications, such as soft robots, actuation, adaptive safety, and sports equipment.

Finally, I propose a deep learning framework to convert the conventional forward
design approach. The deep learning framework enables inverse design of 2D and 3D
mechanical metamaterials. Based on the deep learning framework, I introduce a 2D
conditional generative adversarial network (2D-CGAN) and 3D-CGAN for inversely
generating 2D auxetic metamaterials and 3D architected materials, respectively, with
a given target label (i.e., relative density, Young’s modulus, and Poisson’s ratio). The
deep learning framework has potential in specific applications where architectures
with desired target properties are required.

This work not only proposes novel computational design methods, architectures,
and materials for mechanical metamaterials, but also has potential for specific applica-
tions. For example, catalysts made of nickel-coated auxetic metamaterials can provide
dynamic catalysis; soft robots made of reprogrammable mechanical metamaterial can
change their motion modes by responding to their environments (e.g., light or temper-
ature); and scaffold implants automatically generated by CGANs can possess desired
target properties for specific requirements. In addition, the inverse design approach,
implemented by the deep learning framework, can be harnessed to design mechani-
cal metamaterials with superior properties by considering architectures, constitutive
materials, and the interaction to external stimulus.
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Chapter 1

Introduction

1.1 Background of Mechanical Metamaterials

Conventional materials possess mechanical, electromagnetic, thermal, and optical prop-
erties that are dependent on their molecular or atomic composition. These overall
properties of conventional materials are usually tailored by engineering their compo-
sition. Taking structural materials as an example, the Iron Age had been booming
for hundreds of years since iron tools and weapons gradually replaced their bronze
equivalents in common use. These iron tools and weapons were smithed primarily
from wrought iron that is brittle. However, by controlling the level of carbon (be-
tween 0.0 and 1.7% carbon), wrought iron can be transformed into steel that is ductile,
stiff, and strong, which can replace woods and ceramics in building structures.

In contrast, metamaterials, composed of building blocks (a “meta” cell), possess
properties that are dependent on their specific spatial arrangements [1, 2]. The pre-
fix “meta” comes from ancient Greeks and means “beyond,” “after,” or “behind”,
which refers to the superiority that metamaterials can surpass their constituent ma-
terials and achieving unprecedented properties by carefully structuring the building
blocks. Consequently, metamaterials are sometimes called architected materials as
they possess architecture-dependent properties. Actually, any conventional material
can be spatially arranged into a building block that is then assembled periodically into
a metamaterial (Figure 1.1).

Atom Material Building block Metamaterial

FIGURE 1.1: Conception of metamaterials: Conventional materials are
composed of atoms; conventional materials can be geometrically archi-
tected into a building block, which can be rationally designed beyond
the restrictions of conventional materials; multiple building blocks can
be periodically assembled into a metamaterial.

Over the past several decades, metamaterials are purposely designed with unique
architectures to produce properties that are not found in naturally occurring materials,
including electromagnetic [3], photonic [4], acoustic [5], thermal [6], and mechanical
metamaterials [7–9]. Particularly, mechanical metamaterials have drawn widespread
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attention owing to the potential to obtain unprecedented properties, such as extraor-
dinary or extreme elasticity tensors and mass-density tensors [10]. Typical mechanical
metamaterials include auxetic metamaterials with negative Poisson’s ratios [11, 12],
light-weight lattices with ultra-high strength-to-density ratios [13–15], metamaterials
with negative mass densities and negative elastic moduli [16–18], pentamode meta-
materials with near zero shear moduli [19, 20], and deployable origami structures [21,
22], as shown in Figure 1.2.

FIGURE 1.2: Classification of mechanical metamaterials: (a) auxetic, (b)
light-weight, (c) negative-parameter, (d) pentamode, and (e) Origami
mechanical metamaterials. The left column, Milton-Ashby map, com-
pares the elasticity tensors and mass-density tensors of mechanical
metamaterials (red) and conventional materials (gray). The center col-
umn shows the blueprints of typical mechanical metamaterials with
highlights of their geometric features. The right column shows the mi-
crographs of typical fabricated mechanical metamaterials. [10]

The design space of mechanical metamaterials paves a way to achieve unprece-
dented properties, making them potential candidates in specific applications. Taking
auxetic metamaterials as an example, they possess negative Poisson’s ratios, whereas
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FIGURE 1.3: Mechanism and applications of auxetic metamaterials
(negative Poisson’s ratio materials). (a) Comparison in stretching load:
applying a uniaxial stretch results in a lateral expansion in negative
Poisson’s ratio materials, but a lateral contraction in positive Poisson’s
ratio materials and no lateral deformation in zero Poisson’s ratio mate-
rial [8]. (b) Comparison in bending load: under a bending load, a plate
with a negative Poisson’s ratio material deforms into a convex shape,
whereas a plate made of a positive Poisson’s ratio material deforms
into a saddle shape [23]. (c,d) Stretchable strain sensor cooperated with
2D auxetic structures [24]. (e,f) Coronary stent constructed by auxetic
structures [25]. (g) Hybrid implant composed of negative and positive
Poisson’s ratio structures [26]. (h) Nike flyknit shoe with an auxetic
sole.

common polymers and polycrystalline metals possess Poisson’s ratios in the range of
0.25–0.35 generally. When auxetic metamaterials are uniaxially stretched, they expand
in all directions, whereas common structural materials shrink in a direction perpendic-
ular to the applied load (Figure 1.3a). Further, when bent, a plate made of an auxetic
metamaterial deforms into a convex shape, whereas a plate made of a material with a
positive Poisson’s ratio deforms into a saddle shape (Figure 1.3b). The compression–
shrinkage or tension–expansion synclastic behaviors make them promising candi-
dates in energy adsorption [27, 28], strain sensors [24, 29], biomedicine [25, 26, 30],
actuation [31, 32], sports [33–35], etc. For example, the sensitivity of stretchable strain
sensors can be significantly enhanced by incorporating two-dimensional (2D) auxetic
metamaterials owing to the synergistic effect of reduced geometric Poisson’s ratio and
strain concentration (Figures 1.3c and d) [24]. In boimedicine applications, a coronary
stent is tiny wire mesh tube used support the inner wall of veins and arteries; con-
structing a stent with auxetic metamaterials can alleviate foreshortening effects and
provide good mechanical adhesion with the arterial wall (Figures 1.3e and f) [25]. In
addition, implants composed of negative and positive Poisson’s ratio structures are
demonstrated to improve implant–bone contact in off-axially loads (Figure 1.3g) [26].
Furthermore, taking the advantage of anomalous ability of bending-to-dome, auxetic
metamaterials are also used in sportswear. This can be seen in certain Nike flyknit
shoes, whose soles are made of auxetic structures to enhance the running experience
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(Figure 1.3h).
Owing to their potentials in such kinds of applications, considerable efforts have

been devoted to design and fabricate mechanical metamaterials. Particularly, recent
advances in deep learning and additive manufacturing have opened new avenues for
designing and fabricating such complicated structures, and thus promoted the un-
restrained creativity in mechanical metamaterials [36–38]. The ultimate goal of this
research is to develop more effective and advanced design methods for fabricating
mechanical metamaterials with better performance and novel functionalities.

1.2 Design Methods

To reduce the designing complexity, mechanical metamaterials are mostly designed
based on a single building block that can be periodically assembled in a nearly in-
finite space. After designing a building block of mechanical metamaterial, its effec-
tive mechanical properties can be investigated by either finite element method (FEM)
simulations or mechanical testing. In FEM simulations, the effective properties are
always investigated using a single building block with periodic conditions. Typi-
cal FEM algorithms include homogenization algorithms for calculating elastic mod-
uli (e.g., Young’s modulus, Poisson’s ratio, and shear modulus) [39–42], and uniaxial
compression/tension, three-point bending, and isotropic compression simulations for
investigating large deformation behaviors [43–46]. The constitutive material models
for FEM simulations can be either linear elastic materials or nonlinear materials with
specific functions, such as hyperelastic models [11, 47], strain-rate dependent models
[48], and even optical [49], magnetic [50–52], or thermal [53] responsive models. In
mechanical testing, the effective properties are always investigated using 3D printed
specimens composed of multiple unit cells of building blocks (always over 3 × 3 ×
3 unit cells) [44, 47, 54]. In addition to the approaches for investigating large defor-
mation behaviors in FEM simulations, fatigue testing and impacting testing are also
conducted in experiments for probing the fatigue resistance and energy adsorption
abilities [55, 56]. The deformation behaviors of mechanical metamaterials are always
in situ captured by high-speed cameras to analyze mechanical responses and proper-
ties (e.g., buckling, twisting, and Poisson’s ratio). Mechanical testing is also an effec-
tive way for validating FEM simulation results.

The above-mentioned process is called forward-design approach: first, a structure
is created, and its mechanical properties are then investigated by FEM simulations
or mechanical testing. To achieve unprecedented properties, the geometric arrange-
ment of mechanical metamaterials is always delicately designed by the experienced
designers with trial-and-error method. The modeling methods can be divided into
"bottom-up" and "top-down" design strategies, depending on how a structure is cre-
ated. In "bottom-up" design strategies, the modeling process is an "addition opera-
tion" in which basic geometric elements are assembled into a scaffold structure, akin
to constructing objects with Lego bricks. In "top-down" design strategies, the model-
ing process is a "subtraction operation" in which a domain (usually a square or cube)
is hollowed out purposely into a cellular structure, akin to the construction of termite
nests.

1.2.1 "Bottom-up" Design Strategies

Computer-aided design (CAD) modeling and Voronoi tessellation are typical "bottom-
up" design strategies for constructing regular and irregular mechanical metamaterials,
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FIGURE 1.4: Design methods of mechanical metamaterials. (a) CAD
modeling where a geometry is built by Boolean operations of simple
geometries. (b) Voronoi tessellation where a geometry is built by ex-
tracting features (edges or faces) of a Voronoi diagram. (c) Topology
optimization where a geometry is built by optimally removing redun-
dant material for a given structure [57]. (d) Phase-field model where
where a geometry is built by simulating phase separation process [58].

respectively. CAD modeling is more empirical and always used to construct regular
geometries in an ordered manner, whereas Voronoi tessellation is usually used to con-
struct stochastic open- or closed-cell foams by applying Voronoi diagram using a seed
(i.e., finite points) in a 2D Euclidean plane or 3D Euclidean space [59].

In CAD modeling, the geometric elements of building blocks are mainly simple
geometries, such as 1D lines and curves, 2D circles, rectangles, and polygons, and 3D
cubes, beams, and spheres (Figure 1.4). These simple geometries can be designed and
constructed into different geometric motifs, depending on the imagination and experi-
ences of designers or taking inspiration from glorious creatures, crystalline solids, and
arts and crafts. A geometry of a building block is yielded after constructing these sim-
ple geometries via CAD modeling, such as Boolean and lofting operations. CAD mod-
eling is always implemented in CAD design and drafting software applications with
graphical user interface. Popular CAD applications include AutoCAD (Autodesk,
USA), Autodesk 3ds Max (Autodesk, USA), SolidWorks (Dassault Systèmes, France),
and Rhinoceros 3D (Robert McNeil & Friends, USA) with its third-party component
Grasshopper. In addition, FEM software applications, such as Abaqus FEA (Dassault
Systemes, France), ANSYS (Canonsburg, USA), and COMSOL Multiphysics (COM-
SOL, Sweden), also provide a seamless process for constructing and simulating me-
chanical metamaterials simultaneously. Most mechanical metamaterials are created by
CAD modeling, such as auxetic metamaterials with re-entrant, chiral, rotating struc-
tures [11, 12, 24, 27, 30], light-weight lattices with bending- or stretching-dominated
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behaviors [14, 15], and structured fabrics with interlocking particles [46]. However,
the CAD modeling can be time-consuming and cost a huge computing resource if the
geometry is too complicated.

In Voronoi tessellation, the geometric elements of created building blocks are beams
or shells, depending on whether an open- or closed-cell foam is generated. The gen-
eral modeling process of Voronoi tessellation follows as below: a seed consisting of
finite coordinate points is initially created, followed by building a Voronoi diagram
using the seed; in 2D case, a lattice is generated by applying a thickness to the edges
of each polygons in the Voronoi diagram [60–62]; in 3D case, an open-cell foam is gen-
erated by applying a thickness to the edges of each polygons, and a closed-cell foam is
generated by applying a thickness to the faces of each polygons [63–68]. The geometry
generated by Voronoi tessellation can be either regular and irregular, depending on the
regularity of the seed. The Voronoi tessellation is always implemented by computer
scripts due to its complexity, such as Python [68], C++ [64, 65], MATLAB (MathWorks,
USA) [60], as well as build-in modules in some CAD applications [63, 66, 67]. Con-
sequently, the scripts enables rapidly generating a large number of geometries for the
datasets of deep learning.

1.2.2 "Top-down" Design Strategies

Topology optimization and phase field are symbolic "top-down" design strategies for
constructing mechanical metamaterials with optimal performance. Topology opti-
mization is used for developing optimized structures with desired target properties
by considering design parameters such as expected loads, volume fractions, and avail-
able design space. In contrast, phase-field model is used for developing structures
with smooth surfaces by simulating interactions between different phases.

In topology optimization, the material layout is generally evaluated by FEM with
the goal of maximizing the performance. The material layout is optimized using ei-
ther gradient-based algorithms (e.g., optimality criteria algorithm) or non gradient-
based algorithms (genetic algorithm). Topology optimization can be implemented
by either homemade scripts or in build-in modules in FEM applications [57, 69–73].
In particular, topology optimization is capable of generating mechanical metamate-
rials with desired target properties, such as negative Poisson’s ratio [70, 71, 73] and
Hashin-Shtrikman upper bounds on isotropic elasticity [72, 74]. As different geomet-
ric patterns with similar properties can be automatically created by changing bound-
ary conditions, topology optimization is also an effective way to make datasets for
deep learning [72]. However, generating geometries is time-consuming especially for
the generation of 3D geometries.

In phase-field model, the material layout is optimized by reproducing a given in-
terfacial dynamics to simulate and predict complex microstructure developments [75].
A typical application of phase field in mechanical metamaterials is spinodal decompo-
sition, which can generate topologies with smooth surfaces [76]. Spinodal decompo-
sition generates spinodal topologies by simulating diffusion-driven process of a ho-
mogeneous solution that decomposes into two spatially separated uniform phases.
Spinodal topologies are composed of smooth, non-intersecting surfaces, which can
alleviate stress concentration [58, 77–79]. According to the post-processing way, spin-
odal topologies can consist of either ligaments (i.e., solid networks formed by re-
moving one phase) or surfaces (i.e., shell networks formed by keeping only the in-
terfaces of two phases). Compared with its analogue, triply periodic minimal surfaces
(TPMSs) [44, 54], spinodal topologies can be realized as disordered, non-periodic, and
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anisotropic architectures, a diversity that makes them a potential candidate for mak-
ing big datasets [80]. However, generating spinodal topologies is time-consuming
as it costs hours for simulating the phase separation process based on Cahn–Hilliard
equation on a normal computer [77, 78].

1.3 Fabrication Methods

After computationally designing mechanical metamaterials, the most straightforward
way to fabricate them is additive manufacturing [81–84]. Although some fabrication
methods, such as laser cutting and wire weaving [21, 85–88], have been developed
to fabricate mechanical metamaterials, the feasible structures are highly limited. For
instance, laser cutting is always used to fabricate 2D mechanical metamaterials [21,
85, 86]. In addition, auxetic metamaterials manufactured by forming helical wires can
achieve high energy absorption and fracture resistance capabilities; however, their ba-
sic geometries are mainly 3D truss-like cells, which do not allow fabricating complex
internal shapes [87].

Additive manufacturing, including 3D printing and 4D printing, refers to the man-
ufacturing process of creating objects by adding materials using a 3D printer and CAD
software. Four-dimensional (4D) printing involves the same techniques of 3D print-
ing, but the created 3D shape is capable of morphing into different forms in response
to environmental stimulus by taking advantage of stimulus-responsive materials [89–
91]. Additive manufacturing is in stark contrast to conventional manufacturing pro-
cesses where a block of material or a mold is required to manufacture physical ob-
jects. Compared with conventional manufacturing processes, additive manufactur-
ing is faster, more efficient, and capable of creating more complex geometries with
an ever-expanding list of materials. In additive manufacturing, a mechanical meta-
material is firstly computationally designed and generated, and then exported as a
standard triangle language (STL) file for printing. The STL file is sliced by a slicing
software before sent to a 3D printer. After printing, a 3D printed specimen is finished
after post processing (e.g., washing, curing, and removing supports).

1.3.1 3D printing

Since the inception of 3D printing, different additive manufacturing techniques have
been introduced to manufacture mechanical metamaterials. Typical additive manu-
facturing techniques are listed in Figure 1.5. The minimum feature size of 3D-printed
models and the type of printable materials are determined by the specific pattern-
ing and solidification process in different additive manufacturing techniques. Fig-
ure 1.5 also compares the minimum feature sizes and typical mechanical metamate-
rials printed using different additive manufacturing techniques. Recent advances in
additive manufacturing have hugely improved the printing resolution and speed [95–
98], and developed new printable materials [94, 99].

When talking about 3D printing, what firstly comes to your mind might be desktop
3D printers printing colorful toys using polymer-based filaments. These desktop 3D
printers are based on fused deposition modeling (FDM) in which filaments are melted
and extruded through a nozzle and fused together to create 3D objects (Figure 1.5a)
[100–102]. Speaking of cost, FDM 3D printers and regular FDM filaments are by far
the cheapest 3D printer and printing material, respectively. Therefore, FDM 3D print-
ers are commonly used in schools and universities for teaching 3D printing. However,
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FIGURE 1.5: (a–d) Typical additive manufacturing techniques and 3D-
printed mechanical metamaterials: (a) fused deposition modeling; (b)
selective laser sintering; (c) resin printing (e.g., stereolithography and
two-photon polymerization); (d) direct-write printing [84]. (e–h) 3D-
printed mechanical metamaterials fabricated by: (e) fused deposition
modeling [92], (f) selective laser sintering [46], (g) two-photon poly-
merization [93], and (h) direct-write printing [94]. (i) Minimum size
ranges of patterned features produced by different additive manufac-
turing techniques [84].

as the standard nozzle size is 0.4 mm, the feature size is hugely limited. Also, addi-
tional supports are required if a geometry is too complex. As a consequence, FDM is
always used to fabricate 2D mechanical metamaterials for validating their mechanical
properties (Figure 1.5e) [92, 103].

To avoid additional supports, powder bed fusion 3D printing, such as selective
laser sintering (SLS), is a suitable option [27, 47, 104]. In SLS, powdered materials
are locally heated and sintered using a laser in a powder bed to create objects (Fig-
ure 1.5b). The quality of printed objects is highly dependent on the powder properties
such as particle size and shape. To facilitate spreading, granulated powders are typical
range from 10 to 100 µm in Gaussian distribution, which restricts the minimum fea-
ture size of printed objects (around 100 µm). However, the non-fused powders in the
powder bed serve as supports during printing process, enabling fabricating complex
architectures without additionally interior supports (Figure 1.5f) [46, 47, 104].

To improve the feature size and surface finish, resin printing is one of the most
commonly used additive manufacturing techniques for fabricating mechanical meta-
materials (Figure 1.5c). In resin printing, 3D objects are created by successively print-
ing thin sliced layers using a liquid resin selectively photopolymerized by ultraviolet
light. The first resin printing technique is stereolithography (SLA) 3D printing in-
vented by Hideo Kodama in the early 1980s [105]. A desktop SLA 3D printer con-
tains a build platform and a resin tank which serves as a container for the liquid resin
to cure. SLA offers a variety of printable materials and fine surface finish, and thus
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serves as a popular technique for fabricating mechanical metamaterials [44, 62]. Digi-
tal light processing (DLP) 3D printing is another common processes for resin 3D print-
ing [14, 106]. DLP and SLA share the basic concept of printing process, but depends
on different light sources—SLA a laser and DLP a projector. Thereafter, SLA relies
on point-source illumination whereas DLP relies on face-source illumination, making
DLP faster than SLA. In addition, another resin printing technique, two-photon poly-
merization (2PP), provides the highest printing resolution by utilizing two-photon
absorption of near infrared light to excite the same energy transition as ultraviolet
photons, making it possible to print complex hierarchical architectures (Figure 1.5g)
[15, 93, 107]. However, there is an inherent trade-off between feature size, building
volume, and printing speed. This means that 2PP can be used to fabricate highly com-
plex microarchitectures, but limited within a building volume of 1 cm3. The limitation
can be broken by developing new additive manufacturing technique. For example, a
hierarchical metamaterial with dimension of hundreds of millimetres and feature size
of sub-10 µm can be fabricated using a large-area, high-resolution additive manufac-
turing technique [106]. The additive manufacturing technique combines Large Area
Projection Microstereolithography (LAPµSL) and an addressable spatial light modu-
lator to print microarchitectures over a substantially larger area.

Although resin printing provides the highest feature resolution, the available ma-
terials are limited with photopolymerizable resins. In contrast, direct-write printing
techniques, such as direct ink writing (DIW), can pattern myriad materials in the form
of printable inks derived from a wide range of molecular, polymeric or particulate
species under ambient conditions (Figure 1.5d) [94, 98, 99, 108]. Inks for this tech-
nique are composed of low-viscosity fluids, including concentrated polymer, fugitive
organic, filled epoxy inks, and metallic particles, providing a wider range of printable
materials than other methods. In addition, by using multiple printheads, objects can
be printed with multiple materials (Figure 1.5h) [94].

1.3.2 4D printing

Unlike 3D printing that creates object with fixed shape after fabrication, 4D print-
ing allows the printed objects to transform with response to external stimuli, earn-
ing its 4th dimension. According to stimulus-responsive materials, 4D-printed objects
can possess different activation mechanisms such as heat transfer, chemo-mechanical
transformation, and electromagnetic interactions [2, 89–91], as shown in Figure 1.6.
Mechanical metamaterials made of thermo- and chemo- responsive materials are trig-
gered by surrounding temperature or chemical cues [109–114]. For example, lightweight
mechanical metamaterials printed using thermo-responsive shape-memory polymer
(SMP) can be deformed substantially and mechanically programmed into an arbitrary
geometry after receiving thermal stimulation, and recover to the original shape after
further thermal stimulation [109]. Mechanical metamaterials made of electromagnet-
ically responsive materials can respond in a short time remotely manipulated by a
magnetic field, an electric field or light [50–52, 115, 116]. The remote manipulation
enables mechanical metamaterials to perform remotely prescribed tasks such as de-
livering an object [116]. The versatile functional responsive materials, combined with
delicate architectural design, provide great degree of freedom to achieve desired spa-
tiotemporal responses.

In addition to common polymers and metals, functional responsive materials are
always used for 4D printing, such as polymer-filler composites, liquid crystal elas-
tomers (LCEs), SMPs, hydrogels, and polymers with embedded magnetic, piezoelec-
tric, and light-absorbing particles. Among them, SMPs have attracted most attention
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because they can be programmed into a temporary shape and return to their initial
shape by external stimuli, such as light, heat, magnetism, and electricity [109, 110,
112–114]. The programmed temporary shape enables mechanical metamaterials to
change or switch their mechanical responses. In general, SMPs are crystalline and
semicrystalline polymers whose shape memory behavior is determined by the tran-
sition temperature (e.g., melting temperature, Tm, or crystallization temperature, Tc).
When heated over the transition temperature, the crystalline part softens and becomes
easy to manipulate. The deformed shape can be kept after cooling down to the transi-
tion temperature. However, mechanical metamaterials made of SMPs hardly undergo
large deformations due to the plasticity of SMPs at room temperature (below the tran-
sition temperature) [109, 110, 117–119].

1.4 Motivation and Scope

From the brief introduction of the background of mechanical metamaterials, the re-
search of mechanical metamaterials is still in its infancy. Current efforts have been
paid on developing new mechanical metamaterials by designing new architectures
or using new functional constitutive materials. Some limitations are still required to
address.

First, the design space is hugely limited by the design methods. For example, aux-
etic metamaterials are typically classified into re-entrant, chiral, rotating, and hierar-
chical laminate structures according to their deformation mechanisms. Creating these
geometries are mainly by CAD modeling, which does not guarantee optimal perfor-
mances and costs a large computational resource if the geometry is too complex.

Second, mechanical metamaterials always harness zero-energy deformation modes,
i.e., a single shape change that limits their applications, resulting in the need for
changeable mechanical responses. This means that the mechanical responses of me-
chanical metamaterials are fixed after fabrication. For example, an auxetic metamate-
rial always shrinks laterally under a uniaxially compressive load.

Last and most importantly, most previous design methods are forward design ap-
proach: first, a structure is created, and its mechanical properties are then investigated
by FEM simulations or mechanical testing. The mechanical properties of the designed
materials are known only after time-consuming simulations or experiments. In ad-
dition, the realization of the geometric arrangements of mechanical metamaterials are
highly dependent on the prior knowledge of experienced designers, resulting in a lim-
ited number of design spaces. What if we could convert this conventional forward de-
sign approach? Could we harness an inverse design approach where an architecture
with desired target properties could be automatically generated by a computer?

This work focuses on harnessing state-of-the-art computational methods and func-
tional materials to address the above-mentioned three limitations.

1.5 Outline of Thesis

The main body of the thesis consists of three chapters that correspond to the above-
mentioned three limitations (Table 1.1).
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TABLE 1.1: Outline of the thesis.

Chapter Chapter 2 Chapter 3 Chapter 4

Purpose Simplify the conventional
modeling methods

Reprogram the mechani-
cal responses

Convert the conventional
forward design approach

Method Develop a modeling
method by mathemati-
cally control

Develop a new shape
memory polymer

Develop a deep learning
framework

Results Design a 3D auxetic
metamaterial generated
by MATLAB codes using
implicit function

Design three mechanical
metamaterials whose
mechanical responses can
be switched using light
stimulation

Inversely generate 2D
and 3D mechanical meta-
materials

Others Enhance the stiffness,
strength, and conduc-
tivity of the auxetic
metamaterial using
nickel plating

Fabricate a soft actua-
tor that shows repro-
grammable preferred
locomotion direction

Create the datasets of me-
chanical metamaterials
using Voronoi tessella-
tion
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Chapter 2

Forward Design of Auxetic
Metamaterials by Mathematically
Control

2.1 Introduction

In this chapter, I manage to simplify the conventional modeling methods by proposing
a mathematically modeling method. The proposed modeling method generates an
new 3D mechanical metamaterial by using implicit functions with MATLAB codes.

An auxetic metamaterial is a type of mechanical metamaterial that has a negative
Poisson’s ratio. Most auxetic metamaterials are truss-based or originate from Boolean
operations of simple geometries. Auxetic metamaterials are typically classified into
re-entrant [120–126], chiral [127–131], rotating [11, 87, 132–135], and hierarchical lam-
inate structures [136–138] according to their deformation mechanisms. In general, the
re-entrant, chiral, and rotating structures are porous and composed of a single com-
ponent, whereas the hierarchical laminate structures are solid and consist of two or
more components with different Poisson’s ratios. The empty spaces in the interior
structures of these materials are necessary for rotation, bending, and torsion of the
ligaments and nodes in the former three analogies, resulting in low stiffnesses and
strengths compared with their matrix materials. Most auxetic metamaterials have pe-
riodic array structures according to their design principles in terms of the components,
porosities, and periodicities. These basic arrays generally comprise beams, trusses, or
shells, or are generated from Boolean operations of simple geometries, such as cylin-
ders, cones, spheres, and boxes (Figure 2.1). The modeling method greatly limits its
applications, especially where optimal performances are needed.

However, TPMSs, which are a type of metamaterial, have recently gained much
attention owing to their mathematically controlled and fascinating topologies [139,
140], such as their bioinspired morphology, smooth surfaces without edges and cor-
ners [141], and higher stiffness and strength than their disordered counterparts [63].
Extensive efforts have been invested to expand the design spaces of TPMS-based ma-
terials, such as skeletal, sheet, graded, and hybrid lattice structures [44, 54, 142–144];
however, thus far, only a few studies have focused on achieving negative Poisson’s
ratios [145, 146]. Herein, I extend the application of TPMSs to auxetic metamaterials
by exploiting their particular characteristics.

3D printing or additive manufacturing is a standard method used to fabricate del-
icately designed auxetic metamaterials. Rubber-like materials, such as flexible resins
and thermoplastic polyurethane, are the typical raw materials used for 3D-printed
auxetic metamaterials, which render them resilient but result in inadequate stiffness



14 Chapter 2. Forward Design of Auxetic Metamaterials

Bo
ol

ea
n 

op
er

at
io

ns
 

Lo
ft

in
g

M
at

he
m

at
ic

al
 co

nt
ro

l

Basic elements Modeling process Generated models
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a=5*pi;
s=5*pi/100;
[x,y,z]=meshgrid(-a:s:a,-a:s:a,-a:s:a);
cx = cos(2*x);
cy = cos(2*y);
cz = cos(2*z);
u = 10.0*(cos(x).*sin(y) + 
cos(y).*sin(z) + cos(z).*sin(x))-
0.5*(cx.*cy + cy.*cz + cz.*cx) - 14.0;
[f,v]=isosurface(u,0);
vertface2obj(v,f,'gyroid.obj')

FIGURE 2.1: Three common methods used to generate auxetic metama-
terials: Boolean operations, lofting, and mathematical control. Mathe-
matical control is used in this work and could generate serveral com-
plicated structures based on implicit expressions.

and strength [27, 147, 148]. Metal-based 3D printing techniques allow the fabrica-
tion of auxetic metamaterials made of metals, such as structural steel and titanium
alloy [149, 150]; however, the plasticity highly restricts their application where large
deformations are required. Although some fabrication methods have been developed
to ensure both resilience and stiffness, the feasible structures are highly limited. For
instance, wire-woven metals manufactured by forming helical wires can achieve high
energy absorption and fracture resistance capabilities. However, their basic geome-
tries are mainly 3D truss-like cells, which do not allow fabricating complex internal
shapes [87, 88].

In this chapter, I propose a new auxetic metamaterial that is mathematically gen-
erated from a new type of TPMSs, and harness electroless plating to enhance the per-
formance of the 3D-printed auxetic metamaterial. First, the geometries of the TPMS-
based auxetic metamaterial are mathematically generated with an arbitrary relative
density. I then investigate the auxetic behavior of the metamaterial under uniaxial
compression using a 3D-printed specimen, followed by verification via FEM simu-
lations. Next, I metalize the 3D-printed models by plating a layer of nickel on their
surfaces and evaluate their performance under multiple compression tests. Finally, I
quantify the effective mechanical and conduction properties and present them in the
form of maps depending on the relative densities and nickel layer thicknesses.

2.2 Materials Design Strategy by Mathematically Control

A minimal surface is a smooth surface that has zero mean curvature and locally min-
imizes the surface area for a given boundary [151]. When a minimal surface is trans-
lationally symmetric in three dimensions, it is called a TPMS. TPMSs can be modeled
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using different level-set approximation equations. In this work, the geometry of the
auxetic metamaterial is derived from Schwarz Primitive minimal surface [152], and a
more complicated implicit equation is used to determine the isosurface of the designed
structure [63]:

F(x, y, z) =
(
(cos(x) + cos(y) + cos(z)

)
−

0.4
(
cos(x)cos(y) + cos(y) cos(z) + cos(z) cos(x)

)
+ c

(2.1)

Here, the level-set constant c regulates the volume fractions of the two phases sep-
arated by the isosurface. A skeletal lattice is built after capping the open borders of
the isosurface. The proposed auxetic metamaterial possesses a cubic symmetry with
a single unit cell within the domain x, y, z ∈ [−π, π]. Its relative density, denoted by
ρ (i.e., the volume fraction of the solid phase), has an almost linear relationship with
c, as shown in Figure 2.2a. In this work, each isosurface was generated on the basis
of the implicit expression using MATLAB (MathWorks, USA). The MATLAB code for
modeling the auxetic metamaterial is detailed in Appendix A. After capping the iso-
surface borders, the geometry of the TPMS-based auxetic metamaterial was exported
as STL files for 3D printing and FEM simulations. Figure 2.1 compares three different
methods used to generate auxetic metamaterials: Boolean operations of simple ge-
ometries, lofting operations that create 3D objects using 3D lattices as framework with
arbitrary cross-sectional shapes such as cycle and square, and mathematical control.
It demonstrates the flexibility of mathematical control to build complicated structures
based on TPMS-based unit cells.
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FIGURE 2.2: TPMS-based auxetic metamaterial. (a) Different relative
densities determined by the level-set constant c. (b) A rendering of the
auxetic metamaterial consisting of 6 × 6 × 6 unit cells. (c,d) 3D-printed
specimen before and after electroless nickel plating. (e,f) Optical micro-
scope images of the nickel-coated specimen. (g) Optical microscope
images of the nickel-coated specimen after multicle compression cy-
cling. (h,i) Scanning electron micrographs showing the cross-sectional
and surface morphologies of the nickel-coated specimen.
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2.3 3D-Printed Auxetic Metamaterial

2.3.1 Auxetic Behavior

To evaluate the auxetic behavior and deformation mechanism, the proposed auxetic
metamaterials were fabricated using 3D printing with a rubber-like material. The
newly fabricated metamaterial were investigated under uniaxial compression. As can
be seen from the 3D visualization of the metamaterial (Figure 2.2b), a single unit cell
consists of three ligaments, which are orthogonal to the center node in 3D Euclidean
space. This forms a single continuous lattice structure with smooth surfaces. I first
conducted a uniaxial compression test on the 3D-printed specimen with ρ = 0.16 (Fig-
ure 2.2c). The high resolution of the 3D printing technique ensured a good surface
finish for the 3D-printed samples.
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FIGURE 2.3: Buckling-induced auxetic behavior of the proposed aux-
etic metamaterial and a sequence of progressively deformed configura-
tions of the (a) 3D-printed specimen, (b) nickel-coated specimen, and (c)
FEM model. The deformed degree is defined as the displacement norm
of each meshed element divided by the original height of the model.

Then, I performed a systematical analysis of the auxetic behavior by considering
the deformed patterns, strain-stress curves, and Poisson’s ratios, as shown in Fig-
ures 2.3 and 2.4. Figure 2.3a shows a sequence of progressively deformed shapes
of the specimen under seven different levels of longitudinal engineering strain (i.e.,
change in the height of the sample divided by its original height, εzz = (L − L0)/L0).
Here, the specimen witnesses a dramatic contraction in all three directions, along with
changes to its interior structure (the holes are changed from circles to ellipses). The
lateral shrinkage proves that it is a 3D material with negative Poisson’s ratio. The
structural transformation from straight to bent ligaments demonstrates that the defor-
mation behavior is subject to buckling instability. It is noted that the periodicity of
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FIGURE 2.4: (a) Stress-strain curves from uniaxial compression tests
and FEM simulations. (b) Evolution of the transverse engineering
strains and Poisson’s ratios as a function of the longitudinal strain. The
FEM results are observed to be in good agreement with the experimen-
tal data.

the auxetic metamaterial can be considered as a new representative volume element
(RVE) comprising 2 × 2 × 2 unit cells upon buckling.

To further probe the buckling-induced auxetic behavior, I analyzed the stresses
and Poisson’s ratios under different compression strains. Figure 2.4a shows the stress-
strain curve of the 3D-printed specimen as a function of the longitudinal strain εzz. It is
observed that it is a typical elastic buckling curve consisting of a linear elastic regime
and a stress plateau. The transition occurs at εzz ≈ −0.03 when the ligaments begin
to bend, which further demonstrates the buckling-induced auxetic behavior. Because
the structure is difficult to shrink when there are no empty interior spaces, I set a stop
condition when the ligaments around the holes come into mutual contact. As a result,
the densification region of stress-strain curves is missed, and the overall deformation
strain is approximately εzz ≈ −0.3.

A more quantitative evaluation of the negative Poisson’s ratios is shown in Fig-
ure 2.4b, where these ratios are calculated from the engineering strain as νij = −ε jj/ε ii,
for i, j = x, y, z. The transverse strains εxx and εyy are obtained from the average trans-
verse strains of the four nodes of the inner-most RVE to reduce the influence of bound-
ary conditions, including that of the friction on the up and down surfaces and the
freedom of the exterior traction-free surfaces. This is attributable to the approximation
that the innermost RVE can be assumed as an infinitely periodic structure [11]. The
calculated Poisson’s ratios (νzx and νzy) first monotonically decrease and then reach a
plateau after εzz ≈ −0.1. Each plateau lasts over a wide range from εzz ≈ −0.1 to −0.3
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for νzx ≈ −0.5 and νzy ≈ −0.25.
In the next stage, I conducted FEM simulations using an RVE consisting of 2× 2× 2

unit cells to investigate the auxetic behavior more qualitatively and quantitatively.
The stress-strain curve of the FEM model shows excellent agreement with the result
from the 3D-printed specimen (Figure 2.4a). Moreover, the progressively deformed
configurations from the FEM simulation are substantially alike compared to the ex-
perimental results (Figure 2.3c). The geometry shrinks in all three directions accom-
panying the bending of ligaments and the rotation of nodes, demonstrating that the
proposed auxetic metamaterial belongs to rotation structures. Figure 2.4b presents the
transverse strains εxx and εyy and the Poisson’s ratios plotted as a function of the lon-
gitudinal strain εzz. It is clear that the transverse strains decrease with εzz under com-
pression, exhibiting lateral constriction behavior. The Poisson’s ratios calculated from
the transverse strains also fit the experimental data well. The Poisson’s ratios are posi-
tive during the initial compression and become negative after the structure undergoes
buckling; then, this trend gradually decreases and reaches a plateau with further load-
ing. To clarify whether the periodic boundary condition will remove all possible size
effects, I performed FEM simulations on a 6 × 6 × 6 model using periodic boundary
condition (Figure 2.5). It shows the same result in terms of stress–strain curve, Young’s
modulus, and critical buckling stress and strain compared with the 2 × 2 × 2 model.
Further, Figure 2.5 also reveals the deformation mechanism that leads to the auxetic
effect; the compression leads to the bending of ligaments, the rotation of nodes, and
the transformation of holes from circles to ellipses. Overall, the excellent agreement of
the deformed patterns, stress-strain curves, and Poisson’s ratios with the experimental
observations demonstrate the accuracy and efficacy of our FEM model.
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FIGURE 2.5: Auxetic behavior of a 6 × 6 × 6 model showing agreement
with the 2 × 2 × 2 model and revealing the deformation mechanism of
the proposed auxetic metamaterial.

2.3.2 Influence of Relative Density

Given the outstanding qualitative and quantitative agreement between the experi-
ment and the FEM simulation, I further explore the influence of the relative density
of the new auxetic metamaterial on the mechanical properties based on FEM models.
Five different relative densities ranging from 0.12 to 0.28 are considered. The stress-
strain curves from the FEM simulation results are shown in Figure 2.6a, where the
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stresses are normalized using the Young’s modulus of the matrix material, E0 = 0.6615
MPa. This shows that both the Young’s modulus (E) and critical buckling stress (σc)
increase with the relative density. The critical buckling strain (εc) also rises from about
0.009 to 0.101, providing evidence that a higher relative density suppresses the buck-
ling behavior.
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FIGURE 2.6: Influence of relative density on mechanical properties.
Evolutions of the (a) normalized engineering stresses, (b) transverse en-
gineering strains, and (c) Poisson’s ratios as function of the longitudinal
strain. The methods of calculating Young’s moduli E, critical buckling
strains εc, and critical buckling stresses σc are also illustrated in the first
figure.

Figure 2.6b presents the transverse strains εxx and εyy versus the longitudinal strain
εzz from the FEM simulation results. The evolution of the transverse strains displays
a similar tendency: a short plateau followed by a continuous decline. It is noteworthy
that the short plateaus are extended, and the ultimate transverse strains are lessened as
the relative density increases. I also calculated the Poisson’s ratios from the transverse
strains, as shown in Figure 2.6c. Similarly, the Poisson’s ratios at the same εzz increase
with relative density, for example, the Poisson’s ratios νzx increases from −0.58 to
−0.29 at εzz = −0.3 when the relative density increases from 0.12 to 0.28. These results
demonstrate that the proposed auxetic metamaterial is harder to shrink if it is denser.
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In addition, this auxetic metamaterial displays a transversely asymmetric behavior as
νzx ̸= νzy.

The performance of the proposed auxetic metamaterial, including Young’s modu-
lus, critical buckling strain and stress, and Poisson’s ratio, is compared with several
typical auxetic metamaterials, as shown in Figure 2.7. The Young’s moduli and critical
stresses are normalized respectively by the Young’s modulus of their constitute mate-
rials. It shows that the proposed auxetic metamaterial has higher normalized Young’s
modulus and critical stress than others owing to its higher relative density. Further,
the structure possesses a longer buckling strain up to −0.1 at ρ = 0.28 and a larger
negative Poisson’s ratio up to −0.63 at ρ = 0.12. Overall, varying relative density
enables to tune the mechanical properties over a broad range.
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FIGURE 2.7: Comparison of the proposed auxetic metamaterial with
several typical auxetic metamaterials, including Bucklicrystals [11],
simple cubic cell [134], slender unit cell [135], aluminum wire-woven
lattices [87], pyramid US patent, re-entrant idealized v1, and re-entrant
tetrakaidecahedron [126]. (a) Normalized Young’s modulus, (b) Nor-
malized critical buckling stress, (c) Normalized critical strain, and (d)
Poisson’s ratio.

2.4 Metallized 3D-printed Auxetic metamaterial

2.4.1 Influence of Nickel Layer

To further functionalize the auxetic metamaterial, I coated a conformal nickel layer
onto the surfaces of the 3D-printed specimen with ρ = 0.16 by electroless plating.
After plating a nickel layer of 0.57 µm thickness, the overall structure remains un-
changed without apparent volume shrinkage or expansion (Figure 2.2d). Moreover,
the dense nickel layer, having a grain size of hundreds of nanometers, adheres to the
resin surface well, thereby ensuring good structural stability after large deformation
(Figures 2.2e–i). Note that I assumed the relative density keeps unchanged after plat-
ing as the nickel layer thickness is quite small compared to the unit cell size of 3D-
printed models.
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Figure 2.3b displays the continuous deformed patterns of the nickel-coated spec-
imen under uniaxial compression, which exhibits a similar result as that of the 3D-
printed specimen and FEM model. In addition, compared with the 3D-printed speci-
men, the nickel-coated specimen has nearly twice the values of the Young’s modulus
and critical buckling stress, but its critical buckling strain remains almost unchanged
(εc ≈ −0.03), as shown in Figure 2.4a. Note that there are some decreases in the
stresses after buckling owing to local plastic deformation and cracks in the nickel lay-
ers (Figure 2.2g). Interestingly, the 3D-printed and nickel-coated specimens possess
almost identical Poisson’s ratios under the same transverse strains (Figure 2.4b). The
results prove that the nickel layer has a negligible impact on the critical buckling strain
and Poisson’s ratio, but significantly enhances its Young’s modulus and critical buck-
ling stress.

To investigate the resilience and stability of the specimens, I performed multicy-
cle compression tests. Figures 2.8a and b compare the 3D printed specimen with the
nickel-coated specimen with respect to their stress-strain curves during loading and
unloading over multiple compression cycles. The small decreases in stresses for the
nickel-coated specimen during consecutive compression cycles are a result of the lo-
cal yield and crack of nickel layers. On the other hand, the Young’s moduli decrease
only marginally because the buckling behavior is a result of local deformation. When
the load exceeds the critical buckling stress, the ligaments begin to bend, resulting in
the plastic deformation and cracking of the nickel layers at the center of the ligaments
where they bend. This part of the nickel layers contributes mainly to enhance the crit-
ical buckling stress. However, the Young’s modulus is determined by entire nickel
layer; the deformation and cracks of the nickel layers in these local regions reduce
the Young’s modulus only slightly. Nevertheless, both kinds of specimens reach peak
stress when compressed to εzz = −0.3, and recover their original heights after load
removal. The stress-strain curves are also nearly identical even after 20 compression
cycles, demonstrating excellent resilience and stability for both classes of specimens.

To explore how the mechanical and conduction properties are enhanced by in-
creasing the thickness of the nickel layers (t), I deposited nickel layers having differ-
ent thicknesses on the 3D-printed specimens with ρ = 0.16 by varying the electroless
plating time. The thicknesses of the nickel layers are nearly linearly dependent on the
plating time, and a nickel layer of about 1.71 µm thickness was formed by plating 30
min (Figure 2.8c). The stress-strain curves from the first cycle of compression tests are
shown in Figure 2.8d, revealing a mechanical enhancement that the stresses increase
with the thickness at the same εzz. Compared with the non-plated specimen, the one
with the 1.71 µm nickel layer has an approximately ten-fold increase in terms of its
stiffness and strength, increasing from 35 kPa to 375 kPa in terms of Yong’s modulus
and from 0.9 kPa to 9 kPa in terms of critical buckling stress, respectively (Figures 2.8e
and f). Surprisingly, the critical buckling strains are almost independent of the thick-
ness of the nickel layer, and have a constant value of εzz ≈ −0.03.

After plating the nickel layer, these specimens become conductive. Figure 2.9a dis-
plays the conductivity-strain curves of a sample with t = 0.57 µm and ρ = 0.16 during
multiple compression tests. Likewise, the conductivity-strain curves also have excel-
lent repeatability after 20 cycles of compression, without apparent losses in their con-
ductivities. Under compression, the electrical conductivity increases linearly from 128
S/m initially to 230 S/m until the specimen suffers buckling; thereafter, it decreases
immediately and then increases during further compression. After unloading, the
electrical conductivity is almost restored to its original point, in pace with the recov-
ery of the specimen. The results further prove the remarkable resilience and stability
of these specimens under multiple large compressions.
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FIGURE 2.8: Influence of nickel layer thickness on mechanical proper-
ties. Stress-strain curves of (a) a 3D-printed specimen with ρ = 0.16 and
(b) a nickel-coated specimen with ρ = 0.16 and t = 0.57 µm from mul-
tiple compression tests. (c) Evaluation of the nickel layer thickness that
is linearly dependent on plating time. (d) Stress-strain curves of nickel-
coated specimens with different thicknesses of nickel layers from the
first cycle of compression tests. Dependence of (e) the Young’s modu-
lus and (f) critical buckling stress on the nickel layer thickness. In the
stress-strain curves, solid lines represent loading and dot lines repre-
sent unloading.

I also explored the influence of the nickel layers on the electrical conductivities by
coating different thicknesses of the nickel layers on the 3D-printed specimens with ρ =
0.16. Figure 2.9b presents the conductivity-strain curves of these specimens from the
first cycle of compression tests. Analogous to the stress-strain curves in Figure 2.8d,
each of these conductivity-strain curves consist of three parts during loading: a steep
incline followed by a drop and a gradual rise. As expected, the conduction is enhanced
remarkably by plating thicker nickel layers; for example, when the thickness increases
from 0.28 µm to 1.71 µm, the conductivities increase from approximately 58 S/m to
371 S/m at the initial shape (Figure 2.9c).
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FIGURE 2.9: Influence of nickel layer thickness on conduction prop-
erties. (a) Conductivity-strain curves of the nickel-coated specimen
with ρ = 0.16 and t = 0.57 µm from multiple compression tests. (b)
Conductivity-strain curves of nickel-coated specimens with different
thicknesses of nickel layers from the first cycle of compression tests. (c)
Dependence of conductivity on the nickel layer thickness at the initial
shapes. In the conductivity-strain curves, solid lines represent loading
and dot lines represent unloading.

2.4.2 Data Maps of Mechanical and Conduction Properties

I further conducted a more comprehensive study by investigating the mechanical and
conduction properties of the material dependent on the relative density and nickel
layer thickness. I fabricated a range of specimens by electroless plating of nickel lay-
ers with different thicknesses on 3D printed models with ρ = 0.12 − 0.28. Their ef-
fective mechanical and conduction properties, including Young’s moduli, Poisson’s
ratios, critical buckling strains, critical buckling stresses, and electrical conductivities,
were calculated from the first cycle of uniaxial compression tests. These results are
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FIGURE 2.10: 3D Contour maps of mechanical and conduction prop-
erties: (a) normalized Young’s modulus E/E0, (b) normalized critical
buckling stresses σc/E0, (c) minimum Poisson’s ratios νzx at εzz = −0.3,
(d) critical buckling strains εc, (e) electrical conductivities κ at the ini-
tial shapes, and (f) electrical conductivities κ at critical buckling shapes.
The results are built by integration of the results obtained by plating
t = 0.28, 0.57, 0.85, 1.14, 1.42, and 1.71 µm nickel layers onto the 3D
printed specimens with ρ = 0.12, 0.16, 0.20, 0.24, and 0.28, as indicated
by the gray dots in the first map.

presented as contour maps in Figure 2.10, thus providing a method to tune the me-
chanical and conduction properties.

Figures 2.10a and b respectively present the Young’s moduli and critical stresses
from the experimental results, which are normalized by the Young’s modulus of the
3D-printed resin, E0 = 0.6615 MPa. Increasing either the relative density or the nickel
layer thickness can tremendously enhance the Young’s moduli and critical stresses.
After plating a 1.71 µm thick nickel layer on the 3D-printed specimen with ρ = 0.28,
the normalized Young’s modulus increases from 0.02 to 1.02 and the critical stress in-
creases from 1.79× 10−4 to 8.60× 10−2 compared with the green 3D-printed specimen
with ρ = 0.12.
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Regarding the tuning of the Poisson’s ratios for νxy (data were taken from the
points at εzz = −0.3) and critical buckling strains, changing only the relative den-
sities appears to be a suitable solution (Figures 2.10c and d). It is worth noting that the
Poisson’s ratios and critical buckling strains are nearly independent of the nickel layer
thicknesses, but are dominated by the relative densities. The Poisson’s ratios increase
from approximately −0.78 to −0.29 and the critical buckling strains increase from 0.01
to 0.1 when the relative densities increase from 0.12 to 0.28.

However, the electrical conductivities are hugely determined by the nickel layer
thicknesses. Figures 2.10e and f show the electrical conductivities at the initial and
critical buckling shapes, respectively. This shows that the 3D-printed specimens be-
come conductive after plating with nickel layers of hundreds of nanometers thickness
on the surfaces, and a 1.71 µm nickel layer achieves a conductivity of 700 S/m. More-
over, these results also indicate that the conductivities are difficult to manipulate by
varying the relative density; although, for the same nickel layer thickness, the 3D-
printed specimen with a higher relative density has a larger conductivity than the one
with a lower relative density at critical buckling shapes.

2.5 Summary

I presented a novel auxetic metamaterial originating from a type of TPMS structure.
The mathematically defined modeling method enables the designing of more compli-
cated systems using the metamaterial as basic unit cells. The relative density of the
metamaterial is determined by varying the level-set parameter of implicit expression.
The compression tests, along with the FEM simulations, demonstrated that the auxetic
behavior of the new metamaterial is dominated by buckling instability and is retained
over a broad range of longitudinal strain values up to 0.3. The metamaterial was 3D
printed using a rubber-like material, followed by plating with nickel nanolayers; this
produced a fully reversible and resilient substrate, whose mechanical and conduction
properties were highly tunable by varying the relative density and nickel layer thick-
ness. More importantly, data maps of the Young’s moduli, critical buckling stresses
and strains, Poisson’s ratios, and conductivities provide guidance for functional ap-
plications of the material. Finally, although this work focused only on a single TPMS
structure and a single plated metal, it is highly recommended that a structural gallery
combining other TPMSs and electroless plating techniques (e.g., Cu, Ag, and Au) can
be developed in future work, thereby paving a way towards functional applications,
such as strain sensors, actuators, and electrochemical energy storage and conversion.

2.6 Methods

2.6.1 Specimen Preparation

To reduce the effects of the dimensions on the experiments, each model used in the ex-
periments consisted of 6× 6× 6 unit cells (Figure 2.2b). The specimens of the proposed
auxetic metamaterial were fabricated using an elastic photopolymer resin (Elastic 50A
resin, Formlabs, USA) and a 3D printer (Form 3, Formlabs, USA). To achieve a subtle
surface finish, no additional support structures were used, and the layer thickness and
length of each specimen were set to 0.05 mm and 24 mm, respectively. After washing
with isopropanol for 10 min, these 3D-printed specimens were fully cured at 60 ◦C for
20 min.
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I used an electroless nickel plating method to metalize the 3D-printed specimens.
First, each sample was neutrally degreased in a cleaning solution containing 50 g/L
Na2CO3, 35 g/L Na2SiO3, and 3 g/L C12H25NaO4S for 5 min. After rinsing thoroughly
with distilled water for 2 min, the sample was etched in a 3 M NaOH solution for 30
min, followed by rinsing again with distilled water for 2 min. In the next stage, the
sample was sensitized in an aqueous solution containing 20 g/L SnCl2 and 20 mL/L
37% HCl for 5 min, and thereafter activated in an aqueous solution containing 0.1
g/L PdCl2 and 20 mL/L 37% HCl for 5 min. After rinsing with distilled water, nickel
was deposited in an electroless manner using a nickel plating bath containing 32 g/L
NiSO4·6(H2O), 20 g/L Na3C6H5O7, 25 g/L NH4Cl, and 28 g/L NaPO2H2. This step
was performed at 95 ◦C, and the plating time was varied from 5 to 30 min to achieve
different nickel layer thicknesses. Finally, the nickel-coated sample was rinsed with
distilled water and dried under a nitrogen stream. All chemicals used in the electroless
nickel plating process were purchased from Sigma-Aldrich.

2.6.2 Characterization

Optical microscope images were obtained using a 3D digital microscope (DSX1000,
OLYMPUS, Japan). Scanning electron micrographs were acquired using a scanning
electron microscope (Gemini500, Zeiss, UK) with an 8 mm working distance and 5
kV accelerating voltage. The surface of nickel layer was captured under Inlens detec-
tion signal, whereas the cross-section the nickel layer and the interface of the nickel
layer and resin were captured under SE2 detection signal. The nickel thickness was
determined by measuring the width of the nickel layers in the SEM images.

2.6.3 Uniaxial Compression Tests and Current–Voltage Characteristics

The mechanical properties of the prepared specimens were evaluated by static com-
pression tests using a motorized test stand (ESM303, Mark-10, USA). The specimens
were uniaxially compressed between two plates at a constant displacement rate of 1
mm/min for both loading and unloading. These results were independent of the dis-
placement rate, which is an excellent approximation to the stationary conditions in
FEM simulations. The load and displacement data were recorded to produce stress-
strain curves, and the deformation patterns of the specimens were captured using two
cameras. With regard to the data analyses, the Poisson’s ratios of each specimen were
evaluated by extracting the displacements of the nodes of the deformed geometries
from the recorded videos via postprocessing in MATLAB. The Young’s moduli were
measured by linearly fitting the initial linear portions of the stress-strain curves dur-
ing loading. The critical buckling strains and stresses were defined by the 0.2% offset
strain based on the shape of the stress-strain curves during loading.

The conduction properties of the specimens were also evaluated during the com-
pression tests, as illustrated schematically in Figure 2.11. The two compression plates
were covered with insulating tape on the inside and copper foil tape on the outside.
The copper foil tapes were connected to a digital sourcemeter (Series 2400 SourceMeter
SMU, Keithley, USA) to determine the current-voltage characteristics. A constant volt-
age (U) of 0.2 V was applied to obtain the electric currents (I) under different strains.
Thus, the electrical conductivity (κ) is determined by the equation κ = IL/UL0

2,
where L is the height of the 3D-printed models during the compression, L0 = 24
mm that is the length of the 3D-printed models, and S = L0

2 that is the sectional area
of the 3D-printed models
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FIGURE 2.11: Schematic illustrating the stress–strain and conductiv-
ity–strain curves by uniaxial compression tests.

2.6.4 Finite Element Method Simulations

A deformation problem with a periodic microstructure, i.e., a RVE, was solved using
a nonlinear FEM to simulate the deformation state at finite strain [153, 154]. The dis-
placement field w in an RVE is divided into the uniform part ū and the periodic part ũ:
w = ū+ ũ. The uniform displacement ū is described by the macroscopic displacement
gradient H̄ as ū = H̄Y , where Y is the coordination system in the RVE. The boundary
value problem of an RVE is formulated as a self-equilibrium problem for a periodic
displacement field ũ:∫

ΩY

P : ∇Y η̃dΩY = 0 ∀η̃ ∈ Wperiodic (2.2)

where P is first Piola–Kirchhoff stress, η̃ is the variation of the periodic displacement
ũ, ΩY is the volume of the overall RVE, and Wperiodic is the real solution space of the
periodic function.

Based on the periodicity of the displacement field, the difference in displacements
at two points A and B, which satisfy the periodicity on the corresponding surfaces
of the RVE, is derived as wA − wB = H̄(YA − YB). The above node-based boundary
conditions are set on the finite element model of an RVE, and the displacement field w
is then controlled by the macroscopic displacement gradient H̄. Following the defini-
tion of an RVE, a macroscopic variable can be calculated as the volume average of the
corresponding microscopic variable. Thus, the macroscopic stress P̄ can be evaluated
as

P̄ :=
1

ΩY

∫
ΩY

PdΩY (2.3)

Based on the above equations, the deformation behavior of the new auxetic meta-
material were further quantitatively investigated using an FEM simulation platform
(COMSOL Multiphysics Ver. 5.4, COMSOL, Sweden). As the 3D-printed resin can be
considered as a hyperelastic material, I defined the matrix material in the simulations
using the incompressible neo-Hookean model for simplicity. The material model was
a single parameter model with a Young’s modulus of 0.6615 MPa that was fitted from
the compression tests. As the deformation behavior under compression was subject
to buckling instability, a linearized buckling analysis was first performed to compute
the first-order buckling mode shape, followed by a post-buckling analysis using the
computed mode shape. For the linearized buckling analysis, a fixed external load was
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applied along the z-axis to compute the shape of the buckling mode. For the post-
buckling analysis, a parametric sweep of the displacement along the z-axis was used
with a stop condition when adjacent boundaries were in contact. The post-buckling
analysis helped to obtain the stress-strain curves in the three-dimensional Euclidean
space. Specifically, models were built using approximately 2.5 × 105 second-order
tetrahedral solid elements. All simulations were performed under periodic bound-
ary conditions. The method applies these periodic boundary conditions to the three
pairs of faces of the unit cell, which is based on a RVE technique [153, 154].
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Chapter 3

Forward Design of
Reprogrammable Mechanical
Metamaterials using Shape Memory
Polymers

3.1 Introduction

In this chapter, I propose a new functionality, reprogrammablity, to make the me-
chanical responses changeable by developing a light-responsive shape-memory poly-
dimethylsiloxane (SM-PDMS). The reprogrammablity can address one of the limita-
tions of mechanical metamaterials, i.e., they often harness zero-energy deformation
modes and possess fixed mechanical responses. Specifically, I propose three differ-
ent reprogrammable SM-PDMS metamaterials with different mechanical responses,
namely, an auxetic SM-PDMS, a chiral SM-PDMS, and a buckling-induced SM-PDMS.
Their mechanical responses can be switched after fabrication.

Among the gallery of mechanical metamaterials, flexible mechanical metamateri-
als, which can recover their original shape after large deformations, exhibit great po-
tential for application in soft robots [94, 117, 118, 155–162], whose performance can be
enhanced by the complex collective behavior of highly deformable flexible metamate-
rials. For example, auxetic metamaterials made of rubber-like materials can densely
shrink in all three directions under a large uniaxial compressive load and recover to its
original shape without fracture or failure [163]. Additionally, origami-inspired meta-
materials can be designed to possess single-direction flexible motion while remaining
stiff against other types of deformations [164].

Since being firstly proposed in 2014 in the electromagnetic regime [165], the con-
cept of programmable metamaterial has been extended to acoustic, physics, thermal,
and mechanics fields [166–171]. Programmability refers to the function that the prop-
erties of metamaterials can be designed and achieved via reconfigurable or digital
coding approaches. Regarding mechanical metamaterials, the programmability can
be harnessed to obtain a tunable stiffness [168], tailorable negative Poisson’s ratio
and arbitrary thermal expansion [170], and multiple deployable and reversible con-
figurations [171], among other desirable properties. However, programmability is al-
ways achieved during the design process, and the material’s mechanical responses are
hardly changed after fabrication.

To have an impact on soft robots, flexible metamaterial with reprogrammability
is required. This allows changing the complex motion of soft robots directly by re-
programming the architecture itself, rather than fabricating a new one. Several strate-
gies have been harnessed to achieve reprogrammability, such as combinatorial design
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[172–174], hybrid materials [48, 50, 53], association with additional physical fields [46,
116, 175, 176], and using smart materials (e.g., SMPs and LCEs) [117, 118, 177–179].
However, these previous studies have some limitations. For example, the deforma-
tion modes of hybrid mechanical metamaterials are highly dependent on the exter-
nal environment (e.g., temperature and load rate). This implies that it is difficult to
achieve a distinct deformation behavior under the same load condition [48, 50]. To
make the reprogrammability free from the external environment, a discrete assembly
has been used to construct mechanical metamaterials [173]. Similar to Lego bricks, a
finite set of parts can be spatially composed to achieve different properties, including
rigidity, compliance, chirality, and auxetic behavior. To make it assembly-free with a
distinct mechanical response under the same load, smart materials with changeable
properties (e.g, SMPs) have the potential to make continuous, monolithic structures
with reprogrammability. However, mechanical metamaterials made of SMPs hardly
undergo large deformations due to the plasticity of SMPs at room temperature (below
the transition temperature) [109, 112, 117–119]. Therefore, it is desired to make repro-
grammable mechanical metamaterials with SMPs that can undergo large deformation
and have stimulus-response properties.
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FIGURE 3.1: Reprogramming the deformation behavior of a beam us-
ing the SM effect. (a) Photothermally-induced SM effect of a SM-PDMS.
The SM-PDMS has an original length (L0) and its SM filler compo-
nent was solid (top insert). During photothermal stimulation and un-
der a load, the SM filler was melted and the SM-PDMS was gradually
stretched (right insert). After keeping the load until it cooled down,
the SM filler solidified and the SM-PDMS kept a stretched temporary
length (Lt) (bottom insert). The SM filler was melted after receiv-
ing local photothermal stimulation again, and the SM-PDMS gradu-
ally recovered to its original length (left insert). (b) Tuning deforma-
tion modes using a hybrid beam or applying pre-bending to form a
geometric imperfection. The buckling direction of a SM-PDMS beam
could be manipulated by either applying local stimulation to form a
hybrid beam (corresponding to the stimulating state) or applying a pre-
bending to form a geometric imperfection (corresponding to the tempo-
rary state).

To address these aforementioned limitations and challenges, I propose a novel
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strategy that combines imperfections with the SM effect to reprogram the deforma-
tion behavior of mechanical metamaterials. In this study, SM fillers and photother-
mal nanoparticles were combined with polydimethylsiloxane, a rubber-like soft mate-
rial, to impart light-responsiveness and SM capabilities (Figure 3.1a). After receiving
light stimulation, the proposed SM-PDMS becomes softer and reconfigurable above
the melting point (Tm) because of the photothermal effect. The deformed shape re-
mains after cooling to room temperature (below the crystallization temperature, Tc),
and it recovers its original shape after further light stimulation. Guided by numeri-
cal analyses, I demonstrate the ability to harness the SM-PDMS to design three dif-
ferent flexible metamaterials with distinctive deformation modes, namely, an aux-
etic SM-PDMS, a chiral SM-PDMS, and a buckling-induced SM-PDMS, which ex-
hibit reprogrammable expansion and shrinkage, twist, and rotation behaviors, respec-
tively. Finally, for demonstration purpose, I show an application for manipulating
the buckling-induced SM-PDMS to make an actuator capable of locomotion along a
preferred direction after on-demand local stimulation. Furthermore, I expect the re-
programmability of SM-PDMS to be particularly advantageous in soft robotic appli-
cations requiring reversible, on-demand mechanical responses.

3.2 Materials Design Strategy using Shape Memory Polymers

The basic idea of this study was to harness either material or geometric imperfec-
tions to reprogram the deformation modes of flexible metamaterials (see Figure 3.1b).
Considering a beam under a compressive uniaxial load as an example, it was diffi-
cult to predict the bending direction for a perfect beam. However, if the beam was
hybrid and composed of laterally attached beams (made of two materials with dif-
ferent stiffnesses), it would predictably buckle to the stiffer side (when loaded slowly
in compression). Another way to predict the bending direction was by introducing
geometric imperfections. The beam would bend on its curved side if it has an initial
curvature.

I found that these requirements were satisfied using SM-PDMS as a constituent
material, as shown in Figure 3.1a. SM-PDMS is a rubber-like material that maintains
its permanent shape at room temperature. It becomes softer and reconfigurable after
heating over its Tm by receiving light due to the photothermal effect and retains the
temporarily deformed shape after cooling. This process is known as the programming
process. It can return to its permanent (original) shape from the temporarily deformed
shape by reheating, paving the way to reprogram it. SM-PDMS was prepared by
physically mixing PDMS with a SM filler (i.e., 1,10-decanediol), followed by doping
with plasmonic titanium nitride (TiN) nanoparticles to enable precise photothermal
stimulation. PDMS is elastic, transparent, biocompatible, and gas-permeable, and can
achieve more functionalities via surface and bulk modifications. For example, its stiff-
ness can be tuned by changing the mixing ratio and it can become electrically and
thermally conductive by embedding free molecules, nanoparticles, or by altering the
composition of the base elastomer before polymerization. These characteristics make
it a suitable candidate for soft robotics and actuators [155–158, 162]. TiN nanoparticles,
a broadband plasmonic light absorber, are responsive to sunlight and thus can locally
heat their surrounding [180]. SM-PDMS was physically entrapped with solid crys-
talline small molecules of SM filler that induced a reversible phase transition in the
permanent network (crosslinked PDMS). The permanent network was a hyperelastic
network that maintained a permanent shape and recovery after a large deformation.
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The entrapped SM filler, which dominates the SM effect, can fix a temporary shape by
counterbalancing the load stored in the permanent network.
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FIGURE 3.2: Material properties of the constituent material
(photothermally-induced SM-PDMS) for mechanical metamateri-
als. (a) Stress-strain curves of SM-PDMS (Tm ≈ 76 ◦C) at 50 ◦C and
100 ◦C. (b) Effective Young’s modulus versus the weight percentage
of SM filler. (c) Shape fixity (R f ) and recovery (Rr) versus the weight
percentage of SM filler. (d) Light-response test of a dumbbell-type
SM-PDMS sample with 30 wt% SM filler content. The sample was
stretched 20% before given light stimulation. The light stimulation was
turned off after the stress became stable. The stress did not reach to the
original zero value due to the residual stress in PDMS. (e) Fatigue test
of an SM-PDMS sample with 30 wt% SM filler content.

The stiffness needs to be investigated first to harness the SM-PDMS to reprogram
flexible metamaterials. I demonstrated the ability to tune the stiffness of SM-PDMS
over a wide range (Figures 3.2a and b). Figure 3.2a shows the stress-strain curves of
dog-bone test specimens with different SM filler weight percentages. They were fit-
ted using the Ogden hyperelastic material model to calculate the Young’s modulus at
a small strain (E = 3

2 ∑3
i=1 µiαi), as shown in Figure 3.3. Importantly, the SM-PDMS

exhibited an elastic behavior in the low-strain region even in the hard state below the
melting point. This was clearly different from the general SM polymers that exhib-
ited plastic properties under similar conditions. As shown in Figure 3.2b, the Young’s
modulus at room temperature increased from 0.78 to 3.52 MPa as the SM filler in-
creased from 0 to 50 wt%. The Young’s modulus at 100 ◦C (above Tm) decreased from
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0.78 to 0.27 MPa. This indicated that increasing the weight percentage of the SM filler
can increase the stiffness difference between the SM-PDMS before and after local stim-
ulation. A stiffness difference of six times could be achieved for an SM-PDMS with 30
wt% SM filler. Note that the Tm and Tc of the SM-PDMS were barely affected by the
weight percentage of the SM filler and were maintained at approximately 76 ◦C and 64
◦C, respectively, based on the differential scanning calorimetry (DSC) thermal analysis
(see Figure 3.4). The DSC thermal analysis was carried out at −50–150 ◦C, and there
was no damage found on the SM-PDMS. For the sake of application, room tempera-
ture is the suitable ambient surrounding for the proposed SM-PDMS metamaterials.
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FIGURE 3.3: Curve fitting of a typical stress-strain curve for a dog-
bone specimen of an SM-PDMS using the Ogden hyperelastic material
model.
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FIGURE 3.4: (a) DSC curves of SM-PDMS samples with different SM
filler weight percentage. (b) Melting and crystallization temperatures
versus SM filler weight percentages.

Geometric imperfections are highly associated with two SM factors: shape fixity
(R f ) and recovery (Rr). R f is the ability of SM-PDMS to fix its temporary shape during
the programming process, whereas Rr is the ability of SM-PDMS to recover its perma-
nent shape during the reprogramming process. R f was dominated by the reversible
phase (SM filler), whereas Rr was dominated by the permanent network (PDMS). Fig-
ure 3.2c shows the effect of filler weight percentage on R f and Rr. The results showed
that with an increase in the filler weight percentage, R f increased from approximately
80% to 95%, whereas Rr remained above 95%. The SM-PDMS sample with 30 wt%
SM filler had an R f of 93% and Rr of 97%. Geometric imperfections could be achieved
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by applying pre-bending to a locally stimulated beam, as shown in Figure 3.1b. That
is, a compressive load was applied on a beam after local stimulation, and the beam
would keep a bent status if the load was kept until cooling to room temperature. The
magnitude could be controlled by applying different compressive strains on the beam.

Considering the mechanical properties and SM effect, the SM-PDMS with 30 wt%
SM filler had a suitable reprogrammable performance (i.e., six-time stiffness difference
before and after local stimulation; Tm = 76◦C; Tc = 64◦C; R f = 93%; and Rr = 97%)
and was used for fabricating mechanical metamaterials. The recovery of the material
after deformation is called a deforming cycle, and changing the deformation mode
is called a reprogramming cycle. To investigate the fatigue resistance of SM-PDMS,
I conducted two 1000-cycle load-unload tests on a dumbbell-type SM-PDMS sample
(with 30 wt% SM filler) at room temperature and 100 °C, respectively. For each de-
forming cycle, the sample was stretched to 20% and then released to its original length.
The stress was measured and the results are shown in Figure 3.5. The results show that
the stress repeated well even after 1000 load-unload cycles for the test at room tem-
perature; however, for the test at 100 ◦C, the peak stress gradually decreased initially,
which can be attributed to SM filler loss. Because the SM filler was physically mixed
with the PDMS rather than via chemical bonding, some of the SM filler on the surface
would flow out after melting while being driven by the repeatedly pressing, softening
the SM-PDMS. However, as the proposed SM-PMDS metamaterials are actuated at
room temperature and the high temperature is just used to change their deformation
modes, they can keep anticipative mechanical responses for their practical applica-
tions. Furthermore, I also investigated the reprogramming cycles using via DMA. The
change in strain was measured to evaluate the repeatability by maintaining a certain
stress (10 kPa) and varying the temperature (50–100 ◦C). To demonstrate this, 15 load-
unload cycles were applied to an SM-PDMS sample with 30 wt% SM filler at 50 ◦C
(below Tc). Then, the temperature was gradually increased to 100 ◦C (above Tm), fol-
lowed by the application of another load-unload cycle on the sample. After cooling to
50 ◦C, load–unload cycles were performed again on the sample. The SM-PDMS sam-
ple could sustain 15 heating–cooling cycles without fracture (see Figure 3.2e, showing
acceptable repeatability.

Room temperature

100 ℃

FIGURE 3.5: Load-unload tensile tests of a dumbbell-type SM-PDMS
sample with 30 wt% SM filler at (a) room temperature and (b) 100 ◦C.

To precisely measure the response time of the reprogramming process, I conducted
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a photothermal response test on a pre-stretched dumbbell-type SM-PDMS sample
(Figure 3.2d). The sample was pre-stretched at 20% tensile strain, and then light irradi-
ation was applied on the sample’s surface. The stress was monitored, which sharply
decreased for 15 s and gradually converged under light irradiation. This is because
the sample became soft when heated above its melting temperature due to the pho-
tothermal effect. The light irradiation was kept for 20 s and was turned off after the
stress became stable. Afterward, the stress gently decreased because the SM-PDMS
was almost fixed to the deformed shape after cooling. It is worth noting that a small
residual stress remained after fixing the SM-PDMS, which further demonstrates that
the SM-PDMS cannot perfectly keep its deformed shape (i.e., the fixity is less than
100%, as shown in Figure 3.2c). A demonstration of how to harness local light stim-
ulation to create a hybrid beam with material imperfections is shown in Figure 3.1b,
where a beam buckles to the right after left-side local stimulation. The preferred buck-
ling is due to the softening of the left-side part owing to the photothermal effect by
doping plasmonic nanoparticles. Figure 3.6 demonstrates the temperature and phase
changes of the hybrid beam under light radiation, which makes local light stimulation
possible. In our experiments, light irradiation was carried out for approximately 30 s
to ensure the locally simulated parts were sufficiently heated, and the cooling process
was carried out for approximately 30 s. Consequently, it takes approximately 1 min
for one reprogramming process.

Light

Photomask
Beam

(a) (b)

(d)

0 s 2 s

6 s

10 s

4 s

8 s

0 s

4 s

8 s

2 s

6 s

10 s

Temperature [°C] Rigid region soft region

Temperature change Soft region (above Tm) change(c)

FIGURE 3.6: Simulation of the photothermal response of a SM-PDMS
beam receiving local light. (a) Illustration of applying local light stim-
ulation. (b) Progressive temperature change sequence of a beam re-
ceiving local stimulation. (c) Progressive phase change sequence of the
beam receiving local stimulation. (d) Phase change of the beam receiv-
ing local stimulation. The beam becomes almost half rigid and half soft
after receiving local light stimulation.

Given that the SM-PDMS had acceptable reprogrammability, I showed how to har-
ness this to design and make three different flexible metamaterials with the desired
deformation behavior in the next three sections. This was done in combination with
bending, twisting, and buckling of basic elements of metamaterials that responded to
a load. The deformation mode of each flexible metamaterial can be converted under
ambient conditions using delicately controlled local stimulation by creating SM-PDMS
metamaterials with spatially controlled arrangements of their basic elements.
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3.3 Reprogrammable Auxetic Metamaterials

First, I propose an auxetic SM-PDMS whose deformation mode could be reprogrammed
to switch from contraction to expansion under uniaxial compressive loading. Auxetic
metamaterials are mechanical metamaterials with a negative Poisson’s ratio [11, 62,
163, 181]. As the expansion or contraction can be quantitatively measured using the
Poisson’s ratio, the auxetic SM-PDMS shows either a positive or negative Poisson’s
ratio on demand. The basic element of an auxetic SM-PDMS is a beam that can bend
to either the left or right, depending on the local stimulation region, as shown in Fig-
ure 3.7a. The bending direction of the beam was theoretically analyzed based on Eu-
ler’s buckling theory for beams on elastic foundations (see Appendix B). According to
this theory, a hybrid beam buckles to the stiffer side under a longitudinal compressive
load. A hybrid SM-PDMS beam can be achieved by applying local light stimulation to
the left or right region of the beam as the SM-PDMS becomes partially soft after local
stimulation. The slenderness ratio of the beam (height/width, h/w) was set below 8
(Figure B.1) to prevent the beam from higher order buckling modes.
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FIGURE 3.7: 2D Reprogrammable auxetic metamaterial. (a) Basic beam
element. The buckling direction of the beam can be controlled using
different local photothermal stimulation. (b) 2D auxetic metamaterial
consisting of multiple beams with tunable geometric parameters. (c)
Tunable Young’s modulus and Poisson’s ratio of the 2D auxetic meta-
material based on different geometric parameters and controllable de-
formation modes (shrinkage or expansion) based on different stimula-
tion regions.

The 2D auxetic SM-PDMS consists of beams assembled in a stretcher bond pattern,
as shown in Figure 3.7b. The brick pattern is designed to achieve a reprogrammable
shrinkage and expansion behavior. Unlike re-entrant auxetic metamaterials consist-
ing of concave polygons, the 2D auxetic SM-PDMS is composed of rectangles. The
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Auxetic SM-PDMS

(a) (b)

FIGURE 3.8: Comparison between the proposed auxetic and chiral
SM-PDMSs and some typical mechanical metamaterials. (a) Compar-
ison between the auxetic SM-PDMS and re-entrant, chiral, and rotating
structures [11, 133, 163, 182–187]. The auxetic SM-PDMS has a Young’s
modulus and Poisson’s ratio space covering a wide, near square re-
gion. (b) Comparison between the chiral SM-PDMS and tetragonal
chiral metamaterials, discretely assembled mechanical metamaterials,
and 3D chiral mechanical metamaterials [107, 173, 188]. The chiral SM-
PDMS has a wider twist/strain region covering from positive to neg-
ative. The twist/strain is calculated by the twist angle divided by the
applied strain.

vertical ligaments make it possible to bend right or left depending on local imper-
fections. Two factors were considered to realize the features of auxetic SM-PDMS: i)
Mechanical properties (Young’s modulus and Poisson’s ratio) were tunable via three
independent geometric parameters (i.e., beam width w, beam height h, and distance
between adjacent beams d) before fabrication; and ii) Deformation modes (contrac-
tion and expansion) were reprogrammable using local stimulation after fabrication.
I used the FEM calculations to analyze the effects of the three independent geomet-
rical parameters on the Young’s modulus and Poisson’s ratio of the 2D auxetic SM-
PDMS, as shown in Figure 3.7c. The 2D auxetic SM-PDMS was also compared with
some typical auxetic metamaterials in terms of Young’s modulus and Poisson’s ratio,
as shown in Figure 3.8a. It shows that the Poisson’s ratios of our proposed auxetic
SM-PDMS cover a square area, exhibiting both positive and negative values. For the
sake of comparison with the experimental results, the beam width was set as a con-
stant w = 4 mm, whereas the beam height (defined as the slenderness ratio, h/w)
and the distance between adjacent beams (defined as the normalized distance, d/w)
were changed based on parametric sweeping calculations. Based on the FEM simula-
tion results, the Young’s modulus of the 2D auxetic SM-PDMS was highly dependent
on d/w. The Young’s modulus became smaller as d/w increased. In contrast, the
Poisson’s ratio was less sensitive to d/w but was significantly affected by h/w; it ap-
proached zero as h/w decreased. It is worth noting that changing the local stimulation
region did not affect the Young’s modulus; however, it converted the Poisson’s ratio
from negative to positive. This further demonstrated that local stimulation could be
manipulated to reprogram the deformation modes from contraction to expansion, and
vice versa, without stiffness loss.

Furthermore, I conducted an application case for making an auxetic SM-PDMS 3D
hollow cylinder out of the 2D auxetic SM-PDMS, which was folded using the 2D aux-
etic SM-PDMS with 12 × 3 unit cells. The 3D cylindrical auxetic SM-PDMS exhibited
imperfection-dependent deformation modes, shrinking or expanding laterally under a
compressive load, depending on different local stimulation regions. Figure 3.9a shows
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FIGURE 3.9: 3D Reprogrammable auxetic metamaterial. (a) Typical
reprogrammable cycle of a 3D auxetic metamaterial that is capable
of either shrinking or expanding based on different local stimulation.
(b) Sequence of progressively deformed configurations of the 3D aux-
etic metamaterial receiving different local stimulation. (c) Stress-strain
curves of the 3D auxetic metamaterial with different local stimulation
under a compressive load. (d) Lateral displacement of the 3D auxetic
metamaterial with different local stimulation under a compressive load.
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FIGURE 3.10: Reprogramming a 3D auxetic metamaterial made of SM-
PDMS. (a) Process of preparing a 3D auxetic metamaterial using 3D
printing to make a mold, and the illustration of applying local light
stimulation. (b) Mold design of a prepared 3D auxetic metamaterial.
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a typical reprogrammable cycle. However, if local stimulation was applied to the re-
gion outside a unit cell (blue region), the 3D cylindrical auxetic SM-PDMS shrunk lat-
erally under a compressive load. After receiving global light, it recovered to the orig-
inal shape. Then, it expanded laterally if local stimulation was applied to the region
inside a unit cell (green region). A specimen made via 3D printing and templating is
shown in Figures 3.10a and b, where a 3D auxetic SM-PDMS was made by pouring un-
cured SM-PDMS into 3D-printed molds and bonding the separated samples together.
Local stimulation was achieved using a cylindrical photomask with specific pore ar-
rangements, as shown in Figure 3.10a. Uniaxial compressive tests were performed on
the specimens after receiving different local stimulation. Before each compressive test,
the specimen recovered its original shape under global light stimulation.

Figure 3.9b shows the sequence of progressively deformed shapes of the 3D aux-
etic SM-PDMS specimen under five different compressive strain levels using different
local stimulation. The experimental results relatively correlated with the FEM simula-
tion results (i.e., the 3D cylindrical auxetic SM-PDMS shrunk or expanded after differ-
ent local stimulation). However, it was noted that global buckling was triggered in the
testing samples, which is mainly attributed to the cylinder’s slenderness ratio, the wall
thickness, and manufacturing error. To manufacture the SM-PDMS metamaterials, the
molding method was used, where molds were 3D printed and filled with uncured SM-
PDMS. These SM-PDMS metamaterials were obtained after detaching them from the
molds, in which some parts would be destroyed, resulting in local nonlinear effects
during deformation. When applying actuation, the overall performance and desirable
functions may be degraded by these imperfections because such small dimensional
errors can propagate to the entire mechanical metamaterials. To prevent such dimen-
sional errors, it is recommended to make the mechanical metamaterials via direct 3D
printing without support structures. Here, these small dimensional errors may result
in global buckling. Thus, I tried to prevent global buckling by using a relatively low
slenderness ratio (approximately 2) and a thick wall thickness (6 mm). Further, an-
other efficient way to prevent this was to apply pre-bending on the hollow cylinders
that had been discussed previously [189]. In addition, the imperfection-dependent de-
formation modes were validated by quantitatively evaluating the stress-strain curves
and Poisson’s ratios under different compression strains. For the same 3D SM-PDMS
specimen under different local stimulation, the two stress-strain curves almost over-
lapped with each other and were independent of local stimulation, whereas the lat-
eral displacements exhibited the opposite changing tendencies (Figures 3.9c and d).
The difference between simulated and experimental results is attributed to labora-
tory errors (from devices), human force, and incomplete contact with sample hold-
ers, whereas these errors were not considered in the simulations. More importantly,
the difference between the simulated and experimental displacement largely resulted
from hysteresis effects due to the incomplete contact between the sample’s upper and
bottom surfaces with the compression plates. These results further demonstrate that
the 3D cylindrical auxetic SM-PDMS has reprogrammable contraction and expansion
deformation modes using local stimulation without sacrificing stiffness.

3.4 Reprogrammable Chiral Metamaterials

Next, I propose a chiral SM-PDMS whose deformation modes could be reprogrammed
from twisting clockwise to counterclockwise under an uniaxial compressive load. Chi-
ral mechanical metamaterials, which exhibit handedness out of non-centrosymmetry,
produce out-of-plane deformation modes (e.g., twisting) as a result of in-plane loads
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FIGURE 3.11: 2D Reprogrammable chiral metamaterial. (a) Basic beam
element. The leaning direction of the beam can be controlled using dif-
ferent local photothermal stimulation. (b) 2D auxetic metamaterial con-
sisting of multiple beams with tunable geometric parameters. (c) Tun-
able Young’s modulus and twist angle of the 2D auxetic metamaterial
based on different geometric parameters, and controllable deformation
modes (leaning to the left or right) based on different stimulation re-
gions. The twist angles were calculated under a 0.1 compressive strain.

[107, 190, 191]. In contrast to common chiral mechanical metamaterials, whose de-
formation mechanism is attributed to node rotation and ligament bending, the chiral
SM-PDMS has a unique deformation mechanism that is attributed to ligament leaning.
Moreover, the basic element of a chiral SM-PDMS is a beam that could lean either to
the left or right, depending on the local stimulation region, as shown in Figure 3.11a.
The stimulation and non-stimulation regions are rotationally symmetric, and the lean-
ing direction can be tuned by the tilt angle α that divides the two regions.

Figure 3.11b shows the 2D chiral SM-PDMS consisting of beams assembled in a
stack-bond pattern. The pattern is designed to show the possibility to achieve compression-
twist deformation without geometrical chirality. Two factors were considered to de-
termine the chiral SM-PDMS features: i) Mechanical properties (Young’s modulus and
twist angle) were tunable via three independent geometry parameters (i.e., w, h, and
d) before fabrication; and ii) Deformation modes (lean to the left or right) were re-
programmable using local stimulation after fabrication. FEM analyses were used to
investigate the effects of the three independent geometry parameters on the Young’s
modulus and twist angle of the 2D auxetic SM-PDMS, as shown in Figure 3.11c. The
chiral SM-PDMS was also compared with some chiral mechanical metamaterials in
terms of twist angle, as shown in Figure 3.8b. It shows that the twist angles of our
proposed chiral SM-PDMS cover both positive and negative ranges. The beam width
was set as a constant w = 4 mm, whereas the beam height (defined as h/w) and the
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FIGURE 3.12: 3D reprogrammable chiral metamaterial. (a) Typical re-
programmable cycle of a 3D chiral metamaterial that is capable of twist-
ing either clockwise or counterclockwise based on different local stim-
ulation. (b) Sequence of progressively deformed configurations of the
3D chiral metamaterial receiving different local stimulation. (c) Stress-
strain curves of the 3D chiral metamaterial with different local stimula-
tion under a compressive load. (d) Twist angle of the 3D chiral meta-
material with different local stimulation under a compressive load.
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FIGURE 3.13: Reprogramming a 3D chiral metamaterial made of SM-
PDMS. (a) Process of preparing a 3D chiral metamaterial using 3D
printing to make a mold, and the illustration of applying local light
stimulation. (b) Mold design of a prepared 3D auxetic metamaterial.
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tilt angle α were changed. The normalized Young’s modulus of the 2D auxetic SM-
PDMS was determined by both h/w and α. The Young’s modulus increased as h/w
decreased or α approached 90◦. Conversely, the twist angle was highly sensitive to α
and had a maximum absolute value when α approached 90◦. Therefore, α should be
set appropriately to maximize the absolute value of the twist angle. With an increase
in h/w from 2 to 8, α could either increase from 72◦ to 86◦ to reach the maximum twist
angle (leaning to the right) or decrease from 108◦ to 94◦ to reach the minimum twist
angle (leaning to the left). This further demonstrated that local stimulation could be
manipulated to reprogram the deformation modes from leaning to the right to leaning
to the left, and vice versa.

Figure 3.12a shows a chiral SM-PDMS 3D hollow cylinder folded using a 2D chiral
SM-PDMS with 12 × 4 unit cells with w and h of 4 and 20 mm, respectively. The 3D
cylindrical chiral SM-PDMS exhibited imperfection-dependent deformation modes:
twisting clockwise or counterclockwise under a compressive load depending on the
local stimulation region. Figure 3.12a shows a typical reprogrammable cycle: the 3D
chiral SM-PDMS twisted counterclockwise under a compressive load if local stimula-
tion was applied to the region with α = 82◦; it recovered its original shape after re-
ceiving global light stimulation; thereafter, the 3D chiral SM-PDMS twisted clockwise
under a compressive load if a local stimulation was applied to the region with α = 98◦.
Figures 3.13a and b show the preparation of a specimen via 3D printing and templat-
ing and the application of local stimulation using a photomask. Figure 3.12b shows
the sequence of progressively deformed shapes of the 3D chiral SM-PDMS specimen
under five different compressive strain levels and different local stimulation. The de-
formation patterns of the experimental results correlate with the simulated results. In
addition, the imperfection-dependent deformation modes were validated by quantita-
tively evaluating the stress-strain curves and twist angles under different compression
strains. For the same 3D SM-PDMS specimen under different local stimulation, the
two stress-strain curves almost overlapped with each other and were independent of
local stimulation, whereas the twist angles showed opposite changing tendencies (see
Figures 3.12c and d. These results further demonstrated that the 3D cylindrical chi-
ral SM-PDMS had reprogrammable twist deformation modes using local stimulation
without sacrificing its stiffness.

3.5 Reprogrammable Buckling-induced Metamaterials

Finally, I created a buckling-induced SM-PDMS with a distinct rotational direction
after different local stimulation. The buckling-induced SM-PDMS was a 2 × 2 array
of hollow squares. The pattern is designed to allow the direction-changeable rota-
tion and stability when placed on an uneven surface. To apply local stimulation, each
square was diagonally divided into four parts, and local stimulation was applied to
the two spaced parts of the four parts. Examples of applying two different local stim-
ulations are shown in Figure 3.14a, which also shows the method of applying loads
to induce an overall structural compression. Instead of the uniaxial compressive load
used in the previous two structures, a pneumatic load was used to power the defor-
mation of the buckling-induced SM-PDMS. The pillars of the buckling-induced SM-
PDMS underwent buckling by applying a vacuum (evacuation) to the four chambers,
resulting in its deformation into bent shapes. The bending direction was predeter-
mined by either material imperfections introduced by local stimulation or geometric
imperfections introduced via pre-deformation, which consequently causes the cen-
ter area to rotate in one preferred direction. Regarding material imperfections, FEM
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analyses were conducted on the structure, where the blue or green areas were set as
the local stimulation regions (Figure 3.14a). The results show a preferred clockwise
or counterclockwise rotation was caused if local stimulation was applied to the blue
or green regions, respectively (see Figure 3.14b). Before fabrication, two geometric
parameters (i.e., the width of each square w and the radius of each pore r) could be
changed to tune the rotation angle and the required pressure. Figure 3.14c shows the
dependence of the rotation angle on the normalized radius (r/w) and pressure, where
w was set to 20 mm. These results showed that when the buckling-induced SM-PDMS
was thoroughly deformed, the absolute value of the rotation angle reached a maxi-
mum of 45◦ when r/w approached 0.5, and gradually decreased to 30◦ as the r/w
decreased to 0.38. In addition, the pressure required for deformation decreased as
r/w increased.
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FIGURE 3.14: Reprogrammable buckling-induced metamaterial. (a)
Typical reprogrammable cycle of a 2D buckling-induced metamaterial
that is capable of rotating either clockwise or counter-clockwise based
on different local stimulation. The basic element is hollow squares
whose rotation direction can be controlled using different local pho-
tothermal stimulation. (b) FEM results of the 2D buckling-induced
metamaterial after different local stimulation. They show reversed ro-
tation direction. (c) Tunable rotation angle of the 2D buckling-induced
metamaterial based on different normalized radii and stimulation re-
gions.

We also fabricated a buckling-induced SM-PDMS prototype with w and r of 20 and
8.5 mm, respectively. Figure 3.15a and Figure 3.14b show the fabrication process and
geometric size, respectively. Figure 3.15c presents the method of applying local light
stimulation on the prototype assisted with a photo mask. The the buckling-induced
SM-PDMS prototype was a pneumatic actuator that was powered using a simple sy-
ringe. After different local stimulation, the center of the actuator could rotate in one
preferred direction when a vacuum was applied (see Figure 3.14a). The center of the
actuator rotated in reverse, and the actuator simultaneously recovered back to its orig-
inal shape when the internal pressure was restored to ambient pressure. In addition,
by taking advantage of the SM effect of the actuator, the preferred rotation could also
be predetermined using geometric imperfections by applying a vacuum to a locally
simulated actuator (i.e., applying a material imperfection) and then cooling to room
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temperature. The geometric imperfections could be cleared by applying light stimu-
lation to the entire actuator. A typical reprogrammable cycle is shown in Figure 3.14a.
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FIGURE 3.15: Reprogramming a 2D buckling-induced metamaterial
made of SM-PDMS. (a) Process of preparing a 2D buckling-induced
metamaterial using 3D printing to make a mold. (b) Sample size of a
mold for preparing the buckling-induced metamaterial. (c) Illustration
of applying local light stimulation.

A potential application of soft actuators is for the locomotion of soft robots. Fig-
ures 3.16a and b show the demonstration of carrying cargo using the actuator with
the preferred rotation direction out of geometric imperfection. The actuator, which
was connected to a cargo, rotated 90◦ and moved during a single evacuation and pres-
surization cycle. During evacuation, the actuator shrunk, deformed into a gear-like
shape, and simultaneously rotated 45◦. The actuator continued to rotate 45◦ owing
to inertia and gravity until a force balance was reached. During pressurization, the
actuator gradually recovered to its original shape. Note that in contrast to most soft
robots that could only move along one direction under the same drive, the actuator can
move either forward or backward depending on the on-demand geometric imperfec-
tions, exhibiting more flexibility to tune the motion mode in soft robots. In addition,
the actuators could be connected in series to form a soft robotic train that provides
more transportation freedom. The soft robotic train was capable of locomotion on a
relatively uneven surface because each actuator unit was self-propelled similar to a
four-wheel-drive vehicle (Figure 3.16c).

3.6 Summary

In summary, I showed that flexible metamaterials made of SM-PDMS can be repro-
grammed into reversed deformation modes after fabrication. SM-PDMS, which is
a rubber-like material with a SM effect, becomes softer after heating up to Tm and
maintains a deformed shape after cooling. It can return to its original shape when
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FIGURE 3.16: Reprogrammable buckling-induced metamaterial actua-
tor. (a and b) Using different local stimulation to change the moving di-
rection (forward or backward) of an actuator made of buckling-induced
metamaterial. (c) Assembling two actuators that are capable of moving
on an uneven surface (a gravel road).

heated again. Local simulation is achieved based on the photothermal effect by dop-
ing plasmonic titanium nitride nanoparticles into the SM-PDMS. Hence, the deforma-
tion modes of an SM-PDMS metamaterial can be encoded by the stiffness difference by
programming the spatial distribution of the stimulation and non-stimulation regions.
After cooling and maintaining the load, the preferred deformation mode remains. The
deformation mode can be reprogrammed reversibly using distinctive local stimula-
tion as the SM-PDMS metamaterial can return to its original shape when it receives
global light stimulation. Specifically, I proposed three different SM-PDMS metama-
terials with different mechanical responses: an auxetic SM-PDMS that can be repro-
grammed from lateral contraction to lateral expansion under a uniaxial compressive
load, a chiral SM-PDMS that can twist clockwise to counterclockwise under a uniax-
ial compressive load, and a buckling-induced SM-PDMS that can rotate clockwise to
counterclockwise under a pneumatic load. In addition, I demonstrated an application
using a buckling-induced SM-PDMS actuator. The soft actuator was capable of loco-
motion along a preferred direction after on-demand local stimulation. The actuator
can be connected in series with a soft robotic train, and its distinctive deformation
mode (shrinkage into a gear shape while rotating) makes it capable of moving on un-
even surfaces.

The most significant feature of our designed mechanical metamaterials is their re-
programmability, which paves the way for their application in soft robots and other
structural engineering fields. The changeable mechanical response rises additional
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deformation freedom and enhances their functionality. For example, the tubular aux-
etic SM-PDMS is a compliant structure that allows robots to overcome environmental
challenges by deforming and conforming their bodies. Compared with the general
auxetic compliant structures that only exhibit auxetic behavior, our designed tubular
auxetic SM-PDMS exhibits both shrinkage (auxetic behavior) and expansion mechan-
ical responses under compression, which thereby functions for exploration through
unpredictable terrain [192]. Regarding the tubular chiral SM-PDMS, it can convert lin-
ear compressive motion into rotation, which is a rather unique feature of a machine.
This unique actuation can be used for harnessing the interaction between materials
and machines, and thus it is useful for placing them at the boundary acting as an
actuator [193, 194].

Furthermore, although I only focus on mechanical metamaterials with three dif-
ferent mechanical responses, our approach can be extended to arbitrary 2D and 3D
structures to achieve more complicated deformation modes under different loads. Re-
programing the deformation modes requires manually placing different photomasks
for the sake of local light stimulation, which, however, brings about limitations in
real applications where an automatic workflow is required. This limitation could be
addressed by using other stimuli-responsive mechanical properties (e.g., magnetic re-
sponse) which can also be accomplished by doping with other smart nanoparticles or
using other smart polymeric materials [116, 178, 195].

3.7 Methods

3.7.1 SM-PDMS Preparation

The SM-PMDS was prepared by mixing the PDMS (10:1 mix ratio, Sylgard 184, The
Dow Chemical Company, USA) with a SM filler (1,10-decanediol, TCI AMERICA,
USA). Before mixing with the PDMS, the SM filler was milled into powder using a
mortar and pestle mixing grinding bowl. Then, the photothermal effect was intro-
duced by doping with 0.2 wt% TiN nanoparticles (Nisshin Engineering Inc., Japan). A
Thinky PDMS Mixer (Thinky Mixer ARE-310, THINKY, USA) was used to efficiently
mix, disperse, and deaerate the SM fillers, TiN nanoparticle, and PDMS mixture for 5
min. Thereafter, the well-mixed SM-PDMS was degassed in a polycarbonate desicca-
tor under high-vacuum conditions for 30 min.

The SM-PMDS metamaterials and specimens used for the mechanical tests were
fabricated using the molding method, as shown in Figures 3.10, 3.13, and 3.15. These
molds were designed using a computer-aided design software (3Ds max, Autodesk,
USA), and their dimensions are shown in Figures 3.10b, 3.13b, and 3.15b, respectively.
The designed molds were printed using a stereolithography three-dimensional (3D)
printer (Form 3, Formlabs, USA) with a light-reactive thermoset resin (Clear Resin,
Formlabs, USA). The molds were washed with isopropyl alcohol for 10 min, followed
by curing at 60 ◦C for 30 min. A hydrophobic layer was coated on the surface of
the molds using 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (C10H4Cl3F17Si, TCI
AMERICA, USA) via chemical vapor deposition in a desiccator for 30 min to easily
detach the SM-PDMS from the molds. Subsequently, each mold was filled with un-
cured SM-PDMS, and was then baked for 24 h at 60 ◦C. The specimens were finished
by detaching them from the molds.
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3.7.2 Mechanical Properties Investigation

Uniaxial tensile tests were performed using a motorized test stand (AG-Xplus-10kN,
Shimadzu, Japan) at a constant displacement rate of 10 mm/min to evaluate the stress-
strain curves and Young’s moduli of the SM-PDMS specimens. ASTM D 412-06 (A)
was used to assess the tensile properties of dog-bone (dumbbell)-type samples pro-
duced using 3D-printed dog-bone molds [196]. High-temperature tests were con-
ducted in a thermostatic chamber (TCE-N300, Shimadzu, Japan).

In addition, the SM effect of SM-PDMS was evaluated using the fixity and recov-
ery of the SM-PDMS dog-bone samples. First, an SM-PDMS dog-bone sample of the
original length (L0) was placed in a temperature-controlled motorized test stand. After
heating to 100 ◦C for 10 min, the sample was slowly extended to 40% strain (the length
after stretching, Ls). Then, the sample was removed from the test stand after cooling
to room temperature. The sample would slightly shrink and maintain a temporary
length (Lt) owing to internal stress after releasing the load. Subsequently, the samples
were placed in an oven at 100 ◦C for 10 min. The samples almost recovered their initial
shape and maintained a permanent length (Lp). The process was repeated five times
for each sample to obtain the average fixity and recovery values. The strain of the
SM-PDMS samples at each step was calculated as ε i = ln(Li/L0), for i = s, t, p. The
fixity (R f ) and recovery (Rr) are then given by R f = εt/εs and Rr = (εs − εp/(εs − ε0),
respectively.

The fatigue test of the SM-PDMS samples was performed via dynamic mechanical
analysis (DMA, DMA-242E, Netzsch, Germany) according to ASTM E1640–18. The
DMA tests were conducted on cylindrical specimens with a radius of 3 mm and height
of 5 mm, a heating rate of 1 ◦C/min, and frequency of 5 Hz. The DMA chamber was
heated and cooled to 100 ◦C for 20 min and then further cooled to 50 ◦C for 20 min.
This process was repeated nine times. During each hold time, three load-unload cycles
with a maximum stress of 10 kPa were applied to the samples.

The melting point (Tm) of the SM-PDMS samples with different weight ratios of
the SM filler was monitored via differential scanning calorimetry (DSC-60, Shimadzu,
Japan). Approximately 10 mg of each SM-PDMS sample was placed inside an alu-
minum pan with a pierced lid. The sample was heated to 150 ◦C and held for 10 min
at a scanning rate of 10 ◦C/min under a nitrogen flow of 100 mL/min.

Compression tests were conducted using a motorized test stand (JSV-H1000-10N,
JISC, Japan) at a constant displacement rate of 10 mm/min. Before the tests, lo-
cal light stimulation was applied to each specimen using a high-brightness lighting
box (LLBGR-A-15 × 20 − 25 × 15, AITEC SYSTEM, Japan) with an irradiance of 800
W/(m2 · sr) for 30 s. During light irradiation, the surface of each specimen was
covered with a delicately designed photomask printed using a non-transparent resin
(White Resin, Formlabs, USA). During the compression tests, the deformation pro-
cesses of the specimens were observed using a high-speed camera.

3.7.3 Finite Element Method Simulations

FEM simulations were conducted to investigate the mechanical response of SM-PDMS
metamaterials using a FEM simulation platform (COMSOL Multiphysics Ver. 5.6,
COMSOL, Sweden). The constitutive material model of SM-PDMS was fitted to the
tensile tests using a six-parameter hyperelastic material model (i.e., the Ogden mate-
rial model) [197–200]. For the SM-PDMS with 30 wt% SM filler, the material parame-
ters were set as [µ1, µ2, µ3] = [−0.79,−3.96, 3.37] MPa and [α1, α2, α3] = [1.83,−3.25,−2.8]
at room temperature (i.e., non-stimulated region), and [µ1, µ2, µ3] = [0.01,−5.12, 14.43]
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MPa and [α1, α2, α3] = [4.00,−0.36, 0.11] above Tm (stimulated region), respectively.
The models were meshed using approximately 1 × 105 − 3 × 105 second-order trian-
gular solid elements for the two-dimensional (2D) geometries and second-order tetra-
hedral solid elements for the 3D geometries. Specifically, simulations of the 2D auxetic
SM-PDMS and chiral SM-PDMS were performed under periodic boundary conditions
as the 2D auxetic SM-PDMS and chiral SM-PDMS metamaterials were periodic. The
method applied periodic boundary conditions to pairs of faces of the unit cell based
on a representative volume element technique [153, 154].

A multiphysics coupling (heat transfer with radiation in absorbing scattering me-
dia) simulation was performed using COMSOL to simulate the photothermal response
of an SM-PDMS beam receiving local light. In particular, it allowed heating to be com-
puted because of radiation absorption. A 2D model (rectangle) was used with a ther-
mal conductivity of 0.16 W/m/K, heat capacity of 2005 J/kg/K, absorption coefficient
of 293 cm−1, and scattering coefficient of 1.4 m−1 [201, 202]. The top right surface of
the rectangle was radiated with an incident intensity of 800 W/(m2 · sr). The P1 ap-
proximation discretization method was applied to the simulation because the model
was based on linear anisotropic scattering [203].
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Chapter 4

Inverse Design of Mechanical
Metamaterials by Deep Learning

4.1 Introduction

In this chapter, I convert the conventional forward design approach by developing a
deep learning framework. The deep learning framework, taking advantage of con-
ditional generative adversarial networks (CGANs), enables inverse design of 2D and
3D mechanical metamaterials. It admits variational sampling to generate multiple dis-
tinct architectures with the target properties (e.g., Young’s modulus E, Poisson’s ratio
ν, and relative density ρ). Figure 4.1 shows the comparison between forward design
and inverse design approaches.

Forward design Input Output

Relative density
Poisson’s ratio
Young’s modulus
......

Geometry FEM simulations,
Mechanical testing

Mechanical property

Relative density
Poisson’s ratio
Young’s modulus
......

Input Output

Mechanical property Deep neural network Geometry

Inverse design

FIGURE 4.1: Comparison between forward design and inverse design.

Over the last few decades, extensive efforts have been made to design new me-
chanical metamaterials to achieve changeable mechanical response [8, 46, 53], novel
deformation mechanisms [107, 204–206], theoretical stiffness and strength limits [14,
15, 106, 207], amongst others. Most of these studies have followed the forward design
approach, that is, a structure is designed by computational modeling methods, and its
effective properties are then explored using time-consuming simulations and/or ex-
periments. Using such forward design methods, models can be generated via math-
ematical modeling [163, 208, 209], Boolean and lofting operations [14, 15, 106, 204,
205], and topology optimization [210, 211]. This requires experienced designers and
extensive trial-and-error efforts to achieve the desired properties. Consequently, the
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forward design approach hinders practical applications to some extent. Considering
tissue engineering as an example, bone implants should be chosen to mimic damaged
bones in terms of biocompatibility, relative density, and stiffness [26, 208, 209, 212,
213]. In such situations, the desired approach is the inverse design method, by which
implants are designed and generated based on target properties and specific require-
ments.

Recent advances in deep learning have facilitated the inverse design of new ma-
terials using various artificial neural networks [36, 214–222]. Regarding auxetic meta-
materials, however, to the best of the authors’ knowledge, deep learning has not yet
been successfully harnessed to create novel auxetic metamaterials and rather has been
used only to predict the mechanical behavior of specific auxetic configurations [217].
One important reason for this situation is that the properties of an auxetic metama-
terial are almost completely determined by the geometry and assembly of periodic
unit cells. The realization of a negative Poisson’s ratio requires a delicate arrange-
ment and design of the unit cells; therefore, it is very difficult to build a large dataset
consisting of thousands of geometries of auxetic metamaterials and their correspond-
ing properties. For example, success has been achieved in previous studies only in
the property prediction and pattern design of simple square-shaped cellular materi-
als [214] or in the realization of isotropic elastic stiffness based on randomly generated
architectures [216].

Regarding 3D architected materials, although the inverse design of 3D geometries
has been successfully implemented in some studies, these neural networks are always
combined with additional modeling process [80, 223, 224]. For example, in a recent
study of the inverse design of truss metamaterials, the neural network outputs el-
ementary lattices from existing datasets and their tessellations, which can be used
to generate new truss metamaterials by geometric transformations [224]. In another
study on the inverse design of spinodoid metamaterials, the neural network outputs
the design parameters that can then be used to generate a topology via the linear
Cahn–Hilliard model [80]. Notably, these studies adopted an indirect approach to
generate such complex geometries: the trained neural networks generated modeling
parameters that could be used to create geometries based on additional modeling pro-
cedures. Here, by contrast, we employ the GAN to directly generate 3D voxel-based
representative volume elements (RVEs) (i.e., voxelized Voronoi lattices) without the
need for an additional modeling process. Voronoi lattices are disordered architected
materials; the irregularity not only makes their morphology similar to that of bones
but also broadens their diversity in terms of the stiffness and strength for a given rel-
ative density.

In this chapter, I devised a deep learning framework by taking advantage of CGANs.
Based on the deep learning framework, a 2D-CGAN and 3D-CGAN are harnessed for
generating 2D auxetic metamaterials and 3D architected materials, respectively. Two
datasets were prepared to train CGANs for inversely generating 2D auxetic metamate-
rials and 3D architected materials, respectively. Each datapoint in the datasets consists
of a geometry and its corresponding mechanical properties. The geometries were cre-
ated using Voronoi tessellation, and their mechanical properties were calculated using
homogenization algorithms. After the CGANs had been well trained, it could rapidly
generate new mechanical metamaterials with user-defined properties. Finally, the me-
chanical properties of the generated metamaterials were verified by FEM simulations
and uniaxial compression tests.
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TABLE 4.1: Comparison of neural networks for inverse design of me-
chanical metamaterials.

Input Output Geometry type Neural net-
work type

Number
of train-
ing
data-
points

R-
square

Relative
error

MSE Reference

Stiffness tensor Modeling pa-
rameters

3D spinodoid
metamaterials

Multi-layer
perceptron

19,170 0.999 [80]

Stiffness tensor Modeling pa-
rameters

3D truss meta-
materials

Multi-layer
perceptron

3,000,000 0.986 [224]

Elastic modulus and rela-
tive density

Modeling pa-
rameters

2D honeycomb,
square, and
re-entrant star-
shaped lattices

Multi-layer
perceptron

53,000 0.05% [227]

Stress–strain curve 16 binary repre-
sentation of geo-
metric infills

2D
checkerboard-
shape non-
uniform cellular
materials

Multi-layer
perceptron

16,576 0.00031 [214]

Filter radius, volume
fraction, and a design
objective (maximum
bulk modulus, maxi-
mum shear modulus,
or minimum Poisson’s
ratio).

128 × 128 pixels 2D metamateri-
als

Variational
autoen-
coders

25,000 0.009 [72]

Young’s modulus and
Poisson’s ratio

256 × 256 pixels 2D auxetic meta-
materials

Generative
adversarial
network

100,000 0.014 This work [62]

Relative density and
Young’s modulus

64 × 64 × 64 vox-
els

3D disordered
voxelized lat-
tices

3D Gen-
erative
adversarial
network

10,000 0.01 [zheng2022deep]

4.2 Materials Design Strategy by Conditional Generative Ad-
versarial Network

The neural network architecture yields two main outputs, which are necessary for the
inverse design of mechanical metamaterials: the modeling parameters, which can be
used to generate geometries with additional modeling processes [80, 223, 224], and
the geometries in the form of pixels or voxels [62, 72, 216, 225, 226]. The straightfor-
ward generation of geometries can speed up the inverse design process and help visu-
alize geometries directly. The variational autoencoder (VAE) and GANs are the most
commonly used neural network architectures for straightforward generation [216, 225,
226]. In the VAE, an encoder learns to represent input data (e.g., geometry or modeling
parameters) efficiently, and a decoder tries to reconstruct the data using the internal
representations and the learned weights, making it an ideal data compression engine.
By contrast, the GAN is trained in an adversarial feedback loop to generate realistic
geometries, wherein variational sampling is adopted to generate distinct geometries
[62, 216]. Consequently, the GAN may be superior to the VAE in terms of the genera-
tion performance. We compare relevant studies using different network architectures
for the inverse design of mechanical metamaterials in Table 4.1.

In this study, the inverse design of mechanical metamaterials was implemented us-
ing a novel deep learning framework, CGAN. A GAN, which consists of two models
(a generator and discriminator), is a type of deep learning network for data gener-
ation [228–230]. The generator and discriminator are trained simultaneously by an
adversarial process, in which the generator learns to produce data with characteristics
similar to those of the training data, whereas the discriminator learns to distinguish
between real data and the generated data. A CGAN is a type of GAN in which condi-
tional generation is realized by taking advantage of labels during the training process.
However, with regard to precise data generation, the conventional CGANs can hardly
provide good guidance for training the generator because the discriminator always
suffers from overfitting [231]. I addressed this problem by employing an indepen-
dent module (solver). The solver is a linear regression network that acts as a linear
elasticity solver to predict the Young’s modulus and Poisson’s ratio of a given pattern
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(obtained from the dataset or generated by a CGAN). In this work, two CGANs (i.e.,
2D-CGAN and 3D-CGAN) are harnessed for the inverse design of mechanical meta-
materials. 2D-CGAN and 3D-CGAN share the similar network architecture; however,
2D-CGAN includes convolutional neural networks whereas 3D-CGAN includes vol-
umetric convolutional neural networks.

The CGANs were trained to generate mechanical metamaterials from a probabilis-
tic space with a given label (i.e., ν and E for 2D auxetic metamaterials, and ϕ and E
for 3D architected materials in this work) by leveraging recent advances in GANs and
convolutional neural network [230–233]. A CGAN comprised three modules, that is,
a generator, discriminator, and solver, which were trained by an adversarial process.
The generator learns to generate architectures that mimic the real architectures in the
dataset. The discriminator learns to tell real architectures apart from fakes (generated
by the generator), and thus helps the generator generate realistic architectures. The
solver learns to predict the labels of the given architectures, and thus helps the gener-
ator spawn architectures with the desired target properties. A three-player game was
conducted in which the generator deceived the discriminator in terms of geometry
and simultaneously deceived the solver in terms of elastic moduli.
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FIGURE 4.2: (a) Framework of 3D-CGAN comprising three modules: a
generator, discriminator, and solver.

Figure 4.2 shows the framework of a CGAN — it is called 3D-CGAN used for the
inverse design of 3D architected materials. The training process is based on supervised
learning. While training, the generator progressively becomes better at creating archi-
tectures that look real and exhibit the desired target properties, whereas the discrimi-
nator becomes better at distinguishing real and fake architectures. The process attains
equilibrium when the generator can perfectly deceive discriminator. The CGANs are
capable of generating a batch of mechanical metamaterials for a given label (i.e., ν
and E for 2D auxetic metamaterials, and ϕ and E for 3D architected materials in this
work) after being trained using enough datapoints. Overall, the three primary advan-
tages of the CGANs are as follows: first, compared with traditional heuristic criteria
(e.g., the genetic algorithm), the use of an adversarial criterion speeds up the inverse
design process and enables the generator to capture the object structure implicitly;
second, the generator establishes the modeling process from a 1D probabilistic space
to the 2D/3D space of objects, without the use of an additional modeling process; and
third, the solver serves as an independent module that helps the discriminator avoid
overfitting.
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4.3 Inverse Design of 2D Auxetic Metamaterials

4.3.1 Dataset Preparation

As illustrated in Figure 4.3, 2D topology patterns were created using Voronoi tessella-
tion, which is a robust method that is capable of creating various porous materials [63–
68]. To ensure the periodicity of these 2D patterns, periodic boundary conditions were
applied in the Voronoi tessellation. Briefly, a seed consisting of 64 coordinate points
was initially created according to Mitchell’s best candidate algorithm [234]. A 2D
Voronoi diagram was created based on the seed. To mimic the nature of actual auxetic
foams, which have both convex and concave cells [235], the 2D Voronoi diagram was
modified by merging two adjacent polygons. Finally, a new pattern was formed after
smoothing the edges of the polygons using Chaikin’s algorithm because smooth sur-
faces have more homogeneous stress responses than sharp surfaces [141, 236]. Note
that the relative density of a pattern can be tuned easily by changing the width of the
edges. Here, the width was fixed for simplicity. The relative density of the patterns
was approximately 0.154. By repeating this process, an infinite number of different
patterns can be created to facilitate big-data-driven material design.

Voronoi diagram Auxetic structureAfter merging and smoothing

FIGURE 4.3: Process of structure generation for 2D auxetic metamateri-
als using Voronoi tessellation.

The elastic moduli (Young’s modulus and Poisson’s ratio) were calculated accord-
ing to the theory of homogenization, which has been used extensively to probe the
equivalent linear elasticity of periodic composites [39–41]. According to the theory of
homogenization, the effective elasticity tensor C̃ijkl of a periodic pattern can be com-
puted as:

C̃ijkl =
1
|V|

∫
V

Cpqrs(ε
0(ij)
pq − ε

(ij)
pq )(ε

0(kl)
rs − ε

(kl)
rs )dV (4.1)

where |V| is the area of a square domain, Cpqrs is the locally varying stiffness tensor,

ε
0(ij)
pq represents the prescribed macroscopic strain fields (three strain fields in the case

of two dimensions: horizontal, vertical, and shear strains), and ε
(ij)
pq represents the

locally varying strain fields and is defined as:

ε
(ij)
pq = εpq(χ

ij) =
1
2
(χ

ij
p,q + χ

ij
q,p) (4.2)
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The locally varying strain fields are based on the displacement fields χij, which can
be determined using a prescribed macroscopic strain:∫

V
Cijpqε ij(v)ε ij(χ

kl)dV =
∫

V
Cijpqε ij(v)ε

0(kl)
pq dV, ∀v ∈ V (4.3)

where v denotes the virtual displacement field. The numerical homogenization proce-
dure is discussed in more detail in the literature [39–41]. After obtaining the effective
elasticity tensor C̃ijkl , the effective elastic moduli (i.e., Young’s modulus, Poisson’s ra-
tio, shear modulus, and bulk modulus) can be calculated.

In this work, each pattern was first converted into a 256 × 256 element matrix
consisting of 0 and 1, where 0 represents void regions and 1 represents solid regions.
Subsequently, trial strain fields were applied to the element matrix to determine the
reaction forces and stored elastic energy. Then, a homogenized elasticity tensor was
obtained after the homogenization calculation. Finally, the effective elastic moduli of
the patterns were calculated according to the elasticity tensor. The material model
used in the homogenization was a linear elastic material with a Young’s modulus of
0.6615 MPa and a Poisson’s ratio of 0.49; these values were chosen to fit the equivalent
elastic moduli of an incompressible neo-Hookean solid under a small deformation.

After topology creation and elastic modulus calculation, a large dataset was ob-
tained, in which each datapoint consisted of a pattern and its corresponding labels
(Poisson’s ratio and Young’s modulus). The training dataset was composed of 100,000
datapoints. Figure 4.4a shows the 100,000 randomly created geometric patterns in the
property space with the axes representing the Poisson’s ratio (ν) and Young’s modu-
lus (E). The randomly created patterns scattered in the material property space form a
nearly triangular shape, with 2.1 kPa < E < 13.7 kPa and −0.28 < ν < 0.38. I refer to
the triangular region as the available E–ν space, in which random labels were sampled
to train the neural network. Figure 4.4b shows the distributions of the Poisson’s ratios
of these randomly created patterns. The distributions indicate that less than 3% of the
randomly created patterns have negative Poisson’s ratios.

(a) (b)

FIGURE 4.4: Dataset of 2D auxetic metamaterials for neural network
training. (a) Young’s moduli and Poisson’s ratios of 100,000 randomly
created patterns from Voronoi tessellation. (b) Distributions of Pois-
son’s ratios for randomly created patterns and for 2D-CGAN-outputted
patterns with input condition of ν = −0.28.
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4.3.2 Neural Network Training

Figure 4.5a illustrates the architecture of the proposed 2D-CGAN. After the 2D-CGAN
had been well trained using 100,000 datapoints, it could generate a batch of patterns
for a given label (Young’s modulus and Poisson’s ratio). More details on the 2D-
CGAN are discussed in Appendix C.1.

(a) (b)

(c)

Sample generation
Generator object
Discriminator object
Solver object

G(Z, L; θG) X

Z (Noise) L (labels)
Poisson’s ratio
Young’s modulus

L (labels)
Poisson’s ratio
Young’s modulus

Real Fake Real

Generator

Solver Discriminator

FIGURE 4.5: (a) 2D-CGAN architecture. (b) 2D-CGAN performance for
different training datapoints. (c) Comparison between user-input and
2D-CGAN-output real elastic moduli.

I tested the performance of the 2D-CGAN model during each epoch by generating
1024 patterns with labels that were randomly sampled from the available E–ν space.
The performance was evaluated in terms of the mean squared error (MSE) of the sum
of E and ν:

MSE =
1
n

n

∑
k=1

((Ek − Êk)
2 + (νk − ν̂k)

2) (4.4)

where n = 1024 is the number of labels sampled from the available E–ν space, E is the
normalized input Young’s modulus, Ê is the normalized output Young’s modulus,
ν is the normalized input Poisson’s ratio, and ν̂ is the normalized output Poisson’s
ratio. To facilitate deep learning, both the Young’s modulus and Poisson’s ratio were
normalized to the range from 0 to 1 based on the maximum and minimum values
of the E–ν space shown in Figure 4.4a. A smaller MSE indicates better performance.
Figure 4.5b shows the change in the MSE during the training epoch. Two convergence
stages are observed in the MSE curve. The first one is before epoch 5, where the solver
learns very rapidly to generate patterns similar to the real patterns. The next stage is
5 < epoch < 50, where the solver learns relatively slowly to generate patterns with
the corresponding input elastic moduli. Initially, the MSE decreases rapidly; then, it
decreases gradually, finally reaching a minimum approximately 0.014 after epoch 60.
The low MSE indicates that the 2D-CGAN is capable of generating patterns with a
user-defined Young’s modulus and Poisson’s ratio. In addition, the line plots for the
loss (see Appendix C.1 for the definition) of the generator and discriminator are shown
in Figure 4.5b. The plots represent typical loss–epoch graphs of a stable GAN training
process: the losses of the generator and discriminator begin erratically and gradually
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converge to a stable equilibrium after epoch 20. This finding further demonstrates the
stability of the 2D-CGAN.

4.3.3 Inversely Generating 2D Auxetic Metamaterials

After the 2D-CGAN had been well trained using appropriate parameters, it could in-
vert the design of auxetic metamaterials: a label (Young’s modulus and Poisson’s ra-
tio) was input, and the 2D-CGAN generated a batch of geometrical patterns with the
corresponding Young’s modulus and Poisson’s ratio. The performance of the trained
2D-CGAN was evaluated by comparing each input value and its output values (i.e.,
the Young’s modulus and Poisson’s ratio of the generated pattern). Figure 4.5c com-
pares 1024 samples with input labels sampled from the available E–ν space. The co-
ordinates of each point correspond to the input Young’s modulus or Poisson’s ratio (x
coordinate) and the output Young’s modulus or Poisson’s ratio (y coordinate). A posi-
tion closer to the bisection line (y = x) represents better performance of the 2D-CGAN.
The narrow bandwidth of the scatter distributions indicates the good performance of
the trained 2D-CGAN, demonstrating that the 2D-CGAN can generate a batch of ge-
ometries with user-desired Young’s moduli and Poisson’s ratios. These results also
show that the 2D-CGAN can effectively perform extrapolation from the training data
to provide a controllable inverse design, in contrast to the random generation obtained
by Voronoi tessellation.

We further demonstrated that the trained 2D-CGAN facilitates the inverse design
of auxetic metamaterials with very low negative Poisson’s ratios. Considering that the
lower boundary of the Poisson’s ratio in the available E–ν space had ν = −0.28 and
E = 3 kPa, I input the label with these values and the 2D-CGAN generated a batch of
auxetic metamaterials (Figure 4.6). In this figure, the input and output values are also
compared below each pattern and show good agreement. Figure 4.4b compares the
distribution of Poisson’s ratios between the 2D-CGAN-generated patterns and ran-
domly created patterns. The comparison shows that it is very easy to generate auxetic
metamaterials with very low negative Poisson’s ratios using the 2D-CGAN, in con-
trast to the random generation method, in which only a few metamaterials have neg-
ative Poisson’s ratios. More importantly, this inverse design method does not require
delicate arrangement of the shapes, distributions, and combinations of geometrical
elements. This method is independent of prior knowledge about the design of aux-
etic metamaterials. More patterns generated by the 2D-CGAN with different elastic
moduli are shown in Figures C.3 and C.4 in Appendix C.2.

4.3.4 Validation by Experiments and Simulations

To probe the auxetic behavior of the generated metamaterials under large deforma-
tion, I conducted a systematic analysis by performing uniaxial compression tests and
FEM simulations. Figure 4.7 shows a typical 3D printed-sample and an example of
meshing in FEM simulations. Figure 4.8a shows a sequence of progressively deformed
shapes of the generated auxetic metamaterials under four different levels of compres-
sive engineering strain. The experimental and simulation results show a consistent de-
formation tendency wherein the metamaterial gradually contracts when compressed
uniaxially along with the shrinkage of its interior holes. The overall shrinkage phe-
nomenon proves that the metamaterial is an auxetic metamaterial with a negative
Poisson’s ratio. The progressively deformed shapes of other patterns with Poisson’s
ratios ranging from −0.2 to 0.3 are shown in Figures C.4; the patterns with a positive
Poisson’s ratio expand laterally when compressed uniaxially.
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Patterns 
generated by 
CGAN

νi(input) -0.28 -0.28 -0.28 -0.28 -0.28 -0.28

νo(output) -0.2455 -0.2064 -0.2368 -0.2308 -0.2531 -0.2612

νxy(FEM) -0.2081 -0.2314 -0.2754 -0.2145 -0.2364 -0.2117

νyz(FEM) -0.2294 --0.2501 -0.2138 -0.1622 -0.1801 -0.2293

Ei(input), [kPa] 3.0 3.0 3.0 3.0 3.0 3.0

Eo(output), [kPa] 3.2401 3.7556 2.9045 3.0699 3.4789 3.0145

Eyy(FEM), [kPa] 2.939 3.6765 4.7929 3.5423 3.6860 3.7501

Exx(FEM), [kPa] 3.1494 3.9991 3.5593 4.3061 2.7287 4.0958

FIGURE 4.6: Inverse design using 2D-CGAN: Auxetic metamaterials
generated using the 2D-CGAN with input labels of E = 3 kPa and ν =
−0.28.

(b)(a)

FIGURE 4.7: (a) A typical 3D printed-sample, and (b) an example of
meshing in FEM simulations

Figure 4.8b presents a quantitative evaluation of Poisson’s ratios under different
compression strains. The engineering strains were determined from the average en-
gineering strains of the innermost unit cell to reduce the influence of the boundary
conditions. The figure shows that the calculated Poisson’s ratios monotonically de-
crease with increasing strain (ε ⩽ 0.2). A more detailed Poisson’s ratio–strain curve
obtained from the simulation results was also compared with the curve obtained from
the experimental results. Initially, the Poisson’s ratio decreases; then, it gradually in-
creases during compression because the empty space is insufficient, which causes the
ligaments to bend when they are in contact with each other. Overall, the experimen-
tal and simulation results demonstrate that the negative Poisson’s ratio can maintain
a wide range of compressive strain (ε = 0.2). It is noteworthy that the limitation
of maintaining a wider range of negative Poisson’s ratio is a result of the training
dataset, because the training structures used in this study are totally generated ran-
domly. Therefore, to generate auxetic metamaterials that maintain stable Poisson’s
ratio throughout the large deformation process, a new dataset consisting of optimized
structures is required in terms of deep learning.

I also analyzed the stresses of the auxetic metamaterials during deformation. As
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FIGURE 4.8: Auxetic behavior of structures. (a) Progressively deformed
configurations of FEM model and 3D-printed sample under uniaxial
compressive load. (b) Poisson’s ratio–strain curves and (c) stress–strain
curves from FEM simulations and uniaxial compression tests.

shown in Figure 4.8c, the stress–strain curves exhibit good linearity. The lack of trans-
formation from the linear elastic region to the plateau region indicates that the auxetic
behavior of the designed metamaterials is a result not of buckling, but rather of lig-
ament bending. It is noteworthy that the designed auxetic metamaterials are consid-
erably different from typical buckling-induced auxetic metamaterials, whose stress–
strain curves have an additional plateau region between the linear elastic and densifi-
cation regions [11, 47, 133, 163, 237–239].

4.4 Inverse Design of 3D Architected Materials

4.4.1 Dataset Preparation

Figure 4.9a shows the process of generating 3D Voronoi lattices for dataset prepara-
tion. First, a random seed of 27 3D coordinate points was created using Mitchell’s best-
candidate algorithm [234]. Note that the algorithm generates coordinate points with
a regular distribution. Thereafter, a Voronoi diagram was plotted using Laguerre–
Voronoi tessellation with a 3D periodic boundary condition. The periodic condition
was implemented; the seeds were generated in 3× 3× 3 unit cells, and the center unit
cell was defined as an RVE. The same approach was employed for 2D design in our
previous study [240]. The Voronoi skeleton was derived from the polyhedral meshes
of the Voronoi diagram. It should be noted that nodal connectivity, which refers to
the total number of ligaments connected to a node, has a considerable impact on the
stiffness of architected materials [44]. For instance, ordered architected materials with
nodal connectivities of 3, 4, 6, and 8 are significantly different in terms of their Young’s
modulus, yield strength, and Poisson’s ratio [44]. A change in the nodal connectivity
may result in an increase in the diversity of the Young’s modulus for Voronoi lattices
with the same relative density. Therefore, to extend the border of the available data
space, 0–30% of the edges in the polyhedral meshes were deleted randomly to change
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the nodal connectivity. Consequently, 30% was chosen to maintain the isotropy of the
Voronoi lattices while extending the boundary of the available data space. It should
be noted that if this value is too large, the Voronoi lattices will become anisotropic.
Further, we ensured that the appearance frequency of each node was always greater
than one to prevent single element connectivity when randomly deleting edges. Ad-
ditionally, a periodic boundary condition was applied in this process to ensure the
periodicity of the generated Voronoi lattices. Finally, a triply periodic Voronoi lattice
was generated after a specific thickness was assigned to the edges of the polyhedral
meshes. For deep learning, each Voronoi lattice was voxelized into a 3D voxel array
(Av) with a shape of [64, 64, 64]. To investigate the lower volume fraction applicabil-
ity limit, the relative density of a Voronoi skeleton was reduced. The Voronoi skeleton
was voxelized with decreasing relative densities, and the results revealed that the vox-
elized Voronoi lattice was discretized if the relative density was less than 0.045 (Fig-
ure 4.10a). The minimum relative density of the Voronoi lattices was set to 0.1. The
modeling process was implemented using a Python code, and the Laguerre–Voronoi
tessellation was based on the Python package MicroStructPy [241].
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FIGURE 4.9: (a) Process of the dataset preparation: the geometry of a
voxelized Voronoi lattice was generated by Voronoi tessellation and its
Young’s modulus was calculated using the homogenization method.
(b) A dataset consisting of 10,000 datapoints where each datapoint was
composed of a geometry (a 3D voxel array with a shape of [64, 64, 64]),
its porosity, and Young’s modulus. The dataspace was compared with
several typical architected materials, including Gyroid, Schwarz Di-
amond, Schwarz Primitive, and Schoen IWP lattices, and octet and
isotropic trusses [44, 207].

The Young’s moduli of the generated 3D Voronoi lattices were calculated using
a numerical homogenization method, as detailed in previous studies [40–42]. That
is, the input argument was a 3D voxel array consisting of 0 and 1, where 1 indicates a
solid, and 0 indicates a void. The Young’s modulus and Poisson’s ratio of the constitu-
tive materials were set as 1.6 GPa and 0.23, respectively, corresponding to the material
parameters of a 3D-printed resin. Periodic boundary conditions were then applied
during the homogenization process. The homogenized constitutive matrix CH could
be solved by obtaining the element displacements and global displacement field, as
follows:

CH
ij =

1
|V| ∑

(e)

∫
V(e)

(
χ

0(i)
(e) − χ

(i)
(e)

)T
ke

(
χ

0(j)
(e) − χ

(j)
(e)

)
dV(e)

(4.5)
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ρ=0.015 ρ=0.045

ρ=0.115ρ=0.075

(a) (b) (c)

FIGURE 4.10: Assessing modeling, numerical homogenization algo-
rithm, and FEM simulation. (a) Voxelizing Voronoi lattice with differ-
ent relative densities. (b) Computational accuracy and cost of numerical
homogenization algorithm. Voronoi lattice was voxelized into 3D voxel
arrays with different shapes. (c) Impact of RVE size on the computa-
tional accuracy of FEM simulations. The Voronoi lattice was modeled
with different RVE sizes, where n × n × n RVE indicates an RVE con-
sisting of n × n × n unit cell numbers.

where |V| denotes the total volume of the cube domain, χ
0(i)
(e) denotes the element

displacement, χ
(i)
(e) denotes the displacement field obtained from the global stiffness

equation, and ke denotes the element stiffness matrix. Following iterations for all six
load cases (three compressions along the x, y, and z axes, and three shearing loads),
the effective 6 × 6 elasticity matrix CH was obtained. The directional dependence of
the Young’s modulus of a typical Voronoi lattice is shown in Figure 4.9a, where the
shape of the surface contour is close to a sphere, thus indicating the approximate
isotropic stiffness of the Voronoi lattice. Consequently, the effective Young’s modu-
lus can be obtained using isotropic approximation, where the complete 6 × 6 elas-
ticity matrix is matched with the matrix for the isotropic symmetry class. It should
be noted that the effective Poisson’s ratio can also be calculated using the elasticity
matrix. The accuracy of the Poisson’s ratio is computed using the numerical homog-
enization method adopted in our previous study [10]. Because the Voronoi lattices
were approximated as voxel arrays rather than beam-based architected materials, we
conducted a convergence study according to the number of voxels and computational
cost. A Voronoi lattice (ρ = 0.115) was voxelized into 3D voxel arrays with differ-
ent shape from [20, 20, 20] to [80, 80, 80]. The Young’s moduli of such 3D voxel arrays
were calculated using the numerical homogenization method. A comparison of the
calculated Young’s moduli and computational cost is presented in Figure 4.10b. From
the figure, it can be observed that the Young’s modulus converges with an increase
in the number of voxels, and the value remains constant when the number of voxels
is greater than [50, 50, 50]. Further, the computational cost (code execution time on
a MacBook with M1 chip) increases exponentially with an increase in the number of
voxels. Therefore, with regard to the computational accuracy and cost, Voronoi lattices
were voxelized into 3D voxel arrays with a shape of [64, 64, 64], which corresponds to
643 eight-node hexahedral elements in the numerical homogenization method.

The relative density (ρ) refers to the proportion of the solid part in a Voronoi lattice
and can be calculated as follows:

ρ =
∑ Av

643 (4.6)
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Figure 4.9b shows the data space of material properties for 10,000 generated Voronoi
lattices in terms of the ρ–E relationship, where the darker region indicates a higher
concentration of datapoints. The material property space was compared with that of
typical architected materials [44, 207]. Notably, the relationship between ρ − E does
not follow the classical scaling laws of the Gibson–Ashby model (E∗/E0 = aρb, where
E∗ denotes the effective Young’s modulus, E0 denotes the Young’s modulus of the
constituent material, and a and b are constants) [41]. By contrast, the data space of
ρ and E covers a wider range, exhibiting a ribbon pattern. This implies that neural
networks can be trained to generate Voronoi lattices with corresponding properties
inside the ribbon-shaped data space. Overall, the training dataset comprises 10,000
datapoints, where each datapoint consists of a Voronoi lattice and its corresponding ρ
and E.

In the numerical homogenization method, numerous unit cells are considered based
on a mathematical operation [153]. However, the number of unit cells is limited in an
experimental validation. Therefore, the impact of the number of RVE units on the
stress–strain curve at finite strain was investigated for a detailed comparison with the
corresponding experiment, as shown in Figure 4.10c. The results are discussed in Sec-
tion 4.6.2.

4.4.2 Neural Network Training

The detailed information of the 3D-CGAN is discussed in Appendix D. Here, similar-
ity refers to the agreement between input labels (targets ρ and E) and output labels (ρ
and E of the generated structures). We evaluated the similarity using a risk function,
that is, the mean squared error (MSE) of the sum of ρ and E:

MSE =
1
n

n

∑
i=1

(
(æi − æ̂i)

2 +
(
Ei − Êi

)2
)

(4.7)

where n denotes the total number of labels sampled from the available ρ − E data
space. To reduce the error, n was set to 1024 at each generation. ρ denotes the input
relative density, ρ̂ denotes the output relative density, E denotes the input Young’s
modulus, and Ê denotes the output Young’s modulus. To stabilize the training pro-
cess, the relative density and Young’s modulus were normalized to the range 0–1. A
smaller MSE indicates better similarity between the input and output labels, as well
as better performance of the 3D-GAN.

The stability refers to a stable training process. In the 3D-CGAN, the generator and
discriminator models were trained simultaneously, with the goal of finding a Nash
equilibrium between the two models. Consequently, the training process aims to find
an equilibrium between two forces rather than a minimum. The stability can be quan-
titatively evaluated in terms of the discriminator and generator losses (see Appendix
A for the definition).

Figure 4.11a displays the MSE and loss versus the training epoch using 10,000 data-
points. The MSE curve consists of two stages: the MSE decreases initially before grad-
ually converging and finally attains a minimum at approximately 0.01 after epoch 50.
This shows that the 3D-CGAN can be trained to converge after finite epochs. The low
value of the MSE shows that the trained 3D-CGAN has learned to generate Voronoi
lattices with a target ρ and E. The loss curves show the typical pattern of a reliable
GAN training procedure, that is, both losses are slightly erratic early in the run before
stabilizing after approximately 50 epochs. The losses converge to a stable equilibrium,
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(a) (b)

FIGURE 4.11: Training results of 3D-CGAN: (a) Generator loss, discrim-
inator loss, and mean square error against training epoch. (c) User-
input against 3D-CGAN-output values in terms of relative density and
Young’s modulus.

proving the stability of the training process. The convergence of the MSE and losses
demonstrates the robustness of the 3D-CGAN and the stability of the training process.

4.4.3 Inversely Generating 3D Architected Materials

Given that the training results were robust and stable, we managed to exploit the
trained 3D-CGAN for the controllable generation of Voronoi lattices. The inverse de-
sign adhered to the following procedure: the 3D-CGAN received a label (ρ and E) and
then yielded several voxelized Voronoi lattices with the target ρ and E. To demon-
strate the flexibility of the trained 3D-CGAN, Voronoi lattices were generated with
target labels randomly selected from the ρ–E data space. Figure 4.11b compares the
input labels (targets ρ and E) and output labels (ρ and E of the generated structures) of
1024 randomly generated Voronoi lattices. Each coordinate of the scatter corresponds
to an input ρ or E and the output ρ or E. The difference between the input and out-
put labels can be evaluated by linearly fitting these scatters (X = Y). As shown in
Figure 4.11b, these scatters converge to the bisection line, forming a narrow region.
A comparison of the distributions for the user-input and 3D-CGAN-output values is
presented in Figure 4.11b. The mean values of the user-input and 3D-CGAN-output
relative densities are 0.3068 and 0.3165, and the variances of the user-input and 3D-
CGAN-output relative densities are 0.0132 and 0.0123, respectively. The mean values
of the user-input and CGAN-output Young’s moduli are 125.1 and 123.5 MPa, and the
variances of the user-input and CGAN-output Young’s moduli are 10332 and 10117
MPa, respectively. This indicates that the trained 3D-CGAN has learned to generate
Voronoi lattices with the target ρ and E. In addition, these results also prove the suc-
cessful implementation of controllable inverse design, making it different from the
forward design method, where Voronoi lattices are generated by Voronoi tessellation
without assigned ρ and E.

To explore the capability and applicability of the 3D-CGAN, we compared the data
spaces of the real Voronoi lattices with those of the 3D-CGAN-generated Voronoi lat-
tices in the relative density–Young’s modulus relationship map in Figure 4.12. We
first input the target properties inside the data space of the real Voronoi lattices to the
3D-CGAN, and we then plotted the properties of the 3D-CGAN-generated Voronoi
lattices in Figure 4.12. The data space of the real Voronoi lattices refers to the ribbon
region in the relative density–Young’s modulus relationship map in Figure 4.9b. It can
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Property space of the 
real architectures 

Outside property space of 
the real architectures 

FIGURE 4.12: Properties of 3D-CGAN-generated Voronoi lattices cov-
ering relative density–Young’s modulus relationship map. Blue dots
represent properties of 3D-CGAN-generated Voronoi lattices that were
generated by inputting target properties within the data space, and or-
ange dots represent those generated by inputting target properties out-
side data space.

be observed that the properties of the 3D-CGAN-generated Voronoi lattices may oc-
cupy a considerable data space, further demonstrating that the 3D-CGAN possesses
the ability to generate Voronoi lattices with properties akin to the dataset. To explore
the capability of generating Voronoi lattices with properties outside the dataset, we
tried to input target properties outside the data space of the real Voronoi lattices. The
results revealed that the trained 3D-CGAN could barely generate Voronoi lattices with
properties outside the data space but approaching the border of the property space,
as shown in Figure 4.12. This can be attributed to the training target of the 3D-CGAN:
the 3D-CGAN was trained to ensure that it can learn to generate Voronoi lattices that
not only look real but also possess the target properties. To achieve the target prop-
erties, the 3D-CGAN learned to deceive the solver that was initially trained with the
data space of the real Voronoi lattices. Consequently, it was difficult for the 3D-CGAN
to generate Voronoi lattices in the whitespace beyond the data space.

FIGURE 4.13: Computational cost and accuracy of inverse design us-
ing 3D-CGAN and forward design. The computational cost was deter-
mined using CPU time of code execution, and accuracy was measured
using the MSE based on target property and the property of generated
geometries

To demonstrate the benefits of the 3D-CGAN in terms of the computational cost
and accuracy, we compared the generation processes of the inverse and forward de-
signs. The inverse design was implemented using the trained 3D-CGAN to generate
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a given number of geometries with a target property (ρ = 0.3 and E = 90 MPa).
The code execution time was recorded according to the computational cost. For the
forward design, it is clear that one can directly generate a large number of geome-
tries using Voronoi tessellation and obtain their properties, after which they can select
the desired geometries with target properties. The computational cost of the forward
design was determined using the code execution time required to run the Voronoi tes-
sellation and numerical homogenization. All codes were run on a MacBook with an
M1 chip. Figure 4.13 provides a comparison of the computational costs between the
inverse and forward designs. The results indicate that the time required to execute
the forward design on a central processing unit (CPU) is greater than that required for
an inverse design based on the trained 3D-CGAN by a factor of 1000. For example,
approximately 5 × 104 s are required to generate 128 Voronoi lattices 3D-CGAN using
the forward design but only 53 s using the 3D-CGAN, which is significantly faster
than that required to generate optimized 3D geometries using solid isotropic material
with penalization topology optimization [242, 243]. It is clear that topology optimiza-
tion can generate an optimized 2D geometry in a short time. However, a longer time
is required to generate a batch of optimized 3D geometries using topology optimiza-
tion than that required by the 3D-CGAN [244]. In addition, when multiple constraints
(e.g., Young’s modulus, Poisson’s ratio, yield strength, and relative density) are re-
quired in topology optimization, the computational cost may be rapidly increased.
However, the time barely changes for the 3D-CGAN because only the labels of the
training dataset are to be replaced. We also calculated the MSE using the target prop-
erty and the property of the generated geometries. The results show that the MSE of
the 3D-CGAN-generated lattices is approximately 0.1, which is better than that for the
forward design of randomly direct generation (around 0.21) (Figure 4.13).

To visualize the training results clearly, we provide a comparison of several real
Voronoi lattices (generated using Voronoi tessellation) and 3D-CGAN-generated Voronoi
lattices in Figure 4.14 . Similar to real Voronoi lattices, these voxelized Voronoi lattices
have a ligament-channel bicontinuous network. Additionally, the input and output
relative densities and Young’s moduli are in good agreement, further demonstrating
that the 3D-CGAN can generate Voronoi lattices with the target ρ and E. It should be
noted that a few isolated voxel clusters may be found in some 3D-CGAN-generated
Voronoi lattices, owing to the transposed convolution layers in the generator that are
provided with random noise as an input. These isolated voxel clusters can be re-
moved by filtering the isolated voxels after generation. The 3D-CGAN is trained in
an adversarial feedback loop to generate realistic geometries, which indicates that the
3D-CGAN-generated Voronoi lattices appear realistic. As the 3D-CGAN-generated
Voronoi lattices are generated from random noise, these Voronoi lattices are similar
but distinct from the real geometries and themselves. In addition, for bone implant
application, we smoothed the surface of the generated Voronoi lattices using the non-
uniform rational mesh smooth (NURMS) method (Figure 4.14).

4.4.4 Validation by Experiments and Simulations

I further validated the mechanical properties and deformation behaviors of the 3D-
CGAN generated architectures using uniaxial compression tests. Figure 4.15 shows a
gallery of 3D-printed samples and a representative mesh used in FEM simulations.
Figure 4.16a displays a generated architecture after surface smoothing, showing a
gradual deformation under progressive compression strain. This suggests that some
local fractures appeared under compressive loading (the red circles in Figure 4.16a).
The ligament crack can be attributed to the local stress concentration owing to the
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Real Voronoi lattices
(from dataset) 

3D-CGAN-generated 
Voronoi lattices
(voxelized)

After NURMS process 
(smoothed)

Relative density 
(input) 0.1 0.2 0.3 0.4 0.5

Relative density  
(output) 0.1109 0.2097 0.3043 0.4052 0.4899

Young’s modulus 
(input), [MPa] 5 30 70 160 250

Young’s modulus 
(output), [MPa] 5.438 31.32 73.12 167.3 246.8

Young’s modulus 
(voxelized samples of 
experiments), [MPa]

5.912 23.13 83.12 176.1 283.6

Young’s modulus 
(smoothed samples of 
experiments), [MPa]

6.351 25.31 84.13 177.8 284.1

Young’s modulus 
(simulation), [MPa] 4.555 26.47 68.34 163.0 242.0
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FIGURE 4.14: 3D-CGAN generated Voronoi lattices with different rela-
tive densities and Young’s moduli before and after surface smoothing.
The relative densities and Young’s moduli were validated through ex-
periments and simulations.

geometrical irregularity and brittleness of the 3D-printed resin. These local fractures
contribute to the sudden drop in the stress–strain curve from the experimental com-
pressive test (Figure 4.16b). This result suggests that the 3D-printed resin is not a
suitable material for applications in scaffolds because of its brittleness, which is one of
the reasons why many bone implants are fabricated with alloys [26, 209, 245, 246].

(b)(a)

xy
z

FIGURE 4.15: (a) Representative 3D-printed samples before (top) and
after (bottom) surface smoothing. (b) A representative mesh used in
FEM simulations.
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FIGURE 4.16: Deformation behavior of a 3D-CGAN generated archi-
tecture. (a) FEM simulation and experimental results of the architec-
ture deforming under increasing compressive strain. (b) stress–strain
curves from FEM simulations and uniaxial compression tests. The sud-
den drop of stress during compression attributes to the local fractures
appearing in the 3D-printed sample.

However, the aim of using 3D-printed resin in this study was to validate the stiff-
ness. Consequently, the Young’s modulus of each sample was calculated from the
linear elastic region of the stress-strain curves. The 3D-CGAN generated architectures
before and after the NURMS smoothing process were prepared and evaluated using
compression tests. The calculated Young’s moduli of these samples are compared
in Figure 4.14. Although the sample becomes slightly stiffer after surface smooth-
ing (no more than 10%), the Young’s moduli calculated from the linear elastic regions
showed a significant agreement with the target values, demonstrating the accuracy of
the trained 3D-CGAN (Figure 4.14). The results prove that the NURMS method can be
combined with deep learning to generate smoothed geometries with target stiffness.

The mechanical properties were validated using FEM simulations. Compared with
a 3D-printed sample consisting of 3 × 3 × 3 unit cells, the geometry in the FEM sim-
ulation possessed only one unit cell because of the application of periodic conditions.
Figure 4.16a shows the progressively deformed configurations of the smoothed archi-
tecture. This demonstrates that the stress is concentrated in the middle regions of the
ligaments, as well as the contact region of the surfaces. Moreover, based on a com-
parison between the experimental and simulation results, the stress–strain curves in
the linear elastic region showed a significant agreement, demonstrating that the use of
FEM simulations was a robust approach to predict the stiffness of such architectures.
Additionally, it is striking that the Young’s moduli from the experimental and simula-
tion results were close to the target values, further proving that the trained 3D-CGAN
possesses a powerful capacity for the inverse design of architected cellular materials.
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4.5 Summary

I developed a deep learning framework for the inverse design of 2D auxetic metama-
terials and 3D architected cellular materials, respectively. Two neural networks (2D-
CGAN for 2D auxetic metamaterials, and 3D-CGAN for 3D architected cellular ma-
terials) were trained using architectures generated by Voronoi tessellation and their
labels, based on supervised learning. The trained neural networks were capable of
rapidly generating mechanical metamaterials with the desired target relative density,
Young’s modulus, and Poisson’s ratio. This study opens new avenues to harness deep
learning in the realization of user-desired properties for applications in which spe-
cific material properties are required (e.g., actuator fabrication, sensor manufacturing,
and catalysis). In addition, this study demonstrates the potential application of archi-
tecture cellular materials toward tissue engineering, where artificial scaffolds can be
inversely generated using a given target relative density and Young’s modulus. I ex-
pect this work to be extended to the inverse design of mechanical metamaterials with
other target properties by replacing the labels—for example, diffusivity, permeabil-
ity, and conductivity—for the sake of energy storage and conservation [63, 247, 248].
Finally, although I only focused on a typical geometry (irregular geometries created
by Voronoi tessellation) in this work, it has the potential to combine other geometries
created using other methods, such as triply periodic minimal surfaces, spinodal archi-
tectures, and foams [66, 208, 212], to enable the inverse design of architected cellular
materials inside and outside the material property space [249].

4.6 Methods

4.6.1 Uniaxial Compression Tests

The auxetic behaviors of the generated metamaterials were first investigated using a
set of 3D-printed samples in uniaxial compression tests. Each sample consisted of 3
× 3 unit cells and had overall dimensions of 120 mm × 120 mm × 15 mm. The unit
cell number and size are sufficient to represent a periodic porous material [44]. To
ensure that the specimens underwent large deformation without cracks, they were
fabricated using an elastic photopolymer resin (Elastic 50A resin, Formlabs, USA) by
employing a 3D printer (Form 3, Formlabs, USA). A subtle surface finish was achieved
without the use of support structures. The printing parameters were as follows: a
layer thickness of 0.05 mm and an operation temperature of 33 ◦C. All the specimens
were fully cured at 60 ◦C for 20 min after washing with isopropanol. A typical 3D-
printed sample is shown in Figure 4.7a.

The mechanical properties of the 3D-printed specimens were investigated by per-
forming static compression tests using a motorized test stand (EMX-500N, IMADA,
Japan). A constant displacement rate of 10 mm/min was set during the tests, in which
the samples were uniaxially compressed between two plates. The deformation process
was captured using a high-speed camera, and the stress–strain curves were plotted
using the recorded load–displacement data. The Hencky (logarithmic) strain com-
ponents of the longitudinal (compression) and transverse directions were calculated
using

ϵi = ln
[

1 +
ūi

Li

]
= ln [1 + ε i] for i ∈ {l, t}, (4.8)
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where ūi is the average boundary displacement between the top and bottom or the left
and right of the red-marked interior unit cell, and Li is the initial length of the interior
unit cell. In this study, Ll = Lt = 40 mm. The average boundary displacements of the
interior unit cell were measured by post-processing the recorded movies. Using the
Hencky strain, Poisson’s ratio at finite strain was defined as νlt = −ϵt/ϵl .

The Young’s modulus El for the longitudinal (compression) direction was calcu-
lated by linear fitting of the initial linear portions of the stress–strain curves. Least-
squares approach was used to find the suitable value of El , in which the optimization
problem was defined as

min

 N

∑
k=1

(
F(k)

A
− ε(k)El

)2
 , (4.9)

where N is number of data, F is the applied load, and A is the initial contact area
between the sample and the measuring instrument. In this study, the initial contact
area was calculated as A = 1, 800 mm2 (120 mm × 15 mm). Compression tests were
carried out on the structure in two directions, namely, x and y, as shown in Figure 4.7b;
that is, νxy, νyx, Ex, and Ey were evaluated.

The mechanical properties of 3D-CGAN generated architected materials were also
investigated using uniaxial compression tests. To obtain the stiffness of these gener-
ated architected materials, 3D printing technology is ideal, which allows the fabrica-
tion of such complex models. To print models without supporting components, while
providing a smooth surface finishing, I used a stereolithography 3D printer (Form 3,
Formlabs, USA) with a photopolymer resin (Clear Resin, Formlabs, USA). The pho-
topolymer resin is a typical plastic material with a Young’s modulus, Poisson’s ratio,
and yield strength of 1.6 GPa, 0.23, and 38 MPa, respectively [250]. The 3D-printed
models were of dimensions 40 mm × 40 mm × 40 mm and comprised a representa-
tive volume element (RVE) of 3 × 3 unit cells, which were selected to represent such
types of periodic porous materials in terms of mechanical testing [44]. These mod-
els were exported as standard tessellation language (STL) format files and then sliced
through PreForm before being sent for 3D printing. The printing parameters were set
as follows: layer thickness of 0.05 mm, operating temperature of 33 ◦C, and without
the use of support structures. To remove residual resin on the surface, these sam-
ples were washed with isopropanol after 3D printing. Thereafter, post-curing process
was implemented on these samples at 60 ◦C for 30 min using Form Cure (Formlabs,
USA). Figure 4.12a shows representative 3D-printed samples before and after surface
smoothing.

After 3D-printing fabrication, the mechanical properties of these samples were ex-
amined through uniaxial compression tests using a motorized test stand (AGXplus-
10kN, Shimadzu, Japan). The static compression tests were performed at a vertically
constant speed of 10 mm/min, following the ASTM standard D695-15. The compres-
sion strain was set to 0.15, which is sufficient to obtain the elastic deformation of these
samples. The deformation processes were recorded by a high-speed camera in front
of the samples. The effective Young’s moduli were calculated by linearly fitting the
initial linear region of the recorded stress–strain curves.

4.6.2 Finite Elements Method Simulations

The mechanical properties of the proposed patterns were further validated using an
FEM simulation platform (COMSOL Multiphysics Ver. 5.4, COMSOL, Sweden). A 2D
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plane strain model was utilized under periodic boundary conditions for the simula-
tions of 2D auxetic metamaterials. To mimic the properties of the 3D-printed material,
the material model in the simulations was defined as an incompressible neo-Hookean
model with a Young’s modulus of 0.6615 MPa that was fitted from the compression
tests. All the model geometries were meshed using approximately 2.5 × 105 second-
order triangular solid elements. An example of meshing is shown in Figure 4.7b. A
contact condition based on an augmented Lagrangian method was set in the finite
element model. For the large deformation, a parametric sweep of the longitudinal
displacement was used with a stop condition of ε l = 0.2. The Poisson’s ratios and
Young’s moduli in the simulation results were calculated using the same method that
was employed to obtain the experimental results.

For the simulations of 3D architected materials, A 3D strain model was utilized
under periodic boundary conditions. The constitutive model was a plastic material
model with a Young’s modulus, Poisson’s ratio, and yield strength of 1.6 GPa, 0.23,
and 38 MPa, respectively, corresponding to the mechanical properties of the clear resin
used in the experiments. Nonlinear uniaxial compression simulations were performed
with periodic boundary conditions, accompanied by a parametric sweep in the z-axis
displacement. The stop condition was set when the compression strain attained 0.15.
The models were built using approximately 3 × 105 second-order tetrahedral solid
elements, and a typical meshed model is shown in Figure 4.12b. The effective Young’s
moduli were also extracted from the stress–strain curves.

In the experiments, uniaxial compression deformation was imposed onto the 3D-
printed samples composed of 3 × 3 × 3 RVE units. To verify the feasibility of the
experiments, the impact of the number of RVE units was investigated. Here, we com-
puted the large deformation behavior of a Voronoi lattice (the same Voronoi lattice in
Figure 4.10b with a voxel array of [64, 64, 64]) in the uniaxial compression test accord-
ing to different number of RVE units using FEM simulations. The stress–strain curves
derived from the FEM simulations are shown in Figure 4.10c. The figure shows that
the stress–strain curves converge as the size of the RVE increases. It should be noted
that the stress–strain curve of a 1 × 1 × 1 RVE with periodic condition fits with those
for larger RVE sizes (e.g., 3 × 3 × 3), demonstrating that the experiments correspond
to numerical simulations of an RVE with periodic conditions.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

In conclusion, the state-of-the-art computational design methods have been harnessed
to design mechanical metamaterials in this thesis. Additive manufacturing, along
with post-processing and a synthesized functional material, has been utilized to fab-
ricated the designed mechanical metamaterials with enhanced properties and novel
functionality.

In Chapter 2, a mathematically modeling method was proposed to simplify the
conventional modeling methods. The mathematically modeling method was imple-
mented using MATLAB codes that can generate a 3D auxetic metamaterial with op-
timal mechanical properties using a implicit function. The 3D auxetic metamaterial
was fabricated using 3D printing with a rubber-like material. The compression tests,
along with the FEM simulations, demonstrate that the auxetic behavior of the new
metamaterial is dominated by buckling instability and is retained over a broad range
of longitudinal strain values up to 0.3. Furthermore, a nickel layer was then plated
onto the surface of 3D-printed specimens to enhance its stiffness, strength, and con-
ductivity without loss of auxeticity and resilience. The integration of 3D printing and
electroless plating enabled accurate control over the mechanical and conduction prop-
erties of the auxetic metamaterial; these properties are presented as contour maps for
guidance in functional applications.

In Chapter 3, a new functionality, reprogrammability, was proposed to make the
mechanical responses of mechanical metamaterials changeable. The reprogrammabil-
ity was achieved by developing a SM-PDMS, a rubber-like functional material with
shape-memory and photothermal effects. The reprogrammability was implemented
on three mechanical metamaterials made of SM-PDMS, whose mechanical responses
can be switched using local light stimulation. An application was demonstrated using
a soft actuator that shows reprogrammable preferred locomotion direction. The SM-
PDMS has a potential to be applied in DIW 3D printing techniques to enable fabricate
more complex architectures.

In Chapter 4, inverse design was proposed to convert the conventional forward de-
sign approach. The inverse design was implemented with a deep learning framework
using CGANs, i.e., 2D-CGAN and 3D-CGAN. The 2D-CGAN and 3D-CGAN are ca-
pable of inversely generating 2D auxetic metamaterials and 3D architected materials,
respectively, with a given target label (i.e., the properties of desired architectures). The
deep learning frameworks have an potential for the inverse design of other mechan-
ical metamaterials with other target properties by replacing the labels, for example,
diffusivity, permeability, and conductivity.
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5.2 Outlook

From the aspect of design, inverse design has gained great attention because it con-
verts the conventional forward design approach and gets rid of the experienced de-
signers and extensive trial-and-error efforts. Recent advances in artificial intelligence
enable the inverse design of mechanical metamaterials with target properties. It is
encouraged to prepare datasets composed of different architectures and their corre-
sponding properties to extend the inverse design space of mechanical metamaterials.
Further, the booming artificial intelligence techniques, along with bigger and better
datasets, pave an way to achieve self learning of mechanical metamaterials: a artificial
intelligence can recognize patterns of mechanical metamaterials, learn from data, be-
come more intelligent over time, and finally generate novel mechanical metamaterial
by itself. This is similar to the formation of natural microstructures in creatures.

Regarding fabrication, the straightforward way is additive manufacturing. In par-
ticular, 4D printing, combining 3D printing and smart materials, enables designing
mechanical metamaterials from not only architectures but also constitutive materials.
The properties of stimulus-responsive materials have a potential to enhance and even
change the deformation mechanism, actuation method, shape-shifting speed, etc. of
4D-printed mechanical metamaterials. Therefore, the additional degree of freedom
opens a door to design mechanical metamaterials with unprecedented properties.

As mechanical metamaterials become more sophisticated and autonomous, could
they display any degree of materials intelligence? Recently, several unconventional
computing approaches have been realized using mechanical metamaterials to aug-
ment traditional electronic computing by interacting with and adapting to their envi-
ronment [251]. For example, mechanical metamaterials with mechanical logic gates
can perform logic operations by encoding mechanical [252, 253], chemical [254], elec-
trical [255], and pneumatic [256] inputs. Beyond binary abstraction, what if mechan-
ical metamaterials eventually evolve to be neuromorphic to mimic neuro-biological
architectures present in the nervous system. Mechanical metamaterials are conducive
to neuromorphism in terms of three features: hierarchical connectivity, weighted cou-
pling of every nodal pair, and response to their environment [257, 258]. For exam-
ple, a 3D-waveguide architecture of photonic interconnects made of 2PP have been
demonstrated with an unreported size hosting 225 input and 529 output channels
within a footprint area of only 0.46×0.46 mm2 [259]. The 3D-waveguide architec-
ture can implement nine spatial filters with a Haar convolution kernel of stride and
width three, which represents a fundamental operation of deep convolutional neural
network. Thereafter, the combination of 4D printing and artificial intelligence could
potentially provide an idealized framework to create mechanical metamaterials sys-
tems for neuromorphic computing.
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Appendix A

MATLAB Code for Generating
Auxetic Metamaterials

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 a = pi ;
3 domain = 12* pi ; % def ine the domain of the generated geometry
4 c = − 1 . 3 ; % l e v e l parameter
5 s = domain /100; % mesh r e s o l u t i o n
6 f i lename = ’p ( c = −1.3) . ob j ’ ; % def ine output f i l e name
7

8 [ x , y , z ]= meshgrid ( a : s : a+domain , a : s : a+domain , a : s : a+domain ) ;
9 u=( cos ( x ) + cos ( y ) + cos ( z ) ) − 0 . 4 * ( cos ( x ) . * cos ( y ) + cos ( y ) . *

cos ( z ) + cos ( z ) . * cos ( x ) ) + c ;
10 [ f , v]= i s o s u r f a c e ( u , 0 ) ;
11

12 v e r t f a c e 2 o b j ( v , f , f i lename )
13

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 % def ine funct ion
16 func t ion v e r t f a c e 2 o b j ( v , f , name)
17 % VERTFACE2OBJ Save a s e t of v e r t i c e coordinates and f a c e s as

a Wavefront/Al ias Obj f i l e
18 % VERTFACE2OBJ( v , f , fname )
19 % v i s a Nx3 matrix of ver tex coordinates .
20 % f i s a Mx3 matrix of ver tex i n d i c e s .
21 % fname i s the f i lename to save the ob j f i l e .
22 f i d =fopen ( name , ’w’ ) ;
23 f o r i =1: s i z e ( v , 1 )
24 f p r i n t f ( f id , ’v %f %f %f \n ’ , v ( i , 1 ) , v ( i , 2 ) , v ( i , 3 ) ) ;
25 end
26 f p r i n t f ( f id , ’ g foo\n ’ ) ;
27 f o r i =1: s i z e ( f , 1 )
28 f p r i n t f ( f id , ’ f %d %d %d\n ’ , f ( i , 1 ) , f ( i , 2 ) , f ( i , 3 ) ) ;
29 end
30 f p r i n t f ( f id , ’ g\n ’ ) ;
31 f c l o s e ( f i d ) ;
32 end
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix B

Buckling Analysis of a Hybrid
Beam

A nonlinear buckling analysis was proposed to determine a suitable beam slenderness
ratio (height to width ratio, h/w). The entire beam can be considered as a soft-rigid
hybrid beam consisting of two bonded beams because half of the beam becomes softer
after local stimulation. The theory of a beam on an elastic foundation can be used
to study the buckling behavior of a hybrid beam, where the softer beam acts as the
elastic foundation of the other beam [260–262]. For a simply supported hybrid beam
subjected to a uniaxial compressive load, the critical compressive force Ncr can be
expressed as [260]:

Ncr

Dk2 ≈
(

nπ

hek

)2

+

(
nπ

hek

)−2
(B.1)

where D = Erwr
3/12(1− υr

2) is the flexural rigidity of the rigid beam with Young’s
modulus Er, width wr, and Poisson’s ratio υr. k−1 = (2Dws(1 + υs)/3Es)

1/4 is the
characteristic delay distance of the rigid beam on a soft Winkler foundation beam,
with its spring stiffness determined by the width ws, Poisson’s ratio υs, and Young’s
modulus Es of the soft beam. he is the equivalent height of the hybrid beam and is the
beam height (h) for a simply supported beam. n is a positive integer that determines
the buckling shape of a hybrid beam.

In this study, each beam can be assumed to be a fixed-fixed beam suffering from
a uniaxial compressive load as the hybrid beams are assembled into a metamaterial.
The equivalent height of a fixed-fixed beam was half its height (he = h/2). Assuming
wr = ws, Er = 500Es, and υr = υs for incompressibility, Equation B.1 can be solved
using its slenderness ratio (h/w) as follows:

Ncr

Dk2 ≈
((

500
9

)1/4 nπ

h/w

)2

+

((
500
9

)1/4 nπ

h/w

)−2

. (B.2)

Clearly, the critical buckling force Ncr for a hybrid structure is not always mini-
mized at the first order buckling shape with n = 1. Figure B.1 shows plots of the
dimensionless buckling force as a function of h/w. Note that the critical buckling
force fluctuates with h/w, and the beam tends to buckle in a high-order shape when
h
w > 12. The slenderness ratio was set to 8, which corresponds to first order buckling
(half-wave of a sinusoidal curve), to ensure that the beam deformed in the bending
direction. In addition, the hybrid beam tended to bend in the direction of the rigid
beam.
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FIGURE B.1: Buckling analysis of a hybrid beam. The beam tends to
buckle with higher-order model if the slenderness ratio is over 12.
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Appendix C

Detail of Deep Learning Framework
for 2D Auxetic Metamaterials

C.1 Details of 2D Conditional Generative Adversarial Network

The 2D-CGAN used in this study was composed of three neural network structures:
a generator, discriminator, and solver. The generator was trained to produce patterns
of auxetic metamaterials from latent variables (multivariate normal distribution) and
user-defined labels (Young’s modulus and Poisson’s ratio) and simultaneously aimed
to deceive the discriminator and solver. The discriminator was trained to distinguish
between the patterns produced by the generator and those from the real dataset. The
solver was trained to predict the Young’s modulus and Poisson’s ratio of a given pat-
tern. The 2D-CGAN was optimized by a minimax game using the following equa-
tions:

θ̂D = arg min
θD

{LD(tD, D(X; θD)) + LD(uD, D(G(Z, L; θG); θD))} (C.1)

θ̂G = arg max
θG

{LD(uD, D(G(Z, L; θG); θD))− αLS(L, S(G(Z, L; θG); θS))} (C.2)

θ̂S = arg max
θS

{LS(L, S(X; θS))} (C.3)

where θD, θG, and θS are the sets of parameters of the discriminator, generator, and
solver, respectively. D, G, and S denote the discriminator, generator, and solver,
respectively. X ∈ Rn×p is the training dataset (vectors of auxetic metamaterials),
L ∈ Rn×l are the labels of the dataset X (i.e., Young’s moduli and Poisson’s ratios),
and Z ∈ Rn×l are the latent variables from a multivariate normal distribution during
each iteration. LD is a loss function (binary cross-entropy function) for the discrimina-
tor. tD and uD are target labels and are generally set to 1 and 0, respectively. However,
I applied the label smoothing technique for the target labels [263]: tD was replaced
by a random number between 0.7 and 1.2, and uD was replaced by a random number
between 0 and 0.3. The moderating weights, α, determined the extent to which the
generator focused on the training of the input labels and was set to be 0.1 in our study.

Deep learning calculations were performed using TensorFlow [264]. An Adam op-
timizer with a learning rate of 0.0001 and β1 of 0.5 was used to train the model. The
batch size for the training was set to 32. The detailed network structures used in this
study are listed in Tables C.1–C.3. In short, the layers used included a 2D convolu-
tional layer, a 2D transposed convolutional layer, 2D max pooling, a fully connected
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layer, batch normalization, and dropout, and the activation functions used included
Leaky ReLU and tanh. Note that circular padding was used in the 2D convolutional
layer and 2D transposed convolutional layer to maintain and identify the periodicity
of the patterns. Examples of downsampling and upsampling with circular padding
and zero padding are shown in Figure C.1. It demonstrates that compared to the
commonly used zero padding, circular padding can more effectively help the output
tensor retain its periodicity.

Transposed convolutional operation Convolutional operation
15 12 13 14 15 12 13 14 15 12
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FIGURE C.1: Examples of use of circular padding and zero padding.
Compared to the patterns generated using zero padding, those pro-
duced using circular padding remain more periodic.

(a) (b)

FIGURE C.2: (a) Performance of the solver of 2D-CGAN evaluated us-
ing the MSE between the predicted and reference elastic moduli for
different numbers of datapointss. (b) Comparison between the solver-
predicted and the reference elastic moduli. The reference elastic moduli
are the elatic moduli of testing patterns calculated by the homogeniza-
tion algorithm

Because the solver is independent of the generator and discriminator, I first trained
the solver with supervised learning. The process takes about 23 hours for training 200
epochs with 100,000 datapoints on a single NVIDIA RTX A6000 graphic card. The
solver is a type of linear regression model that can be used to predict the Young’s
modulus and Poisson’s ratio (elastic moduli) of a given pattern. Figure C.2 shows
the MSE between the predicted and reference elastic moduli for different numbers of
datasets. A smaller MSE value represents a better performance of the trained solver.
Each dataset was split as follows: 80% was used as the training set and 20% was
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TABLE C.1: Network architecture of generator for 2D-CGAN.

Description Kernel size Resampling Input shape Output shape

Concatenate (Z, L) - - 128 + 2 130

Fully connected + Batch normalization + Reshape - - 130 4 × 4 × 512

2D transposed convolution + Batch normalization + Leaky ReLU 4 × 4 Up 4 × 4 × 512 8 × 8 × 256

2D transposed convolution + Batch normalization + Leaky ReLU 4 × 4 Up 8 × 8 × 256 16 × 16 × 128

2D transposed convolution + Batch normalization + Leaky ReLU 4 × 4 Up 16 × 16 × 128 32 × 32 × 64

2D transposed convolution + Batch normalization + Leaky ReLU 4 × 4 Up 32 × 32 × 64 64 × 64 × 32

2D transposed convolution + Batch normalization + Leaky ReLU 4 × 4 Up 64 × 64 × 32 128 × 128 × 16

2D transposed convolution 4 × 4 Up 128 × 128 ×16 256 × 256 × 1

Tanh - - 256 × 256 × 1 256 × 256 × 1

TABLE C.2: Network architecture of discriminator for 2D-CGAN.

Description Kernel size Resampling Input shape Output shape

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 256 × 256 × 1 128 × 128 × 16

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 128 × 128 × 16 64 × 64 × 32

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 64 × 64 × 32 32 × 32 × 64

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 32 × 32 × 64 16 × 16 × 128

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 16 × 16 × 128 8 × 8 × 256

2D convolution + Leaky ReLU + Dropout 4 × 4 Down 8 × 8 × 256 4 × 4 × 512

Flatten - - 4 × 4 × 512 8192

Fully connected - - 8192 1

Tanh - - 256 × 256 × 1 256 × 256 × 1

used as the testing set. To prevent the solver from overfitting, early stopping was per-
formed. As shown in Figure C.2a, the MSE reaches a very low value of 0.003 after 20
epochs when using 100,000 datapoints, and it becomes difficult to decrease the MSE
further even when using a larger dataset (e.g., 200,000 datapoints). To be conservative,
I chose 100,000 datapoints for the training process. Figure C.2b presents the predicted
Young’s moduli and Poisson’s ratios of testing patterns, which shows the values pre-
dicted by the solver are quite close to the reference values and demonstrates the good
performance of the solver. The linear relationship of the solver-predicted results is
much better than that of the 2D-CGAN-generated results. After the solver had been
well trained, the checkpoints of the solver were saved and the solver was used to train
the generator and discriminator, in which the saved checkpoints were used to calcu-
late the loss of the patterns produced by the generator. The process takes about 35
hours for training 200 epochs on a single NVIDIA RTX A6000 graphic card.
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TABLE C.3: Network architecture of solver for 2D-CGAN.

Description Kernel size/pool size Resampling Input shape Output shape

Unit 1

2D convolution 3 × 3 - 256 × 256 × 1 256 × 256 × 16

2D convolution 3 × 3 - 256 × 256 × 16 256 × 256 × 16

2D max pooling 2 × 2 Down 256 × 256 × 1 128 × 128 × 16

Unit 2

2D convolution 3 × 3 - 128 × 128 × 16 128 × 128 × 32

2D convolution 3 × 3 - 128 × 128 × 32 128 × 128 × 32

2D max pooling 2 × 2 Down 128 × 128 × 32 64 × 64 × 32

Unit 3

2D convolution 3 × 3 - 64 × 64 × 32 64 × 64 × 64

2D convolution 3 × 3 - 64 × 64 × 64 64 × 64 × 64

2D max pooling 2 × 2 Down 64 × 64 × 64 32 × 32 × 64

Unit 4

2D convolution 3 × 3 - 32 × 32 × 64 32 × 32 × 128

2D convolution 3 × 3 - 32 × 32 × 128 32 × 32 × 128

2D max pooling 2 × 2 Down 32 × 32 × 128 16 × 16 × 128

Unit 5

2D convolution 3 × 3 - 16 × 16 × 128 16 × 16 × 256

2D convolution 3 × 3 - 16 × 16 × 256 16 × 16 × 256

2D max pooling 2 × 2 Down 16 × 16 × 256 8 × 8 × 256

Unit 6

2D convolution 3 × 3 - 8 × 8 × 256 8 × 8 × 384

2D convolution 3 × 3 - 8 × 8 × 384 8 × 8 × 384

2D max pooling 2 × 2 Down 8 × 8 × 384 4 × 4 × 384

Unit 7

2D convolution 3 × 3 - 4 × 4 × 384 4 × 4 × 512

2D convolution 3 × 3 - 4 × 4 × 512 4 × 4 × 512

2D max pooling 2 × 2 Down 4 × 4 × 512 2 × 2 × 512

Unit 8

2D convolution 3 × 3 - 2 × 2 × 512 2 × 2 × 512

2D convolution 3 × 3 - 2 × 2 × 512 2 × 2 × 512

2D max pooling 2 × 2 Down 2 × 2 × 512 1 × 1 × 512

Flatten + Fully connected - - 1 × 1 × 512 256

Fully connected 256 128

Fully connected - - 128 2
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C.2 Patterns Generated by 2D-CGAN

Patterns 
generated by 
CGAN

νi (input) –0.2 –0.1 0 0.1 0.2 0.3

νo (output) –0.2029 –0.1004 0.0106 0.1091 0.2052 0.3028

νxy (FEM) –0.1891 –0.0710 0.0121 0.0735 0.1701 0.3125

νyz (FEM) –0.1312 –0.0975 0.0128 0.0896 0.1749 0.3483

Ei (input), [kPa] 4.0 4.5 5.0 5.5 6.0 8.5

Eo (output), [kPa] 3.9856 4.5753 4.9266 5.5892 5.8316 8.3386

Eyy (FEM), [kPa] 3.9046 5.1088 3.8596 4.7835 5.8519 8.1307

Exx (FEM), [kPa] 3.8074 3.7126 5.5629 5.6258 5.8127 8.9898

FIGURE C.3: Patterns generated by the 2D-CGAN with different
Young’s moduli and Poisson’s ratios.

The well-trained 2D-CGAN is capable of generating numerous patterns with a
user-defined Young’s modulus and Poisson’s ratio. Figure C.3 shows some patterns
produced by the 2D-CGAN with different Young’s moduli and Poisson’s ratios. The
results show that the values of the input elastic moduli are very close to those of the
output elastic moduli, which further demonstrates the good performance of the 2D-
CGAN. Note that the differences between the elastic moduli calculated by the homog-
enization algorithm and the FEM simulation are caused by the algorithms themselves.
The close agreement among the results of the 2D-CGAN predictions, FEM simula-
tions, and experiments confirms that the proposed 2D-CGAN-based technique is a
robust method for the inverse design of auxetic metamaterials.

I also investigated the deformation behaviors of different 2D-CGAN-generated
patterns under uniaxial compression (Figure C.4). The good curve fitting of the stress–
strain curves and Poisson’s ratio curves along the x- and y-axes demonstrates the
isotropic properties of this type of pattern. Furthermore, some patterns that initially
have positive Poisson’s ratios exhibit auxetic behavior during further compression,
which due to the shrinking of interior concave pores.
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FIGURE C.4: Deformation behavior of patterns with different elastic
moduli. (a) Progressively deformed configurations of FEM model un-
der uniaxial compressive loading. (b) Poisson’s ratio–strain curves and
(c) stress–strain curves from FEM simulations.
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Appendix D

Details of Deep Learning
Framework for 3D Architected
Materials

To train the 3D-CGAN, Adam optimization was implemented in the training process
to optimize the parameters. The learning rates of the Adam optimizer were set to α
= 0.0001 and β1 = 0.5. The Wasserstein distance was used to improve the quality of
the generated samples. The gradient penalty regularized the discriminator in the 3D-
CGAN to assist the convergence, and its parameter was set to 100. The batch size for
training was set to 32, and the epoch for was set to 200. A dataset consisting of 10,000
datapoints was used to train the 3D-CGAN. The details of the three neural network
structures are listed in Tables D.1–D.3. In summary, the generator consists of a fully
connected layer, batch normalization, dropout, and a 3D transposed convolutional
layer, and uses activation functions including Leaky ReLU and tanh; the discrimina-
tor consists of a fully connected layer, dropout, and 3D convolutional layer, and uses
activation functions including Leaky ReLU and tanh; the solver consists of six 3D con-
volution blocks with a 3D max pooling layer in each of them, and ends up with three
fully connected layers. As the architectures of these geometries are triply periodic, I
applied circular padding in the convolutional layers for both up and down sampling
processes.

The training process of 3D-CGAN was conducted using TensorFlow on a single
NVIDIA RTX A6000 graphic card on Linux system. The solver was first trained using
supervised learning. The solver was a linear regression model that used a 3D array
of architectures as an input and yielded the predicted porosities and Young’s moduli
as outputs. To investigate the effect of the number of datapoints on the performance
of the solver, I trained the solver with different datasets. For each training dataset,
80% of the datapoints were used as the training set and 20% of the datapoints were
used as the testing set. It required approximately 10 h to train 200 epochs using a
dataset consisting of 10,000 datapoints. Figure D.1a compares the MSE of the testing
set for different numbers of datapoints. It should be noted that it can be difficult for
the solver to converge if the datapoints are less than 1000. However, with an increase
in the number of datapoints, the solver converged and the MSE decreased, indicating
that an increasing number of datapoints was beneficial for the training. The MSE
converged to near 0.0001, though it is hard to reduce it further, even bigger datapoints
were utilized.

To save training time and resources, I selected 10,000 datapoints for the training
process. A more quantitative evaluation of the solver is shown in Figure D.1b, which
compares the reference and predicted values in terms of relative density and Young’s
modulus. The comparison between solver-predicted and reference values showed
an excellent agreement, proving the accuracy of the trained solver. The well-trained
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solver was saved as checkpoints and imported when training the generator and dis-
criminator. Training the generator and discriminator was more time-consuming, and
it cost approximately 32 h to train 10,000 datapoints for 200 epochs. After the three
modules were trained, the 3D-CGAN was harnessed for the inverse design of the ar-
chitected materials.

(a) (b)

FIGURE D.1: Performance of the solver of 3D-CGAN. (a) MSE versus
training epoch using different numbers of datapoints. (b) Reference
against solver-predicted porosities and Young’s modulus.



Appendix D. Details of Deep Learning Framework for 3D Architected Materials 85

TABLE D.1: Neural network structure of generator for 3D-CGAN.

Neural network types Kernel size Resampling Input array shape Output array shape

Concatenate(Z, L) - - 128+2 130

Dense + BatchNormalization + Reshape - - 130 2 × 2 × 2 × 512

3D transposed convolution + BatchNor-
malization + Leaky ReLU + Dropout (0.3)

4 × 4 Up 2 × 2 × 2 × 512 4 × 4 × 4 × 256

3D transposed convolution + BatchNor-
malization + Leaky ReLU + Dropout (0.3)

4 × 4 Up 4 × 4 × 4 × 256 8 × 8 × 8 × 128

3D transposed convolution + BatchNor-
malization + Leaky ReLU + Dropout (0.3)

4 × 4 Up 8 × 8 × 8 × 128 16 × 16 × 16 × 64

3D transposed convolution + BatchNor-
malization + Leaky ReLU + Dropout (0.3)

4 × 4 Up 16 × 16 × 16 × 64 32 × 32 × 32 × 32

3D transposed convolution 4 × 4 Up 32 × 32 × 32 × 32 64 × 64 × 64 × 1

Sigmoid - - 64 × 64 × 64 × 1 64 × 64 × 64 × 1

TABLE D.2: Neural network structure of discriminator for 3D-CGAN.

Neural network types Kernel size Resampling Input array shape Output array shape

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 64 × 64 × 64 × 1 32 × 32 × 32 × 16

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 32 × 32 × 32 × 16 16 × 16 × 16 × 32

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 16 × 16 × 16 × 32 8 × 8 × 8 × 64

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 8 × 8 × 8 × 64 4 × 4 × 4 × 128

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 4 × 4 × 4 × 128 2 × 2 × 2 × 256

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 2 × 2 × 2 × 256 1 × 1 × 1 × 512

Flatten - - 1 × 1 × 1 × 512 512

Dense - - 512 1

TABLE D.3: Neural network structure of solver for 3D-CGAN.

Neural network types Kernel/pool size Resampling Input array shape Output array shape

Unit 1

Conv3D 3 × 3 - 64 × 64 × 64 × 1 64 × 64 × 64 × 16

Conv3D 3 × 3 - 64 × 64 × 64 × 16 64 × 64 × 64 × 16

3D max pooling 2 × 2 Down 64 × 64 × 64 × 16 32 × 32 × 32 × 16

Unit 2

Conv3D 3 × 3 - 32 × 32 × 32 × 16 32 × 32 × 32 × 32

Conv3D 3 × 3 - 32 × 32 × 32 × 32 32 × 32 × 32 × 32

3D max pooling 2 × 2 Down 32 × 32 × 32 × 32 16 × 16 × 16 × 32

Unit 3

Conv3D 3 × 3 - 16 × 16 × 16 × 32 16 × 16 × 16 × 64

Conv3D 3 × 3 - 16 × 16 × 16 × 64 16 × 16 × 16 × 64

3D max pooling 2 × 2 Down 16 × 16 × 16 × 64 8 × 8 × 8 × 64

Unit 4

Conv3D 3 × 3 - 8 × 8 × 8 × 64 8 × 8 × 8 × 128

Conv3D 3 × 3 - 8 × 8 × 8 × 128 8 × 8 × 8 × 128

3D max pooling 2 × 2 Down 8 × 8 × 8 × 128 4 × 4 × 4 × 128

Unit 5

Conv3D 3 × 3 - 4 × 4 × 4 × 128 4 × 4 × 4 × 256

Conv3D 3 × 3 - 4 × 4 × 4 × 256 4 × 4 × 4 × 256

3D max pooling 2 × 2 Down 4 × 4 × 4 × 256 2 × 2 × 2 × 256

Unit 6

Conv3D 3 × 3 - 2 × 2 × 2 × 256 2 × 2 × 2 × 512

Conv3D 3 × 3 - 2 × 2 × 2 × 512 2 × 2 × 2 × 512

3D max pooling 2 × 2 Down 2 × 2 × 2 × 512 1 ×1 × 1 × 512

Flatten + Dense - - 1 ×1 × 1 × 512 256

Dense 256 128

Dense - - 128 2
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