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Chapter 1: Introduction 

 

1.1. Spintronics: Future of Data Storage Technology 

In the future, spintronics is inevitably appealing to fulfill our increasing needs on information 

technology especially storage and memory  [1]. Thanks to utilization of electron spin, spintronics is 

becoming more superior than conventional electronics  [2]. While electronics prefer the 

semiconductor materials and need more energy to maintaining the devices current, spintronics effect 

appears in the simple metal and its combined multilayer with smaller energy to change and transfer 

the electron spin. As traditional electronics strongly depends on silicon semiconductor and will 

eventually faces its physical size limit and thermal heat dissipation issue at very small devices size, 

it is predicted that doubling of transistors number in an integrated circuit (IC) every 2 years observed 

by Moore’s law will slow down and cease to apply at around 2025  [3]. That is why spintronics is 

promising as an alternative solution for high demand of storage, sensors, and quantum computing 

technology.  

The history of oldest spintronics product can be traced into 1956, when IBM 350 is introduced as first 

hard disk drive (HDD) with areal density 2 kbit/in2 to store around 4 MB information inside 50 

magnetic disks weighted almost 1 ton. By discovery of giant magnetoresistance (GMR) in 1988  [4,5], 

a world record of storing capacity of 10 Gbit/in2 achieved again by IBM nine years later, using GMR 

head technology as reading mechanism. The GMR effect itself is resistance change corresponds to 

the magnetic configuration between two ferromagnetic (FM) layer sandwiching nonmagnetic metal. 

In contrast to GMR, resistance change may also happen in the magnetic tunnel junction (MTJ) 

consisted of FM/insulator/FM which called as tunneling magnetoresistance (TMR). Despite the TMR 

effect is first observed at low temperature in 1975  [6], it started to attract attention when room 

temperature observation is reported twenty years later. In 2005, Seagate implemented TMR read head 

with areal density around 300 Gbit/in2. Currently, TMR read head with areal density more than 600 

Gbit/in2 is still incorporated in the HDD, using MgO as an insulator layer.  
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Fig 1.1. Advanced Storage Research Consortium (ASRC) roadmap for the future of HDD. Reuse 

with permission  [7] 

However, as predicted by International Data Corporation (IDC)  [1], current hard drives technology 

is not enough to store growing worldwide data up to 163 ZB by 2025, which is ten times larger from 

produced data in 2017. In order to push the areal density limit, the recording technology is also 

significantly evolving as shown in the Fig 1.1, from the old fashioned Longitudinal Magnetic 

Recording (LMR)  [8–15] which align the magnetic bits in-plane to the recording media, into 

Perpendicular Magnetic Recording (PMR)  [16–24] which allow to shrink the grain size and increase 

the areal density with retained Signal to Noise Ratio (SNR). Alternatively, Shingled Magnetic 

Recording (SMR)  [25–30] squeeze the magnetic track which consists of track bits closer together to 

achieve the higher areal density. Combining the PMR and SMR together, unfortunately we can only 

reach the limit around 1 Tbit/in2 due to the required field to “write” the bit magnetization will be too 

high, more than Slater-Pauling limit  [31]. One of clever solution for this limit is Heat Assisted 

Magnetic Recording (HAMR)  [32–37] which heat up the recording media to reduce the its coercivity 

as shown in the Fig 1.2(a)-(b), hence available writing field is still usable and simultaneously may 

enhance the areal density up to 5 Tb/in2. 
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Fig 1.2. (a) Typical HAMR structure and (b) writing mechanism in HAMR. Reuse with 

permission  [33].  

In this doctoral thesis, we theoretically investigated two properties that play important role behind 

the GMR/TMR (reading mechanism) and HAMR (writing mechanism) of ultrahigh-density recording, 

which are the spin polarization P and damping constant α, respectively. When highly spin-polarized 

FM layer such as Heusler alloy is used to create magnetoresistance (MR) effect in the trilayer 

FM/barrier/FM, the output MR ratio is also large because it only allows one of spin to pass through 

the barrier. However, its large MR ratio suffers the strong reduction at finite temperature, implying 

the significant reduction of spin polarization of FM layer. Meanwhile in HAMR, better performance 

is shown via faster writing process which require the large damping constant of HAMR media not 

only at ambient temperature but also at near Curie temperature (TC). Understanding the behavior of 

P and α at finite temperature will lead us to improve the storage technology via material selection or 

device design. 

1.2. Magnetoresistance Effect 

In the simple trilayer structure of FM/NM/FM shown in the Fig 1.3, MR effect is quantitatively 

defined as 

 𝑀𝑅 𝑟𝑎𝑡𝑖𝑜 =
∆𝑅𝐴

𝑅𝑃𝐴
=

𝑅𝐴𝑃𝐴−𝑅𝑃𝐴

𝑅𝑃𝐴
 =

𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
× 100% (1-1) 

With 𝑅𝐴𝑃  and 𝑅𝑃  are resistance when the magnetization direction between two FM layers are 

antiparallel and parallel, respectively. If the barrier is a nonmagnetic metal, it is called as CPP-GMR 

effect. While the nonmagnetic insulator is used, the TMR effect may happen.  
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Fig 1.3. Schematic stacking structure of magnetoresistance effect in FM/NM/FM  

1.2.1. Early GMR experiments 

In 1988, Fert and Grunberg separately discovered that resistance change happens by applying the 

field on the Fe/Cr multilayers or Fe/Cr/Fe trilayer  [4,5]. This effect called as current-in-plane giant 

magnetoresistance (CIP-GMR) because the electric current measurement is “in-plane” of the 

multilayer. Origin of the magnetoresistance was described as spin-dependent transmission of 

electrons between the metallic layers, due to the difference of magnetization orientation between 

ferromagnetic layers. In the [4], it is shown that without applied magnetic field, opposite direction of 

magnetization between adjacent Fe layer lead to the high resistance. Thus, increasing magnetic field 

cause the parallel alignment of Fe layers, resulting in reduction of in-plane resistance.  At that time, 

metallic layers were grown using slow Molecular Beam Epitaxy (MBE) process.  

Instead of in-plane measurement, current-perpendicular-to-plane giant magnetoresistance (CPP-

GMR) reported by Pratt et al.  [38] on Co/Ag multilayers at 4.2 K offers its attractiveness due the 

larger magnitude compared with its CIP counterpart even in the same sample as shown in the Fig 1.4. 

This is also followed by first measurement of the CPP-GMR at room temperature in the Fe/Cr and 

Co/Cu multilayers by Gijs et al.  [39–41] which confirmed that CPP-GMR value is always larger than 

CIP-GMR for the same sample over wide temperature range. Afterwards, development of theoretical 

model of CPP-GMR show the possibility to further improve the MR ratio by incorporate the highly 

spin-polarized materials.  
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Fig 1.4. (a) CPP-MR, (b) CIP-MR, and (c) magnetization dependence on applied magnetic field of 

Co/Ag multilayers. (d) CPP-GMR for Nb/Co/Nb layer. Reuse with permission  [38]  

1.2.2. Theoretical model of CPP-GMR 

When GMR started to branch into CIP and CPP geometry at 1991  [38], CPP-GMR offers more 

advantages and attract much interest compared than CIP-GMR. Current uniformity which is difficult 

in the CIP geometry may be easily realized in the CPP. There is also only one characteristic length 

parameter considered in CPP called as spin-diffusion length, representing the how long conduction 

electron diffuses before its spin moment change the direction. Therefore, analysis of CPP-GMR were 

carried out firstly with the simple model such as two-current series resistor (2CSR) model  [42] as 

shown in Fig 1.5.  
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Fig 1.5. Two current series resistor (2CSR) model for CPP-GMR   

In the 2CSR model, the spin-dependent scattering process happened in CPP-GMR is represented as 

high resistance R and low resistance r in the ferromagnetic electrode. Aside from that, the 

nonmagnetic spacer also contributes for small resistance. Assuming that there is only diffusive 

transport and no spin-flip, the 𝑅𝐴 contribution from all metallic layer is the product of layer resistivity 

𝜌  and the layer thickness 𝑡 . While the nonmagnetic (N) layer contribution will be 𝜌𝑁𝑡𝑁 , the 

ferromagnetic (F) layer, it is spin-resolved contribution with the form 𝜌𝐹
↑ 𝑡𝐹 and 𝜌𝐹

↓ 𝑡𝐹, correspond to 

the resistance at the parallel and antiparallel configuration between spin moment and magnetic layer 

moment, respectively.    

Here we start to introduce the bulk spin scattering asymmetry as 𝛽𝐹 = (𝜌𝐹
↓ − 𝜌𝐹

↑ )/(𝜌𝐹
↓ + 𝜌𝐹

↑ ) and 

interface spin scattering asymmetry 𝛾𝐹/𝑁 = (𝐴𝑅𝐹/𝑁
↓ − 𝐴𝑅𝐹/𝑁

↑ )/(𝐴𝑅𝐹/𝑁
↓ − 𝐴𝑅𝐹/𝑁

↑ ) with 𝐴𝑅𝐹/𝑁
↑  and 

𝐴𝑅𝐹/𝑁
↓  as interface specific resistances behaving like 𝜌𝐹

↑ 𝑡𝐹  and 𝜌𝐹
↓ 𝑡𝐹 . Other modified parameter 

introduced are also enhanced resistivity 𝜌𝐹
∗ =

𝜌𝐹
↓ +𝜌𝐹

↑

4
=

𝜌𝐹

1−𝛽𝐹
2  and enhanced interface specific 

resistance 𝐴𝑅𝐹/𝑁
∗ =

𝐴𝑅𝐹/𝑁
↓ +𝐴𝑅𝐹/𝑁

↑

4
=

𝐴𝑅𝐹/𝑁

1−𝛾𝐹/𝑁
2 , where 𝜌𝐹 is the low temperature resistivity of the F-metal. 

All of these parameters are basically needed to describe the 2CSR model properly. For the simplicity, 

derivation for MR ratio using this model will lead to the: 

 MR ratio ∝ (𝛽𝐹𝜌𝐹
∗ 𝑡𝐹 + 2𝛾𝐹/𝑁𝐴𝑅𝐹/𝑁

∗ )2 (1-2) 

Where the MR ratio is strongly depends on finite value of the spin scattering asymmetry 𝛽𝐹 and 𝛾𝐹/𝑁.  

The 2CSR model is simple yet unrealistic model, due to neglect of the spin-flip process. Valet-Fert 

model is proposed to overcome the 2CSR model weakness by introducing more parameters such as 
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spin diffusion length in the N- (𝑙𝑠𝑓
𝑁 ) and F- (𝑙𝑠𝑓

𝐹 ) metal, and also the parameter 𝛿𝐹/𝑁 corresponds to 

the probability of spin-flip at the F/N interface 𝑝 = 1 − exp(−𝛿𝐹/𝑁) . Note that when the spin 

diffusion length is much longer than metallic layer thicknesses and the spin-flip probability 𝑝 = 0, 

Valet-Fert model is simply reduced to the 2CSR model. Later, in order to obtain the high MR ratio, 

search for ferromagnetic material with large 𝛽𝐹 and large 𝛾𝐹/𝑁 due to interface with nonmagnetic 

spacer were widely conducted. Since then, many of so-called half-metallic materials with fully-spin 

polarized are proposed as ferromagnetic electrode in CPP-GMR.  

1.2.3. Early TMR experiments 

In 1975, Julliere observed the first TMR effect on the Fe|oxidized Ge|Co tunnel junctions with 14% 

MR ratio at low temperature as shown in the Fig 1.6. Separately, tunneling using oxidized Si is 

investigated by Meservey et al.  [43], but one FM layer is replaced by superconductor. Later, Gibson 

et al. confirmed the properties of oxidized Si  [43] is similar with oxidized Ge in their results  [44], 

but still not observe the spin polarization hence cannot reproduce Julliere results.  

At that time, oxide semiconductor is attracted researcher because its low barrier height will reduce 

criticality of thickness control. Meanwhile, metal oxide such Al2O3 were already applied to the tunnel 

junction with superconducting Al due to its feasibility to be fabricated from Al oxidation  [45]. It 

encourages the usage of alternative metal oxide such NiO. Maekawa et al. reported the MR ratio in 

the Ni/NiO/TM with TM=Ni, Fe, and Co, accompanied with strong temperature dependence  [46]. 

Nevertheless, the relatively high MR ratio up to 18% was successfully observed using amorphous Al-

O tunnel barriers in 1995  [47,48]. Almost a decade later, Parkin et al. and Yuasa et al. separately 

reported the giant TMR ratio up to 200%, using MgO barrier [49,50].  

 

Fig 1.6. First observation of TMR effect on Fe|oxidized Ge|Co by Julliere. The  ∆𝐺(𝑣)/𝐺0 correspond 

to the MR ratio. Reuse with permission  [6].  
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1.2.4. Theoretical model of TMR 

Unlike the origin of GMR which is spin-dependent scattering, the physics behind TMR is spin-

dependent tunneling across the nonmagnetic insulator. In order to understand the basic of TMR, we 

may assume that tunneling resistance is inversely proportional with the product of density of states 

of ferromagnetic electrode, illustrated in the Fig 1.7: 

 𝑅𝑃 ∝
1

𝐷𝑂𝑆𝑡𝑜𝑝
↑ 𝐷𝑂𝑆𝑏𝑜𝑡𝑡𝑜𝑚

↑ +𝐷𝑂𝑆𝑡𝑜𝑝
↓ 𝐷𝑂𝑆𝑏𝑜𝑡𝑡𝑜𝑚

↓  (1-3) 

 𝑅𝐴𝑃 ∝
1

𝐷𝑂𝑆𝑡𝑜𝑝
↑ 𝐷𝑂𝑆𝑏𝑜𝑡𝑡𝑜𝑚

↓ +𝐷𝑂𝑆𝑡𝑜𝑝
↓ 𝐷𝑂𝑆𝑏𝑜𝑡𝑡𝑜𝑚

↑  (1-4) 

And the MR ratio could be simplified as: 

 MR ratio =
2𝑃𝑡𝑜𝑝𝑃𝑏𝑜𝑡𝑡𝑜𝑚

1−𝑃𝑡𝑜𝑝𝑃𝑏𝑜𝑡𝑡𝑜𝑚
 (1-5) 

Where the 𝑃𝑡𝑜𝑝(𝑏𝑜𝑡𝑡𝑜𝑚) is the spin polarization of top and bottom electrode.  

 

Fig 1.7. Two current model for TMR   

In order to understand why replacing amorphous Al-O with crystalline MgO(001) barrier drastically 

increase the TMR ratio, Butler et al. provide the theory of coherent tunneling via crystalline MgO(001) 

barrier  [51]. While Julliere’s model simply assumes that all electronic Bloch state have equal tunnel 

probability (incoherent tunneling) and can be a better approximation for Al-O barrier, the Δ1 Bloch 



11 

 

state Δ1 actually has higher tunneling probability and dominate the tunneling process in crystalline 

MgO barrier. In addition,  Δ1 Bloch states have the symmetry similar with the s, pz, and dz2 orbital, 

thus we can roughly approximate that MR ratio depends on the spin polarization considering sp 

electrons.   

 

Fig 1.8. Illustration of tunneling process with the (a) amorphous Al-O barrier and (b) crystalline 

MgO(001) barrier. Reuse with permission  [52].  

1.3. Spin Polarization 

As mentioned in previous part, spin polarization evaluated from electronic structure shown in the Fig 

1.9 defined by  

 𝑃 =
𝐷↑(𝐸𝐹)−𝐷↓(𝐸𝐹)

𝐷↑(𝐸𝐹)+𝐷↓(𝐸𝐹)
 (1-6) 

plays important role to obtain the high MR ratio output in both GMR and TMR effect. Based on the 

theoretical calculation, it is possible to obtain the material with fully spin-polarized electronic 

structure. These materials then called as half-metallic ferromagnet. Unfortunately, the 100% spin 

polarization can exist only at hypothetical ground state and no spin-orbit interaction. When the 

temperature is raised, the depolarization is expected and spin polarization should reduce. Similarly, 

spin-orbit interaction (SOI) will mix the majority and minority spin states, hence the same 

depolarization is also exhibited. Interestingly, at relatively low temperature compared than Curie 

temperature and small SOI, some of proposed half-metallic ferromagnet materials already 
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demonstrated remarkable properties which deviates from “normal” ferromagnets. Hence, it is still 

justified to group these materials as “half-metallic ferromagnetic” although its spin polarization 

approaching but still less than 100%.  

 

Fig 1.9. Illustration of spin-polarized band structure   

Another issue regarding spin polarization is its experimental measurement. In order to confirm the 

half-metallicity, spin-resolved positron annihilation is the most direct measurement, which 

successfully prove half-Heusler NiMnSb  [53,54] with the accuracy less than one hundredth of 

electron, but also with its own difficulty and expensive technique. Aside from this, the various 

measurement method also conducted, using superconducting tunneling spectroscopy (STS)  [55], 

point-contact Andreev reflection (PCAR)  [56], non-local spin valve (NLSV)  [57], spin-resolved 

photoelectron spectroscopy  [58], and last but not least, TMR and CPP-GMR devices.  

The difficulty on experimental measurements lead to the significant role of theoretical study of 

electronic structure for better understanding of half-metal and fully-spin polarized band structure. 

However, it is known that theoretical study based on the density functional theory is also show the 

discrepancy, not only with experiments but also with same theoretical study using different 

approximation. Anyway, one thing to keep in mind, that all theoretical framework try to picture the 

origin of half-metallicity, which could be addressed into crystal structure and chemical composition. 

It is also important to understand that the origin of half-metallicity, we need to differ “strong” and 

“weak” magnet. In the strong magnet, magnetization is affected by the availability of electronic states, 

and not the exchange interaction. Contrary to this, magnetization of weak magnet is mainly 

determined compromise of exchange energy gain and band energy cost. Later, these concepts 

comprise all the known half-metal compound, which consists of weak magnets with minority spin 

gap (Heusler alloys), weak magnets with majority spin gap (double perovskites and magnetite), strong 
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magnets with minority spin gap (chromium dioxides) and strong magnet with majority spin gap 

(anionogenic ferromagnets)  [59].   

1.4. Highly spin-polarized material: Heusler alloys 

The Heusler alloys is named after Friedrich Heusler due to his discovery of ferromagnetic material 

formed by nonmagnetic elements such as Cu, Mn, Al  [60] at 1903. Interestingly, element can be 

easily varied to make different combination of alloys with the covalent bonding. However, structure 

elucidation of Cu2MnAl took more than 30 years later to be finished by Otto Heusler (Friedrich 

Heusler’s son)  [61]. It is found that the Cu2MnAl structure is the prototype of full-Heusler structure 

of general composition X2YZ. Otto also proposed another possible structure when the half of X atoms 

of tetrahedral site is interchanged by the Y atoms called as inverse Heusler. Later, Castelliz 

successfully fabricated NiMnSb by reducing Ni content of compositional series of Ni2-xMnSb (0 ≤ x 

≤ 1) . The structure of NiMnSb is called as half-Husler since the only half of the X atoms of tetrahedral 

site is occupied.   

 

Fig 1.10. The structure of prototype Heusler alloys with X (red), Y (blue), Z (green): (a) Half-Heusler 

XYZ, (b) Full-Heusler X2YZ, and (c) Inverse-Heusler X2YZ compound. Reuse with permission  [59]. 

1.4.1. Origin of half-metallic gap 

Several full-Heusler compound such as Co2MnSi and Co2MnGe are proposed as half-metallic. The 

insulating gap in the minority spin could be explained as consequence of hybridization between Co 

and Mn states. As shown in the Fig 1.11, Galanakis et al. proposed the mechanism of gap formation 

in Co2MnGe by considering the d states hybridization at the Γ point  [62]. Based on the Fig 1.10, Co 

atoms in the Co2YZ compound forms a simple cubic lattice with the octahedral symmetry, and the 

hybridization between these Co atoms are still important although with second nearest neighbor 

distance. Due to the octahedral nature, the d orbitals of Co are split into twofold degenerate states 

𝑑𝑥2−𝑦2 , 𝑑𝑧2  and threefold degenerate states 𝑑𝑥𝑦 , 𝑑𝑥𝑧 , 𝑑𝑦𝑧. As shown in Fig 1.11, symmetry only 
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allows the hybridization between two set of twofold degenerated states to create the 𝑒𝑔 (bonding) and 

𝑒𝑢 (antibonding) orbitals. Similarly, it also happens for two set of threefold degenerated states to 

create the 𝑡2𝑔 (bonding) and 𝑡1𝑢 (antibonding) orbitals. Thus, the Co-Co orbitals are also hybridized 

with the Mn orbitals following the symmetry to create the set of bonding and antibonding orbitals of 

𝑒𝑔 and 𝑡2𝑔. Since no Mn orbitals have the matched symmetry with the 𝑒𝑢 and 𝑡1𝑢 of Co-Co orbitals, 

these two sets of degenerated states become non-bonding orbitals, where the 𝑒𝑢  orbitals are 

unoccupied and 𝑡1𝑢 are occupied, hence Fermi level lies within the gap between the nonbonding 

states. Despite proposed based on Co2MnGe, this hybridization model can be used for general half-

metal full-Heusler compound composition. In case of all majority spin states is filled, the total seven 

states (2𝑒𝑢 + 2𝑒𝑔 + 3𝑡2𝑔) remains empty in the minority spin states, giving the maximum magnetic 

moment of 7 𝜇𝐵. 

 

Fig 1.11. Hybridization of Co and Mn minority-spin states as origin of half-metallicity in Co2MnGe. 

The d1, d2, and d3 correspond to 𝑑𝑥𝑦, 𝑑𝑥𝑧, 𝑑𝑦𝑧 orbitals, respectively, and d4, d5 for 𝑑𝑥2−𝑦2, 𝑑𝑧2. 

Reuse with permission  [62].  
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1.4.2. Slater-Pauling behavior 

For half-metallic material, the number of electrons occupying the minority states 𝑁↓ should be integer. 

In a unit cell, there would be 8 electrons (from 2𝑒𝑔  + 3 𝑡2𝑔  + 3 𝑡1𝑢  occupied states based on 

hybridization scheme) and additional 4 electrons from low-energy sp bands contributed by sp element, 

resulting in 12 electrons in the minority spin-states. Therefore, the Slater-Pauling rule can be derived 

as follow: 

𝑀𝑡 = 𝑁↑ − 𝑁↓ = 𝑍𝑡 − 𝑁↓ − 𝑁↓ = 𝑍𝑡 − 2𝑁↓ = 𝑍𝑡 − 24 

where 𝑀𝑡, 𝑁↑, 𝑍𝑡 are total spin moment, number of electrons occupying majority spin states, and total 

number of valence electrons, respectively. As shown in Fig 1.12, Galanakis et al. calculated the total 

spin moment for various full-Heusler alloys and found that most compound which half-metal will 

follow the Slater-Pauling behavior properly  [62]. However, they also observed that the slight 

deviation for several Rh- and Co-based compound.  

 

Fig 1.12. Dependence of calculated total spin moment 𝑀𝑡  on the total number of valence electrons 

𝑍𝑡. The dashed line denotes the Slater-Pauling behavior. Reuse with permission  [62].  
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1.4.3. Exchange Constants and Curie temperature 

In order to implement the highly spin-polarized Heusler alloys to practical applications at room 

temperature, the materials should have high Curie temperature. Theoretically, Curie temperature 

depends on the exchange interaction between magnetic atoms. For full-Heusler compound Co2YZ, it 

is required to consider the interaction between 3 kinds of magnetic atoms (Co-Co, Co-Y, Y-Y). 

Previously, conventional way to calculate the Curie temperature is by using mean-field 

approximation (MFA) or random-phase approximation (RPA)  [63].  In the MFA,  

〈𝑒𝜇〉 =
2

3𝑘𝐵𝑇
∑ 𝐽0

𝜇𝑣〈𝑒𝑣〉

𝑣

 

where 〈𝑒𝜇〉, 〈𝑒𝑣〉 are the average z component of unit vector pointing in the direction of the magnetic 

moment 𝐞R
𝜇

, 𝐞R
𝑣 , respectively and 𝐽0

𝜇𝑣
= ∑ 𝐽0𝐑

𝜇𝑣
R . The 𝐽0𝐑

𝜇𝑣
 is the exchange parameters between 

sublattices 𝜇 and 𝑣 with the lattice vectors 𝐑. The equation above can be rearranged as eigenvalue 

matrix form: 

(𝚯 − 𝑇𝐈)𝐄 = 0 

where Θ𝜇𝜈 =
2

3𝑘𝐵
𝐽0

𝜇𝑣
,  𝐈 is a unit matrix, and 𝐄 is the 〈𝑒𝑣〉 vector. Solving this matrix will give the 

largest eigenvalue of 𝚯 which correspond to the Curie temperature calculated by MFA method  𝑇𝐶
𝑀𝐹𝐴  

While MFA method is simply the numerical average over the spin waves and mostly overestimate 

the Curie temperature, the RPA method is taking the harmonic average, hence giving the lower-

energy spin waves more contribution and usually accurately determine Curie temperature. For the 

simplicity, within one magnetic sublattice, the Curie temperature calculated by RPA method 𝑇𝐶
𝑅𝑃𝐴 is 

given as: 

1

𝑘𝐵𝑇𝐶
𝑅𝑃𝐴 =

3

2

1

𝑁
∑

1

𝐽(𝟎) − 𝐽(𝐪)
𝑞

  

Using RPA method, Kubler et al. found good agreement between calculated Curie temperature and 

experimental results for various Co-based Heusler alloys  [64]. Aside from that, they also observed 

the linear dependence of Curie temperature 𝑇𝐶 = 23 + 181𝑀𝑡 . Since the Slater-Pauling behavior 

uniquely describe that magnetic moment dependence on the total number of valence electrons for 

half-metal, this result also establishes the linear relation between Curie temperature and total number 

of valence electrons, as shown in the Fig 1.13.  
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Fig 1.13. Dependence of experimentally measured and theoretically calculated Curie temperature on 

the total number of valence electrons 𝑍𝑡. The solid line denotes the Slater-Pauling behavior expected 

for the Curie temperature. Reuse with permission  [64].  

1.4.4. Atomic disorder and off-stoichiometry 

In reality, perfect L21-ordered structure of full-Heusler alloys shown in the Fig 1.10(b) is difficult to 

achieve due to the atomic disorder. There are several kind of atomic disorder that may happen in the 

full-Heusler Co2YZ compound: (i) Y-Z swaps (lead to B2-ordered structure), (ii) CoY antisites (Y atom 

is replaced by a Co), (iii) YCo antisites (Co atom is replaced by a Y), (iv) Co-Y swaps (lead to D03 

structure), (v) fully random swaps between Co-Y-Z atoms (lead to A2 structure).  

The study of atomic disorder effect on full-Heusler alloys was started after several finding that imply 

the low value of experimental spin polarization in Co2MnGe and Co2MnSi is accompanied by the 

defects in the sublattices  [65–67]. Picozzi et al. investigated the various defects type in Co2MnSi and 

Co2MnGe, and found that existence of Co antisites destroy the half-metallicity, while other kind 

defects basically still preserve the half-metallic gap in the electronic structure  [68]. 

In the same time, Miura et al. systematically investigated the Co2(Cr1-xFex)Al system, and found that 

fully swapped Cr-Al atoms correspond to B2-ordered structure of Co2CrAl keep the high spin 

polarization as shown in the Fig 1.14(a)  [69]. On the other hand, Co-Cr disorder is rapidly reduce 

the spin polarization, consistent with finding by Picozzi et al.  [68] This effect is due to the additional 
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states in minority-spin DOS contributed by Co antisites. Fortunately, total energy difference between 

disordered structure and perfect L21-ordered structure is significantly increases by disorder level of 

Co-Cr compared than that of Cr-Al, as shown in the Fig 1.14(b), implying that the harmful Co-Cr 

disorder is more difficult to happen. In addition, the Co-Cr structural disorder can also be detected by 

the change of magnetic moment as shown in the Fig 1.14(c), since the Cr antisite can involve in the 

antiferromagnetic coupling with another Cr atoms.  

 

Fig 1.14. Disorder level dependence of (a) spin polarization, (b) total energy relative to that of the 

ordered structure, and (c) magnetic moment of Co2CrAl. Reuse with permission from  [69].  

1.5. Magnetization Dynamics 

Magnetization dynamics or spin dynamics is one of essential foundation of spintronics-based devices 

development. Basically, it refers to the dynamics of spin phase and population in an ensemble of 

interacting particles. Since the spin dynamics itself comprises many phenomenon in the different 

timescale, it is important to define the category based on the length and timescale variation.  
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In the Fig 1.15, the various interaction mechanism is shown with different timescales. Shortest 

timescale (1 fs) corresponds to coherent spin-photon interaction with mechanism of polarization 

intraband and interband transitions results in the coherent and decays within the dephasing time 𝑇2𝑒 

of the electronic levels. These processes are responsible for different optical and magneto-optical 

responses, especially on the spectral dependence. In the order of 10 fs, quantum fluctuation affect the 

local magnetization changes. Going up to 100 fs, this region represents the thermalization times 𝜏𝑒,𝑠 

of electron charge and spin due to the excited electron redistribution in k-space. The exchange and 

correlation interaction takes place in this process. While in the timescale of 1 ps, the phonon will heat 

the lattice due to the electron-phonon interaction. And finally, in the order of 10 ps-1 ns, the dominant 

effect on spin dynamics is affected by precession and damping movement.  

 

Fig 1.15. Mechanisms and interaction processes of magnetization dynamics based on different 

timescales. Reuse with permission  [70].  

Before focus into precession and damping process, there are several physical terms that need to be 

defined and understood. First, the effective field 𝑯𝑒𝑓𝑓 which is the partial derivative of magnetic free-

energy density 𝜖 with respect to the magnetization at each vector coordinate (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧) 

 𝑯𝑒𝑓𝑓 = −
𝜕𝜖

𝜕𝑀𝑥
𝑥̂ −

𝜕𝜖

𝜕𝑀𝑦
𝑦̂ −

𝜕𝜖

𝜕𝑀𝑧
𝑧̂ (1-7) 
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And usually, it consists of contribution from magnetic anisotropy, demagnetizing field, and Zeeman 

energy, etc. When the effective field applied on particular magnetization, the torque 𝚪 = 𝑴 × 𝑯𝑒𝑓𝑓 

is exerted, and the precession movement around the effective field happen.  

Precession of the magnetization around the effective field is expressed by the equation of motion 

below 

 
𝜕𝑴

𝜕𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓 (1-8) 

where the 𝛾  is the gyromagnetic ratio. The gyromagnetic ratio (not to be confused with the 

dimensionless g-factor g) is the ratio between the magnetic moment 𝒎J  with its total spin-orbit 

angular momentum 𝐉 for an electron 

 𝛾 = −
𝒎J

𝐉
=

𝑔𝜇B

ℏ
 (1-9) 

where 𝜇B is the Bohr magneton, and ℏ is the reduced Planck constant. Note that the both 𝛾 and 𝑔 are 

positive constants, because the antiparallel orientation between 𝒎J and 𝐉. The magnitude of 𝐉 depends 

on the total angular momentum quantum number 𝑗 via  J = ℏ√𝑗(𝑗 + 1). On the other hand, the g-

factor is considered to be related with the spin-orbit interaction strength because the assumption of 

𝑔 = 2 + 2 (
𝑚L

𝑚S
), with 𝑚L and 𝑚S are orbital- and spin-component of magnetic moment, respectively.  

However, in real system, precession movement does not last forever. There are finite dissipation of 

energy and angular momentum toward to the effective field direction, which end up as alignment of 

magnetization along the effective field. This dissipation is called as damped precession, and originally 

defined as phenomenological effect by Landau-Lifshitz equation 

 
𝜕𝑴

𝜕𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓 −

𝜆

𝑀2 𝑴 × 𝑴 × 𝑯𝑒𝑓𝑓 (1-10) 

where the 𝜆 is the relaxation frequency representing the damping strength. In this case, Gilbert notices 

that Landau-Lifshitz equation fails to explain the situation when the damping becomes very large, 

because the solution will give switching time approaches zero. Therefore, Gilbert proposed modified 

expression: 

 
𝜕𝑴

𝜕𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓 +

𝛼

𝑀
𝑴 ×

𝜕𝑴

𝜕𝑡
 (1-11) 

where 𝛼 is the Gilbert damping constant. In the very large damping (𝛼 > 1), this modified equation 

result in the expected slower switching time. Since the most material have 𝛼 < 1, both of the Landau-

Lifshitz and Gilbert equation are correct.   
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1.6.  Damping Constant 

As mentioned in previous part, dimensionless damping constant represent the strength of “damped” 

precession. Because it originated in the equation proposed by Gilbert , it is well known to be called 

as Gilbert damping constant.  This damping govern the behavior of magnetization under applied field, 

especially how quickly the magnetization will finally align to the applied field, as shown in the Fig 

1.16. If the damping constant is zero, the magnetization will always precess around the applied field. 

When the damping constant is finite small value, the precession movement will slowly ended up to 

align the magnetization along the field direction. On the other hand, increasing the damping constant 

means the faster process of this alignment. Therefore, for the switching process in the HAMR 

application, the large damping is required to maintain the fast switching time.  

 

Fig 1.16. Illustration of magnetization dynamics with different value of damping constant 𝛼.  

Various first principles theoretical model are developed to quantitively evaluated the damping 

constant, such as breathing Fermi-surface  [71], torque correlation  [72], and scattering theory  [73]. 

In general, these models show that damping constant will be intrinsically exist as fundamental 

properties of each material even in the perfect structure. The coupling between the magnetization and 

other degrees of freedom allows the dissipation of magnetic energy into another systems such lattice 

or spin waves. Therefore, spin-orbit coupling and electron-phonon scattering plays crucial role as 

origin of the intrinsic damping constant. In addition, since the intrinsic damping depends on the spin-

orbit coupling, heavy-metal containing compound such as FePt is expected to have large damping 

constant. Based on torque-correlation model  [72], the damping constant is contributed from 

intraband and interband transition, which have conductivitylike and resistivitylike behavior, 

respectively. This simple model expect the nonmonotonic behavior of temperature dependence of 

damping, which also experimentally confirmed  [74].   
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Aside from the intrinsic damping constant, there are also extrinsic contributions  [75]. This 

contribution usually observed in all practical samples, and depends on the sample preparation and 

measurement setup. One of important factor that contribute to extrinsic damping is the sample 

inhomogeneities. The example of these inhomogeneities can be defects, non-uniform thickness, 

lattice strains. Because of this, interpretation of experimental results should be carefully clarified to 

separate the contribution of intrinsic and extrinsic damping.      

1.7. Prospective recording media: FePt alloys  

Prospective materials for recording media requires to fulfill the quadrillema of magnetic recording as 

shown in the Fig 1.17  [76]. First, it should allow higher areal density to meet the demand of the 

growing data capacity. At a glance, this can be easily solved by making the grain smaller. But it is 

important to keep maintaining the adequate signal to ratio (SNR), which is proportional with the 

logarithmic of grains per bit. Areal density (AD) itself defined as:  

 𝐴𝐷 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
=

𝑏𝑖𝑡

𝑔𝑟𝑎𝑖𝑛𝑠
∙

𝑔𝑟𝑎𝑖𝑛𝑠

𝑎𝑟𝑒𝑎
=

1

𝑔𝑟𝑎𝑖𝑛𝑠/𝑏𝑖𝑡
∙

1

𝑎𝑟𝑒𝑎/𝑔𝑟𝑎𝑖𝑛𝑠
 (1-12) 

Based on the equation (1-12), in order to keep the same grains per bit, the only way to improve the 

areal density is the area per grains. This means to reduce the grain size. 

 

Fig 1.17. Quadrillema of magnetic recording. Figure is redrawn from  [76]. 

However, this lead to the second part of quadrillema, which is the thermal stability. It is known that 

required thermal stability to retain the bit information at least for 10 years is: 
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𝐾U𝑉

𝑘B𝑇
> 60 (1-13) 

where  𝐾U is the magnetocrystalline anisotropy, 𝑘B is the Boltzmann constant, and 𝑇 is temperature. 

The 𝑉 is the grain volume, which is product from area and height of each grain. Due to the smaller 

grain size for higher areal density, maintaining the inequality of equation above need the larger 𝐾U 

material.  

There are several candidates for large 𝐾U materials, such as Co-based alloys (CoPtCr, Co, Co3Pt, etc), 

rare-earth transition metals (RE-TM) compound (Nd2Fe14B, SmCo5), multilayers (Co/Pt and Co/Pd) 

and L10 phases compound (MnAl, CoPt, FePd, and FePt)  [8]. In the beginning, CoCrXY (X = Ta, Pt, 

and Y = Nb, B) alloys are proposed as first option for recording media materials. On the other hand, 

required phase of RE-TM compound is not easily obtained via sputtering and vulnerable of the 

corrosion  [77]. In case of the multilayers of Co/Pt and Co/Pd, reported anisotropy after being 

normalized over the total media volume does not offer the significant advantage over the conventional 

media CoCrPt:oxide. This leads to the L10 based compound, such as FePt as prospective candidate. 

When the 𝐾U is sufficiently large, coercivity is also larger and conventional writing process cannot 

be done by applying write field to change the grain magnetization anymore. The Slater-Pauling limit 

is the natural reason behind this drawback. It is defined as upper limit of saturation magnetization of 

any magnetic material, which is currently held by FeCo alloys with 𝜇0𝑀S = 2.45 T. Since then, 

alternative writing process considering to incorporate the energy effect. This is the beginning of heat-

assisted magnetic recording (HAMR), which apply heat on the recording media up to Curie 

temperature to reduce its coercivity. Therefore, the third part of quadrillema regarding easier writing 

process is solved by choosing the recording media with modest Curie temperature.  

Since the writing process is carried out around the Curie temperature, faster and accurate writability 

becomes last important issues in the quadrillema of magnetic recording. The switching process at 

high temperature should be minimize the failure and time, too. Failure in the writing process is 

represented by the bit error rate (BER) parameter. Kobayashi et al. demonstrated that BER parameter 

and switching time could be minimized when the damping constant is large  [78,79]. As mentioned 

in previous part, damping constant is also originated from SOI, so the large 𝐾U material such as FePt 

is also expected to have the large damping constant 

As summary, prospective material for recording media should have large 𝐾U and damping constant 

for thermal stability and thermal writability. On the other hand, Curie temperature should be relatively 

modest to realize the efficient writing. The L10 FePt fulfill those requirement, with large 
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magnetocrystalline anisotropy (7 × 107 erg/cc)  [80,81], relatively low TC (750 K)  [82], and large 

damping (α > 0.05)  [83–86].   

1.8. Finite temperature effect 

Finite temperature affect the magnetic system with several phenomenon as shown in the Fig 1.18.  

 

Fig 1.18. Finite temperature effect on the magnetic system.  

1.8.1. Spin fluctuation 

Magnetic system consisted as perfectly aligned local moment at ground state. The local moment start 

to fluctuate at finite temperature.  This is the origin of reduction of magnetization at finite temperature, 

which end up to the zero magnetization when all local moments are randomly oriented at Curie 

temperature. Mean-field approximation can be used to understand this fluctuation in easier way. It is 

assumed that each local moment experiences a field 𝐵 proportional with the total magnetization 𝑀 

 𝐵 = 𝜆𝑀 (1-14) 

where 𝜆 is the temperature-independent proportionality constant or mean-field constant. In other 

words, each local moment “feel” the averaged magnetization from surrounding local moments. 

Complete Brillouin expression for the magnetization with ½ spin is 

 𝑀 = 𝑁𝜇 tanh (
𝜇𝐵

𝑘B𝑇
) = 𝑁𝜇 tanh (

𝜇𝜆𝑀

𝑘B𝑇
) (1-15) 



25 

 

If the above equation is rewritten by introducing reduced magnetization 𝑚 = 𝑀/𝑁𝜇 and reduced 

temperature 𝑡 =
𝑘B𝑇

𝑁𝜇2𝜆
, the temperature dependence of magnetization is expressed as 

 𝑚 = tanh (
𝑚

𝑡
) (1-16) 

Note that the critical temperature  𝑡 = 1 is equivalent with 𝑇C =
𝑁𝜇2𝜆

𝑘B
. However, for the temperature 

much smaller than 𝑇C, the tanh expression is approximated as 

 tanh 𝑎 = 1 − 2 exp(−2𝑎) …  (1-17) 

And the magnetization deviation at finite temperature Δ𝑀 = 𝑀(0) − 𝑀(𝑇) becomes 

 Δ𝑀 ≅ 2𝑁𝜇 exp(−2𝜆𝑁𝜇2/ 𝑘B𝑇)  (1-18) 

which give much smaller change of magnetization compared than experimental results on the low 

temperature.  

The spin fluctuation in the magnetic system can be also be understood as spin wave. Imagine the 

simple one-dimension ferromagnetic system with all parallel N spin with magnitude S at ground state. 

The energy of the system is governed by Heisenberg interaction: 

 𝑈 = −2𝐽 ∑ 𝑺𝑝 ∙ 𝑺𝑝+1
𝑁
𝑝=1   (1-19) 

where the J is the exchange integral, 𝑺𝑝 is the spin angular momentum at p site. Classical treatment 

of this equation will give the 𝑺𝑝 ∙ 𝑺𝑝+1 = 𝑆2 and ground state exchange energy as 𝑈0 = −2𝑁𝐽𝑆2 

There are two possible kind of excited states, first one is the when one spin is reversed. But if reversal 

is shared with all the spins, lower-energy excited states can be formed as “wave”. This quantized 

wave of spin orientation is called as magnon, which are analogous with phonons (quantized wave of 

atomic position).  For the 𝑛𝑘 magnon with the frequency 𝜔𝑘, energy is given as  

  𝜖𝑘 = (𝑛𝑘 +
1

2
) ℏ𝜔𝑘 (1-20) 

At the particular temperature, the average number of excited magnon at mode k follows the Planck 

distribution: 

 〈𝑛𝑘〉 =
1

exp(
ℏ𝜔𝑘
𝑘B𝑇

)−1
 (1-21) 

And the total number of excited magnons are 

 ∑ 𝑛𝐤 = ∫ 𝑑𝜔 𝐷(𝜔)𝐤 〈𝑛(𝜔)〉 (1-22) 

where 𝐷(𝜔) is the density of modes for magnons 
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 𝐷(𝜔) =
1

4𝜋2 (
ℏ

2𝐽𝑆𝑎2)
3/2

𝜔
1

2 (1-23) 

This lead to the total number of magnons 

 ∑ 𝑛𝐤𝐤 =
1

4𝜋2 (
ℏ

2𝐽𝑆𝑎2)
3/2

∫ 𝑑𝜔
∞

0

𝜔
1
2

𝑒𝛽ℏ𝜔−1
=

1

4𝜋2 (
𝑘B𝑇

2𝐽𝑆𝑎2)
3/2

∫ 𝑑𝑥
∞

0

𝑥
1
2

𝑒𝑥−1
= 0.0587 (

𝑘B𝑇

2𝐽𝑆𝑎2)
3/2

(1-24) 

Since number of N atoms per unit volume is 𝑄/𝑎3 and 𝑄 is the number of atoms in the unit cell.   

Fractional change of magnetization 
Δ𝑀

𝑀(0)
 is defined as 

 
Δ𝑀

𝑀(0)
=

∑ 𝑛𝐤𝐤

𝑁𝑆
=

∑ 𝑛𝐤𝐤

𝑄𝑆
𝑎3 =

0.0587

𝑄𝑆
(

𝑘B𝑇

2𝐽𝑆
)

3/2

 (1-25) 

which show dependency of magnetization with 𝑇
3

2 terms. This dependency, is also called as Bloch 

law and successfully explained the experimental results.  

1.8.2. Lattice expansion 

Lattice expansion is the consequence of anharmonicity in the crystal interactions. Assume a pair of 

atoms at finite temperature T, the potential energy of atoms at particular displacement x from the 

equilibrium position at ground state is defined as: 

 𝑈(𝑥) = 𝑎𝑥2 − 𝑏𝑥3 − 𝑐𝑥4 (1-26) 

where 𝑎𝑥2 represents the only harmonic terms, 𝑏𝑥3 represents the asymmetric repulsion of atoms, 

and 𝑐𝑥4 represents the vibration softening at large amplitudes. The existence of anharmonic terms 

lead to the possibility that global minimum for potential energy is not located at 𝑥 = 0. Therefore, 

the average displacement calculated by Boltzmann distribution is:  

 〈𝑥〉 =
∫ 𝑑𝑥

∞
−∞  𝑥 exp[−𝛽𝑈(𝑥)]

∫ 𝑑𝑥
∞

−∞
 exp[−𝛽𝑈(𝑥)]

 (1-27) 

with 𝛽 = 1/𝑘B𝑇. In case of anharmonic terms are much smaller than 𝑘B𝑇, the integrands could be 

expanded into  

∫ 𝑑𝑥
∞

−∞
 𝑥 exp[−𝛽𝑈(𝑥)] ≅ ∫ 𝑑𝑥 [exp(−𝛽𝑎𝑥2)](𝑥 + 𝛽𝑏𝑥4 + 𝛽𝑐𝑥5) = (

3𝜋
1
2

4
) (

𝑏

𝑎
5
2

) 𝛽−
3

2 (1-28) 

 ∫ 𝑑𝑥
∞

−∞
 exp[−𝛽𝑈(𝑥)] ≅ ∫ 𝑑𝑥 [exp(−𝛽𝑎𝑥2)] =  (

𝜋

𝛽𝑎
)

1

2
  (1-29) 

and the thermal expansion becomes: 

 〈𝑥〉 =
3𝑏

4𝑎2 𝑘B𝑇 (1-30) 
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1.8.3. Atomic vibration 

In case of the atomic vibration, the similar approach to quantized energy of so-called phonon with 

angular frequency 𝜔 and quantum number 𝑛 is also provided by the equation: 

𝜖 = (𝑛 +
1

2
) ℏ𝜔 

where the 
1

2
ℏ𝜔 terms are required to represent the zero-point energy due to resemblance with the 

quantum harmonic oscillator. The average of thermal equilibrium occupancy of phonons 〈𝑛𝑣(𝐪, 𝑇)〉 

at particular phonon mode index 𝑣, wave vector 𝐪 and temperature 𝑇  is then given by the Planck 

distribution.  

〈𝑛𝑣(𝐪, 𝑇)〉 =
1

exp (
ℏ𝜔𝑣(𝐪)

𝑘B𝑇
) − 1

 

The expected value of squared atomic displacement of becomes as 

〈|𝑢𝛼(𝑗𝑙, 𝑡)|2〉 =
ℏ

2𝑁𝑚𝑗
∑ 𝜔𝑣(𝒒)−1(1 + 2𝑛𝑣(𝒒, 𝑇))

𝒒,𝑣

|𝑒𝑣
𝛼(𝑗, 𝒒)|2 

1.9. Status of current research 

1.9.1. Magnetoresistance effect and spin polarization 

The Valet-Fert model  [87] and Julliere model  [6] emphasize the importance of highly spin-polarized 

materials such as full-Heusler alloys to obtain the large MR ratio in the GMR and TMR, respectively. 

However, there is no satisfactory results obtained until at 2004, when the L21-ordered Co2Cr0.6Fe0.4Al 

(CCFA) demonstrated the MR effect across the insulating phase of grain boundary  [88]. This finding 

is followed by Inomata et al. which use B2-CCFA as an electrode in the MTJ and obtained the TMR 

ratio of 16% at RT and 26.5% at 5 K, respectively  [89]. It also triggered the similar research to 

advance the CPP-GMR performance, which is initiated by Yakushiji et al. using L21 Co2MnSi (CMS) 

resulting in the GMR ratio of 2.4% at RT  [90].  Since then, the incorporation of highly-spin polarized 

Heusler alloys for GMR and TMR devices is widely investigated and significantly developed, as 

shown in the Fig 1.19(a)-(b). Mostly, the Co2Mn- and Co2Fe-based compound is used due to their 

high Curie temperature. Until 2018, the top three materials with largest MR ratio in both TMR and 

CPP-GMR devices are CMS, CFGG, and CFMS, which are already theoretically predicted as half-

metal by different research groups  [91–93].  
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Fig 1.19. (a) GMR ratio and (b) TMR ratio at room temperature using full Heusler alloy electrodes 

over the years. (CMS: Co2MnSi, CFGG: Co2FeGa0.5Ge0.5, CFMS: Co2FexMn1-xSi, CFAS: 

Co2FeAl0.5Si0.5, CFS: Co2FeSi, CMG: Co2MnGe, CMA: Co2MnAl, CFSn: Co2FeSn, CFMG: 

Co2Fe0.4Mn0.6Ge, CFGS: Co2FeGa0.5Sn0.5, CFCS: Co2FexCr1-xSi, CFA: Co2FeAl, CCFA: Co2CrxFe1-

xAl. Source from  [94] and  [95]. 

However, although it is true that MR devices using full-Heusler alloys such CMS, CFGG, and CFMS 

at room temperature demonstrated highest recorded MR ratio, its value much larger at low 

temperature as shown in the Fig 1.20(a)-(b). In the Fig 1.20(a), the TMR ratio of CMS/Al-O/CMS at 

low temperature is much larger than its counterpart CMS/Al-O/CoFe and CoFe/Al-O/CoFe, before 

getting the similar value with CMS/Al-O/CoFe at room temperature. Similarly, the strong 

temperature dependence also observed in CPP-GMR devices for CFGG/Ag/CFGG shown in the Fig 

1.20(b). There are several proposed explanations behind this reduction. For the TMR, when two 

ferromagnetic electrode is in antiparallel configuration, thermally excited magnon may cause the 

spin-flip inelastic tunneling process  [96]. This process is enhanced by minority-spin in-gap states in 

the bulk region and minority-spin interface states at the interface of ferromagnetic/barrier which 

inevitably exists at finite temperature. It involves two interchangeably steps, which are spin-flip 

scattering of majority-spin electron into minority spin in-gap or interface states and electrons 

tunneling from minority spin into majority-spin. Since the number thermally excited magnon is 

increasing as temperature rises, the spin-flip inelastic tunneling process will increase antiparallel 

conductance or equivalently decrease antiparallel resistance, hence reduce the MR ratio. Similar 

picture can be adopted for CPP-GMR, although the interface states is not significant due to metallic 

conduction in the parallel configuration  [97]. Note that MR effect in the CPP-GMR is due to the 

spin-asymmetric electron scattering, unlike the tunneling in TMR.  
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Fig 1.20. Temperature dependence of MR ratio in (a) TMR devices of CMS/Al-O/CMS, CMS/Al-

O/CoFe, CoFe/Al-O/CoFe, and (b) CPP-GMR devices of CFGG/Ag/CFGG. Reuse with 

permission  [98,99]. 

Stacking structures of multilayers that allow the MR effect emphasizes the importance of the interface 

quality on transport properties. In the TMR devices with MgO crystalline barrier, coherent tunneling 

from effective coupling between electrode and barrier Δ1 states are the dominant mechanism behind 

the giant MR ratio  [100], which is very sensitive to the interface structure, unlike the AlOx 

amorphous barrier. Unfortunately, despite the MnSi terminated Co2MnSi/MgO interfaces is 

thermodynamically stable, it is not half-metallic anymore due to nonbonding character of Mn 3dyz 

and 3dxz orbitals, which may enhance unwanted tunneling conductance in the antiparallel magnetic 

configuration  [101]. On the other hand, in the CPP-GMR, the interface spin asymmetry 𝛾 can be also 

qualitatively predicted based on the matching of Fermi surface between electrode and spacer layer, 

leading up the large 𝛾 for typical interface of Co2MnSi/Ag compared to the Co2MnSi/Cr  [102]. 

However, the value interface spin asymmetry may also reduce at elevated temperature due to the 

decaying of perfect interface quality, no matter what kind of spacer used.  

Another possible explanation is the reduction of bulk spin polarization of ferromagnetic electrode. 

Since the Valet-Fert model and Julliere model show strong correlation between MR ratio with the 

bulk spin polarization parameter, if the spin polarization reduces at finite temperature, the MR ratio 

will also reduce. In order to know the temperature dependence of spin polarization, one should 

understand how the electronic structure change by temperature. Using dynamical mean-field theory, 

Chioncel et al. demonstrated that nonquasiparticle appear within the minority-spin gap just above 

Fermi level as shown in Fig 1.21(a)  [103]. These nonquasiparticle may exist as superpositions of 

virtual magnon and excited majority spin electrons, hence dynamical many-body effect should be 
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taken into account using DMFT. At finite temperature, the nonquasiparticle states is broadened and 

crossing the Fermi level, hence reducing the spin polarization. However, they also reported the 

spectral weight redistribution as peak of majority-spin states shift closer toward the Fermi level as 

increasing temperature. Experimentally, Miyamoto et al. observed the photoemission spectra at low 

and room temperature shown in the Fig 1.21(b)  [104]. Due to the energy resolution, they cannot 

confirm the change in the minority-spin state as predicted by Chioncel et al.  [103] The obtained 

spectra also demonstrated the identical results between 30 and 300 K, without any peak-shifting 

predicted by DMFT calculation. It lead to conclusion that the decay of spin polarization may not be 

due to the existence of nonquasiparticle states, or strongly correlated electron picture of DMFT is not 

suitable to describe the magnetism behavior of Heusler alloys.  

 

Fig 1.21. Temperature dependence of (a) spin-resolved density of states calculated by DMFT method 

(b) valence-band photoemission spectra of of Co2MnSi. Reuse with permission  [104,105].  

On the other hand, disordered local moment (DLM) method  [106] offer the treatment of spin 

fluctuations as mean-field approximation of local moment, which may be better option to properly 

describe the Heusler alloys. Using this method, Lezaic et al. investigated the decay of spin 

polarization in half-Heusler NiMnSb  [107]. They found that temperature dependence of spin 

polarization is much stronger than the temperature dependence of magnetization. In the NiMnSb, the 

decay of spin polarization is originated by change of hybridization strength between d states of Ni 

and Mn, which lead to the shifting of minority spin valence band edge toward Fermi level, hence 
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destroy the half-metallic gap and reduce the spin polarization. However, they did not report how 

electronic structure change at finite temperature, therefore the superiority of DLM method over 

DMFT cannot be confirmed. 

Recently, Nawa et al. incorporate the DLM method to obtain the electronic structure and spin 

polarization of CMS at finite temperature  [108]. They found that spin polarization is strongly reduced 

at finite temperature due to contribution from Co d minority-spin states.  Moreover, the majority-spin 

valence states also show insignificant peak-shifting which agree with the photoemission spectra 

reported by Miyamoto et al.  [104] Their work demonstrated the feasibility of DLM method to explain 

the significant reduction of spin polarization at finite temperature. They also compare the calculation 

results with the experimental results of TMR device, and found that the reduction of experimental 

spin polarization is much stronger than the calculation. This discrepancy can be attributed to the spin-

flip inelastic tunneling effect that is not considered from the calculation. 

1.9.2. HAMR switching time and damping constant 

In the HAMR, magnetization of grains is switched by heat up the recording media to reduce the 

coercivity near Curie temperature, and followed by applying field to change the magnetic 

direction  [33]. Using the basic assumption for the single magnetic domain, Kikuchi proposed that 

magnetization switching time 𝜏 is given by 

𝜏 ∝
1 + 𝛼2

𝛼𝐻
 

where the 𝛼 is Gilbert damping constant and 𝐻 is the applied field  [109]. The above equation will 

give the minimum switching time when 𝛼 = 1. Since the most materials has 𝛼 ≪ 1, the switching 

time will inversely proportional with the damping constant, which imply the large damping constant 

is preferable for the HAMR application, as illustrated in the Fig 1.22. However, the wide temperature 

range from storing the information at ambient temperature up to writing the information at near Curie 

temperature lead to additional requirement, that damping constant behavior should be well 

understood over those range. 
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Fig 1.22. Illustration of switching process for large and small damping materials. 

There are several way to measure the damping. One of the oldest method is ferromagnetic resonance 

(FMR) spectroscopy. In this method, oscillating radio-frequency (rf) magnetic field is applied to the 

sample under the fixed bias field. The rf magnetic field should be set in perpendicular direction 

relative to the bias field. This rf field will induce the coherent precession motion of spins, hence the 

magnetization of the materials will also precess. By changing the rf field, the resonance can happen 

when the angular frequency of rf field is equal to the precession frequency. Since the precession 

movement at resonance frequency will absorb the rf field power, using Fourier transformation, one 

may obtain the power spectrum as a function of the frequency. Lorentzian function can be used to fit 

the spectra curve, and the linewidth of curve corresponds to the effective damping.     

Recently, Richardson et al. reported the FMR linewidth ∆𝐻 of FePt samples is reduced by increasing 

temperature as shown in the Fig 1.23  [110]. In the FMR experiments, effective damping 𝛼eff can be 

estimated using: 

𝛼eff =
√3|𝛾|∆𝐻

4𝜋𝑓
 

where |𝛾| is the absolute gyromagnetic ratio and 𝑓 is the microwave frequency. The reduction of 

FMR linewidth imply that the effective damping may reduce near Curie temperature, which will be 

harmful for the switching time of HAMR.  
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Fig 1.23. Temperature dependence of FMR linewidth reported by Richardson et al. Reuse with 

permission  [110].  

It is important to note that effective damping consists the total contribution of intrinsic and extrinsic 

damping. The intrinsic damping is mainly originated from spin-orbit coupling, while the extrinsic 

contribution is due to the sample inhomogeneities. One of the notable extrinsic contribution is two-

magnon scattering mechanism. In the FMR experiment, this mechanism could happen when an 

uniform precession mode excited by FMR scatters into degenerate states of non-uniform precession 

mode. Surely, the scattering process is enhanced by increasing scattering centers or inhomogeneities 

such local defects, non-uniform sample thickness, or any substrate imperfections and also 

proportional with the square of anisotropy field.  

In their work, Richardson et al. proposed that the significant reduction of FMR linewidth observed 

near Curie temperature is due to two-magnon scattering which correspond to the extrinsic 

contribution of damping  [110]. Since the magnetic anisotropy is drastically drop around Curie 

temperature, the two-magnon scattering contribution is also significantly reduced at finite 

temperature. Note that they measure granular FePt film with variation of carbon volume fraction for 

their sample. This motivates Strungaru et al.  [111] to simulate FMR spectra using atomistic-spin-

dynamics (ASD) method. They used ASD simulations because the finite-size effect and magnon 

scattering become dominant in the granular media can be properly treated within ASD method. It is 

found that the damping is increasing by increase of temperature, due to the more magnon modes 

excited, and this effect is more pronounced in the granular systems, where the surface effect is 
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included. Therefore, the Strungaru et al. pointed out that measured FMR linewidth of Richardson et 

al. consists the inhomogeneous line broadening part due to the distribution of grain 

properties  [110,112]. Near the Curie temperature, superparamagnetism is experienced by some 

grains, hence give less contribution and decrease the FMR linewidth.  

Although Strungaru et al. demonstrated that the FMR linewidth reduction does not necessarily mean 

that the damping is also reduced, they extract the damping value using simulation of FMR spectra 

and attributed the increase of damping due to the extrinsic effect  [112]. Meanwhile, the temperature 

dependence of intrinsic damping is not deeply investigated theoretically. Using Kambersky torque 

correlation model  [72], one may obtain the rough yet intuitive picture of intrinsic damping at the 

finite temperature. The simplified equation is: 

𝛼 ∝ 𝜉
DOS(𝐸𝐹)

𝑀𝑠
 

where 𝜉 is the spin-orbit coupling, DOS(𝐸𝐹) is the total density of states at Fermi level, and 𝑀𝑠 is the 

magnetization. Due to the spin fluctuation, 𝑀𝑠 will significantly drops to zero near Curie temperature, 

therefore assuming that 𝜉 and DOS(𝐸𝐹) retaining its value, the damping will increase as temperature 

increases. It is confirmed by recent calculation reported by Hiramatsu et al. on FePt  [113], which 

confirm that the damping is significantly increase around Curie temperature as shown in the Fig 1.24. 

Note that the increase of damping at finite temperature is a simple yet still incomplete picture of the 

damping based on Kambersky torque correlation model, because there is other competing 

contribution which decrease the damping by increase of temperature (intraband contribution). On the 

other hand, atomic vibration is also another important effect at finite temperature aside spin 

fluctuation. However, the lattice dynamics effect on the temperature dependence of damping is only 

theoretically investigated in Fe, Co, Ni using the frozen thermal lattice disorder  [114].  
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Fig 1.24. Temperature dependence of (a) damping and (b) Landau frequency 𝜆(𝑇) = |𝛾|𝛼(𝑇)𝑀(𝑇) 

using different value of scattering rate correspond to the residual resistivity. Reuse with 

permission  [113].  

1.10. The purpose and contents of doctoral thesis 

On the basis of previous introductions, understanding of finite temperature effect on spin polarization 

and damping constant is inevitably significant for prospective materials of read-head sensor and 

recording media. Therefore, this thesis will focus on three aspects. First, how the spin fluctuation 

affects the spin polarization of half-metallic Heusler alloys such as Co2FeGa0.5Ge0.5 (CFGG) and 

Co2MnSi (CMS) will be clarified. This finding led to the second aspect when the finite temperature 

first-principles calculation is combined with the machine learning to search other alternative highly-

spin polarized Heusler alloys at finite temperature. Lastly, the lattice dynamics effect on the damping 

constant of FePt is investigated to get an insight on its behavior at high temperature. 

The thesis comprises of 6 chapters. Chapter 1 introduces the research background and issues in 

magnetoresistance devices and magnetization dynamics at finite temperature. Chapter 2 gives 

theoretical background on the first principles calculation and finite temperature effect. Chapter 3 
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describes results of temperature dependence of spin polarization of Heusler alloys. Chapter 4 studies 

the machine learning study of highly spin-polarized Heusler alloys. Chapter 5 studies the temperature 

dependence of damping constant in FePt. Chapter 6 summarizes the above works, and put forward 

future perspectives 

   

  



37 

 

Chapter 2: Theoretical background 

 

2.1. Density Functional Theory (DFT) 

Understanding the electronic structure of materials is the key to explain their interesting macroscopics 

properties. The electronic structure itself is a consequence of interaction between subatomic particles 

(electrons and ions) within materials driven by quantum mechanical rule. Schrodinger equation  [115] 

formulates this simply as: 

 𝐻Φ = 𝐸Φ (2-1) 

where the Hamiltonian 𝐻 contains the potential and kinetic terms of all particles, the wave function 

Φ of all particles in the systems, and 𝐸 is eigenvalue corresponds to the total energy of the systems. 

In the hydrogen atom, this equation can be easily solved due to the simple interaction between one 

electron and one proton. However, for the helium and rest of elements in the periodic table, this 

equation will become impossible to be solve accurately because more particles complicates the 

interaction within materials (potential electrons-electrons, electrons-ions, and ions-ions, and kinetic 

of electrons and ions). This is the origin of the many-body problems terms. In order to simplify this 

problem, the Born-Oppenheimer approximation  [116] is used to neglect the kinetic terms of ions 

since the ion mass is much larger than electrons. Therefore, the Hamiltonian becomes  

 𝐻 = 𝐸 = 𝑉 + 𝑇 + 𝑈 (2-2) 

 𝑉 = ∑ 𝑣(𝑟𝑖)𝑖  (2-3) 

 𝑇 = ∑ −∇𝑖
2

𝑖  (2-4) 

 𝑈 = ∑
2

|𝑟𝑖−𝑟𝑗|𝑖<𝑗  (2-5) 

where 𝑉, 𝑇, 𝑈 are the external potential which contains the interaction between electrons and ions, 

kinetic energy of electrons, and Coulomb energy between electrons, respectively. 

If there are N-particles, the wave function solution of many-body problems is the function from at 

least 3N spatial degrees of freedom, and added by spin for each electron in the magnetic materials. 

This means a very complex problem which need suitable approximations to solve. One of the 

beautiful and clever approximation is density functional theory (DFT) which based on the two 

Hohenberg-Kohn theorems  [117]. The first theorems states that the ground state total energy 𝐸 for 
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non-spin polarized system is given uniquely as a function of the ground state electron density 𝜌(𝑟) 

as  

 𝐸 = 𝐸[𝜌]  (2-6) 

and by minimization of 𝐸[𝜌] via variational principle, the second theorem states that the true ground 

state electron density and other related ground state properties are also functional of the ground state 

electron density. Electron density itself is depends on the 3 spatial degrees of freedom, which means 

drastic reduction of problem complexity from 3N to 3 by DFT as shown in Fig 2.1.  

 

Fig 2.1. Simplification of many-body-problem into density functional theory (DFT) 

In the magnetic materials, spin is additional yet crucial degree of freedoms. The treatment of spin in 

the DFT is quite straightforward by replacing the non-spin polarized electron density 𝜌 with the 

majority (𝜌↑) and minority (𝜌↓) spin densities   

 𝐸 = 𝐸[𝜌↑, 𝜌↓]  (2-7) 

For simplicity, total energy of non-spin polarized particular systems follows:  

 𝐸[𝜌] = 𝑉[𝜌] + 𝑇[𝜌] + 𝑈[𝜌]  (2-8) 

The external potential as a functional of electron density is can also expressed as: 

 𝑉[𝜌] = ∫ 𝑑𝒓 𝑣(𝒓)𝜌(𝒓)  (2-9) 

where 𝑣(𝒓) is originated from underlying lattice of atomic nuclei and other external sources aside 

from the materials itself.  
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Although the 𝐸[𝜌] is exact for any quantum mechanical system, but there is no exact form for 𝑇[𝜌], 

𝑈[𝜌] as functional of 𝜌(𝒓) which make the Hohenberg-Kohn theorems cannot be directly utilized 

unless the accurate and efficient approximations are provided. One year after Hohenberg-Kohn 

proposed their theorem, Kohn and Sham solved the problems with representing the electron density 

of interacting particles with electronic wave function of non-interacting ones  [118].  The total energy 

becomes: 

 𝐸[𝜌] = ∫ 𝑑𝒓 𝑣(𝒓)𝜌(𝒓) + 𝑇𝑠[𝜌] + 𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌] (2-10) 

where the 𝑇𝑠[𝜌] corresponds to the single-particle kinetic energy functional under non-interacting 

assumptions, 

 𝑇𝑠[𝜌] = ∑ ⟨𝜓𝑖(𝑟)|−∇𝑖
2|𝜓𝑖(𝑟)⟩𝑁

𝑖=1  (2-11) 

which depends on the diagonalization of single-particle wave functions 𝜓𝑖(𝑟). Since 𝑇𝑠 is functional 

of density and fulfill the Pauli principle, the electron density is given by  

 𝜌(𝒓) = ∑ 𝜓𝑖(𝑟)𝑁
𝑖=1 𝜓𝑖

∗(𝑟)  (2-12) 

The 𝐸𝐻[𝜌] is the Hartree component of the electron-electron interaction, 

 𝐸𝐻[𝜌] = ∬
𝜌(𝒓)𝜌(𝒓′)

|𝑟′−𝑟|
𝑑𝑟𝑑𝑟′ (2-13) 

The 𝐸𝑥𝑐[𝜌] is the exchange-correlation energy functional, which contains the difference between 

𝑇[𝜌]  and 𝑇𝑠[𝜌]  and contribution of 𝑈[𝜌]  which go beyond the electrostatic interaction between 

electron-electron. This is unknown part and must be approximated.  

Therefore, total energy expression can be rewritten by replacing every component with the 

corresponding part as follows: 

 𝐸[𝜌] = ∫ 𝑑𝒓 𝑣(𝒓)𝜌(𝒓) + 𝑇𝑠[𝜌] + ∬
𝜌(𝒓)𝜌(𝒓′)

|𝑟′−𝑟|
𝑑𝑟𝑑𝑟′ + 𝐸𝑥𝑐[𝜌] (2-14) 

and the one-electron Kohn-Sham equation is derived as follow: 

 [−∇𝑖
2 + 𝑉𝑒𝑓𝑓(𝑟)]𝜓𝑖(𝑟) = 𝜀𝑖(𝑟)𝜓𝑖(𝑟) (2-15) 

with an effective Kohn-Sham potential 𝑉𝑒𝑓𝑓(𝑟) as: 

 𝑉𝑒𝑓𝑓(𝑟) = 𝑣𝑖𝑜𝑛(𝒓) + ∫
𝜌(𝒓)

|𝑟′−𝑟|
𝑑𝑟 + 𝑣𝑥𝑐(𝒓) (2-16) 
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Altogether, the complex many-body problems reduced into the one-electron interacting with the 

effective field. The effective field also depends on the electronic charge density and final solution 

of eigenvalues 𝜀𝑖 and one-particle wave function 𝜓𝑖 can be determined by self-consistent field 

iteration. Different approach to solve the Kohn-Sham equations was proposed, most common are 

first one which based on the basis sets, and second one which usually called as multiple scattering 

theory or Green’s function method, developed by Korringa, Kohn, and Rostoker (KKR)  [119,120].  

2.2. Korringa-Kohn-Rostoker (KKR) method 

By using Green functions, the KKR method solves the wave equation. This method separates the 

purely geometric aspects of the crystal lattice from the dynamics correspond with the atoms in the 

material. Each value of energy and crystal momentum was directly & independently deduced and no 

need to employ a variational principle or orthogonalization. Using this method is very efficient and 

able to solve the geometry problem of an impurity in the bulk without replacing it by an ersatz 

(additional, inferior) geometry such as a finite cluster or a supercell. The availability of the Green 

functions could be employed into disorder alloys, transport, and spectroscopy problems. 

For ordered systems, we start to apply the multiple scattering theory by representing each scattering 

site (atom or ion) as a potential of a finite range. Then space is divided into distinct sub-volumes so 

that scattering from a scatterer point stopped before the next scattering event happens. Hence, crystal 

potential is 

 𝑉(𝑟) = ∑ 𝑉𝑛(𝑟 − 𝑅𝑛)𝑛 ≡ ∑ 𝑉𝑛(𝑟𝑛),𝑛  (2-17) 

Which 𝑉𝑛(𝑟) is an individual contribution of an atom on site 𝑅𝑛. Meanwhile 𝑟𝑛 = 𝑟 − 𝑅𝑛 show the 

subtraction of vector 𝑟 from the origin and the vector 𝑅𝑛 of the atomic site 𝑛. If the potentials of 

individual scatterers are isotropic and do not overlap with other potentials, it is called a muffin-tin 

approximation (MTA). Meanwhile, in an anisotropy situation, a cell potential could be expanded in 

spherical harmonics 𝑌𝐿(𝑟) to fill the atomic and interstitial space regions.  

 𝑉𝑛(𝑟𝑛) = ∑ 𝑉𝑛𝐿(𝑟𝑛)𝑌𝐿(𝑟𝑛)𝐿 .  (2-18) 

Then we could present the Kohn-Sham equation based on the Green function: 

 [−∆𝑟 + 𝑉(𝑟) − 𝐸]𝐺(𝑟, 𝑟′; 𝐸) = −𝛿(𝑟 − 𝑟′).  (2-19) 

In order to calculate electronic structure, we need to connect between the Green function 𝐺(𝑟, 𝑟′; 𝐸) 

of a perturbed system 𝐻 with the Green function 𝐺0(𝑟, 𝑟′; 𝐸) of an unperturbed system 𝐻0 by the 

Dyson equation  
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 𝐺(𝐸) = 𝐺0(𝐸) + 𝐺0(𝐸)𝑉𝐺(𝐸) = 𝐺0(𝐸) + 𝐺(𝐸)𝑉𝐺0(𝐸) = 𝐺0(𝐸) + 𝐺0(𝐸)𝑇(𝐸)𝐺0(𝐸)

  (2-20) 

With 𝑉 = 𝐻 − 𝐻0 as the perturbation potential and 𝑇 as scattering matrix. By iterating the Equation 

(4), we will obtain 

 𝑇(𝐸) = 𝑉 + 𝑉𝐺0(𝐸)𝑇(𝐸)  (2-21) 

Due to the separation of single-site and crystal quantities, we construct the Green function of the 

crystal potential starting from the Green function of an isolated potential. Using a free-particle Green 

function 𝐺0(𝑟, 𝑟′; 𝐸)  in the real-space, we obtain the Dyson equation for the single-site Green 

function 

 𝐺𝑆(𝑟, 𝑟′; 𝐸) = 𝐺0(𝑟, 𝑟′; 𝐸) + ∫ 𝑑𝑟′′ ∫ 𝑑𝑟′′′𝐺0(𝑟,𝑟′′;𝐸)
𝑡(𝑟′′, 𝑟′′′; 𝐸)𝐺0(𝑟′′′, 𝑟′; 𝐸),  (2-22) 

In the Equation above, t-matrix represents the scattering from a single-site potential, which is diagonal 

for a spherical potential. Next, the free-particle Green function can be expanded in the angular 

momentum basis. 

 𝐺0(𝑟, 𝑟′; 𝐸) = −𝑖𝑝 ∑ 𝑗𝑙(𝑝𝑟<)ℎ𝑙
+(𝑝𝑟>)𝑌𝐿(𝑟)𝑌𝐿

∗(𝑟′)𝐿 ,  (2-23) 

Which 𝑗𝑙(𝑧) and ℎ𝑙(𝑧) are spherical Bessel and Hankel functions and 𝑝 = √𝐸. Then, matrix elements 

of the single-scattering 𝑡-matrix are defined as 

 𝑡𝐿𝐿′
𝑛 (𝐸) = ∫ 𝑑𝑟𝑛 ∫ 𝑑𝑟𝑛

′𝑗𝑙(𝑝𝑟𝑛)𝑡(𝑟𝑛, 𝑟𝑛
, ; 𝐸)𝑗𝑙′(𝑝𝑟𝑛

′)𝑌𝐿(𝑟𝑛)𝑌𝐿
∗(𝑟𝑛

′),  (2-24) 

Single-scattering Green function is expressed below: 

 𝐺𝑆(𝑟𝑛, 𝑟𝑛
′; 𝐸) = ∑ 𝑍𝐿

𝑛(𝑟𝑛;𝐿𝐿′ 𝐸)𝑡𝐿𝐿′
𝑛 (𝐸)𝑍𝐿′

𝑛×(𝑟𝑛
′; 𝐸) − ∑ 𝑍𝐿

𝑛(𝑟<; 𝐸)𝐽𝐿
𝑛×(𝑟>; 𝐸)𝐿 .  (2-25) 

Meanwhile, the Green function is constructed by regular 𝑍𝐿(𝑟; 𝐸), and irregular 𝐽𝐿(𝑟; 𝐸), solutions 

of the radial Schrödinger equation at the particular complex energy 𝐸, 

 𝑍𝐿
𝑛(𝑟𝑛; 𝐸) = ∑ 𝑍𝐿𝐿′

𝑛 (𝑟𝑛; 𝐸)𝑌𝐿′(𝑟𝑛)𝐿′ ,  (2-26) 

 𝑍𝐿
𝑛×(𝑟𝑛; 𝐸) = ∑ 𝑍𝐿𝐿′

𝑛 (𝑟𝑛; 𝐸)𝑌𝐿′
∗ (𝑟𝑛)𝐿′ ,  (2-27) 

 𝐽𝐿
𝑛(𝑟𝑛; 𝐸) = ∑ 𝐽𝐿𝐿′

𝑛 (𝑟𝑛; 𝐸)𝑌𝐿′(𝑟𝑛)𝐿′ .  (2-28) 

The radial parts of 𝑍𝐿
𝑛(𝑟𝑛; 𝐸)  and 𝐽𝐿

𝑛(𝑟𝑛; 𝐸)  functions are matched to spherical Bessel 𝑗𝑙(𝑧)  and 

Hankel ℎ𝑙(𝑧) functions outside the potential range (𝑟 ≥ 𝑆) : 
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 𝑍𝐿𝐿′
𝑛 (𝑟𝑛; 𝐸) = 𝑗𝑙(𝑝𝑟𝑛)𝑡𝐿𝐿′

𝑛 (𝐸)−1 − 𝑖𝑝ℎ𝑙
+(𝑝𝑟𝑛)𝛿𝐿𝐿′ ,  (2-29) 

 𝐽𝐿𝐿′
𝑛 (𝑟𝑛; 𝐸) = 𝑗𝑙(𝑝𝑟𝑛)𝛿𝐿𝐿′ .  (2-30) 

From normalization conditions of the wave functions, one could determine t-matrix and 

corresponding phase shifts. In case of assembly of atoms, the scattering operator is defined as 

 𝑇(𝐸) = ∑ 𝑡𝑛
𝑛 (𝐸) + ∑ 𝑡𝑛(𝐸)𝐺0(𝐸)𝑡𝑚(𝐸) + ⋯𝑛≠𝑚  (2-31) 

The equation above naturally separates into partial sums which are characterized by fixed-site indices 

𝑛 and 𝑚 at the leftmost and rightmost single-site 𝑡-matrix, respectively. Then, we could define: 

 𝑇(𝐸) = ∑ 𝜏𝑛𝑚
𝑛 ,  (2-32) 

Which 𝜏𝑛𝑚(𝐸) as the scattering path operator which consists of all possible scattering events between 

the two cells 𝑛 and 𝑚. Then, in case of real-space multiple scattering theory, the Green function for 

any arrangement of atoms can be expressed in terms of the scattering path operator 𝜏𝑛𝑚(𝐸):  

 𝐺(𝑟𝑛, 𝑟𝑚
′ ; 𝐸) = ∑ 𝑍𝐿

𝑛(𝑟𝑛; 𝐸)𝐿𝐿′ 𝜏𝐿𝐿′
𝑛𝑚(𝐸)𝑍𝐿′

𝑚(𝑟𝑛
′; 𝜀) − ∑ 𝑍𝐿

𝑛(𝑟<; 𝐸)𝐽𝐿
𝑚(𝑟>; 𝐸)𝛿𝑛𝑚𝐿  (2-33) 

For general electronic systems, the 𝜏-matrix is implicitly defined in terms of the 𝑡-matrix and the 

structure constants 𝑔(𝐸) represents the free-electron Green function and can be found from the 

matrix equation as shown below 

 𝜏(𝐸)𝑛𝑚 = {[𝑡(𝐸)−1 − 𝑔(𝐸)]−1}𝑛𝑚.  (2-34) 

The equation above is the heart of the KKR Green function method after completing the separation 

of the potential from the structural aspects of the material. 

2.3. Disordered local-moment (DLM) method 

The basic assumption of DLM theory is magnetic system consisted by perfectly aligned local 

magnetic moment at ground state as shown in the Fig 2.2  [121]. These local moments may be 

originated from itinerant or localized electrons. Hence, we can designate the direction 𝑒⃗̂𝑖  and 

magnitude 𝜇𝑖 for each local moment at the 𝑖-th site. Increasing temperature leads to the local moment 

direction 𝑒⃗̂𝑖  fluctuation corresponds to the higher-energy DLM microstates. It is important to note 

that DLM theory assume no change on longitudinal magnitude 𝜇𝑖 . Therefore, this theory only 

applicable to the system with magnitudes 𝜇𝑖 ≥ 1 𝜇𝐵  due to retained magnetization at elevated 

temperature.  
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Fig 2.2. Illustration of disordered local moment method   

Classical treatment of fluctuation of the local moments are used in DLM theory. Imagining a sphere 

where direction 𝑒⃗̂𝑖 may take any orientation, so we can define a microstate using a set of direction 

vector {𝑒⃗̂𝑖}, and its energy as grand potential of Ω({𝑒⃗̂𝑖}). The probability to find our system in this 

microstate is 

 𝑃({𝑒⃗̂𝑖}) = exp[−𝛽 Ω({𝑒⃗̂𝑖})]/𝑍 (2-35) 

Where the partition function 𝑍 = ∫ 𝑑𝑒⃗̂1𝑑𝑒⃗̂2 … exp[−𝛽Ω({𝑒⃗̂𝑖})]  and 𝛽 = 1/(𝑘𝐵𝑇)  with 𝑘𝐵  as 

Boltzmann’s constant and 𝑇 as temperature.  

Basically, grand potential Ω({𝑒⃗̂𝑖}) can be calculated via constrained spin-DFT method, imposing 

constraints on the integrals of magnetization and charge density to the user-defined values. Since {𝑒⃗̂𝑖} 

corresponds to the all of local moment orientations instead of simple unit cell. Hence, integration 
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over the structure considered in this calculation will be computationally expensive. Instead, we 

“approximate” the statistical mechanics using auxiliary grand potential Ω0 

 Ω0({𝑒⃗̂𝑖}) = − ∑ ℎ⃗⃗𝑖 ∙ 𝑒⃗̂𝑖𝑖  (2-36) 

Where the vector {ℎ⃗⃗𝑖} corresponds to the “Weiss fields”. Weiss field is the magnetic field felt by each 

local moment and generated from surrounding local moment. Large Weiss field means high degree 

of magnetic order implying low temperature condition. For the sake of convenience, the Weiss field 

and direction unit vector 𝑛⃗⃗̂𝑖  is introduced as “beta-ℎ”/lambda 𝜆𝑖 = 𝛽ℎ⃗⃗𝑖  and 𝑛⃗⃗̂𝑖 =
𝜆⃗⃗⃗𝑖

𝜆𝑖
, respectively. 

Analytical solution of statistical mechanics lead to the single-site probability factorization  

 𝑃0({𝑒⃗̂𝑖}) = ∏ 𝑃0𝑖(𝑒⃗̂𝑖)𝑖  (2-37) 

 𝑃0𝑖(𝑒⃗̂𝑖) =
exp[𝜆⃗⃗⃗𝑖∙𝑒𝑖]

(
4𝜋

𝜆𝑖
) sinh 𝜆𝑖

 (2-38) 

For each local moment 𝑚⃗⃗⃗𝑖, order parameter is defined as 〈𝑒⃗̂𝑖〉0,𝑇. The 〈 〉0,𝑇 denotes a thermal average, 

and  

 𝑚⃗⃗⃗𝑖 = ∫ 𝑑𝑒⃗̂𝑖 𝑃0𝑖(𝑒⃗̂𝑖)𝑒⃗̂𝑖 ∏ ∫ 𝑑𝑒⃗̂𝑗 𝑃0𝑗(𝑒⃗̂𝑗)𝑗≠𝑖 = 𝐿(𝜆𝑖)𝑛⃗⃗̂𝑖 (2-39) 

Where 𝐿(𝜆𝑖) is the Langevin function, 𝐿(𝜆𝑖) =
1

tanh 𝜆𝑖
−

1

𝜆𝑖
. Equation above indirectly imply the 

directions and magnitudes of the order parameters are determined by the Weiss fields, and also small 

“beta- ℎ” is also means to low magnetic order parameter.  

There should be thermodynamic inequality between Helmholtz energy of auxiliary 𝐹0(𝑇) and true 

system 𝐹(𝑇), connected by ℱ(𝑇) which is upper bound of the 𝐹(𝑇) 

 ℱ(𝑇) = 𝐹0(𝑇) − 〈Ω0〉0,𝑇 + 〈Ω〉0,𝑇 (2-40) 

In order to minimize ℱ(𝑇) via ∇ℎ⃗⃗⃗𝑖
ℱ = 0, we can obtain best Weiss fields 

  ℎ⃗⃗𝑖 = −∇𝑚⃗⃗⃗⃗𝑖
〈Ω〉0,𝑇 = −

3

4𝜋
∫ 𝑑𝑒⃗̂𝑖〈Ω〉0,𝑇

𝑒⃗̂𝑖 𝑒⃗̂𝑖 (2-41) 

Where the 〈 〉0,𝑇
𝑒⃗̂𝑖  denotes the thermal average over all orientations except for the 𝑖th moment, which 

is fixed at the 𝑒⃗̂𝑖  orientation. Strong correlation between order parameter, grand potential, and 

temperature is shown. Consequence of these relations are nonzero solutions of Weiss field is only 

obtained when temperature is smaller that Curie temperature. Interestingly, despite DLM method 
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solving the fully relativistic Kohn-Sham-Dirac Equation non-self-consistently, the Equation above 

indirectly implied the self-consistency due to the dependence of thermal average of grand potential 

〈Ω〉0,𝑇
𝑒⃗̂𝑖  on the probability 𝑃0𝑖(𝑒⃗̂𝑖) which fixed by the Weiss fields.  

2.4. Bayesian Optimization 

When the output results cannot be simply understood from the input, corresponding function is called 

a black-box problem. In order to solve this problem efficiently, Bayesian optimization is widely 

known to be used to solve this problem by reducing the uncertainty after obtaining new value of black 

box function at particular candidates as shown in the Fig 2.4. As an example, let us define a set of 

candidates as a part of 𝑑-dimensional vectors 𝒙1, … , 𝒙𝑚 ∈ ℜ𝑑. For each candidate point 𝒙𝑖, the value 

of black-box function 𝑦𝑖 can be evaluated via experiments or theoretical calculation. When 𝑛 number 

of candidates points are already evaluated, we have training data set 𝐷 = {𝒙𝑖, 𝑦𝑖}𝑖=1
𝑛 , and the next 

point will be evaluated sequentially until predetermined number of evaluation are done.  

 

Fig 2.3. Optimization of black box function. Red dashed line correspond to the unknown true function, 

purple area is uncertainty, and blue point correspond to the evaluated function.   
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One way to determine which candidate points need to be evaluated is by Thompson sampling 

algorithm. This algorithm choose the candidate points with the highest probability to be optimal point. 

Therefore, prediction model is necessary, such as Bayesian linear regression model. 

 𝑦 = 𝒘ꓔ𝜙(𝒙) + 𝜖 (2-42) 

 where 𝒘 represents weight vector, 𝜙 represents feature map, 𝒙 represents input vector of a candidate 

point, and 𝜖 represents noise subject of 𝒩(0, 𝜎2). Posterior distribution which contains information 

of prior distribution and likelihood function of 𝒘 for a particular dataset of 𝐷 is 

 𝒘|𝐷~𝒩(𝝁, Σ)  (2-43) 

with 𝝁 = (𝛷𝛷ꓔ + 𝜎2𝐼)−𝟏𝛷𝒚, Σ = 𝜎2(𝛷𝛷ꓔ + 𝜎2𝐼)−𝟏, and 𝛷 is the ℓ × 𝑛 matrix where 𝜙(𝒙𝑖) is the 

𝑖-th column. Based on this model, predicted value for candidate point 𝒙𝑖  is 𝒘ꓔ𝜙(𝒙𝑖). Therefore, 

optimal area of 𝒘 with optimal 𝒙𝑖 is defined as 

 𝑊𝑖 = {𝒘 ∈ ℜℓ|𝒘ꓔ𝜙(𝒙𝑖) = min
𝑗

𝒘ꓔ𝜙(𝒙𝑗)} (2-44) 

The probability of candidate point 𝒙𝑖  to be optimal is 𝑝𝑖 = 𝑃(𝒘 ∈ 𝑊𝒊|𝐷). However, Thompson 

sampling can choose the next point which has highest probability even without calculating the 𝑝𝑖 

directly. Instead, a vector 𝒔 is sampled from posterior distribution 𝑃(𝒘 | 𝐷), and candidate point with 

minimum score is determined: 

 𝑖∗ = argmin
𝑖

𝒔ꓔ𝒙𝑖 (2-45) 

The computational cost to evaluate the above equation is much smaller compared than other methods 

such as maximum probability of improvement and maximum expected improvement.  

Let us define the: 

 𝐴 =
1

𝜎2
𝛷𝛷ꓔ + 𝐼 (2-46) 

where the posterior distribution is 𝒘|𝐷~𝒩 ((
1

𝜎2
) 𝐴−1𝛷𝒚, 𝐴−1). Each step of Thompson sampling 

will require the triangular decomposition of  𝐴−1. Since new training data (𝒙′, 𝑦′) is sequentially 

added to the existing training data set, the updated matrix 𝐴′ is: 

 𝐴′ = 𝐴 +
1

𝜎2
𝜙(𝒙′)𝜙(𝒙′)ꓔ (2-47) 
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Saving computational time is preferred, therefore the Cholesky decomposition of 𝐿 of 𝐴 is kept by 

𝐴 = 𝐿ꓔ𝐿, and for every new data, only 𝐿 is quickly updated without calculating the 𝐴 from the scratch.  

The sampled vector 𝒔 is represented as 𝝁 + 𝒔0  where 𝒔0  is a sample from 𝒩(0, 𝐴−1). Thus, the 

following equation: 

 𝐿ꓔ𝐿𝝁 =
1

𝜎2 𝛷𝒚 (2-48) 

will have mean vector 𝝁 as the solution. On the other hand, sampling of 𝒛~𝒩(0, 𝑙) will give us the 

𝒔0 and 𝒛 = 𝐿𝒔0 is solved.  

Important factor in Bayesian optimization performance is the choice of feature map 𝜙. Random 

feature map can be used to approximate the induced mapping by Gaussian kernel of unit width:  

 𝑘(Δ) = exp(−||Δ||
2

/2)  (2-49) 

According to Bochner’s theorem, the equation above can be rewritten as 

 𝑘(𝒙 − 𝒙′) = ∫ exp (𝑗𝝎ꓔ(𝒙 − 𝒙′)) 𝑝(𝝎)𝑑𝝎 (2-50) 

where the 𝑗 is the imaginary unit and  

 𝑝(𝝎) = (2𝜋)−
𝑑

2 exp (−
||𝝎||

2

2
) (2-51) 

Here, we introduce the 𝑧𝜔,𝑏(𝒙) = √2 cos( 𝝎ꓔ𝒙 + 𝑏). If the 𝝎 is determined from 𝑝(𝝎) and 𝑏  is 

uniformly drawn from [0, 2𝜋], then 

 𝐸[𝑧𝝎,𝑏(𝒙)𝑧𝝎,𝑏(𝒙′)] = 𝑘(𝒙 − 𝒙′) (2-52) 

The feature map in COMBO is defined in a way the Gaussian kernel of width 𝜂 is approximated by 

inner product of 𝜙(𝒙)ꓔ𝜙(𝒙′)  via exp (− ((||𝒙 − 𝒙′||
2

) (2𝜂2))) . When ℓ  random samples of 

{𝝎𝑖, 𝑏𝑖}𝑖=1
ℓ , the feature map becomes: 

 𝜙(𝒙) = (𝑧𝝎𝒊,𝑏𝑖
(

𝒙

𝜂
) , … , 𝑧𝝎𝓵,𝑏ℓ

(
𝒙

𝜂
) )ꓔ (2-53) 

In case of infinite ℓ, Bayesian linear model will resembles the Gaussian process.  
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It is important to note that 𝜎 and 𝜂 are hyperparameters that difficult to be manually determined. 

Hence, in COMBO these parameters can be automatically set by maximizing the type-II likelihood 

described by 𝑝(𝐷|𝜎, 𝜂). Initialization of the hyperparameters is done by heuristic procedure, while 

the tuning is repeatedly performed in each sequential step. However, this tuning may take more 

computational time than the Bayesian optimization itself.  

2.5. Projector Augmented Wave (PAW) method 

 

Fig 2.4. The construction of PAW orbitals.  

In the projector-augmented wave (PAW) method  [122], one electron wavefunction or orbital 𝜓𝑛𝐤 is 

defined by linear transformation: 

 |𝜓𝑛𝐤⟩ = |𝜓̃𝑛𝐤⟩ + ∑ (𝑖 |𝜙𝑖⟩ − |𝜙̃𝑖⟩)⟨𝑝𝑖|𝜓̃𝑛𝐤⟩ (2-54) 
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where 𝜓̃𝑛𝐤  are pseudo orbitals with 𝑛 , 𝐤  are band and k-point index, respectively. Similarly, 

construction of orbital is illustrated in the Fig 2.4(a)-(c). Pseudo orbitals are demonstrated in the Fig 

2.4(a), followed by the substractions of |𝜙̃𝑖⟩⟨𝑝𝑖|𝜓̃𝑛𝐤⟩ in the Fig 2.4(b), and finally completed by 

adding the |𝜙𝑖⟩⟨𝑝𝑖|𝜓̃𝑛𝐤⟩ component in the Fig 2.4(c) 

It is important to note that between the PAW spheres, 𝜓̃𝑛𝐤 = 𝜓𝑛𝐤. However, within the spheres, 

auxiliary function is required to picture the orbitals accurately. In the reciprocal space, the pseudo 

orbitals are expanded using plane waves 

 ⟨𝐫|𝜓̃𝑛𝐤⟩ =
1

Ω
1
2

∑ 𝐶𝑛𝐤𝐆𝑒𝑖(𝐆+𝐤)∙𝐫
𝐆  (2-55) 

Where Ω is the volume of the Wigner-Seitz cell. Then, we can define the all-electron partial waves 

𝜙𝛼  at the atomic site 𝐑𝛼  as the solutions of Schrodinger equation at the specific energy 𝜀𝛼  and 

angular momentum 𝑙𝛼 

 ⟨𝐫|𝜙𝛼⟩ =
1

|𝐫−𝐑𝛼|
𝑢𝛼(|𝐫 − 𝐑𝛼|)𝑌𝛼(𝐫 − 𝐑𝛼

̂ ) =
1

|𝐫−𝐑𝛼|
𝑢𝑙𝛼𝜀𝛼

(|𝐫 − 𝐑𝛼|)𝑌𝑙𝛼𝑚𝛼
(𝐫 − 𝐑𝛼

̂ ) (2-56) 

Note that 𝐫 − 𝐑𝛼
̂  emphasize that spherical harmonics 𝑌 only depends on the orientation and not on 

the magnitude of vectors. Therefore, the pseudo partial waves 𝜙̃𝛼 = 𝜙𝛼 in the interstitial region, and 

continuously suit within core radius.   

 ⟨𝐫|𝜙̃𝛼⟩ =
1

|𝐫−𝐑𝛼|
𝑢̃𝛼(|𝐫 − 𝐑𝛼|)𝑌𝛼(𝐫 − 𝐑𝛼

̂ ) =
1

|𝐫−𝐑𝛼|
𝑢̃𝑙𝛼𝜀𝛼

(|𝐫 − 𝐑𝛼|)𝑌𝑙𝛼𝑚𝛼
(𝐫 − 𝐑𝛼

̂ ) (2-57) 

Total charge density is equal with 

 𝑛(𝐫) = 𝜓𝑛𝐤
∗ (𝐫)𝜓𝑚𝐤(𝐫) (2-58) 

2.6. Kambersky Torque Correlation Model 

In the Kambersky torque correlation model  [72], the precession movement of local moment in the 

ferromagnet is affected by interaction with conduction electron via spin-orbit torque. This picture is 

closely related with the Brownian motion of particle in the water as shown in the Fig 2.5.  
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Fig 2.5. Illustration of interaction between local moment and conduction electron in the Kambersky 

Torque correlation model.  

Therefore, Hamiltonian of the ferromagnetic system is described as follows: 

 𝐻 = 𝐻𝑢𝑛𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 + 𝐻𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 𝐻𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐻𝑠𝑝𝑖𝑛−𝑜𝑟𝑏𝑖𝑡 + 𝐻𝐹𝑀 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐻𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 =

∑ 𝑡𝑖𝑗𝑐𝑖
+𝑐𝑗𝑖𝑗 + 𝜁𝐿⃗⃗ ⋅ 𝑆 + 𝛥𝑆𝑧 +

𝛥

⟨𝑆𝑧⟩
(⟨𝑆+⟩𝑆− + ⟨𝑆 −⟩𝑆+) (2-59) 

The magnetization dynamics of spin operator (microscopic picture) can be shown as:  

 
𝑑𝑆−(𝑡)

𝑑𝑡
=

𝑖

ℏ
[𝐻𝑢𝑛𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑, 𝑆−(𝑡)] (2-60) 

 
𝑑𝑆−(𝑡)

𝑑𝑡
= −𝑖𝛺𝑆−(𝑡) − {∫ 𝑑𝑡′ ⟨[𝜑(𝑡′),𝜑+]⟩

0

ℏ𝑀
𝑆−(𝑡 − 𝑡′)

𝑡′

0
} − 𝑖𝜑−(𝑡) (2-61) 

 
𝑑𝑆−(𝑡)

𝑑𝑡
= −𝑖𝛺𝑆−(𝑡) − 𝑖𝜂−(𝑡) − ∫ 𝑃−1⟨[𝜂−(𝑡′), 𝜂+]⟩0𝑆−(𝑡)𝑑𝑡′𝑡

0
 (2-62) 

Where −𝑖𝛺𝑆−(𝑡)  corresponds to the precession term, 𝑖𝜂−(𝑡)  is spin-torque from SOI term and 

∫ 𝑃−1⟨[𝜂−(𝑡′), 𝜂+]⟩0𝑆−(𝑡)𝑑𝑡′𝑡

0
 is damping term. Basic derivation of Kambersky torque correlation 

model is to connect the expression between microscopic and macroscopic susceptibility.  

The microscopic susceptibility is expressed  

 𝜒+(𝜔) = −
𝜇0(𝑔𝜇𝐵)2

ℏ𝑉

ℏ𝑀

𝜔+𝑖𝜀−(𝛺−𝛥)−(ℏ𝑀)−1𝐹(𝜔+𝑖𝜀)
 (2-63) 
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While the macroscopic susceptibility is obtained as follows  

 𝜒+(𝜔) = −
𝛾𝑀𝑠

𝜔−𝛾𝐻𝑒𝑓𝑓+𝑖𝛼𝜔
 (2-64) 

Comparing the microscopic and macroscopic susceptibility, we can obtain the expression of damping 

 𝛼 = − lim
𝜔→0

𝛾

ℏ𝜇0𝑉𝑀S
Im [

1

𝜔
𝐹(𝜔 + 𝑖0)] (2-65) 

Where 𝐹(𝜔 + 𝑖0) is the green function of torque operator explained as follows 

 𝐹(𝜔 + 𝑖0) = −𝑖 ∫ ⟨[𝜂−(𝑡), 𝜂+]⟩0𝜃(𝑡)𝑒𝑖(𝜔+𝑖0)𝑡∞

−∞
𝑑𝑡 (2-66) 

Therefore, the damping expression is  

 𝛼 =
𝑔

𝜋𝑀𝑠
∑ 𝑊𝑘 ∑ |𝛤𝑛𝑛′

− (𝑘)|
2 𝛿

(𝐸−𝐸𝑛𝑘)2+𝛿2

𝛿

(𝐸−𝐸𝑛′𝑘)2+𝛿2𝑛𝑛′𝑘  (2-67) 

where 𝑔  is electron’s 𝑔 -factor, 𝑀𝑠  is total magnetization, and 𝛤𝑛𝑛′
− (𝑘) = ⟨𝑛, 𝑘|[𝑆−, 𝐻SO]|𝑛′, 𝑘⟩  is 

matrix elements measuring wavevector 𝑘-conserving-transitions between bands 𝑛 and 𝑛′ induced by 

spin-orbit torque operator [𝑆−, 𝐻SO] = 𝜉(𝑆−𝐿𝑧 − 𝑆𝑧𝐿−) where 𝜉  denote the spin orbit interaction 

strength, and 𝑆−, 𝑆𝑧 , 𝐿−, 𝐿𝑧 are spin and angular momentum operator, respectively. These transitions 

are numerically integrated over all wavevector and each band states, weighted by k-point weight 𝑊𝑘 

and electron spectral functions which is Lorentzian centered at the band energy 𝐸𝑛𝑘 broadened by 

electron-lattice scattering rate δ. Note that band states |𝑛, 𝑘⟩ and 𝐸𝑛𝑘 are easily obtained from output 

of ab-initio calculation.  

2.7. Frozen thermal lattice disorder 

Introducing the finite temperature effect such as atomic vibration into the first-principles calculation 

can be carried out by randomly shifting the atom with the rigid position from equilibrium coordinate 

as shown in the Fig 2.6  [123]. This assumption originated from the fact that experimental FMR 

frequency together with spin-wave and phonon frequency are much smaller than electronic Fermi 

velocity frequency. This allows us to separate the motion timescale, because the electrons responsible 

for transport properties moving around the frozen spins and phonons.  
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Fig 2.6. Illustration of frozen thermal lattice disorder. Reuse with permission  [123].  

In order to introduce this effect accurately, phonon dispersion relation is required. The potential 

energy of phonon system is expressed as follows: 

 𝑉⌊𝐫(𝑗1𝑙1), … 𝐫(𝑗𝑛𝑙𝑁) ⌋ (2-68) 

Where 𝐫(𝑗𝑙) is the position of the 𝑗-th atom in the 𝑙-th unit cell, 𝑛 is the number of atoms in a unit 

cell, and  𝑁 is number of unit cells. Therefore, force can be defined as: 

 𝐹𝛼(𝑗𝑙) = −
𝜕𝑉

𝜕𝑟𝛼(𝑗𝑙)
 (2-69) 

and second-order force constant as: 

 Φ𝛼𝛽(𝑗𝑙, 𝑗′𝑙′) =
𝜕2𝑉

𝜕𝑟𝛼(𝑗𝑙)𝜕𝑟𝛽(𝑗′𝑙′)
= −

𝜕𝐹𝛽(𝑗′𝑙′)

𝜕𝑟𝛼(𝑗𝑙)
 (2-70) 

Where 𝑗, 𝑗′, …, are the indices of atoms inside a unit cell, 𝑙, 𝑙′, …, are the indices of unit cells, and 

𝛼, 𝛽, …, are Cartesian coordinate indices. Phonon dispersion itself can be calculated using two 

method, finite differences approach or density functional perturbation theory. In the finite differences 

approach, the Equation of force constants is approximated as: 

 Φ𝛼𝛽(𝑗𝑙, 𝑗′𝑙′) ≅ −
𝐹𝛽(𝑗′𝑙′;∆𝑟𝛼(𝑗𝑙))−𝐹𝛽(𝑗′𝑙′)

∆𝑟𝛼(𝑗𝑙)
 (2-71) 

Where 𝐹𝛽(𝑗′𝑙′; ∆𝑟𝛼(𝑗𝑙)) are the forces when atom is displaced ∆𝑟𝛼(𝑗𝑙) 

Then, we can obtain the dynamical property of atoms after solving the eigenvalue of dynamical matrix 

𝐷(𝐪) built from the force constants.  
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 𝐷(𝐪)𝐞𝐪𝑣 = [𝜔(𝐪𝑣)]2𝐞𝐪𝑣 and ∑ 𝐷𝛼𝛽(𝑗𝑗′, 𝐪)𝐞𝐪𝑣
𝑗′𝛽

=𝑗′𝛽 [𝜔(𝐪𝑣)]2𝐞𝐪𝑣
𝑗𝛼

 (2-72) 

 𝐷𝛼𝛽(𝑗𝑗′, 𝐪) =
1

√𝑚𝑗𝑚𝑗′

∑ Φ𝛼𝛽(𝑗0,𝒍′ 𝑗′𝑙′) exp(𝑖𝐪 ∙ [𝐫 (𝑗′𝑙′) − 𝐫(𝑗0)])  (2-73) 

Where 𝐪 is the wave vector and 𝑚 is the atomic mass, 𝑣 is the band index, 𝜔(𝐪𝑣) is the phonon 

frequency and 𝐞𝐪𝑣 is the polarization vector of the phonon mode. The 𝐞𝐪𝑣 consists of the information 

of collective atomic motion.  Hence the Equation of motion will be: 

 ∑ 𝐷𝛼𝛽(𝑗𝑗′, 𝐪)𝑒𝛽(𝑗′, 𝐪𝑣) = [𝜔(𝐪𝑣)]2𝑒𝛼(𝑗, 𝐪𝑣)𝑗𝛼𝑗′𝛽  (2-74) 

Where the eigenvector of the band index 𝑣 at wave vector 𝐪 is obtained by the diagonalization of 

dynamical matrix 𝐷(𝐪) 

 ∑ 𝑒𝛼(𝑗′, 𝐪𝑣)∗𝐷𝛼𝛽(𝑗𝑗′, 𝐪)𝑒𝛽(𝑗′, 𝐪𝑣) = [𝜔(𝐪𝑣)]2𝛿𝑣𝑣′𝑗𝛼𝑗′𝛽  (2-75) 

It is important to note that the eigenvalues [𝜔(𝐪𝑣)]2 is real due to the Hermitian matrix of 𝐷(𝐪) with 

dimension of 3𝑁 × 3𝑁 where N is the total atoms in the unit cell, and 3 as Cartesian coordinate 

degree of freedom. Therefore, the atomic displacements can be expressed as below: 

 𝑢𝛼(𝑗𝑙, 𝑡) = (
ℏ

2𝑁𝑚𝑗
)

1

2
∑ [𝜔(𝐪𝑣)]−

1

2[𝑎̂(𝐪𝑣) exp(−𝑖𝜔(𝐪𝑣)𝑡) + 𝛼̂†(−𝐪𝑣) exp(𝑖𝜔(𝐪𝑣)𝑡)] exp(𝑖𝐪 ∙𝐪,𝑣

𝐫 (𝑗𝑙))𝑒𝛼(𝑗, 𝐪𝑣)  (2-76)

  

Where the 𝑎̂ and 𝛼̂†  are annihilation and creation operator of phonon, 𝑡 is the time, and ℏ is the 

reduced Planck constant. These atomic displacements are explicitly determined since all contribution 

from all phonon modes occupied at a specified temperature are calculated. At a particular temperature, 

probability distribution is sampled from canonical ensemble of harmonic phonons, so the expectation 

value of squared atomic displacement is: 

 〈|𝑢𝛼(𝑗𝑙, 𝑡)|2〉 =
ℏ

2𝑁𝑚𝑗
∑ 𝜔𝑣(𝐪)−1(1 + 2𝑛𝑣(𝐪, 𝑇))𝐪,𝑣 |𝑒𝑣

𝛼(𝑗, 𝐪)|2 (2-77) 

Where the 𝑛𝑣(𝐪, 𝑇) is the phonon population at the particular temperature 𝑇 and wave vector 𝐪, as 

follows: 

 𝑛𝑣(𝐪, 𝑇) =
1

exp(
ℏ𝜔𝑣(𝐪)

𝑘B𝑇
)−1

 (2-78) 
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Chapter 3: Temperature dependence of spin 

polarization in Heusler alloy 
3.1. Introduction 

As mentioned in Chapter 1, many research groups theoretically predicted that Co-based Heusler 

alloys such as Co2MnSi (CMS) and Co2FeGa0.5Ge0.5 (CFGG) as half-metallic material  [91,92] and 

experimentally demonstrated high CPP-GMR or TMR ratio when these materials used for 

electrodes  [99,102,124,125].  However, the high MR ratio was only observed at low temperatures 

before being strongly reduced at finite temperatures. In this Chapter, I investigated the spin 

polarization of these materials at finite temperatures since one possibility behind the substantial 

reduction of MR ratio is the decay of spin polarization due to the spin fluctuation effect. First, I 

systematically calculated the ground state properties of ternary Co-based Heusler alloys using 

Korringa-Kohn-Rostoker (KKR) method   [119,120]. Afterward, I implemented the finite 

temperature effect using the disordered local moment (DLM) method, which treats spin fluctuations 

within a mean-field approximation  [106]. The performance and problematic issues of KKR and DLM 

calculation are addressed, such as too low magnetic moment and too high Curie temperature. Thus, 

the CMS and CFGG at different structural ordering are used for further study examples. The 

calculation results are directly compared to the experimental results of CPP-GMR  [102,124,126]. In 

addition, the incorporation of self-interaction correction (SIC)  [127] to obtain the experimental 

reported magnetic moment is also investigated to understand the effect of SIC on the temperature 

dependence of spin polarization.  

3.2. Calculation Details 

The model of the L21 structure of full-Heusler Co2YZ compound is an fcc lattice that has four atoms 

consisting of 2 Co (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75), a Y (0, 0, 0), and a Z (0.5, 0.5, 0.5) as 

illustrated in Chapter 1. The lattice constant is taken from the experimental value reported by Kandpal 

et al.  [128] and Takahashi et al.  [129] for CMS and CFGG, respectively. For other ternary Heusler 

alloys, the lattice constant is taken from the Alabama Heusler database  [130] and report by Hu et 

al.  [131]. For the B2 structure, Y and Z atoms are randomly swapped, which resembles the CsCl 

crystal structure. The lattice constant of the B2 structure is assumed as half of the L21 form. There is 

no distortion from the cubic system, and the lattice constant is not optimized. For off-stoichiometry 

system, the composition considered as Co2(Fe0.9Co0.1)(Ga0.5Ge0.5) and (Co0.9Fe0.1)2Fe(Ga0.5Ge0.5) for 

Co-rich and Fe-rich system, respectively.  
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First, spin-polarized ground state electronic structure is calculated by multiple-scattering Green’s 

function formalism of Korringa-Kohn-Rostoker (KKR) method  [119,120] implemented into 

HUTSEPOT code  [132].  The local-spin density approximation (LSDA) of Perdew-Wang  [133] was 

used for the exchange correlation. The atomic-sphere approximation (ASA) is used to determine the 

Kohn-Sham potential. Core and valence electrons are treated within the scalar-relativistic calculation. 

The maximum value of the orbital angular momentum is three, and B2 disorder is simulated by 

coherent potential approximation (CPA)  [134] between Y and Z elements. The special k-point mesh 

of 20 × 20 × 20 for self-consistent field (SCF) calculation is used for numerical integrations in the 

first Brillouin zone (BZ).  

Then, the finite temperature effect is implemented by the DLM method  [106], as described in Chapter 

2. Ground-state potential obtained from the first step is fed into the DLM framework to solve the 

fully-relativistic Kohn-Sham-Dirac equation non-self-consistently. Finally, evaluating the spin 

polarization P is given by  

 𝑃 =
𝐷↑(𝐸𝐹)−𝐷↓(𝐸𝐹)

𝐷↑(𝐸𝐹)+𝐷↓(𝐸𝐹)
 (3-1) 

which  𝐷↑(𝐸𝐹) and 𝐷↓(𝐸𝐹) corresponds to the DOS on the Fermi level of majority and minority spin, 

respectively. The computations were performed on a Numerical Materials Simulator at NIMS.  

3.3. Ground State Properties of Heusler alloys at 0 K 

3.3.1. Magnetic Properties of Heusler alloys at 0 K  

In the Fig 3.1, it is shown that only several Heusler alloys coincides with Slater-Pauling rule, such as 

Co2CrZ, Co2MnZ, and Co2VIn. It is important to note that strict fulfillment of this rule is only 

expected for half-metallic ferromagnetic which are fully spin-polarized at ground state. On the other 

hand, better agreement between calculated spin moment of Heusler with Slater-Pauling rule reported 

by Galanakis et al.  [62] and Fecher et al.  [135] using full-potential method which is accurate, but 

also computationally expensive. Since the focus of this study is the temperature dependence of spin 

polarization and not the strict definition of half-metallicity, it is considered that the calculation using 

atomic sphere approximation is enough to reproduce the general trend of Slater-Pauling rule in the 

Co-based Heusler alloys.  
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Fig 3.1. The dependence of calculated total spin moments on substracted total valence electrons (TVE) 

for all ternary Heusler alloys Co2YZ with Y: Fe, Cr, Mn, V, Ti, Mo, Nb, Zr and Z: Al, Ga, In, Si, Ge, 

Sn, P, As, Sb. The bold line represents the Slater Pauling behavior  [62,135].  

Similar trend between this calculation with the one reported by Galanakis et al.  [62] are significant 

deviation at the upper and lower limit of the Slater-Pauling rule for Co-based Heusler alloys. 

Minimum contribution of valence electrons of Y and Z elements are 3 electrons for each, thus total 

valence electrons cannot be less than 24 in the Co2YZ. Almost no calculated systems in the lower area 

(TVE − 24 < 3) coincides with the Slater-Pauling rule except Co2VIn. It can be explained by the 

difficulty to magnetize the early transition metals element such as Ti, V, Zr, Nb, and Mo which are 

practically paramagnetic, hence giving the total magnetization less than predicted by Slater-Pauling 

rule.  

In the upper area (TVE − 24 > 4), the deviation also started to happen, especially for Co2FeZ. Based 

on the simple relation of TVE and magnetic moment, 30 valence electrons in the Co2FeZ (Z: Si, Ge, 

Sn) should lead to the 6 μB magnetic moment, but it is not. This issue also being further investigated 

by Wurmehl et al.  [136]. They revisited the Co2FeSi, which experimentally demonstrated the highest 

magnetic moment (6 μB) and Curie temperature (1100 K) among the Co-based Heusler alloys. Even 

with full-potential method and varied parametrizations of the exchange-correlation functional, they 

cannot achieve predicted magnetic moment, implying that the discrepancy is not the consequence of 

the spherical approximation or variation of exchange-correlation energy functional. In addition, the 

total energy are already minimum in the experimentally reported lattice constant. If this experimental 

lattice parameters are enlarged by 8-12 %, the half-metallicity is achieved and magnetic moment is 
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integer. However, enlargement of the lattice parameters lead to unrealistic volume expansion, because 

it is much bigger than the error of lattice parameters determination. 

First explanation of this discrepancy is due to strong hybridization between two Co atoms and Y atom 

in the Co2YZ, the moment of Y atom will not be larger than 3 μB. Despite two empty minority-states  

eu of two Co atoms can contribute to the 2 μB, the total magnetic moment cannot reach 6 μB, let alone 

7 μB  [62]. Second explanation is based on the fact that the magnetic properties Co2YZ is following 

the localized manner with respect to the Slater-Pauling rule, but local moment is contributed by d 

electrons which are delocalized in metal. Therefore, partial localization of d electrons can be properly 

pictured by including the electron-electron correlation and self-energy correction to partially 

localized states. One scheme that provides this correction is called as LDA+U method  [137]. Using 

this method, Kandpal et al. successfully regain the integer magnetic moment in the Co2FeSi  [138]. 

They found the ratio between Co and Fe magnetic moments are also in good agreement with the 

experimental measurement. Note that while LDA+U only corrects the localized states, there is other 

approach called self-interaction correction (SIC)  [127,139,140] which is analog with LDA+U where 

very large U is used. Because SIC is already incorporated in the HUTSEPOT code  [132], adjustment 

of magnetic moment of Co2Fe-based Heusler alloys will be also investigated by SIC and further 

explained in the Chapter 3.5. 

3.3.2. Spin Polarization at 0 K 

Real consequence of Slater-Pauling rule is the integer magnetic moment will be expected for the half-

metal with integer total valence electron. However, it does not necessarily mean that the material with 

magnetic moment coincides with the Slater-Pauling behavior is automatically half-metal  [135]. The 

Fig 3.2(a) shows the behavior of spin polarization clearly. One example that demonstrates the 

irreversibility of Slater-Pauling rule is Co2VIn. This material has magnetic moment nearly 2 μB as 

predicted by Slater-Pauling rule, but the spd spin polarization is very low, less than 40%. It implies 

the strict definition half-metallicity requires careful examination, not only from Slater-Pauling rule 

but also from the electronic structure and calculated spin polarization.  
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Fig 3.2. The dependence of (a) spd spin polarization, and (b) sp spin on substracted total valence 

electrons (TVE) for all ternary Heusler alloys Co2YZ with Y: Fe, Cr, Mn, V, Ti, Mo, Nb, Zr and Z: 

Al, Ga, In, Si, Ge, Sn, P, As, Sb. The bold line represents the full spin-polarization (100%). 

Highest spd spin polarization is shown by Co2CrAl (98.29%, virtually half-metal). Other Co2CrZ and 

Co2MnZ compound which coincides with Slater-Pauling behavior demonstrated pretty high spin 

polarization (>80%) although not fully spin polarized. There are several possible explanations behind 

this, which one of them is the lattice constant. This study used the lattice constant from The University 

of Alabama of Heusler Database  [130] and previous work by Hu et al.  [131]. The lattice constant is 

not optimized again and directly used as it is. Surely, there are discrepancy between theoretical lattice 

constant and experimental lattice constant, as shown in the Fig 3.3. Majority of compound reported 

by Webster et al.  [141] show relatively small deviation between theoretical and experimental lattice 

constant (<1%), despite for several compound, the deviation can be much larger up to 5% (Co2NbZ). 

These deviations, no matter how small or big it is, can affect the spin polarization significantly.  
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Fig 3.3. The dependence of (atheo-aexp)/aexp on experimental lattice constant aexp for ternary Heusler 

alloys Co2YZ. The bold line represents zero deviation from aexp. Experimental lattice constant is taken 

from  [141].  

How the change of lattice constant affects the spin polarization? As highlighted by Kandpal et 

al.  [138] in the Co2FeSi, the lattice constant strongly related with the interatomic interaction and 

overlap. Since the half-metallicity in Co-based Heusler alloys Co2YZ is originated from overlap and 

hybridization mechanism between orbital of two Co atoms and Y atoms, changing the lattice constant 

can regain the fully spin-polarized band structure.  

On the other hand, this is also closely related with the second possible explanation, which is the 

location of Fermi level. When Fermi level is located in the middle of relatively-wide-gap of minority 

states, half-metallicity is also expected for relatively-wide variation of lattice constant. However, if 

the Fermi level is located in the edge of conduction band or valence band on minority spin states, the 

spin polarization can be very sensitive on the choice of lattice parameters.  

Third possible reason, is a bit technical. In the KKR Green’s function method, the density of states 

(DOS) were obtained by inclusion of a small finite imaginary part. If the small value is used, the DOS 

peaks are sharp. Increase of this imaginary part will broadening the DOS peaks. In order to observe 

the full spin polarization, the sharper features will be required and also dense k-point mesh but the 

computational cost will be huge.  

For the magnetoresistance application, it is known that the itinerant sp electrons are responsible for 

transport properties instead of localized d electrons  [142,143]. Therefore, the Fig 3.2(b) provides the 
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information of sp spin polarization at 0 K for ternary Heusler alloys. The comparison between sp and 

spd spin polarization dependence of substracted TVE is qualitatively similar. However, if one looks 

closely enough, there are significant difference especially in the Co2FeZ (TVE − 24 = 5) which show 

relatively low spd spin polarization, but very high sp spin polarization (>80%). Aside, there are also 

notable change of spin polarization value from spd to sp electrons in the TVE − 24 > 5. In general, 

the Fig 2.1 show that the sp spin polarization is generally larger than spd spin polarization for most 

compounds. The reason why materials demonstrated low spd spin polarization but high sp spin 

polarization is may be due to the existence of localized minority spin d states around Fermi level.  

 

Fig 3.4. The dependence of sp spin polarization 𝑃𝑠𝑝  on spd spin polarization 𝑃𝑠𝑝𝑑  of all ternary 

Heusler alloys Co2YZ with Y: Fe, Cr, Mn, V, Ti, Mo, Nb, Zr and Z: Al, Ga, In, Si, Ge, Sn, P, As, Sb. 

The bold line represents the 𝑃𝑠𝑝𝑑 = 𝑃𝑠𝑝. 

The Fig 2.1 also shows the prospective material that demonstrated the high sp spin polarization is 

dominated by Co2YZ where the Z atoms are Fe, Mn, and Cr. These compositions are also widely 

investigated by other research groups because relatively high magnetization (>3 μB). In the next part, 

it is revealed the correlation between magnetization of half-metallic Heusler alloys are somewhat 

related with the Curie temperature, hence the high magnetization imply the high Curie temperature, 

which are preferable to avoid the negative impact of spin fluctuation at finite temperature.  

3.3.3. Formation Energy at 0 K 

The formation energy of Heusler alloy in this study is calculated using the following equation: 

 𝐸form
calc = 𝐸Co2𝑌𝑍

total − (2𝐸Co
total + 𝐸𝑌

total + 𝐸𝑍
total) (3-2) 
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The total energy of Co2YZ compound and Co, Y, Z elements are obtained from the self-consistent 

calculation. For simplicity, crystal structure of all elements are based on the Table 3.1.  

Table 3.1. The crystal structure of Y and Z elements assumed in this study  

Structure Elements 

Body centered cubic As, Cr, Fe, Ge, Mn, Mo, Nb, V 

Body centered tetragonal Ga, In 

Face centered cubic Al, P, Rh, Si, Sn 

Simple cubic Sb 

Simple hexagonal Co, Ru, Sc, Ti, Y, Zr 

 

 Fig 3.5 shows the relation between calculated formation energy 𝐸form
calc  in this study with the reference 

formation energy 𝐸form
ref  by Alabama Database  [130]. The reference formation energy is calculated 

based on the reference states of the elements on Open Quantum Materials Database 

(OQMD)  [144,145] database. It shows good agreement between 𝐸form
calc  and 𝐸form

ref . Most compounds 

show the formation energy less than predicted by reference. This is may be due to two possible 

reasons. First, our simplified assumption for simple crystal structure of some elements which is not 

the same with the ground state crystal structure based on the OQMD  [144,145]. In the OQMD, the 

Si, Ge, and Sn has diamond structure, meanwhile P, As, Sb, Mn, and Ga adopt more complex crystal 

structure  [144,145]. Second reason is lattice constant. The total energy reached the minimum while 

the lattice constant is optimized. However, our calculation of total energy for each elements are 

carried out with the lattice constant reported by Materials Project  [146] without any further 

optimization. Third reason is, in this study, the spherical approximation of potentials is used via 

ASA  [147]. It is widely known that accurate and reliable total energy calculation usually incorporated 

full-potential method without any shape approximation. Interestingly, even with the simplified 

structure, unoptimized lattice parameters, and spherical approximation on the real potential, the linear 

correlation between 𝐸form
calc  and 𝐸form

ref  is still confirmed, emphasizing that the calculation framework 

in this study is enough to obtain the general behavior of formation energy. 
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Fig 3.5. The dependence of calculated formation energy 𝐸form
calc  on reference formation energy 𝐸form

ref  

based on  [130,131] of ternary Heusler alloys Co2YZ with Y: Fe, Cr, Mn, V, Ti, Zr, Nb, Mo, and Z: 

Al, Ga, In, Si, Ge, Sn, P, As, Sb. The bold line represents the 𝐸form
calc = 𝐸form

ref .  

Notable feature from the Fig 3.5 is the, for the same valence electrons, increasing of Z elements size 

lead to less negative formation energy. It means the compound will more likely formed using smaller 

Z atoms. When the Z atoms become smaller, interatomic distances will also decrease, hence the 

atomic bindings will be stronger, the total energy is minimized, and formation energy become more 

negative  [148]. Therefore, small positive formation energy for the most ternary Heusler with large Z 

such In, Sb are observed, implying that these materials are more difficult to be fabricated compared 

with other Heusler compound with the smaller Z atoms.  

It is important to note that the formation energy is calculated at zero temperature. Negative formation 

energy means the Heusler compound is more stable than constituent element at the ground state. But 

it does not necessarily mean that compound with positive formation energy will never be formed. On 

the other hand, negative formation energy is not only the prerequisite condition for the stability over 

all possible competing phases. Thermodynamical stability of phases can be confirmed by chemical 

space, especially when the formation energies of particular phases lies on the convex hull of formation 

energies of all phases. Therefore, the degree of thermodynamic stability depends on the distance of 

formation energy from the respective convex hull. Since such determination is required the accurate 

calculation of total energy, in this study I only consider the formation energy as measure of 

thermodynamical stability.   
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3.4. Finite Temperature Calculation 

3.4.1. Convergence of Temperature 

In the DLM framework  [106], the uniform values of initial beta-h parameter is set for all each local-

moment site at zeroth round calculation, and the updated value of beta-h is used as the input for next 

iteration round, while keeping the beta-h value same for Co site. The convergence is achieved when 

the iterative temperature difference is less than 1 K. The Fig 3.6 show how the calculated temperature 

is evolved by iteration round for the prototype of L21 Co2MnSi. When beta-h becomes smaller, it is 

required more iterative round to reach the convergence (13th round for beta-h = 1). However, for 

larger beta-h, the convergence is easily achieved within 5 round or less. The other notable features 

observed that, zeroth round temperature is always higher than converged temperature except at limit 

of very large beta-h, where temperature is already converged even at the zeroth round, implying that 

to accurately implement the finite temperature behavior, the computational cost is will increase 

drastically near the Curie temperature.  

 

Fig 3.6. The temperature convergence on the number iteration round with varying values of beta-h 

for L21 Co2MnSi 

By plotting the converged temperature on the initial beta-h as shown in Fig 3.7, it is easier to 

understand physical meaning of the beta-h parameter and its implication in the DLM calculation. The 

beta-h corresponds to the Weiss fields or magnetic “mean-field” felt by each local moment. In the 

ground state or low temperature condition, where the local moments are perfectly aligned and ordered, 

surely large Weiss field also large. That means beta-h is somewhat proportional with the degree of 

magnetic order, hence inversely proportional with the temperature. Thus, the condition at ground 
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state and Curie temperature can be simulated at extremely large and small beta-h value, respectively. 

In general, the beta-h dependence of converged temperature shows two regionswith different 

behavior. At relatively large beta-h (𝛽ℎ), the linear relation of log 𝑇 = 𝐶 + 𝑚 log(𝛽ℎ) is expected, 

where 𝐶  and 𝑚  are constants. However, further decrease in 𝛽ℎ  will lead to the saturation of 

converged temperature expressed by log 𝑇 = log 𝑇C, which 𝑇C is Curie temperature.  

 

Fig 3.7. The beta-h dependence of converged temperature for L21 Co2MnSi 

The relation between log(𝛽ℎ)  and log 𝑇  will also guide us to simulate our system at specified 

temperature, especially when specified temperature is much lower than Curie temperature. Therefore, 

to obtain the electronic structure and spin polarization at several temperatures, several calculations is 

carried out with different set of uniform initial 𝛽ℎ value, then extract the 𝐶 and 𝑚 to determine what 

value of 𝛽ℎ that converges our system to such temperature. On the other hand, determination of Curie 

temperature via iterative process seems quite impractical due to many iterative rounds needed to be 

converged. Thus, in the next part, the alternative way to calculate the 𝑇C using exchange constant and 

expansion potential energy will be introduced.  

3.4.2. Curie Temperature Determination 

Aside the conventional iterative process with very small initial beta-h value (𝑇C
𝐼), alternative way 

to determine the Curie temperature of Co2YZ is to expand the potential energy expression into matrix 

(𝑇C
𝑀). Assuming L21 structure of Co2YZ, there are two magnetic sublattices, Co and Y. Two atoms 

within the Co sublattices also equivalent due to the symmetry.  Since the 𝛽ℎ𝑖 is related with the order 

parameter 𝑚𝑖 at the site 𝑖 as follow: 
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 𝑚𝑖 = coth(𝛽ℎ𝑖) −
1

𝛽ℎ𝑖
 (3-3) 

At limit of very small 𝛽ℎ𝑖, the equation above is reduced into  

 lim
𝛽ℎ𝑖→0

𝑚𝑖 =
𝛽ℎ𝑖

3
 (3-4) 

Meanwhile, the expansion of potential energy for L21 structure of Co2YZ is expressed as: 

 〈Ω〉0,𝑇 ≈ −
1

2
𝐽Co−Co𝑚Co

2 − 𝐽Co−𝑌𝑚Co𝑚𝑌 −
1

2
𝐽𝑌−𝑌𝑚𝑌

2 (3-5) 

Differentiation of potential energy expansion on the order parameter will give us two expression 

of Weiss field of Co and Y as follow: 

 ℎCo =
1

2
𝐽Co−Co𝑚Co +

1

2
𝐽Co−𝑌𝑚𝑌  (3-6) 

 ℎ𝑌 = 𝐽Co−𝑌𝑚Co + 𝐽𝑌−𝑌𝑚𝑌 (3-7) 

Due to the two equivalent sites of Co (Co1 and Co2), there is a factor of ½ for ℎCo expression, 

which the order parameter of  𝑚Co is simply the average between order parameter of site Co1 and 

Co2 

 𝑚Co =
1

2
(𝑚Co1

+ 𝑚Co2
) (3-8) 

But it is important to note that the differentiation of potential energy takes place as: 

 ℎCo =
𝜕Ω

𝜕𝑚Co𝑖

 (3-9) 

According the chain rule of differentiation will lead to the ½ multipliers.  

In order to calculate the three of exchange constant (𝐽Co−Co , 𝐽Co−𝑌 , 𝐽𝑌−𝑌 ), only zeroth round 

calculation will be required.  As example, keeping the same input Co while varying the input Y with 

small value of 𝛽ℎ, and vice versa. The output of Weiss field ℎ for Co and Y will be somewhat in 

linear relation with the variation of 𝛽ℎ. Gradient of ℎCo on the 𝛽ℎCo is 
𝐽Co−Co

6
 (1/2 factors from two 

sublattices and 1/3 factors from limit of small 𝛽ℎCo ). Gradient of ℎ𝑌  on the 𝛽ℎCo  is 
𝐽Co−𝑌

3
, and 

gradient of ℎ𝑌 on the 𝛽ℎ𝑌 is 
𝐽𝑌−𝑌

3
. Therefore, Curie temperature can be determined by rewritten the 

expression of ℎCo and ℎ𝑌 into matrix: 
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 (
ℎCo

ℎ𝑌
) = (

1

2
𝐽Co−Co

1

2
𝐽Co−𝑌

𝐽Co−𝑌 𝐽𝑌−𝑌

) (
𝑚Co

𝑚𝑌
) (3-10) 

Because limit value of 𝛽ℎ𝑖 is zero, the 𝑚𝑖 =
𝛽ℎ𝑖

3
, and the matrix becomes: 

 (
ℎCo

ℎ𝑌
) = (

1

2
𝐽Co−Co

1

2
𝐽Co−𝑌

𝐽Co−𝑌 𝐽𝑌−𝑌

) (

𝛽ℎCo

3
𝛽ℎ𝑌

3

) (3-11) 

Rewriting the component of matrix above, will give: 

 (
1

2
𝐽Co−Co

1

2
𝐽Co−𝑌

𝐽Co−𝑌 𝐽𝑌−𝑌

) (
ℎCo

ℎ𝑌
) = 3𝑘𝐵𝑇 (

ℎCo

ℎ𝑌
) (3-12) 

 𝐽total =
1

2
[

1

2
 𝐽Co−Co +  𝐽𝑌−𝑌 + √2𝐽Co−𝑌

2 + (
1

2
𝐽Co−Co + 𝐽𝑌−𝑌)

2

] (3-13) 

 𝑇𝐶 =
1

3𝑘𝐵
𝐽total (3-14) 

The largest eigenvalues of exchange constant matrix 𝐽total will correspond to the largest value of 𝑘𝐵𝑇 

where I can still find a solution with vanishing Weiss field. This is Curie temperature.  

In B2-disordered systems, the modified matrix form becomes 

  (
ℎCo

ℎ𝑌
) = (

𝐽Co−Co 𝑐𝑌𝐽Co−𝑌

𝐽Co−𝑌 𝑐𝑌𝐽𝑌−𝑌
) (

𝑚Co

𝑚𝑌
)  (3-15) 

where the 𝑐𝑌 = 0.5 for the fully B2-disordered system as I consider in this work.  

When the compositionally disordered systems such as Co2(YyCo1-y)Z is considered: 

  (

ℎCo

ℎ𝑌

ℎCo𝑌

) = (

1

2
𝐽Co−Co

1

2
𝑐𝑌𝐽Co−𝑌

1

2
𝑐Co𝑌

𝐽Co−Co𝑌

𝐽𝑌−Co 𝑐𝑌𝐽𝑌−𝑌 𝑐Co𝑌
𝐽𝑌−Co𝑌

𝐽Co𝑌−Co 𝑐𝑌𝐽Co𝑌−𝑌 𝑐Co𝑌
𝐽𝐶𝑜𝑌−𝐶𝑜𝑌

) (

𝑚Co

𝑚𝑌

𝑚Co𝑌

)  (3-16) 

with 𝑐𝑌 = 𝑦  and 𝑐Co𝑌
= 1 − 𝑦  which correspond to the composition parameter of Y and CoY, 

respectively.  

On the other hand, the (CoxY1-x)2YZ will have the matrix: 

 (

ℎCo

ℎ𝑌Co

ℎ𝑌

) = (

1

2
𝑐Co𝐽Co−Co

1

2
𝑐𝑌Co

𝐽Co−𝑌Co

1

2
𝐽Co−𝑌

1

2
𝑐𝐶𝑜𝐽𝑌Co−Co

1

2
𝑐𝑌Co

𝐽𝑌Co−𝑌Co

1

2
𝐽𝑌Co−𝑌

𝑐Co𝐽𝑌−Co 𝑐𝑌Co
𝐽𝑌−𝑌Co

𝐽𝑌−𝑌

) (

𝑚Co

𝑚𝑌Co

𝑚𝑌

),  (3-17) 
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where 𝑐Co = 𝑥 and 𝑐𝑌Co
= 1 − 𝑥 which correspond to the composition parameter of Co and CoY, 

respectively.  

If more than two magnetic sublattices exist, the matrix will be larger than 2 × 2, and it requires least 

square fitting to solve and determine the Curie temperature as eigenvalue.  

In the Fig 3.8, the calculated Curie temperature using matrix method 𝑇C
𝑀 is plotted on the substracted 

total valence electron. As comparison, the linear model of experimental Curie temperature is shown 

together. Linear model of 𝑇𝐶 = 23 + 181𝑚  was found by Wurmehl et al.  [136] for Curie 

temperature of Co-based Heusler alloys on the magnetic moment, which supposed to also linearly 

related with the total valence electron. Since the DLM framework is based on the mean-field 

approximation, the overestimation on comparison with experiments is expected. However, using this 

matrix method, Curie temperature of most compounds are lower than experimental model, which 

means underestimated value.  

 

Fig 3.8. The dependence of calculated Curie temperature using matrix method 𝑇C
𝑀 on substracted 

total valence electron with varying Y elements. The bold line is linear model of experimental Curie 

temperature found by Wurmehl et al.  [136]. 

 

The matrix method allows us to understand the interaction which contributes the most to the 

eigenvalue 𝐽total and Curie temperature, because the matrix is constructed by exchange constant of 

𝐽Co−Co, 𝐽Co−𝑌, 𝐽𝑌−𝑌. The relation between these exchange constants on 𝑇C
𝑀 is shown in the Fig 3.9. 
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The main contribution to the Curie temperature is 𝐽Co−𝑌, which can be addressed by the 

approximation of eigenvalue 𝐽total where 𝐽𝑌−𝑌 is negligible.  

 𝐽total =
1

2
[

1

2
 𝐽Co−Co +  𝐽𝑌−𝑌 + √2𝐽Co−𝑌

2 + (
1

2
𝐽Co−Co + 𝐽𝑌−𝑌)

2

] (3-18) 

 𝐽total =
1

2
[

1

2
 𝐽Co−Co + √2𝐽Co−𝑌

2 +
1

4
𝐽Co−Co

2 ] (3-19) 

For the materials with high magnetic moment and Curie temperature, 𝐽Co−𝑌 ≫ 𝐽Co−Co, and the 

equation above will reduce into  

 𝐽total =
√2

2
𝐽Co−𝑌 (3-20) 

However, in the limit of very low magnetic moment and Curie temperature, 𝐽Co−𝑌 ≪ 𝐽Co−Co, and 

the equation will reduce into  

 𝐽total =
1

2
𝐽Co−Co (3-21) 

 

Fig 3.9. The dependence of Co-Co, Co-Y, Y-Y, and total exchange constant on the calculated Curie 

temperature using matrix method 𝑇C
𝑀.  

On the other hand, as mentioned previously, by setting very small beta-h, the temperature can also 

converged into Curie temperature 𝑇C
𝐼. This is called as iterative method. The results are shown in the 

Fig 3.10. Using this method, overestimation of Curie temperature happens for more systems 

compared than the iterative method. The Fig 3.11 shows the relation more clearly. In general, iterative 
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method will give the higher Curie temperature than matrix method. However, in terms of 

computational cost, the iterative method is more expensive since near Curie temperature, it may take 

~20 iteration steps to converge. One may notice that only the results for Y = Fe, Mn, and Cr are 

provided in the graph. This is due to another issues arises using DLM method, which related with the 

Fermi level adjustment. The adjustments depends on the valence electron and quite problematic for 

the early transition metal with semi-core states. The further explanation will be addressed later in the 

next part.  

 

Fig 3.10. The dependence of calculated Curie temperature using iterative method 𝑇C
𝐼 on substracted 

total valence electron with varying Y elements. The bold line is linear model of experimental Curie 

temperature found by Wurmehl et al.  [136].  
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Fig 3.11. The dependence of calculated Curie temperature using iterative method 𝑇C
𝐼 on the 

calculated Curie temperature using matrix method 𝑇C
𝑀 with varying Y elements. The bold line is 

where 𝑇C
𝐼 = 𝑇C

𝑀.  

3.4.3. Adjustment of Fermi energy 

Due to the treatment of magnetic disorder and spin-orbit interaction, adjustment of Fermi energy is 

required to match the scalar relativistic ferromagnetic calculation at ground state and fully relativistic 

DLM calculation at the temperature. By doing this, the integration of density of states yields the 

correct number of electrons per unit cell. Accurate determination of chemical potential is crucial 

because the spin polarization is very sensitive with the position of Fermi level. In order to tune the 

chemical potential, the previous value 𝜇𝑝𝑟𝑒𝑣 is updated with the new value 𝜇𝑛𝑒𝑥𝑡 at each iteration step 

following the Newton’s method  [149,150], 

 𝜇𝑛𝑒𝑥𝑡 = 𝜇𝑝𝑟𝑒𝑣 +
𝑁𝑣𝑎𝑙

𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑁𝑣𝑎𝑙
𝑛𝑢𝑚𝑒𝑟𝑖𝑐

𝐷(𝐸𝐹)
 (3-22) 

where the 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired number of valence electron,  𝑁𝑣𝑎𝑙

𝑛𝑢𝑚𝑒𝑟𝑖𝑐 is the numerically calculated 

number of valence electrons from the integrated DOS, and 𝐷(𝐸𝐹) is the total DOS at Fermi energy. 

This iterative process for chemical potential convergence is also carried out simultaneously with the 

iterative process of temperature convergence. It is important to note that finely-tuned chemical 

potential also depends on the temperature. In addition, the value at low temperature can be higher or 

lower than the value at high temperature, which strongly depends on the type of materials. In order 

to determine the 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑, one may think simply to use the information of total valence electrons. 
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However, it is found that the in our DLM calculation, the 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑does not always follow the simple 

behavior of valence electrons, as shown in the Table 3.2 

Table 3.2. The electron contribution to the conventional definition of total valence electrons and 

calculated 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 for each element 

Elements Contribution to TVE Contribution to 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

Co 9 9 

Fe 8 
8 

Mn 7 
7 

Cr 6 6 

V 5 
8 

Ti 4 
10 

Sc 3 
9 

Al 3 
3 

Ga 3 13 

In 3 
13 

Si 4 
4 

Ge 4 14 

Sn 4 
14 

P 5 5 

As 5 
15 

Sb 5 
15 

 

3.4.4. Case Study: Co2MnSi and Co2Fe(Ga0.5Ge0.5) 

This section is adapted from  [151], previously published by Acta Materialia. 
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In this study, I will take an example of two half-metallic Heusler alloys which demonstrated the high 

MR output when used as ferromagnetic electrodes in MR devices  [102,124,126]. However, as 

explained in the Chapter 1, the large MR ratio is only observed at low temperature, before it strongly 

reduced at finite temperature. Here, I will investigate the magnetic properties and electronic structure 

of these two materials. In the Table 3.3, I show the calculation results for the magnetic moments, spin 

polarization, and Curie temperature of L21 and B2-ordered of CMS. At 0 K, the spin magnetic 

moment of 1.016, 3.042, and -0.073 μB for Co, Mn, Si in L21 structure, respectively. Introducing the 

B2 structural disorder will reduce the Co magnetic moment into 1.007, where the Mn moment is 

slightly increase into 3.059, keeping the total magnetic moment 5.000 μB. The sp spin polarization is 

pretty high despite not equal to 100%, which imply the almost half-metallic structures. The calculated 

Curie temperature for L21 structures is 1103 K, overestimating the experimental reports 985 K. This 

overestimation nature is well expected for the DLM calculation which incorporate the mean-field 

treatment.  

Table 3.3. The results of spin magnetic moment, sp spin polarization at 0 K, and calculated Curie 

temperature for the L21 and B2 structures of CMS. Experiment value is taken from  [152].  

System Magnetic moment (μB) Psp (%) TC (K) 

Co Mn Si Total 

L21  1.016 3.042  −0.073 5.000 97.1 1103 

B2  1.007 3.059  −0.074 5.000 95.6 898 

Experiment 5.0     985 

 

In the Table 3.4, the results of spin magnetic moment of L21 CFGG is 1.229, 2.804, -0.055, -0.032 

for Co, Fe, Ga, Ge, respectively. Similar pattern of decrease Co moment and increase Y moment in 

Co2YZ by introducing B2 disorder also observed. However, the total magnetic moment for both 

structures is much smaller than experimental reports (5.5 μB)  [92]. The sp spin polarization does not 

affected that much by the sp spin polarization. In case of Curie temperature, the overestimation of 

experimental Curie temperature is still found.  
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Table 3.4. The results of spin magnetic moment, sp spin polarization at 0 K, and calculated Curie 

temperature for the L21 and B2 structures of CFGG. Experiment value is taken from  [92].  

System Magnetic moment (μB) Psp (%) TC (K) 

Co Fe Ga Ge Total 

L21  1.229 2.804 −0.055  −0.032 5.220 89.9 1261 

B2  1.184 2.868 −0.070  −0.052 5.176 89.8 1239 

Experiment  5.5  1080 

 

In the calculation of magnetic moment, it is found that my results are underestimating the 

experimental value. The experimental reports is in good agreement with the Slater-Pauling rule, 

which is assumed valid for the half-metallic materials. Since the magnetic moment of Heusler alloys 

are governed by d electron, there is possibility that d electronic structure in CFGG is not half-metal. 

This hypothesis is confirmed in the temperature-dependent spd density of states of CFGG shown in 

the Fig 3.12. From 0 K to 500 K, there are significant amount of minority spin states at Fermi level, 

which explicitly destroy the half-metallicity, hence the total magnetic moment does not follow Slater-

Pauling rule. On the other hand, there are also interesting features that even with a large change in 

temperature from 0 K to 500 K, there is no significant peak shifting of majority spin valence band at 

around 0.9 eV below the Fermi level, which agree with the photoemission spectra  [104] and disprove 

the results of DMFT by Chioncel et al.  [105]. This result show that our calculation work well for the 

reproduce the experimental evidence from photoemission spectra results, although the 

underestimated total magnetic moment is also another important issue that need to be carefully treated, 

which will later addressed in the Chapter 3.5.  
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Fig 3.12. Temperature-dependent total spd DOS for L21 CFGG. The positive and negative values on 

the vertical axis show the majority- and minority-spin states, respectively. The color gradation 

corresponds to the temperature: Brown (0 K) → Green (500 K). 

Fig 3.13(a) and (b) show the calculation results for the sp spin polarization (Psp), which is obtained 

from the density of states (DOS) projected on all the s and p orbitals, for the CFGG with L21- and 

B2-ordered structures together with previously calculated results on CMS. The theoretical value of 

Psp at 0 K is much larger for CMS (97.1% for L21 and 95.6% for B2) compared to CFGG (89.9% for 

L21 and 89.8% for B2). However, the large spin polarization of CMS is accompanied by strong 

degradation with increasing temperature: by increasing the temperature to 500 K, Psp decreases to 

78.4% and 60.5% in L21- and B2-ordered CMS. For CFGG, on the other hand, the Psp is only slightly 

reduced to 77.6% and 75.5% for the L21 and B2 structures. Therefore, the spin polarization of CFGG 

at 0 K is lower than that of CMS, but I found the reduction of the spin polarization at finite temperature 

is rather small compared with that of CMS. In Fig 3.13(a) and (b), I also plot reported experimental 

value of  from CPP-GMR taken from Refs.  [99,102,124].  The first attempt to clarify the bulk spin-

asymmetry  value of CFGG by experiment was reported by Goripati et al. in B2-ordered 

CFGG/Ag/CFGG CPP-GMR devices, resulting in values of 90% at 10 K and 73% at RT  [124]. Then, 

by improving the L21 order, Li et al. reported slightly improved β values of 93% at 10 K and 83% at 

RT for CFGG/Ag/CFGG CPP-GMR devices  [99]. The large β value at low temperature implies that 

a half-metallic character exists in CFGG, although it slightly decreases at finite temperature. The 

small temperature dependence of  reported in the CFGG-based CPP-GMR devices is consistent with 
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the present calculation results of Psp for CFGG. In contrast to CFGG, Sakuraba et al. reported  values 

of 72% at 100 K and 50% at 300 K by improving the L21 order of CMS  [102], hence the temperature 

dependence of β for CMS is much larger than that of CFGG, which shows good agreement with our 

theoretical results shown in Fig 3.13(a) and (b).  

 

Fig 3.13. Temperature-dependent spin polarization of sp states for (a) L21-CFGG and CMS, and (b) 

B2-CFGG and CMS, denoted by “theo.” For comparison, the  values deduced from previous 

experiments are also shown, denoted by “expe.” L21 CFGG  [99], B2 CFGG  [124], and L21 and B2 

CMS  [102]. 

The previous DLM calculations on CMS successfully clarified the relation between the strong 

degradation of the spin polarization and the relative position of the Fermi level, which is located at 

the conduction band edge  [108]. The relative position of the Fermi level toward conduction band 

edge may be one of the possible reasons for differences in the temperature dependence of spin 

polarization, which I will elaborate further in the next part. 

In Fig 3.14(a) and (b), the temperature dependence of the total sp DOS for L21 CFGG and CMS 

are shown. Note that “total sp DOS” means the DOS of sp states summed over all atomic sites in 

CFGG and CMS. Here, “total” is added to “sp DOS” in order to distinguish it from the sp DOS at 

each atomic site. When the spin polarization for sp states of all atoms (Psp) is considered, which 

provides the main contribution to the transport properties, the Psp is much larger in value than Pspd 

and corresponds to an almost half-metallic character for the conduction electrons. Note that the bulk 

spin assymetry 𝛽 is the spin assymetry of conduction electron, so it should be better described as Psp 

rather than Pspd. In Fig 3.14(a)-(b), the “pseudogap” at the Fermi level for CMS and CFGG are found, 
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which gives rise to the almost half-metallic value of Psp as shown in Table 3.3. In both the CFGG and 

CMS cases, the Fermi level is located near the edge of the “pseudogap”, indicating that the Fermi 

level position hardly affects the difference between these systems in the temperature dependence of 

the spin polarization. Thus, the small temperature dependence of Psp of CFGG as compared to CMS 

is mainly due to the difference in the Curie temperature. Since the Curie temperature of Co2YZ can 

be characterized by the interatomic exchange constants for Co-Co (𝐽Co−Co), Co-Y (𝐽Co−𝑌), and Y-Y 

(𝐽𝑌−𝑌), these exchange constants 𝐽Co−Co, 𝐽Co−Fe and 𝐽Fe−Fe in L21 CFGG are also calculated. As 

shown in Table 3.5, the values 𝐽Co−Fe = 378.1 meV and 𝐽Fe−Fe = 53.19 meV in CFGG are 

sufficiently larger than those of CMS, which are 𝐽Co−Mn = 345.6 meV and 𝐽Mn−Mn =14.01 meV as 

reported in the previous study for L21-ordered CMS. On the other hand, 𝐽Co−Co in L21 CMS is 129.8 

meV, very similar to the value in L21-ordered CFGG, 𝐽Co−Co = 130.2 meV. This similarity in 𝐽Co−Co 

shows that the differences in 𝐽Co−𝑌 and 𝐽𝑌−𝑌 between CFGG and CMS are quite significant for 

determining not only the Curie temperature but also the temperature dependence of the spin 

polarization, which is consistent with previous reports. A larger interatomic exchange constant will 

provide a slower decay of magnetic moments at finite temperature. The magnetic moments in CFGG 

mainly originate from Fe and Co d electrons, not the sp electrons making the dominant contribution 

to the transport properties. However, due to the s-d and p-d coupling in the intraatomic orbitals as 

illustrated in the Fig 3.15, the spin fluctuation in d-electrons also affects the DOS of s- and p-electrons. 

Thus, a large exchange constant and slow decay of magnetic moments will lead to a small temperature 

dependence of sp spin polarization in Heusler alloys.  

 

Fig 3.14. Temperature-dependent total sp DOS for (a) L21 CFGG and (b) L21 CMS. The positive and 

negative values on the vertical axis show the majority- and minority-spin states, respectively. The 

color gradation corresponds to the temperature: Brown (0 K) → Green (500 K). 
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Table 3.5. Exchange constants of Co-Co (𝐽Co−Co), Co-Y (𝐽Co−𝑌), and Y-Y (𝐽𝑌−𝑌) for L21 CFGG and 

CMS. The values of CMS are taken from. 

System 

Co2YZ 

Exchange constant J (meV) 

Co-Co Co-Y Y-Y 

CFGG 129.8 378.1 53.19 

CMS 130.2 345.6 14.01 

 

 

Fig 3.15. Schematic illustrations of how s-d and p-d coupling affect the temperature dependence of 

sp spin polarization  

In other words, half-metallic Heusler alloys having higher Curie temperature will be appropriate 

to suppress the reduction of spin polarization at finite temperature. However, there is the fact that 

among half-metallic Heusler alloys, Co2Mn- and Co2Fe-based Heusler alloys have the highest Curie 

temperature, around 1000 K to 1200 K, and finding new half-metallic Heusler alloys with higher 

Curie temperature would be difficult. On the other hand, the position of the Fermi level relative to 

the conduction and valence band edges also affects the temperature dependence of the spin 

polarization. The temperature dependence of Psp of L21 CFGG is shown in Fig 3.16(a), where the 

Fermi level is shifted according to the rigid band model corresponding to the modulation of the 

number of valence electrons. By intentionally shifting the Fermi level through electron doping 

(positive ∆𝜇), which means going closer to the conduction band edge, a similar large temperature 
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dependence of total sp spin polarization for CFGG to that in CMS is expected. In Fig 3.16(a), it is 

found that temperature dependence of the spin polarization for electron doping (positive ∆𝜇) is larger 

compared with that of ∆𝜇 = 0. On the other hand, the shift in the Fermi level due to hole doping 

(negative ∆𝜇 ) is accompanied by a slight improvement in the temperature dependence of spin 

polarization, although the spin polarization at 0 K is lower than that of ∆𝜇 = 0. This improvement in 

the temperature dependence can be explained on the basis of the Fermi level position relative to the 

conduction band edge. The significant increase in the minority spin state takes place at the conduction 

band edge rather than the valence band edge. This suggests the importance of Fermi level tuning to 

obtain superior properties through compositional tuning as reported previously in CFAS and 

Co2MnAl1-xSix. Similar behavior in B2-ordered CFGG is also confirmed as shown in Fig 3.16(b). In 

addition, I also observed the high Psp in wider energy range for L21-ordered CFGG than that of the 

B2 structure (not shown), which is consistent with previous work. 

 

Fig 3.16. Chemical-potential-shift dependence of the total spin polarization for (a) L21 and (b) B2 

CFGG. The shift of chemical potential () is varied from −0.15 to 0.15 eV.  

From an application point of view, it is common to obtain off-stoichiometric compositions during 

thin-film deposition, so the formation of anti-site lattice defects is inevitable. For Co2YZ Heusler 

alloys, a CoY anti-site is defined as a Co replacing Y sites, and for YCo, vice versa. Picozzi et al. 

reported that MnCo in Co2MnSi is not harmful for the half-metallic character, while CoY is detrimental 

due to the creation of additional minority spin states at the Fermi level  [68]. In the following part, I 

will discuss the detrimental effect of CoFe and FeCo anti-sites for 10% substitution. I consider the 

Co2(Fe0.9Co0.10)(Ga0.5Ge0.5) as Co-rich CFGG and (Co0.9Fe0.1)2Fe(Ga0.5Ge0.5) as Fe-rich CFGG with 

the same lattice constant as the stoichiometric one. Furthermore, the Co-rich CFGG and Fe-rich cases 
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correspond to electron and hole doping to CFGG, respectively. Thus, I can confirm the effects of the 

modulation of the number of valence electrons on Psp and its temperature dependence by considering 

Co-rich and Fe-rich CFGG. 

The results for total and atomic magnetic moment, spin polarization at 0 K, and Curie temperature 

are tabulated in Table 3.6. For Co-rich CFGG, Fe moment on the Y site is smaller compared to the 

L21 case. From the Slater-Pauling prediction (𝑁𝑉 = 29.6), a total moment of 5.6 μB is expected; 

however, the calculated result for Co-rich CFGG is 5.082 μB, which is much smaller than the 

prediction. I confirmed that this is also accompanied by very low spd spin polarization at 0 K (not 

shown). In Fig 3.17(a), the total sp DOS of Co-rich CFGG are shown. It is found that the Co-rich 

CFGG has in-gap minority-spin states at the Fermi level arising from the CoFe anti-site, leading to a 

smaller magnetic moment and lower spin polarization.  

Table 3.6. Same information as Table 1 but for off-stoichiometric CFGG in the L21 structure. X 

denotes the CoFe and FeCo anti-sites for the Co-rich and Fe-rich systems, respectively.  

System Magnetic moment (μB) Psp (%) 

Co Fe X Ga Ge Total 

Co-rich 1.225 2.798 1.594 −0.056 −0.034 5.082 82.6 

Fe-rich 1.154 2.774 1.642 −0.062 −0.044 5.127 86.3 

 

 

Fig 3.17. Temperature-dependent sp DOS for (a) Co-rich CFGG and (b) Fe-rich CFGG. 
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For Fe-rich CFGG, the magnetic moment of Fe on the Y site is also slightly reduced from that in 

the L21 structure. Similarly, the 𝑚total = 5.127 μB is less than the one predicted by the Slater-Pauling 

rule (( 𝑁𝑉 = 29.3). The total sp DOS of Fe-rich CFGG is shown in Fig 3.17(b). The Fe-rich 

composition simply shifts the Fermi level toward the valence band edge, where the spin polarization 

Psp will be slightly reduced due to the additional states at the “pseudogap”. This shifting is analogous 

to the effect of hole doping (Fe has one electron less from Co). The sp spin polarization at 0 K is quite 

large, 86.3%, although less than the L21 counterpart, which is also observed in our previous work in 

CMS  [108]. 

Finally, the temperature dependence of the total sp spin polarization (Psp) for both Co-rich and Fe-

rich off-stoichiometric CFGG is shown in Fig 3.18. It is found that relatively small temperature 

dependence for all cases compared with that of CMS; however, the value of spin polarization is 

reduced compared to the stoichiometric L21 structure. I calculated exchange constants and the Curie 

temperature for the off-stoichiometric CFGG, which were larger than those for CMS. This can be a 

possible reason for the smaller temperature dependence of Psp in off-stoichiometric CFGG than in 

CMS. However, due to the degradation of the Psp at 0 K in off-stoichiometric Co-rich and Fe-rich 

CFGG, the Psp at finite temperature is smaller than that of stoichiometric CFGG. Thus, the modulation 

of the Fermi level position will be important for stoichiometric Co2YZ, especially modulation of the 

composition of the Y and Z sites, to obtain a large MR ratio for better device performance. 

 

Fig 3.18. Temperature-dependent spin polarization of sp states for the stoichiometric, Fe-rich, and 

Co-rich L21-CFGG. 
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3.4.5. Spin polarization of ternary Co-based Heusler alloys 

After comparing the calculation results with the experimental spin polarization from CPP-GMR 

devices of CMS and CFGG and found that Curie temperature plays important role in decay of spin 

polarization, I investigated the temperature dependence of spin polarization in another ternary Co-

based Heusler alloys. The result is shown in the Fig 3.19(a)-(c). Here I only focused on the Co2YZ 

with Y elements (Cr, Mn, Fe) because it is experimentally demonstrated that these compounds have 

relatively high Curie temperature larger to allow the application at room temperature  [64].  

In the Fig 3.19(a), Z elements is varied (Al, Ga, In) although contribute to same valence electron 

number. While Co2CrAl and Co2CrGa has very high spin polarization at 0 K (> 90%), it is rapidly 

decrease at finite temperature, resulting in ~50% spin polarization at room temperature, and finally 

becomes paramagnetic near 500 K. In contrast to Co2CrZ compounds, Co2FeZ show rather constant 

spin polarization up to 500 K. On the other hand, Co2MnZ compounds show relatively low spin 

polarization due to the Fermi level located at the valley of majority spin states and valence band edge 

of minority spin. One may note that there are no results of Co2CrIn and Co2MnIn, because the 

calculation of these compound does not numerically converge at finite temperature. The difference 

between temperature dependence of spin polarization in Co2CrZ and Co2FeZ compounds can be 

attributed to the difference of exchange constant parameter 𝐽Co−𝑌 as listed in the Table 3.7. Note that 

calculated Curie temperature using matrix method mainly depends on the 𝐽Co−𝑌. In the Co2CrAl and 

Co2CrGa, 𝐽Co−Cr is 76 meV and 52 meV, respectively. While in the Co2FeAl, Co2FeGa, and Co2FeIn,  

𝐽Co−Fe  is 551 meV, 518 meV, and 514 meV, respectively. As explained previously, the larger 

exchange constant lead slower decay of magnetization of d electrons, and sp spin polarization is also 

affected via s-d and p-d coupling, giving the small temperature dependence of sp spin polarization.  
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Table 3.7. The exchange constant of 𝐽Co−𝑌 (in meV unit) for various Y and Z element of Co2YZ 

composition 

Y & Z element Cr Mn Fe 

Al 76 80 551 

Ga 52 85 518 

In - - 514 

Si 182 346 252 

Ge 142 304 255 

Sn 112 283 242 

 

In the Fig 3.19(b), Z elements are Si, Ge, Sn. Calculation of all compounds are numerically converged 

at finite temperature. Again, the Co2CrZ show the strongest temperature dependence of spin 

polarization due to small 𝐽Co−Cr (Co2CrSi: 182 meV, Co2CrGe: 142 meV, Co2CrSn: 112 meV). On 

the other hand, Co2MnZ show the weaker temperature dependence compared to Co2CrZ due to bigger  

𝐽Co−Mn (Co2MnSi: 346 meV, Co2MnGe: 304 meV, Co2MnSn: 283 meV). The Co2FeZ compounds 

shows smaller spin polarization compared to the Co2MnZ and Co2CrZ counterpart, despite the similar 

temperature dependence with Co2MnSn. This behavior of Co2FeZ could be attributed to similar 

𝐽Co−Fe (Co2FeSi: 252 meV, Co2FeGe: 255 meV, Co2FeSn: 242 meV) with that of the Co2MnSn. Note 

that relatively low 𝐽Co−Fe in Co2FeZ is related to the underestimated Curie temperature which also 

happen in other calculation  [64].  

On the other hand, Fig 3.19(c) shows rather complex behavior for Z elements: P, As, Sb. Only 

Co2MnZ shows the relatively high spin polarization at 0 K, which significantly reduced at finite 

temperature. In case of Co2CrZ, the spin polarization at 0 K is already less than 50%, which rapidly 

reduces to zero around room temperature. Moreover, Co2FeZ compounds demonstrated negative sp 

spin polarization, which slightly become less negative at finite temperature.  

Based on these results, I found that compounds with smallest temperature dependence of spin 

polarization are Co2FeZ (Z: Al, Ga, In). The superior properties demonstrated by these compounds 

are attributed due to the large exchange constant of 𝐽Co−Fe . Previously, Co2FeAl attracted many 

researchers due its performance on magnetoresistive devices  [153], despite only forms in B2-ordered 
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structure. Meanwhile, Co2FeGa and Co2FeIn is not widely investigated. Therefore, these results 

encourage us to revisit further study on Co2FeZ. Since in the previous chapter CFGG successfully 

demonstrated the smaller temperature dependence of spin polarization compared to CMS, it might be 

worth to consider alloying the Co2FeZ (Z: Al, Ga, In) with other Z elements to improve the structural 

and electronic properties at finite temperature.   
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Fig 3.19. Temperature-dependent spin polarization of sp states for the ternary L21-Co2YZ with 

combination of YZ elements (Y: Cr, Mn, Fe) and (a) Z: Al, Ga, In, (b) Z: Si, Ge, Sn, (c) Z: P, As, Sb. 
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3.5. Effect of Self-interaction correction (SIC) 

This section is adapted from  [151], previously published by Acta Materialia. 

3.5.1. SIC effect on the magnetic properties 

It is known that the LSDA fails to describe localized electrons. This is due to non-vanishing 

unphysical interaction of an electron with itself, i.e., so-called self-interaction. Removing this by 

using SIC is important to capture the proper electronic structure and magnetic properties. Due to the 

Slater-Pauling rule of Co-based Heusler alloys, the magnetic moment of CFGG is expected to be 5.5 

μB per unit cell, which leads to localized electronic structures and spin-density especially around Fe 

atom in CFGG. Therefore, the LSDA fails to describe the electronic structures and magnetic 

properties of CFGG. To overcome these problems, I apply the SIC to electronic structure calculations 

of CFGG. Here, I tested various SIC combinations for the d orbitals of Co and Fe to obtain the reliable 

electronic structures. It is found that the SIC applied to the minority-spin d orbitals significantly 

changes the electronic structures and destroys the gap formation in the minority-spin states around 

the Fermi level. Thus, I applied the SIC to the majority-spin d orbitals only.     

Since in the cubic structure of Heusler alloy Co2YZ, d orbitals of Co and Y elements are split into 

two degenerated states: t2g (𝑑𝑥𝑦, 𝑑𝑦𝑧 , 𝑑𝑥𝑧) and eg (𝑑𝑥2−𝑦2 , 𝑑𝑧2), 16 different combinations were tested 

with SIC for the majority-spin d orbitals of Co and Fe, as shown in Table 3.8  where the combinations 

are identified by ID = 1~16). Total magnetic moment and atomic spin moments are shown in Fig 

3.20. The ID = 4 (SIC to Fe t2g) and 15 (SIC to Fe t2g and eg) show the total magnetic moment 

consistent with the predicted value from the Slater-Pauling rule (5.5 μB). Interestingly, both 

configurations treat SIC to the t2g orbital of Fe. On the other hand, once the SIC is included to Co 

orbitals, the total magnetic moment increases much more than the predicted value from the Slater-

Pauling rule. Despite the similar total magnetic moment, very large Fe moment (~3.7 μB) in the 

configuration 15 (SIC to Fe t2g and eg) seems unphysical to picture the electronic structures of CFGG. 

Besides that, the SIC with configuration 4 gives a reasonable Curie temperature for CFGG with the 

L21 structure (1362 K), which is overestimation compared to the experimental TC (1080 K) but larger 

than that of CMS. On the other hand, the SIC with configuration 15 provides relatively smaller TC 

(1040 K) than the calculated TC of CMS (1103 K), which is inconsistent with the experimental 

observations. Therefore, I consider that only the t2g orbitals of Fe should be corrected by the SIC.  
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Table 3.8. List of the variations used to incorporate the SIC for the local eg and t2g orbitals of the Co 

and Fe atoms in L21 CFGG. In all the variations, the SIC is introduced in only the majority-spin 

channel. 

ID 

Orbital treated by SIC 

Co Fe 

1 − − 

2 t2g − 

3 eg − 

4 − t2g 

5 − eg 

6 t2g t2g 

7 t2g eg 

8 eg t2g 

9 eg eg 

10 t2g, eg t2g 

11 t2g, eg eg 

12 t2g t2g, eg 

13 eg t2g, eg 

14 t2g, eg − 

15 − t2g, eg 

16 t2g, eg t2g, eg 
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Fig 3.20. Dependence of the SIC effect on total and atomic spin moments (upper 

panel) and the TC (lower panel). Experimental results on the total spin magnetic 

moment and TC are shown by horizontal lines.  
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3.5.2. SIC effect on the temperature dependence of electronic structure and spin 

polarization 

After determined orbitals that being corrected by SIC, it is still important to compare the electronic 

structure and spin polarization before and after SIC implementation to see if our conclusion still holds 

true. As shown in Fig 3.20, the total magnetic moment with SIC implementation for majority spin of 

Fe t2g states at 0 K is similar to Slater-Pauling rule prediction for CFGG and experimental value 

reported by Varaprasad et al.  [92]. It is also supported from total spd DOS shown in Fig 3.21, which 

explain the improved magnetic moment due to the clearer “pseudogap” at minority spin even at 0 K. 

Therefore, the total spd spin polarization Pspd at 0 K is relatively high (>70 %). However, if the sp 

spin polarization of CFGG for LSDA are compared LSDA+SIC implementation, the temperature 

dependence is still weaker than CMS as shown in Fig 3.22, which is still consistent with the main 

conclusion. Thus, my conclusion that temperature dependence of sp spin polarization of CFGG is 

weaker than CMS, holds irrespective of the SIC. 

 

Fig 3.21. Temperature-dependent spd density of states for the stoichiometric L21-CFGG by 

implementing self-interaction correction on t2g orbitals of Fe.  
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Fig 3.22. Temperature-dependent spin polarization of sp states for the stoichiometric, Fe-rich, and 

Co-rich L21- and B2-ordered CFGG, compared with the L21- and B2-ordered CMS (a) without SIC 

implementation, (b) with SIC implementation. 

3.6. Summary 

In this Chapter, the magnetic properties and electronic structure of ternary Co-based Heusler alloys 

at ground state and finite temperature are successfully calculated using the KKR-DLM method. It is 

found that the temperature dependence of spin polarization for CFGG is smaller than CMS, which is 

also confirmed in the experimental β values from CPP-GMR. Since both electronic structures show 

Fermi level located at the edge of the conduction band, the difference of temperature dependence on 

the spin polarization can be originated from the difference of the Curie temperature between CFGG 

and CMS. In the DLM model, the Curie temperature of Co2YZ is strongly related with the interatomic 

d-d exchange coupling of Co-Y (𝐽Co−𝑌). Larger interatomic exchange in CFGG (𝐽Co−Fe = 378 meV) 

compared to the CMS (𝐽Co−Mn = 345 meV) will suppress the fluctuation of the magnetic moment at 

finite temperature. These results provide higher Curie temperature and smaller temperature 

dependence of sp spin polarization for CFGG compared to CMS. Although the magnetic moment is 

mainly contributed from d electrons, the sp DOS are affected by the interatomic d-d exchange 

coupling via the intraatomic s-d and p-d couplings. This is why the material with large Curie 

temperature such as CFGG will have slower decay of magnetic moment and small temperature 

dependence of sp spin polarization.   

 On the other hand, it is also found that the Fermi level position still affects the temperature 

dependence of sp spin polarization by simulating hole- and electron-doped CFGG. In order to 

improve temperature dependence of spin polarizations, it is important to keep the Fermi level as far 

as from the conduction band edge, because the increase of minority spin states from the conduction 
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band is the origin of spin polarization decay at finite temperature. The increase of Fe composition in 

the Fe-rich CFGG equivalent to the hole-doped CFGG shows the reduction of spin polarization 

although slightly improving the temperature dependence. Therefore, this means that there is a 

possibility to find more superior materials by the modulation of the Fermi level via changing the 

composition of Y and Z atoms in Co2YZ Heusler alloys. 

Lastly, even with self-interaction correction to obtain the magnetic moment as predicted by Slater-

Pauling rule, the temperature dependence of spin polarization of CFGG with or without SIC is still 

smaller than the CMS, implying my results hold on irrespective of SIC.  

 

  



92 

 

 

 



93 

 

Chapter 4: Machine learning study of highly 

spin-polarized Heusler alloys at 

finite temperature 
4.1. Introduction 

In the Chapter 3, it is found that the high spin polarization of CFGG and CMS at low temperature is 

significantly reduced at finite temperature. This means that simple ground-state calculations of spin-

polarization at 0 K are not enough to predict half-metallicity at ambient temperature. In particular, 

Heusler alloys compound have been actively explored by machine learning and high throughput 

calculation due to the abundant variety of atomic combinations and the relatively simple fabrication 

process  [131,148,154–156]. However, the machine learning investigation of highly spin-polarized 

Heusler alloys with the first-principles calculation have been performed only at zero 

temperature  [131]. This made a significant discrepancy between physical properties designed by first 

principles calculations and experimental results of the predicted material. On the other hand, the 

inclusion of finite temperature effects in DFT calculations is computationally expensive, and simply 

implement it in high-throughput manner is just unrealistic. These suggest the importance of machine 

learning with the finite temperature first-principles calculation to predict novel half-metallic Heusler 

alloys at room temperature. The alternatives Heusler compound is proposed, and further analysis of 

Fermi level tuning effect for several composition is provided. General trend of highly-spin polarized 

Heusler at finite temperature is supported by ground state calculation in high-throughput manner.  

4.2. Calculation Details 

The schematic framework of machine learning and finite temperature calculation is shown in the Fig 

4.1(a)-(c). In short, I started by defining the search space of candidates, then started the Bayesian 

optimization to do finite temperature calculation. The result of finite temperature calculation is given 

back into Bayesian optimization model. Thus, the machine learning model will suggest which next 

candidates that need to be evaluated, and this process is repeatedly done until predetermined number 

of candidates were evaluated. Since my goal is to find the highly spin-polarized Heusler alloys at 

finite temperature, all obtained results will be sorted and ranked based on the score. Here, I defined 

the score as 𝑇𝑃𝑠𝑝(𝑇), which is product of temperature 𝑇 and sp spin polarization at particular 𝑇. Note 

that 𝑇 is the converged temperature after setting the particular initial beta-h (Weiss field) parameter. 

For simplicity, I set the same initial beta-h parameter for all systems. The detail of determination set 

of candidates, parameter of Bayesian optimization, and finite temperature calculation is described as 

in the following paragraphs.  
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Fig 4.1. The schematic workflow for finding prospective candidates with highly spin-polarized 

Heusler alloys at finite temperature. (a) Set of candidates to be investigated in this study, (b) 

implemented Bayesian optimization procedure to find the prospective candidate, and (c) finite-

temperature calculation to obtain the sp spin polarization at converged temperature T using starting 

parameter of Weiss field h. 

Using deep neural network, Hu et al. [131] show that the high spin polarization Heusler alloys 𝐴2𝐵𝐶 

follow the elemental distribution as shown in the Fig 4.2 where 𝐴 = Fe, Co, Ru, Rh, Mn; 𝐵 = Sc, Ti, 

V, Cr, Mn, Fe, Y, Zr, Nb, Mo, La, Lu, Hf, and 𝐶 = B, Al, Ga, In, Si, Ge, Sn, P, As, Sb, Se, Mg. For 

simplicity, I ignore some elements and decide to use the distribution as shown in the Fig 4.3: 𝐴 = Fe, 

Co, Ru, Rh; 𝐵 = Sc, Ti, V, Cr, Mn, Fe, Y, Zr, Nb, Mo, and 𝐶 = Al, Ga, In, Si, Ge, Sn, P, As, Sb. 

Since the alloying different compounds already demonstrated the improved properties such in the 

CFGG and CFMS  [129,157], I considered general composition 𝐴2(𝐵x𝐵1−x
′ )(𝐶y𝐶1−y

′ )  with the 

possibility of nonstoichiometry composition of 𝐵, 𝐵′, 𝐶, 𝐶′ with the coefficient 𝑥,y is varied from 0 

to 1 with 0.2 interval. Note that 𝐵′(𝐶′) also follow the elemental distribution of 𝐵(𝐶) . These 

combinations lead to 73440 total candidates which consist of 3-, 4-, and 5-elements based compound.  
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Fig 4.2. The distribution of elements for highly spin-polarized Heusler 𝐴2𝐵𝐶  based on Hu et al. 

Reuse with permission  [131].  

 

Fig 4.3. The elements occupying A (blue), B and B’ (purple), C and C’ (brown) considered for 

machine learning study of 𝐴2(𝐵x𝐵1−x
′ )(𝐶y𝐶1−y

′ ).  

For all candidates, I assume L21 structure which correspond to fcc lattice having 4 atoms consisted 

of 2 A (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75), a B(B’) (0, 0, 0), and C(C’) (0.5, 0.5, 0.5) as illustrated 

in Fig 4.1. The lattice constant for 3-element compounds are taken from the Alabama Heusler 

Database  [130] and previous report of Hu et al.  [131]. For 4- and 5-elements compounds, the lattice 

constant are calculated by assuming linear relation of Vegard’s Law  [158] on 3- and 4-elements 

parent compound, respectively.  

Before implementation of machine learning, I set the numerical descriptor to identify each 

composition 𝐴2(𝐵x𝐵1−x
′ )(𝐶y𝐶1−y

′ ) as a concatenation of integer numbers following the rule, 

 𝐴2(𝐵𝑥𝐵1−𝑥
′ )(𝐶𝑥𝐶1−𝑥

′ ) → P|G𝐴 + P|G𝐵 + 𝑛𝑥 + P|G𝐵′ + 𝑛1−𝑥 + P|G𝐶 + 𝑛𝑦 + P|G𝐶′ (4-1) 

where P|G  is a set of the number of period and group in the periodic table as shown in the Fig 4.3 

to identify the element (A, B, B’, C, C’) and n indicates the stoichiometry coefficient of B, B’, C, and 

C’. For examples, Co(Si) is in the 4th (3rd) period and 9th (14th) group, thus I express the P|GCo = 
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4|9 ⇒ 49 (P|GSi =  3/14 ⇒ 314), respectively. The stoichiometry coefficient of 𝑛𝑥  and 𝑛𝑦  were 

described as follow, x = 0.2 ⇒ 𝑛𝑥 = 02, and y = 1.0 ⇒ 𝑛𝑦 = 10, and so on. If there is no 𝐵′(𝐶′) element, 

I set P|G𝐵′ ⇒ 00 (P|G𝐶′ ⇒ 00) and 𝑛1−𝑥 = 00 (𝑛1−𝑦 = 00), respectively. By concatenate all of 

these parameters, each composition will be uniquely described with 20-digit integer descriptor.  For 

example, Heusler alloy, Ru2(Mn0.6Fe0.4)(P0.2Sb0.8) can be expressed by “58470648043150251508” 

due to P|GRu = 58, P|GMn = 47, 𝑛𝑥 = 06, P|GFe = 48, 𝑛1−𝑥 = 04, P|GP = 315, 𝑛𝑦 = 02, P|GSb = 

515, and 𝑛1−𝑦 = 08.  

The optimization method used in this study is Bayesian optimization. It is known that Bayesian 

optimization is suitable to solve the black-box function, which has unknown relation with the input 

and expensive to calculate. In this study, I employed the open-source Bayesian optimization library 

COMBO  [159]. Training of the Bayesian optimization model are performed by evaluation of the 

random choice of initial candidates. First 20 compositions were chosen, then information details of 

composition and structural parameter (lattice constant) is sent to the framework of finite temperature 

calculation to calculate the score.  

In order to calculate the score of each candidate, ground state calculation were performed first using 

KKR method  [119,120] using HUTSEPOT code  [132]. The potential ground state calculations 

become the input of finite temperature calculation using DLM framework  [121]. The main idea is to 

converge the system into particular temperature with initial parameter of beta-h (Weiss field) which 

somehow related to the magnetic order parameter within DLM framework. After convergence of 

temperature, the density of states calculation is performed and the spin polarization value is obtained. 

Based on previous investigation on typical Co-based Heusler alloys, it is found that 5-6 iterative 

rounds are enough to obtain convergence at around room temperature, with total duration ~5-6 hours 

to obtain the spin polarization at finite temperature. Therefore, I set waiting time 7 hours for each 

calculation.  

Aside the descriptor, the optimization method, the calculator, the fourth and most important 

component on material informatics are the evaluator  [160]. Here, I use the score of 𝑇𝑃𝑠𝑝(𝑇) as 

product of converged temperature 𝑇 and sp spin polarization at converged temperature 𝑃𝑠𝑝(𝑇) to 

evaluate the performance of each composition. Note that I use the sp spin polarization because the 

previous experimental finding show that experimental spin polarization is better explained by sp spin 

polarization than total spd spin polarization  [142]. Moreover, since this study focus to the highly spin 

polarized Heusler alloys at finite temperature, it is important to note that high spin polarization is not 
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only demonstrated at ground state calculation, but also retained at high temperature. That is why I 

decide to multiply the spin polarization with temperature as score to evaluate each candidate.  

4.3. Machine Learning Results and Statistics 

The score 𝑇𝑃𝑠𝑝(𝑇) is plotted as a function of the number of calculated structures of Heusler alloys in 

Fig 4.4. The predetermined number of calculated structures is fixed to 2200 structures, which 

approximately 3% from the total number of candidates in the search space (73 440). This value is 

considered enough to achieve the convergence of the optimum score, based on Ju et al. work on 

phonon transport with 12 870 total number of candidates  [160]. It is important to note that in the 

relatively small total number of candidates, the convergence may be achieved after as large as 17% 

of total number candidate are evaluated  [161]. It is due to the efficiency of machine learning 

framework will increase by increasing number of candidates. Since in this study machine learning is 

employed to tackle “real” and “computationally expensive” black box problem, it is impossible to 

check the accuracy of this optimization by calculating the score for all candidates, and it is assumed 

that the convergence will be achieved within this predetermined number of structures.  

 

Fig 4.4. The performance of Bayesian optimization for calculated Heusler structures 

In this study, the score 𝑇𝑃𝑠𝑝(𝑇) is used to characterize the top candidates. Unlike the previous study 

that only focus the ground state spin polarization  [131], here the temperature is also provided to give 

the context how large the spin polarization is retained after including the finite temperature. The same 

initial beta-h is set for all candidates, based on the value that converge to 300 K in well-known system 

Co2MnSi. Intuitively the highest score can be obtained when a structure still retains 100% at around 
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300 K, which means the ~3.0 × 104 . This is achieved within less than 100 calculations, again 

emphasizing the superiority of machine learning than the conventional random search method. 

However, with another different set of initial candidates, this convergence behavior can be different.  

Among 2200 number of candidates, only 260 candidates having nonzero score 𝑇𝑃𝑠𝑝(𝑇)  with 

distribution shown in Fig 4.5. Note that few candidates occupied the higher score region, indicating 

the feasibility of Bayesian optimization to find these top candidates. On the other hand, the zero score 

can be attributed to several different reasons. First, the initial beta-h converged to the zero temperature, 

which imply the initial beta-h is too high and simulate the high magnetic ordering corresponding the 

ground state calculation. Second, despite the initial beta-h converged to the finite temperature, the sp 

spin polarization at that particular temperature is zero. Third, the calculation does not converge 

properly, and it may happen in any step of calculation such ground state self-consistent-field-

calculation step, DLM iteration, or process to obtain the density of states and spin polarization. These 

facts emphasize the huge challenge to properly incorporate lengthy and multistep calculation process 

such first-principles finite temperature calculation with the machine learning to find alternative highly 

spin-polarized Heusler alloys at room temperature, which for the first time will be comprehensively 

presented in this study.   

 

Fig 4.5. The histogram of score 𝑇𝑃𝑠𝑝(𝑇) 

Since for all candidates the same initial beta-h is used, the converged temperature can be directly 

compared as histogram shown in Fig 4.6. The qualitative trend in distribution of converged 

temperature is similar with the score 𝑇𝑃𝑠𝑝(𝑇). There are 378 structures which converged into nonzero 
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temperature. One may question the justification behind same initial beta-h. It is understood that ideal 

calculation should set specific beta-h that converged to the room temperature for each structure, 

however as mentioned in the Chapter 3, such determination of specific beta-h for particular 

temperature will be take much longer time and impossible to be done than the calculation of spin 

polarization at one temperature.  On the other hand, setting the same initial beta-h as I did in this 

study will also give the insight on how the obtained temperature relates with the ground state 

properties like the magnetic moment at 0 K as shown in the Fig 4.7. It is found that the beta-h = 9 is 

too large to describe the low-magnetic-moment system at room temperature. Therefore, scaling the 

initial value of beta-h with the value of ground state magnetic moment may be a good idea for future 

improvement of machine learning framework at finite temperature. Note that based the current 

scheme, most system converged at finite temperature is Co-based Heusler alloys, which may imply 

two things. First one is further development of the technical method may find another prospective 

candidate with Fe-, Ru-, and Rh-based compound. Second one is, the only prospective Heusler alloys 

with high spin polarization at finite temperature can be obtained with Co-based only.  

 

Fig 4.6. The histogram of converged temperature  
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Fig 4.7. The relation between magnetic moment at 0 K with converged temperature with initial beta-

h = 9.  

In the Fig 4.8 the sp and spd spin polarization are plotted as distribution over converged temperature 

for investigated system. Most compound converged to the very low temperature or 0 K. When the 

investigated system converged to the relatively high temperature around room temperature with large 

sp spin polarization, it is found that it does not necessarily mean that the spd spin polarization is also 

large. Because large sp spin polarization can be obtained in the very low or even negative value of 

spd spin polarization, the conventional way to focus only on spd spin polarization will limiting our 

search space of prospective candidate. It emphasizes the importance to shift our focus on sp spin 

polarization to find highly spin-polarized Heusler at finite temperature. The Fig 4.9 show the 

distribution of spin polarization at finite temperature. In general, the distribution of sp and spd spin 

polarization of all compound seems evenly spread. Area of high sp spin polarization with various spd 

spin polarization are dominated by Co-based Heusler alloys converged to dominate the area of high 

sp spin polarization, where the numerous Rh-based compound converged to dispersive and moderate 

value of spin polarization. Significant amount of Ru-based Heusler alloys seen to be converged to the 

high sp spin polarization area. However, as I mentioned previously, that score is the product of spin 

polarization and temperature. Despite the high sp spin polarization, if it converges to the low or even 

zero temperature after DLM iteration, it will lead to the zero score. And in the next part, I will address 

the crucial factor that may be the origin of problem in the DLM iteration.   
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Fig 4.8. The distribution of sp and spd spin polarization of investigated Heusler structures over 

converged temperature using Bayesian optimization.  

 

Fig 4.9. The distribution of sp and spd spin polarization of investigated Heusler structures over A 

element using Bayesian optimization.  

In every each DLM iteration step, there are two parameters need to be updated. First, beta-h to achieve 

the convergence in the temperature. Secondly, the Fermi energy to match the result between scalar 

relativistic ground calculation and fully relativistic DLM calculation at finite temperature. As 

explained in Chapter 3, this adjustment required the desired number of valence electron. One may 
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easily suppose that the total valence electron can simply calculated as a sum of valence electron of 

each atom following its group in the periodic table. However, my comprehensive analysis on the 

ternary compound of Co-based Heusler alloys reveal that the contribution of electron is not as simply 

as periodic table predicts. Even after careful consideration of valence electron, Fig 4.10 show that the 

calculated number of valence electron of zeroth DLM iteration round on predicted number of valence 

electron is showing rather dispersive behavior. It is expected that for common system such ternary 

Co-based Heusler alloys, the difference between 𝑁𝑣𝑎𝑙
𝑛𝑢𝑚𝑒𝑟𝑖𝑐 and 𝑁𝑣𝑎𝑙

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 will be less than 1 electron. 

However, there are significant number of cases where 𝑁𝑣𝑎𝑙
𝑛𝑢𝑚𝑒𝑟𝑖𝑐 < 15 which dominated by Fe-based 

compound. This explains the why so few Fe-based compound converged to the finite temperature. 

Majority of compound considered in this calculation will have 𝑁𝑣𝑎𝑙
𝑛𝑢𝑚𝑒𝑟𝑖𝑐 larger than estimated by 

𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑, implying that fully relativistic DLM calculation generally overestimates the Fermi energy.    

 

Fig 4.10. The numerically calculated number of valence electron 𝑁𝑣𝑎𝑙
𝑛𝑢𝑚𝑒𝑟𝑖𝑐 of zeroth DLM iteration 

round on desired number of valence electron 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The solid line corresponds to the 𝑁𝑣𝑎𝑙

𝑛𝑢𝑚𝑒𝑟𝑖𝑐 =

𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and two dashed lines correspond to the 𝑁𝑣𝑎𝑙

𝑛𝑢𝑚𝑒𝑟𝑖𝑐 = 𝑁𝑣𝑎𝑙
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ± 1.  

4.4. Prospective Candidates 

This section is adapted from  [162], previously published by Physical Review Materials. 

In Table 3.1, I show the top 30 compounds having highest scores in the Bayesian optimization 

together with the lattice constant a, the spin moment mtotal, total and sp spin-polarizations Pspd and Psp 
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at the converged temperature T, and also the formation energy Eform, which are outputs of the first-

principles calculations except for the lattice constants. Note that the lattice constants for the 3-element 

compounds are taken from Alabama Heusler Database  [130] and Hu et al.  [131], while for the 4- 

and 5-element are estimated based on the Vegard’s law  [158]. Scores of 𝑇𝑃𝑠𝑝(𝑇)  are used in 

predictions of black box function in Bayesian optimization. The formation energy Eform of 

𝐴2(𝐵𝑥𝐵1−𝑥
′ )(𝐶𝑦𝐶1−𝑦

′ ) was calculated by following equation, 

𝐸form = 𝐸𝐴2(𝐵x𝐵1−𝑥
′ )(𝐶y𝐶1−𝑦

′ )
total − (2𝐸𝐴

total + 𝑥𝐸𝐵
total + (1 − 𝑥)𝐸𝐵′

total + 𝑦𝐸𝐶
total + (1 − 𝑦)𝐸𝐶′

total) (4-2) 

where 𝐸total is the total energy for each system for Heusler alloys 𝐴2(𝐵𝑥𝐵1−𝑥
′ )(𝐶𝑦𝐶1−𝑦

′ ), and single 

elements A, B, B’, C, and C’ calculated using first-principles calculation at zero temperature. 

  As shown in Table 3.1,  I found the general trend of prospective candidate are having Co occupy 

A site, to be specific, Co2Fe- and Co2Mn- based Heusler alloys which consisted from 3-, 4-, and 5-

element compound. In addition, the C elements are varied. These results are summarized in the Fig 

4.11, where elemental distribution of highly spin-polarized Heusler alloys are shown with less option 

compared to the Hu et al.  [131]. It is important to note that Hu et al. only reported the elemental 

distribution for Heusler alloys with high spin polarization at ground state  [131]. As demonstrated on 

my results in the Chapter 3, not all of highly-spin polarized Heusler retain its value at high 

temperature, because it is strongly related with the exchange constant and Curie temperature. Take 

Co2CrAl as an example, where the spin polarization is virtually half metal (~98%) at 0 K based on 

our calculation, which rapidly decrease at finite temperature, with spin polarization less than 50% at 

room temperature. It is known that Co2Fe- and Co2Mn- based Heusler alloys have high Curie 

temperature among other full-Heusler based compound, hence basically my result emphasizes the 

importance of high Curie temperature to have high spin polarization at room temperature. 

Among the 3-elements based compound, there are Co2FeZ with Z: Al, Ga, In. In the Chapter 3, I 

found that these materials have largest exchange constant (> 500 meV) among the investigated ternary 

Co-based Heusler alloys, as the origin of very weak temperature dependence of spin polarization. 

Therefore, it is expected to find these compounds as the top candidate suggested by Bayesian 

optimization. Note that Co2FeAl also has the highest score among of these candidates. The fact that 

Bayesian optimization successfully find the Co2FeZ with Z: Al, Ga, In which theoretically predicted 

to have weak temperature dependence of spin polarization based on simple screening among the 

ternary Co-based Heusler alloys imply the good efficiency and performance of Bayesian optimization 
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to find the candidates with optimized properties, despite the Bayesian optimization model does not 

have any knowledge about physics behind the high spin polarization at finite temperature.  

   Previously, large magnetoresistance ratio (330% at RT, 700% at 10 K) is reported in the 

Co2FeAl/MgO/CoFe-MTJ  [153]. Even with simple sputtering deposition technique and B2-ordered 

structure of Co2FeAl, this result was very promising at 2009  [153]. Moreover, the temperature 

dependence of MR ratio observed from 10 K to room temperature is smaller than 

Co2MnSi/MgO/CoFe MTJ  [163], which can be explained via the difference of exchange constant. 

However, simple Julliere’s model on this MTJ will lead unrealistic spin polarization for B2-Co2FeAl 

electrode (larger than 100 %) by assuming spin polarization of CoFe is constant 50%, which is 

attributed to the contribution from the coherent tunneling effect, which is dominant contribution to 

the tunneling process in the MgO-based MTJ devices  [153].   

The Co2FeGa is not predicted as half-metal compound  [92,164], where experimental investigation 

of spin polarization using PCAR method give the comparable value with CoFe  [165]. In case of 

Co2FeIn, recent theoretical prediction shows this material as half-metal  [166], while synthesis 

attempt were conducted by Galdun et al.  [167] to obtain nanowires with disordered structure. 

Similarly, Co2MnP and Co2MnAs were only investigated theoretically  [168–170]. On the other hand, 

despite strong temperature dependence of Co2MnSi, this compound still retains relatively high spin 

polarization at room temperature, and widely investigated experimentally for TMR and CPP-GMR 

devices  [98,102]. 

For the 4-elements based compounds, there are several compounds that already previously 

investigated in the theoretical and experimental manners. Namely, Co2Fe1.0GayGe1-y, Co2Mn1.0AlySi1-

y, Co2Mn1.0GayGe1-y  [92,171,172]. These compounds are created by mixing two adjacent elements in 

the periodic table on C site, to obtain the optimized properties of two parent ternary Heusler 

compound. Because the adjacent element allows us to have easier understanding of relation between 

properties and composition, it becomes widely accepted idea to generate the new composition with 

better properties. However, my result demonstrated that, in order to obtain top candidates, element 

mixing does not necessarily to be adjacent each other in the periodic table, such as Al and Sn in 

Co2Fe1.0Al0.4Sn0.6, Ga and As in Co2Mn1.0Ga0.2As0.8, or Ga and In in Co2Fe1.0Ga0.4In0.6.  

The magnetic moments of these candidates are pretty high, more than 4.5 𝜇B , which lead to 

converged temperature around 200-350 K using same starting parameter Weiss field. Interestingly, 

these candidates have various value of 𝑃𝑠𝑝𝑑 spanned over the range -20 – 80%, despite the relatively 

high 𝑃𝑠𝑝  more than 70%. These results implies conventional approach to find the highly spin-
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polarized material based on merely 𝑃𝑠𝑝𝑑  value will exclude many prospective candidates. Note that I 

also found that almost all potential candidates except Co2Fe0.8Mo0.2As0.2Sb0.8 have negative formation 

energy, which confirm the thermodynamical stability of most proposed compounds. 

Table 4.1. Summary of potential highly spin-polarized Heusler alloys at finite temperature suggested 

by Bayesian optimization.  

System 

𝒂  

(Å) 

𝒎𝐭𝐨𝐭𝐚𝐥 

(𝝁𝐁) 

𝑻 

(𝐊) 

𝑷𝒔𝒑𝒅 

(%) 

𝑷𝒔𝒑 

(%) 

𝑻𝑷𝒔𝒑 

𝑬𝐟𝐨𝐫𝐦 

(𝐞𝐕 𝐟. 𝐮.⁄ ) 

Co2Fe1.0Al1.0 5.700 4.86 352 39.0 86.7 30521 -1.71 

Co2Fe1.0Ga1.0 5.720 4.94 329 25.1 82.4 27134 -3.11 

Co2Fe1.0In1.0 5.980 5.10 305 11.4 79.8 24347 -3.38 

Co2Mn1.0As1.0 5.796 5.96 278 46.0 70.8 19684 -0.71 

Co2Mn1.0P1.0 5.638 5.67 223 4.6 77.1 17230 -1.79 

Co2Mn1.0Si1.0 5.630 5.00 299 79.0 88.0 26326 -2.44 

Co2Fe1.0Al0.4Sn0.6 5.876 5.29 334 -1.7 85.0 28419 -3.09 

Co2Fe1.0Ga0.2Ge0.8 5.736 5.32 280 -23.7 76.9 21485 -1.61 

Co2Fe1.0Ga0.2In0.8 5.928 5.06 310 15.3 80.4 24920 -3.18 

Co2Fe1.0Ga0.4Ge0.6 5.732 5.26 322 -7.4 82.4 26502 -2.00 

Co2Fe1.0Ga0.4In0.6 5.876 5.03 315 18.7 80.9 25476 -3.04 

Co2Fe1.0In0.4Sn0.6 5.988 5.40 324 -2.5 83.3 27009 -4.00 

Co2Mn1.0Al0.2As0.8 5.777 5.61 300 66.8 89.0 26681 -0.97 

Co2Mn1.0Al0.2Ge0.8 5.728 4.80 212 74.8 83.1 17589 -1.48 

Co2Mn1.0Al0.2Sb0.8 5.954 5.55 276 60.5 87.8 24250 -0.26 

Co2Mn1.0Al0.2Si0.8 5.644 4.80 237 80.5 88.2 20909 -2.29 

Co2Mn1.0Ga0.2As0.8 5.781 5.61 291 65.1 88.4 25711 -1.23 
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Co2Mn1.0Ga0.2Ge0.8 5.731 4.81 208 73.3 82.2 17088 -1.75 

Co2Mn1.0Ga0.2Sb0.8 5.958 5.56 268 58.2 86.8 23254 -0.45 

Co2Mn1.0Ga0.4As0.6 5.765 5.20 264 71.2 86.4 22836 -1.73 

Co2Mn1.0Ga0.4Sb0.6 5.898 5.21 246 67.6 83.6 20525 -0.89 

Co2Ti0.2Mn0.8Ge1.0 5.756 4.39 216 66.7 88.0 18998 -1.62 

Co2Fe0.8Mo0.2As0.2Sb0.8 5.979 4.60 267 37.4 81.1 21680 0.60 

Co2Fe0.8Mo0.2In0.2Sb0.8 6.037 4.80 264 44.9 82.4 21737 -0.13 

Co2Fe0.8Mo0.2Sn0.4Sb0.6 6.039 4.78 265 47.0 83.2 22002 -1.27 

Co2Fe0.8Nb0.2In0.6Sb0.4 6.032 4.81 244 31.2 80.6 19692 -1.70 

Co2Mn0.8Fe0.2Ge0.4Sb0.6 5.902 5.51 230 -7.0 75.4 17302 -0.20 

Co2Mn0.8Fe0.2In0.4Sb0.6 6.001 5.40 270 54.4 83.5 22585 -1.40 

Co2Mn0.8Fe0.2Sn0.6Sb0.4 6.000 5.54 275 45.9 86.3 23748 -2.79 

Co2Mn0.8Nb0.2Ge0.2As0.8 5.773 4.90 226 74.9 89.0 20158 -0.63 

Co2Mn0.8Nb0.2Ge0.4As0.6 5.763 4.78 207 76.8 88.0 18251 -0.77 

Co2Mn0.8Zr0.2P0.2Ge0.8 5.760 4.50 203 37.8 83.1 16836 -1.22 

 

 

Fig 4.11. The elemental distribution occupying A (blue), B and B’ (purple), C and C’ (brown) of 

highly spin-polarized Heusler alloys 𝐴2(𝐵x𝐵1−x
′ )(𝐶y𝐶1−y

′ ) at finite temperature. 

4.4.1. Co2FeAlySn1-y 

The Fig 4.12 shows the temperature dependence of 𝑃𝑠𝑝𝑑  for Co2FeAlySn1-y, (b) spd electronic 

structure at 0 K, (c) energy dependence of 𝑃𝑠𝑝𝑑 calculated at 0 K, and (d)-(f) its counterpart for 𝑃𝑠𝑝 
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and sp electronic structure. As shown in Fig 4.12(a)-(c), the 𝑃𝑠𝑝𝑑 value and spd electronic structure 

of Co2FeAl over significant temperature range fail to explain the giant tunneling magnetoresistance 

(TMR) demonstrated especially in the Co2FeAl/MgO based MTJ  [153]. It was widely understood 

that giant TMR effect in Fe/MgO-based MTJ is due to the spin-filtering effect of single crystalline 

MgO in which ∆1 symmetry Bloch states at in-plane k-vector 𝑘⃗⃗||=(0,0) mainly propagates for one spin 

channel only because of the half-metallic character of the ∆1 band in bcc-Fe  [173]. Due to the fact 

that 𝑠, 𝑝z, 𝑑z2 atomic orbitals are compatible to the ∆1 symmetry, here I can roughly approximate 

strength of spin filtering effect as spin polarization considering sp electron. That explains why TMR 

effect could be properly described by 𝑃𝑠𝑝 behavior instead of very low value of  𝑃𝑠𝑝𝑑 [see Fig 4.12(a) 

and (d)] which consistent with the previous studies on Heusler alloy/MgO based MTJ  [142,174]. My 

calculation shows that 𝑃𝑠𝑝 exhibits very low temperature dependence but still retain high value of 

spin polarization for Co2FeAl which also consistent with estimated spin polarization from Julliere’s 

model of TMR effect of Cr/Co2FeAl/MgO/CoFe MTJ  [175]. The sp electronic structure and energy 

dependence of spin polarization at 0 K shown in the Fig 4.12(e)-(f) indicated that shifting the Fermi 

level further enough from conduction band edge will lead to lower temperature dependence. Mixing 

the Al with Sn will shift the Fermi level position toward to the conduction band edge, resulting in 

lower spin polarization and stronger temperature dependence for high Sn-content composition. 

However, for 0.4 ≤ y ≤ 1.0, the high spin polarization and small temperature dependence is still 

retained. 

The idea of Al-Sn compositional tuning basically resembles the Fermi level tuning of Co2FeAlxSi1-

x. [176]. Moreover, Sn is in the same group with Si in the periodic table. Therefore, one may question 

the possible drawback of using Sn instead of Si. The comparison between two compound series are 

shown in the Fig 4.13, where Co2FeSn and Co2FeSi basically has similar temperature dependence, 

but with the higher spin polarization for Co2FeSn. Replacing Sn(Si) with Al also give similar 

temperature dependence of spin polarization. These results imply that the performance between these 

two alloys series may be comparable.   
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Fig 4.12. The temperature dependence of 𝑃𝑠𝑝𝑑 for Co2FeAlySn1-y, (b) spd electronic structure at 0 K, 

(c) energy dependence of 𝑃𝑠𝑝𝑑 calculated at 0 K, and (d)-(f) its counterpart for 𝑃𝑠𝑝 and sp electronic 

structure. The reference of the energy E is the Fermi energy. 

  



109 

 

 

Fig 4.13. The temperature dependence of 𝑃𝑠𝑝  for Co2FeAlySn1-y (solid line) and Co2FeAlySi1-y 

(dashed line).  

4.4.2. Co2FeGayIn1-y 

The Fig 4.14(a) shows that spd spin polarization for Co2FeGayIn1-y is rather small, with the maximal 

value at 0 K for Co2FeGa is ~30% and minimal value for Co2FeIn (~12%). The spin polarization of 

these series is linearly changed over the composition, with the strongest and lowest temperature 

dependence of spd spin polarization is found for Co2FeGa, and Co2FeIn respectively. The electronic 

structure at 0 K is provided in the Fig 4.14(b), which demonstrated the in-gap minority states is the 

origin of the low spin polarization for all compound in the series. This is consistent with the report of    

Özdogan et al.  [177] using full-potential non-orthogonal local-orbital minimum-basis band structure 

scheme (FPLO) and found Fermi level is located in the middle of the pseudogap. In contrast to FPLO 

calculation, using GGA+U method and varying U value, Varaprasad et al. also calculated the 

electronic structure and found that Co2FeGa is not fully spin-polarized due to the Fermi level crossed 

the valence band of minority spin states, although the half-metallic gap remains exist  [92]. This type 

of compound is called as Type III half-metal by Balke et al.  [164].  

It is found at Fig 4.14(a) that the Co2FeGa has stronger temperature dependence of spd spin 

polarization compared to Co2FeIn although the 0 K electronic structure at Fig 4.14(b) show that the 

Fermi level of Co2FeGa is rather in the middle of the pseudogap and relatively more distant toward 

the valence band compared to the Co2FeIn. However, it may be explained better with the energy 

dependence of spd spin polarization in Fig 4.14(c) where the spd spin polarization in Co2FeGa is 
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quickly drop if the Fermi level is slightly shifted to higher energy. Note that DLM method also take 

into account of Fermi level adjustment which is temperature-dependent. Therefore, the strong 

temperature dependence of Co2FeGa can be addressed to the shifting of the Fermi level to higher 

energy at finite temperature.  

Interestingly, even with very low spd spin polarization, the sp spin polarization of these series is 

relatively high, and by changing the composition ratio between Ga and In, almost no change of 

temperature dependence while the value of sp spin polarization is slightly reduced for Co2FeIn as 

shown in the Fig 4.14(d). This can be explained due to the very similar electronic structure between 

Co2FeGa and Co2FeIn in the Fig 4.14(e). Note that replacing Ga with In, the valence band of minority 

spin is getting closer to the Fermi level, resulting to the slightly reduced value of spin polarization. 

This result indicates that the compositional series of Co2FeGayIn1-y can be promising due to relatively 

low temperature dependence and high spin polarization over relatively wide range of energy as shown 

in the Fig 4.14(f) 
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Fig 4.14. The temperature dependence of 𝑃𝑠𝑝𝑑 for Co2FeGayIn1-y, (b) spd electronic structure at 0 K, 

(c) energy dependence of 𝑃𝑠𝑝𝑑 calculated at 0 K, and (d)-(f) its counterpart for 𝑃𝑠𝑝 and sp electronic 

structure. The reference of the energy E is the Fermi energy. 
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4.4.3. Co2MnGayAs1-y 

Recently, Co2MnGa was reported to show giant anomalous Nernst effect in the L21 structure  [178]. 

Meanwhile, theoretical calculations of Co2MnAs suggest a very large magnetic moment of 6 

𝜇B  [179]. However, both of these compounds and its combinatorial alloy are not widely explored in 

terms of spin polarization and its application in the magnetoresistance. As shown in the Fig 4.15(a), 

despite the pretty high value of 𝑃𝑠𝑝𝑑 of Co2MnAs at 0 K, Ga-doping improves it further. This can be 

explained by considering the Fermi level tuning from Co2MnAs (near conduction band edge) to the 

Co2MnGa (near valence band edge) [see Fig 4.15(b)-(c)]. Similarly, the effect of Ga-doping is also 

observed in 𝑃𝑠𝑝 [see Fig 4.15(d)-(f)], which suggests Co2MnGa0.2As0.8 and Co2MnGa0.4As0.6 have 

superior spin polarization among the series. Note that despite the significant shift of Fermi level for 

y from 0.0 to 0.8 for Co2MnGayAs1-y, the temperature dependence of Psp does not change depending 

on y. This is because significant increase of minority spin states happens at the conduction band rather 

than the valence band edge. For y = 0.0, Fermi level is already quite distant from the conduction band 

edge, therefore shifting further from the conduction band edge as increasing y does not affect the 

temperature dependence that much. This phenomenon is also observed experimentally in the 

Co2MnAlySi1-y with y < 0.4 by Sakuraba et al. [180]. 

Since this compound consist of Ga and As, surely this compound is insensitive to the diffusion of 

Ga and As, especially when established the interface with GaAs compounds. This leads to other 

prospective applications employing the spin polarization aside from magnetoresistive devices, which 

is spin injection. There are several attempts to incorporate Heusler alloys Co2MnGa for spin injection, 

however the performance is not yet promising  [181–183]. This may be related due to low spin 

polarization predicted for Co2MnGa by my calculation as shown in the Fig 4.15(a) and (d). By 

replacing the Ga with As significantly improve the value of spin polarization, it imply the possibility 

of improvement spin injection efficiency into GaAs semiconductors.  
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Fig 4.15. The temperature dependence of 𝑃𝑠𝑝𝑑 for Co2MnGayAs1-y, (b) spd electronic structure at 0 

K, (c) energy dependence of 𝑃𝑠𝑝𝑑  calculated at 0 K, and (d)-(f) its counterpart for 𝑃𝑠𝑝  and sp 

electronic structure. The reference of the energy E is the Fermi energy. 
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4.5. Insight from high-throughput calculation at 0 K 

In order to understand why the most prospective highly spin-polarized Heusler alloys suggested by 

Bayesian optimization are Co-based materials, I also evaluated the ground state properties of all 

candidates by high-throughput calculations. Note that despite calculations of all candidates (73440 

system) were conducted, only 41612 calculations (~56%) converged and obtained the solution. In the 

Fig 4.16, the number of SCF iteration required to achieve the convergence at ground state calculation 

is presented as histogram. The distribution resembles the normal distribution, with the majority of 

compound converge within 40-50 calculation cycles. Smaller number of SCF iteration is expected 

when dealing with the composition with smaller number of atoms and corresponding size. Since our 

calculation search space consider the various atomic size especially for C elements (Al, Ga, In, Si, 

Ge, Sn, P, As, and Sb) and the atomic mixing that leads to the ternary, quarternary, and quinary 

compound, this normal distribution is well expected. In the Fig 4.17, the SCF convergence value is 

also plotted as histogram. The resulting plot shown like the half of normal distribution graph, where 

the middle point is 1 × 10−5, which correspond to the convergence threshold / tolerance used in this 

calculation. Smaller number of compounds have smaller convergence threshold, and it may simply 

due to the simple random distribution and have no correlation with the number and type of different 

atoms. 

 

Fig 4.16. The histogram of number of SCF iteration required to obtain the convergence for ground 

state calculation.  
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Fig 4.17. The histogram of SCF convergence value  

The distribution of obtained magnetic moment at 0 K demonstrated the majority of compounds have 

very low magnetic moment (0-1 μB) as shown in the Fig 4.18. However, if all compounds are assumed 

as half-metal and follow the Slater-Pauling rule from valence electron, the normal distribution will 

be expected with the majority compound having magnetic moment 3 μB. This imply that the 

underestimated magnetic moment which obtained in this study will be somewhat related to the low 

spin-polarization. This is proven by looking on the Fig 4.19, since the distribution of spd spin 

polarization is mostly occupy the low spin polarization region. Moreover, the compound with the 

negative spin polarization almost equal to the compound with the positive spin polarization. From 

this result, it is understandable that most of compound having very low magnetic moment compared 

to the prediction by Slater-Pauling rule, because the rule only followed with half-metal compound, 

where only 2506 compound found having spd spin polarization 90 – 100%.  
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Fig 4.18. The histogram of magnetic moment  

 

Fig 4.19. The histogram of spd spin polarization 

In case of the sp spin polarization, the histogram in the Fig 4.20 show similar distribution like spd 

spin polarization, especially on the majority compound having very low spin polarization (0 – 10%). 

Quick glance on these data will give intuitive correlation between sp and spd spin polarization, which 

later proven as incorrect because the sp and spd spin polarization is quite randomly distributed each 

other. Another feature observed that support the random distribution is the compound having negative 

spin polarization for sp electrons (-50 – -100%) are not as many as for spd electrons.  
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Lastly, the distribution of formation energy is plotted in the Fig 4.21, showing the normal 

distribution, with the majority of compound having the negative formation energy (-2 – -1 eV/atom). 

Based on the discussion in the Chapter 3, it is found that the smaller atom leads to the stronger binding, 

hence minimizing the total energy, and lead to the negative formation energy. On the other hand, the 

significant number of compounds (> 2000) having relatively small positive formation energy (< 0.5 

eV/atom). In the experiments, it is still possible to fabricate these compounds even in the metastable 

form.    

 

Fig 4.20. The histogram of sp spin polarization 

 

Fig 4.21. The histogram of formation energy 
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In Fig 4.22(a)-(c), I show the distributions of converged calculation results for ground state 𝑃𝑠𝑝𝑑 

and 𝑃𝑠𝑝 values mapped on two-dimensional plane over A elements, the number of elements and spin 

moments at 0 K, respectively. Conventional approach of finding highly spin-polarized material were 

done by “vertically scanning” over the candidates in the high 𝑃𝑠𝑝𝑑  area (specified by sky blue 

rectangles). However, as mentioned previously that 𝑃𝑠𝑝  is more suitable to explain the 

magnetoresistance effect, here I propose to “horizontally scanning” over the high 𝑃𝑠𝑝 area (specified 

by red rectangles). Based on the Fig 4.22(a), it is clear that high 𝑃𝑠𝑝 area is filled by Co-based Heusler 

alloy. These candidates are mainly consist of quaternary and quinary compound as a consequence of 

the increase of the number of combinations with increasing the number of elements [see Fig 4.22(b)].  

It turned out that the significant portions of these candidates also exhibit the large spin moment (4-6 

𝜇B) at 0 K [see Fig 4.22(c)] which may imply high Curie temperature and therefore the robustness of 

spin polarization of Co-based Heusler alloy at finite temperature  [184]. 
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Fig 4.22. The results of high-throughput calculation for ground state sp and spd spin polarization as 

(a) distribution over A element, (b) distribution over number of elements, and (c) distribution over 0 

K moment.  
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4.6. Summary 

In this Chapter, the Bayesian optimization combined with the finite temperature first-principles 

calculation is successfully performed to find the highly spin-polarized Heusler alloys around room 

temperature. I found several new compounds such as Co2MnGa0.2As0.8 and Co2FeAlySn1-y (0.4 ≤ y ≤ 

1.0) that show high sp spin-polarization at around 300 K. The investigation of spin polarization 

behavior on Co2FeAl reemphasized the importance of 𝑃𝑠𝑝  instead of 𝑃𝑠𝑝𝑑  value to explain the 

magnetoresistance effect, and the alloy mixing to find the more prospective candidate with 4- or 5-

element based compound. However, most candidate are Co2Mn- and Co2Fe- based Heusler alloys, 

which is supported by the results from high-throughput screening considering large magnetic moment 

and high Curie temperature. I also investigated three combinatorial series Co2MnGayAs1-y, 

Co2FeAlySn1-y, Co2FeGayIn1-y to understand the effect of alloy mixing on the temperature dependence 

and importance of distancing Fermi level position from conduction band edge via alloy mixing to 

further improve the temperature dependence of spin polarization. 
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Chapter 5: Temperature dependence of 

damping constant 
5.1. Introduction 

As mentioned in Chapter 1, damping constant plays important role in the magnetization switching of 

HAMR process  [112]. In the HAMR, L10-FePt is prospective material for recording media because 

of its large magneto-crystalline anisotropy and damping  [33]. The switching time is inversely 

proportional to the damping constant  [109]. Since the switching process is done at high temperature, 

the ground state calculation of the damping constant is not enough. Unfortunately, the finite 

temperature damping behavior of FePt is not fully understood yet. Since experimental measurements 

of damping mostly includes the extrinsic effects rather than the intrinsic effect, different results were 

reported by several experimental groups  [83–86]. Recently, Richardson et al. measured the 

ferromagnetic resonance (FMR) linewidth of L10-FePt near Curie temperature which is proportional 

to the damping constant, and found that the linewidth is strongly reduced near the Curie temperature, 

implying the possibility of damping reduction  [110]. This unexpected decrease of damping will be 

harmful for the reduction of the switching time in HAMR  [112].  

In theoretical calculations of intrinsic damping constant of FePt  [113,185], the effect of the spin 

fluctuation at finite temperature was studied using torque correlation model proposed by 

Kambersky  [72]. Hiramatsu et al. found that the temperature dependence of damping constant due 

to the spin fluctuation only is nonmonotonic, and the damping is rapidly increases with increasing 

temperature near the Curie temperature  [113]. On the other hand, effects of the atomic vibration on 

the damping constant at finite temperature have not been fully understood yet. Therefore, in this 

Chapter I will investigate the lattice dynamics effect on the temperature dependence of  L10-FePt 

damping constant and its implication for HAMR applications. 

5.2. Calculation Details 

In this study, the damping is calculated using Kambersky Torque correlation model  [72], and the 

lattice vibration effect is introduced by creating the “snapshot” of structure with the displaced atoms 

via phonon dispersion information, which somewhat similar with the frozen thermal lattice disorder 

approach introduced by Liu et al.  [123] 

5.2.1. Formulation of matrix elements of the spin conserving and spin flip 

The damping constant in the Kambersky torque correlation model  [72,186] is expressed as   
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 𝛼 =
𝑔

𝜋𝑀s
∑ 𝑊𝑘 ∑ |𝛤𝑛𝑛′

− (𝑘)|
2 𝛿

(𝐸𝐹−𝜀𝑛𝑘)2+𝛿2

𝛿

(𝐸𝐹−𝜀𝑛′𝑘)2+𝛿2𝑛𝑛′𝑘 ,  (5-1) 

where the 𝛤𝑛𝑛′
− (𝑘) = ⟨𝑛, 𝑘|[𝑆−, 𝐻SO]|𝑛′, 𝑘⟩ is matrix element for wavevector 𝑘 between bands 𝑛 and 

𝑛′ induced by the spin-orbit torque operator 𝜂0
− = [𝑆−, 𝐻SO] = ∑ 𝜉𝐼(𝑆−𝐿𝑧 − 𝑆𝑧𝐿−)𝐼 . These matrix 

elements are numerically integrated over all wavevector k with the weight of 𝑊𝑘 and band states 

together with electron spectral functions, which are Lorentzian centered at the band energy 𝜀𝑛𝑘 and 

broadened by the electron-lattice scattering rate δ. Note that the band states |𝑛, 𝑘⟩, Fermi energy 𝐸𝐹 

and 𝜀𝑛𝑘  are easily obtained from the output of the ab-initio calculations. Thus, remaining task is 

determining the matrix elements from spin-orbit torque operator, by separating the contribution of 

spin conserving ⟨𝑛, 𝑘|𝑆𝑧𝐿− |𝑛′, 𝑘⟩ and spin flip ⟨𝑛, 𝑘|𝑆−𝐿𝑧|𝑛′, 𝑘⟩.  In order to do that, I will simplify 

the expression of spin conserving and spin flip into ⟨bra|𝐿−|ket⟩, and ⟨bra|𝐿𝑧|ket⟩, respectively. 

Note that bra and ket states already containing the information of allowed spin combination for each 

spin conserving part ( ⟨bra(↑)|𝐿−|ket(↑)⟩  and ⟨bra(↓)|𝐿−|ket(↓)⟩ ) and spin flip part 

(⟨bra(↓)|𝐿−|ket(↑)⟩). Thus, bra and ket can be easily represented as spherical harmonics of each 

atomic orbital as shown in the Table 3.1.  
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Table 5.1. The spherical harmonics.  

orbital Spherical harmonics 

𝑠 𝑌0
0 

𝑝𝑦 
𝑖

√2
(𝑌1

−1 + 𝑌1
1) 

𝑝𝑧 𝑌1
0 

𝑝𝑥 
1

√2
(𝑌1

−1 − 𝑌1
1) 

𝑑𝑥𝑦 
𝑖

√2
(𝑌2

−2 − 𝑌2
2) 

𝑑𝑦𝑧 
𝑖

√2
(𝑌2

−1 + 𝑌2
1) 

𝑑𝑧2  𝑌2
0 

𝑑𝑥𝑧 
1

√2
(𝑌2

−1 − 𝑌2
1) 

𝑑𝑥2−𝑦2 
1

√2
(𝑌2

−2 + 𝑌2
2) 

 

For 9 × 9 orbital combination of spin conserving ⟨bra|𝐿−|ket⟩, 16 nonzero elements are given as:  

⟨𝑝𝑦|𝐿−|𝑝𝑧⟩ = 〈−
𝑖

√2
(𝑌1

−1 + 𝑌1
1)|𝐿−|𝑌1

0〉 = −
𝑖

√2
〈𝑌1

−1|𝐿−|𝑌1
0〉 = −

𝑖

√2
√1(1 + 1) − 0(−1) = −𝑖 (5-2) 

⟨𝑝𝑧|𝐿−|𝑝𝑦⟩ = 〈𝑌1
0|𝐿−|

𝑖

√2
(𝑌1

−1 + 𝑌1
1)〉 =

𝑖

√2
〈𝑌1

0|𝐿−|𝑌1
1〉 =

𝑖

√2
√1(1 + 1) − 1(0) = 𝑖 (5-3) 

⟨𝑝𝑥|𝐿−|𝑝𝑧⟩ = 〈
1

√2
(𝑌1

−1 − 𝑌1
1)|𝐿−|𝑌1

0〉 =
1

√2
〈𝑌1

−1|𝐿−|𝑌1
0〉 =

1

√2
√1(1 + 1) − 0(−1) = 1 (5-4) 

⟨𝑝𝑧|𝐿−|𝑝𝑥⟩ = 〈𝑌1
0|𝐿−|

1

√2
(𝑌1

−1 − 𝑌1
1)〉 = −

1

√2
〈𝑌1

0|𝐿−|𝑌1
1〉 = −

1

√2
√1(1 + 1) − 1(0) = −1 (5-5) 

⟨𝑑𝑥𝑦|𝐿−|𝑑𝑦𝑧⟩ = 〈−
𝑖

√2
(𝑌2

−2 − 𝑌2
2)|𝐿−|

𝑖

√2
(𝑌2

−1 + 𝑌2
1)〉 =

1

2
〈𝑌2

−2|𝐿−|𝑌2
−1〉 =

1

2
√2(2 + 1) − (−1)(−2) = 1  (5-6) 

⟨𝑑𝑥𝑦|𝐿−|𝑑𝑥𝑧⟩ = 〈−
𝑖

√2
(𝑌2

−2 − 𝑌2
2)|𝐿−|

1

√2
(𝑌2

−1 − 𝑌2
1)〉 = −

𝑖

2
〈𝑌2

−2|𝐿−|𝑌2
−1〉 =

−
𝑖

2
√2(2 + 1) − (−1)(−2) = −𝑖  (5-7) 



124 

 

⟨𝑑𝑦𝑧|𝐿−|𝑑𝑥𝑦⟩ = 〈−
𝑖

√2
(𝑌2

−1 + 𝑌2
1)|𝐿−|

𝑖

√2
(𝑌2

−2 − 𝑌2
2)〉 = −

1

2
〈𝑌2

1|𝐿−|𝑌2
2〉 =

−
1

2
√2(2 + 1) − (2)(1) = −1  (5-8) 

⟨𝑑𝑦𝑧|𝐿−|𝑑𝑧2⟩ = 〈−
𝑖

√2
(𝑌2

−1 + 𝑌2
1)|𝐿−|𝑌2

0〉 = −
𝑖

√2
〈𝑌2

−1|𝐿−|𝑌2
0〉 = −

𝑖

√2
√2(2 + 1) − (0)(−1) =

−𝑖√3  (5-9) 

⟨𝑑𝑦𝑧|𝐿−|𝑑𝑥2−𝑦2⟩ = 〈−
𝑖

√2
(𝑌2

−1 + 𝑌2
1)|𝐿−|

1

√2
(𝑌2

−2 + 𝑌2
2)〉 = −

𝑖

2
〈𝑌2

1|𝐿−|𝑌2
2〉 =

−
𝑖

2
√2(2 + 1) − (2)(1) = −𝑖  (5-10) 

⟨𝑑𝑧2|𝐿−|𝑑𝑦𝑧⟩ = ⟨𝑌2
0|𝐿−|

𝑖

√2
(𝑌2

−1 + 𝑌2
1)⟩ =

𝑖

√2
⟨𝑌2

0|𝐿−|𝑌2
1⟩ =

𝑖

√2
√2(2 + 1) − (1)(0) = 𝑖√3 (5-11) 

⟨𝑑𝑧2|𝐿−|𝑑𝑥𝑧⟩ = ⟨𝑌2
0|𝐿−|

1

√2
(𝑌2

−1 − 𝑌2
1)⟩ = −

1

√2
⟨𝑌2

0|𝐿−|𝑌2
1⟩ = −

1

√2
√2(2 + 1) − (1)(0) = −√3

 (5-12) 

⟨𝑑𝑥𝑧|𝐿−|𝑑𝑥𝑦⟩ = 〈
1

√2
(𝑌2

−1 − 𝑌2
1)|𝐿−|

𝑖

√2
(𝑌2

−2 − 𝑌2
2)〉 =

𝑖

2
⟨𝑌2

1|𝐿−|𝑌2
2⟩ =

𝑖

2
√2(2 + 1) − (2)(1) = 𝑖

 (5-13) 

⟨𝑑𝑥𝑧|𝐿−|𝑑𝑧2⟩ = 〈
1

√2
(𝑌2

−1 − 𝑌2
1)|𝐿−|𝑌2

0〉 =
1

2
⟨𝑌2

−1|𝐿−|𝑌2
0⟩ =

1

2
√2(2 + 1) − (0)(−1) = √3 (5-14) 

⟨𝑑𝑥𝑧|𝐿−|𝑑𝑥2−𝑦2⟩ = 〈
1

√2
(𝑌2

−1 − 𝑌2
1)|𝐿−|

1

√2
(𝑌2

−2 + 𝑌2
2)〉 = −

1

2
⟨𝑌2

1|𝐿−|𝑌2
2⟩ =

−
1

2
√2(2 + 1) − (2)(1) = −1  (5-15) 

⟨𝑑𝑥2−𝑦2|𝐿−|𝑑𝑦𝑧⟩ = 〈
1

√2
(𝑌2

−2 + 𝑌2
2)|𝐿𝑧|

𝑖

√2
(𝑌2

−1 + 𝑌2
1)〉 =

𝑖

2
⟨𝑌2

−2|𝐿−|𝑌2
−1⟩ =

𝑖

2
√2(2 + 1) − (−1)(−2) = 𝑖  (5-16) 

⟨𝑑𝑥2−𝑦2|𝐿−|𝑑𝑥𝑧⟩ = 〈
1

√2
(𝑌2

−2 + 𝑌2
2)|𝐿𝑧|

1

√2
(𝑌2

−1 − 𝑌2
1)〉 =

1

2
⟨𝑌2

−2|𝐿−|𝑌2
−1⟩ =

1

2
√2(2 + 1) − (−1)(−2) = 1  (5-17) 

While for 9 × 9 orbital combination of spin flip ⟨bra|𝐿𝑧|ket⟩, 6 nonzero elements are given as:  

 ⟨𝑝𝑥|𝐿𝑧|𝑝𝑦⟩ = 〈
1

√2
(𝑌1

−1 − 𝑌1
1)|𝐿𝑧|

𝑖

√2
(𝑌1

−1 + 𝑌1
1)〉 =

𝑖

2
(⟨𝑌1

−1|𝐿𝑧|𝑌1
−1⟩ − ⟨𝑌1

1|𝐿𝑧|𝑌1
1⟩) =

𝑖

2
(−1 − 1) =

−𝑖  (5-18) 

⟨𝑝𝑦|𝐿𝑧|𝑝𝑥⟩ = 〈−
𝑖

√2
(𝑌1

−1 + 𝑌1
1)|𝐿𝑧|

1

√2
(𝑌1

−1 − 𝑌1
1)〉 = −

𝑖

2
(⟨𝑌1

−1|𝐿𝑧|𝑌1
−1⟩ − ⟨𝑌1

1|𝐿𝑧|𝑌1
1⟩) =

−
𝑖

2
(−1 − 1) = 𝑖  (5-19) 

⟨𝑑𝑥𝑦|𝐿𝑧|𝑑𝑥2−𝑦2⟩ = 〈−
𝑖

√2
(𝑌2

−2 − 𝑌2
2)|𝐿𝑧|

1

√2
(𝑌2

−2 + 𝑌2
2)〉 = −

𝑖

2
(⟨𝑌2

−2|𝐿𝑧|𝑌2
−2⟩ − ⟨𝑌2

2|𝐿𝑧|𝑌2
2⟩) =

−
𝑖

2
(−2 − 2) = 2𝑖  (5-20) 
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⟨𝑑𝑦𝑧|𝐿𝑧|𝑑𝑥𝑧⟩ = 〈−
𝑖

√2
(𝑌2

−1 + 𝑌2
1)|𝐿𝑧|

1

√2
(𝑌2

−1 − 𝑌2
1)〉 = −

𝑖

2
(⟨𝑌2

−1|𝐿𝑧|𝑌2
−1⟩ − ⟨𝑌2

1|𝐿𝑧|𝑌2
1⟩) =

−
𝑖

2
(−1 − 1) = 𝑖  (5-21) 

⟨𝑑𝑥𝑧|𝐿𝑧|𝑑𝑦𝑧⟩ = 〈
1

√2
(𝑌2

−1 − 𝑌2
1)|𝐿𝑧|

𝑖

√2
(𝑌2

−1 + 𝑌2
1)〉 =

𝑖

2
(⟨𝑌2

−1|𝐿𝑧|𝑌2
−1⟩ − ⟨𝑌2

1|𝐿𝑧|𝑌2
1⟩) =

𝑖

2
(−1 −

1) = −𝑖  (5-22) 

⟨𝑑𝑥2−𝑦2|𝐿𝑧|𝑑𝑥𝑦⟩ = 〈
1

√2
(𝑌2

−2 + 𝑌2
2)|𝐿𝑧|

𝑖

√2
(𝑌2

−2 − 𝑌2
2)〉 =

𝑖

2
(⟨𝑌2

−2|𝐿𝑧|𝑌2
−2⟩ − ⟨𝑌2

2|𝐿𝑧|𝑌2
2⟩) =

𝑖

2
(−2 −

2) = −2𝑖  (5-23) 

Therefore, the matrix operation of orbital combination for spin conserving ⟨bra|𝐿−|ket⟩ and spin flip 

⟨bra|𝐿𝑧|ket⟩ contribution can be expressed as shown in the Table 5.2 and Table 5.3, respectively. 
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Table 5.2. The results of operation ⟨bra|𝐿𝑧|ket⟩  

Bra  

       Ket 

𝑠 𝑝𝑦 𝑝𝑧 𝑝𝑥 𝑑𝑥𝑦 𝑑𝑦𝑧 𝑑𝑧2  𝑑𝑥𝑧 𝑑𝑥2−𝑦2 

𝑠 0 0 0 0 0 0 0 0 0 

𝑝𝑦 0 0 0 𝑖 0 0 0 0 0 

𝑝𝑧 0 0 0 0 0 0 0 0 0 

𝑝𝑥 0 −𝑖 0 0 0 0 0 0 0 

𝑑𝑥𝑦 0 0 0 0 0 0 0 0 2𝑖 

𝑑𝑦𝑧 0 0 0 0 0 0 0 𝑖 0 

𝑑𝑧2  0 0 0 0 0 0 0 0 0 

𝑑𝑥𝑧 0 0 0 0 0 −𝑖 0 0 0 

𝑑𝑥2−𝑦2 0 0 0 0 −2𝑖 0 0 0 0 
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Table 5.3. The results of operation ⟨bra|𝐿−|ket⟩  

Bra  

       Ket 

𝑠 𝑝𝑦 𝑝𝑧 𝑝𝑥 𝑑𝑥𝑦 𝑑𝑦𝑧 𝑑𝑧2  𝑑𝑥𝑧 𝑑𝑥2−𝑦2 

𝑠 0 0 0 0 0 0 0 0 0 

𝑝𝑦 0 0 −𝑖 0 0 0 0 0 0 

𝑝𝑧 0 𝑖 0 −1 0 0 0 0 0 

𝑝𝑥 0 0 1 0 0 0 0 0 0 

𝑑𝑥𝑦 0 0 0 0 0 1 0 −𝑖 0 

𝑑𝑦𝑧 0 0 0 0 −1 0 −𝑖√3 0 −𝑖 

𝑑𝑧2  0 0 0 0 0 𝑖√3 0 −√3 0 

𝑑𝑥𝑧 0 0 0 0 𝑖 0 √3 0 −1 

𝑑𝑥2−𝑦2 0 0 0 0 0 𝑖 0 1 0 

 

5.2.2. Ab-initio calculation 

I performed first-principles density-functional calculations using the Vienna ab initio simulation 

package (VASP)  [187] to obtain electronic structures and phonon dispersions of L10-FePt together 

with the projection onto local atomic orbitals. The projector augmented-wave (PAW) potential was 

used to describe the behavior of core electrons  [122]. Generalized gradient approximation (GGA) 

proposed by Perdew, Burke, and Ernzerhof was adopted for the exchange and correlation 

energies  [188]. The 2 × 2 × 2 supercell containing 8 Fe and 8 Pt atoms was constructed using the 

tetragonal unit cell with a = 5.4563 Å and c = 7.5579 Å for phonon and damping calculations. I used 

the plane-wave cut-off energy of 335 eV for the wavefunction expansion and 10 × 10 × 10 k-points 

mesh for wave-vector integration in the first Brillouin zone. Note that the rather sparse k-points mesh 

was used, since the purpose of this study is to offer an insight into the temperature dependence of 

damping due to the atomic vibrations. I confirm that the qualitative feature of the temperature 

dependence of the damping constant has been converged by the present k-point density.   
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5.2.3. Creating the snapshots 

Although I neglected the spin-phonon coupling in the correlation function of the spin torque, I 

incorporate the atomic vibration effect via phonon dispersion as “modified frozen thermal lattice 

disorder”  [123], where the atomic displacement is explicitly determined from the phonon dispersion 

information. First, I confirmed that there is no negative phonon mode for FePt structure calculated 

by PHONOPY  [189], which implies the ground state is dynamically stable. The atomic 

displacements 𝑢𝜅ℓ
𝛼  in the supercell can be obtained from the normal mode coordinates (𝑄𝑞𝜈) in the 

reciprocal space as 

 𝑢𝜅ℓ
𝛼 =

1

√𝑀𝜅𝑁 
∑ 𝑄𝑞𝜈𝑒𝛼𝑞𝜈 (𝜅; 𝑞𝜈)ei𝑞⋅𝑟 (ℓ) (5-24) 

where 𝛼 is the Cartesian coordinate index, 𝑀𝜅is the mass of the 𝜅-th atom in the unit cell, ℓ is the 

unit cell index in the supercell, and N is the number of q points commensurate with the supercell. The 

polarization vector 𝑒𝛼(𝜅; 𝑞𝜈) gives the direction in which each atom moves with the wavevector q 

and the mode index 𝜈. To generate structural snapshots relevant at each temperature, I randomly 

sample 𝑄𝑞𝜈 from the Gaussian (normal) distribution with the deviation 𝜎𝑞𝜈, which is given as  [190]: 

 𝜎𝑞𝜈
2 = 〈𝑄𝑞𝜈𝑄𝑞𝜈

∗ 〉 =
ℏ

2𝜔𝑞𝜐
(2𝑛𝑞𝜈 + 1) (5-25) 

where 𝜔𝑞𝜈is the harmonic phonon frequency, and 𝑛𝑞𝜈(𝜔, 𝑇) = (eℏ𝜔 𝑘B⁄ 𝑇 − 1)−1 being the Bose-

Einstein occupation function.  

Therefore, I calculate the damping value of each “snapshot” using the Kambersky model  [72] and 

do averaging to obtain the damping value over hundreds of “snapshots” at each temperature. I 

confirmed that the averaging over 100 “snapshots” is enough to obtain the converged magnetic 

damping at finite temperatures up to 900 K. 

5.2.4. Estimation of scattering rate  

The scattering rate δ in Eq. (5-1) was estimated from the imaginary part of the Fan-Migdal (FM) 

self-energy defined as  [191] 

Γ𝑛𝑘 = ImΣ𝑛𝑘
FM(𝜖𝑛𝑘) =

𝜋

𝑁𝑞
∑ |𝑔𝑛𝑚𝜈(𝑘, 𝑞)|2 × [(1 − 𝑓𝑚𝑘+𝑞 + 𝑛𝑞𝜈)𝛿(𝜀𝑛𝑘 − ℏ𝜔𝑞𝜈 − 𝜀𝑚𝑘+𝑞) +𝑚𝑞𝜈

(𝑓𝑚𝑘+𝑞 + 𝑛𝑞𝜈)𝛿(𝜀𝑛𝑘 + ℏ𝜔𝑞𝜈 − 𝜀𝑚𝑘+𝑞)],  (5-26) 

where 𝑔𝑛𝑚𝜈(𝑘, 𝑞) is the electron-phonon coupling constant and 𝑓𝑛𝑘 = (𝑒(𝜀𝑛𝑘−𝜇)/𝑘B𝑇 + 1)
−1

is the 

Fermi-Dirac distribution function. The dense 100 × 100 × 100 k- and q-point grids are used for the 
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summation of imaginary part of the FM self-energy. To that end, the electron-phonon coupling 

constants were first computed based on density functional perturbation theory (DFPT) for the 2 × 2 

× 2 q points along with the 12 × 12 × 12 k points and subsequently interpolated to the dense grids 

using the Wannier interpolation. The DFT and DFPT calculations were performed under a collinear 

magnetic state using the Quantum ESPRESSO package  [192], where the GBRV ultrasoft 

pseudopotentials  [193] were used with the kinetic energy cutoffs of 90 Ry and 1080 Ry, respectively, 

for the wavefunction and charge density. The maximally localized Wannier functions were 

constructed using the Wannier90 code  [194], where the outer energy window of [-10:8] eV relative 

to the Fermi level was used. The calculation of Γ𝑛𝑘 was performed using the Perturbo code  [195]. 

5.3. Damping at Ground States 

5.3.1. Damping dependence of k-point 

In the Fig 4.1, the scattering rate dependence of damping is shown for varied number of k-points in 

the one dimension of Fe, Co, and Ni. The torque correlation model predicts the decrease behavior for 

intraband damping, while the interband contribution is enhanced by increasing scattering rate. These 

two competing behaviors resulting in nonmonotonic trend of the total damping. In my calculation, 

these patterns were observed in the sufficiently large number of one-dimension k-points (>40). Since 

Lorentzian part of damping equation depends on the eigenenergies of each band at each k-points, too 

low k-points may not reproduce the sharpness of spectral functions which yields the significant 

deviation from prediction. This is also observed for Fe by Qu et al.  [196] when one-dimension k-

point is less than 64 for Fe. On the other hand, Gilmore et al. used 160, 100, and 120 k-points in one-

dimension for convergence in Fe, Co, Ni, respectively  [186].  
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Fig 5.1. The scattering rate dependence of total (solid lines), intraband (dotted lines), and interband 

(dashed lines) damping for Fe, Co, Ni metals with various k-points in one dimension.  
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The damping behavior at low scattering rate is also more difficult to converge over varied k-points. 

In contrast, at the upper limit of considered scattering rate (1 eV), the damping is already converged 

even at very low k-points. This is can also be explained due to the scattering rate contribution into 

Lorentzian of spectral functions. At the high scattering rate, 𝛿 ≫ (𝐸𝐹 − 𝜀𝑛𝑘) and 𝛿 ≫ (𝐸𝐹 − 𝜀𝑛′𝑘) so 

the damping equation may reduce into: 

 𝛼 =
𝑔

𝜋𝑀s

1

𝛿2
∑ 𝑊𝑘 ∑ |𝛤𝑛𝑛′

− (𝑘)|
2

𝑛𝑛′𝑘  (5-27) 

which does not strongly depend on number of k-points. These results are also qualitatively in good 

agreement with the Barati et al.  [197] which found that one-dimension k-point needed for 

convergence at 𝛿 = 0.01 eV and 0.001 eV are 300 and 600, respectively.  

The similar result for primitive cell FePt is shown in the Fig 5.2. The qualitative trend is easier to 

converge at around 20 k-point. Although previous works demonstrates the quantitative convergence 

is achieved at much larger k-points  [186,196,197], as this work focuses only on temperature 

dependence of damping, I chose the rather sparse k-point mesh as long as it reproduces general 

qualitative trend predicted by torque correlation model  [72]. When the finite temperature is included 

in the latter part, the 2 × 2 × 2 supercell were constructed and the k-point mesh can be constructed 

as half of its value for primitive cell. Therefore, when supercell is used, 10 × 10 × 10 k-point mesh 

is considered enough for my calculation.  

 

Fig 5.2. The scattering rate dependence of total (solid lines), intraband (dotted lines), and interband 

(dashed lines) damping for FePt metals with various k-points in one dimension.  
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5.3.2. Damping dependence of number of bands 

After determine how many k-points to be used in the supercell calculation, the next part is to 

determine the number of bands for qualitative convergence. Since the damping calculation is 

computationally expensive, one may decide the sufficient required number of combination k-point 

and bands which suitable with the purpose of the study. By constructing 2 × 2 × 2 supercell, I found 

in the Fig 5.3 that 192 bands are enough for the reproducing the trend. It is important to note that the 

unoccupied bands should be sufficiently included in the calculation, so not only the magnetic moment 

can be calculated accurately, but also the damping. The damping is affected predominantly by states 

close to the Fermi level 𝐸𝐹. It also explicitly represented as denominator in the Lorentzian, where the 

maximum value of Lorentzian were obtained in 𝐸𝐹 ≈ 𝐸𝑛𝑘.  

 

Fig 5.3. The scattering rate dependence of damping for 2 × 2 × 2 supercell FePt with varied number 

of total bands 

5.3.3. Comparison of the calculated ground state damping with previous work 

In order to validate my damping calculation code, the results of calculated damping with previous 

work by Gilmore et al.  [186] are shown for Fe, Co, and Ni in the Fig 5.4. Similar behavior were 

obtained, not only qualitatively but also quantitatively. Although the eigenenergies and band states 

in the Gilmore et al. were calculated using linearized-augmented-plane-wave (LAPW)  [186] which 

is slightly different with our projector-augmented-wave (PAW) calculation, these agreements are still 

quite surprising because the k-point mesh used for my calculation is much smaller than Gilmore’s. 

Aside from that, the difference of lattice constant and spin-orbit coupling energy may also contribute 
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to the small discrepancy between two calculations. For the results of Cobalt, my result seems 

overestimate the Gilmore’s result for all range of scattering rate  [186]. This is may due to my 

calculation does not differ the treatment of basal plane and along c axis as Gilmore did for the k-point 

mesh  [186].  
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Fig 5.4. The scattering rate dependence of damping for Fe, Co, Ni metals at 50 × 50 × 50 k-point 

mesh compared with LAPW calculation by Gilmore et al.  [186].  
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Both of my calculation and results of Gilmore’s show that the damping value of Ni is much higher, 

while the Co and Fe value is pretty similar  [186]. Aside of much higher spin orbit interaction, sharp 

peak of Ni DOS at Fermi level also contributes to the large damping  [198], which will be further 

explained in the next part. Other interesting features are scattering rate where the intraband and 

interband damping become equal follow the Fe < Co < Ni, which related with the strength of spin-

orbit interaction. This information can be helpful to determine when the intraband or interband 

dominates the damping  [199].  

On the other hand, comparison between my calculation on FePt are underestimates the results of Qu 

et al.  [200] as shown in the Fig 5.5. It is important to note that Qu et al. calculate the damping using 

tight-binding (TB) model  [200], where the electronic states are obtained within the static 

Hamiltonian. This static Hamiltonian consists of contribution from spin-independent paramagnetic 

Hamiltonian, ferromagnetic exchange Hamiltonian, and spin orbit interaction Hamiltonian. These 

Hamiltonian is self-consistently solved by exchange interaction parameters and enhanced spin orbit 

interaction to match experimentally observed spin and orbital moment. Consequently, their TB result 

demonstrated the enhanced damping in all range of scattering rate when compared with the LAPW 

results of Gilmore et al. for Fe  [196]. Because my calculation is in very good agreement with the 

Gilmore’s, the underestimation compared than Qu’s can be accepted.   

By enhanced spin-orbit interaction using by Qu et al., the intraband damping become equal to 

interband damping at the scattering rate 0.07 eV  [200], where my calculation give the value of 0.05 

eV. It reiterates the finding that scattering rate where minima damping is found due to equivalent 

contribution between intraband and interband damping is related with the spin-orbit interaction. 

Assuming that scattering rate is proportional with the temperature, it implies that when the spin-orbit 

interaction is stronger, minima damping will be observed at much higher temperature, hence the 

nonmonotonic behavior may be less pronounced and disappear, leaving the only decrease behavior 

of damping at finite temperature.  
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Fig 5.5. The scattering rate dependence of damping for 2 × 2 × 2 supercell FePt with 10 × 10 × 10 

k-point mesh compared with calculation using TB method by Qu et al.  [200].  

5.3.4. Damping dependence of spectral energy 

As demonstrated in the previous part, the damping calculation is very sensitive to the band calculation 

method and various parameters, in addition to validate the obtained results using the scattering rate 

dependence, another useful way to judge the adequacy is to compare the spectral energy dependence 

of damping with the density of states  [198]. This is shown for FePt in the Fig 5.6. The damping 

pattern follow the behavior of the density of states in quite good agreement. This can be explained by 

breakdown the contribution of total damping into intraband and interband damping.  
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Fig 5.6. The spectral energy dependence of damping for 2 × 2 × 2 supercell FePt with 10 × 10 × 10 

k-point mesh compared the density of states (total, majority spin, and minority spin). 

The intraband damping corresponds to the transition within the same bands or  𝑛 = 𝑛′ 

 𝛼 =
𝑔

𝜋𝑀s
∑ 𝑊𝑘 ∑ |𝛤𝑛𝑛′

− (𝑘)|
2

𝑛𝑛′𝑘 [
𝛿

(𝐸−𝐸𝑛𝑘)2+𝛿2]
2

 (5-28) 

On the other hand, density of states (DOS) can be expressed as delta function δ (not to be confused 

with scattering rate 𝛿 in damping equation) smeared by Lorentzian function: 

 DOS = ∑ ∑ δ(𝐸 −𝑛 𝐸𝑛𝑘)𝑘 =
1

𝜋
∑ ∑

𝜖

(𝐸−𝐸𝑛𝑘)2+𝜖2𝑛𝑘  (5-29) 

where 𝜖 play important role as small finite electronic broadening parameter. Direct comparison give 

the relation between  

 log 𝛼 ∝ DOS (5-30) 

While spectral energy dependence of interband damping terms is rather complicated  [201]. Since the 

interband terms corresponds to the transition between different bands or 𝑛 ≠ 𝑛′, the spectral overlap 

depends on the relation between scattering rate 𝛿 and energy spacing |𝐸𝑛𝑘 − 𝐸𝑛′𝑘|. The interband 

terms can be proportional to the 𝛿 especially when 𝛿 ≪ |𝐸𝑛𝑘 − 𝐸𝑛′𝑘|, however it also means that 

interband contribution is much smaller than intraband contribution. When 𝛿 ~ |𝐸𝑛𝑘 − 𝐸𝑛′𝑘|, the 

damping will reach the stagnant value with respect to the scattering rate. Due to the complex behavior 

of interband damping, it is not easy to simply describe its spectral dependence. However, strong 

relation between intraband damping and DOS is still reflected even in the total damping, showing 

this simple relation can be generalized for the total damping.  

5.4. Lattice dynamics on temperature dependence of damping constant 

5.4.1. Convergence on the number of snapshot structures 

Aside from the convergence on number of k-point and bands, it is important to also check the 

convergence on number of the snapshot structures. Since the structural snapshots is randomly 

sampled from the Gaussian distribution, more snapshots would be better in accuracy. On the other 

hand, more snapshots also means more burden on computational cost, so it is needed to be just 

sufficiently chosen. In the Fig 5.7(a), it is shown that for the lower limit of scattering rate 0.001 eV, 

around 100 snapshots or more is required to obtain convergence. By increasing the scattering rate 

into 0.05 eV as shown in the Fig 5.7(b), it may only require ~70 averaged snapshots. Further increase 

of scattering rate up to 1 eV, only 30 averaged snapshots required to achieve the convergence as 
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shown in the Fig 5.7(c). The general trend that demonstrate the damping with smaller scattering rate 

is more difficult to converge than the larger scattering rate is also found by Barati et al.  [197] when 

investigating convergence of damping value on the number of k-points. However, they also found 

the inclusion of finite temperature effect via Fermi-Dirac distribution function may improve the 

numerical efficiency, which does not observed in my calculation. This can be attributed to the 

different way to implement the finite temperature effect in my study.  
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Fig 5.7. The convergence of damping value on number of averaged snapshots with different scattering 

rate value: (a) 0.001 eV, (b) 0.05 eV, (c) 1 eV.  
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5.4.2. Scattering rate dependence of damping at different temperature 

In Fig 5.8(a), I show the total damping computed with various scattering rates after averaging over 

100 “snapshots” for each temperature. The intra-band and inter-band contributions are still 

dominantly contribute in the low and high scattering regions, respectively. However, the nearly-

overlapped curve shown at the elevated temperature (300-900 K) may imply that the effects of atomic 

vibration on the magnetic damping are not significant, especially at high temperatures. The Fig 5.8(b) 

contains the same information as Fig 5.8(a) but shows the temperature dependence of damping using 

a constant scattering rate 𝛿  for better visualization. The range of the scattering rate 𝛿 was chosen 

based on the values considered in the previous reports (0.03-0.10 eV)  [113,200]. When a relatively 

low scattering rate 𝛿=0.03-0.04 eV is used, the temperature dependence of the damping value shows 

an approximately monotonic decrease followed by saturation of damping at high temperatures. 

However, the use of scattering rates 𝛿=0.05-0.10 eV increases damping at high temperatures; hence 

a nonmonotonic behavior is clearly demonstrated.   

 

Fig 5.8. (a) The scattering rate dependence of total damping with varying temperature (b) The 

temperature dependence of total damping with varying scattering rate of L10-FePt. 

5.4.3. Comparison between theoretical and experimental results 

In Fig 5.9, I also plot the reported experimental results of FePt damping taken from Refs  [110,202] 

by the blue and green line-points. In the experiment, they measure the FMR linewidth, which is 

directly proportional to the damping under the assumption of a negligible contribution of 

inhomogeneity line broadening. Thus, the damping value can be extracted from FMR linewidth and 

plotted together with the calculated temperature dependence of damping. Previously, Richardson et 

al. reported the reduction of FMR linewidth in the L10-FePt granular sample, which correspond to 

the strong reduction of damping (blue dashed line)  [110]. Since I and Hiramatsu et al. separately 
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reported that the intrinsic damping of FePt will increase at high temperatures due to the atomic 

vibration and spin fluctuation  [113], respectively,  intrinsic damping can be ruled out the as an origin 

of the experimental reduction of FMR linewidth (damping) observed by Richardson et al  [110]. In 

addition, recently published work by Liu et al. reported that the FMR linewidth of continuous thin 

films of cubic A1-FePt significantly increases near the Curie temperature (green dashed line)  [202]. 

This qualitative behavior in cubic A1-FePt shows good agreement with the spin fluctuation effect on 

damping of tetragonal L10-FePt reported by Hiramatsu et al  [113] due to the small extrinsic 

contribution. Note that the rapid increase of damping of A1-FePt reported by Liu et al. happens at a 

lower temperature than that predicted by Hiramatsu et al. for L10-FePt due to lower experimental TC 

of A1-FePt (575 K)  [202] compared to the calculated TC  of L10-FePt (820 K)  [113]. While the 

continuous A1-FePt thin films have fewer defects and smaller extrinsic contribution, the granular 

structure of L10-FePt media investigated by Richardson et al. has more defects due to the grain 

boundary, resulting in the stronger extrinsic contribution to the damping [110,202]. Hence, the 

comparison of these results leads to the two major findings: (1) the temperature dependence of 

intrinsic damping due to the atomic vibration and also the spin fluctuation is nonmonotonic, and the 

damping always increases with increasing the temperature near the Curie temperature, (2) the 

extrinsic contribution will play an important role behind the possible reduction of FePt damping in 

the experiment.   

  

Fig 5.9. Atomic vibration effect on the temperature dependence of the damping of L10-FePt 

calculated using the imaginary part of FM self-energy as temperature-dependent scattering rate. For 

comparison, the spin fluctuation effect on the temperature dependence of damping constant of L10-

FePt calculated by Hiramatsu et al. [113], experimental damping constant extracted from FMR 
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linewidth of L10-FePt granular media by Richardson et al.  [110] and A1-FePt continuous thin films 

by Liu et al. [202] are plotted together. Dashed line corresponds to the trend of the temperature 

dependence of experimental damping constant near Curie temperature.  

5.4.4. Spin-flip and spin-conserving contribution 

Then, I divide the spin-orbit torque operator 𝜂0
− = [𝑆−, 𝐻SO] = ∑ 𝜉𝐼(𝑆−𝐿𝑧 − 𝑆𝑧𝐿−)𝐼  into two parts, 

one is the spin-conserving term 𝑆𝑧𝐿− and the other is the spin-flip term 𝑆−𝐿𝑧 . In  the Fig 5.10, I show 

separated contributions of scattering rate dependence of damping into spin-conserving transitions and 

spin-flip transition. I found that the spin-conserving (𝑆𝑧𝐿−) contribution is always larger than the 

spin-flip (𝑆−𝐿𝑧 ) contribution over range of scattering rate considered in this study. This can be 

attributed to two possible reasons. First, the small majority-spin DOS compared to the minority-spin 

DOS at the Fermi level due to the exchange splitting of FePt (See Fig 5.6) will lead to the small 

contribution of spin-flip transition from occupied majority-spin states to unoccupied minority-spin 

states. Second, the matrix elements of spin flip ⟨𝑛, 𝑘|𝑆−𝐿𝑧|𝑛′, 𝑘⟩ only allows the nonzero value for 

the 6 combinations of atomic orbitals with same magnetic quantum number, where the spin 

conserving ⟨𝑛, 𝑘|𝑆𝑧𝐿− |𝑛′, 𝑘⟩ give the nonzero value for the 16 combinations of atomic orbitals with 

different magnetic quantum number as expected from the calculation of matrix elements shown in 

the Table 5.2 and Table 5.3  [203].  

 

Fig 5.10. The scattering rate dependence of separated contribution of spin conserving and spin flip 

damping for FePt.  

When I use the imaginary part of FM self energy as temperature dependent scattering rate, the 

temperature dependence between two contributions is also different as shown in the Fig 5.11. The 

spin-conserving part of damping shows rather monotonic decrease. On the other hand, the spin-flip 
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part shows nonmonotonic behavior, which is similar with the total damping in Fig 5.9. Previously, it 

is understood that nonmonotonic behavior of damping is attributed to the competition between the 

intra-band (conductivity-like) and inter-band (resistivity-like) contribution. While the spin-flip term 

in the intra-band contribution is almost negligible due to assumption of a pure spin state, the strong 

spin-flip contribution from the inter-band transition may be origin of enhancement of damping at high 

temperature.   

 

Fig 5.11. The temperature dependence of the spin-conserving and spin flip contribution to damping 

calculated using the imaginary part of FM self-energy as temperature-dependent scattering rate 

In the experiments, it is common to fabricate sample with imperfect quality due to the impurity, 

disorder, etc. Assuming that relatively small amounts of impurities does not affect the electronic 

structure and magnetic properties significantly, I can approximate the impurities amount is 

proportional to the temperature-independent part of scattering rate Λimp.  In the Fig 5.12, I show the 

spin-conserving and spin-flip damping as a function of temperature for different value of  impurity 

scattering rates Λimp. I found that the enhancement of the spin-flip damping at high-temperature is 

more pronounced with increasing Λimp . On the other hand, the spin-conserving damping hardly 

increases at high temperature with increasing Λimp.This result implies that adding impurities in FePt 

is more beneficial for the preventing the unexpected reduction in damping at high temperature. 

However, this contribution can be less significant than spin fluctuation because the damping is 

explicitly dependent on the magnetization. Experimentally, this impurity can be introduced by doping 

of small atoms (C or B) or magnetic atoms which have similar properties with the Fe and Pt (like Ni). 
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It is also important to note that introducing doping may have risk to affect another properties of FePt, 

such as anisotropy, Curie temperature, and etc.  

 

Fig 5.12. The amplitude dependence of damping for FePt compared at different commensurate at 0.1 

eV 

5.4.5. Phonon-mode analysis of damping  

Finally, to understand how each phonon mode affects the damping behavior, I created modulated 

structures with displacing the atoms along the specified normal modes with different amplitudes at 

the commensurate q-points. The 𝜅-th atom displacements in the defined supercell with total 𝑁 atoms 

are defined as: 

 
𝐴

√𝑁𝑀𝜅
Re[exp(𝑖𝜙) 𝑒𝛼(𝜅; 𝑞𝜐) exp(𝑖𝑞 ∙ 𝑟𝜅ℓ)],  (5-31) 

where 𝐴 is the amplitude in the unit of 𝑢1/2Å, 𝑀𝜅 is the atomic mass of the 𝜅-th atom in the unit of 

u (atomic mass unit/amu), 𝜙 is the phase, 𝑒𝛼  is the polarization vector of the 𝜅-th atom along 𝛼 

direction, 𝑞 is the q-point, and 𝑟𝜅𝑙 is the 𝜅-th atom position in the 𝑙-th unit cell. I created supercells 

with displacements due to the phonon mode for each commensurate q-point. In the primitive L10 FePt 

unit cell, there are 2 atoms, yielding 6 phonon modes at each 𝑞 point. Since the 2 × 2 × 2 supercell 

is used, there are 8 different commensurate 𝑞 points labeled as follows:  Γ (0,0,0), Z (0,0,-0.5), X (0,-

0.5,0), R (0,-0.5,-0.5), X’ (-0.5,0,0), R’ (-0.5,0,-0.5), M (-0.5,-0.5,0), and A (-0.5,-0.5,-0.5). Note that 

X(X’) and R(R’) are equivalent points in the phonon dispersion calculation.  



145 

 

In the Fig 5.13(a)-(c), I showed how each phonon mode affects the ratio of the damping in the 

modulated structure 𝛼mod to the damping in the unmodulated (perfect supercell) structure 𝛼unmod 

(𝛼mod/𝛼unmod) with changing the amplitude of atomic displacements. The constant scattering rate 

of 0.05 eV was used.  Red (blue) points correspond to the phonon mode that enhances (weakens) the 

damping value compared to the unmodulated structure. The presence of both red and blue phonon 

modes indicates two competing contributions to the temperature dependence of damping, which 

explains its nonmonotonic behavior.  

At higher temperatures, a larger amplitude of displacements is expected, and higher-frequency 

phonon modes will be more occupied. I show in Fig 5.14(a)-(h) the amplitude dependence of the 

normalized damping 𝛼mod/𝛼unmod of L10 FePt due to phonon modes at various commensurate q-

points. Larger amplitude and higher-frequency phonon mode generally result in the larger change in 

the magnitude of 𝛼mod/𝛼unmod. In particular, the high-frequency phonon mode at Γ point has always 

enhanced the damping, which may be a dominant contribution to the increase of damping at high 

temperatures in the Fig 5.8.  
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Fig 5.13. The amplitude dependence of damping for FePt compared at different commensurate at 

0.05 eV 
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Fig 5.14. The amplitude dependence of damping for FePt compared at different commensurate at 

0.05 eV 
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5.5. Summary 

I carried out a theoretical study of lattice dynamics effects on damping constants of L10-FePt at finite 

temperatures based on the Kambersky torque correlation model and the improved frozen thermal 

lattice disorder approach. Using the imaginary part of Fan-Migdal self-energy as the temperature-

dependent scattering rate, I showed the weak nonmonotonic behavior of temperature dependence of 

damping. As a result, the damping slightly increased at high temperatures due to the effect of atomic 

vibrations, although the magnitude is not as large as that of the spin fluctuation effect. Hence, our 

results rule out lattice dynamics as an exclusive origin of the observed temperature-induced reduction 

in the damping constant. Comparison with the reported experimental results emphasized the 

importance of extrinsic contribution on possible reduction of damping in L10-FePt granular media for 

HAMR application. Furthermore, I found that increase of the damping at high temperatures is due to 

the spin-flip (𝑆−𝐿𝑧) contribution, which can be enhanced by the larger impurity scattering rate. These 

results suggest that in practical applications the inclusion of impurities such as carbon and boron may 

suppress the observed reduction of the damping from extrinsic contribution at high temperature. 
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Chapter 6: Summary and Future Perspective 

Spin polarization and damping constant are considered to be two important properties to realize the 

better performance of read sensor and writing process in ultrahigh density magnetic recording. Since 

the application of recording devices are done in the finite temperature, understanding the temperature 

dependence behavior of these two properties are crucial. This thesis work was conducted to clarify 

the finite temperature effect on spin polarization and damping constant of prospective magnetic 

materials for MR devices and HAMR media, respectively. The results are summarized as follow: 

1. The temperature dependence of sp spin polarization Heusler alloys due to spin fluctuation depends 

on Curie temperature and location of Fermi level of the material. High Curie temperature is 

originated from interatomic exchange constant which provide slower decay of magnetic moments 

at finite temperature. Although magnetic moment is dominantly contributed by d electrons and 

reduces to zero at Curie temperature, the sp electrons can be affected via s-d and p-d coupling in 

the intraatomic orbitals. Therefore, large exchange constant will lead to slow decay of magnetic 

moments and small temperature dependence of sp spin polarization in Heusler alloys. On the other 

hand, temperature dependence can also be improved by the tuning stoichiometry ratio to shift the 

Fermi level position. However, this effect can be negligible if the Fermi level position is already 

quite distant from valence band or conduction band.  

2. Machine learning combined with finite temperature first principles calculation is successfully 

conducted. Based on the Bayesian optimization, general composition for the highly spin-polarized 

Heusler alloys at finite temperature is Co2Mn(ZyZ’1-y) and Co2Fe(ZyZ’1-y) with Z site can be 

occupied by varied elements. This could be explained by large exchange constant and superiority 

of Curie temperature of these Co2Mn- and Co2Fe- based compound, which experimentally 

demonstrated the Curie temperature as high as 1000 K based on Slater-Pauling rule. Machine 

learning also suggests several new compounds with high spin polarization at finite temperature 

such as Co2FeAlySn1-y, Co2MnGayAs1-y, and Co2FeGayIn1-y for various applications.  

3. The temperature dependence of intrinsic damping constant of L10 FePt due the lattice dynamics is 

nonmonotonic behavior with slight increase at high temperature, unlike rapid increase 

demonstrated by spin fluctuation effect. Therefore, possible reduction of damping of L10 FePt 

observed in recently reported experiment is due to the extrinsic effect. In addition, increase of the 

damping at high temperature is attributed to spin-flip contribution, which can be enhanced by the 

larger impurity scattering rate.  Phonon mode analysis also reveal the existence of two kind phonon 

mode that enhance or weaken the damping as origin of nonmonotonic behavior of damping.  
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Lastly, I would like to mention several important suggestions for future perspectives on experimental 

and theoretical work.   

Since the large exchange constant are crucial to obtain small temperature dependence of sp spin 

polarization, the highly spin-polarized Co2MnZ and Co2FeZ based Heusler composition are optimal 

choice for ferromagnetic electrode in the magnetoresistive devices due to their high Curie temperature 

(> 1000 K). While it is unlikely to find other Heusler alloys with higher Curie temperature, Fermi 

level tuning by mixing two different atoms for Z site can be another way to improve the temperature 

dependence of sp spin polarization. Although Fermi level tuning are thoroughly investigated and 

experimentally confirmed, the focus of atom combination is mostly on adjacent elements at periodic 

table. On the other hand, machine learning results show that combination with Z elements such as P, 

As, Sb, Sn, In, open the unexplored area to obtain the new materials with superior properties. These 

results also encouraged the further systematic investigation on effect mixing various Z elements. 

On the other hand, the intrinsic damping constant of L10 FePt is found to be slightly increasing at 

finite temperature due to lattice vibration. Since the damping also inversely proportional with 

magnetization, it is also expected to increase near Curie temperature. These results imply that intrinsic 

damping constant of L10 FePt always increase at high temperature. Therefore, the remaining problem 

is to minimize the extrinsic contribution as possible reason behind the rapid reduction of damping 

constant. Since the spin-flip contribution to damping high temperature can be enhanced by impurity 

scattering rate, adding impurities into L10 FePt might be useful to suppress the reduction of damping 

due to extrinsic damping. This could be done via doping of atoms into L10 FePt recording media. 

Small atoms such carbon and boron can be considered as options for this doping. 

In terms of theoretical framework, I successfully combined machine learning with the finite 

temperature first principles calculation. This attempt prove that machine learning can be incorporated 

to optimize the real example of expensive black box function such as evaluating spin polarization at 

finite temperature. One may consider to implement this framework to obtain the magnetic materials 

with another superior properties at finite temperature for broader applications. On the other hand, due 

to the computational cost, the finite temperature effect (spin fluctuation and lattice vibration) is 

separately considered in this study for spin polarization and damping constant, respectively. In reality, 

those effects simultaneously happen on the magnetic materials at room temperature, therefore further 

study to efficiently combine these effects are needed. Moreover, in some cases, the lattice expansion 

cannot be neglected. Coupling between spin and phonon degrees of freedom would be considered as 

better approach to picture the magnetic system at finite temperature.  
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