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1 Introduction

One of the approaches of the quantum theory of gravity or the theory of everything is string

theory. String theory is a theory in which the fundamental constituents of the universe are one-

dimensional strings rather than zero-dimensional point particles. This simple modification makes

a huge difference from theories of fundamental point particles. The spectrum of a single first-

quantized string contains various different types of states with particular masses and spins. More

surprisingly, there is a particular state corresponding to the graviton, which is a quantum of

gravitational interaction, and the string theory is naturally incorporate the quantum theory of

gravity.

Various studies of superstring theory and M-theory [1–3] suggests that the noncommutative

geometry may play an essential role in the description of spacetime in Planck scale. In the Einstein’s

classical theory of gravity, we assume that the spacetime is a smooth manifold, which means that

the spacetime coordinates are a set of real numbers. On the contrary, in the noncommutative

geometry, we assume that the spacetime coordinates are noncommutative operators on a suitable

Hilbert space. When the Hilbert space is finite-dimensional, the spacetime coordinates are finite

dimensional square matrices. We call this kind of noncommutative geometry as fuzzy geometry or

matrix geometry and it is deeply related to matrix models of superstring theory and M-theory.

In the study of the fuzzy geometry, a theory called the matrix regularization [4] plays an essen-

tial role to uncover the relationship between the commutative geometry and the fuzzy geometry.

The matrix regularization is a map from functions on a manifold to corresponding matrices on a

fuzzy geometry. Using this map, one can construct a matrix model of superstring theory (or M-

theory) from a world-sheet theory of a single string (or world-volume theory of a single membrane).

Therefore, this theory is important to study the relationship between string (or a membrane) states

to the corresponding matrix states. Let us briefly discuss a mathematical aspect of matrix regu-

larization. Let us consider a symplectic manifold (M,ω), which is an even-dimensional manifold

equipped with a nondegenerate closed two-form ω. Let 2n be the dimension of M . From the

symplectic structure ω, one can naturally define a volume form µω := ω∧n/n! and the Poisson

bracket {f, g} = Xfg. Here, f, g are smooth functions on M and Xf is the Hamiltonian vector

field. In this sense, a symplectic manifold is a mathematical generalization of the phase space.

Now, let us also assume M is closed, i.e. M is a compact manifold without boundary. Then, the

matrix regularization is defined as a sequence of linear maps Tp : C∞(M,C) → MNp
(C) satisfying
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the following axioms [5]:

lim
p→∞

|Tp(f)Tp(g)− Tp(fg)| = 0, (1.1)

lim
p→∞

|(i~p)−1[Tp(f), Tp(g)]− Tp({f, g})| = 0, (1.2)

lim
p→∞

(2π~p)
nTrTp(f) =

∫

M

µωf. (1.3)

Here, p is an integer, C∞(M,C) is the set of smooth complex functions, {Np} is a sequence of

strictly increasing integers, ~p = (2πp)−1, and | · | is a matrix norm. In this sense, the matrix

regularization is an analog of the quantization of a classical phase space. From these relations, one

can derive the matrix models from the worldvolume actions of a membrane or a string [4].

For a Kähler manifold M , the existence of the map Tp satisfying (1.1), (1.3) and (1.3) is known

and one of the construction of such maps is known as a Berezin-Toeplitz quantization [6]. A Kähler

manifold is a special type of symplectic manifold equipped with an integrable complex structure and

Riemannian structures with some compatibility condition. From the integral complex structure,

one can define a finite dimensional Hilbert space H as a space of square integrable holomorphic

sections of some line bundle L⊗p. Let Π be the orthogonal projection from the space of all sections

of L⊗p to H. Then, the Toeplitz operator of f defined by Tp(f) := ΠfΠ is shown to satisfy

all the properties of the matrix regularization. For a general symplectic manifold, where the

complex structure is not necessarily integrable, there is a method called spinc Berezin-Toeplitz

quantization [7,8]. From an almost complex structure, one can construct suitable spinor fields and

corresponding Dirac operator with finite dimensional kernel. Then, the spinc Toeplitz operator

defined by Tp(f) := ΠfΠ, where Π is the projection from a space of suitable spinor fields to the

kernel of the Dirac operator, is shown to satisfy all the properties of the matrix regularization.

In this dissertation, we summarize a series of studies of the spinc Berezin-Toeplitz quantization

of vector bundles over a general closed Kähler manifold [9,10] (similar problems are also considered

in [11, 12]). We define the spinc Toeplitz operator of a section of a Hermitian vector bundle and

derive a large-p asymptotic expansion of the product of two Toeplitz operators Tp(s)Tp(t) for any

sections s, t up to the first order in ~p. From this expansion, we obtain some of the important

relations of the Toeplitz operators, including a generalization of (1.1), (1.3) and (1.3). In our frame-

work, we give explicit two examples of monopole bundles and tensor bundles. As a first example,

we study the matrix regularization of monopole bundles over a complex projective space CP
n [10]

and one-dimensional complex torus T
2
τ [13]. This study is important to describe membranes (or

strings) with monopole charges. As a second example, we study the matrix regularization of tensor

bundles [14]. This study is important to describe various tensor fields over a fuzzy manifold, which

are essential for gauge theories and gravitational theories.

The organization of this dissertation is as follows. In section 2, we review a few essential

mathematical notions which are necessary to define the spinc Berezin-Toeplitz quantization of
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vector bundles. In section 3, we study the Berezin-Toeplitz quantization for general vector bundles

and derive important properties from the asymptotic expansion. In section 4 and 5, we consider

Berezin-Toeplitz quantization of monopole bundles over CPn and T
2
τ , respectively. In section 6, we

consider Berezin-Toeplitz quantization of tensor bundles over a Kähler manifold and give a simple

example of the Berezin-Toeplitz quantization of vector fields on the square torus T
2
τ=i. In section

7, we give a summary of this dissertation and discuss the future problems. In Appendix A, we

summarize some of the notations and definitions of basic mathematical terms, which are extensively

used in this dissertation. In Appendix B, we review the M-theory [15] and its connection to the

BFSS matrix model [1, 16]. In Appendix C, we derive the BFSS matrix model using the matrix

regularization of a single M2-brane [4].
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2 Mathematical Preliminaries

In this section, we summarize basic mathematical techniques used for the studies of spinc Berezin-

Toeplitz quantization.

2.1 Symplectic Geometry

In this subsection, we review the basic properties of the symplectic geometry. A comprehensive

reference of this topic can be found for example in [17].

It is well-known that the classical theory in Hamiltonian formalism is naturally described in the

language of symplectic geometry. As we will see below, the symplectic manifold is thought of as a

generalization of the phase space of the classical system. Thus, we can expect that the notion of

quantization is defined for a general symplectic manifold. As we will see later, the Berezin-Toeplitz

quantization, which is the main topic of this dissertation, is a quantization of a compact symplectic

manifold.

Let us first give a definition of a symplectic manifold.

Definition 1. Let M be an even-dimensional differentiable manifold. A symplectic structure or

a symplectic form ω on M is defined as a closed nondegenerate differential two-form:

dω = 0, ∀u ∈ TMx : ωx(u, v) = 0 ⇒ v = 0 ∈ TMx,

at each point x ∈M . Here, d is the exterior derivative, TM is the tangent bundle of M and TMx

is the tangent vector space at point x ∈M . The pair (M,ω) is then called a symplectic manifold.

The symplectic structure can be defined only for even-dimensional manifolds because of the

following logic. Let A be a skew-symmetric matrix with size d. Then, we have detA = detAT =

det(−A) = (−1)d detA. If d is odd, then detA is automatically zero and thus A should be

degenerate. Since ω is closed, one can locally write it as ω = dθ for some one-form θ called the

symplectic potential. Now, let us give several important examples of the symplectic manifolds.

Example 2.1 . Let us consider the even-dimensional Euclidean space R
2n with the standard coor-

dinate system {q1, q2, · · · qn, p1, p2, · · · , pn}. One can prove that the two-form

ω :=
n∑

i=1

dpi ∧ dqi

defines a symplectic structure on R
2n. Here, ∧ is the exterior product of forms. In classical

mechanics, a system of a particle moving in an n-dimensional Euclidean space R
n is described by

the phase space R
2n = T ∗

R
n, whose coordinates {q1, q2, · · · qn, p1, p2, · · · , pn} specify the particle’s

position and its conjugate momentum.
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Example 2.2 . Let X be an n-dimensional differentiable manifold. The cotangent bundle T ∗X is

a 2n-dimensional noncompact differentiable manifold. Let {q1, q2, · · · , qn} be a local coordinate

system of a patch U ⊂ X. Any element φ ∈ T ∗Mx can be uniquely written by φ =
∑n

i=1 pidq
i for

some real numbers {p1, p2, · · · , pn}. Then, one can define a coordinate system of π−1(U) ⊂ T ∗X

by {q1, q2, · · · qn, p1, p2, · · · , pn}. This coordinate system is called the standard coordinate system

of T ∗X. On the cotangent bundle T ∗X, there exists a one-form θ, locally written by

θ =
n∑

i=1

pidqi,

in the standard coordinates. Without using the local coordinates, θ is defined as θα(V ) :=

α(π∗(V )), where α ∈ T ∗X, V ∈ T (T ∗X)α and π∗ : T (T ∗X) → TX is a projection derived

from the bundle projection π : T ∗X → X. The one-form θ is called the canonical one-form on the

cotangent bundle T ∗X. Then, one can define the canonical two-form

ω := dθ =
n∑

i=1

dpi ∧ dqi,

which induces a symplectic structure on T ∗X. In classical mechanics, a system of a particle moving

in X is described by a point in the phase space T ∗X. This means that the phase space in general

has a natural symplectic structure.

In these two examples, the manifolds we considered are noncompact. In the theory of matrix

regularization, we are mainly interested in compact symplectic manifolds. Some examples of the

compact symplectic manifolds are the complex projective space CPn and the one-dimensional torus

T
2
τ . These manifolds will be considered in section 4 and 5 and we will not deal these manifolds in

this section.

For a general 2n-dimensional symplectic manifold (M,ω), there exists a useful local coordinate

system called the canonical coordinate system {qi, pi}ni=1 such that the symplectic form takes the

following form:

ω =
n∑

i=1

dpi ∧ dqi.

This is a consequence of the Darboux theorem and the canonical coordinate system is sometimes

called the Darboux coordinate system.

Now, let us consider some of the important properties of the general symplectic manifolds.

From the nondegeneracy of ω, there is a linear isomorphism from the tangent vector space TMx

to the cotangent vector space T ∗Mx by v 7→ ιvω. Here, ιu is the interior product with a tangent

vector u ∈ TMx defined by

∀vi ∈ TMx : (ιuα)(v1, v2, · · · , vp−1) = α(u, v1, v2, · · · , vp−1), (2.1)
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for a p-form α. In this sense, the symplectic structure can be thought of as a skew-symmetric

analog of the Riemannian structure. Using this isomorphism, one can define a class of special

tangent vector fields which play an essential role in the symplectic geometry.

Definition 2. Let (M,ω) be a symplectic manifold and C∞(M,R) be a set of smooth real functions

on M . For f ∈ C∞(M,R), the Hamiltonian vector field of f denoted by Xf is uniquely defined by

the relation

ιXf
ω = df. (2.2)

Let us discuss the basic properties of the Hamiltonian vector fields. In the canonical coordinate

system {qi, pi}, one can locally write

Xf =
∑

i

(
∂f

∂qi
∂

∂pi
− ∂f

∂pi
∂

∂qi

)
.

By acting Xf on a smooth function g, we have a local expression

Xfg =
∑

i

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi
∂g

∂qi

)
,

which is the familiar Poisson bracket appearing in the classical mechanics. Thus, it is natural to

consider the following structure in the coordinate free manner.

Definition 3. Let (M,ω) be a symplectic manifold. We define the Poisson bracket {·, ·} :

C∞(M,R)× C∞(M,R) → C∞(M,R) by

{f, g} := Xfg, (2.3)

for f, g ∈ C∞(M,R).

Proposition 2.3. The Poisson bracket defined above satisfies the following set of properties:

Skew-symmetry

{f, g} = −{g, f},

Bilinear

{f, ag + bh} = a{f, g}+ b{f, h},

Leibniz’s rule

{f, gh} = g{f, h}+ {f, g}h,

Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,
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for any f, g, h ∈ C∞(M,R) and a, b ∈ C.

Proof. The first property immediately follows from {f, g} = Xfg = ιXf
dg = ιXf

ιXg
ω = −ω(Xf , Xg).

The second and the third properties are also easily derived from the linarity and Leibniz rule of

vector fields. The Jacobi identity is actually equivalent to the condition dω = 0. Let us use the

identity

dα(u, v, w) = uα(v, w) + vα(w, u) + wα(u, v)− α([u, v], w)− α([v, w], u)− α([w, u], v), (2.4)

which holds for any vectors u, v, w and any two-form α. This can be obtained from the Cartan

homotopy formula,

Lu = dιu + ιud, (2.5)

and other identities

ιuιv + ιvιu = 0, ι[u,v] = Luιv − ιvLu.

Here, Lu is the Lie derivative. Then, we have

dω(Xf , Xg, Xh) = Xfω(Xg, Xh) +Xgω(Xh, Xf ) +Xhω(Xf , Xg)

− ω([Xf , Xg], Xh)− ω([Xg, Xh], Xf )− ω([Xh, Xf ], Xg)

= −{f, {g, h}} − {g, {h, f}} − {h, {f, g}}+ [Xf , Xg]h+ [Xg, Xh]f + [Xh, Xf ]g.

Here,

[Xf , Xg]h+ [Xg, Xh]f + [Xh, Xf ]g

= {f, {g, h}} − {g, {f, h}}+ {g, {h, f}} − {h, {g, f}}+ {h, {f, g}} − {f, {h, g}}
= 2({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}).

Hence, we obtain

dω(Xf , Xg, Xh) = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}},

for any f, g, h and the Jacobi identity is satisfied if and only if ω is closed.

This shows that (C∞(M,R), {·, ·}) form a Lie algebra called the Poisson algebra. Note that the

Jacobi identity implies

[Xf , Xg] = X{f,g}. (2.6)

This shows that the map f 7→ Xf induces a Lie algebra homomorphism.

Let us comment two other important properties of the Hamiltonian vector fields.

First, from (2.5), it is easy to see that the Hamiltonian vector fields preserve the symplectic

structure:

LXf
ω = dιXf

ω + ιXf
dω = d2f = 0.
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This implies that the Hamiltonian vector fields generates a symplectomorphism, which is a dif-

feomorphism preserving the symplectic structure. In general, the vector fields preserving ω are

locally written by the Hamiltonian vector fields. To see this, let u be a vector field and impose the

condition Luω = 0. Then, from (2.5), this condition is equivalent to ιuω being closed. Since any

closed form is locally exact, there exist a local function f such that u = Xf . In particular, in the

case where the manifold M is simply connected, any closed form is globally exact, and therefore

any vector fields preserving ω are given by the Hamiltonian vector fields.

Secondly, let us consider the Hamilton formalism of classical mechanics. A particle’s state at a

specific time is specified by its position and momentum. In general, a particle’s state changes as

time elapses. The motion of a particle is thus specified by a curve on a symplectic manifold M ,

where time play as a parameter of the curve. Let us consider the simplest case of a phase space

(R2n, ω =
∑n

i=1 dp
i ∧ dqi). The Hamiltonian mechanics, there exists a special function H on R2n

called the Hamiltonian (We here assume that the Hamiltonian is time independent.). Then, the

particle’s trajectory in the phase space {qi(t), pi(t)} is characterized by the Hamilton’s equation

d

dt
qi(t) =

∂H

∂pi
(qi(t), pi(t)),

d

dt
pi(t) = −∂H

∂qi
(qi(t), pi(t)).

More elegantly, for a smooth function f(qi, pi), which corresponds to some physical observables,

we have
d

dt
f(qi(t), pi(t)) = −{H, f}(qi(t), pi(t)) = −XHf(q

i(t), pi(t)).

This shows that the particle’s trajectory is the flow generated Hamiltonian vector field of the

Hamiltonian.

Finally, there is a natural volume form defined on a symplectic manifold.

Definition 4. Let (M,ω) be a 2n-dimensional symplectic manifold. The Liouville volume form

µω is defined by

µω =
ω∧n

n!
, (2.7)

where ω∧n denotes n-fold exterior product.

The Liouville form is a volume form on M , meaning that µω is a nowhere vanishing 2n-form,

due to the nondegeneracy of ω. In the canonical coordinate system {qi, pi}ni=1, the Liouville form

is written as

µω = dq1 ∧ dp1 ∧ dq2 ∧ dp2 ∧ · · · ∧ dqn ∧ dpn,

which is evidently nowhere vanishing. From the definition of the Liouville form, we can see that

the Hamiltonian vector field Xf preserves the Liouville volume form LXf
µω = 0 known as the

Liouville theorem. The volume form induces a measure on the space of functions on M , which

allows the integration of functions.

10



2.2 Prequantum line bundle

In this subsection, we introduce a line bundle called the prequantum line bundle.

The prequantum line bundle plays an important role in various schemes of quantization of

symplectic manifold, such as the geometric quantization [18], and the Berezin-Toeplitz quantization

[6, 7].

Definition 5. Let M be a differentiable manifold and L be a complex Hermitian line bundle over

M . Let ∇L be a Hermitian connection with respect to the Hermitian inner product. L is called

the prequantum line bundle if the first Chern class of L denoted as c1(L) is a symplectic form on

M . Here, the first Chern class of L is defined by

c1(L) =
i

2π
RL,

where RL := (∇L)2 is the curvature of L and i is the imaginary unit.

Note that the first Chern class is in the second integer cohomology [α] ∈ H2(M,Z), i.e. for any

two-dimensional submanifold Σ ⊂M ,

∫

Σ

c1(L) ∈ Z.

Thus, the existence of such a line bundle can be paraphrased by the existence of a symplectic form

ω which belong to the integer cohomology class H2(M,Z). A manifold allowing such a structure

is called quantizable.

Now, let us discuss how the notion of prequantum line bundle arises in the theory of quanti-

zation. Let (M,ω) be a symplectic manifold. In the Dirac quantization axiom, the quantization

map Q : C∞(M,C) → End(H) is a map satisfying the following set of axioms:

1. Q(af + bg) = aQ(f) + bQ(g),

2. Q(1) = 1H,

3. Q(f)∗ = Q(f̄),

4. Q({f, g}) = (i~)−1[Q(f), Q(g)],

5. If {fi} is complete, {Q(fi)} is complete,

for any f, g ∈ C∞(M,C) and a, b ∈ C. Here, (·)∗ denotes the adjoint with respect to the Hermitian

inner product on H and f̄ denotes the complex conjugate of f . Also, a set of functions {fi} is

called complete if ∀i : {fi, f} = 0 ⇒ f = const. and a set of operators {Fi} is called complete if
∀i : [Fi, F ] = 0 ⇒ F = const.×1H. As shown by Groenewold and Van Hove, there is no such map
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Q which satisfy all of the conditions given above. However, we can construct a map satisfying all

the conditions except for the last requirement 5. This is called the prequantization. As we will see

below, we can construct the prequantization map using the prequantum line bundle L.

As a first guess, the Lie algebra homomorphism of the Hamiltonian vector fields (2.6) motivates

us to consider a map

Q1(f) = i~Xf ,

which acts on the space of smooth functions. This map obviously satisfies the axiom 1,3 and 4,

but the condition 2 is not satisfied. Then, let us consider a map

Q2(f) = i~Xf + f

as a second guess. This map satisfies the axiom 1,2 and 3. Let us check whether the condition 4

is satisfied. Unfortunately, this map fails to satisfy the condition 4:

[Q2(f), Q2(g)] = [i~Xf + f, i~Xg + g] = (i~)2X{f,g} + i~2{f, g} = i~Q2({f, g}) + i~{f, g}.

Let us assume that the prequantization map is of the form

Q3(f) = Q2(f) +R(f),

where R(f) will be determined below. First, R should be linear and hence we expect that R(f)

contains terms which are first order in f and Xf . Secondly, due to the constraint R(1) = 0, we

expect R(f) should be first order in Xf . Thus, we expect that R(f) is of the form

R(f) = gXf + α(Xf ),

for some function g and a one-form α. For a general symplectic manifold (M,ω), one cannot

introduce specific functions or one-forms constructed solely by the symplectic form ω. This implies

that g is a constant and α = 0. As one can readily check, the map Q3(f) = Q2(f) + aXf does

not satisfy the condition 4 for any complex constant a. However, there is a symplectic potential

θ, which is a locally defined one-form satisfying ω = dθ. Thus, one can locally consider

Q(f) = ia(Xf + ibθ(Xf )) + f.

Here, a and b are some constant, which are real due to the axiom 3. Let us introduce an operator

∇u = u+ ibθ(u) for a tangent vector u. Then, Q(f) is written by

Q(f) = ia∇Xf
+ f.

Using the identity [∇u,∇v]−∇[u,v] = R(u, v), where R = ibdθ = ibω, one finds

[Q(f), Q(g)] = (ia)2[∇Xf
,∇Xg

] + i2a{f, g}
= (ia)2ibω(Xf , Xg) + (ia)2∇[Xf ,Xg ] + i2a{f, g}
= −(ia)2ib{f, g}+ (ia)2∇{f,g} + i2a{f, g}
= iaQ({f, g}) + ia(ab+ 1){f, g}.

12



Thus, by taking a = ~, b = −~
−1, the prequantization map Q satisfies all the desired properties.

Note that the symplectic potential θ is only defined for some local patch and there is an arbitrariness

θ 7→ θ + dh, for any smooth function h. This motivates us to consider a line bundle L whose

connection is locally written as ∇ and correspondingly the curvature is RL = −i~−1ω. In this

sense, Q should be considered as an operator on sections of L rather than functions.

2.3 Canonical spinc structure

In this subsection, we define the canonical spinc bundle from an almost complex structure and its

compatible metric on a manifold. The sections of this bundle are complex spinor fields with an

particular U(1) connection. References of this topic can be found in [8, 19].

First, let us define an almost complex structure.

Definition 6. LetM be an even-dimensional differentiable manifold. An almost complex structure

J on M is defined as a linear map Jx : TMx → TMx at every point x ∈M such that

(Jx)
2 = −1TMx

.

Here, 1TMx
is the identity map on TMx. The pair (M,J) is then called an almost complex manifold.

Note that the almost complex structure is defined only for even dimensional manifolds because

(det Jx)
2 = det(J2

x) = det(−1TMx
) = (−1)dimM ≥ 0.

Now, let us discuss the splitting of the complexified tangent vector space TMx ⊗ C using the

almost complex structure Jx. From (Jx)
2 = −1TMx

, the eigenvalues of Jx acting on the complex

vector space TMx ⊗ C are ±i, where i is the imaginary unit. Thus, we can define a splitting

TMx ⊗ C = T (1,0)Mx ⊕ T (0,1)Mx according to the eigenvalues +i,−i, respectively. Note that the

complex conjugation ·̄ : TMx ⊗ C → TMx ⊗ C maps v ∈ T (1,0)Mx to v̄ ∈ T (0,1)Mx and vice

versa. This implies that the each vector space T (1,0)Mx, T
(0,1)Mx is isomorphic to each other under

the complex conjugation. Consequently, we can consider the splitting of the complexified tangent

vector bundle

TM ⊗ C = T (1,0)M ⊕ T (0,1)M,

and the corresponding dual bundle decomposition

T ∗M ⊗ C = T ∗(1,0)M ⊕ T ∗(0,1)M.

Let us consider the exterior algebra bundle Λ(T ∗(0,1)M) =
⊕dimM/2

k=0 Λk(T ∗(0,1)M). We introduce

a notation

Λ0,• := Λ(T ∗(0,1)M), Λ0,k := Λk(T ∗(0,1)M), Λ0,even :=
⊕

k:even

Λ0,k, Λ0,odd :=
⊕

k:odd

Λ0,k. (2.8)
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The bundle Λ0,• = Λ0,even⊕Λ0,odd is the fundamental Z2 bundle, which induces the spinc structure

on M . Let us define a Clifford action on Λ0,•. Before doing so, we first introduce a notion of

compatible metric.

Definition 7. Let (M,J) be an almost complex manifold. A Riemannian metric g on M , which

is a positive-definite inner product of tangent vectors gx : TMx × TMx → R is called compatible

with J if
∀u, v ∈ TMx : gx(Jxu, Jxv) = gx(u, v),

at each point x ∈M .

Then, we can introduce a Clifford action on Λ0,• as follows.

Definition 8. The Clifford action of u ∈ TMx ⊗ C on Λ0,•
x is defined by

c(u) :=
√
2
(
ū(1,0)∗ ∧ −ιu(0,1)

)
. (2.9)

Here, the complexified tangent vector u is decomposed as u = u(1,0) + u(0,1) ∈ T (1,0)Mx ⊕ T (0,1)Mx

and ū(1,0)∗ is defined by ∀v ∈ TMx : gx(u
(1,0), v) = ū(1,0)∗(v), using the compatible metric g. The

interior product with a complexified vector u(1,0) is defined similarly as in (2.1).

Note that the map c(u) interchanges the Z2-grading, that is, c(u) maps elements of Λ0,even
x to

Λ0,odd
x and vice versa. Now, let us prove the following proposition.

Proposition 2.4. The Clifford action defined in (2.9) satisfies

c(u)c(v) + c(v)c(u) = −2〈u, v〉, (2.10)

for any u, v ∈ TMx ⊗ C. Here, we defined 〈u, v〉 := gx(u, v).

Proof. First, let us evaluate the left-hand side. By expanding c(u)c(v), we obtain

c(u)c(v) = 2ū(1,0)∗ ∧ v̄(1,0)∗ ∧ −2ū(1,0)∗ ∧ ιv(1,0) − 2ιu(0,1) v̄(1,0)∗ ∧+2ιu(1,0)ιv(1,0) .

The first and the forth term is skew-symmetric under the exchange of u and v. Hence, we have

c(u)c(v) + c(v)c(u) = −2ū(1,0)∗ ∧ ιv(0,1) − 2ιu(0,1) v̄(1,0)∗ ∧ −2v̄(1,0)∗ ∧ ιu(0,1) − 2ιv(0,1)ū
(1,0)∗ ∧ .

Let us use the identity

ιw(α ∧ β) = (ιwα) ∧ β + (−1)pα ∧ (ιwβ),

for any tangent vector w, p-form α and q-form β. Then, we have

c(u)c(v) + c(v)c(u) = −2ū(1,0)∗(v(0,1))− 2v̄(1,0)∗(u(0,1)) = −2(gx(u
(1,0), v(0,1)) + gx(v

(1,0), u(0,1))).
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For the right-hand side, by using the assumption that g is compatible with J , one can show

〈u, v〉 = gx(u, v) =
1

2
(gx(u, v) + gx(Jxu, Jxv))

=
1

2
(gx(u

(1,0) + u(0,1), v(1,0) + v(0,1))− gx(u
(1,0) − u(0,1), v(1,0) − v(0,1)))

= gx(u
(1,0), v(0,1)) + gx(v

(1,0), u(0,1)).

Thus, we have (2.10).

Let dimM = 2n. Let {wi}ni=1 be an orthonormal frame of T (1,0)M and {wi}ni=1 be its dual

frame. Then, one can take an orthonormal frame of TM by

e2i−1 =
1√
2
(wi + w̄i), e2i =

i√
2
(wi − w̄i).

For wi and its complex conjugate w̄i, the Clifford action is given by

c(wi) =
√
2w̄i∧, c(w̄i) = −

√
2ιw̄i

. (2.11)

This shows that the combination c(wi1)c(wi2) · · · c(wij)1 for 1 ≤ i1 < i1 < · · · < ij ≤ n form a

frame of Λ0,•. Here, 1 ∈ Λ0,• and j runs from 0 to n. Also, by introducing the Hermitian inner

product on Λodd(T ∗(0,1)M) induced from the compatible metric g, one can show

c(wi)
∗ = −c(w̄i), c(w̄i)

∗ = −c(wi),

where (·)∗ denotes the adjoint with respect to the Hermitian inner product. Correspondingly, we

have

c(ei)
∗ = −c(ei). (2.12)

Let us define the Clifford connection on Λ0,•.

Definition 9. Let (M,J) be a 2n-dimensional almost complex manifold with compatible metric g.

Let ∇TM be the Levi-Civita connection on TM , i.e. the unique torsion-free connection satisfying

∇T ∗M⊗T ∗Mg = 0. Then, the Clifford connection ∇Λ0,•
on Λ0,• is defined by

∇Λ0,•

:= d +
1

4

2n∑

i,j=1

〈ΓTMei, ej〉c(ei)c(ej) +
1

2
Γdet. (2.13)

Here, ΓTM is the connection one-form ∇TMei = ΓTMei and Γdet is the connection one-form of the

determinant bundle det(T (1,0)M) := Λn(T (1,0)M), that is,

∇det(w1 ∧ w2 ∧ · · · ∧ wn) = Γdet(w1 ∧ w2 ∧ · · · ∧ wn) =
n∑

i=1

〈ΓTMwi, w̄i〉(w1 ∧ w2 ∧ · · · ∧ wn).
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One can also write

∇Λ0,•

= d−
n∑

i,j=1

〈ΓTM w̄i, wj〉w̄i∧ιw̄j
+
1

2

n∑

i,j=1

〈ΓTMwi, wj〉ιw̄i
ιw̄j

+
1

2

n∑

i,j=1

〈ΓTM w̄i, w̄j〉w̄i∧w̄j∧. (2.14)

Note that the Clifford connection preserves the Z2-grading of Λ0,•. The Clifford connection has

the following property.

Proposition 2.5. For any u, v ∈ TMx ⊗ C,

[∇Λ0,•

u , c(v)] = c(∇TM
u v). (2.15)

Proof. The only noncommuting part is

[∇Λ0,•

u , c(v)] =
1

4

∑

i,j

〈ΓTM(u)ei, ej〉[c(ei)c(ej), c(v)].

Using the commutator and the skew-commutator relation [AB,C] = A{B,C} − {A,C}B, which

holds for any linear operators A,B,C, we have

[∇Λ0,•

u , c(v)] =
1

4

∑

i,j

〈ΓTM(u)ei, ej〉(c(ei){c(ej), c(v)} − {c(ei), c(v)}c(ej)

= −1

2

∑

i,j

〈∇TM
u ei, ej〉(c(ei)〈ej, v〉 − 〈ei, v〉c(ej))

= c(∇TM
u v).

Here, we used 〈∇TM
u ei, ej〉 = u〈ei, ej〉 − 〈ei,∇TM

u ej〉 = −〈ei,∇TM
u ej〉 and

∑
j〈v, ej〉ej = v.

Finally, let us close this subsection by calculating the curvature of the connection ∇Λ0,•
.

Proposition 2.6. The curvature RΛ0,•
:= (∇Λ0,•

)2 is given by

RΛ0,•

=
1

4

∑

i,j

〈RTMei, ej〉c(ei)c(ej) +
1

2
Rdet. (2.16)

Here, Rdet = (∇det)2 = dΓdet is the curvature of det(T (1,0)M)

Proof. From (2.13), we have

RΛ0,•

=

(
d +

1

4

∑

i,j

〈∇TMei, ej〉c(ei)c(ej) +
1

2
Γdet

)2

=
1

4

∑

i,j

d〈∇TMei, ej〉c(ei)c(ej) +
1

16

∑

i,j,k,l

〈∇TMei, ej〉〈∇TMek, el〉c(ei)c(ej)c(ek)c(el) +
1

2
Rdet.
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For the first term, we have

1

4

∑

i,j

d〈∇TMei, ej〉c(ei)c(ej) =
1

4

∑

i,j

〈(∇TM)2ei, ej〉c(ei)c(ej)−
1

4

∑

i,j

〈∇TMei,∇TMej〉c(ei)c(ej)

=
1

4

∑

i,j

〈RTMei, ej〉c(ei)c(ej)−
1

4

∑

i,j

〈∇TMei,∇TMej〉c(ei)c(ej).

Using the commutator and the skew-commutator relations [AB,C] = A[B,C]+[A,C]B = A{B,C}−
{A,C}B for any linear operators A,B,C, we have

[c(ei)c(ej), c(ek)c(el)] = c(ei)[c(ej), c(ek)c(el)] + [c(ei), c(ek)c(el)]c(ej)

= −c(ei)c(ek){c(ej), c(el)}+ c(ei){c(ej), c(ek)}c(el)
− c(ek){c(ei), c(el)}c(ej) + {c(ei), c(ek)}c(el)c(ej)

= 2δjlc(ei)c(ek)− 2δjkc(ei)c(el) + 2δilc(ek)c(ej)− 2δikc(el)c(ej).

Thus, the second term can be written as

1

16

∑

i,j,k,l

〈∇TMei, ej〉〈∇TMek, el〉c(ei)c(ej)c(ek)c(el)

=
1

32

∑

i,j,k,l

〈∇TMei, ej〉〈∇TMek, el〉[c(ei)c(ej), c(ek)c(el)]

=
1

16

∑

i,j,k

〈∇TMei, ej〉〈∇TMek, ej〉c(ei)c(ek)−
1

16

∑

i,j,l

〈∇TMei, ej〉〈∇TMej, el〉c(ei)c(el)

+
1

16

∑

i,j,k

〈∇TMei, ej〉〈∇TMek, ei〉c(ek)c(ej)−
1

16

∑

i,j,l

〈∇TMei, ej〉〈∇TMei, el〉c(el)c(ej)

=
1

4

∑

i,j

〈∇TMei,∇TMej〉c(ei)c(ej).

Therefore, we obtain (2.16).

2.4 Spinc Dirac operator

Now, let us define a spinc Dirac operator. Most of the propositions and theorems given in this

subsection can be found in [8].

Definition 10. Let (M,J) be an almost complex manifold. Let g be a compatible metric and

(E, hE) be a Hermitian vector bundle over M with a Hermitian connection ∇E. Let C∞(M,F )

denote a space of smooth sections of a vector bundle F over M . We define a spinc Dirac operator

acting on C∞(M,Λ0,• ⊗ E) by

DE =
∑

i

c(ei)∇Λ0,•⊗E
ei

, (2.17)
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where ∇Λ0,•⊗E = ∇Λ0,• ⊗ 1E + 1Λ0,• ⊗∇E.

To show the self-adjointness of DE, let us consider the following. Let (M, g) be a d-dimensional

Riemannian manifold and let µg be the Riemannian volume form locally given by

µg =
√
det g dx1 ∧ dx2 ∧ · · · ∧ dxd, (2.18)

using the local coordinates {xi}. Let (F, hF ) be a Hermitian vector bundle overM with a Hermitian

connection ∇F . We define a Hermitian inner product on C∞(M,F ) by

(s, t) :=

∫

M

µg(x)h
F (s(x), t(x)), (2.19)

and the divergence of a vector field u ∈ C∞(M,TM) by

(div u)(x) :=
∑

i

〈∇TM
ei

u, ei〉x.

Then, we have the following proposition.

Proposition 2.7. The adjoint of the connection (∇F
u )

∗ is given by

(∇F
u )

∗ = −∇F
u − div u. (2.20)

Proof. From the definition, we have

(∇F
u s, t) =

∫

M

µg h
F (∇F

u s, t) =

∫

M

µg u(h
F (s, t))−

∫

M

µg h
F (s,∇F

u t)

=

∫

M

Lu(µg h
F (s, t))−

∫

M

(Luµg)h
F (s, t)−

∫

M

µg h
F (s,∇F

u t).

Using (2.5), we can show that the first term vanishes because of d(µg h
F (s, t)) = 0, the Stokes’

theorem
∫
M
d(· · · ) =

∫
∂M

(· · · ) and the assumption ∂M = ∅. The second term can be evaluated

as follows. Let {ei} be the dual orthonormal frame of T ∗M . Then, one obtains

Luµg = Lu(e
1 ∧ e2 ∧ · · · ∧ ed) =

∑

i

((Lue
i)(ei))µg = −

∑

i

〈ei,Luei〉µg.

Here, we used Lu(α(v)) = (Luα)(v) + α(Luv) for any one-form α and any vector v. Using Luv =

[u, v] = ∇TM
u v −∇TM

v u and 〈∇TM
u ei, ei〉 = −〈ei,∇TM

u ei〉 = 0, one finds

Luµg =
∑

i

〈∇TM
ei

u, ei〉µg = div u.

Therefore, we obtain (2.20).

Then, we can show the following property.
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Proposition 2.8. The spinc Dirac operator is formally self-adjoint with respect to the Hermitian

inner product

(s, t) :=

∫

M

µg(x)〈s(x), t(x)〉Λ0,•⊗E.

Here, s, t ∈ C∞(M,Λ0,• ⊗ E) and 〈·, ·〉Λ0,•⊗E is the Hermitian inner product induced from g and

hE.

Proof. From (2.12) and (2.15), we find

(s,DEt) =
∑

i

(s, c(ei)∇Λ0,•⊗E
ei

t) = −
∑

i

(c(ei)s,∇Λ0,•⊗E
ei

t)

=
∑

i

(∇Λ0,•⊗E
ei

c(ei)s, t) +
∑

i

(div ei c(ei)s, t)

= (DEs, t) +
∑

i

(c(∇TM
ei

ei)s, t) +
∑

i,j

(〈∇TM
ej

ei, ej〉 c(ei)s, t)

= (DEs, t) +
∑

i

(c(∇TM
ei

ei)s, t)−
∑

i,j

(〈ei,∇TM
ej

ej〉 c(ei)s, t)

= (DEs, t).

The spinc Dirac operator DE is a first order differential operator and its square (DE)2 is related

to the Laplace operator which is a second order differential operator. Before calculating (DE)2,

let us define the Bochner Laplacian.

Definition 11. Let (F, hF ) be a Hermitian vector bundle over M with a Hermitian connection

∇F . The Bochner Laplacian ∆F is defined by

∆F := −
∑

i

[
(∇F

ei
)2 −∇F

∇TM
ei

ei

]
. (2.21)

Proposition 2.9. The Bochner Laplacian ∆F can be written as

∆F =
∑

i

(∇F
ei
)∗∇F

ei
. (2.22)

Proof. Using (2.20), we have

∑

i

(∇F
ei
)∗∇F

ei
= −

∑

i

(∇F
ei
)2 −

∑

i,j

〈∇TM
ej

ei, ej〉∇F
ei
= −

∑

i

[
(∇F

ei
)2 −∇F

∇TM
ei

ei

]
.

This implies that ∆F is a positive semidefinite self-adjoint operator.

Now, let us show the following theorem called the Lichnerowicz formula.
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Theorem 2.10. The spinc Dirac operator defined in (2.17) satisfies

(DE)2 = ∆Λ0,•⊗E +
1

4
K +

1

2

∑

i,j

(
RE +

1

2
Rdet

)
(ei, ej)c(ei)c(ej). (2.23)

Here, K is the scalar curvature defined by K := −∑i,j〈RTM(ei, ej)ei, ej〉.

Proof. From (2.10) and (2.15), we find

(DE)2 =
1

2

∑

i,j

(
c(ei)∇Λ0,•⊗E

ei
c(ej)∇Λ0,•⊗E

ej
+ c(ej)∇Λ0,•⊗E

ej
c(ei)∇Λ0,•⊗E

ei

)

=
1

2

∑

i,j

(
c(ei)c(ej)∇Λ0,•⊗E

ei
∇Λ0,•⊗E

ej
+ c(ej)c(ei)∇Λ0,•⊗E

ej
∇Λ0,•⊗E

ei

)

+
1

2

∑

i,j

(
c(ei)c(∇TM

ei
ej)∇Λ0,•⊗E

ej
+ c(ej)c(∇TM

ej
ei)∇Λ0,•⊗E

ei

)

=
1

2

∑

i,j

(c(ei)c(ej) + c(ej)c(ei))∇Λ0,•⊗E
ei

∇Λ0,•⊗E
ej

+
1

2

∑

i,j

c(ej)c(ei)
[
∇Λ0,•⊗E

ej
,∇Λ0,•⊗E

ei

]

+
∑

i,j,k

〈∇TM
ei

ej, ek〉c(ei)c(ek)∇Λ0,•⊗E
ej

= −
∑

i

(
∇Λ0,•⊗E

ei

)2
+

1

2

∑

i,j

c(ej)c(ei)
[
(RΛ0,•

+RE)(ej, ei) +∇Λ0,•⊗E
[ej ,ei]

]

+
∑

i,j,k

〈∇TM
ei

ej, ek〉c(ei)c(ek)∇Λ0,•⊗E
ej

.

By using 〈∇TM
ei

ej, ek〉 = −〈ej,∇TM
ei

ek〉, the third term can be written as
∑

i,j,k

〈∇TM
ei

ej, ek〉c(ei)c(ek)∇Λ0,•⊗E
ej

= −
∑

i,k

c(ei)c(ek)∇Λ0,•⊗E
∇TM

ei
ek

= −1

2

∑

i,k

({c(ei), c(ek)}+ [c(ei), c(ek)])∇Λ0,•⊗E
∇TM

ei
ek

=
∑

i

∇Λ0,•⊗E
∇TM

ei
ei

− 1

2

∑

i,k

c(ei)c(ek)∇Λ0,•⊗E
∇TM

ei
ek−∇TM

ek
ei

=
∑

i

∇Λ0,•⊗E
∇TM

ei
ei

− 1

2

∑

i,k

c(ei)c(ek)∇Λ0,•⊗E
[ei,ek]

.

Thus, one obtains

(DE)2 = ∆Λ0,•⊗E +
1

2

∑

i,j

(RΛ0,•

+RE)(ei, ej)c(ei)c(ej).

From (2.16), we have

1

2

∑

i,j

RΛ0,•

(ei, ej)c(ei)c(ej) =
1

8

∑

i,j,k,l

〈RTM(ei, ej)ek, el〉c(ek)c(el)c(ei)c(ej)+
1

4

∑

i,j

Rdet(ei, ej)c(ei)c(ej).
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Using 〈RTM(u, v)w, y〉 = 〈RTM(w, y)u, v〉 for any vectors u, v, w, y, we have

1

2

∑

i,j

RΛ0,•

(ei, ej)c(ei)c(ej) =
1

8

∑

i,j,k,l

〈RTM(ei, ej)ek, el〉c(ei)c(ej)c(ek)c(el)+
1

4

∑

i,j

Rdet(ei, ej)c(ei)c(ej).

From RTM(u, v)w +RTM(v, w)u+RTM(w, u)v = 0, one has
∑

i,j,k,l

〈RTM(ei, ej)ek, el〉c(ei)c(ej)c(ek)c(el)

= −
∑

i,j,k,l

〈RTM(ei, ej)ek, el〉(c(ej)c(ek)c(ei) + c(ek)c(ei)c(ej))c(el).

To evaluate this, let us calculate the following:

c(ej)c(ek)c(ei) + c(ek)c(ei)c(ej) = −c(ej)c(ei)c(ek)− c(ei)c(ek)c(ej)− 4δikc(ej)

= 2c(ei)c(ej)c(ek) + 2δijc(ek) + 2δjkc(ei)− 4δikc(ej).

Thus, one obtains

3
∑

i,j,k,l

〈RTM(ei, ej)ek, el〉c(ei)c(ej)c(ek)c(el)

= −
∑

i,j,k,l

〈RTM(ei, ej)ek, el〉(2δijc(ek) + 2δjkc(ei)− 4δikc(ej))c(el)

= 6
∑

i,j,l

〈RTM(ei, ej)ei, el〉c(ej)c(el) = 3
∑

i,j,l

〈RTM(ei, ej)ei, el〉{c(ej), c(el)}

= 6K.

Hence, we have

1

2

∑

i,j

RΛ0,•

(ei, ej)c(ei)c(ej) =
1

4
K +

1

4

∑

i,j

Rdet(ei, ej)c(ei)c(ej),

which gives (2.23).

For the Berezin-Toeplitz quantization given in the next section, let us consider the following

set up. Let (M, g) be a 2n-dimensional Riemannian manifold. Let us assume that there exists

a prequantum line bundle (L, hL) with a Hermitian connection ∇L over M . We set a symplectic

form by ω = c1(L) =
i
2π
RL. Then, there exists an almost complex structure J satisfying

g(Ju, Jv) = g(u, v), ω(Ju, Jv) = ω(u, v), ω(u, Ju) > 0,

for any vector fields u, v. Using an orthonormal frame of T (1,0)M denoted by {wi}ni=1, we define a

n × n matrix r by rij = RL(wi, w̄j). Then, we can see that r is self-adjoint and positive definite.

Thus,

τ =
n∑

i=1

RL(wi, w̄i), ρ = −
n∑

i,j=1

RL(wi, w̄j)c(wj)c(w̄i), (2.24)

21



are a positive definite function and a positive definite operator, respectively.

Let (E, hE) be a Hermitian vector bundle with a Hermitian connection ∇E. We consider a

sequence of spinc Dirac operators {Dp,E}p∈N on C∞(M,Λ0,• ⊗ L⊗p ⊗ E). Here, Dp,E := DL⊗p⊗E.

Then, the following theorem holds for Dp,E.

Theorem 2.11.

(Dp,E)2 = ∆Λ0,•⊗L⊗p⊗E − pτ + pρ+ R̃E. (2.25)

Here, R̃E is defined by

R̃E =
1

4
K +

1

2

∑

i,j

(
RE +

1

2
Rdet

)
(ei, ej)c(ei)c(ej). (2.26)

Proof. Let us calculate the following:

1

2

2n∑

i,j=1

RL(ei, ej)c(ei)c(ej) =
1

2

n∑

i,j=1

(
RL(wi, w̄j)c(w̄i)c(wj) +RL(w̄i, wj)c(wi)c(w̄j)

)

= −
n∑

i,j=1

RL(wi, w̄j)c(wj)c(w̄i)−
n∑

i=1

RL(wi, w̄i)

= ρ− τ.

Then, by (2.11), (2.23) and (2.24), we obtain (2.25).

Using this expansion, we can show the lower bound of the Laplacian ∆L⊗p⊗E.

Proposition 2.12. Let (F, hF ) be a Hermitian vector bundle with a Hermitian connection ∇F .

Them, there exists a positive number C > 0, which does not depend on p, such that

∆L⊗p⊗F − pτ ≥ −C. (2.27)

Proof. For s ∈ C∞(M,L⊗p ⊗ F ) ⊂ C∞(M,Λ0,• ⊗ L⊗p ⊗ F ), (2.22) and (2.25) implies that

|DF
p s|2 =

2n∑

i=1

|∇Λ0,•⊗L⊗p⊗F
ei

s|2 − p(s, τs) + (s, R̃F s).

Here, the norm is defined by the section inner product |s|2 = (s, s). From (2.14), we have

∇Λ0,•⊗L⊗p⊗F s = ∇L⊗p⊗F s+
1

2

n∑

i,j=1

〈ΓTM w̄i, w̄j〉w̄i ∧ w̄j ∧ s, (2.28)

and this implies

0 ≤ |DF
p s|2 ≤

2n∑

i=1

|∇L⊗p⊗F
ei

s|2 + 1

4

2n∑

i=1

∣∣∣∣∣
n∑

j,k=1

〈ΓTM(ei)w̄j, w̄k〉w̄j ∧ w̄k ∧ s
∣∣∣∣∣

2

− p(s, τs) + (s, R̃F s),

using the triangle inequality of the norm. Hence, (2.27) holds.
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Using this proposition, one can obtain some important property of Dp,E.

Theorem 2.13. There exists a positive number C > 0, which does not depend on p, such that

|Dp,Eψ|2 ≥ (ap− C)|ψ|2, (2.29)

for any ψ ∈ C∞(M,Λ0,>0 ⊗ L⊗p ⊗ E). Here, a > 0 is the maximum number satisfying ρ− a1 ≥ 0

and Λ0,>0 :=
⊕dimM

i=1 Λ0,i.

Proof. By putting F = Λ0,• ⊗ E in (2.27), we find

|Dp,Eψ|2 =
∑

i

|∇Λ0,•⊗L⊗p⊗E
ei

ψ|2 − p(ψ, τψ) + p(ψ, ρψ) + (ψ, R̃Eψ)

≥ −C|ψ|2 + p(ψ, ρψ) + (ψ, R̃Eψ).

Since we have a bound (ψ, ρψ) ≥ a|ψ|2 for ψ ∈ C∞(M,Λ0,>0 ⊗ L⊗p ⊗ E). Hence, we obtain

|Dp,Eψ|2 ≥ −C|ψ|2 + ap|ψ|2 + (ψ, R̃Eψ),

which proves (2.29).

Using this bound, one can prove the spectral gap of Dp,E from (2.29).

Theorem 2.14.

Spec
(
(Dp,E)2

)
⊂ {0} ∪ (ap− C,+∞). (2.30)

Proof. Let ψ = ψ++ψ− ∈ C∞(M,Λ0,even⊗L⊗p⊗E)⊕C∞(M,Λ0,odd⊗L⊗p⊗E) be an eigensection

of (Dp,E)2 with an eigenvalue λ > 0. If ψ− 6= 0, (2.29) implies λ ≥ ap−C. If ψ− = 0, we then have

(Dp,E)2Dp,Eψ+ = λDp,Eψ+. Then, Dp,Eψ+ ∈ C∞(M,Λ0,odd ⊗ L⊗p ⊗ E), which is nonzero by the

assumption λ > 0, is also an eigensection of (Dp,E)2 with eigenvalue λ. Thus, (2.29) again implies

λ ≥ ap− C.

One can also show the following theorem.

Theorem 2.15. Let us consider restrictions of the Dirac operator

Dp,E
+ := Dp,E|C∞(M,Λ0,even⊗L⊗p⊗E), Dp,E

− := Dp,E|C∞(M,Λ0,odd⊗L⊗p⊗E).

For p ≥ C
a
, we have

kerDp,E ⊂ C∞(M,Λ0,0 ⊗ L⊗p ⊗ E) = C∞(M,L⊗p ⊗ E). (2.31)

In particular, we have

kerDp,E
− = {0}. (2.32)
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Finally, let us evaluate the dimension of kerDp,E.

Theorem 2.16. Let us assume that M is compact. For p ≥ C
a
, we have

dimkerDp,E =

∫

M

Td(T (1,0)M)ch(L⊗p ⊗ Ei), (2.33)

where Td(F ) is the Todd class of a vector bundle F defined as

Td(F ) := det

( −iRF/2π

exp(−iRF/2π)− 1

)
,

and ch(F ) is the Chern character of F defined as

ch(F ) := Tr exp(
iRF

2π
).

Proof. From (2.32), we have dimkerDp,E
− = 0 for p ≥ C

a
and hence

dimkerDp,E = dimkerDp,E
+ + dimkerDp,E

− = dimkerDp,E
+ − dimkerDp,E

− .

For the case of compact manifold M , one can show that Dp,E
+ is a Fredholm operator and we can

define the analytical index IndDp,E
+ := dimkerDp,E

+ − dimkerDp,E
− . By the Atiyah-Singer index

theorem, IndDp,E
+ is equal to the topological index and thus we obtain (2.33).

We can also compute the leading large-p expansion

dimkerDp,E = rank(E)

∫

M

e
ip
2π

RL

= rank(Ei) p
n

∫

M

µω +O(pn−1),

where µω is the Liouville volume form defined in (2.7).

2.5 Identities for Kähler manifolds

In this subsection, we define a Kähler manifold, which is a special type of symplectic manifold. In

some proof of the asymptotic properties of the Toeplitz operator, we assume the Kähler structure

of the base manifold M . For a more comprehensive reference of the Kähler manifolds, we refer

to [20].

First, let us define the integrability of an almost complex structure.

Definition 12. Let (M,J) be an almost complex manifold. Then, the almost complex structure

J is called integrable if the torsion

NJ(u, v) := [u, v] + J([Ju, v] + [u, Jv])− [Ju, Jv]

vanishes for all u, v ∈ C∞(M,TM).
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Then, we define a Kähler manifold as follows.

Definition 13. Let g, ω and J be a Riemannian metric, a symplectic structure and an integrable

complex structure on M , respectively. A manifold (M, g, ω, J) is called Kähler if the triple (g, ω, J)

satisfying the compatibility condition

ω(u, v) = g(Ju, v), (2.34)

for any u, v ∈ C∞(M,TM).

A particularly important property of the Kähler structure is that J commutes with the Levi-

Civita connection ∇TM , which is essential in some of the proofs in the next section. This property

is obtained from the following proposition proposition.

Definition 14. Let (M,J) be an almost complex manifold and let g be a compatible metric. Let

us define a nondegenerate two-form ω̃(u, v) := g(Ju, v). Then, we have

[∇TM , J ] = 0 ⇔ J : integrable and dω̃ = 0.

Here, ∇TM is the Levi-Civita connection on TM .

Proof. First, let us show [∇TM , J ] = 0 ⇒ J : integrable and dω̃ = 0. Using J2 = −1 and

∇TM
u v −∇TM

v u = [u, v] for any u, v ∈ C∞(M,TM), one finds

NJ(u, v) = [u, v] + J∇TM
Ju v − J∇TM

v Ju+ J∇TM
u Jv − J∇TM

Jv u− [Ju, Jv]

= [J,∇TM
Ju ]v − [J,∇TM

v ]Ju+ [J,∇TM
u ]Jv − [J,∇TM

Jv ]u (2.35)

= 0,

that is, J is integrable. For dω̃, let us use (2.4):

dω̃(u, v, w) = uω̃(v, w) + vω̃(w, u) + wω̃(u, v)− ω̃([u, v], w)− ω̃([v, w], u)− ω̃([w, u], v)

= ug(Jv, w) + vg(Jw, u) + wg(Ju, v)− g(J [u, v], w)− g(J [v, w], u)− g(J [w, u], v)

= g(∇TM
u Jv, w) + g(Jv,∇TM

u w) + g(∇TM
v Jw, u) + g(Jw,∇TM

v u)

+ g(∇TM
w Ju, v) + g(Ju,∇TM

w v)

− g(J∇TM
u v, w) + g(J∇TM

v u, w)− g(J∇TM
v w, u) + g(J∇TM

w v, u)

− g(J∇TM
w u, v) + g(J∇TM

u w, v)

= g([∇TM
u , J ]v, w) + g([∇TM

v , J ]w, u) + g([∇TM
w , J ]u, v) (2.36)

= 0.
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Secondly, let us show J : integrable and dω̃ = 0 ⇒ [∇TM , J ] = 0. From (2.35) and (2.36), we

have

0 = g(NJ(u, v), w) + dω̃(Ju, v, w) + dω̃(u, Jv, w)

= g([J,∇TM
Ju ]v − [J,∇TM

v ]Ju+ [J,∇TM
u ]Jv − [J,∇TM

Jv ]u, w)

+ g([∇TM
Ju , J ]v, w) + g([∇TM

v , J ]w, Ju) + g([∇TM
w , J ]Ju, v)

+ g([∇TM
u , J ]Jv, w) + g([∇TM

Jv , J ]w, u) + g([∇TM
w , J ]u, Jv)

= −g([J,∇TM
v ]Ju, w)− g([J,∇TM

Jv ]u, w) + g([∇TM
v , J ]w, Ju) + g([∇TM

w , J ]Ju, v)

+ g([∇TM
Jv , J ]w, u) + g([∇TM

w , J ]u, Jv)

= −g(J∇TM
v Ju, w)− g(∇TM

v u, w)− g(J∇TM
Jv u, w) + g(∇TM

Jv Ju, w)

+ g(∇TM
v Jw, Ju)− g(J∇TM

v w, Ju)− g(∇TM
w u, v)− g(J∇TM

w Ju, v)

+ g(∇TM
Jv Jw, u)− g(J∇TM

Jv w, u) + g(∇TM
w Ju, Jv)− g(J∇TM

w u, Jv)

= −2g((J∇TM
w J +∇TM

w )u, v).

Thus, using the assumptions NJ = dω̃ = 0, we have

J∇TM
w J +∇TM

w = 0 ⇒ [∇TM , J ] = 0.

From this proposition, the commutativity [∇TM , J ] = 0 is achieved if and only if the triple

(g, ω̃, J) satisfies the Kähler condition (2.34).

Now, we state some important properties, which only hold for Kähler manifolds.

Proposition 2.17. Let (M, g, ω, J) be a Kähler manifold. The Bochner Laplacian ∆F defined in

(2.21) can also be written as

∆F =
∑

i

(
2(∇F

w̄i
)∗∇F

w̄i
+RF (wi, w̄i)

)
. (2.37)

Here, {wi} is an orthonormal frame of T (1,0)M .

Proof. From the definition (2.21), we have

∆F = −
∑

i

(
∇F

wi
∇F

w̄i
+∇F

w̄i
∇F

wi
−∇F

∇TM
wi

w̄i
−∇F

∇TM
w̄i

wi

)

= −
∑

i

(
2∇F

wi
∇F

w̄i
−RF (wi, w̄i)−∇F

[wi,w̄i]
−∇F

∇TM
wi

w̄i
−∇F

∇TM
w̄i

wi

)

= −
∑

i

(
2∇F

wi
∇F

w̄i
−RF (wi, w̄i)− 2∇F

∇TM
wi

w̄i

)

=
∑

i

(
2(∇F

w̄i
)∗∇F

w̄i
+ 2(divwi)∇F

w̄i
+RF (wi, w̄i) + 2∇F

∇TM
wi

w̄i

)
.
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For the second term, we have

∑

i

(divwi)∇F
w̄i

=
∑

i,j

〈∇TM
ej

wi, ej〉∇F
w̄i

=
∑

i,j

〈∇TM
wj

wi, w̄j〉∇F
w̄i

+
∑

i,j

〈∇TM
w̄j

wi, wj〉∇F
w̄i
.

From [∇TM , J ] = 0, ∇TM preserves the splitting TM = T (1,0)M ⊕ T (0,1)M and consequently

∇TM
w̄j

wi ∈ C∞(M,T (1,0)M). Thus, 〈∇TM
w̄j

wi, wj〉 = 0 since the inner product 〈u, v〉 = g(u, v) is

compatible with J . Again, by using this property, we have

∑

i

(divwi)∇F
w̄i

=
∑

i,j

〈∇TM
wj

wi, w̄j〉∇F
w̄i

=
∑

i,j

〈∇TM
wj

ei, w̄j〉∇F
ei
= −

∑

i,j

〈ei,∇TM
wj

w̄j〉∇F
ei

= −
∑

j

∇F
∇TM

wj
w̄j
.

Therefore, we obtain (2.37).

Theorem 2.18. Let (M, g, ω, J) be a Kähler manifold. Then, we have

(Dp,E)2 = 2
∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ pρ+ R̂E, (2.38)

and

ρ = −2π
∑

i

c(wi)c(w̄i). (2.39)

Here, R̂E := R̃E +
∑

iR
Λ0,•⊗E(wi, w̄i) where R̃E is defined in (2.26).

Proof. From (2.25) and (2.37), we have

(Dp,E)2 = 2
∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
∑

i

RΛ0,•⊗L⊗p⊗E(wi, w̄i)− pτ + pρ+ R̃E

= 2
∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ pρ+ R̂E.

Here, we used τ =
∑

iR
L(wi, w̄i) in the last line. For the Kähler case (2.34), we have

i

2π
RL(wi, w̄j) = ω(wi, w̄j) = ig(wi, w̄j) = iδij

and therefore we have (2.39).

The following proposition is used for the asymptotic expansion of the Berezin-Toeplitz quanti-

zation in the following section.
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Proposition 2.19. Let (M, g, ω, J) be a Kähler manifold. On C∞(M,Λ0,1⊗L⊗p⊗E), the inverse

of (Dp,E)2 can be written as

(Dp,E)−2 =
~p

2
− ~p

2
(Dp,E)−2R̂E − ~

2
p

4

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

4
(Dp,E)−2R̂E

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

2
(Dp,E)−2

∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

∇Λ0,•⊗L⊗p⊗E
w̄j

+
~
2
p

2
(Dp,E)−2

∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
∇TM

wj
w̄i

+ (∇Λ0,•⊗L⊗p⊗E
∇TM

wi
w̄j

)∗ +KE
ij )∇Λ0,•⊗L⊗p⊗E

w̄j
.

(2.40)

Here, we defined KE
ij := RΛ0,•⊗E(wj, w̄i) + div (∇TM

w̄i
wj)− w̄i(divwj) and

~p := (2πp)−1. (2.41)

Proof. For ψ ∈ C∞(M,Λ0,0 ⊗ L⊗p ⊗ E), we have

ρc(wj)ψ = −2π
∑

i

c(wi)c(w̄i)c(wj)ψ = −2π
∑

i

c(wi){c(w̄i), c(wj)}ψ = 4πc(wj)ψ.

Then, (2.38) becomes

(Dp,E)2 = 2
∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ 2~−1
p + R̂E.

on C∞(M,Λ0,1 ⊗ L⊗p ⊗ E). Thus, its inverse can be written as

(Dp,E)−2 =
~p

2
− ~p

2
(Dp,E)−2

[
2
∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ R̂E

]
(2.42)

on C∞(M,Λ0,1 ⊗ L⊗p ⊗ E). By using (2.42) to itself, we obtain

(Dp,E)−2 =
~p

2
− ~p

2
(Dp,E)−2R̂E − ~

2
p

2

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

2
(Dp,E)−2

[
2
∑

j

(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗∇Λ0,•⊗L⊗p⊗E
w̄j

+ R̂E

]∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

Let us calculate

[∇Λ0,•⊗L⊗p⊗E
w̄i

, (∇Λ0,•⊗L⊗p⊗E
w̄j

)∗] = −[∇Λ0,•⊗L⊗p⊗E
w̄i

,∇Λ0,•⊗L⊗p⊗E
wj

+ divwj]

= RΛ0,•⊗L⊗p⊗E(wj, w̄i) +∇Λ0,•⊗L⊗p⊗E
[wj ,w̄i]

− w̄i(divwj)

= ~
−1
p δij +∇Λ0,•⊗L⊗p⊗E

∇TM
wj

w̄i
+ (∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄j
)∗ +KE

ij .

(2.43)
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Then, we have

(Dp,E)−2 =
~p

2
− ~p

2
(Dp,E)−2R̂E − ~

2
p

2

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

2
(Dp,E)−2R̂E

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ ~
2
p(D

p,E)−2
∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

∇Λ0,•⊗L⊗p⊗E
w̄j

+ ~p(D
p,E)−2

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ ~
2
p(D

p,E)−2
∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
∇TM

wj
w̄i

+ (∇Λ0,•⊗L⊗p⊗E
∇TM

wi
w̄j

)∗ +KE
ij )∇Λ0,•⊗L⊗p⊗E

w̄j

=
~p

2
− ~p

2
(Dp,E)−2R̂E − ~

2
p

2

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

2
(Dp,E)−2R̂E

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+ ~
2
p(D

p,E)−2
∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

∇Λ0,•⊗L⊗p⊗E
w̄j

− (Dp,E)−2 +
~p

2
− ~p

2
(Dp,E)−2R̂E

+ ~
2
p(D

p,E)−2
∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
∇TM

wj
w̄i

+ (∇Λ0,•⊗L⊗p⊗E
∇TM

wi
w̄j

)∗ +KE
ij )∇Λ0,•⊗L⊗p⊗E

w̄j
.

Here, we used (2.42) in the second equality. Thus, we obtain (2.40).

Proposition 2.20. Let (M, g, ω, J) be a Kähler manifold and we assume that (2.31) holds. For

ψ ∈ kerDp,E ⊂ C∞(M,L⊗p ⊗ E), we have

∇Λ0,•⊗L⊗p⊗E
ū ψ = ∇L⊗p⊗E

ū ψ = 0, (2.44)

for any u ∈ C∞(M,T (1,0)M).

Proof. From (2.28), we have ∇Λ0,•⊗L⊗p⊗Eψ = ∇L⊗p⊗Eψ. Since c(w̄i)φ = 0 for φ ∈ C∞(M,L⊗p⊗E),
we have

Dp,Eψ =
∑

i

c(wi)∇L⊗p⊗E
w̄i

ψ = 0 ⇒ ∇L⊗p⊗E
w̄i

ψ = 0.

Proposition 2.21. Let (M, g, ω, J) be a Kähler manifold. For ψ ∈ kerDp,E with |ψ| = O(~0p), we

have an estimation

|(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗ψ| = O(~
− 1

2
p ),

|(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ| = O(~−1
p ).

(2.45)
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Proof. From (2.43) and (2.44), we have

|(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗ψ|2 = (ψ,∇Λ0,•⊗L⊗p⊗E
w̄i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗ψ) = (ψ, (~−1
p +KE

ii )ψ) = O(~−1
p ).

Similarly, we have

|(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ|2

= (ψ,∇Λ0,•⊗L⊗p⊗E
w̄j

∇Λ0,•⊗L⊗p⊗E
w̄i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ)

= (ψ,∇Λ0,•⊗L⊗p⊗E
w̄j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ)

+ (ψ,∇Λ0,•⊗L⊗p⊗E
w̄j

(~−1
p +∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
+ (∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
)∗ +KE

ii )(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ)

= (ψ, (~−1
p δij +∇Λ0,•⊗L⊗p⊗E

∇TM
wj

w̄i
+KE

ij )(~
−1
p δij + (∇Λ0,•⊗L⊗p⊗E

∇TM
wj

w̄i
)∗ +KE

ji)ψ)

+ (ψ,∇Λ0,•⊗L⊗p⊗E
w̄j

(~−1
p +∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
+ (∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
)∗ +KE

ii )(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗ψ)

= O(~−2
p ) + (ψ,∇Λ0,•⊗L⊗p⊗E

w̄j
(∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
+ (∇Λ0,•⊗L⊗p⊗E

∇TM
wi

w̄i
)∗)(∇Λ0,•⊗L⊗p⊗E

w̄j
)∗ψ)

= O(~−2
p ).
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3 Berezin-Toeplitz quantization for a vector bundle

In this section, we consider the Berezin-Toeplitz quantization for vector bundles and derive various

properties of the quantization map [10].

3.1 Toeplitz operators for a vector bundle

Let (M, g) be a 2n-dimensional Riemannian manifold and assume that there exists a prequantum

line bundle (L, hL) with a Hermitian connection ∇L over M . We set a symplectic form by ω =

c1(L) =
i
2π
RL. Let J be an almost complex structure satisfying

g(Ju, Jv) = g(u, v), ω(Ju, Jv) = ω(u, v), ω(u, Ju) > 0, (3.1)

for any vector fields u, v. Such an almost complex structure can be introduced by J = J̃(−J̃2)−
1
2

where J̃ is a skew-adjoint linear map uniquely determined by

ω(u, v) = g(J̃u, v), (3.2)

for any vector fields u, v. Using (g, J), we introduce the fundamental Z2-graded spinc bundle by

Λ0,• = Λ0,even ⊕ Λ0,odd, which is defined in (2.8).

Let (E1, h
E1) and (E2, h

E2) be finite-rank Hermitian vector bundles with Hermitian connections

∇E1 and ∇E2 , respectively. As we will see below, we define a Toeplitz operator of a section of a

homomorphism bundle Hom(E2, E1). Here, the homomorphism bundle Hom(E2, E1) is defined as

a vector bundle whose fiber Hom(E2, E1)x is a vector space of linear maps from (E2)x to (E1)x

at every point x ∈ M . Note that any finite-rank Hermitian vector bundle is isomorphic to some

homomorphism bundles, that is, we can treat any vector bundle as a homomorphism bundle. Let

C∞(M,F ) be a space of smooth sections of a vector bundle F over M . From the homomorphism

structure, a section s ∈ C∞(M,Hom(E2, E1)) can be thought of as a linear map C∞(M,E2) →
C∞(M,E1), using the pointwise multiplication (ss2)(x) = s(x)s2(x) for s2 ∈ C∞(M,E2) and ss2 ∈
C∞(M,E1). The connection of Hom(E2, E1) can be introduced using the compatibility condition

∇E1(ss2) = (∇Hom(E2,E1)s)s2 + s(∇E2s2). (3.3)

Let us consider a tensor product bundle Λ0,•⊗L⊗p⊗Ea for a = 1, 2. On C∞(M,Λ0,•⊗L⊗p⊗Ea),

we equip an inner product

(ψ, ψ′) =

∫

M

µg(x)〈ψ(x), ψ′(x)〉, (3.4)

where µg is the Riemannian volume form defined as (2.18) and 〈·, ·〉 is the Hermitian inner products

on the fiber induced from the Hermitian metric of Λ0,•, L and Ea. The norm on this space is defined

by |ψ|2 = (ψ, ψ). We denote the corresponding by L2(M,Λ0,• ⊗ L⊗p ⊗ Ea) the L2 completion of

31



C∞(M,Λ0,• ⊗ L⊗p ⊗ Ea). Let Dp,Ea be a spinc Dirac operator on C∞(M,Λ0,• ⊗ L⊗p ⊗ Ea) defined

as (2.17) and the Bergman projection is defined as the orthogonal projection

Πp,Ea : L2(M,Λ0,• ⊗ L⊗p ⊗ Ea) → kerDp,Ea .

Now, let us define the Toeplitz operator of s ∈ C∞(M,Hom(E2, E1)). Let us consider s ∈
C∞(M,Hom(E2, E1)) to be a linear map on a broader space

s : C∞(M,Λ0,• ⊗ L⊗p ⊗ E2) → C∞(M,Λ0,• ⊗ L⊗p ⊗ E1).

Definition 15. The Toeplitz operator of s ∈ C∞(M,Hom(E2, E1)) is defined as

T (E1,E2)
p (s) = Πp,E1 sΠp,E2 , (3.5)

which is a linear map L2(M,Λ0,• ⊗ L⊗p ⊗ E2) → L2(M,Λ0,• ⊗ L⊗p ⊗ E1).

Note that this operator is essentially a nontrivial map from kerDp,E2 to kerDp,E1 and therefore

it is represented by a (dim kerDp,E1)× (dim kerDp,E2) matrix. From the definition, we have

T (E1,E2)
p (s)∗ = Πp,E2 s∗Πp,E1 . (3.6)

Here, T
(E1,E2)
p (s)∗ is the Hermitian adjoint of T

(E1,E2)
p (s) with respect to the inner product (3.4) and

s∗ ∈ C∞(M,Hom(E1, E2)) is the adjoint of s ∈ C∞(M,Hom(E2, E1)) determined by hE1(u1, s(x)u2) =

hE2(s∗(x)u1, u2) for ua ∈ (Ea)x at each point x ∈M .

We can also observe that the map T
(E,E)
p is unital. Let E be a vector bundle and let us

consider the endomorphism bundle End(E) := Hom(E,E). Then, there exists the identity section

1E ∈ C∞(M,End(E)). Then, we can see that the

T (E,E)
p (1E) = 1kerDp,E ,

where 1kerDp,E is the identity operator on kerDp,E. This shows that the map T
(E,E)
p preserves the

identity element.

3.2 Asymptotic expansion of Toeplitz operators

We can also consider a section t ∈ C∞(M,Hom(E3, E2)) and its Toeplitz operator T
(E2,E3)
p (t) =

Πp,E2 tΠp,E3 . As in the case of Berezin-Toeplitz quantization of functions, we expect that there

exists an asymptotic expansion
∣∣∣∣∣T

(E1,E2)
p (s)T (E2,E3)

p (t)−
k∑

l=0

~
l
pT

(E1,E3)
p (Cl(s, t))

∣∣∣∣∣ = O(~k+1
p ),

for any k. Here, ~p is defined in (2.41) and {Cl}∞l=0 is a sequence of bilinear maps

Cl : C∞(M,Hom(E2, E1))× C∞(M,Hom(E3, E2)) → C∞(M,Hom(E3, E1)).

First, let us obtain the leading coefficient C0(s, t).
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Theorem 3.1. Let us assume that p is large enough to satisfy (2.32). Then, we have

∣∣T (E1,E2)
p (s)T (E2,E3)

p (t)− T (E1,E3)
p (st)

∣∣ = O(~p).

Proof. First, we have

T (E1,E2)
p (s)T (E2,E3)

p (t) = Πp,E1 sΠp,E2 tΠp,E3 = T (E1,E3)
p (st)− Πp,E1 s(1− Πp,E2)tΠp,E3 .

The operator 1 − Πp,E2 is the orthogonal projection to the orthogonal complement (kerDp,E2)⊥.

We can directly check

1− Πp,E2 = Dp,E2P p,E2Dp,E2 .

where

P p,E2ψ := Dp,E2
− (Dp,E2

+ Dp,E2
− )−2Dp,E2

+ ψ+ + (Dp,E2
+ Dp,E2

− )−1ψ−,

for ψ = ψ++ψ− ∈ C∞(M,Λ0,even⊗L⊗p⊗E2)⊕C∞(M,Λ0,odd⊗L⊗p⊗E2). Here, Dp,E2
+ Dp,E2

− is strictly

positive from (2.32) and therefore the inverse (Dp,E2
+ Dp,E2

− )−1 exists on C∞(M,Λ0,• ⊗ L⊗p ⊗ E).

Hence, we reach

T (E1,E2)
p (s)T (E2,E3)

p (t) = T (E1,E3)
p (st)− Πp,E1 sDp,E2P p,E2Dp,E2tΠp,E3 .

= T (E1,E3)
p (st) +

∑

i,j

Πp,E1c(w̄i)(∇Hom(E2,E1)
wi

s)P p,E2c(wj)(∇Hom(E3,E2)
w̄j

t)Πp,E3 ,

using Dp,E3Πp,E3 = Πp,E1Dp,E1 and (3.3). On (kerDp,E2)⊥, we have

P p,E2 = (Dp,E2)−2,

since (Dp,E2)2 is strictly positive on (kerDp,E2)⊥. For ψ ∈ kerDp,E3 ,
∑

j c(wj)(∇Hom(E3,E2)
w̄j

t)ψ ∈
C∞(M,Λ0,1 ⊗ L⊗p ⊗ E3) ⊂ (kerDp,E2)⊥. Thus, we have

T (E1,E2)
p (s)T (E2,E3)

p (t) = T (E1,E3)
p (st)+

∑

i,j

Πp,E1c(w̄i)(∇Hom(E2,E1)
wi

s)(Dp,E2)−2c(wj)(∇Hom(E3,E2)
w̄j

t)Πp,E3 .

(3.7)

Using (2.30), we have (Dp,E2)−2 = O(~p) and therefore

|T (E1,E2)
p (s)T (E2,E3)

p (t)− T (E1,E3)
p (st)| = O(~p). (3.8)

This means that the product of sections is approximated by the operator products under the

Berezin-Toeplitz quantization.

Let us now assume that (M, g, ω, J) is Kähler. Then, we can obtain the coefficient C1(s, t).

33



Theorem 3.2. Let (M, g, ω, J) be a Kähler manifold and let us assume that p is large enough to

satisfy (2.32). Then, we have
∣∣∣∣∣T

(E1,E2)
p (s)T (E2,E3)

p (t)− T (E1,E3)
p (st) + ~p

∑

i

T (E1,E3)
p ((∇Hom(E2,E1)

wi
s)(∇Hom(E3,E2)

w̄i
t))

∣∣∣∣∣ = O(~2p).

(3.9)

Proof. This proof is based on the technique of [21]. From (2.40), (3.7) becomes

T (E1,E2)
p (s)T (E2,E3)

p (t) = T (E1,E3)
p (st) +

~p

2

∑

i,j

Πp,E1c(w̄i)(∇Hom(E2,E1)
wi

s)c(wj)(∇Hom(E3,E2)
w̄j

t)Πp,E3 + ǫ

= T (E1,E3)
p (st)− ~p

∑

i

T (E1,E3)
p ((∇Hom(E2,E1)

wi
s)(∇Hom(E3,E2)

w̄i
t)) + ǫ. (3.10)

Here, we used c(w̄i)c(wj) = −2δij on C∞(M,L⊗p ⊗ E) and ǫ is given by

ǫ =
∑

i,j

Πp,E1c(w̄i)(∇Hom(E2,E1)
wi

s)KE2c(wj)(∇Hom(E3,E2)
w̄j

t)Πp,E3 ,

where

KE = −~p

2
(Dp,E)−2R̂E − ~

2
p

4

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

4
(Dp,E)−2R̂E

∑

i

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

+
~
2
p

2
(Dp,E)−2

∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
w̄j

)∗∇Λ0,•⊗L⊗p⊗E
w̄i

∇Λ0,•⊗L⊗p⊗E
w̄j

+
~
2
p

2
(Dp,E)−2

∑

i,j

(∇Λ0,•⊗L⊗p⊗E
w̄i

)∗(∇Λ0,•⊗L⊗p⊗E
∇TM

wj
w̄i

+ (∇Λ0,•⊗L⊗p⊗E
∇TM

wi
w̄j

)∗ +KE
ij )∇Λ0,•⊗L⊗p⊗E

w̄j
.

Using (2.45), (2.44) and (Dp,E2)−2 = O(~p), we can estimate that

|ǫ| = O(~2p). (3.11)

Therefore, we obtain (3.9).

The consequence of the asymptotic (3.9) is as follows. First, we define generalizations of the

Poisson bracket and the commutator.

Definition 16. Let E be a vector bundle over a symplectic manifold (M,ω). For f ∈ C∞(M,C)

and s ∈ C∞(M,E), we define a generalized Poisson bracket as

{f, s} := ∇E
Xf
s, (3.12)

where Xf is the Hamiltonian vector field defined in (2.2).
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Definition 17. Let us consider the setup of section 3.1. For f ∈ C∞(M,C) and s ∈ C∞(M,Hom(E2, E1)),

we define a generalized commutator as

[Tp(f1), T
(E1,E2)
p (s)] := T (E1,E1)

p (f1E1)T
(E1,E2)
p (s)− T (E1,E2)

p (s)T (E2,E2)
p (f1E2), (3.13)

where 1E1 and 1E2 are the identity elements of C∞(M,End(E1)) and C∞(M,End(E2)), respectively.

Theorem 3.3. Let (M, g, ω, J) be a Kähler manifold and let us assume that p is large enough to

satisfy (2.32). Then, we have

∣∣(i~p)−1[Tp(f1), T
(E1,E2)
p (s)]− T (E1,E2)

p ({f, s})
∣∣ = O(~p), (3.14)

for f ∈ C∞(M,R) and s ∈ C∞(M,Hom(E2, E1)).

Proof. From (3.10) and (3.11), we have

∣∣∣∣∣(i~p)
−1[Tp(1), T

(E1,E2)
p (s)]− i

∑

i

T (E1,E3)
p ((wif)(∇Hom(E2,E1)

w̄i
s)− (w̄if)(∇Hom(E2,E1)

wi
s))

∣∣∣∣∣ = O(~p).

From (2.34), the symplectic form can be written as ω = i
∑

iw
i∧ w̄i, where {wi} is the dual frame

of {wi}. Then, (2.2) implies

Xf = i
∑

i

[(wif)w̄i − (w̄if)wi]. (3.15)

Thus, we obtain (3.14).

For the trivial bundle E1 = E2 =M×C, (3.8) and (3.14) reduce to (1.1) and (1.2), respectively.

3.3 Trace of the Toeplitz operator

In this subsection, we consider a general 2n-dimensional symplectic manifold (M, g, ω, J) satisfying

(3.1). Let us consider an endomorphism bundle End(E) = Hom(E,E) for a vector bundle E over

M . Then, the Toeplitz operator of s ∈ C∞(M,End(E)) is given by

T (E,E)
p (s) = Πp,EsΠp,E.

In this case, we can consider a trace of the Toeplitz operator.

Theorem 3.4. Let M be a 2n-dimensional manifold.

lim
p→∞

(2π~p)
n TrT (E,E)

p (s) =

∫

M

µω trE s. (3.16)

Here, trE is the trace of fiber space E induced by the fiber inner product and µω is the Liouville

volume form defined in (2.7).
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Proof. Using the Schwartz kernel, the trace of T
(E,E)
p (s) can be represented as

TrT (E,E)
p (s) =

∫

M

µg(x) trΛ0,•⊗E (Bp(x, x)s(x)) ,

where Bp(x, y) is the Bergman kernel defined by

(Πp,Eψ)(x) =

∫

M

µg(y)Bp(x, y)ψ(y),

for any ψ ∈ C∞(M,Λ0,•⊗L⊗p⊗E). Note that we consider a kernel with respect to the Riemannian

volume form µg. In [22], the diagonal of the Bergman kernel Bp(x, x) has the following large-p

asymptotic form,

Bp(x, x) = (2π~p)
−n(det J̃)

1
2Px1Ex

+O(~−n+1
p ),

where J̃ is determined by (3.2) and Px is the projection Λ0,•
x → Λ0,0

x and 1Ex
∈ End(Ex) is the

identity operator. From (3.2), we have (det J̃)
1
2µg = µω and therefore we obtain (3.16).

We can see that the relation (3.16) is a generalization of 1.3.

From this correspondence, we can show the correspondence of inner products.

Theorem 3.5. For s, t ∈ C∞(M,Hom(E2, E1)), we define a Hermitian inner product of Toeplitz

operators

(T (E1,E2)
p (s), T (E1,E2)

p (t)) := (2π~p)
n Tr(T (E1,E2)

p (s)∗T (E1,E2)
p (t)). (3.17)

Then, we have the following correspondence for a Kähler manifold (M, g, ω, J):

lim
p→∞

(T (E1,E2)
p (s), T (E1,E2)

p (t)) = (s, t). (3.18)

Here, the inner product of sections is given by (2.19) with hHom(E2,E1)(s(x), t(x)) = trE2(s
∗(x)t(x)).

Proof. From (3.6), (3.8) and (3.16), we have

lim
p→∞

(T (E1,E2)
p (s), T (E1,E2)

p (t)) =

∫

M

µωh
Hom(E2,E1)(s, t).

For a Kähler manifold (M, g, ω, J), we have µω = µg and therefore obtain (3.18).

3.4 Bochner Laplacian and its matrix regularization

Let (M, g) be a Riemannian manifold. From the Nash embedding theorem, there exists an smooth

isometric embedding X = (X1, X2, · · · , Xd) :M → R
d satisfying

g =
d∑

a=1

dXa ⊗ dXa, (3.19)

for a sufficiently large d.

Using the following theorem, the Bochner Laplacian (2.21) can be expressed in terms of the

isometric functions and the generalized commutator (3.13) in the case of Kähler manifold.
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Theorem 3.6. Let (M, g, ω, J) be a Kähler manifold and E be a vector bundle over M . Then, we

have

∆Es = −
∑

a

{Xa, {Xa, s}}, (3.20)

for any s ∈ C∞(M,E).

Proof. From (3.12) and (3.15), we have

−
∑

a

{Xa, {Xa, s}} =
∑

a,i,j

((wiX
a)∇E

w̄i
− (w̄iX

a)∇E
wi
)((wjX

a)∇E
w̄j

− (w̄jX
a)∇E

wj
)s.

Note that (3.19) can be written as
∑

a(uX
a)(vXa) = g(u, v) = 〈u, v〉. Hence, we obtain

−
∑

a

{Xa, {Xa, s}} = −
∑

i

(
∇E

wi
∇E

w̄i
+∇E

w̄i
∇E

wi

)
s−

∑

i,j

(〈wi, w̄iw̄j〉 − 〈w̄i, wiw̄j〉)∇E
wj
s

+
∑

i,j

(〈wi, w̄iwj〉 − 〈w̄i, wiwj〉)∇E
w̄j
s

= −
∑

i

∇E
ei
∇E

ei
s−

∑

i,j

〈[wi, w̄i], w̄j〉∇E
wj
s+

∑

i,j

〈[wi, w̄i], wj〉∇E
w̄j
s

= −
∑

i

∇E
ei
∇E

ei
s+

∑

i

∇E
∇TM

ei
ei
s.

Now, we consider the matrix Laplacian, which corresponds to the Bochner Laplacian (2.21) in

large-p limit. From (3.20), it is natural to define the matrix Laplacian ∆̂ as follows.

Definition 18.

∆̂Hom(E1,E2)T (E1,E2)
p (s) := ~

−2
p

∑

a

[Tp(X
a
1), [Tp(X

a
1), T (E1,E2)

p (s)]], (3.21)

for s ∈ C∞(M,Hom(E2, E1)).

It is easy to show that ∆̂ is a formally self-adjoint positive semidefinite operator with respect

to the inner product (3.17). We have the following large-p correspondence of Laplacians.

Theorem 3.7. Let (M, g, ω, J) be a Kähler manifold and let us assume that p is large enough to

satisfy (2.32). Then, we have

|∆̂Hom(E1,E2)T (E1,E2)
p (s)− T (E1,E2)

p (∆Hom(E2,E1)s)| = O(~p),

for any s ∈ C∞(M,Hom(E2, E1)).

In case of M = CP
n, the Laplacian on C∞(M,L⊗q) is related to the quadratic Casimir and we

can use the techniques of the representation theory. For a more general setup, let us consider the

following.
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Proposition 3.8. Let (M,ω) be a symplectic manifold and let L be a prequantum line bundle over

M . We define a differential operator on C∞(M,L⊗q) by

Q(f) := ∇L⊗q

Xf
− i2πqf,

for f ∈ C∞(M,C). Then, we have

[Q(f), Q(g)] = Q({f, g}),

for any f, g ∈ C∞(M,C).

Proof. From (2.6) and RL⊗q

(Xf , Xg) = −i2πqω(Xf , Xg) = i2πq{f, g}, we obtain

[Q(f), Q(g)] = [∇L⊗q

Xf
,∇L⊗q

Xg
]− i4πq{f, g} = ∇L⊗q

X{f,g}
+RL⊗q

(Xf , Xg)− i4πq{f, g} = Q({f, g}).

Proposition 3.9. Let us assume that the smooth isometric embedding X :M → R
d satisfy

{Xa, Xb} = C
∑

c

fabcX
c. (3.22)

Here, fabc is a skew-symmetric structure constant of some Lie algebra g and C is a real constant

number. Then, we can consider a self-adjoint operator on C∞(M,L⊗q) by

La := iC−1Q(Xa). (3.23)

Then, {La
(q)} satisfies

[La,Lb] = i
∑

c

fabcLc.

Theorem 3.10. Let (M, g, ω, J) be a Kähler manifold and assume that the smooth isometric

embedding X :M → R
d satisfy (3.22) and

|X|2 :=
∑

a

(Xa)2 = const.

Then, the Bochner Laplacian ∆L⊗q

can be written as

∆L⊗q

= C2
∑

a

(La)2 − 4π2q2|X|2. (3.24)

Proof. From (3.23) and (3.20), we have

C2
∑

a

(La)2 =
∑

a

(i∇L⊗q

XXa
+ 2πqXa)2 = ∆L⊗q

+ i4πq
∑

a

Xa∇L⊗q

XXa
+ 4π2q2|X|2.

Using Xfg = fXg + gXf , we have ∇L⊗q

X|X|2
= 2

∑
aX

a∇L⊗q

XXa
= 0. Therefore, we obtain (3.24).
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3.5 Rectangular matrices as off-diagonals of a block diagonal matrix

Let E1 and E2 be vector bundles over M and let s ∈ C∞(M,Hom(E2, E1)). Then, the Toeplitz

operator of s defined in (3.5) is a map C∞(M,Λ0,• ⊗L⊗p ⊗E2) → C∞(M,Λ0,• ⊗L⊗p ⊗E1). Thus,

we can naturally consider an extended linear map

T (E1⊕E2,E1⊕E2)
p

(
f1 s

t f2

)
:=

(
T

(E1,E1)
p (f1) T

(E1,E2)
p (s)

T
(E2,E1)
p (t) T

(E2,E2)
p (f2)

)
,

for f1 ∈ C∞(M,End(E1)), f2 ∈ C∞(M,End(E2)) and t ∈ C∞(M,Hom(E1, E2)). Here, E1 ⊕ E2 is

the Whitney sum bundle and it corresponds to the Toeplitz operator of the following section:

S :=

(
f1 s

t f2

)
∈ C∞(M,End(E1 ⊕ E2)).

Using this formulation, one can see that the matrix Laplacian (3.21) is naturally appears in the

off-diagonal of the following operation

∆̂End(E1⊕E2)(S) := ~
−2
p

∑

a

[
X̂a,

[
X̂a, T (E1⊕E2,E1⊕E2)

p (S)
]]
,

where

X̂a :=

(
T

(E1,E1)
p (Xa

1E1)

T
(E2,E2)
p (Xa

1E2)

)
.

In the context of matrix models of string theories and M-theories, such a block diagonal matrix

configuration corresponds to the two-body problem with objects with the same geometry. There-

fore, one may use the matrix regularization of homomorphism bundle to uncover the relations of

off-diagonal matrices and the two-body interactions.
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4 Monopole bundle over fuzzy CP
n

In this subsection, we consider the Berezin-Toeplitz quantization smooth sections of L⊗q over the

complex projective space CP
n [10] (similar studies in other construction are given for example

in [23,24]).

4.1 Geometry of CPn

Let us first define the complex projective space CP
n of complex dimension n.

Definition 19. Let Z,Z ′ be elements of Cn+1 \ {0}. We define an equivalence relation ∼ by

Z ∼ Z ′ :⇔ ∃ c ∈ C \ {0} : Z = cZ ′.

Then, we define CP
n as a quotient space

CP
n = C

n+1/ ∼ .

Let [Z] = [Z0, Z1, · · · , Zn] be a representative of the equivalence class of Z. Then, CPn can be

covered by n+1 patches {Uα}nα=0 where Uα := {[Z] ∈ CP
n | Zα 6= 0}. We define the inhomogeneous

coordinates (z1(α), z
2
(α), · · · , zn(α)) of Uα by

zi(α) =




Zi−1/Zα (i = 1, 2, · · · , α− 1)

Zi/Zα (i = α, α + 1, · · · , n)
.

Now, let us introduce a Kähler structure of CPn as follows. Let Kα be a local function on Uα

defined by

Kα(x) := log(1 +
n∑

i=1

|zi(α)(x)|2) = log(
n∑

i=0

|Zi/Zα|2).

For x ∈ Uα ∩ Uβ, we have Kα(x) = Kβ(x) + log(Zβ/Zα) + log(Zβ/Zα) and consequently we

obtain ∂∂̄Kα = ∂∂̄Kβ. Here, ∂, ∂̄ are the Dolbeault differentials. Thus, we can introduce a closed

two-form ω locally by

ω =
i

2π
∂∂̄K. (4.1)

We omit the subscripts of the patch unless it is necessary. In terms of the local complex coordinates

{zi}, ω is expressed as

ω =
i

2π

n∑

i,j=1

(1 + |z|2)δij − z̄izj

(1 + |z|2)2 dzi ∧ dz̄j. (4.2)

Here, |z|2 :=∑n
i=1 |zi|2. The normalization of this symplectic form makes [ω] ∈ H2(CPn,Z). This

can be shown by the following argument. Since the second homology of CP
n is generated by
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CP
1 ⊂ CP

n, we only need to show
∫
CP1 ω ∈ Z. The symplectic form on CP

1 is ω = i
2π

dz∧dz̄
1+|z|2 , where

z is the local inhomogeneous complex coordinates of CP1. Then, we can show
∫

CP1

ω = 1.

Let J be an almost complex structure defined by J(∂/∂zi) = i∂/∂zi, J(∂/∂z̄i) = −i∂/∂z̄i. Then,

we define g by g(u, v) := ω(u, Jv) for any u, v ∈ C∞(CPn, TCPn), which is locally written as

g =
1

2π

n∑

i,j=1

(1 + |z|2)δij − z̄izj

(1 + |z|2)2 (dzi ⊗ dz̄j + dz̄j ⊗ dzi). (4.3)

The triple (g, ω, J) defines a Kähler structure of CPn.

Let us consider the isometric embedding of CP
n into R

n2+2n. We can choose a particular

representative of homogeneous coordinate ζ = (ζ0, ζ1, · · · , ζn) such that |ζ|2 = 1 up to an overall

U(1) phase factor. For example, on the patch U0, ζ is related to the inhomogeneous coordinate

{zi} by

ζ = u
(1, z1, z2, · · · , zn)√

1 + |z|2
∈ C

n+1,

for u ∈ U(1). Then, we can define a rank 1 hermitian projection Pζ := ζζ∗, which is a (n+1)×(n+1)

matrix-valued function on CP
n. Let {T a}n2+2n

a=1 be a basis of su(n+ 1) satisfying

T aT b =
1

2(n+ 1)
δab1Cn+1 +

1

2

n2+2n∑

c=1

(dabc + ifabc)T
c.

Here, T a are traceless Hermitian matrices and dabc and fabc are the symmetric and skew-symmetric

structure constants, respectively. Then, we can expand Pζ as

Pζ =
1

n+ 1
+ 2π

1
2

n2+2n∑

a=1

XaT a. (4.4)

Here, {Xa}n2+2n
a=1 is a set of n2 + 2n smooth real functions of CPn, which are given by

Xa = π− 1
2 ζ∗T aζ. (4.5)

From P 2
ζ = Pζ , we have

n2+2n∑

a=1

XaXa =
n

2π(n+ 1)
,

n2+2n∑

a,b=1

dabcX
aXb − n− 1

π
1
2 (n+ 1)

Xc = 0.

By the tedious calculation, we also have 1

{Xa, Xb} = −2π
1
2

n2+2n∑

c=1

fabcX
c,

1This calculation can be easily derived from (4.16) and (4.20), which will be shown later.
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where we used the following local form Hamiltonian vector field (2.2) induced from (4.2):

Xf = i2π(1 + |z|2)
n∑

i,j=1

(δij + ziz̄j)

(
∂f

∂zi
∂

∂z̄j
− ∂f

∂z̄j
∂

∂zi

)
. (4.6)

Note that the metric (4.3) can be written as

g =
1

2π

n∑

i,j=0

(δij − ζ̄ iζj)(dζ i ⊗ dζ̄j + dζ̄j ⊗ dζ i) =
1

2π
Tr(dPζ ⊗ dPζ),

and thus (4.4) implies

g =
n2+2n∑

a=1

dXa ⊗ dXa.

Therefore, X = (X1, X2, · · · , Xn2+2n) : CPn → R
n2+2n is a smooth isometric embedding.

4.2 Zero modes of the Dirac operator on CP
n

In order to evaluate the matrix element of the Toeplitz operators, we need to construct a complete

orthonormal basis of the kernel of the Dirac operator on C∞(CPn,Λ0,• ⊗ L⊗p).

Let Dp be the spinc Dirac operator on C∞(CPn,Λ0,• ⊗ L⊗p), which is defined in (2.17). As

shown in (2.44), any f (p) ∈ kerDp ⊂ C∞(CPn, L⊗p) is simplified to

∇L⊗p

∂/∂z̄if
(p) = 0, (4.7)

for large enough p. From (4.1) and ω = i
2π
RL = i

2π
dAL, one can take AL = −1

2
(∂ − ∂̄)K and

therefore (4.7) becomes (
∂

∂z̄i
+

pzi

2(1 + |z|2)

)
f (p) = 0.

The general solutions to this equation are

f (p) = (1 + |z|2)−p/2φ(z), (4.8)

where φ(z) is an arbitrary holomorphic function.

Now, let us consider how f (p)(z) transforms under the coordinate change. By considering

this, we identify the expression of f (p) ∈ C∞(CPn, L⊗p) in terms of the normalized homogeneous

coordinate ζ = (ζ0, ζ1, · · · , ζn). First, we introduce a notation as follows. For r ∈ N, we define a

set

Σr := {0, 1, · · · , n}r/permutation.

For αr = (α1, α2, · · · , αr),βr = (α1, α2, · · · , αr) ∈ Σr, we define

ζαr := ζα1ζα2 · · · ζαr , ζ̄βr := ζ̄β1 ζ̄β2 · · · ζ̄βp .
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Let us also define Polk+q,k(ζ, ζ̄) as a set of all polynomials of ζ i, ζ̄j of degree (k + q, k), i.e.

Polk+q,k(ζ, ζ̄) := SpanC

(
{ζαk+p ζ̄βk}αk+p∈Σk+p,βk∈Σk

)
.

Then, we have the following proposition.

Proposition 4.1.

C∞(CPn, L⊗p) =
∞⊕

k=0

Polk+p,k(ζ, ζ̄).

Proof. On the overlapping patch Uα ∩ Uβ, A
L transforms as AL(z(α)) = AL(z(β))− dλ(z(β)) where

λ(z(β)) = −1

2

[
log

(
Zα

Zβ

)
− log

(
Z̄α

Z̄β

)]
,

in terms of the homogeneous coordinate [Z]. Correspondingly, any element f (p) ∈ C∞(CPn, L⊗p)

transforms as

f (p)(z(α)) = epλ(z(β))f (p)(z(β)) =

(
Zα

Zβ

)− p
2
(
Z̄α

Z̄β

) p
2

f (p)(z(β)).

Here, f (p)(z(α)) means that it is a function of Z0

Zα ,
Z1

Zα , · · · , Z
n

Zα and their complex conjugates Z̄0

Z̄α ,
Z̄1

Z̄α , · · · , Z̄
n

Z̄α .

Thus, C∞(CPn, L⊗p) is spanned by the elements of the following form:
(

n∑

i=0

|Zi|2
)−k− p

2

Zσ1Zσ2 · · ·Zσk+pZ̄τ1Z̄τ2 · · · Z̄τk ,

where k ∈ N.

From (4.8) and Proposition 4.1, we then have the following theorem.

Theorem 4.2. For large enough p, we have

kerDp = Polp,0(ζ, ζ̄). (4.9)

In the following theorem, we find the complete orthonormal basis of kerDp with respect to the

inner product

(f (p), g(p)) :=

∫

CPn

µ f (p)g(p),

for f (p), g(p) ∈ C∞(CPn, L⊗p). Here, µ := µg = µω is the volume form of CPn.

Theorem 4.3. Let us define

f (p)
αp

:=

√
(p+ n)!

[αp]!
ζαp , (4.10)

for αp ∈ Σp. Here, [αp]! :=
∏n

i=0([αp]i!) where [αp]i is the number of components of αp equal to

i ∈ {0, 1, · · · , n}. Then, we have

(f (p)
αp
, f

(p)
βp

) = δαp,βp
=




1 (αp = βp)

0 (αp 6= βp)
.
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Proof. First, let us express ζαp and ζβp in terms of the local complex coordinate {zi}:

ζαp = up
(z1)a1(z2)a2 · · · (zn)an

(1 + |z|2)p/2 , ζβp = up
(z1)b1(z2)b2 · · · (zn)bn

(1 + |z|2)p/2 .

Here, u is a U(1) factor coming from the arbitrariness of the choice of ζ and {ai}ni=1 and {bi}ni=1

are sets of nonnegative integers satisfying
∑n

i=1 ai ≤ p and
∑n

i=1 bi ≤ p, respectively. Then, we

have to show

(ζαp , ζβp) =
(p−∑n

i=1 ai)!
∏n

i=1(ai!)

(p+ n)!
δab, (4.11)

where δab :=
∏n

i=1 δaibi .

Below, we give a proof of (4.11). Since the measure on CP
n \Uα for any α is zero, we only need

to integrate over a single patch:

(ζαp , ζβp) =

∫

Cn

µ
(z1)a1(z2)a2 · · · (zn)an(z̄1)b1(z̄2)b2 · · · (z̄n)bn

(1 + |z|2)p

= π−n

∫

R2n

∏n
i=1(x

2i−1 − ix2i)ai(x2i−1 + ix2i)bi

(1 + |x|2)p+n+1
dx1dx2 · · · dx2n.

Here, we used the real coordinates defined by zi = x2i−1+ix2i and used
√
det g = π−n(1+|x|2)−n−1.

Using the angular coordinates x2i−1 = ρi cos θi, x
2i = ρi sin θi, we then obtain

(ζαp , ζβp) = π−n

n∏

i=1

(∫ ∞

0

ρidρi

∫ 2π

0

dθi

) ∏n
i=1

(
ρie

iθi
)ai (ρie−iθi

)bi
(1 +

∑n
i=1 ρ

2
i )

p+n+1
.

The integral over θi gives a factor δaibi and we then have

(ζαp , ζβp) = 2nδa,b

∫

[0,∞)n

dρ1dρ2 · · · dρn
(1 +

∑n
i=1 ρ

2
i )

p+n+1

n∏

i=1

ρ2ai+1
i .

Now, we employ the spherical coordinates (ρ, φ1, φ2, · · · , φn−1) ∈ [0,∞)× [0, π/2]n−1 defined by

ρ1 = ρ cosφ1, ρ2 = ρ sinφ1 cosφ2, · · · , ρn−1 = ρ

(
n−2∏

i=1

sinφi

)
cosφn−1, ρn = ρ

n−1∏

i=1

sinφi,

and we obtain

(ζαp , ζβp) = 2nδa,b

∫ ∞

0

dρ
ρ2
∑n

i=1(ai+1)−1

(1 + ρ2)p+n+1

n−1∏

i=1

(∫ π/2

0

dφi sin
2
∑n

j=i+1(aj+1)−1(φi) cos
2ai+1(φi)

)
.

Let us use the Beta function

B(x, y) = 2

∫ π/2

0

dφ sin2x−1 φ cos2y−1 φ = 2

∫ ∞

0

dρ
ρ2x−1

(1 + ρ2)x+y
,
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which is defined for complex variables x, y with ℜx,ℜy > 0. Then, we find

(ζαp , ζβp) = δabB

(
n∑

i=1

(ai + 1), p+ 1−
n∑

i=1

ai

)
n−1∏

i=1

B

(
n∑

j=i+1

(aj + 1), ai + 1

)
.

Using B(x, y) = Γ(x)Γ(y)
Γ(x+y)

and Γ(x+ 1) = x!, we therefore obtain (4.11).

By counting the number of independent symmetric polynomials of degree p with n+1 variables,

we have

dimkerDp =
(p+ n)!

p!n!
. (4.12)

This is consistent with the index theorem. From (2.33), we have

dimkerDp =

∫

CPn

(
ω

1− e−ω

)n+1

epω = Cp,n

∫

CPn

ωn.

where we used the residue theorem

Cp,n :=
1

2πi

∮
dz

zn+1

(
z

1− e−z

)n+1

epz =
1

2πi

∮
dz

epz

(1− e−z)n+1
.

The integration contour is a counterclockwise circle around z = 0. By simple calculations, we find

Cp,n =
(p+ n)!

p!n!
,

∫

CPn

ωn = 1,

which reproduces (4.12).

4.3 Matrix regularization of embedding functions

Let Πp : C∞(CPn,Λ0,• ⊗L⊗p) be the orthogonal projection. Then, we define the Toeplitz operator

of a function f ∈ C∞(CPn,C) by

Tp(f) = Πpf Πp.

Here, we consider the Toeplitz operator of components isometric embedding X : CPn → R
n2+2n

defined in (4.5). The result is summarized in the following theorem.

Theorem 4.4.

Tp(X
a) = − π− 1

2

p+ n+ 1
La
(p,0,··· ,0).

Here, {La
(p,0,··· ,0)}n

2+2n
a=1 are irreducible representation of {T a}n2+2n

a=1 with Dynkin index (p, 0, · · · , 0),

[La
(p,0,··· ,0), L

b
(p,0,··· ,0)] = i

n2+2n∑

c=1

fabcL
a
(p,0,··· ,0),

n2+2n∑

a=1

(La
(p,0,··· ,0))

2 =
np(p+ n+ 1)

2(n+ 1)
1.
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Proof. Let us consider the matrix element

Tp(X
a)αp,βp

:= (f (p)
αp
, Tp(X

a)f
(p)
βp

) = (f (p)
αp
, Xaf

(p)
βp

).

From (4.5) and (4.10), we have

Tp(X
a)αp,βp

= π− 1
2

n∑

i,j=0

T a
ij(ζ

if (p)
αp
, ζjf

(p)
βp

)

= π− 1
2

(p+ n)!√
[αp]![βp]!

n∑

i,j=0

T a
ij(ζ

αp⊕i, ζβp⊕j).

Here, we defined a map ⊕ : Σr × Σs → Σr+s such that αr ⊕ γs = (α1, α2, · · · , αr, γ1, γ2, · · · , γs) ∈
Σr+s. Then, we have

(La
(p,0,··· ,0))αp,βp

= −
√

[αp]!

[βp]!

n∑

i,j=0

T a
ij([αp]i + 1)δαp⊕i,βp⊕j. (4.13)

This gives

(La
(p,0,··· ,0)L

b
(p,0,··· ,0))αp,βp

=

√
[αp]!

[βp]!

n∑

i,j,k,l=0

T a
ijT

b
kl([αp]i+1)([αp]k+δik−δjk+1)δαp⊕i⊕k,βp⊕j⊕l. (4.14)

Therefore, we find

[La
(p,0,··· ,0), L

b
(p,0,··· ,0)]αp,βp

= −
√

[αp]!

[βp]!

n∑

i,l=0

[T a, T b]il([αp]i + 1)δαp⊕i,βp⊕l

= i
n2+2n∑

c=1

(Lc
(p,0,··· ,0))αp,βp

.

Secondly, let us calculate the quadratic Casimir. From (4.14)

n2+2n∑

a=1

(La
(p,0,··· ,0))

2
αp,βp

=

√
[αp]!

[βp]!

n∑

i,j,k,l=0

n2+2n∑

a=1

T a
ijT

a
kl([αp]i + 1)([αp]k + δik − δjk + 1)δαp⊕i⊕k,βp⊕j⊕l.

Using the Fierz identity
n2+2n∑

a=1

T a
ijT

a
kl =

1

2

(
δilδjk −

1

n+ 1
δijδlk

)
, (4.15)

we obtain
n2+2n∑

a=1

(La
(p,0,··· ,0))

2
αp,βp

=
np(p+ n+ 1)

2(n+ 1)
δαp,βp

.
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4.4 Bochner Laplacian on C∞(CPn, L⊗q) and its spectrum

Here, we consider the spectral analysis of the Bochner Laplacian on C∞(CPn, L⊗q).

Let us employ the technique of Proposition 3.9. Let us define differential operators {La}n
2+2n

a=1

on C∞(CPn, L⊗q) by

La := − i

2π
1
2

(
∇L⊗q

XXa
− i2πqXa

)
. (4.16)

Then, we have

[La,Lb] = i
n2+2n∑

c=1

fabcLc.

By Theorem 3.10, we then have

∆L⊗q

= 2π

(
2
n2+2n∑

a=1

(La)2 − q2n

n+ 1

)
.

Thus, the eigenvalue of ∆L⊗q

is 2π
(
2E − q2n

n+1

)
, where E is an eigenvalue of

∑n2+2n
a=1 (La)2.

Now, we study the spectral analysis of
∑n2+2n

a=1 (La)2.

Theorem 4.5. The eigenvalues and their associated eigenvectors of
∑n2+2n

a=1 (La)2 are given by

Ek =
1

2

(
(k + q)(k + n) + k(k + q + n) +

q2n

n+ 1

)
, (4.17)

and

f
(q)
k,w =

∑

σk+q ,τk

cσk+q ,τk,wζ
σk+q ζ̄τk , (4.18)

for k ∈ N. Here, cσk+q ,τk,w := cσ1···σk+q ,τ1···τk,w is completely symmetric in σa and τb, respectively,

and traceless under any contraction between σa and τb. The index w labels the degeneracy of the

eigenvectors with eigenvalues Ek, that is, w labels linearly independent the completely symmetric

traceless tensor of (k + q, k) type.

Proof. Let us show this theorem in two different approaches.

First approach is to use the representation theory of su(n+1). Let V(d1,d2,··· ,dn) be the irreducible

representation space of su(n + 1) with Dynkin index (d1, d2, · · · , dn) and let V ∗
(d1,d2,··· ,dn) be the

representation space of the complex conjugate representation of (d1, d2, · · · , dn). Then, (4.9) and

Theorem 4.4 implies that

kerDp = Polp,0(ζ, ζ̄) = V(p,0,··· ,0).

Using Proposition 4.1 implies

C∞(CPn, L⊗q) =
∞⊕

k=0

V(q+k,0,··· ,0) ⊗ V ∗
(k,0,··· ,0).
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Using the decomposition into irreducible representation V(k+q,0,··· ,0)⊗V ∗
(k,0,··· ,0) =

⊕k
i=0 V(i+q,0,··· ,0,i),

we have

C∞(CPn, L⊗q) =
∞⊕

k=0

V(k+q,0,··· ,0,k). (4.19)

Therefore, the eigenvalues of
∑n2+2n

a=1 (La)2 are the quadratic Casimir for the representations (k +

q, 0, · · · , 0, k), which are given by (4.17). The corresponding eigenvectors belong to V(k+q,0,··· ,0,k)

and therefore they are of the form (4.18), where the index w labels different weights of V(k+q,0,··· ,0,k).

Second approach is a purely analytic computation. After a long calculation using (4.5), (4.6)

and (4.16), we find

La(ζσk+q ζ̄τk) =
n∑

i,j=0

T a
ij

(
−[σk+q]iζ

σk+q⊖i⊕j ζ̄τk + [τ k]jζ
σk+q ζ̄τk⊖j⊕i

)
. (4.20)

Here, we defined ⊖ such that for αr+s ∈ Σr+s,βs ∈ Σs,

αr+s ⊖ βs :=




γr ∈ Σr, (if ∃γr : γr ⊕ βs = αr+s)

0 ∈ Σ0, (otherwise)

and we set ζ0 = ζ̄0 = 0. Also, we are using the local complex coordinate on patch U0 for simplicity.

From (4.15), we obtain

n2+2n∑

a=1

(La)2(ζσk+q ζ̄τk) = Ekζ
σk+q ζ̄τk −

n∑

i,j=0

[σk+q]i[τ k]iζ
σk+q⊖i⊕j ζ̄τk⊖i⊕j.

From [σk+q]i[τ k]i =
∑k+p

a=1

∑p
b=1 δi,σa

δσa,τb , the traceless property
∑n

σa=0 δσa,τbcσk+q ,τk,w = 0 implies

n2+2n∑

a=1

(La)2f
(q)
k,w = Ekf

(q)
k,w.

4.5 Matrix regularization of C∞(CPn, L⊗q) and the matrix Laplacian

Here, we explicitly evaluate the Toeplitz operators of C∞(CPn, L⊗q) and discuss spectral analysis

of the matrix Laplacian ∆̂L⊗q

.

Let us define the Toeplitz operator of f (q) ∈ C∞(CPn, L⊗q) by

Tp(f
(q)) = Πp+qf (q)Πp.

The matrix elements of the Toeplitz operator of ζσk+q ζ̄τk ∈ C∞(CPn, L⊗q) is given by

Tp(ζ
σk+q ζ̄τk)αp+q ,βp

:=(f (p+q)
αp+q

, Tp(ζ
σk+q ζ̄τk)f

(p)
βp

) (4.21)

=

√
(p+ q + n)!(p+ n)!

(p+ q + k + n)!

√
[αp+q]!

[βp]!

[αp+q ⊕ τ k]!

[αp+q]!
δαp+q⊕τk,βp⊕σk+q

.
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Now, let us consider the matrix Laplacian (3.21),

∆̂L⊗q

(Tp(f
(q))) = (2πp)2

n2+2n∑

a=1

[Tp(X
a
1), [Tp(X

a
1), Tp(f

(q))]].

We introduce the following operation on Toeplitz operators

L̂aTp(f
(q)) := La

(p+q,0,··· ,0)Tp(f
(q))− Tp(f

(q))La
(p,0,··· ,0). (4.22)

This operator satisfies

[L̂a, L̂b] = i
n2+2n∑

c=1

fabcL̂c,

and hence {L̂a}n2+2n
a=1 they are representations of {T a}n2+2n

a=1 . Using Theorem 4.4, we can show

∆̂L⊗q

(Tp(f
(q))) =

2πp2

(p+ q + n+ 1)(p+ n+ 1)

(
2
n2+2n∑

a=1

(L̂a)2 − q2n

n+ 1

)
Tp(f

(q)).

Thus, the eigenvalue of ∆̂L⊗q

is 2πp2

(p+q+n+1)(p+n+1)

(
2E − q2n

n+1

)
, where E is an eigenvalue of

∑n2+2n
a=1 (L̂a)2.

Before going to the spectral analysis of
∑n2+2n

a=1 (L̂a)2, let us show the following correspondence.

Theorem 4.6.

Tp(Laf (q)) = L̂aTp(f
(q)), (4.23)

for any f (q) ∈ C∞(CPn, L⊗q).

Proof. From (4.20) and (4.21), we have

Tp(La(ζσk+q ζ̄τk))αp+q ,βp
=

√
(p+ q + n)!(p+ n)!

(p+ q + k + n)!

√
[αp+q]!

[βp]!

[αp+q ⊕ τ k]!

[αp+q]!

×
n∑

i,j=0

T a
ij

(
−[σk+q]i + [τ k]j

[αp+q ⊕ τ k ⊖ j ⊕ i]!

[αp+q ⊕ τ k]!

)
δαp+q⊕τk⊕i,βp⊕σk+q⊕j.

On the other hand, the matrix element of LaTp(ζ
σk+q ζ̄τk) is given by

(LaTp(ζ
σk+q ζ̄τk))αp+q ,βp

=

√
(p+ q + n)!(p+ n)!

(p+ q + k + n)!

√
[αp+q]!

[βp]!

[αp+q ⊕ τ k]!

[αp+q]!

×
n∑

i,j=0

T a
ij

(
−[αp+q ⊕ i]j

[αp+q ⊕ i⊖ j ⊕ τ k]!

[αp+q ⊕ τ k]!
+ [βp ⊕ j]i

)
δαp⊕i⊕τk,βp⊕σk+q⊕j,
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using (4.21) and (4.13). Therefore, we have

(
Tp(La(ζσk+q ζ̄τk))− LaTp(ζ

σk+q ζ̄τk)
)
αp+q ,βp

=

√
(p+ q + n)!(p+ n)!

(p+ q + k + n)!

√
[αp+q]!

[βp]!

[αp+q ⊕ τ k]!

[αp+q]!

×
n∑

i,j=0

T a
ij

(
−[σk+q ⊕ βp ⊕ j]i + [αp+q ⊕ τ k ⊕ i]j

[αp+q ⊕ τ k ⊖ j ⊕ i]!

[αp+q ⊕ τ k]!

)
δαp+q⊕τk⊕i,βp⊕σk+q⊕j

= 0.

This holds for any σk+q ∈ Σk+q, τ k ∈ Σk and any k ∈ N and thus we show (4.23).

Using this theorem, we can easily obtain the eigenvalues and eigenvectors of
∑n2+2n

a=1 (L̂a)2 as

follows.

Theorem 4.7. The eigenvalues of
∑n2+2n

a=1 (L̂a)2 are Ek for k = 0, 1, · · · , p and the corresponding

eigenvectors are Tp(f
(q)
k,w).

Proof. The eigenvalues of
∑n2+2n

a=1 (L̂a)2 can be obtained using the representation theory of su(n+1).

From the definition (4.22), we can see that La acts on the representation space

V(p+q,0,··· ,0) ⊗ V ∗
(p,0,··· ,0) =

p⊕

k=0

V(k+q,0,··· ,0,k).

This is a similar to the irreducible decomposition (4.19) except for the cut-off k ≤ p. Thus, the

eigenvalues are Ek for k = 0, 1, · · · , p.
More explicitly, we can use (4.23) to identify the correspondence of eigenvalues or eigenvectors

of
∑n2+2n

a=1 (La)2 and
∑n2+2n

a=1 (L̂a)2. Note that the matrix element of Tp(f
(q)
k,w) is given as

Tp(f
(q)
k,w)αp+q ,βp

∝ (ζαp+q ζ̄βq , f
(q)
k,w).

Since ζαp+q ζ̄βq can be expanded by the basis {f (q)
k′,w′}k′≤p, we find

∀k > p : Tp(f
(q)
k,w) = 0.

For k ≤ p, Tp(f
(q)
k,w) 6= 0 and (4.23) implies

n2+2n∑

a=1

(L̂a)2Tp(f
(q)
k,w) =

n2+2n∑

a=1

Tp((La)2f
(q)
k,w) = EkTp(f

(q)
k,w).
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From this theorem, we see that the spectrum of ∆̂L⊗q

is the truncated version of the spectrum

of ∆L⊗q

up to a difference of order O(~p):

2πp2

(p+ q + n+ 1)(p+ n+ 1)

(
2Ek −

q2n

n+ 1

)
= 2π

(
2Ek −

q2n

n+ 1

)
+O(~p).

Finally, let us prove the following correspondence.

Theorem 4.8. Let us normalize {f (q)
k,w} such that

(
f
(q)
k,w, f

(q)
k′,w′

)
= δk,k′δw,w′ .

Then, the inner products of {Tp(f (q)
k,w)} with respect to (3.17) are

(
Tp(f

(q)
k,w), Tp(f

(q)
k′,w′)

)
=

(p+ q + n)!(p+ n)!

pn(p− k)!(p+ q + k + n)!
δk,k′δw,w′ ,

for k, k′ ≤ p.

Proof. First, let us show (
Tp(f

(q)
k,w), Tp(f

(q)
k′,w′)

)
∝ δk,k′δw,w′ .

To show this, let us consider the Cartan-Weyl basis {Ha, Eα} of su(n+ 1) satisfying

[Ha, Hb] = 0, [Ha, E±α] = ±αaE±α, [Eα, E−α] =
∑

a

αaHa, E∗
α = E−α. (4.24)

Here, {Ha}na=1 be the basis of Cartan subalgebra and α denotes a root vector. The standard choice

of {Ha}na=1 is Ha := T a2+2a where T a2+2a is defined as a diagonal matrix with the following entries:

T a2+2a
ii :=





(
2

a2+a

) 1
2 , (0 ≤ i < a)

−
(

2
a2+a

) 1
2 a, (i = a)

0. (a < i ≤ n)

(4.25)

Now, we define the irreducible representation maps ρ : su(n + 1) → End(V ) and ρ̂ : su(n + 1) →
End(V̂ ) such that

V = SpanC({fk,w}), ρ(T a) = La,

V̂ = SpanC({Tp(fk,w)}), ρ̂(T a) = L̂a.

Then, the correspondence (4.23), which can be neatly expressed as

ρ̂(v)Tp(f
(q)) = Tp(ρ(v)f

(q)), (4.26)
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for any v ∈ su(n + 1) and f (q) ∈ C∞(CPn, L⊗q). From now on, we take w as the weight vector

w = (w1, w2, · · · , wn) such that

ρ(Ha)f
(q)
k,w = waf

(q)
k,w.

Then, by the self-adjointness of
∑

a(L̂a)2 and ρ̂(Ha), we find
(
Tp(f

(q)
k,w), Tp(f

(q)
k′,w′)

)
= Cn,p,q,k,wδk,k′δw,w′ ,

for a constant Cn,p,q,k,w. Moreover, using (4.24) and (4.26), one can show

(Tp(f
(q)
k,w+α), Tp(f

(q)
k,w+α)) = (Tp(f

(q)
k,w), Tp(f

(q)
k,w)),

for any w and α. This shows that Cn,p,q,k,w does not depend on w.

From the above argument, we then only need to calculate |Tp(fk,w)|2 := (Tp(fk,w), Tp(fk,w))

for a fixed weight w for each k. For example, let us consider the highest weight wmax. In our

convention (4.25), we find

f
(q)
k,wmax

=

√
(2k + q + n)!

k!(k + q)!
(ζ1)k+q(ζ̄0)k,

using (4.20). From (4.21), we find

Tp(f
(q)
k,wmax

)αp+q ,βp
=

√
(2k + q + n)!(p+ q + n)!(p+ n)!

k!(k + q)!((p+ q + k + n)!)2
[αp+q ⊕ 0k]!√
[αp+q]![βp]!

δαp+q⊕0k,βp⊕1k+q
,

where we defined 0k = (0, 0, · · · , 0) ∈ Σk and 1k+q = (1, 1, · · · , 1) ∈ Σk+q. The only non-vanishing

matrix elements of Tp(f
(q)
k,wmax

) are

Tp(f
(q)
k,wmax

)γp−k⊕1k+q ,γp−k⊕0k
=

√
(2k + q + n)!(p+ q + n)!(p+ n)!

k!(k + q)!((p+ q + k + n)!)2
[γp−k ⊕ 0k ⊕ 1k+q]!√

[γp−k ⊕ 1k+q]![γp−k ⊕ 0k]!
,

for any γp−k ∈ Σp−k. Hence, we obtain

|Tp(f (q)
k,wmax

)|2 = (2k + q + n)!(p+ q + n)!(p+ n)!

pnk!(k + q)!((p+ q + k + n)!)2

∑

γp−k∈Σp−k

([γp−k ⊕ 0k ⊕ 1k+q]!)
2

[γp−k ⊕ 1k+q]![γp−k ⊕ 0k]!

=
(2k + q + n)!(p+ q + n)!(p+ n)!

pn((p+ q + k + n)!)2

p−k∑

i1=0

p−k−i1∑

i2=0

· · ·
p−k−∑n−1

j=1 ij∑

in=0

(
p−∑n

j=1 ij
k

)(
i1 + k + q

k + q

)
,

where we rewrite the summation as

∑

γp−k∈Σp−k

F ([γp−k]0, [γp−k]1, · · · , [γp−k]n) =

p−k∑

i1=0

p−k−i1∑

i2=0

· · ·
p−k−∑n−1

j=1 ij∑

in=0

F (p− k −
n∑

j=1

ij, i1, · · · , in).
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Let us use the identities for the binomial coefficients,

n∑

m=k

(
m

k

)
=

(
n+ 1

k + 1

)
,

n∑

m=0

(
m

j

)(
n−m

k − j

)
=

(
n+ 1

k + 1

)
,

where they are called the hockey-stick identity and the Chu-Vandermonde identity, respectively.

Then, we find

|Tp(f (q)
k,wmax

)|2 = (2k + q + n)!(p+ q + n)!(p+ n)!

pn((p+ q + k + n)!)2

p−k∑

i1=0

(
p+ n− 1− i1
k + n− 1

)(
i1 + k + q

k + q

)

=
(p+ q + n)!(p+ n)!

pn(p− k)!(p+ q + k + n)!
.

From this theorem, we can see that the large-p correspondence of the inner products (3.18).

53



5 Monopole bundle over fuzzy T
2
τ

In this subsection, we consider the Berezin-Toeplitz quantization of smooth sections of L⊗q over

the one-dimensional complex torus T
2
τ [13].

5.1 Geometry of T2

τ

First, let us define the one-dimensional complex torus T
2 as follows.

Definition 20. Let τ be an element of the complex upper-half plane H := {τ ∈ C|ℑτ > 0}. For

z, z′ ∈ C, we introduce an equivalence relation ∼ such that

z ∼ z′ :⇔ ∃k, l ∈ Z : z − z′ = k + τ l. (5.1)

Then, we define T
2
τ as

T
2
τ := C/ ∼ .

We also use the real coordinates {x, y} such that

z = x+ τy, (5.2)

which are identified by x ∼ x+ 1 and y ∼ y + 1, respectively.

Now, let us introduce a Kähler structure of T2
τ as follows. We first define a symplectic form on

C by

ω =
i

2ℑτ dz ∧ dz̄.

Since ω is not depends on the choice of the representative under the identification (5.1), ω is also

a symplectic form on T
2
τ . Then, we have

∫
T2
τ
ω = 1, which implies [ω] ∈ H2(T2

τ ,Z). Let J be

an almost complex structure defined by J(∂/∂z) = i∂/∂z, J(∂/∂z̄) = −i∂/∂z̄. Then, the Kähler

metric g is given by

g =
1

2ℑτ (dz ⊗ dz̄ + dz̄ ⊗ dz).

Then, the triple (g, ω, J) defines a Kähler structure of T2
τ .

5.2 Zero modes of the Dirac operator on T
2

τ

In this subsection, we explicitly construct a complete orthonormal basis of the kernel of the Dirac

operator on C∞(T2
τ ,Λ

0,• ⊗ L⊗p) [25].

Let Dp be the spinc Dirac operator on C∞(T2
τ ,Λ

0,•⊗L⊗p) defined in (2.17). As shown in (2.44),

any f (p) ∈ kerDp ⊂ C∞(T2
τ , L

⊗p) satisfy

∇L⊗p

∂/∂z̄f
(p) = 0,
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for large enough p. From ω = i
2π
RL = i

2π
dAL, one can take

AL = − π

2ℑτ (z̄dz − zdz̄),

and therefore (
∂

∂z̄
+

pπ

2ℑτ z
)
f (p) = 0. (5.3)

Sections of the nontrivial bundle L⊗p should properly transforms under the coordinate changes.

For T
2
τ , this requirement imposes the following boundary conditions.

Proposition 5.1. Elements of C∞(T2
τ , L

⊗p) can be written as

f (p) = ei
pπ
2

ℑ(z2)
ℑτ θ(z), (5.4)

where θ satisfies the boundary conditions




θ(z + 1) = θ(z),

θ(z + τ) = e−ipπℜτe−i2pπℜzθ(z).
(5.5)

Proof. Under the coordinate shifts, the connection one-form AL and f (p) transforms as




AL(z + 1) = AL(z)− i π

ℑτ
d(ℑz),

AL(z + τ) = AL(z)− i π
ℑτ

d(ℑ(τ̄ z)),
and




f (p)(z + 1) = eipπ

ℑz
ℑτ f (p)(z),

f (p)(z + τ) = eipπ
ℑ(τ̄z)
ℑτ f (p)(z).

(5.6)

By putting (5.4) into (5.6), we obtain (5.5).

Let us solve the zero mode equation (5.3). From the first condition of (5.5), we have

θ(z) =
∑

n∈Z
cn(ℑz)ei2πnℜz,

for some sequence of complex functions {cn}n∈Z. Then, (5.3) implies

dcn
dℑz (ℑz) = −2π

(
p
ℑz
ℑτ + n

)
cn(ℑz) ⇒ cn(ℑz) = cn(0)e

−pπ (ℑz)2

ℑτ e−2πnℑz.

Furthermore, the second condition of (5.5) imposes

cn+p(0) = eiπ(2n+p)τcn(0) ⇒ cn(0) = cn̄p
eiτ

π
p
n2

.

Here, cn̄p
is the complex number which only depends on the congruence class of modulo p,

n̄p = {pl + n| l ∈ Z}.
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Thus, we obtain

θ(z) = e−pπ (ℑz)2

ℑτ

∑

n∈Z
cn̄p

eiτ
π
p
n2

ei2πnz,

which has p linearly independent modes labeled by āp ∈ Zp,

θāp(z) = cāpe
−pπ (ℑz)2

ℑτ

∑

n∈āp
eiτ

π
p
n2

ei2πnz.

Using this result, we can construct a complete orthonormal basis of kerDp with respect to the

inner product

(f (p), g(p)) :=

∫

T2
τ

µ f (p)g(p),

for f (p), g(p) ∈ C∞(T2
τ , L

⊗p). Here, µ := ω is the volume form of T2
τ .

Theorem 5.2. For āp ∈ Zp, we define

f
(p)
āp (z) := (2pℑτ)1/4eipπ zℑz

ℑτ

∑

n∈āp
eiτ

π
p
n2

ei2πnz. (5.7)

Then, {f (p)
āp }āp∈Zp

is an orthonormal basis of C∞(T2
τ , L

⊗p),

(f
(p)
āp , f

(p)

b̄p
) = δāp,b̄p .

Proof. Using (5.2), we have

(f
(p)
āp , f

(p)

b̄p
) = (2pℑτ) 1

2

∫ 1

0

dx

∫ 1

0

dy e−2pπ(ℑτ)y2
∑

n∈āp

∑

m∈b̄p

ei
π
p
(−τ̄n2+τm2)e−i2π(nτ̄−mτ)ye−i2π(n−m)x.

The integration over x gives a factor of δnm and thus we obtain

(f
(p)
āp , f

(p)

b̄p
) = (2pℑτ) 1

2 δāp,b̄p
∑

n∈āp
e−

2π
p
(ℑτ)n2

∫ 1

0

dy e−2pπ(ℑτ)y2e−4πn(ℑτ)y

= (2pℑτ) 1
2 δāp,b̄p

∑

n∈āp

∫ 1

0

dy e−2pπ(ℑτ)(y+n
p
)2

= (2pℑτ) 1
2 δāp,b̄p

∫ ∞

−∞
dy e−2pπ(ℑτ)y2

= δāp,b̄p .

Since the cardinality of Zp is p, we have

dimkerDp = p,

which is consistent with (2.33),

dimkerDp =

∫

T2

epω = p.
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5.3 The spectrum of the Bochner Laplacian ∆L⊗q

In this subsection, we obtain the eigenvalues and the corresponding eigenvectors of ∆L⊗q

, which

will be quantized in the next subsection.

First, let us consider the case for q = 0. In this case, the Bochner Laplacian on C∞(T2
τ ,C) is

given as

∆C = − 1

ℑτ

(
|τ |2 ∂

2

∂x2
− 2ℜτ ∂2

∂x∂y
+

∂2

∂y2

)
,

Since any elements of C∞(T2
τ ,C) are periodic in z 7→ z + 1, z + τ , the eigenvalues and their

corresponding eigenvectors of ∆C are

Ek,l =
4π2|τk − l|2

ℑτ , fk,l := ei2πkxei2πly, (5.8)

for k, l ∈ Z. The eigenvectors are orthonormal

(fk,l, fk′,l′) = δk,k′δl,l′ .

Let us consider the case for q 6= 0. The Bochner Laplacian on C∞(T2
τ , L

⊗q) is

∆L⊗q

= −2ℑτ
(
∇L⊗q

∂/∂z∇L⊗q

∂/∂z̄ +∇L⊗q

∂/∂z̄∇L⊗q

∂/∂z

)
.

From [∇L⊗q

∂/∂z,∇L⊗q

∂/∂z̄] = qRL(∂/∂z, ∂/∂z̄) = πq
ℑτ

, we can introduce the ladder operators

aq := −i

√
ℑτ
πq

∇L⊗q

∂/∂z̄, a∗q := −i

√
ℑτ
πq

∇L⊗q

∂/∂z, (5.9)

satisfying [aq, a
∗
q] = 1 and [aq, aq] = [a∗q, a

∗
q] = 0. Then, ∆L⊗q

can be written as

∆L⊗q

= 4πq

(
Nq +

1

2

)
,

where Nq := a∗qaq is the number operator. Thus, the eigenvalues of ∆L⊗q

are

Em = 4πq

(
m+

1

2

)
,

for m ∈ N. Note that the eigenvectors with m = 0 are vanished by the action of a∗q ∝ ∇L⊗q

∂/∂z̄ and

thus the eigenspace with m = 0 is kerDp. Thus, the eigenvector f
(q)
m,āq with eigenvalue Em is given

by

f
(q)
m,āq =

(a∗q)
m

√
m!

f
(q)
āq =

(2qℑτ)1/4√
2mm!

eiπq
zℑz
ℑτ

∑

n∈āq
Hm

(√
2πqℑτ

(ℑz
ℑτ +

n

q

))
eiτ

π
q
n2

ei2πnz, (5.10)

where āq ∈ Zq. Here, Hm is the physicist’s Hermite polynomial:

Hm(x) = (−1)mex
2 dm

dxm
e−x2

.

Using the algebra of the ladder operators, we can show

(f
(q)
m,āq , f

(q)

n,b̄q
) = δmnδāq ,b̄q . (5.11)

57



5.4 Toeplitz operators of eigenvectors of ∆L⊗q

Let Πp : C∞(T2
τ ,Λ

0,• ⊗ L⊗p) be the orthogonal projection. We define the Toeplitz operator of

f (q) ∈ C∞(T2
τ , L

⊗q) by

Tp(f
(q)) = Πp+qf (q)Πp.

In this subsection, we explicitly evaluate the matrix elements

Tp(f
(q))āp+q ,b̄p := (f

(p+q)
āp+q

, Tp(f
(q))f

(p)

b̄p
)

for the eigenvectors of the Bochner Laplacian ∆L⊗q

.

Let us obtain the Toeplitz operators of the eigenvectors of ∆L⊗q

. The result for q = 0 is the

following.

Theorem 5.3. Let us introduce a operator F k,l
p with the following matrix elements

(F k,l
p )āp,b̄p := e−i 2πl

p
aδāp,b+kp

.

Then, we find

Tp(fk,l) = e−
π|τk−l|2

2pℑτ e
kl
p
πF k,l

p . (5.12)

Proof.

Tp(e
i2πkxei2πly)āp,b̄p

= (2pℑτ) 1
2

∫ 1

0

dx

∫ 1

0

dy e−2pπ(ℑτ)y2
∑

n∈āp

∑

m∈b̄p

ei
π
p
(−τ̄n2+τm2)e−i2π(nτ̄−mτ−l)ye−i2π(n−m−k)x

= (2pℑτ) 1
2 δāp,b+kp

∑

n∈āp
ei

π
p
(−τ̄n2+τ(n−k)2)

∫ 1

0

dy e−2pπ(ℑτ)y2e−2π(2nℑτ+i(kτ−l))y

= (2pℑτ) 1
2 (F k,l

p )āp,b+kp
e−

π(|τ |2k2−2klτ+l2)
2pℑτ

∫ ∞

−∞
dy e−2pπ(ℑτ)y2

= e−
π(|τ |2k2−2klτ+l2)

2pℑτ (F k,l
p )āp,b+kp

.

The operator F k,l
p has the following properties.

Proposition 5.4.

∀m,n ∈ Z : F k+mp,l+np
p = F k,l

p ,

F k,l
p F k′,l′

p = ei
2πkl′

p F k+k′,l+l′

p , (F k,l
p )∗ = ei

2πkl
p F−k,−l

p . (5.13)

In particular, the last two equations and F 0,0
p = 1 imply that F k,l

p is unitary. The last equation also

implies

F k,l
p F k′,l′

p = ei
2π(kl′−k′l)

p F k′,l′

p F k,l
p .
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We also have the following orthogonality with respect to (3.17).

Theorem 5.5.

(Tp(fk,l), Tp(fk′,l′)) = e−
π(|τk−l|2+|τk′−l′|2)

2pℑτ e
kl+k′l′

p
πδk̄p,k̄′pδl̄p,l̄′p .

Proof.

(Tp(fk,l), Tp(fk′,l′)) = p−1

p−1∑

a,b=0

e−
π(|τk−l|2+|τk′−l′|2)

2pℑτ e
kl+k′l′

p
πe−i 2π(l−l′)

p
aδāp,b+kp

δāp,b+k′p

= p−1

p−1∑

a=0

e−
π(|τk−l|2+|τk′−l′|2)

2pℑτ e
kl+k′l′

p
πe−i 2π(l−l′)

p
aδk̄p,k̄′p

= e−
π(|τk−l|2+|τk′−l′|2)

2pℑτ e
kl+k′l′

p
πδk̄p,k̄′pδl̄p,l̄′p .

The Toeplitz operators of the eigenvectors of ∆L⊗q

for q 6= 0 is the following.

Theorem 5.6.

Tp(f
(q)
m,c̄q)āp+q ,b̄p =

√
pm

(p+ q)m+1

p+q∑

t=1

f
(pq(p+q))

m,pc−qb+pqtpq(p+q)
(0)δāp+q ,b+c+qtp+q

. (5.14)

Proof. We first show

f
(q)
m,c̄q(z)f

(p)

b̄p
(z) =

p+q∑

t=1

m∑

m′=0

√
m!

(m−m′)!m′!

qm′pm−m′

(p+ q)m+1
f
(p+q)

m′,b+c+qtp+q

(z)f
(pq(p+q))

m−m′,pc−qb+pqtpq(p+q)
(0).

(5.15)

To show this, let us consider the theta function with characteristics,

ϑa,b(ν, τ) =
∑

n∈Z
eiπ(n+a)2τei2π(n+a)(ν+b).

Then, we can write (5.7) as

f
(p)
āp (z) = (2pℑτ)1/4eipπ zℑz

ℑτ ϑa
p
,0(pz, pτ).

There is a following identity [26],

ϑ c
q
,0(qz, qτ)ϑ b

p
,0(pw, pτ) =

p+q∑

t=1

ϑ b+c+qt
p+q

,0((p+ q)z̃, (p+ q)τ)ϑ pc−qb+pqt
pq(p+q)

,0(pq(p+ q)w̃, pq(p+ q)τ),

where

z̃ :=
qz + pw

p+ q
, w̃ :=

z − w

p+ q
.
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This implies

f
(q)
c̄q (z)f

(p)

b̄p
(w) = (p+ q)−

1
2

p+q∑

t=1

f
(p+q)

b+c+qtp+q

(z̃)f
(pq(p+q))

pc−qb+pqtpq(p+q)
(w̃).

From (5.9), we have a relation

a∗q(z) =

√
q

p+ q
a∗p+q(z̃) +

√
p

p+ q
a∗pq(p+q)(w̃).

Then, (5.10) implies

f
(q)
m,c̄q(z)f

(p)

b̄p
(w) =

p+q∑

t=1

m∑

m′=0

√
m!

(m−m′)!m′!

qm′pm−m′

(p+ q)m+1
f
(p+q)

m′,b+c+qtp+q

(z̃)f
(pq(p+q))

m−m′,pc−qb+pqtpq(p+q)
(w̃).

By putting z = w, we obtain (5.15).

Using (5.15) and (5.11), we have

Tp(f
(q)
m,c̄q)āp+q ,b̄p

=

p+q∑

t=1

m∑

m′=0

√
m!

(m−m′)!m′!

qm′pm−m′

(p+ q)m+1
f
(pq(p+q))

m−m′,pc−qb+pqtpq(p+q)
(0)(f

(p+q)
0,āp+q

, f
(p+q)

m′,b+c+qtp+q

)

=

√
pm

(p+ q)m+1

p+q∑

t=1

f
(pq(p+q))

m,pc−qb+pqtpq(p+q)
(0)δāp+q ,b+c+qtp+q

.

5.5 The isometric embedding of T2

τ and the Matrix Laplacian

Let us consider an element

A =

(
α β

γ δ

)
∈ SL(2,Z).

Then, we define a set of functions

X1 =
ρ−

1
2

2π
ℜfα,β, X2 =

ρ−
1
2

2π
ℑfα,β, X3 =

ρ
1
2

2π
ℜfγ,δ, X4 =

ρ
1
2

2π
ℑfγ,δ, (5.16)

where fα,β(x, y) = ei2π(αx+βy) and ρ ∈ (0,∞). Using the direct calculation, one can easily find that

X = (X1, X2, X3, X4) gives the isometric embedding T
2
τ → R

4 with moduli parameter

τ(ρ,A) =
ρ−1αβ + ργδ + i

ρ−1α2 + ργ2
. (5.17)

For A ∈ SL(2,Z), we define ΓA : H → H such that ΓAz = αz+β
γz+δ

. Using this action, we have

τ(ρ,A) = −ΓA−1(iρ). Thus, this isometric embedding is applicable only for subset of the moduli

parameters, which are essentially purely imaginary parameters up to the SL(2,Z).
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Below, we set the moduli parameter as (5.17) and the isometric embedding as (5.16). Using

(5.12), their Toeplitz operators are given by

Tp(X
1) =

cα,βp ρ−
1
2

4π

{
F α,β
p + (F α,β

p )∗
}
, Tp(X

2) =
cα,βp ρ−

1
2

4πi

{
F α,β
p − (F α,β

p )∗
}
,

Tp(X
3) =

cγ,δp ρ
1
2

4π

{
F γ,δ
p + (F γ,δ

p )∗
}
, Tp(X

4) =
cγ,δp ρ

1
2

4πi

{
F γ,δ
p − (F γ,δ

p )∗
}
,

(5.18)

where

cα,βp := e−
π|τα−β|2

2pℑτ e
αβ
p .

Then, the matrix Laplacian (3.21) is given as

∆̂L⊗q

Tp(f
(q)) = (2πp)2

4∑

a=1

[Tp(X
a
1), [Tp(X

a1), Tp(f
(q))]].

By a simple calculation, we find

∆̂L⊗q

Tp(f
(q)) = p2

( [
((cα,βp+q)

2 + (cα,βp )2)ρ−1 + ((cγ,δp+q)
2 + (cγ,δp )2)ρ

]
Tp(f

(q))

− cα,βp+qc
α,β
p ρ−1

[
F α,β
p+qTp(f

(q))(F α,β
p )∗ + (F α,β

p+q)
∗Tp(f

(q))F α,β
p

]

− cγ,δp+qc
γ,δ
p ρ

[
F γ,δ
p+qTp(f

(q))(F γ,δ
p )∗ + (F γ,δ

p+q)
∗Tp(f

(q))F γ,δ
p

] )
.

(5.19)

For the case of q = 0, we can obtain the eigenvectors and the eigenvalues of ∆̂C as follows.

Using (5.13), we have

∆̂CTp(fk,l) = 4p2
[
(cα,βp )2ρ−1 sin2

(
π(αl − βk)

p

)
+ (cγ,δp )2ρ sin2

(
π(γl − δk)

p

)]
Tp(fk,l)

= (2π)2
(
ρ−1(αl − βk)2 + ρ(γl − δk)2

)
Tp(fk,l) +O(~p)

=
(2π)2|τk − l|2

ℑτ Tp(fk,l) +O(~p).

This shows that Tp(fk,l) are eigenvectors of ∆̂C and their eigenvalues approach (5.8) as p increases.

For q 6= 0, (5.19) is related to the Harper’s equation as discussed in [13]. To see this, let us use

the different orthonormal bases for kerDp+q and kerDp such that

(F α,β
p )āp,b̄p = δāp,b+1p

, (F γ,δ
p )āp,b̄p = e−i 2π

p
aδāp,b̄p ,

and express the matrix Laplacian (5.19) in terms of this basis:

(
∆̂L⊗q

Tp(f
(q))
)
āp+q ,b̄p

= p2CTp(f
(q))āp+q ,b̄p

− p2D

(
Tp(f

(q))a−1p+q ,b−1p
+ 2λ cos

(
2πa

p+ q
− 2πb

p

)
Tp(f

(q))āp+q ,b̄p + Tp(f
(q))a+1p+q ,b+1p

)
,

61



where

C := ((cα,βp+q)
2 + (cα,βp )2)ρ−1 + ((cγ,δp+q)

2 + (cγ,δp )2)ρ, D := cα,βp+qc
α,β
p ρ−1, λ :=

cγ,δp+qc
γ,δ
p

cα,βp+qc
α,β
p

ρ2.

Now, let us express the Toeplitz operator Tp(f
(q)) in terms of a p(p+ q)-dimensional vector

v =

gcd(p,q)⊕

r=1

vr, vr =
(
Tp(f

(q))1̄p+q ,r+1p , Tp(f
(q))2̄p+q ,r+2p , · · · , Tp(f (q))ν̄p+q ,r+νp

)
,

where ν := p(p+q)
gcd(p,q)

. The corresponding representation of ∆̂L⊗q

acting on v is given as

∆̂L⊗q

=

gcd(p,q)⊕

r=1

∆̂L⊗q

r , ∆̂L⊗q

r = p2C − p2DH
λ, q

p(p+q)
r
p

,

where Hλ,α
ω is the almost Mathieu operator defined by

(Hλ,α
ω u)āν = ua+1ν + ua−1ν + 2λ cos(2π(αa+ ω))uāν .

Thus, the eigenvalue problem of ∆̂L⊗q

is the eigenvalue problem of the almost Mathieu operator.

This kind of problem naturally arises in the study of the quantum hall effects. Since f
(q)
m,āq given

in (5.10) is the exact eigenvector of ∆L⊗q

, the corresponding Toeplitz operator Tp(f
(q)
m,āq) given in

(5.14) should be the approximate eigenvector of ∆̂L⊗q

. From this statement, we can construct the

approximate eigenvector of H
λ, q

p(p+q)
r
p

.
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6 Application to tensor fields

In this section, we construct the matrix regularization of tensor fields [14] as an application of the

theory given in section 3.

6.1 Toeplitz operators for tensor fields

Let M be a compact Kähler manifold and let dimCM = n. For k, l ∈ N, we define a tensor bundle

of type (k, l) over M by T l
kM := T ∗M⊗k ⊗ TM⊗l. Then, a smooth tensor field of type (k, l) is

defined as an element of C∞(M,T l
k), which can be locally expressed as

f l
k = (f l

k)i1···ik
j1···jldxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjl
,

using the real coordinates {xi}. Throughout this section, we use the Einstein summation convection

for repeated indices of the local coordinates. Then, we can define a linear map C∞(M,T l
kM) ×

C∞(M,T 0
l M) → C∞(M,T 0

kM) by

f l
k gl := (f l

k)i1···ik
j1···jl(gl)j1···jldx

i1 ⊗ · · · ⊗ dxik . (6.1)

Thus, the tensor bundle T l
kM can be considered as a homomorphism bundle Hom(T 0

l M,T 0
kM).

Note that there are infinitely many other choices of defining such homomorphism structures. Let

Πp,k be the orthogonal projection from C∞(M,Λ0,• ⊗ L⊗p ⊗ T 0
kM) to the kernel of the spinc Dirac

operator Dp,k := Dp,T 0
kM . Then, we define the Toeplitz operator of f l

k ∈ C∞(M,T l
kM) as

T (k,l)
p (f l

k) := Πp,kf l
kΠ

p,l. (6.2)

For f l
k ∈ C∞(M,T l

kM) and gml ∈ C∞(M,Tm
l M), we can consider the product of the Toeplitz

operators. The relation (3.8) implies

T (k,l)
p (f l

k)T
(l,m)
p (gml ) = T (k,m)

p (f l
k g

m
l ) +O(~p).

Here, the corresponding product of tensor fields induced from the homomorphism structure (6.1)

is

f l
k g

m
l = (f l

k)i1···ik
h1···hl(gml )h1···hl

j1···jmdxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjl
.

Now, consider the identity element 1k ∈ C∞(M,T k
kM) such that

1k = dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
.

Then, (3.14) implies that

lim
p→∞

∣∣(i~p)−1(T (k,k)
p (f1k)T

(k,l)
p (f l

k)− T (k,l)
p (f l

k)T
(l,l)
p (f1l))− T (k,l)

p ({f, f l
k})
∣∣ = 0.
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Let us define a Hermitian fiber inner product on T 0
kM by

hT
0
kM(sk, tk) := gi1j1 · · · gikjk(sk)i1···ik · (tk)j1···jk , (6.3)

where (gij) is the inverse of the metric (gij). Then, (3.16) implies

lim
p→∞

(2π~p)
nTrT (k,k)

p (fk
k ) =

∫

M

µω(f
k
k )i1···ik

i1···ik . (6.4)

In addition, (6.3) implies that the adjoint of the tensor field f l
k ∈ C∞(M,T l

k) is

(f l
k)

∗ = gi1i
′
1 · · · giki′kgj1j′1 · · · gjlj′l(f l

k)i1···ik
j1···jl dxj

′
1 ⊗ · · · ⊗ dxj

′
l ⊗ ∂

∂xi
′
1
⊗ · · · ⊗ ∂

∂xi
′
k

. (6.5)

Then, (3.6) implies

T (l,k)
p ((f l

k)
∗) = T (k,l)

p (f l
k)

∗. (6.6)

Before closing this subsection, we give another formulation of tensor fields as follows. Let

{ea}=1,··· ,2n be an orthonormal frame of TM and {ea}a=1,··· ,2n be the dual frame. From these fields,

we define

Ea1a2···ak := ea1 ⊗ ea2 ⊗ · · · ⊗ eak ∈ C∞(M,T k
0M),

Eb1b2···bl := eb1 ⊗ eb2 ⊗ · · · ⊗ eal ∈ C∞(M,T 0
l M).

Then, one can define a set of (2n)k+l functions {fa1a2···ak b1b2···bl} from f l
k such that

fa1a2···ak
b1b2···bl := (Ea1a2···ak)

i1i2···ik(Eb1b2···bl)j1j2···jl(f
l
k)i1i2···ik

j1j2···jl .

The Toeplitz operator of fa1a2···ak
b1b2···bl then satisfies

T (0,0)
p (fa1a2···ak

b1b2···bl) = T (0,k)
p (Ea1a2···ak)T

(k,l)
p (f l

k)T
(l,0)
p (Ea1a2···al) +O(~p).

From this viewpoint, one can represent a rectangular matrix corresponding to a tensor field by a

set of square matrices corresponding to functions with orthonormal indices.

6.2 Symplectomorphism on tensor fields

A diffeomorphism φ :M →M is called the symplectomorphism if it preserves the symplectic form:

φ∗ω = ω.

Here, φ∗X is the pullback of a tensor field X defined by

(φ∗X)(x) = X(φ(x)).

In this subsection, we prove the following theorem.
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Theorem 6.1. Let φ be a symplectomorphism generated by Hamiltonian vector fields (2.2). Then,

we have

T (k,l)
p (φ∗f l

k) = GkT
(k,l)
p (f l

k)G
−1
l +O(~p), (6.7)

for any f l
k ∈ C∞(M,T l

kM). Here, Gk ∈ GL(dimkerDp,k,C) for k > 0 and G0 ∈ U(dimkerDp,0).

This is consistent with a well-known U(N) symmetry of the matrix theories, which corresponds

to the area preserving diffeomorphism symmetry of the scalar field theory on commutative manifold

[1,2]. Before showing (6.7), let us discuss some of the properties of the symplectomorphism. First

property is that the pullback satisfies

φ∗(X ⊗ Y ) = (φ∗X)⊗ (φ∗Y ), (6.8)∫

M

Z =

∫

M

φ∗Z,

for any tensor fields X, Y of arbitrary types and for any two-form fields Z. Then, the pullback of

(k, k)-type tensor field fk
k using a symplectomorphism φ satisfies

∫

M

µω tr(f
k
k ) =

∫

M

µω tr(φ
∗fk

k ).

Here, we used the Liouville theorem φ∗µω = µω and the fact that the pullback operation commutes

with the contraction operation tr of tensor indices. Let C
m1×m2 be a set of all m1 ×m2 matrices

with complex entries. Then, let us consider a map φm1×m2 : C
m1×m2 → C

m1×m2 , which corresponds

to the pullback operation φ∗ in large-p limit. From the linearity of pullback operation and (6.8),

φm1×m2 should be a linear map satisfying

φm1×m3(AB) = φm1×m2(A)φm2×m3(B) +O(~p),

for any A ∈ C
m1×m2 and B ∈ C

m2×m3 . In addition, the trace correspondence (6.4) implies

TrA = Tr[φm1×m1(A)] +O(~p),

for any A ∈ C
m1×m2 . Then, we can expect that φm1×m2 is of the following form

φm1×m2(A) =Mm1AM
−1
m2

+O(~p),

for Mm1 ∈ GL(m1,C) and Mm2 ∈ GL(m2,C), which satisfy all the desired properties. By this

naive argument, we expect that the matrix transformation corresponding to the pullback of the

symplectomorphism (including the one which is not generated by the Hamiltonian vector fields)

takes the form (6.7).

Now, let us derive (6.7) from the following argument.
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Proof. First, we consider the infinitesimal form of the symplectomorphism φ(x) = x+ǫV , where ǫ is

the infinitesimal real parameter. Then, the infinitesimal form of the pullback of f l
k ∈ C∞(M,T l

kM)

can be written a

φ∗f l
k = f l

k + ǫLV f
l
k +O(ǫ2),

where LV is a Lie derivative along V defined by

(LV f
l
k)i1···ik

j1···jl = (∇V f
l
k)i1···ik

j1···jl

− (∇jV
j1)(f l

k)i1···ik
jj2···jl · · · − (∇jV

jl)(f l
k)i1···ik

j1j2···jl−1j

+ (∇i1V
i)(f l

k)ii2···ik
j1···jl + · · ·+ (∇ikV

i)(f l
k)i1i2···ik−1i

j1···jl .

Here, ∇i := ∇∂/∂xi . Let us consider the Hamiltonian vector field V = Xf . Using ∇Xf ∈
C∞(M,T 1

1M), we define a section of T k
k by

tk =
k−1∑

i=0

1i ⊗∇Xf ⊗ 1k−1−i,

for k > 0 and for k = 0, we set t0 = 0. Then, we can show

LXf
f l
k = {f, f l

k}+ tkf
l
k − f l

ktl.

Using (3.8) and (3.14), we find

T (k,l)
p (LXf

f l
k) =

(
(i~p)

−1T (k,k)
p (f1k) + T (k,k)

p (tk)
)
T (k,l)
p (f l

k)

− T (k,l)
p (f l

k)
(
(i~p)

−1T (l,l)
p (f1l) + T (l,l)

p (tl)
)
+O(~p).

Therefore, we obtain

T (k,l)
p (φ∗f l

k) = GkT
(k,l)
p (f l

k)G
−1
l +O(~p),

where

Gk = exp((i~p)
−1ǫT (k,k)

p (f1k) + ǫT (k,k)
p (tk)). (6.9)

Note that T
(k,k)
p (f1k) is self-adjoint but T

(k,k)
p (tk) for k > 0 is not for general f ∈ C∞(M,R). In

addition, we have T
(0,0)
p (t0) = 0. This implies that Gk ∈ GL(dimkerDp,k,C) for k > 0 and G0 ∈

U(dimkerDp,0). Therefore, for any finite transformations which are generated by Hamiltonian

vector fields, we obtain (6.7).

In particular subset of the symplectomorphism, let us consider a symplectomorphism φ, which

also preserves the metric φ∗g = g. Such diffeomorphisms is called the isometries. Then, we have

the following theorem.

Theorem 6.2. Let φ be a symplectomorphism generated by Hamiltonian vector fields, which also

preserves the metric LXf
g = 0. Then, we have

T (k,l)
p (φ∗f l

k) = UkT
(k,l)
p (f l

k)U
∗
l +O(~p),

for any f l
k ∈ C∞(M,T l

kM). Here, Uk ∈ U(dimkerDp,k) for any k ∈ N.
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Proof. The vector fields preserving the metric are called Killing vector fields. If u = ui ∂
∂xi ∈

C∞(M,TM) is a Killing vector field, it satisfies the Killing equation ∇iu
j +∇jui = 0, where the

tensor indices are raised by the inverse of the metric gij and lowered by the metric gij. Now, let

us assume that the Hamiltonian vector field Xf is a Killing vector. Then, we

∇i(Xf )
j =

1

2
(∇i(Xf )

j −∇j(Xf )i),

which means that ∇Xf is skew-adjoint in the sense of (6.5). Thus, from (6.6), T
(k,k)
p (tk) is also

skew-adjoint, which implies that the transformation matrix Gk obtained in (6.9) is unitary.

The arguments given above are consistent with the following. Let fk
k ∈ C∞(M,T k

kM) be self-

adjoint in the sense of (6.5). Then, (6.6) implies that T
(k,k)
p (fk

k ) is also self-adjoint. Let us consider

the symplectomorphism φ. Since the adjoint of tensor fields (6.5) depends on the metric except

for the (0, 0)-tensor fields (i.e. functions), φfk
k is not self-adjoint in general. This is consistent with

Theorem 6.1, that is, GkT
(k,k)
p (fk

k )G
−1
k for Gk ∈ GL(dimkerDp,k,C) is not self-adjoint in general,

except for the case k = 0 where G0 ∈ U(dimkerDp,0). In the case where φ also preserves the

metric g, φfk
k is self-adjoint. This is consistent with Theorem 6.2, that is, UkT

(k,k)
p (fk

k )U
−1
k for

Uk ∈ U(dimkerDp,k) is also self-adjoint.

6.3 Application to one-form field theory

In this subsection, we consider the matrix regularization of one-form fieldA = Aidx
i ∈ C∞(M,T ∗M)

over a two-dimensional manifold M by using the Berezin-Toeplitz quantization of the vector bun-

dle T ∗M . As an example, we explicitly write the matrix action for fuzzy T
2
i and we showed that

the matrix action for massless one-form field has a matrix gauge symmetry which corresponds to

the U(1) gauge symmetry in the large-p limit.

First, let us consider the action

S =
1

2

∫

M

ωF ijFij +m2

∫

M

ωAiAi,

where m is a mass parameter and Fij :=
∂Aj

∂xi − ∂Ai

∂xj . For the massless case m = 0, there is a U(1)

gauge symmetry A 7→ A′ = A+ dλ for λ ∈ C∞(M,R). Since M is two-dimensional, we have

F ijFij = 2

(∑

a

(dXa)∗{Xa, A}
)2

.

Here, {Xa}a=1,··· ,d is the isometric embedding. Thus, the action can be written as

S =

∫

M

ω

(∑

a

(dXa)∗{Xa, A}
)2

+m2

∫

M

ωA∗A. (6.10)
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Now, let us apply the matrix regularization to this action. Using the notation of (6.2), we

define the Toeplitz operators

Â = T (1,0)
p (A), d̂Xa = T (1,0)

p (dXa).

Then, we define the matrix action which approximates (6.10) in large-p limit,

SMM = pTr F̂ 2 + pm2Tr(Â∗Â). (6.11)

Here,

F̂ = (i~p)
−1
∑

a

d̂Xa
∗
[X̂a, Â],

where [X̂a, Â] := T
(1,1)
p (Xa

11)Â− ÂT
(0,0)
p (Xa).

6.4 Matrix action on T
2

i
and its U(1) gauge symmetry

In the case of the one-dimensional complex torus T
2
τ , we can explicitly calculate the Toeplitz

operators of Xa and dXa, which appear in the matrix action (6.11). As already discussed in

section 5.5, the isometric embedding of T2
τ is given by (5.16). For simplicity, we assume τ = i,

which is the case for ρ = 1 and A = I ∈ SL(2,Z). In this case, the isometric embedding functions

are given by

X1 = (2π)−1 cos(2πx), X1 = (2π)−1 sin(2πx),

X3 = (2π)−1 cos(2πy), X4 = (2π)−1 sin(2πy).

Their Toeplitz operators T
(0,0)
p (Xa) are given by

Tp(X
1) =

e−
π
2p

4π
(Vp + V ∗

p ), Tp(X
2) =

e−
π
2p

4πi
(Vp − V ∗

p ),

Tp(X
3) =

e−
π
2p

4π
(Up + U∗

p ), Tp(X
4) =

e−
π
2p

4πi
(Up − U∗

p ),

where Vp := F 1,0
p and Up := F 0,1

p are clock-shift matrices. Thus, we need to compute T
(1,0)
p (dXa)

and T
(1,1)
p (Xa

11) as follows.

Since T
2
i is flat, we have a decomposition kerDp,1 = kerDp,0 ⊕ kerDp,0 such that

Ψ = ψdx+ φdy,

for Ψ ∈ kerDp,1 and ψ, φ ∈ kerDp,0. Here, (x, y) is the real coordinates. Hence, we have a

corresponding block matrix decomposition,

Â =

(
Âx

Ây

)
=

(
T

(0,0)
p (Ax)

T
(0,0)
p (Ay)

)
,

d̂Xa =

(
T

(0,0)
p (∂xX

a)

T
(0,0)
p (∂yX

a)

)
, T (1,1)

p (Xa
11) =

(
T

(0,0)
p (Xa) 0

0 T
(0,0)
p (Xa)

)
.
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Here, A = Axdx+ Aydy and we introduced ∂x := ∂/∂x and ∂y := ∂/∂y. From (5.16), we have

∂xX
1 = −2πX2, ∂xX

2 = 2πX1, ∂yX
1 = ∂yX

2 = 0,

∂yX
3 = −2πX4, ∂yX

4 = 2πX3, ∂xX
3 = ∂xX

4 = 0.

Thus, we obtain

F̂ = (i~p)
−1
∑

a

(
T (0,0)
p (∂xX

a)[T (0,0)
p (Xa), Âx] + T (0,0)

p (∂yX
a)[T (0,0)

p (Xa), Ây]
)

= 2π(i~p)
−1
(
T (0,0)
p (X1)[T (0,0)

p (X2), Âx]− T (0,0)
p (X2)[T (0,0)

p (X1), Âx]

+ T (0,0)
p (X3)[T (0,0)

p (X4), Ây]− T (0,0)
p (X4)[T (0,0)

p (X3), Ây]
)
.

Using (5.18), we have

F̂ = ∂̂xÂy − ∂̂yÂx,

where

∂̂xM :=
pe−

π
p

2

(
Vp[V

∗
p ,M ]− V ∗

p [Vp,M ]
)
, ∂̂yM := −pe

−π
p

2

(
Up[U

∗
p ,M ]− U∗

p [Up,M ]
)
,

for any M ∈ C
p×p. These operators correspond to ∂x and ∂y in the large-p limit. As we can

directly check, we have

[∂̂x, ∂̂y]M = 0, (6.12)

for any M ∈ C
p×p. Thus, the matrix F̂ corresponds to Fxy = ∂xAy − ∂yAx in the large-p limit.

Therefore, the matrix action can be written as

SMM = pTr(∂̂xÂy − ∂̂yÂx)
2 + pm2Tr(Â2

x + Â2
y).

For the massless case m = 0, there exists a symmetry

(
Âx

Ây

)
7→
(
Âx

Ây

)
+

(
∂̂xλ̂

∂̂yλ̂

)
,

for any λ̂ ∈ C
p×p. This follows from the fact that ∂̂x and ∂̂y are linear and (6.12). This transfor-

mation corresponds to the U(1) gauge symmetry A 7→ A+ dλ in large-p limit.
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7 Conclusion and future problems

In this dissertation, we studied the Berezin-Toeplitz quantization of a vector bundle over a general

Kähler manifold M , which is developed in [9, 10, 14]. In this formalism, we treated the vector

bundle as a homomorphism bundle Hom(E2, E1). Then, its section s ∈ C∞(M,Hom(E2, E1)) can

be considered as linear operators between vector spaces of suitable spinor fields, s : C∞(M,Λ0,• ⊗
L⊗p ⊗ E2) → C∞(M,Λ0,• ⊗ L⊗p ⊗ E1). By restricting the vector spaces C∞(M,Λ0,• ⊗ L⊗p ⊗ Ea)

to the finite-dimensional kernels of spinc Dirac operators kerDp,Ea , we defined a quantization

map T
(E1,E2)
p : C∞(M,Hom(E2, E1)) → Hom(kerDp,E2 , kerDp,E1), where T

(E1,E2)
p (s) can be repre-

sented as a matrix with finite size. We obtained a large-p asymptotic expansion of the product

T
(E1,E2)
p (s)T

(E2,E3)
p (t) for any s ∈ Hom(E2, E1) and t ∈ Hom(E3, E2), up to the first order in ~p.

In the zeroth order of this asymptotic expansion, we derived the correspondence of the product of

Toeplitz operators and the product of sections in large-p limit. In the first order of this asymptotic

expansion, we derived the correspondence of the generalized commutator of Toeplitz operators

and the generalized Poisson bracket of sections in large-p limit. These correspondences are natural

generalizations of the well-known relation of matrix regularization of functions. A particular use-

fulness of the correspondence of the generalized commutator and the generalized Poisson bracket

concerns with the matrix Laplacian. For a Kähler manifold, the Bochner Laplacian on sections can

be written in terms of the generalized Poisson bracket and the isometric embedding. Thus, we can

define the corresponding matrix Laplacian acting on Toeplitz operators by the generalized commu-

tator and the Toeplitz operators of the isometric embedding. As an application of this formalism,

we considered the matrix regularization of monopole bundles over CPn and T
2
τ . In particular, our

formulation correctly reproduces the results of the monopole bundles over the fuzzy CP
n given

in [23, 24]. Another application of this formalism is the matrix regularization of tensor fields over

a Kähler manifold. We treated the tensor field of type (k, l) as a section of the homomorphism

bundle Hom(T ∗M⊗l, T ∗M⊗k) and we explicitly analyzed the properties of the Toeplitz operators

of sections of this bundle, such as the matrix counterpart of the transformation induced from

the pullback of the symplectomorphism. We also explicitly consider the matrix regularization of

one-form field on T
2
i and construct the matrix action. We showed that the matrix action has a

matrix gauge symmetry which corresponds to the U(1) gauge symmetry in the large-p limit, if the

one-form field is massless.

The Berezin-Toeplitz quantization of vector bundle is applicable to the matrix regularization

of a wide class of fields. The possible applications of this work are as follows. First, using the

technique of matrix regularization of tensor fields, one may construct a fuzzy version of the higher

spin theories [27, 28]. Second, since the spinc bundle Λ0,• itself is a vector bundle, it is possible

to consider a matrix regularization of spinor fields. The theories of spinor fields on lattice have

the issues of doublers and chiral anomaly. Then, it is possible consider similar problems on fuzzy
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spaces [29–34]. Using our method, it is interesting to consider the similar problems on a general

Kähler manifold. It is also possible to construct a fuzzy field theory on manifolds with various

background fields such as instanton configurations. It is important to uncover how the various

background field configurations are incorporated in the framework of matrix configurations.

Finally, let us discuss some possible generalizations of this study. In section 3, we defined the

Berezin-Toeplitz quantization for vector bundles over a general symplectic manifold and most of

the properties of the Toeplitz operators are considered for a general symplectic manifold. However,

we failed to show the general asymptotic expansion of the Toeplitz operators for general symplectic

case, except for the leading term C0(s, t). In our technique, we had to assume that M is Kähler

in order to obtain the subleading coefficient C1(s, t), which is important to derive the correspon-

dence of the generalized commutator and the generalized Poisson bracket. However, in [7], it is

possible to obtain the asymptotic properties of the Toeplitz operators of functions on a general

symplectic manifold using the asymptotic expansion of the Bergman kernel. Thus, we expect that

the correspondence of the generalized commutator and the generalized Poisson bracket can be

shown for a general symplectic manifold. In [7], the Berezin-Toeplitz quantization of functions

over non-compact manifolds or orbifolds are also considered and therefore it may be possible to

consider the Berezin-Toeplitz quantization of vector bundles over such general spaces.
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A Notation and conventions

• The sets of all natural numbers, integers, real numbers and complex numbers are respectively

denoted as N,Z,R and C. Here, the natural number is defined as a nonnegative integers, i.e.

N = {0, 1, 2, · · · }. We also denote by Zp the ring of integers modulo p, where the congruence

class is denoted as āp := {n ∈ Z|n− a ∈ pZ}.

• For a ring R, the set of all n × m matrices with entries in R is denoted by Rn×m. For

particular subsets with group structures, GL(n,R) ⊂ Rn×n is the set of all invertible square

matrices, SL(n,R) ⊂ Rn×n is the set of all square matrices with unit determinant. We also

denote by U(n) ⊂ C
n×n the set of all unitary matrices and by O(n) ⊂ R

n×n the set of all

orthogonal matrices.

• The imaginary unit is denoted as i. The complex conjugation of c ∈ C is denoted as c̄. The

real part and imaginary part of c ∈ C are respectively denoted as ℜc and ℑc.

• A manifold M refers to a manifold without boundary.

• For a manifold M , we denote by TM the tangent vector bundle, and denote by T ∗M the

cotangent vector bundle.

• For vector bundles E,F over a manifold M , E∗ denotes a dual bundle of E, E ⊗ F denotes

the tensor product bundle, E⊗n denotes the n-fold tensor product of E, E ⊕ F denotes

the Whitney sum bundle, Hom(E,F ) denotes a homomorphism bundle and End(E) :=

Hom(E,E).

• The exterior algebra bundle of a vector bundle E over M is denoted as Λ(E) =
⊕rankE

i=0 Λi(E).

• For a vector bundle E over M , we denote by Ex the fiber (a vector space) at x ∈M .

• For a field K, we denote by C∞(M,K) the set of all smooth K-valued functions over a manifold

M . For a vector bundle E over a manifold M , we denote by C∞(M,E) the set of all smooth

sections of E.

• A Hermitian vector bundle (E, hE) over a manifold M is a vector bundle equipped with a

Hermitian inner product hE on each fiber Ex, which is smoothly varying in x ∈M .

• A Hermitian connection ∇E of a Hermitian vector bundle (E, hE) is a connection of E

satisfying the compatibility condition dhE(s, t) = hE(∇Es, t) + hE(s,∇Et)
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B M-theory and BFSS matrix model

In this appendix, we review the conjectures of the M-theory [15]. Then, we review the BFSS

matrix model, which is postulated as as a consistent formulation of the M-theory in the infinite

momentum [1] or DLCQ limit [16].

B.1 Conjectures of the M-Theory

M-theory is a hypothetical theory which unites the 5 different types of the superstring theories,

type I, IIA, IIB, heterotic SO(32) and heterotic E8 × E8 [15]. There are numerous evidences that

there might be such a theory, but the formulation of M-theory is yet unknown. In this subsection,

we summarize some of the conjectures or postulates which M-theory should respect.

1. M-theory is a supersymmetric 11-dimensional theory

The M-theory is postulated to be a theory with 11-dimensional target spaces with super-

symmetry. It does not contradict with the fact that the superstring theory is defined on

a 10-dimensional target space since the analysis of the superstring theory is given in per-

turbative method. It is postulated that the extra 11th dimension opens up in the limit of

nonperturbative superstring theory.

2. The low energy effective theory of the M-theory is the 11-dimensional supergravity theory

As the low energy effective actions of the superstring theories are the 10-dimensional super-

gravity theories (plus some Yang-Mills theories in the case of type I and heterotic theories),

the low energy effective theory of the M-theory is postulated as a maximally supersymmetric

11-dimensional supergravity theory.

3. M-theory contains M2-branes and M5 branes

From the fact that the 11-dimensional supergravity theory contains 3-form gauge field, the

fundamental objects of the M-theory are expected to couple to the 3-form gauge fields.

Thus, the electrically coupled objects are extended in 2+1-dimension and the magnetically

coupled objects are extended in 5+1-dimension. They are called M2-branes and M5-branes,

respectively.

4. Codimension 1 compactification of the M-theory gives superstring theories

It is known that the type IIA supergravity theory (the low energy effective theory of type

IIA superstring theory) can be obtained as a S1 compactification of the 11-dimensional

supergravity theory. This suggests that the S1 compactification of the M-theory would give

the type IIA superstring theory, not only in the low energy level. Similarly, it is conjectured

that the compactification of the M-theory onto the orbifold S1/Z2 would give the heterotic
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E8 × E8 superstring theory. Moreover, one finds that the resulting string coupling is related

to the size of the compactified space.

B.2 Type IIA superstring theory and M-Theory

In this subsection, we discuss the connections of the type IIA superstring theory and the M-theory.

In the previous subsection, we mentioned the relation of the type IIA superstring theory and the

M-theory only in the low energy and classical level. However, there are some evidences that this

connection holds in the quantum stringy level.

Let us suppose that the type IIA is indeed a 11-dimensional theory compactified on a circle

with radius R. Then, the type IIA theory is a Kaluza-Klein theory. Let be {xµ}9µ=0 the coordinates

of uncompactified 10-dimensional space R
1,9 and y be the compactified coordinate of S1 such that

y ∼ y + 2πR. Then, any complex function φ ∈ C∞(R1,9 × S1,C) can be expended as 2

φ(x, y) =
∑

n∈Z
φn(x)e

iny/R.

The kinetic term of φ is proportional to the Laplacian ∆′ on C∞(R1,9 × S1,C) is then given as

∆′φ(x, y) =
∑

n∈Z

(
∆φn(x)−

n2

R2
φn(x)

)
einy/R,

where ∆ is the Laplacian on C∞(R1,9,C). Thus, as a 10-dimensional theory, we have infinite

number of fields {φn}n∈Z called Kaluza-Klein modes (KK modes) which have infinite tower of

masses |n|
R

. In the limit of R → 0 (which corresponds to the perturbative limit in the superstring

theory), the higher modes (|n| > 0) become infinitely heavy and therefore decouple. However, for

R > 0 (which corresponds to the nonperturbative superstring theory), such modes should exist in

the 10-dimensional theory. The type IIA theory contains nonperturbative object called D-branes.

In particular, the D0-brane has a definite mass and the D0-brane is a BPS state, which do not

interact with each other. Thus, the total mass of the |n| D0-branes is simply |n| times the mass of a

single D0-brane. We see that φn state corresponds to a system of |n| D0-branes or anti-D0-branes.

Let us examine the relation of string coupling and the compactification radius. Let (M1,9, g)

be a pseudo-Riemannian manifold with signature (1, 9). Then, the bosonic part of the type IIA

supergravity action SIIA on M is given by

SIIA[g, φ,B2, A1, A3] :=
1

2κ210

∫
µge

−2φ

(
K − 4φ∆φ− 1

2
|H3|2

)

− 1

4κ210

∫ (
µg(|F2|2 + |F̃4|2) + B2 ∧ F4 ∧ F4

).

2For more general fields (sections of a vector bundle), we can do the similar expansion with some modifications.

For example, if the vector bundle has a nontrivial holonomy on S1, we have to impose the twisted boundary

condition on S1 and it gives the different Fourier expansion.
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where µg is the Riemannian volume form, K is the scalar curvature, φ is the scalar dilaton field,

∆ is the Hodge Laplacian. For the field content of this action, B2 is a 2-form field, A1 is a R-R

1-form field, and A3 is a R-R 3-form field and we introduced H3, F2, F4 and F̃4 as

H3 := dB2, F2 := dA1, F4 := dA3, F̃4 := F4 − A1 ∧ A3,

respectively. The first term of the action comes from the NS-NS sector and the second term comes

from the R-R sector. The proportionality factor κ10 is a 10-dimensional gravitational constant,

which is related to the string constant α′ by

κ210 =
1

2
(2π)7α′4. (B.1)

We also use the notation ∫
µg|Fp|2 :=

∫
Fp ∧ ⋆Fp,

where ⋆ denotes the Hodge star. On the other hand, the bosonic part of the 11-dimensional

supergravity action S11 on a pseudo-Riemannian manifold (M1,10, G) with signature (1, 10) is

given by

S11[G,C3] =
1

2κ211

∫
µG

(
K − 1

2
|F4|2

)
− 1

12κ211

∫
C3 ∧ F4 ∧ F4

where C3 is a 3-form field and F4 := dC3. Let us assume M1,10 = M1,9 × S1. Then, the type IIA

supergravity action SIIA can be obtained from the 11-dimensional supergravity action S11 by the

following rules:

G(u, v) = e−
2
3
φg(u, v) + e

4
3
φA(u)A(v), G(u, ∂/∂y) = e

4
3
φA(u), G(∂/∂y, ∂/∂y) = e

4
3
φ

C(u, v, w) = A(u, v, w), C(u, v, ∂/∂y) =
2

3
B(u, v)

for any tangent vector fields u, v, w on M1,9. Here, y is the coordinate of S1. Let us identify

y ∼ y + 2π
√
α′. Then, the radius of compactification R11 is

R11 =
〈√

G(∂/∂y, ∂/∂y)α′
〉
= e

2
3
〈φ〉√α′ = g

2
3
s

√
α′

where 〈·〉 is the the expectation value with respect to the partition function of the superstring

theory and gs := e〈φ〉 is the string coupling. This shows that the size of extra dimension is related

to string coupling (i.e. dilaton) and the extra dimension opens up in the nonperturbative case.

Let us revisit the discussion of Kaluza-Klein modes. We discussed that the n-th mode of

Kaluza-Klein mode has a mass |n|/R. This should be slightly modified in our case. With our

identification of y, a 11-dimensional scalar field Φ(x, y) can be expanded as

Φ(x, y) =
∑

n∈Z
Φn(x)e

iny/
√
α′
.
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Then, the Hodge Laplacian ∆′ on (M1,10, G) acting on Φ becomes

∆′Φ(x, y) =
∑

n∈Z

(
e−

2
3
φ∆Φn(x)−

n2

R2
11

Φn(x)

)
einy/

√
α′
.

where ∆ is the Hodge Laplacian on (M1,9, g). Thus, the mass of the Kaluza-Klein mode Φn(x)

will be

mn =
|n|
R11

e
1
3
φ =

|n|
gs
√
α′
. (B.2)

Note that the tension of the Dp-brane is given by

Tp = (2π)−p(α′)−(p+1)/2g−1
s .

Therefore, we conclude that the n-th Kaluza-Klein mode indeed corresponds to |n| D0-branes of

type IIA superstring theory.

Finally, let us define the Planck mass in 11-dimension. (B.2) shows that the compactification

radius measured by the 10-dimensional metric g is

R̃11 := gs
√
α′. (B.3)

By comparing the coefficients of the Einstein-Hilbert actions of type IIA supergravity theory and

11-dimensional supergravity theory, we have

2πR̃11

κ211
=

1

κ210
.

Since κ10 is given by (B.1), we obtain

2κ211 = (2π)8g3s (α
′)9/2.

Thus, it is natural to define the 11-dimensional Planck mass M11 by

M11 := g−1/3
s (α′)−

1
2 ,

which satisfies

2κ211 = (2π)8M−9
11 . (B.4)

Similarly, the 11-dimensional Planck length is given by

l11 = 1/M11.

Combining (B.3) and (B.4), we can express gs and α′ by the 11-dimensional parameter R̃11 and

M11:

gs = (R̃11M11)
3/2, α′ = R̃−1

11 M
−3
11 .
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B.3 M-Theory and the BFSS conjecture

Let us consider the following action:

S[X1, X2, · · · , X9, ψ] =
1

2gs
√
α′

∫

R

dtTrL(t),

L(t) :=
∑

a

Ẋa(t)Ẋa(t) +
1

2

∑

α,β

[Xa(t), Xb(t)]2 + ψT(t)

(
iψ̇(t)−

∑

a

Γa[X
a(t), ψ(t)]

)
.

(B.5)

Here, {Xa}9a=1 is a set of N × N Hermitian matrix valued function on R and ψ is a N × N

matrix valued function on R whose matrix entries are SO(9) spinors and {Γi}9i=1 are SO(9) gamma

matrices. The dot operation is defined as a derivative ḟ(t) := df
dt
(t). This matrix model is called

the BFSS matrix model and it is postulated to be equivalent to M-theory in light cone infinite

momentum frame in the limit N → ∞ [1] and to M-theory in discrete light cone frame in finite

N [16]. We will discuss this topic in the following subsection. The basic argument is given as

follows. In the light cone infinite momentum frame and the discrete light cone frame, M-theory is

basically defined on a certain limit of light like circle. As we saw in the previous subsection, such

a theory contains D0-branes as a Kaluza-Klein modes. In the light cone infinite momentum frame

and the discrete light cone frame, all the degrees of freedom except for the D0-branes and the

massless open strings attached to them would not give a finite contribution to the Hamiltonian of

the whole system. The system of D0-branes and massless open strings attached to them is described

by 0+1-dimensional supersymmetric Yang-Mills theory. After doing some rescaling and redefining

variable, the Lagrangian of the supersymmetric Yang-Mills theory turns into the BFSS matrix

model. We can also derive this matrix model from a system of M2-brane, which is summarized in

Appendix C.

This matrix model is tested in numerous studies and this model gives correct descriptions of

M-theory so far (the classic reference containing such topics is [35]).

B.4 DLCQ M-Theory and the matrix model

In this subsection, we review that the M-theory in discrete light cone quantization (DLCQ) limit

is given by a system of multi D0-branes [16]. First, we will denote the 11-th spatial direction X10

by y and the timelike coordinate X0 as t. We will introduce a light cone coordinate as

X± :=
1√
2
(t± y).

In this frame, let us compactify the X− to a circle with radius R, i.e.

X− ∼ X− +R ⇔
(
t

y

)
∼
(
t

y

)
+

R√
2

(
1

−1

)
. (B.6)
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Since the canonical momentum of X− is P+, this compactification quantizes the P+ as P+ = N/R

where N is a integer which corresponds to the Kaluza-Klein modes.

Now, let us assume this compactification is a limit of the following compactification

(
t

y

)
∼
(
t

y

)
+

(
R/

√
2

−
√
R2/2 +R2

s

)
, (B.7)

where Rs → 0 will make this compactification identical to the (B.6). Let us Lorentz boost this

system with the parameter β: (
t′

y′

)
=

(
γ βγ

βγ γ

)(
t

y

)
,

where

β =
1√

1 + 2R2
s

R2

= 1− R2
s

R2
+O(R3

s )

and γ := 1/
√

1− β2. Then, the identification (B.7) can be written in this boosted frame as

(
t′

y′

)
∼
(
t′

y′

)
+

(
0

Rs

)
.

Thus, the compactification becomes a spatial compactification with the radius Rs → 0 in this

frame. Therefore, the M-theory in this frame is equivalent to the type IIA superstring theory with

parameters

gs = (RsM11)
3/2, α′ = R−1

s M−3
11 .

Now, let us consider the change of the momentum P− under a Lorentz boost. P− transforms

as

P− 7→ P ′− = γ(1− β)P− (B.8)

and the light cone compactification with radius R in (B.6) will be boosted to yet another light

cone compactification with radius R′ = γ(1−β)R. Therefore, we conclude that P− is proportional

to the compactification radius R in the light cone compactified frame. For the small Rs, (B.8) will

be

P− 7→ P ′− = γ(1− β)P− =

[
1√
2

Rs

R
+O((Rs/R)

3)

]
P−.

Thus, P ′−, which corresponds to the energy scale in the boosted frame, does not depend on R but

proportional to Rs in the limit Rs → 0.

The vanishing of the energy scale will be problematic. Therefore, let us fix the energy scale

of the M-theory on the light cone compactified space with radius R and M-theory on the boosted

spatially compactified space with radius Rs as

RM11 = RsM̃11,
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where M11 and M̃11 are the 11-dimensional Planck masses of each theory. This means that M̃11

goes to infinity in order to make the energy scale fixed. Thus, the M-theory on the boosted spatially

compactified space with radius Rs and the 11-dimensional Planck mass M̃11 will be described by

the type IIA superstring theory with parameters

gs = (RsM̃11)
3/2 = R3/4

s (RM2
11)

3/4

α′ = R−1
s M̃−3

11 = R
1
2
s (RM

2
11)

−3/2
.

In the limit Rs → 0 with a finite R and M11, the string coupling is zero and the string energy

scale goes to infinity. The system of N Dp-branes will be described by the p + 1-dimensional

supersymmetric Yang-Mills theory with coupling

g2Dp =
1

(2πα′)2Tp
= (2π)p−2gsα

′(p−3)/2 = (2π)p−2Rp/4
s (RM2

11)
3(1−p/4).

Therefore, only the system of N D0-branes with massless strings will not be decoupled. This

limiting process is consistent with the approximation of DBI action to the supersymmetric Yang-

Mills theory because the higher dimensional operators are of order Rs/R. Therefore, this DLCQ

limit of M-theory is equivalent to the system ofN D0-branes which is described by 0+1-dimensional

Super Yang-Mills theory. After doing some rescaling and redefining variable, the Lagrangian

becomes the BFSS matrix model.
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C Matrix model from matrix regularization of the M2-brane

In this appendix, we show that the BFSS matrix model can be derived from the matrix regularized

theory of a single M2-brane [4].

C.1 Bosonic M2-brane action

Let us consider the theory of a bosonic M2-brane embedded in a pseudo-Riemannian manifold

(M1,d, G) with signature (1, d). We denote by (X0, X1, · · · , Xd) the coordinates of M1,d such that

∂/∂X0 is a time-like vector and ∂/∂Xa for a > 0 are are space-like vectors. Let (M1,2, g) be an

embedded pseudo-Riemannian manifold of (M1,d, G) with signature (1, 2), which corresponds to a

M2-brane world-volume. We denote by (x0, x1, x2) the coordinates of M1,2 such that ∂/∂x0 is a

time-like vector and ∂/∂xi for i = 1, 2 are space-like vectors. In this subsection, we use Einstein

sum convection for the indices of the coordinates of M1,d, denoted by a, b, · · · , and the indices of

the coordinates of M1,1, denoted by i, j, · · · .
The theory of a single M2-brane is naturally described by the world-volume action with the

isometric embedding function X = (X0, X1, · · · , Xd) :M1,2 → R
1,d. Since a M2-brane electrically

couples to 3-form gauge field C3 on M1,d, the action is given by

S[X,G,C3] = −T
∫

M1,2

µg +

∫

M1,2

C̃3.

Here, the tension is related to the Planck length as T = 1/l311 and g is the metric on M1,2 induced

from G and C̃3 is the 3-form field on M1,2 induced from C3. The first term of action is the Nambu-

Goto action and the second term of action represents the electrical coupling to C3. This is the

most general form of the bosonic M2-brane action.

From now on, we assume the flatness (M1,d, G) = (R1,10, η) for η = diag(−1, 1, · · · , 1) and the

absence of 3-form gauge field C3 = 0. Then, the action can be locally written as

SNG[X] = −T
∫

M1,2

d3x
√

− det g,

where d3x := dx0 ∧ dx1 ∧ dx2 and g = gijdx
i ⊗ dxj is given by

gij := ηab
∂Xa

∂xi
∂Xb

∂xj
.

As we will see in the next subsection, the bosonic part of the BFSS matrix model can be obtained

from the matrix regularization of this action. Similar to the case of string theory, we will use

the classically equivalent Polyakov action since the actions containing the square root are hard to

quantize. Using an auxiliary metric h = hijdx
i ⊗ dxj on M1,2, the Polyakov action of a bosonic

M2-brane is given by

SP[X, h] = −T
2

∫

M1,2

d3x
√
− deth(hijgij − 1)
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where (hij) is the inverse of (hij). This action is equivalent to SNG if we impose the Euler-Lagrange

equation for h as follows. Using δ(deth) = (deth)hijδhij = −(deth)hijδh
ij, we obtain

4
δSP[X, h]

δhij
= T

√
− deth

(
(hi

′j′gi′j′ − 1)hij − 2gij

)
= 0

⇔ (hi
′j′gi′j′ − 1)hij = 2gij. (C.1)

Multiplying hij on both sides of (C.1) and use hijh
ij = δii = 3 leads to

gijh
ij = 3. (C.2)

By plugging (C.2) into (C.1), we conclude that h satisfying the Euler-Lagrange equation is

h = g. (C.3)

Thus, we obtain

SP[X, h = g] = SNG[X].

Let us briefly discuss the property of the Polyakov action SP. First, the variation of action

with respect to Xa is

δSP[X, h] = −T
∫

M1,2

d3x
√
− dethhij

∂(δXa)

∂xi
∂Xb

∂xj
ηab = 0

⇔ ∂

∂xi

(√
− dethhij

∂Xa

∂xj

)
= 0.

The bosonic M2-brane Polyakov action has a diffeomorphism symmetry of M1,2 so does the string

Polyakov action. However, unlike the case of string theory, the action of the bosonic M2-brane

has no Weyl symmetry i.e. SP[X, h] 6= SP[X, e
fh] for f ∈ C∞(M1,2,R). In the case of the string

theory, we can completely fix the gauge of h. There are 3 independent degrees of freedom since h

can be represented as a 2× 2 symmetric matrix. These degrees of freedom can be completely fixed

by 2 diffeomorphism symmetry and 1 Weyl symmetry. In the case of the bosonic M2-brane, there

are 6 independent degrees of freedom (3 × 3 symmetric matrix) and there are 3 diffeomorphism

symmetry. It is known that there is a good way to fix the 3 of the 6 degrees of freedom of h:

h00 = − 4

ν2
det h̃, h01 = h02 = 0,

where ν is a positive real parameter and h̃ :=
∑2

i,j=1 hijdx
i ⊗ dxj. Then, h in this gauge can be

written as

h = h00dx
0 ⊗ dx0 + h̃,
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and such a gauge can be globally taken if we have the decomposition M1,2 = R× Σ where (Σ, h̃)

is a compact 2-dimensional Riemannian manifold 3. Then, using deth = h00 det h̃ = − 4
ν2
(det h̃)2,

the Polyakov action in this gauge can be written as

SP[X, h = g] =
Tν

4

∫

R×Σ

d3x

(
ηabẊ

aẊb − 4

ν2
det h̃

)
(C.4)

where we used the constraint h = g in the derivation and the dot represents ḟ(x0, x1, x2) :=
∂f(x0,x1,x2)

∂x0 .

Since any two-dimensional manifold has a Kahler structure, it is equipped with the symplectic

form ω on Σ by

ω := ρ dx1 ∧ dx2,

where ρ is a positive constant such that
∫
Σ
ω = 1. Then, the Poisson bracket given in (2.3) induced

from ω is

{f1, f2} = −ρ−1

(
∂f1
∂x1

∂f2
∂x2

− ∂f1
∂x2

∂f2
∂x1

)
.

Then, under the constraint h = g, the direct calculation shows

ηaa′ηbb′{Xa, Xb}{Xa′ , Xb′} = 2ρ−2 det h̃. (C.5)

Using (C.5), we can rewrite the action (C.4) as

SP[X, h = g] =
Tν

4

∫

R×Σ

d3x

(
ηabẊ

aẊb − 2ρ2

ν2
ηaa′ηbb′{Xa, Xb}{Xa′ , Xb′}

)
. (C.6)

All the derivatives with respect to σ1 and σ2 in the action can be written in terms of the Poisson

bracket. The Euler-Lagrange equation for Xa can be expressed in terms of the Poisson bracket in

this gauge by

Ẍa =
2ρ2

ν2
ηbc{{Xa, Xb}, Xc}.

The constraint (C.3) in this gauge is

ηabẊ
a∂X

b

∂xi
= 0, (C.7)

for i = 1, 2 and

ηabẊ
aẊb = −2ρ2

ν2
ηaa′ηbb′{Xa, Xb}{Xa′ , Xb′}. (C.8)

Note that the constraint (C.7) will also implies

ηab{Ẋa, Xb} = 0. (C.9)
3It is evident that there are other choices of M1,2 allowing such a gauge. If M1,2 is a noncompact manifold, it

is possible to have decompositions M1,2
= R×Σ or S1 ×Σ for a noncompact Riemannian manifold Σ. If M1,2 is a

compact manifold, it is also possible to have a decomposition M1,2
= S1×Σ for a compact Riemannian manifold Σ.

Similar discussion can be done if M1,2 has boundaries. For the application to the BFSS matrix model, we restrict

our discussion to M1,2
= R× Σ for a compact manifold Σ.
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C.2 Bosonic M2-brane in light cone gauge and its matrix regularization

As shown in the previous subsections, the bosonic M2-brane with geometry R × Σ embedded in

the flat background R
1,10 is described by the action (C.6) with constraints (C.7) and (C.8). Even

though the collection of constraints seem to be difficult to solve, it is known that we can solve

them in so-called light cone gauge.

First, we introduce the light cone coordinate of R1,10 by

X± :=
X0 ±X10

√
2

.

In this frame, the target space metric is expressed as

η+− = η−+ = −1, ηab = δab, η+a = ηa+ = η−a = ηa− = 0,

for a, b = 1, 2, · · · , 9. In this subsection Then, the light cone gauge is a gauge which imposes

X+(x0, x1, x2) = x0.

In this subsection, we use indices a, b, · · · = 1, 2, · · · , 9 and i, j, · · · = 1, 2 and we use Einstein

summation convention for these indices. In this gauge, the constraints (C.7) and (C.8) can be

solved explicitly. The constraint (C.7) and can be written as

∂X−

∂xi
= Ẋa∂X

a

∂xi
, (C.10)

Ẋ− =
1

2
(Ẋa)2 +

ρ2

ν2
{Xa, Xb}2, (C.11)

and the residual constraint (C.9) becomes

{Ẋa, Xa} = 0. (C.12)

Using the constraints (C.10) and (C.11), one can determines X− explicitly in terms of Xa up to

a constant. On the other hand, the residual constraint (C.12) imposes further constraint on Xa.

The action (C.6) in the light cone gauge is

SLC[X] =
Tν

4

∫

R×Σ

d3x

(
−2Ẋ− + (Ẋa)2 − 2ρ2

ν2
{Xa, Xb}2

)
.

The conjugate momentum of X− is

P+ = −δSLC[X]

δẊ−
=
Tν

2
,

which means that the parameter ν parametrizes the momentum P+. The other conjugate momenta

are given by

P− = −δSLC[X]

δẊ+
= 0,

P a =
δSLC[X]

δẊi

=
δSLC[X]

δẊa
=
Tν

2
Ẋa.
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Therefore, the Hamiltonian of the bosonic M2-brane in light cone gauge is given as

H =
Tν

4ρ

∫

Σ

ω

(
(Ẋa)2 +

2ρ2

ν2
{Xa, Xb}2

)
. (C.13)

Note that the Hamiltonian does not depend on X− and the system is only described by the

transverse coordinate X i and the only remaining constraint is therefore (C.12).

Since the Hamiltonian of the bosonic M2-brane in the light cone gauge is written completely

in terms of the symplectic structure, we can apply the matrix regularization to this system. Using

(1.1) (1.2) and (1.3), the Hamiltonian (C.13) can be regularized as

HMM[X] = TπTr

(
(Ẋa)2 − 1

2
[Xa, Xb]2

)
.

where Xa is a function of t = x0 ∈ R with value in N × N Hermitian matrices. Here, we set

ν = 4πρN . The constraint (C.12) is regularized as

[Ẋa, Xa] = 0.

This Hamiltonian is a obvious time independent U(N) gauge symmetry X i 7→ UX iU † which

corresponds to the symplectomorphism symmetry of (C.13). The Hamilton’s equation is now

given as

Ẍa + [[Xa, Xb], Xb] = 0.

C.3 Matrix regularization for supersymmetric M2-brane

So far, we restricted our discussion to the case of bosonic M2-brane. In this subsection, we

generalize the discussion given in the previous subsections to the supersymmetric M2-brane. In

the case of the string theory, there are mainly two approaches to introduce supersymmetry. One

approach is the Neveu-Schwarz-Ramond (NSR) approach and the other is the Green-Schwarz

(GS) approach. In the NSR approach, we introduce world-sheet fermions which make the action

manifestly supersymmetric in the sense of the world-sheet but not manifestly in the target space.

In order to extend the supersymmetry in the target space, it is known that one needs extra

procedure called GSO projection. On the other hand, in the GS approach, we introduce target

space fermions which make the action manifestly supersymmetric in the sense of the target space.

In order to make the supersymmetry in the world-sheet, we need to introduce a local fermionic

symmetry called κ-symmetry. Even though the both approaches are equivalent in the analysis of

the superstring theory, it is known that the GS approach is applicable to the higher dimensional

membranes.

In the GS approach of the string theory, the dimension of the target space is restricted to

D=3,4,6,10 by the κ-symmetry in the classical level. In the case of the M2-brane, the dimension of
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the target space is also restricted to D=4,5,7,11 by the κ-symmetry in the classical level. The basic

procedure of GS approach for the M2-brane is the following. In the bosonic case, the action is a

functional of the embedding function Xa and the Lagrangian density is written by the combination
∂Xa

∂xi . In the GS approach, we replace ∂Xa

∂xi in the bosonic action with

Πa
i :=

∂Xa

∂xi
+ ψ̄Γa ∂ψ

∂xi
,

where ψ is a 16-component Majorana spinor of SO(9) and Γa are SO(9) gamma matrices. Using

this technique, the Polyakov action of the supersymmetric M2-brane is

SP[X,ψ, h] = −T
2

∫

M1,2

d3x
√
− deth(ηabh

ijΠa
iΠ

b
j − 1).

This action has a global supersymmetry on the target space:

δψ = ǫ, δXa = −ǭΓaθ,

where ǫ is a constant spinor. However, it still does not have a local fermionic κ-symmetry. In order

to introduce a local fermionic κ-symmetry, one needs the additional terms

S[X,ψ, h] =− T

2

∫

M1,2

d3x
√
− deth(ηabh

ijΠa
iΠ

b
j − 1)

+
T

2

∫

M1,2

d3x ǫijkψ̄Γ[aΓb]
∂ψ

∂xk

{
1

2

∂Xa

∂xi
Πb

j +
1

6

(
ψ̄Γa ∂ψ

∂xi

)(
ψ̄Γb ∂ψ

∂xj

)}
.

(C.14)

Here, ǫijk is the completely skew-symmetric tensor with ǫ123 = 1 and Γa := ηabΓ
b and Γab := Γ[aΓb].

This action is a local fermionic supersymmetry

δψ = (1− Γ)κ, δXµ = κ̄(1− Γ)Γµψ,

where κ is a local fermionic generator and Γ is given by

Γ :=
ǫijk

6
√
− deth

Πa
iΠ

b
jΠ

c
kΓ[aΓbΓc].

As we did in the bosonic M2-brane, we can properly fix the gauge of h if M1,2 = R × Σ

and take light cone gauge. Then, the action (C.14) can also be written completely in terms of the

symplectic structure of Σ. After a proper matrix regularization and the recaling of the parameters,

one obtains the BFSS matrix model (B.5).
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