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1 Introduction

One of the approaches of the quantum theory of gravity or the theory of everything is string
theory. String theory is a theory in which the fundamental constituents of the universe are one-
dimensional strings rather than zero-dimensional point particles. This simple modification makes
a huge difference from theories of fundamental point particles. The spectrum of a single first-
quantized string contains various different types of states with particular masses and spins. More
surprisingly, there is a particular state corresponding to the graviton, which is a quantum of
gravitational interaction, and the string theory is naturally incorporate the quantum theory of
gravity.

Various studies of superstring theory and M-theory [1-3] suggests that the noncommutative
geometry may play an essential role in the description of spacetime in Planck scale. In the Einstein’s
classical theory of gravity, we assume that the spacetime is a smooth manifold, which means that
the spacetime coordinates are a set of real numbers. On the contrary, in the noncommutative
geometry, we assume that the spacetime coordinates are noncommutative operators on a suitable
Hilbert space. When the Hilbert space is finite-dimensional, the spacetime coordinates are finite
dimensional square matrices. We call this kind of noncommutative geometry as fuzzy geometry or
matrix geometry and it is deeply related to matrix models of superstring theory and M-theory.

In the study of the fuzzy geometry, a theory called the matrix regularization [4] plays an essen-
tial role to uncover the relationship between the commutative geometry and the fuzzy geometry.
The matrix regularization is a map from functions on a manifold to corresponding matrices on a
fuzzy geometry. Using this map, one can construct a matrix model of superstring theory (or M-
theory) from a world-sheet theory of a single string (or world-volume theory of a single membrane).
Therefore, this theory is important to study the relationship between string (or a membrane) states
to the corresponding matrix states. Let us briefly discuss a mathematical aspect of matrix regu-
larization. Let us consider a symplectic manifold (M, w), which is an even-dimensional manifold
equipped with a nondegenerate closed two-form w. Let 2n be the dimension of M. From the
symplectic structure w, one can naturally define a volume form g, := w”"/n! and the Poisson
bracket {f,g} = X;g. Here, f, g are smooth functions on M and X; is the Hamiltonian vector
field. In this sense, a symplectic manifold is a mathematical generalization of the phase space.
Now, let us also assume M is closed, i.e. M is a compact manifold without boundary. Then, the

matrix regularization is defined as a sequence of linear maps 7}, : C**(M,C) — My, (C) satisfying



the following axioms [5]:

plggo T,(f)Tp(9) — Tp(fg)| =0, (1.1)
T (i) 1,0, To(9)] = To({£.9D)] = 0, (12
i (2t BT = [ . (13)

Here, p is an integer, C*(M, C) is the set of smooth complex functions, {N,} is a sequence of
strictly increasing integers, h, = (27p)~!, and | - | is a matrix norm. In this sense, the matrix
regularization is an analog of the quantization of a classical phase space. From these relations, one
can derive the matrix models from the worldvolume actions of a membrane or a string [4].

For a Kéhler manifold M, the existence of the map 7}, satisfying (1.1), (1.3) and (1.3) is known
and one of the construction of such maps is known as a Berezin-Toeplitz quantization [6]. A Kéahler
manifold is a special type of symplectic manifold equipped with an integrable complex structure and
Riemannian structures with some compatibility condition. From the integral complex structure,
one can define a finite dimensional Hilbert space H as a space of square integrable holomorphic
sections of some line bundle L®?. Let II be the orthogonal projection from the space of all sections
of L¥? to H. Then, the Toeplitz operator of f defined by T,(f) := IIfII is shown to satisfy
all the properties of the matrix regularization. For a general symplectic manifold, where the
complex structure is not necessarily integrable, there is a method called spin® Berezin-Toeplitz
quantization |7,8|. From an almost complex structure, one can construct suitable spinor fields and
corresponding Dirac operator with finite dimensional kernel. Then, the spin® Toeplitz operator
defined by T,(f) := ILfII, where II is the projection from a space of suitable spinor fields to the
kernel of the Dirac operator, is shown to satisfy all the properties of the matrix regularization.

In this dissertation, we summarize a series of studies of the spin® Berezin-Toeplitz quantization
of vector bundles over a general closed Kéhler manifold [9,10] (similar problems are also considered
in [11,12]). We define the spin® Toeplitz operator of a section of a Hermitian vector bundle and
derive a large-p asymptotic expansion of the product of two Toeplitz operators T,(s)T,(t) for any
sections s,t up to the first order in h,. From this expansion, we obtain some of the important
relations of the Toeplitz operators, including a generalization of (1.1), (1.3) and (1.3). In our frame-
work, we give explicit two examples of monopole bundles and tensor bundles. As a first example,
we study the matrix regularization of monopole bundles over a complex projective space CP™ [10]
and one-dimensional complex torus T2 [13]. This study is important to describe membranes (or
strings) with monopole charges. As a second example, we study the matrix regularization of tensor
bundles [14]. This study is important to describe various tensor fields over a fuzzy manifold, which
are essential for gauge theories and gravitational theories.

The organization of this dissertation is as follows. In section 2, we review a few essential

mathematical notions which are necessary to define the spin® Berezin-Toeplitz quantization of
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vector bundles. In section 3, we study the Berezin-Toeplitz quantization for general vector bundles
and derive important properties from the asymptotic expansion. In section 4 and 5, we consider
Berezin-Toeplitz quantization of monopole bundles over CP" and T?, respectively. In section 6, we
consider Berezin-Toeplitz quantization of tensor bundles over a Kdahler manifold and give a simple
example of the Berezin-Toeplitz quantization of vector fields on the square torus T?_;. In section
7, we give a summary of this dissertation and discuss the future problems. In Appendix A, we
summarize some of the notations and definitions of basic mathematical terms, which are extensively
used in this dissertation. In Appendix B, we review the M-theory [15] and its connection to the
BFSS matrix model [1,16]. In Appendix C, we derive the BFSS matrix model using the matrix
regularization of a single M2-brane [4].



2 Mathematical Preliminaries

In this section, we summarize basic mathematical techniques used for the studies of spin® Berezin-

Toeplitz quantization.

2.1 Symplectic Geometry

In this subsection, we review the basic properties of the symplectic geometry. A comprehensive
reference of this topic can be found for example in [17].

It is well-known that the classical theory in Hamiltonian formalism is naturally described in the
language of symplectic geometry. As we will see below, the symplectic manifold is thought of as a
generalization of the phase space of the classical system. Thus, we can expect that the notion of
quantization is defined for a general symplectic manifold. As we will see later, the Berezin-Toeplitz
quantization, which is the main topic of this dissertation, is a quantization of a compact symplectic
manifold.

Let us first give a definition of a symplectic manifold.

Definition 1. Let M be an even-dimensional differentiable manifold. A symplectic structure or

a symplectic form w on M is defined as a closed nondegenerate differential two-form:
dw=0 "weTM,: wy(u,v)=0 = v=0¢€TM,,

at each point x € M. Here, d is the exterior derivative, T'M is the tangent bundle of M and T'M,
is the tangent vector space at point x € M. The pair (M, w) is then called a symplectic manifold.

The symplectic structure can be defined only for even-dimensional manifolds because of the
following logic. Let A be a skew-symmetric matrix with size d. Then, we have det A = det AT =
det(—A) = (—1)%det A. If d is odd, then det A is automatically zero and thus A should be
degenerate. Since w is closed, one can locally write it as w = df for some one-form 6 called the

symplectic potential. Now, let us give several important examples of the symplectic manifolds.

Example 2.1. Let us consider the even-dimensional Euclidean space R*" with the standard coor-

dinate system {q',¢? ---¢",p',p% -+ ,p"}. One can prove that the two-form
w = Z dp’ A dg’
=1

defines a symplectic structure on R?*. Here, A is the exterior product of forms. In classical
mechanics, a system of a particle moving in an n-dimensional Euclidean space R™ is described by
the phase space R?" = T*R", whose coordinates {¢*, ¢, ---¢", p',p? -+, p"} specify the particle’s

position and its conjugate momentum.



Example 2.2. Let X be an n-dimensional differentiable manifold. The cotangent bundle T X is
a 2n-dimensional noncompact differentiable manifold. Let {¢*,¢% -+ ,¢"} be a local coordinate
system of a patch U C X. Any element ¢ € T*M, can be uniquely written by ¢ = > | p;dq’ for
some real numbers {p',p?, -+ ,p"}. Then, one can define a coordinate system of 7= 1(U) C T*X
by {¢',¢* - -q", p',p* -+ ,p"}. This coordinate system is called the standard coordinate system
of T*X. On the cotangent bundle 7™ X, there exists a one-form 6, locally written by

0=> pldg,
=1

in the standard coordinates. Without using the local coordinates, 6 is defined as 6,(V) :=
a(m(V)), where « € T*X, V € T(T*X), and 7w, : T(T*X) — TX is a projection derived
from the bundle projection 7 : T*X — X. The one-form 6 is called the canonical one-form on the

cotangent bundle 7% X. Then, one can define the canonical two-form

w:=df = dei A dg’,
i=1
which induces a symplectic structure on 7% X. In classical mechanics, a system of a particle moving
in X is described by a point in the phase space T*X. This means that the phase space in general

has a natural symplectic structure.

In these two examples, the manifolds we considered are noncompact. In the theory of matrix
regularization, we are mainly interested in compact symplectic manifolds. Some examples of the
compact symplectic manifolds are the complex projective space CP™ and the one-dimensional torus
T?2. These manifolds will be considered in section 4 and 5 and we will not deal these manifolds in
this section.

For a general 2n-dimensional symplectic manifold (M, w), there exists a useful local coordinate
system called the canonical coordinate system {q', p'}?_, such that the symplectic form takes the
following form: .

w = Z dp® A dg'.
i=1
This is a consequence of the Darboux theorem and the canonical coordinate system is sometimes
called the Darboux coordinate system.

Now, let us consider some of the important properties of the general symplectic manifolds.
From the nondegeneracy of w, there is a linear isomorphism from the tangent vector space T'M,
to the cotangent vector space T*M, by v — t,w. Here, ¢, is the interior product with a tangent
vector u € T'M, defined by

Yo, € TM, : (vya)(vy, vg, - - - ,Up—1) = (U, vy, Vg, -+, Vp_1), (2.1)



for a p-form «. In this sense, the symplectic structure can be thought of as a skew-symmetric
analog of the Riemannian structure. Using this isomorphism, one can define a class of special

tangent vector fields which play an essential role in the symplectic geometry.

Definition 2. Let (M, w) be a symplectic manifold and C*>° (M, R) be a set of smooth real functions
on M. For f € C*(M,R), the Hamiltonian vector field of f denoted by X is uniquely defined by
the relation

Lx,;w =df. (2.2)

Let us discuss the basic properties of the Hamiltonian vector fields. In the canonical coordinate

system {q’, p'}, one can locally write

[0f D Of O
=5 (Gar o)

i

By acting X; on a smooth function g, we have a local expression

B of dg  Of g
X9 = Z (aqi op  Opt aqz) ’

i

which is the familiar Poisson bracket appearing in the classical mechanics. Thus, it is natural to

consider the following structure in the coordinate free manner.

Definition 3. Let (M,w) be a symplectic manifold. We define the Poisson bracket {-,-} :
C®(M,R) x C®(M,R) — C=(M,R) by

{f.g} = X9, (2.3)
for f,g € C*(M,R).
Proposition 2.3. The Poisson bracket defined above satisfies the following set of properties:

Skew-symmetry

{fug} = _{gvf}v

Bilinear

{f,ag +bh} = a{f, g} + b{f, h},

Leibniz’s rule

{f.9h} = glf. h} +{f g}h,

Jacobi identity
{f 49,03} +{g.{h, [}} +{h.{f.g}} =0,



for any f,g,h € C*(M,R) and a,b € C.

Proof. The first property immediately follows from {f, g} = X;g = 1x,dg = 1x,1x,w = —w(Xy, X).
The second and the third properties are also easily derived from the linarity and Leibniz rule of
vector fields. The Jacobi identity is actually equivalent to the condition dw = 0. Let us use the

identity
da(u, v, w) = va(v,w) + va(w,u) + wa(u,v) — a([u,v], w) — a([v,w],u) — a([w,ul,v), (2.4)

which holds for any vectors u,v,w and any two-form «. This can be obtained from the Cartan
homotopy formula,
L, = diy + t,d, (2.5)

and other identities

Luby + Loty = 0, L) = Luyty — Ly

Here, L, is the Lie derivative. Then, we have

dw(X s, Xy, Xn) = X (X, Xp) + Xyw(Xn, X;) + Xpw (X, X,)
- w([Xﬁ Xg]’ Xh) - W([Xg’ Xh]? Xf) - w([th Xf]? Xg)
- _{f7 {97 h}} - {97 {h7 f}} - {h7 {f?g}} + [Xf7Xg]h + [XgﬂXh]f + [Xwaf]g'

Here,

[vaXg]h + [X97Xh]f + [thXf]g

={fAg.h}} —{g. {f, 3} + {9, {n, f}} = {hAg, f}} + {hA L9} —{f, {h g}}
=2({f{g,h}} +{g,{h, f}} +{h,{f 9}})

Hence, we obtain

dw(Xf7X97Xh> - {f7 {97 h}} + {h7 {f7g}} + {97 {h7f}}7

for any f, g, h and the Jacobi identity is satisfied if and only if w is closed. m

This shows that (C>(M,R), {-,-}) form a Lie algebra called the Poisson algebra. Note that the
Jacobi identity implies
(X5, Xgl = Xig.gy- (2.6)

This shows that the map f + X induces a Lie algebra homomorphism.

Let us comment two other important properties of the Hamiltonian vector fields.

First, from (2.5), it is easy to see that the Hamiltonian vector fields preserve the symplectic
structure:

Lx,w=dix,w+ix,dw= d*f = 0.

f

9



This implies that the Hamiltonian vector fields generates a symplectomorphism, which is a dif-
feomorphism preserving the symplectic structure. In general, the vector fields preserving w are
locally written by the Hamiltonian vector fields. To see this, let u be a vector field and impose the
condition £,w = 0. Then, from (2.5), this condition is equivalent to ¢,w being closed. Since any
closed form is locally exact, there exist a local function f such that v = X;. In particular, in the
case where the manifold M is simply connected, any closed form is globally exact, and therefore
any vector fields preserving w are given by the Hamiltonian vector fields.

Secondly, let us consider the Hamilton formalism of classical mechanics. A particle’s state at a
specific time is specified by its position and momentum. In general, a particle’s state changes as
time elapses. The motion of a particle is thus specified by a curve on a symplectic manifold M,
where time play as a parameter of the curve. Let us consider the simplest case of a phase space
(R?",w = >_"  dp’ Adg"). The Hamiltonian mechanics, there exists a special function H on R*"
called the Hamiltonian (We here assume that the Hamiltonian is time independent.). Then, the

particle’s trajectory in the phase space {¢'(t),p'(t)} is characterized by the Hamilton’s equation

G0 = 5 0.0

%pi(t) = _gg(q%t),pi(t)f

More elegantly, for a smooth function f(q’,p’), which corresponds to some physical observables,

we have q

/(@@ 0" (1) = —{H, [} (0),p'(t) = =Xuf(q' (1) p'(2).
This shows that the particle’s trajectory is the flow generated Hamiltonian vector field of the
Hamiltonian.

Finally, there is a natural volume form defined on a symplectic manifold.

Definition 4. Let (M,w) be a 2n-dimensional symplectic manifold. The Liouville volume form

(i, is defined by

w/\n

M = W? (27)

where w" denotes n-fold exterior product.
The Liouville form is a volume form on M, meaning that p,, is a nowhere vanishing 2n-form,
due to the nondegeneracy of w. In the canonical coordinate system {q’, p'}",, the Liouville form

18 written as
to = dgt Adp' Adg® Adp? A -+ Adg™ A dp™,

which is evidently nowhere vanishing. From the definition of the Liouville form, we can see that
the Hamiltonian vector field X, preserves the Liouville volume form Ly, = 0 known as the
Liouville theorem. The volume form induces a measure on the space of functions on M, which

allows the integration of functions.
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2.2 Prequantum line bundle

In this subsection, we introduce a line bundle called the prequantum line bundle.
The prequantum line bundle plays an important role in various schemes of quantization of

symplectic manifold, such as the geometric quantization [18], and the Berezin-Toeplitz quantization

16,7].

Definition 5. Let M be a differentiable manifold and L be a complex Hermitian line bundle over
M. Let V¥ be a Hermitian connection with respect to the Hermitian inner product. L is called
the prequantum line bundle if the first Chern class of L denoted as ¢;(L) is a symplectic form on
M. Here, the first Chern class of L is defined by

i
C1 (L) = %RL,

where R := (V1)? is the curvature of L and i is the imaginary unit.

Note that the first Chern class is in the second integer cohomology (] € H?*(M,Z), i.e. for any

two-dimensional submanifold > C M,

/Ecl(L) €z

Thus, the existence of such a line bundle can be paraphrased by the existence of a symplectic form
w which belong to the integer cohomology class H?(M,Z). A manifold allowing such a structure
is called quantizable.

Now, let us discuss how the notion of prequantum line bundle arises in the theory of quanti-
zation. Let (M,w) be a symplectic manifold. In the Dirac quantization axiom, the quantization

map Q : C°(M,C) — End(?) is a map satisfying the following set of axioms:
L. Q(af +bg) = aQ(f) +bQ(g),
2. Q1) = 1y,
3. Q(f) = Q(f),
4. Q({f.g}) = (W)~ Q(f), Q9)],
5. If {f;} is complete, {Q(f;)} is complete,

for any f,g € C>°(M,C) and a,b € C. Here, (-)* denotes the adjoint with respect to the Hermitian
inner product on H and f denotes the complex conjugate of f. Also, a set of functions {f;} is
called complete if ¥i : {f;, f} =0 = f = const. and a set of operators {F;} is called complete if
Vi:[F;, F] =0 = F = const. x 15. As shown by Groenewold and Van Hove, there is no such map

11



() which satisfy all of the conditions given above. However, we can construct a map satisfying all
the conditions except for the last requirement 5. This is called the prequantization. As we will see
below, we can construct the prequantization map using the prequantum line bundle L.

As a first guess, the Lie algebra homomorphism of the Hamiltonian vector fields (2.6) motivates

us to consider a map

which acts on the space of smooth functions. This map obviously satisfies the axiom 1,3 and 4,

but the condition 2 is not satisfied. Then, let us consider a map

Qa(f) = 1hXy + f

as a second guess. This map satisfies the axiom 1,2 and 3. Let us check whether the condition 4

is satisfied. Unfortunately, this map fails to satisfy the condition 4:

[Q2(f), Qa(9)] = [ihX¢ + f.1hX, + g = (ih)* X{pg) +ih2{f, g} = ihQ=({f. g}) +ih{f, g}

Let us assume that the prequantization map is of the form

Qs(f) = Qa2(f) + R(f),
where R(f) will be determined below. First, R should be linear and hence we expect that R(f)
contains terms which are first order in f and X;. Secondly, due to the constraint R(1) = 0, we
expect R(f) should be first order in X;. Thus, we expect that R(f) is of the form

R(f) = gXy + a(Xy),

for some function g and a one-form «. For a general symplectic manifold (M,w), one cannot
introduce specific functions or one-forms constructed solely by the symplectic form w. This implies
that g is a constant and a = 0. As one can readily check, the map Q3(f) = Q2(f) + aX; does
not satisfy the condition 4 for any complex constant a. However, there is a symplectic potential

0, which is a locally defined one-form satisfying w = df. Thus, one can locally consider

Q(f) =ia(Xy +1b0(Xy)) + f.

Here, a and b are some constant, which are real due to the axiom 3. Let us introduce an operator
V.= u+1bf(u) for a tangent vector u. Then, Q(f) is written by

Q(f) =1iaVx, + f.
Using the identity [V, V,] = Viu.,) = R(u,v), where R = ibdf = ibw, one finds
[Q(f), Q)] = (1a)*[Vx,, Vx,] +i2a{f, g}
(ia)*ibw(Xr, Xy) + (ia)*Vix, x,) + i2a{f, g}
= —(ia)%b{f, g} + (ia)*Vys g +i2a{ [, g}
= 1aQ({f,g}) +1a(ab+ 1){f, g}.

12



Thus, by taking a = A, b = —h~!, the prequantization map Q satisfies all the desired properties.
Note that the symplectic potential € is only defined for some local patch and there is an arbitrariness
0 — 0 + dh, for any smooth function h. This motivates us to consider a line bundle L whose
connection is locally written as V and correspondingly the curvature is R* = —ih~'w. In this

sense, () should be considered as an operator on sections of L rather than functions.

2.3 Canonical spin® structure

In this subsection, we define the canonical spin® bundle from an almost complex structure and its
compatible metric on a manifold. The sections of this bundle are complex spinor fields with an
particular U(1) connection. References of this topic can be found in [8,19].

First, let us define an almost complex structure.

Definition 6. Let M be an even-dimensional differentiable manifold. An almost complex structure
J on M is defined as a linear map J, : T'M, — T'M, at every point x € M such that

(Jm)2 — _]—TMI-
Here, 17);, is the identity map on T'M,,.. The pair (M, J) is then called an almost complex manifold.

Note that the almost complex structure is defined only for even dimensional manifolds because
(det J,)* = det(J?) = det(—1pp,) = (—1)9™M > 0.

Now, let us discuss the splitting of the complexified tangent vector space TM, ® C using the
almost complex structure J,. From (J,)? = —17),, the eigenvalues of J, acting on the complex
vector space T'M, ® C are =i, where i is the imaginary unit. Thus, we can define a splitting
TM, ® C = TOONM, @& TOYM, according to the eigenvalues +i, —i, respectively. Note that the
complex conjugation = : TM, ® C — TM, ® C maps v € THOM, to v € TOYM, and vice
versa. This implies that the each vector space T A, TOD M, is isomorphic to each other under
the complex conjugation. Consequently, we can consider the splitting of the complexified tangent
vector bundle

TM @ C =T%90M ¢ TV,

and the corresponding dual bundle decomposition
T"M @ C = TN g 7O .

Let us consider the exterior algebra bundle A(T*©V M) = @& M/ Ak(T+OD M), We introduce

a notation

A0 . A(T*(O’I)M), AOE . — Ak(Tv*(O,l)]M)7 AOseven . @ AO,k’ AO0dd . @ AOF (28)

k:even k:odd

13



The bundle A%* = A%even ¢ A00dd g the fundamental Z, bundle, which induces the spin® structure
on M. Let us define a Clifford action on A%*. Before doing so, we first introduce a notion of

compatible metric.

Definition 7. Let (M, J) be an almost complex manifold. A Riemannian metric g on M, which
is a positive-definite inner product of tangent vectors g, : TM, x T M, — R is called compatible
with J if

Yu,v € TMy : go(Jyu, Jpv) = go(u,v),

at each point z € M.
Then, we can introduce a Clifford action on A%*® as follows.

Definition 8. The Clifford action of u € TM, ® C on A%* is defined by
c(u) = \/5 (’L_L(I’O)* VAN —Lu(o,l)) . (29)

Here, the complexified tangent vector u is decomposed as v = u? + 4D € T Ar @ TOD AL,
and 40" is defined by Yv € TM, : g,(u™? v) = a(v9*(v), using the compatible metric g. The

interior product with a complexified vector u"? is defined similarly as in (2.1).

Note that the map c(u) interchanges the Z,-grading, that is, c(u) maps elements of A%®V" to
AO-0dd
x

and vice versa. Now, let us prove the following proposition.
Proposition 2.4. The Clifford action defined in (2.9) satisfies
c(u)e(v) 4+ c(v)e(u) = —2(u,v), (2.10)
for any u,v € TM, ® C. Here, we defined (u,v) := g,(u,v).
Proof. First, let us evaluate the left-hand side. By expanding c¢(u)c(v), we obtain
c(u)e(v) = 2aH0* A 50 A =200 Ay 00y — 20,00 THO* A 420,00 1000
The first and the forth term is skew-symmetric under the exchange of u and v. Hence, we have

c(u)e(v) + c(v)e(u) = =20 A 0y — 20,000 80* A =2000% Ay 01y — 2000 TV A

Let us use the identity
tw(a@ A B) = (twa) A B+ (—1)Pa A (1,0),

for any tangent vector w, p-form « and g-form . Then, we have

c(u)e(v) + c(v)e(u) = —271(1’0)*(11(0’1)) — 217(1’0)*(u(0’1)) = —2(gx(u(1’0), U(O’l)) + gx(v(l’o), u(o’l))).
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For the right-hand side, by using the assumption that ¢ is compatible with .J, one can show

(1,0 = g2,0) = (920, 0) + ga( s Jo0)
1

= ga (a0, 00) g, (o1, uOD).

Thus, we have (2.10). O

Let dim M = 2n. Let {w;}, be an orthonormal frame of T M and {w'}?, be its dual
frame. Then, one can take an orthonormal frame of T'M by

1 1
ei_:—wi—i—zﬁi, €9 = —(w; —w;).
2i—1 \/§< ) 2 ( )

V2

For w; and its complex conjugate w;, the Clifford action is given by
c(wi) = V20' A, e(;) = =V 24, (2.11)

This shows that the combination c(wy, )c(ws,) - - - c(wy,)1 for 1 <4y < ip < --- < i; < n form a
frame of A%*. Here, 1 € A% and j runs from 0 to n. Also, by introducing the Hermitian inner

product on A (T*(O-DAT) induced from the compatible metric g, one can show

c(w;)" = —c(wy), c(w;)* = —c(w,),

where (-)* denotes the adjoint with respect to the Hermitian inner product. Correspondingly, we
have
cle)" = —c(e;). (2.12)

Let us define the Clifford connection on A%®.

Definition 9. Let (M, J) be a 2n-dimensional almost complex manifold with compatible metric g.
Let VI™ be the Levi-Civita connection on T'M, i.e. the unique torsion-free connection satisfying
VITMeT"M g — (). Then, the Clifford connection VA" on A%* is defined by

2n
. 1 1
VAO =d + Z E <FTM€7;, €j>c(€i)c<€j) + §Fd6t. (213)
ij=1

Here, I'"™™ is the connection one-form V™™e;, = IT'™™¢,; and I'*** is the connection one-form of the
determinant bundle det(TM0 M) .= AT M), that is,

n
Vdet(wl ANwy A=+ ANwy) = Fdet(wl ANwg A -+ Awy) = Z<FTMwi,wi>(w1 ANwg A=+ Awy).
i=1
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One can also write
VA —d— Z wz,w] w /\Lw += Z FTMIUZ,IU])Lw Lw]+ Z wi,wj)w"ijA. (2.14)
1,7=1 7,] 1 2,7=1

Note that the Clifford connection preserves the Z,-grading of A%®. The Clifford connection has
the following property.

Proposition 2.5. For any u,v € TM, ® C,

(VA c(v)] = o(VIMy). (2.15)

u

Proof. The only noncommuting part is
0,0 1
Va " e)] = 5 D ™M (w)es, e5)e(en)eley), efv)].
i,J
Using the commutator and the skew-commutator relation [AB,C] = A{B,C} — {A, C'} B, which
holds for any linear operators A, B, C', we have

VA" e(v)] = EDFTM(u)e,-, ej)(clen){e(e;), e(v)} — {e(es), c(v) }e(e)

1
=3 D (ViMei e;)(clei){ej,v) — (e v)e(e;))
i,J
Here, we used (Vi Ve;, e;) = ule;, e;) — (e;, ViMe;) = —(e;, VI Me;) and 2_jlv,ej)e; = v. -

Finally, let us close this subsection by calculating the curvature of the connection VA

Proposition 2.6. The curvature R := (VAO")2 1s given by
. 1 1
RA()’ = Z__l Z(RTM(?Z‘, €j>C(€i>C(€j) + iRdet. (216)
.3
Here, Rt = (V)2 = ATt s the curvature of det(TH M)

Proof. From (2.13), we have

2
0,e 1 1 e
RA = (d + Z Z<VTMei, €j>C<€Z’>C(6j) + §Fd t)

0]

1 1
== Zd (VIMe, eiVe(ei)e(e;) + 16 Z (VM e, e (Ve e)cle;)c(ej)e(er)c(er) + §Rdet.
%] ,7,k,l
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For the first term, we have

}l Z A(V™Me; e;)e(e;)c(ef) = i Z((vTM)Qei’ ej)cles)c(e;) — i Z<VTM€i’ VM Veles)el(e;)
= %Z<RTM€¢, ej)c(es)clef) — iZ(VTMei, VIMeNe(e;)e(e;).

Using the commutator and the skew-commutator relations [AB, C] = A[B, C]+[A, C|B = A{B,C}—
{A, C}B for any linear operators A, B, C, we have

[c(ei)ele;), cler)clen)] = clei)[c(e;), clex)c(en)] + [e(eq), clex)c(en)]c(e;)
= —c(es)cen){cle;), cler) } + clei){cle;), cler) beler)
— clex){cles), cler) yele;) + {clei), cler) be(e)c(e;)
= 20 c(e;)c(er) — 28 5c(e;)c(er) + 20ic(ex)c(ej) — 20ixc(er)c(ej).

Thus, the second term can be written as

% (VT™Me, e (VTMey, e))cles)cle;)cler)cler)
i,7,k,l
— 3% (VTMeZ-, e;) <VTM6k, en)lcei)e(e;), clex)cler)]
i,7,k,l
_ 1_16 i,j,k<vTM€Z, ;) (V" Ver, ej)clei)cler) — 1_16 %;WTM% ;) (V' Ve ee(ei)clen)
+ % D (VI ™Mey, e (VM er, e5)eler)ele;) — 1_16 D (V' ™Mey, e) (VM er er)elen)cle;)
W5,k .5,

= 1 ST, Ve efen)ele).

1,J

Therefore, we obtain (2.16).

2.4 Spin‘ Dirac operator

Now, let us define a spin® Dirac operator. Most of the propositions and theorems given in this
subsection can be found in [8].

Definition 10. Let (M, J) be an almost complex manifold. Let g be a compatible metric and
(E,h*) be a Hermitian vector bundle over M with a Hermitian connection V¥. Let C*(M, F)
denote a space of smooth sections of a vector bundle F' over M. We define a spin® Dirac operator
acting on C*°(M, A°* ® F) by

DF = Zc(ei)vg"@E, (2.17)

7
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where VA" ®E — yA™® & 1p + 1p0. @ VE.

To show the self-adjointness of D, let us consider the following. Let (M, g) be a d-dimensional

Riemannian manifold and let 11, be the Riemannian volume form locally given by

g = /det gdz' Ada* A--- Ada?, (2.18)

using the local coordinates {x'}. Let (F, h") be a Hermitian vector bundle over M with a Hermitian

connection V. We define a Hermitian inner product on C*(M, F') by

(5.0 = [ ) h(s(0). ). (2.19)
and the divergence of a vector field u € C>*(M, T M) by

(divu)(z) = Z(VzMU, €i)e-

Then, we have the following proposition.

Proposition 2.7. The adjoint of the connection (VE)* is given by
(VEY = -V — divu. (2.20)
Proof. From the definition, we have
(Vs = [ uahf (9050 = [ pyulh(s.0) = [ bt (5,950
M M M
= [ L5, = [ (La W 5,00~ [ 10y (5,950,
M M M

Using (2.5), we can show that the first term vanishes because of d(u, hf'(s,t)) = 0, the Stokes’
theorem [, d(---) = [,,,(---) and the assumption 9M = ). The second term can be evaluated

as follows. Let {e¢’} be the dual orthonormal frame of 7*M. Then, one obtains

Luptg = Lo(e" N> Ao Net) = ((Lue)(e))g = — D (e, Lueipty.

i i

Here, we used L, (a(v)) = (L,a)(v) + a(L,v) for any one-form « and any vector v. Using £,v =

[u,v] = VIMy — VIMy and (VIMe; e;) = —(e;, VIMe;) = 0, one finds

Loyfprg = Z(VZiMu, e;) ity = divu.

Therefore, we obtain (2.20). O

Then, we can show the following property.

18



Proposition 2.8. The spin® Dirac operator is formally self-adjoint with respect to the Hermitian
mmner product

(s.8) := /M 1o () (5(2), H(2) oo

Here, s,t € C*°(M,\°* @ E) and (-, ") possp is the Hermitian inner product induced from g and
hE.

Proof. From (2.12) and (2.15), we find
(s, DFt) = Z(s, c(ei)Vé\iO’@Et) =— Z(C(Q)S, Vé\io’.‘@Et)
— Z(Vgo"®Ec(ei)s, t)+ Z(div e;cle;)s,t)

= (D¥s,t) + Z(C(VZM@)S, t) + Z((VETJ_MQ, e;) c(e;)s, t)

= (D¥s,t) + Z(C(VQTiMei)s,t) - Z((ei, VZ;Mej> c(ei)s,t)
= (D¥s,1).

O

The spin® Dirac operator D¥ is a first order differential operator and its square (D¥)? is related
to the Laplace operator which is a second order differential operator. Before calculating (D)2,

let us define the Bochner Laplacian.

Definition 11. Let (F,h") be a Hermitian vector bundle over M with a Hermitian connection
V%, The Bochner Laplacian A”" is defined by

AF = — Z [(VQ)Q — Vgg;Mei] . (221)
Proposition 2.9. The Bochner Laplacian AY can be written as
AP =3 (vEyvE (2.22)

Proof. Using (2.20), we have

SVEYVE == (VEP =Y (VIMee)VE ==Y [(vg)2 - vgmei] .

€4

i i ij i

This implies that A% is a positive semidefinite self-adjoint operator.

Now, let us show the following theorem called the Lichnerowicz formula.
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Theorem 2.10. The spin® Dirac operator defined in (2.17) satisfies

O P 1.
(DF)2 = ANOF 4 ZK +3 Z (RE + §Rd t) (i, e;)c(e;)c(e;). (2.23)

1]
Here, K is the scalar curvature defined by K := — Ziyj(RTM(ei, €;)ei, ;).

Proof. From (2.10) and (2.15), we find
(DF)? = %Z ( (e ')VAO,.@)EC(@j)VQ;"@E + c(ej)V‘Q;"@Ec(ei)Vé\;"@E)
_ 4 Z ( cle;) VA0-®EVA0 SE 4 ce;)e (ei)vgjo,-@@Evé\io,.@E)
o Z ( (VM) VO + cle))e(VEM ) VA *F)

= 5 () i) V2P 1 5 Sl [708, 92

ij
+Z e erye(ei)e (ek)VQjO"‘@E

7,k
L] ]. L]
= 3 (V) g o elegete) [(R 4 B e + 91
2%
+ Z Vite;, ek)c(ei)c(ek)vgo’@E.
ik
By using (VeTiMej, ex) = —(e;, VeTiMek% the third term can be written as
Z(V;C_Mej, ek>c(ei)c(ek)Vé\j0"®E =— Z c(e;)c(e )V%OT:\?ef

Z'7j7k

— __Z {c(ei), cler)} + [c(es), cle )DV%OT.A%?

0, 0,e
= Z V%Th%? -3 Z c(ei)c(e )v%TJ\;@E VIMe,

1,k
0, "
- SV - ) Y e
ik

Thus, one obtains
(DP)? = ANeP % D (R + RE) (e, e5)cler)cle;).
i,
From (2.16), we have
- >R eeeleele) = & ST R (ene)ens d)elen)eleeleneles) ;30 R en eg)ele)eles).

1,5,k,l 1]

20



Using (R™ (u,v)w,y) = (RT™™ (w,y)u, v) for any vectors u,v,w,y, we have
3 2 R e er)elenelen) = § AR (e eenseeleeler)elen)ele) +3 30 R (eeelees).
i, i,5.k, .3
From R™ (u,v)w + R™ (v, w)u + R™ (w,u)v = 0, one has
D (R™ (es,e5)en, en)elen)ele;)e(er)e(er)

Z'7‘7'7]€7l

== (R™(es,¢j)en, 1) (clej)cler)cle:) + clex)c(ei)c(e;) e(e).

i7j7k7l

To evaluate this, let us calculate the following:

c(ej)cler)c(e) + clen)clei)cle;) = —clej)eles)c(er) — clei)c(er)c(e;) — 40irc(e;)
= 2c(e;)c(ey)cler) + 20;5¢(ex) + 26 5¢(e;) — 4oipc(e;).

Thus, one obtains

3 (R™ (e, e5)en, er)eles)cles)e(ex)ecler)

gkl

= — Z (R™ (e;, e5)ex, €1) (20;¢(er) + 20;5c(e;) — 4dic(e;))cler)
ikl

=6 (R™(ei,e))es, en)c(ej)cler) =3 Y (R™ (e, e5)ei, en){cle;), c(er)}
igil ijil

= 6K.

Hence, we have

LS R (enegeledele) = 1K+ 1 30 R (ese)eleneley),

i3 2
which gives (2.23). O

For the Berezin-Toeplitz quantization given in the next section, let us consider the following
set up. Let (M, g) be a 2n-dimensional Riemannian manifold. Let us assume that there exists
a prequantum line bundle (L, k") with a Hermitian connection V¥ over M. We set a symplectic

i

form by w = ¢ (L) = gRL. Then, there exists an almost complex structure J satisfying

g(Ju, Jv) = g(u,v), w(Ju,Jv) =w(u,v), w(u,Ju) >0,

for any vector fields u,v. Using an orthonormal frame of TW% M denoted by {w;}?,, we define a

n X n matrix r by r;; = RY(w;, w;). Then, we can see that r is self-adjoint and positive definite.
Thus,

T = Z R*(wi,w), p=— Y R"(w;, w;)c(w))e(w;), (2.24)

ij=1
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are a positive definite function and a positive definite operator, respectively.

Let (E,h”) be a Hermitian vector bundle with a Hermitian connection V. We consider a
sequence of spin® Dirac operators { DPF} ey on C®°(M, A% @ L% @ E). Here, DPF .= DL™7eF,
Then, the following theorem holds for DP¥.

Theorem 2.11.

(DPE)2 = ANBLOPRE 4 )yt RE. (2.25)
Here, RE is defined by
E 1 1 E 1 det
= ZK + 5 Z R* + §R (€i,e5)c(e;)c(e;). (2.26)
i,J
Proof. Let us calculate the following:
1 2n 1 n
5 > RM(ei e5)cler)c(e;) = 3 > (R*(wi, w;)e(w;)e(w;) + R* (@, w;)e(w;)e(w;))
ij=1 ij—l
= — Z R wz,wj U)J U)Z ZRL wwwz
i,7=1
=p—T.
Then, by (2.11), (2.23) and (2.24), we obtain (2.25). O

Using this expansion, we can show the lower bound of the Laplacian AL®P®E

Proposition 2.12. Let (F,h'") be a Hermitian vector bundle with a Hermitian connection V.

Them, there exists a positive number C' > 0, which does not depend on p, such that
ALTEF e > O (2.27)

Proof. For s € C>®°(M, L®? @ F) C C®(M, A% ® L®” @ F), (2.22) and (2.25) implies that

2n
Dy s? =Y [VA OIS — p(s, 7s) + (s, R s).

i=1

Here, the norm is defined by the section inner product |s|> = (s, s). From (2.14), we have

VAO -®L®P®F L®p®F s+ = Z ’LUZ,UJJ T NT N s, (2.28)
z] 1
and this implies
2n 1 2n n 2
0 <|DFs]? < Z |VLEe g2 4 1 Z | (™ (e))iw;, wp)w’ A@® As| —p(s,7s) + (s, Rs),
i=1 i=1 |j,k=1
using the triangle inequality of the norm. Hence, (2.27) holds. [
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Using this proposition, one can obtain some important property of DP/¥.

Theorem 2.13. There exists a positive number C' > 0, which does not depend on p, such that
| DPEP|? > (ap — O)|Y], (2.29)

for any ¢ € C*°(M,A\>>° @ L®? @ F). Here, a > 0 is the mazimum number satisfying p — al > 0
and A0 .= @I M A0,

i=1

Proof. By putting FF = A®* @ E in (2.27), we find
[DPELE =D VTSR = p(0,79) + (e, o) + (@, B7Y)
> —C¢* +p(¥, p) + (¥, R¥9).
Since we have a bound (¢, ptb) > al|? for ¢ € C*°(M, %" @ L®P ® FE). Hence, we obtain
[DPEYE > —Clpf? + aplv | + (&, RF),
which proves (2.29). O

Using this bound, one can prove the spectral gap of DP¥ from (2.29).

Theorem 2.14.
Spec ((D"*)?) € {0} U (ap — C, +00). (2.30)

Proof. Let 1 =1, +1_ € C®°(M, A" @ [*P @ E) @ C>®(M, A @ L¥P @ E) be an eigensection
of (DPF)? with an eigenvalue A > 0. If ¢»_ # 0, (2.29) implies A > ap—C. If »_ = 0, we then have
(DPEV2DPEpt = \DPEy+. Then, DPFypt € C°(M, A% @ [®P @ FE), which is nonzero by the
assumption A > 0, is also an eigensection of (DPF)? with eigenvalue A. Thus, (2.29) again implies
A>ap—C. O]

One can also show the following theorem.
Theorem 2.15. Let us consider restrictions of the Dirac operator
D% = DPE| ey posvengrovgry, DV = DPE| sy aootdg rengm)-
Forp > %, we have
ker DPF € C®(M, A" @ L*? @ E) = C*(M,L** ® E). (2.31)

In particular, we have

ker D"" = {0}. (2.32)

23



Finally, let us evaluate the dimension of ker DP*¥.

Theorem 2.16. Let us assume that M is compact. For p > %, we have

dim ker DPE = / Td(THOM)ch(L®? @ E;), (2.33)

M

where TA(F') is the Todd class of a vector bundle F' defined as

Td(F) = det (exp(:;]gj//SZ) = 1) ’

and ch(F) is the Chern character of F' defined as

L DF
ch(F) := Trexp(%).

Proof. From (2.32), we have dim ker D" = 0 for p > € and hence
dim ker DP"F = dim ker Df'r’E + dim ker D”¥ = dim ker Di’E — dim ker D?F

For the case of compact manifold M, one can show that Df’r’E is a Fredholm operator and we can
define the analytical index Ind D% := dimker D?” — dimker D””. By the Atiyah-Singer index
theorem, Ind D’jr’E is equal to the topological index and thus we obtain (2.33). O]

We can also compute the leading large-p expansion

dim ker DP¥ = rank(E)/

e BN — rank(Ei)pn/ o + O™ 1),
M

M

where 1, is the Liouville volume form defined in (2.7).

2.5 Identities for Kahler manifolds

In this subsection, we define a Kéahler manifold, which is a special type of symplectic manifold. In
some proof of the asymptotic properties of the Toeplitz operator, we assume the Kéahler structure
of the base manifold M. For a more comprehensive reference of the Kéhler manifolds, we refer
to [20].

First, let us define the integrability of an almost complex structure.

Definition 12. Let (M, J) be an almost complex manifold. Then, the almost complex structure

J is called integrable if the torsion
Ny(u,v) := [u,v] + J([Ju,v] + [u, Jv]) — [Ju, Jv]
vanishes for all u,v € C*(M,TM).
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Then, we define a Kéhler manifold as follows.

Definition 13. Let g,w and J be a Riemannian metric, a symplectic structure and an integrable
complex structure on M, respectively. A manifold (M, g,w, J) is called Kéhler if the triple (g, w, J)
satisfying the compatibility condition

w(u,v) = g(Ju,v), (2.34)
for any u,v € C>°(M,TM).

A particularly important property of the Kéahler structure is that J commutes with the Levi-
Civita connection V™ which is essential in some of the proofs in the next section. This property

is obtained from the following proposition proposition.

Definition 14. Let (M, J) be an almost complex manifold and let g be a compatible metric. Let

us define a nondegenerate two-form @(u,v) := g(Ju,v). Then, we have
[VIM J]=0 <« J: integrable and da& = 0.
Here, V'™ is the Levi-Civita connection on 7M.

Proof. First, let us show [VI™ J] = 0 = J: integrable and do = 0. Using J> = —1 and
VIMy — VIMy = [u,v] for any u,v € C>°(M,TM), one finds

Ny(u,v) = [u,v] + IVEMy — JVIM Jy + JVIM Ju — JVIMy — [Ju, Ju)
= [J,VEMy — [, VIM Ju + [J,VEM ) Jo — [J, VEMy (2.35)
p— 0’

that is, J is integrable. For d@, let us use (2.4):

do(u, v, w) = uo(v,w) + vo(w, u) + wo(u,v) — o([u, v], w) — (v, w],u) — & ([w,u],v)
= ug(Jv,w) + vg(Jw,u) + wg(Ju,v) — g(Jlu,v],w) — g(J[v,w],u) — g(J[w, u],v)
= g(VIM Ju,w) + g(Jv, VEMw) + g(VIM Jw,u) + g(Jw, VIMu)
+ g(VEM Ju,v) + g(Ju, VEMy)
— g(IV Mo, w) + g(IV M, w) — g(IVE M w,u) + g(TV M v, w)
— g(JVEMu, v) + g(JVIMw, v)
= (™, v, w) + g(IV™, Tw,w) + g([VTY, Tl ) (2:36)
= 0.
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Secondly, let us show J: integrable and do = 0 = [VT™ J] = 0. From (2.35) and (2.36), we

have

0=g(N,y(u,v),w) + do(Ju,v, w) + do(u, Jv,w)
g([J, VM — [, VI Ju + [J,VEM Ju — [J, VEM |, w)
+9((V3. Tv,w) + (Vi Jw, Ju) + g((V,™, J] Tu,v)
+ (VM ) Jv,w) + g (V5 Tw,u) + g((VEM, J)u, Jv)
—g([, VM) Ju, w) = g(1 1, V5, w) + g (VI JJw, Ju) + g((VIM, T Ju, v)
+9((V3" Jw,u) + gV, Tlu, Jv)
= —g(JV " Ju,w) — g(Vy, M, w) — g(V 5, u,w) + g(V " Ju, w)
+ g(VIM Jw, Ju) — g(IVEMw, Ju) — g(VEMu, v) — g(JVEIM Ju, v)
+ g(VEM Jw,u) — g(IVEMw, u) + g(VEM Ju, Jv) — g(JVEMu, Jv)
= —2g((JVLM T 4+ VIM)u,v).

Thus, using the assumptions N; = dw = 0, we have

JVIMp 4 vIM =0 = [VIM J]=0.

]

From this proposition, the commutativity [V J] = 0 is achieved if and only if the triple

(g, w, J) satisfies the Kéhler condition (2.34).

Now, we state some important properties, which only hold for Kéhler manifolds.

Proposition 2.17. Let (M, g,w,J) be a Kihler manifold. The Bochner Laplacian AY defined in

(2.21) can also be written as

AP =" (2(VE ) VE + R (wi,w;)) . (2.37)

Here, {w;} is an orthonormal frame of TWO M.

Proof. From the definition (2.21), we have

== (VEVE + VEVE = Vi, — Vi,

%

7

=2

%

(
(
=-> <2VF Vi — BT (wi, @) = Vi, 4 VVTsz B vé%ﬁ” wi)
< RF(w“ w;) — ZVVTMw >

Z <2 )*VE, +2(divw;) Vi + R (w;, w;) + QVVTI\Iw > :

%
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For the second term, we have

Z(le wl)ng = Z<VZ;M’LU1, 6]>Vgl = Z(ngwwl, ?I)J>Vgl + Z(Vg?/[wl, wj>Vgl

i 1, .3 0,

From [VTM J] = 0, V'™ preserves the splitting TM = TUOM @ TOYM and consequently
ViMw; € ¢°(M, TMOM). Thus, (VEMw;, w;) = 0 since the inner product (u,v) = g(u,v) is
compatible with J. Again, by using this property, we have

E (le wZ)VgZ = E (ngwz,wﬁvgl = E <V£jw€2,w]>vg = — E <€i7 vz;j\/le>vg:
,J ,J i,J
== Vg,
P J

Therefore, we obtain (2.37). O

i

Theorem 2.18. Let (M, g,w,J) be a Kihler manifold. Then, we have
(DPEY? =2 “(VhTOLTeR) g AeLTeE | gy 4 RE (2.38)
and
p=—2m> clw)e(w). (2.39)
Here, R .= RF + 3", R\"*®F (w;, ;) where RF is defined in (2.26).
Proof. From (2.25) and (2.37), we have
(DPEY? = 2y (v OLTel) gt eLtel L N " pASLEEE (4, ) — pr + pp + RY

=2 (Vi OLTOE) gLl | py + RE.

(2

Here, we used 7 = Y, RY(w;, w;) in the last line. For the Kéhler case (2.34), we have

1 _ _ . _ .
%RL(wi,wj) = w(w;, w;) = ig(w;, w;) = 1d;;

and therefore we have (2.39). O

The following proposition is used for the asymptotic expansion of the Berezin-Toeplitz quanti-

zation in the following section.
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Proposition 2.19. Let (M, g,w, J) be a Kdihler manifold. On C®(M,A% @ L®? @ E), the inverse

of (DPE)? can be written as

2
(DP’E)_Q — % . %(Dp,E)—QRE o %Z(vgi’"@pL@P@E)*vgj"@L@P@E
h2

Dp E 2RE § VAO '®L®p®E VAO *QLOPRQE

hQ
P ( M. E —22 : AP RLOPRQE\* (x7AY*QLOPRQE\xv7 AV *QLOPQET AL QLOPRE
+ _<D ) (Vwi ) (ij ) Vwi vw»

2 —
i.j
2
+ %(Dp,E)—Q Z(Vgi}v'@L@P@E)*(V/%%;%é‘@p@E + (v%‘%}%DLf%E) + KE)vAj *QLEPRE
i\j ’ '
(2.40)
Here, we defined KE := RM"®F (w;, ;) + div (VEMw;) — w;(divw;) and
h, = (2mp)~*. (2.41)
Proof. For ¢ € C*(M,\"° @ L®P ® FE), we have
pelwy) = =2 Y e(wi)e(w;)e(w;) = =2 Y clw;){e(@;), c(w;) 1 = dme(w; ).
Then, (2.38) becomes
(DPFY? = 2Z(vgj"@L@P@E)*vg‘;«‘@L@P@E X 271;1 L RE.
on C*(M, A% ® L®” @ E). Thus, its inverse can be written as
(DPvE)72 — % _ %(DPE [2 Z VAO °®L®p®E) VAO *QLOPRE + RE (242)

on C*(M,\% @ L®? ® F). By using (2.42) to itself, we obtain

(Dp,E)—Q — @ o @(Dp,E) QRE hl2) Z(V/}OV'(@L@P@E)*Véov'(@L@P@E
2 2 2 £ Wi Wi

f; (DPE [22 VAO °®L®P®E) VAU C*QLOPQE + RE

J

2 : AV RLOPRQENx AV QLOPRE
(ijzi ) V’Lfil'

7

Let us calculate
0,e ®p 0,0 Rp 0,0 ®p 0,e ®p .
[Vg ®L¥PQE (v/} ®L ®E>*] _ _[ng ®L ®E’ VA ®L¥PQE + div wj]

_ RAO"®L®P®E< VAO CRQLOPRQE

wj, w;) + oy 0] — w;(divwy) (2.43)
_ 0,05 1,® 0,0xL® *
— hpl(sij + V%g;ﬁi PRE | (V%Eig@é] P®E) + Kg
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Then, we have

(prey2 = e Topeeyage M S gaonsiereny guesroros
2 2 2 wi wi

i
2

BB ey (oo
2 : W, W,

2/ np,E\—2 A0 @RLOPRE\* (x7 AV *QLOPRQE\ sy 7 A *QLOPRQExTAY*QLOPQE
2
B\ —2 A0 @ LOPRE\+ 7 AV QLOPQE
+ Iy (DPF) 2y (V) )V,
%
2 JEN—2 AR LBPRQE\* (7 AY*QLOPQE AV RLOPRF\* E\v AV QRLOPQE
+ B (DPF)Y (Vi VH(VENPETEE L (VS ELreky 4 KW
p i ij w; Vwi Wj J j
i7j
h2
p} : A0 RLOPRE\+ AL * R LOPRE

i

2
4 @(DP,E)%RE Z(V/}O"®L®p®E)*VAO"®L®1’®E
2 —

W

+ h;(Dp’E)_2 Z(V/}O,o(@[/@p@]_@)*(v/}O,-®L®p®E)*véo,o®L®p®Evgi,-®L®P®E

wi wj W;
2%
_ (DpyE)—2 + % _ %(DP’E)_2RE

(DI S T (VAL SR (VAELTIOE | (VAELTOR) 4 KBy erer,

VIMw; VM
ij

Here, we used (2.42) in the second equality. Thus, we obtain (2.40). O

Proposition 2.20. Let (M, g,w,J) be a Kdihler manifold and we assume that (2.31) holds. For
Y € ker DPE C C°(M, L*" ® E), we have

VSO’.(@L@p@Ew _ v§®p®Ew — O7 (244)
for any u € C°(M, THO M),

Proof. From (2.28), we have VA" ®L¥®Ey, — YL®Ey,  Since ¢(w;)¢ = 0 for ¢ € C°(M, L¥® F),
we have

DPPY = " c(w)VEPp =0 = VL) =0

[
Proposition 2.21. Let (M, g,w,J) be a Kihler manifold. For v € ker DPP with |¢| = O(h)), we

have an estimation
. 1
(Vi "OETOE) )| = O(hy ?),

A0 QLEPRQEN« (A QLOPQE * -1 <2'45)
[(Va, ) (Va, )| =0O(h,").
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Proof. From (2.43) and (2.44), we have

Wi Wi

(VA TOETOE |2 = (1, Vi TELTOE(GANOLICE ) — (y (Bt + K )) = O, Y).
Similarly, we have
(V5 "S5 eE) (VG "By g

= (¥, v%jv'@L@’p@Eng”@L@p@E(vgﬁ"G@L@p@E)*(ng"®L®p®E)*¢)
0,e ® 0, ® 0,e ® 0, Q.
— (w’vg] ®L P@E(vgi QL P®E)*vgi QL P@E(ng QL P@E)*,l/))

(0, VOO 4 Vgl (Ve ")+ KD (VR )

ng/fﬂ)z Vgi\/fﬂ)i

= (&, (83 + Voria "™ + KE)(hy 6y + (Vonin ") + Kf))

AV QLOPRE (3—1 AV QRLOPQE AV RQLOPREN E AV QLOPREN
+ (¥, Vg, (h,” +V +(V )+ Ki)(Va, )b)

VMg, VM,

_ ,® o . . oo )
= O + (5, DAL (TETOT 4 (UL (AR )

= O(h,?).

p
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3 Berezin-Toeplitz quantization for a vector bundle

In this section, we consider the Berezin-Toeplitz quantization for vector bundles and derive various

properties of the quantization map [10].

3.1 Toeplitz operators for a vector bundle

Let (M, g) be a 2n-dimensional Riemannian manifold and assume that there exists a prequantum
line bundle (L, k") with a Hermitian connection V* over M. We set a symplectic form by w =

a(l) = ZLRL . Let J be an almost complex structure satisfying

g(Ju, Jv) = g(u,v), w(Ju,Jv) =w(u,v), wu,Ju) >0, (3.1)

for any vector fields u,v. Such an almost complex structure can be introduced by J = .J (—j 2)’%

where J is a skew-adjoint linear map uniquely determined by

w(u,v) = g(Ju,v), (3.2)

for any vector fields w,v. Using (g, J), we introduce the fundamental Z,-graded spin® bundle by
A% = ABeven gy A00dd which is defined in (2.8).

Let (E1, h®') and (FEy, h??) be finite-rank Hermitian vector bundles with Hermitian connections
VE and V2, respectively. As we will see below, we define a Toeplitz operator of a section of a
homomorphism bundle Hom(Es, ;). Here, the homomorphism bundle Hom(FE,, E;) is defined as
a vector bundle whose fiber Hom(Es, E7), is a vector space of linear maps from (Fs), to (F1),
at every point x € M. Note that any finite-rank Hermitian vector bundle is isomorphic to some
homomorphism bundles, that is, we can treat any vector bundle as a homomorphism bundle. Let
C>(M, F) be a space of smooth sections of a vector bundle F' over M. From the homomorphism
structure, a section s € C*(M,Hom(FEs,, E7)) can be thought of as a linear map C*(M, Ey) —
C>(M, Ey), using the pointwise multiplication (ss3)(x) = s(x)sy(x) for s, € C°(M, Ey) and ssy €
C*(M, Ey). The connection of Hom(FE,, Ey) can be introduced using the compatibility condition

VE (55y) = (VHomE2E) )50 4 5(VF2s,). (3.3)

Let us consider a tensor product bundle A»* @ L®?®Q E, for a = 1,2. On C®(M,A\** Q@ L*?QE,),

we equip an inner product
1) = [ mfa)tito). @) (3.9

where /1, is the Riemannian volume form defined as (2.18) and (-, -) is the Hermitian inner products
on the fiber induced from the Hermitian metric of A%, L and E,. The norm on this space is defined
by [1]? = (¢,%). We denote the corresponding by L?(M, A% @ L®? ® E,) the L? completion of
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C®(M,\°* @ L®” @ E,). Let DPFe be a spin® Dirac operator on C®(M, A% @ L®" @ E,) defined

as (2.17) and the Bergman projection is defined as the orthogonal projection
17Ee . [2(M, A" @ L®" ® E,) — ker DPFe.

Now, let us define the Toeplitz operator of s € C>®(M,Hom(E,, E;)). Let us consider s €
C>(M,Hom(FEy, E1)) to be a linear map on a broader space

s:C®(M,\"* @ L®? @ E,) — C°(M,\"* @ L*? @ E).
Definition 15. The Toeplitz operator of s € C*°(M, Hom(F,, E)) is defined as

TISEl’E2)(5) — Hp,El SHP’EQ, (35)

which is a linear map L*(M,A%* @ L®” ® Ey) — L*(M,A** @ L®? @ E).

Note that this operator is essentially a nontrivial map from ker D?*2 to ker D»*' and therefore

it is represented by a (dim ker DPE1) x (dim ker DP£2) matrix. From the definition, we have
T(FLE) ()" = [P P2 g 1P P (3.6)

Here, T2 (s)* is the Hermitian adjoint of 7, ;SE“EN(S) with respect to the inner product (3.4) and
s* € C®(M,Hom(E), Es)) is the adjoint of s € C>°(M, Hom(Fsy, E;)) determined by h (uy, s(z)uy) =
hE2(s*(x)uy,us) for u, € (E,), at each point z € M.

Tp(E’E) is unital. Let £ be a vector bundle and let us

We can also observe that the map
consider the endomorphism bundle End(E) := Hom(F, E'). Then, there exists the identity section

1p € C°(M,End(F)). Then, we can see that the
TISE7E)(]-E) = Lyer Do,

)

where 1., pr.2 is the identity operator on ker DP¥. This shows that the map TéE’E preserves the

identity element.

3.2 Asymptotic expansion of Toeplitz operators

We can also consider a section t € C*(M, Hom(FEjs, E»)) and its Toeplitz operator T,EEQ’E3)(t) =
[17F2 ¢ TIPF3 . As in the case of Berezin-Toeplitz quantization of functions, we expect that there

exists an asymptotic expansion

p

k
T(El’EZ)(S)TZSE2’ES)(t) o Z hé;T;EELEs)(Cl(S’ t)) = O(h];+1)7
=0

for any k. Here, h, is defined in (2.41) and {C}}°, is a sequence of bilinear maps
Cy : C*®°(M,Hom(E,, Ey)) x C*(M,Hom(Es3, Ey)) — C*(M,Hom(E;3, Ey)).

First, let us obtain the leading coefficient Cy(s, ).
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Theorem 3.1. Let us assume that p is large enough to satisfy (2.32). Then, we have

’T(ELEQ)(S)T(EQ,EB)(t) _ T(El,Ed)(St)} = O(hp)

p p p

Proof. First, we have

E1,E Es E _ E E. Es _ m(E.,E E E E.
TFOE) ()T B () = TP P s TIPP2 ¢ TIPPs = T(P0Es) (st) — TIPF1 5(1 — 11PP2) 1178,

The operator 1 — IIP¥2 is the orthogonal projection to the orthogonal complement (ker DP:¥2)L.
We can directly check
1 — Hp)EQ — DP7E2PP7E2DP1E2'

where
PrFep = DM (DR DM 2Dy 4 (DR DR

for 1 = 1, +1p_ € C®°(M, A"V R LZPR Ey)®C® (M, A*°¥ @ L¥?® E,). Here, Dﬁ’EQDg’EQ is strictly
positive from (2.32) and therefore the inverse (D7 DP"?)=1 exists on C®°(M, A% @ L% @ E).
Hence, we reach
E1,E Ea,E _ (ELE _TIE \E> pp,E2 1yp,E E
TFER) ()T P) (1) = T F0Es) (st) — TIPFL s pPoF2 prFe poFay T Fs
= TEE) (st) + 3 TPEr () (V2B ) PPB2c(ap) (Vg o E B e

wy
i’j

using DPEsTIPEs = 1171 DPE1 and (3.3). On (ker DPF2)+ | we have
prE2 (DpyEz)—Q’

since (DP"2)? is strictly positive on (ker DP#2)+. For ¢ € ker DP5, 3~ c(wj)(Vg?m(E3’E2)t)w €
Co®(M, A" @ L® @ F3) C (ker DPF2)L. Thus, we have

T(El,Ez) (S)T(EQ,ES) (t) _ TéEl’ES) <St>+z HP’EIC(U_Ji) (V}wl?m(Eg,El)S> (Dp,Ez)72C<wj)(VH?m(Es,E2)t)Hp,E3.

p p w
1,]
(3.7)
Using (2.30), we have (DP#2)=2 = O(h,) and therefore
| TS FLP2) ()T F2F8) (1) — TFFS) (st)| = O(hy,). (3.8)
[

This means that the product of sections is approximated by the operator products under the
Berezin-Toeplitz quantization.

Let us now assume that (M, g,w, J) is Kéhler. Then, we can obtain the coefficient C(s,t).
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Theorem 3.2. Let (M, g,w,J) be a Kihler manifold and let us assume that p is large enough to
satisfy (2.32). Then, we have

TAEUE) () TP (1) — TEVED (1) -, Y TEEED) (Hom(Ean) ) (ghomFa )y | — o(12).

P
(3.9)

Proof. This proof is based on the technique of [21]. From (2.40), (3.7) becomes

TZSEl,EQ)(S)TISEQ,Eg)(t) — Tp(El,Eg Z Hp E1 VHOH} E2 El)s)c<wj)(vg;)m(E&EQ)t)Hp,Eg + €

_ T(El E3) (St h Z T (F1,E3) ((vHom (E2,E1) )(vg?m(ES,EZ)t» + e (310)

Here, we used c¢(w;)c(w;) = —28;; on C*(M, L¥? ® E) and e is given by

€ = Z N2 VHom(Ez En) )KEQC(wj)(Vg?m(ES’EQ)t)Hp’ES,

where
E hp p,E\—2 HE hﬁ AR LBPRQFE\+ v AL QLOPQE
K :—E(D’) R —ZE(V@- )V,

2
+ @<DP7E)_2RE Z(Vl}o,-®L®p®E>*v1}0,-®L®P®E
4 : w; w;
h2

+ 2 (Dp E) Z(Vgi,-(gL@p@E)*(ng,-®L®p®E)*ng),-(X)L@p@Evgj,o@L@:ﬂ@E

h2
2

1,

(Dp E) Z(Vg*‘e@L@P@E) (VA0'®L®P®E (VAO ‘®L®P®E) + Kg)vg:’@L@p@E.

VT]M VTM
- (7 wy
7’7.7

Using (2.45), (2.44) and (DP£2)=2 = O(h,), we can estimate that
le| = O(h?). (3.11)
Therefore, we obtain (3.9). O

The consequence of the asymptotic (3.9) is as follows. First, we define generalizations of the

Poisson bracket and the commutator.

Definition 16. Let E be a vector bundle over a symplectic manifold (M, w). For f € C*(M,C)

and s € C*(M, E), we define a generalized Poisson bracket as

{f,s}:= V)E(fs, (3.12)

where X is the Hamiltonian vector field defined in (2.2).
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Definition 17. Let us consider the setup of section 3.1. For f € C*°(M,C) and s € C*°(M,Hom(FE,, E})),

we define a generalized commutator as

[T,(f1), TP P2 ()] o= TP (F L, TP (s) — TPE2) () TP 22 (1), (3.13)
where 15, and 1, are the identity elements of C*°(M, End(FE;)) and C*(M, End(FE3y)), respectively.

Theorem 3.3. Let (M, g,w,J) be a Kihler manifold and let us assume that p is large enough to
satisfy (2.32). Then, we have

|Gy [T(f1), TP (s)] = TP ({ £, 53)| = O(hy), (3.14)
for f € C®(M,R) and s € C>°(M,Hom(Es, Ey)).

Proof. From (3.10) and (3.11), we have
(i) [T(1), T2 (5)] = 1 3 S TEEE) (i f) (V™5 s) = (i) (Vg E2505)) | = O(y).

From (2.34), the symplectic form can be written as w =1, w’ Aw’, where {w'} is the dual frame
of {w;}. Then, (2.2) implies
Xy =13 [t — (). (315)

%

Thus, we obtain (3.14). O

For the trivial bundle Fy, = Ey = M xC, (3.8) and (3.14) reduce to (1.1) and (1.2), respectively.

3.3 Trace of the Toeplitz operator

In this subsection, we consider a general 2n-dimensional symplectic manifold (M, g,w, J) satisfying
(3.1). Let us consider an endomorphism bundle End(E) = Hom(F, E) for a vector bundle E over
M. Then, the Toeplitz operator of s € C*°(M, End(FE)) is given by

TEE)(s) = TP FsTIP P,
In this case, we can consider a trace of the Toeplitz operator.

Theorem 3.4. Let M be a 2n-dimensional manifold.

lim (27h,)" Tr TZSE’E)(S) = / Hy tTE S. (3.16)
M

p—0o0

Here, trg is the trace of fiber space E induced by the fiber inner product and p., is the Liouville
volume form defined in (2.7).
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Proof. Using the Schwartz kernel, the trace of T, éE’E)(s) can be represented as

Ter(E’E)(s) = /M,ug(x) traoegr (By(x, x)s(x)),

where B,(x,y) is the Bergman kernel defined by

(PP ) () = /M 10(¥) By 2 )0 (1),

for any ¢ € C*°(M,A** @ L®*? ® E). Note that we consider a kernel with respect to the Riemannian
volume form g . In [22], the diagonal of the Bergman kernel B,(z,x) has the following large-p

asymptotic form,

By(x, ) = (2rh,) "(det J)2 Py 1g, + O(h,"*Y),
where J is determined by (3.2) and P, is the projection A%* — A% and 15 € End(E,) is the
identity operator. From (3.2), we have (det J)z fy = fi, and therefore we obtain (3.16). O

We can see that the relation (3.16) is a generalization of 1.3.

From this correspondence, we can show the correspondence of inner products.

Theorem 3.5. For s,t € C>°(M,Hom(E,, E)), we define a Hermitian inner product of Toeplitz

operators

(Tp(El’E2)(s),TISEl’EQ)(t)) = (2mwhy,)" Tr(Tp(El’EQ)(s)*TéE“E”(t)). (3.17)
Then, we have the following correspondence for a Kdihler manifold (M, g,w, J):
Jim (77052 (5), TH P2 (1)) = (s, 1). (3.18)

Here, the inner product of sections is given by (2.19) with hHom(E2ED (s(x) () = trg, (s*(2)t(z)).

Proof. From (3.6), (3.8) and (3.16), we have

lim (TP (s), TS F2) (1)) = / pr WO BB (g 1),
M

pP—00 p

For a Kéahler manifold (M, g,w, J), we have p,, = u, and therefore obtain (3.18). O

3.4 Bochner Laplacian and its matrix regularization

Let (M, g) be a Riemannian manifold. From the Nash embedding theorem, there exists an smooth
isometric embedding X = (X', X2 ...  X9): M — R? satisfying

d
g=> dX*®dX*, (3.19)

a=1
for a sufficiently large d.
Using the following theorem, the Bochner Laplacian (2.21) can be expressed in terms of the

isometric functions and the generalized commutator (3.13) in the case of Kdhler manifold.
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Theorem 3.6. Let (M, g,w, J) be a Kihler manifold and E be a vector bundle over M. Then, we

have
=) {X X s} (3.20)
for any s € C*(M, E).

Proof. From (3.12) and (3.15), we have

—Z{X“ {X% s} =D (i X)VE — (@:X)VE) (w; X)VE = (0, XV )s.

a,i,j

Note that (3.19) can be written as > (uX*)(vX?) = g(u,v) = (u,v). Hence, we obtain

=) X A{X s} = - Z (VEVE +VEVE)s = ((ws, ;) — (W, wiw;)) Ve s
a .3
+ Z w;, ww;) — (W;, w; w]>)ngs

:_ZVEVE Z([wl,wl 5+Z w;, W], w;)V Es
= —ZVEVES—FZVVTMG
L]

Now, we consider the matrix Laplacian, which corresponds to the Bochner Laplacian (2.21) in

large-p limit. From (3.20), it is natural to define the matrix Laplacian A as follows.

Definition 18.

AHom(E1,E2) E1 E2 _ h—z Z (X°1), T(E17E2)<8)]:|’ (3.21)

p

for s € C*(M, Hom(FEs, E)).

It is easy to show that Ais a formally self-adjoint positive semidefinite operator with respect

to the inner product (3.17). We have the following large-p correspondence of Laplacians.

Theorem 3.7. Let (M, g,w, J) be a Kdhler manifold and let us assume that p is large enough to
satisfy (2.32). Then, we have

|AHOH’1(E1,E2)TZSE1,E2)(S) o TISEl,Eg)(AHOm(EQ,El)S” — O(hp)7
for any s € C>°(M,Hom(FE,, Ey)).

In case of M = CP", the Laplacian on C*°(M, L®?) is related to the quadratic Casimir and we
can use the techniques of the representation theory. For a more general setup, let us consider the

following.
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Proposition 3.8. Let (M,w) be a symplectic manifold and let L be a prequantum line bundle over
M. We define a differential operator on C*°(M, L®?) by

Qf) == V¥, —i2mqf,

for f € C>®(M,C). Then, we have

[Q(f), Q(9)] = QU{, g}),
for any f,g € C*(M,C).

Proof. From (2.6) and R (X}, X,) = —i2mquw(X;, X,) = i2mq{f, g}, we obtain

Q). Q9] = V5, VE,'] —idma{f.g} = VK,  + R""(X;, X,) — idnq{f.9} = QU{[.9}).
]

Proposition 3.9. Let us assume that the smooth isometric embedding X : M — R? satisfy
{Xa7Xb} = CZfachc- (322)

Here, fupe is a skew-symmetric structure constant of some Lie algebra g and C' is a real constant

number. Then, we can consider a self-adjoint operator on C*°(M, L®?) by
LY :=iC7'Q(X). (3.23)
Then, {L{,} satisfies
L% LY =1 faneL"

Theorem 3.10. Let (M,g,w,J) be a Kdihler manifold and assume that the smooth isometric
embedding X : M — R® satisfy (3.22) and

| X[7 =) (X*)? = const.

a

Then, the Bochner Laplacian AX®" can be written as

AR =2y (L) — ar?¢?| X (3.24)

a

Proof. From (3.23) and (3.20), we have

a

C2Y (L2 =D (iVE] +2mqX")? = AM +idmg Y~ XVET + 4n¢?| X[

a a

Using X, = fX, + gX;, we have VK™ =23 X“V%iqa = 0. Therefore, we obtain (3.24). [

|x2
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3.5 Rectangular matrices as off-diagonals of a block diagonal matrix

Let E; and Ey be vector bundles over M and let s € C*°(M,Hom(FE>, E1)). Then, the Toeplitz
operator of s defined in (3.5) is a map C®(M, A%* @ L® @ Fy) — C>®(M, A% ® L® ® E;). Thus,

we can naturally consider an extended linear map

T(E1© B3, B1& Ez) fios\ _ TEEVED (f) TP ()
P t fg : TP(EQ,El)(t) TISEQ,EQ)(]CQ) s

for fi € C*(M,End(E))), fo € C*(M,End(E,)) and t € C*(M,Hom(E, Es)). Here, By & FEs is

the Whitney sum bundle and it corresponds to the Toeplitz operator of the following section:

- <“’;1 S) € C*(M,End(E, ® E,)).

Using this formulation, one can see that the matrix Laplacian (3.21) is naturally appears in the

off-diagonal of the following operation

AEnd(EleaEg )i=hy Z[ [ X EI@EQ,E@EQ)(S)H7

where

Ev,Eq a
o (ng (X1p,)

Tp(EQ,EQ) (Xa1E2)> :

In the context of matrix models of string theories and M-theories, such a block diagonal matrix
configuration corresponds to the two-body problem with objects with the same geometry. There-
fore, one may use the matrix regularization of homomorphism bundle to uncover the relations of

off-diagonal matrices and the two-body interactions.
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4 Monopole bundle over fuzzy CP"

In this subsection, we consider the Berezin-Toeplitz quantization smooth sections of L®4 over the

complex projective space CP" [10]| (similar studies in other construction are given for example
in 23,24]).

4.1 Geometry of CP"

Let us first define the complex projective space CP" of complex dimension n.

Definition 19. Let Z, Z’ be elements of C**!\ {0}. We define an equivalence relation ~ by
Z~7 & FceC\{0}: Z=cZ.
Then, we define CIP" as a quotient space
CP" =C"*'/ ~.

Let [Z] = [Z2° Z',--- | Z"] be a representative of the equivalence class of Z. Then, CP" can be
covered by n+1 patches {U, }?_, where U, := {[Z] € CP" | Z* # 0}. We define the inhomogeneous

coordinates (z(la), z(Qa), ©o,20) of Us by

270 (i=1,2,- a—1)
AV A (i:a,a#—l,---,n).

o) =
Now, let us introduce a Kéahler structure of CP™ as follows. Let K, be a local function on U,
defined by

n

Ko(x) :=1log(1+ Y |2(o(@)]*) = log(D>_|Z'/2°).
i=1 i=0
For z € U, N U, we have K,(r) = Kz(z) + log(Z?/Z%) + log(Z?/Z*) and consequently we
obtain 90K, = 0K 4. Here, 0,0 are the Dolbeault differentials. Thus, we can introduce a closed

two-form w locally by _
w=—90K. (4.1)
2m

We omit the subscripts of the patch unless it is necessary. In terms of the local complex coordinates

{z'}, w is expressed as
n

1 (1 + |Z|2)52] — ZiZj . w
= — dz* A dZ. 4.2

YT or ”2_:1 (1+2]2)? S (42)
Here, |z]? := Y"1 | |2°|*>. The normalization of this symplectic form makes [w] € H*(CP",Z). This

can be shown by the following argument. Since the second homology of CP" is generated by
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dzAdz

i
5 a2 where

CP' C CP", we only need to show [.p w € Z. The symplectic form on CP' is w =

z is the local inhomogeneous complex coordinates of CP!. Then, we can show

/ w = 1.
CP!

Let J be an almost complex structure defined by J(9/9z") =10/9z", J(9/0z") = —i0/0z". Then,
we define g by g(u,v) := w(u, Jv) for any u,v € C*°(CP", TCP"), which is locally written as

n

1 (1 + ’Z|2)5ij — EiZj : —7 —j i
) 1 . 4

The triple (g,w, J) defines a Kéhler structure of CP".

Let us consider the isometric embedding of CP" into R 2", We can choose a particular
representative of homogeneous coordinate ¢ = (¢%,¢?, -+ ,¢") such that [([* = 1 up to an overall
U(1) phase factor. For example, on the patch Uy, ¢ is related to the inhomogeneous coordinate
{z'} by L

CIu(l,z S22 c CmH
V14 z)?
for u € U(1). Then, we can define a rank 1 hermitian projection P, := (¢*, whichis a (n+1)x (n+1)
matrix-valued function on CP™. Let {T°}"+*" be a basis of su(n + 1) satisfying

n%42n
1

1
TT" = — S plenit + = i fape) T
2(Tl I 1)5ab cntl + 9 Z (dabc + lfabc)

c=1
Here, T'* are traceless Hermitian matrices and dgp. and fq. are the symmetric and skew-symmetric

structure constants, respectively. Then, we can expand P as

1 n242n

1
P = 272 g XeTe. 4.4
CCari T - (4.4)

Here, {X a}Z:{Q" is a set of n? + 2n smooth real functions of CP", which are given by

X = a2 (4.5)
From P? = P, we have
nt2n " a n = a b n—1 .
; XX = D) a;IdachX —mx =0

By the tedious calculation, we also have !

n242n

{Xa,Xb} = —27'('% Z fachCJ
c=1

IThis calculation can be easily derived from (4.16) and (4.20), which will be shown later.
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where we used the following local form Hamiltonian vector field (2.2) induced from (4.2):

Xf212ﬂ(1+|z|2)zn:(5ij+zi§j)(af A a>‘

ij=1

020 0z7 0z 02°

(4.6)

Note that the metric (4.3) can be written as

9= 5 3 (6~ COYAC @ AT + 4T © (') = - Tr(dP; © dF),

i,j=0

and thus (4.4) implies
n%+2n

g= Y dX"@dx"

a=1

Therefore, X = (X!, X2,...  X"**+27) : CP" — R”’*2" i a smooth isometric embedding.

4.2 Zero modes of the Dirac operator on CP”

In order to evaluate the matrix element of the Toeplitz operators, we need to construct a complete
orthonormal basis of the kernel of the Dirac operator on C*®(CP", A%* @ L®P).

Let DP be the spin Dirac operator on C®(CP", A% @ L®P), which is defined in (2.17). As
shown in (2.44), any f®) € ker DP C C=(CP", L®P) is simplified to

Vo P =0, (4.7)

for large enough p. From (4.1) and w = ;-RY = LdA*, one can take A" = —1(0 — 9)K and

therefore (4.7) becomes
0 P @)
AN — )
(o5 v )¢

The general solutions to this equation are
fP = (14 [2)72(2), (4.8)

where ¢(z) is an arbitrary holomorphic function.

Now, let us consider how f®)(z) transforms under the coordinate change. By considering
this, we identify the expression of f® € C>(CP", L®?) in terms of the normalized homogeneous
coordinate ¢ = (€% ¢, -+, (™). First, we introduce a notation as follows. For r € N, we define a
set

¥, :=A{0,1,--- ,n}"/permutation.

For a, = (a1, 0, -+, ), B, = (a1, 9, -+, v) € X, we define

Car — Cmgaz . ij Eﬁr = 5,31562 . Cﬁp'
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Let us also define Poly (¢, () as a set of all polynomials of *,(’ of degree (k + ¢, k), i.e.
P01k+q,k(<7 E) = Span(c ({Cak+pgﬁk }akﬂ,eZkﬂ,,ﬁkeEk) .
Then, we have the following proposition.

Proposition 4.1.
COO<CIEDn7 L®p) — @ POlk{»p,k‘(C? E)

k=0
Proof. On the overlapping patch U, N Ug, A" transforms as A*(z)) = A%(2(5)) — d\(2(5)) where

Me) =~ [log (gg) o (Z;)]

in terms of the homogeneous coordinate [Z]. Correspondingly, any element f®) € C>®(CP", L%P)

Z°\*
(g) FP(zg)).

transforms as )
5

4N\
f(p)(z(a)) — epA(Zw))f(p)(Z(B)) — (ﬁ)

Here, f®) (%(a)) means that it is a function of ga, gi AR Za ~ and their complex conjugates ga, ga, e
Thus, C*°(CP™, L®?) is spanned by the elements of the following form:
n _k_g
<Z|ZZ’2) 701702 70k+tp JTL JT2 ...Z‘rk’
i=0
where k € N. N
From (4.8) and Proposition 4.1, we then have the following theorem.
Theorem 4.2. For large enough p, we have
ker D? = Pol, (¢, (). (4.9)

In the following theorem, we find the complete orthonormal basis of ker D? with respect to the

inner product
(f®,g") = / pfOg,
(CIP"L
for fP) g € C>*(CP", L®P). Here, ju := i, = ji,, is the volume form of CP".
Theorem 4.3. Let us define

p+n)
f0 = %C ? (4.10)
!
for o, € 3,. Here, (o]l == [ ([a,)i!) where [ev,); is the number of components of av, equal to

i€{0,1,--- ,n}. Then, we have
(fc(fgafp(ai)) = 5ap,5p =
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Proof. First, let us express (*» and (Pr in terms of the local complex coordinate {2z}

8, _ p(Zl)ln(ZZ)bz ()b
o (1+ |2[2)pr

() () ()
CENEERE

¢ =

Here, u is a U(1) factor coming from the arbitrariness of the choice of ¢ and {a;}; and {b;},

are sets of nonnegative integers satisfying > a; < p and > | b; < p, respectively. Then, we

=Yz e [l (at) 5 (4.11)

(p+n)!

have to show

(¢, ¢Pr) =

where 0qp, 1= [} dast;-
Below, we give a proof of (4.11). Since the measure on CP™\ U, for any « is zero, we only need

to integrate over a single patch:

o oy _ [ EDTED)E @) () (E) - ()
(¢, %) / Y o)
B | e i i Ca o i

_ = 1 2. 2n
=7 - (5 [Py dz'dz da”".

Here, we used the real coordinates defined by 2* = 2%~ +izr? and used v/det g = 7~ "(1+|z|?)~""!

2= = p;cost;, % = p;sinb;, we then obtain

gty = T (") Do loe

The integral over 6; gives a factor d,,;, and we then have

Using the angular coordinates x

n

dpldp2 dPn 2a;+1
(Capa C'@p) = 2n5a,b/ n H pi

Now, we employ the spherical coordinates (p, ¢, da, -+ , dp_1) € [0,00) x [0, 7/2]"! defined by

n—2 n—1
p1=pCospr, p2 = pSingco8ga, o, Ppo1=p (H Sin¢i> COS Pn_1, Pn= pnsindn,
i=1 1=1

and we obtain

25" (ag4+1)—1 71

o By _ on Fop .
(C 7C'B)_25avb/0 dp +p p+n+1H

(/ do; SiHZZ?:i“(ajH)_l(cbi) COSZMH(@)) .
=1

Let us use the Beta function

2rx—1

w/2 0o
B(x,y) =2 desin®* ' ¢ cos® 1 ¢ = 2/ d p—’
@) =2 [ st oot to =2 [ ap oty
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which is defined for complex variables x,y with Rz, Ry > 0. Then, we find

n

(Capjgﬁp) = 0,8 (Z(ai—i— 1),p+1-— iai> ﬁB ( 2": (aj +1),a; + 1) )

i=1 j=i+1

Using B(z,y) = Fp(éfi(ﬁ) and I'(x + 1) = z!, we therefore obtain (4.11). O

By counting the number of independent symmetric polynomials of degree p with n+1 variables,

we have
(p+mn)!

dim ker DP =
pln!

(4.12)

This is consistent with the index theorem. From (2.33), we have

n+1
dim ker DP = / ( d > e = Cp,n/ w™.
CP» l—ew CP»

where we used the residue theorem

1 dz 2 \" 1 eP?
= pr _ -
Coan - 21 J ozt <1 — e—z) ¢ 27i j{dz(l —e~#)ntl’

The integration contour is a counterclockwise circle around z = 0. By simple calculations, we find

|
Cp,n: (p_:—q;l,)’ / wn: 1,
pn: Cpr

which reproduces (4.12).

4.3 Matrix regularization of embedding functions

Let IT7 : C*°(CP", A% ® L®P) be the orthogonal projection. Then, we define the Toeplitz operator
of a function f € C>*(CP",C) by
T(f) = TS T

Here, we consider the Toeplitz operator of components isometric embedding X : CP" — R +2n

defined in (4.5). The result is summarized in the following theorem.

Theorem 4.4.

N[

T
T,(X)=———L% .
Here, {L{, . O)}ZiJ{Z” are irreducible representation of {T°}"-5*" with Dynkin index (p,0,--- ,0),
n242n n2+2n
, o np(p+n+1)
[L((lp707 70)’ ngp,& 70)] =1 Z fabcL((lpiov"' 70)7 Z (L(p70a )0))2 = 2(n + 1) 1'
c=1 a=1
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Proof. Let us consider the matrix element
T (X - (p) T (X (») — (p) X (»)
p( )apu@p : (fap7 p( )fﬁp) (fap7 fﬁp)'
From (4.5) and (4.10), we have

T/(XYa,8, =T QZ (D1

4,7=0

1 (ptn) Z (ol (B0
S — POt (P )
[ p][/B 1,7=0

Here, we defined a map @ : 3, x X3 — 3, such that a, & v, = (1, 9, , @, V1,72, -+ ,Ys) €

Yts. Then, we have

<L((lp70"" ,O))Otp,ﬁp Z 5ap@i7ﬁp@j ° (4 13)

" ,j=0

This gives

Z 5T (o)t 1) ([l 0 —0jp+1)dawion,a,ejer- (4.14)
z]kl 0

(L?pvov )L(po ))al’?’ap =

Therefore, we find

[L((lp,O,--- ,0)7 L?p,O,--- ,0)]Otpﬂp H Z Ta Tb ll ap + 1)5ap®i,ﬁp®l
1,l=

2

+

=1 (Lﬁp,o,... ,0))ap,ﬁp-

c=1

Secondly, let us calculate the quadratic Casimir. From (4.14)

n?+42n n n?+4+2n
Z ( (9,0, ))Zap B8, Z Z i (o) + 1) (log)k + 6 — 0 + 1)5ap@i@kﬂp@jeal-
a=1 1,5,k,l=0 a=1

Using the Fierz identity
n242n

1
> TiTh = (mk @jalk) (4.15)
a=1
we obtain
n242n
Z(a )2 :np(p+n+1>6
i R TOR ) e
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4.4 Bochner Laplacian on C*(CP", L®9) and its spectrum

Here, we consider the spectral analysis of the Bochner Laplacian on C*(CP", L®9).
Let us employ the technique of Proposition 3.9. Let us define differential operators {£,}" "
on C>®(CP", L®?) by

Lo= _2% (v@i‘z - i27qu“) . (4.16)
T2
Then, we have
n24+2n
L% L7 =1 > fanel
c=1

By Theorem 3.10, we then have

L®a e 2”
A - ; n+1

Thus, the eigenvalue of AX** is 27 <2E ) where E is an eigenvalue of ) ' +2”(La)
Now, we study the spectral analysis of Z" +2"(£“)

Theorem 4.5. The eigenvalues and their associated eigenvectors of > ' +2"(£“) are given by

E, =

l\DIH

<(k+q)(k:+n)+k:(k:+q+n)+nqinl), (4.17)

and
D CoprreanlTCTE (4.18)
ChtgrTh
for k € N. Here, Coprgiw = Copppqm - mow 1S completely symmetric in o, and T, respectively,
and traceless under any contraction between o, and ,. The index w labels the degeneracy of the
eigenvectors with eigenvalues Ey, that is, w labels linearly independent the completely symmetric

traceless tensor of (k + q, k) type.

Proof. Let us show this theorem in two different approaches.

First approach is to use the representation theory of su(n+1). Let V(g, a,.... 4,) be the irreducible
representation space of su(n + 1) with Dynkin index (di,dz, -+ ,d,) and let Vi , ;) be the
representation space of the complex conjugate representation of (dy,ds, - ,d,). Then, (4.9) and
Theorem 4.4 implies that

ker D? = Pol,,((¢,() = Vip,o, 0)-

Using Proposition 4.1 implies
C®(CP", L*%) = @ Vigsro.-.0) @ Viro.. 0)-
k=0
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Using the decomposition into irreducible representation Vigyq,0,,0)® Viig ... o) = @?:o Viitq,0, ,0,i)+

we have

C®(CP", L%) = P Vikrg0.- 0 (4.19)
k=0

Therefore, the eigenvalues of > ' Hn([,“) are the quadratic Casimir for the representations (k +
¢,0,---,0,k), which are given by (4.17). The corresponding eigenvectors belong to Vixiq0,...,0.)
and therefore they are of the form (4.18), where the index w labels different weights of Vx4 4,0,--.0.%)-

Second approach is a purely analytic computation. After a long calculation using (4.5), (4.6)
and (4.16), we find

£a O'k+q<“"k Z Uk+ 0'k+q@i€9j<7"'k + [Tk]jCGkJrqc_‘Tkej@i) . (420)
1,7=0

Here, we defined & such that for a5 € X415, B, € Xs,

Yr S ET? (lf 377“ e S 165 - a’f-‘rS)

Qrys © By 1=
0€ Xy, (otherwise)

and we set (© = (% = 0. Also, we are using the local complex coordinate on patch Uy for simplicity.
From (4.15), we obtain

n2+42n n
D (LOPCTCTE) = BCTHCTE = 3 o i[rili (TSI,
a=1 4,7=0

_ Nkt 5 n o .
From [y )i[Tr]i = D _0t] D i1 0i0u00a,m, the traceless property » " (g, 7, Coyyrw = 0 implies

n2+2n

D (L i = Bl

a=1

4.5 Matrix regularization of C*°(CP", L¥?) and the matrix Laplacian

Here, we explicitly evaluate the Toeplitz operators of C>°(CP", L®?) and discuss spectral analysis
of the matrix Laplacian AL%",
Let us define the Toeplitz operator of f(@ € C>(CP", L®?) by

Tp(f(‘”) — Hp+qf(q) P

The matrix elements of the Toeplitz operator of (7++¢(Tk € C>°(CP", L®?) is given by

Ty (790 ey, =D, (79T £S) (4.21)
_ \/(p +q+n)(p+n) [loy [0 @ Tk]!(S
(p +q+k+ n)! [Bp]! [Oép+q]! ptgOTr,Bp DT tq
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Now, let us consider the matrix Laplacian (3.21),

n2+42n

AYUT(F9) = (2mp)* Y [T,(X1), [T,(X1), T, (f )]

a=1

We introduce the following operation on Toeplitz operators

LT(fD) = Liyegoe 0 To(f D) = T (D) L. (4.22)

This operator satisfies
n?+2n

[ﬁayﬁb] =1 Z fabcﬁca
c=1

and hence {L£° ”2:+2" they are representations of {7 ”2:+2”. Using Theorem 4.4, we can show
a=1 y a=1

R 27Tp2 n?42n . an
AL (T (D)) = 9 £)2 _ T ( £(@)
(L) (p+qg+n+1)(p+n+1) ;( ) n+1 P
Thus, the eigenvalue of A" is T Mi“ff(p D) (2E ) where E is an eigenvalue of y ' +2”(£“) :

Before going to the spectral analysis of > " +2”(/3“)2, let us show the following correspondence.

Theorem 4.6.
T,(Lf ) = LT, (f9), (4.23)

for any f@ € C=(CP", L®9).

Proof. From (4.20) and (4.21), we have

V+ag+n)p+n) [lapy [opre © T4

T (LG )) a0, =

(p+qg+k+n) [/Bp]! [0ty iq)!
[a O TROJOD Z]'
Z ( il + [Tl : [qOCerq @ 7! 5°‘P+q€9"k®iﬁp®”k+q@j'
4,7=0 ’

On the other hand, the matrix element of £3T,(¢7*+(T*) is given by

\/(p +q+n)!(p+n) [ap—i—q}! [ap—i—q D Tk]!

(LY TH(CTCT™) ) g, =

(p+q+k+n) [Bol! [otpag]!
4 [0 ® 1O B T .
E ; 7 5(1 DT o ) 9
X ( ap+q Z]] [ap+q EB Tk]' + [IBP EB j] pDLD k7ﬁp® k+qDJ

1,7=0
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using (4.21) and (4.13). Therefore, we have

(T (L (¢7H9CT)) = LTy (¢TC™)) o g

_ Vio+a+n)lp+n)! [lapg! [aprg © Th]!
(p+q+k+n) [ﬁp]! [tpq)!

(g @ T O B 1!
[ty g © T3]!

X Z T3 ( [O1tq D B, ® Jli + [Oprq © T B 1] > Oty g7 1®1,8,00 145

1,7=0

= 0.
This holds for any o, € Xiiq, T € X and any k& € N and thus we show (4.23). O

Using this theorem, we can easily obtain the eigenvalues and eigenvectors of » " +2”(£“) as

follows.

Theorem 4.7. The eigenvalues of " +2n(£“) are By, for k=0,1,---,p and the corresponding

eigenvectors are T),( (q))

Proof. The eigenvalues of ZZiJ{Z"(ﬁ“)2 can be obtained using the representation theory of su(n+1).

From the definition (4.22), we can see that £* acts on the representation space

p
‘/(p+Q707"' 70) ® ‘/(;,0, ,O) = @ ‘/(k+Q701"' 107k)
k=0

This is a similar to the irreducible decomposition (4.19) except for the cut-off & < p. Thus, the
eigenvalues are Fj for k =0,1,--- | p.

More explicitly, we can use (4.23) to identify the correspondence of eigenvalues or eigenvectors
of Y1 +2”(L'a) and > " +2”(L’“) Note that the matrix element of T},( f,iq,z)) is given as

To(fif)apas, o (€O, %),
Since (®r+4(Pa can be expanded by the basis { f,f:f]7)lu,}k/§p, we find
k>p: LAY =0.
For k < p, T)( ,gqgj) # 0 and (4.23) implies
n?4+2n n?+2n

Z (ﬁa (Q) Z EkT (f())

a=1 a=1
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From this theorem, we see that the spectrum of AL®" is the truncated version of the spectrum
of AX" up to a difference of order O(7,):

27p? *n ( q2n)
2F, — =21 | 2F) — + O(hy).
(p+q+n+1)(p+n+1)( 41 T (7p)

Finally, let us prove the following correspondence.

Theorem 4.8. Let us normalize {f,gqgj} such that
<f]£i]1)uv f]g{)w/) = 5k,k/5w,w/-

Then, the inner products of {Tp(f,i?jj)} with respect to (3.17) are

(p+a+n)p+n)
(B TD) = o BB

p—k)l(p+q+Ek+n)
for kK <np.

Proof. First, let us show
(T T(£)) o b

To show this, let us consider the Cartan-Weyl basis { H,, E,} of su(n + 1) satisfying

[Ho, Hy] =0, [Ho, Ero] = 0410, [Ea,E_o] =Y auH,, E,=E_,. (4.24)

Here, {H,}!_, be the basis of Cartan subalgebra and « denotes a root vector. The standard choice

of {H,\"_, is H, := T**2% where T**+2¢ is defined as a diagonal matrix with the following entries:

(aiaf, (0<i<a)
ng+2a ={ _ (a22+a)§ a, (i=a) (4.25)
0 (a <i<n)

Now, we define the irreducible representation maps p : su(n + 1) — End(V') and p : su(n + 1) —

~

End(V') such that

V' = Spanc({fkw}), p(T") = L,

V = Spanc({T,(fiw)}), A(T*) = L

Then, the correspondence (4.23), which can be neatly expressed as

PO, (fV) = T (p(v) f), (4.26)
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for any v € su(n + 1) and f@ € C®(CP", L®9). From now on, we take w as the weight vector
w = (wy,ws, -+ ,w,) such that

P(H) {2, = wafi,-
Then, by the self-adjointness of Za(ﬁ“)z and p(H,), we find

<Tp(flg?12))7 Tp(flf:?,)w')> = Cnvp,%k,w&hk’ 5w,w”

for a constant C, 4 .. Moreover, using (4.24) and (4.26), one can show

(T ) Ty £ 0) = (L (F2). T (£2)),

for any w and a. This shows that C,, ;4. does not depend on w.
From the above argument, we then only need to calculate |T,(fr.w)* == (Tp(frw) Tp(frw))
for a fixed weight w for each k. For example, let us consider the highest weight wy.. In our

convention (4.25), we find

(2k +q+n)!

Jiomee = W(Cl)k+q(50)k,

using (4.20). From (4.21), we find

L9 ) _\/(2k+q+n)!(p+q+n)!(p—l—n)! [tss ® 04!
k,Wmax / Xp+q By, — ap+q®0k7,3p@1k+q7

R+ e +a+k+n))? 0 fio 18!

where we defined 0, = (0,0,---,0) € ¥; and 14, = (1,1,--- ,1) € Xj4,. The only non-vanishing

matrix elements of 7T} ( f,f;qimax) are

2k +q+n)(p+q+n)(p+n)! [Vp—t ® Ok D Litg]!
Kl(k+ )l (p+q+k+n)l)? \/hp_k @ Liyq)![v, i @ 04!

Y

(9) _
TP(fk)wmax)pr—kealk‘ﬂl")lp—k@ok - \/

for any «y,_, € ¥, ;. Hence, we obtain

2k +q+n)p+q+n)(p+n) 3 ((Ypr, ® 0k ® Lypg]!)?

f(qz) 2:
o)V = i+ U (0 & g+ k)1 Yk © Lira ) & O]

'yp,keZp_k
—i p—k—>""1 45 no . .
 (k+q+n)lp+q+n)(p+n) Zk kzl ZJ H <p_zj17xj> (Z1+k’+Q>
P ((p+q+k+n))? — = —~ k k+q )’
where we rewrite the summation as
p—k p—k—iy p—k Z?;f L] n
Z F([vprlo [Yprlts - [Ypiln) = Z F(p—k— By 0, ).
Yok ESp—k i1=0 in=0 in= j=1



Let us use the identities for the binomial coefficients,

S-S -0,

m=k m=0

where they are called the hockey-stick identity and the Chu-Vandermonde identity, respectively.
Then, we find

T (£, I =

(2k+q+n)!(p+q+n)!(]?+n)!§ (p—i—n—l—il ihn+k+gq
P ((p+q+k+n))? k+n—1 k+q
_ (pH+g+n)p+n)

pi(p— k) p+q+k+n)l

i1=0

O

From this theorem, we can see that the large-p correspondence of the inner products (3.18).
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5 Monopole bundle over fuzzy T

In this subsection, we consider the Berezin-Toeplitz quantization of smooth sections of L®? over

the one-dimensional complex torus T? [13].

5.1 Geometry of T?

First, let us define the one-dimensional complex torus T? as follows.

Definition 20. Let 7 be an element of the complex upper-half plane H := {7 € C|37 > 0}. For

2,7 € C, we introduce an equivalence relation ~ such that

z~d e TRIET: 22— =K+ Tl (5.1)
Then, we define T? as
T?:=C/ ~.

We also use the real coordinates {x, y} such that
z=x+TY, (5.2)

which are identified by © ~ xz + 1 and y ~ y + 1, respectively.
Now, let us introduce a Kéhler structure of T? as follows. We first define a symplectic form on
C by

1 _
w = @dz/\dz.

Since w is not depends on the choice of the representative under the identification (5.1), w is also
a symplectic form on T2. Then, we have [, w = 1, which implies [w] € H?*(T2,Z). Let J be
an almost complex structure defined by J(a/éz) =10/0z, J(0/0z) = —10/0z. Then, the Kéhler
metric g is given by

g (dz®dz+dz®dz).

T 297
Then, the triple (g,w, J) defines a Kéhler structure of T2.

5.2 Zero modes of the Dirac operator on T2

In this subsection, we explicitly construct a complete orthonormal basis of the kernel of the Dirac
operator on C*°(T?, A®* @ L®P) [25].

Let D? be the spin® Dirac operator on C*(T?, A%* @ L®P) defined in (2.17). As shown in (2.44),
any f®) € ker DP C C>®(T?, L®P) satisfy

Vg;@;,%f(p) = 07

o4



for large enough p. From w = %RL = %dAL, one can take

AL = —%(Zdz — 2d3),
and therefore 5
e U (r) —
(az 357 z) fr=0

(5.3)

Sections of the nontrivial bundle L®P should properly transforms under the coordinate changes.

For T2, this requirement imposes the following boundary conditions.

Proposition 5.1. Elements of C*(T2, L®?) can be written as

3(=2)

P =57 0(2),

where 0 satisfies the boundary conditions

0(z+1)=0(2),

9(2 + 7.) — e—ipTr?RTe—iQpﬂ%ze(z)_

Proof. Under the coordinate shifts, the connection one-form A* and f® transforms as

AF(z+1) = Al(z) —iZd(S2), 1 FO(z+1) = o757 f0)(2),
an S(T2
AL(z+7) = AL (2) —1Zd(S(72)), FO (2 4 7) = 0757 F (),

By putting (5.4) into (5.6), we obtain (5.5).

Let us solve the zero mode equation (5.3). From the first condition of (5.5), we have

0(z) = Z n(Sz)et2mm iz

ne”

for some sequence of complex functions {¢, }nez. Then, (5.3) implies

d S 32)2 o~
din (%Z) = 27 (p :\SZ + TL) Cn(%Z) = cn(gz) _— Cn(())e—lm%e—%rn\sz'
Sz ST

Furthermore, the second condition of (5.5) imposes
Cnip(0) = TP (0 =, (0) = cp @70
Here, cp, is the complex number which only depends on the congruence class of modulo p,

n, ={pl+n|l e Z}.
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Thus, we obtain

(92)? irIn?
8(2) — e PT g, Z Cay e ’ranelenz7
nez
which has p linearly independent modes labeled by a, € Z,,

(JZ) 2
_ —pT iIT-n* i2mnz
Oa,(2) = ca e E ep" e,

neap

Using this result, we can construct a complete orthonormal basis of ker DP with respect to the

inner product
(f(p)’g(p)) ::/ Mmg(p)
T2
for f®) ) € C>(T2, L®P). Here, p := w is the volume form of T2
Theorem 5.2. For a, € Z,, we define

fap) (2) = (2037 e, (5.7)

neap

Then, {féf)}apezp is an orthonormal basis of C* (T2, L¥P),

(fap ’ (P)) - 5ap,l;p'

Proof. Using (5.2), we have

(fap (p) ;/ dZE/ dye—QPW (S7)y? Z Z e'p i2(= n?+7rm?) —127r(m' mT)ye—127r(n m)x

nEap meb,

The integration over x gives a factor of d,,, and thus we obtain

1
(F8) ) = (2097 04,5, Z e / dy Ot
D )
0

n€ap
TLE(I

= (2p97)20,,5, / dy e~ 20V

= 0a, 5,

Since the cardinality of Z, is p, we have
dim ker D? = p,

which is consistent with (2.33),
dim ker D? = / e’ = p.

’]I‘Q
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5.3 The spectrum of the Bochner Laplacian AL™

In this subsection, we obtain the eigenvalues and the corresponding eigenvectors of AL®", which
will be quantized in the next subsection.

First, let us consider the case for ¢ = 0. In this case, the Bochner Laplacian on C*(T?,C) is

given as
1 0? 0? 02
c_ _ - 2 7 _
A= S <|T| 2 2m78x8y - 8y2) ’

Since any elements of C°°(T?,C) are periodic in z + 2z + 1,z + 7, the eigenvalues and their
corresponding eigenvectors of A® are
42|k — 1|2 . :
Ek,l _ |O | 7 fk,l = elQﬂ'k‘LL‘elQﬂ‘ly’ (58)
ST
for k,1 € Z. The eigenvectors are orthonormal
(fas farr) = Op O
Let us consider the case for ¢ # 0. The Bochner Laplacian on C>(T?2, L®9) is
NM:—%W@ﬁ$@E+W$Nﬁ@-

From [nggz, nggg] RE(0/0z,0/0z) = £, we can introduce the ladder operators

. /%T L®4 " ST L®4a
Qg = —1 ﬂ_—qva/ag, CLq = —1 ﬂ_—qva/az, (59)

satisfying [a,, a;] = 1 and [ay, ag] = [a}, a}] = 0. Then, A" can be written as

q’ q]
q 1
AL® fr— 47Tq <Nq + §> 5

where N, := aja, is the number operator. Thus, the eigenvalues of AL are

1
E,, =4nq (m+§),

for m € N. Note that the eigenvectors with m = 0 are vanished by the action of a oc Va 103 and

thus the eigenspace with m = 0 is ker DP. Thus, the eigenvector fm’aq with eigenvalue F,, is given
by

Ox

@ (az)™ @ _ (2¢S7) A 4252 Sz n i Tn? i9rma
fm,&q*ﬁ aq —? ZH 27Tq\ST @‘i‘g e 1 e , (510)

where a, € Z,. Here, H,, is the physicist’s Hermite polynomial:

nEa

2 dm 2
Hm = (=1)"e¥ %
() = (~1)"e e
Using the algebra of the ladder operators, we can show
( T(r?)aq f q’ ) - 5mn5aq bq (511)
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5.4 Toeplitz operators of eigenvectors of AL™
Let 1P : C°°(T?, A% @ L®P) be the orthogonal projection. We define the Toeplitz operator of

fl9 € C=(T2, L) by
Tp(f(’l)) — Hp+qf(q)Hp‘

In this subsection, we explicitly evaluate the matrix elements
+
Ty (F D)y, = FTD T (F D) )

for the eigenvectors of the Bochner Laplacian AX®’.
Let us obtain the Toeplitz operators of the eigenvectors of AL“". The result for ¢ = 0 is the

following.

Theorem 5.3. Let us introduce a operator Flf’l with the following matrix elements

k,l o _j2nl,
(Fp )ap,bp =e 7 (5ap,b+kp'

Then, we find
71'\7‘1@ l\ klﬂ_ k)l
Tp(fry) =€ 257 er"FD (5.12)
Proof.
Tp<eiQﬂ'kx iZfrly)i B

I
—~

l\.')

l\)\»—l

s =2 2 . _ .
/ dye 2pm(I7)y? § § elp( Tn+Tm )67127r(anmTfl)yefl%r(nfmfk)m

n€ap mel_;p
1 o =2 2 ;
o e\ % iZ(—7n?+7(n—k)?%) —2p(S7)y? 27 (2nSTHi(kT—1))y
= (2p97)20,, 57w, g e'r dye e
0

m(|7|2k2 —2kiT+12)

= <2p%7—)%<FIi€7l)&p,b—i—7pe_T / dye 2p7(ST)y

—00

2

(P2 —2kir+12)
= e 2pST

O
The operator Flﬂ“’l has the following properties.

Proposition 5.4.

Ym.neZ: Fk+mpl+np sz

FRLUERY _ o*55 phek el (phiys G5 pebet (5.13)
In particular, the last two equations and FI?’O = 1 wmply that F;“l 15 unitary. The last equation also
implies o

ol O R

o8



We also have the following orthogonality with respect to (3.17).

Theorem 5.5.

a(rk—112 4|7k —U'|2) kit

(Tp(fea), Tp(frww)) =€ @57 e » "6 pd 0.

Proof.

1 _mUrk Pk V) gkt g 2e(=l)
(T (fua), Ty(fwa)) =p" Y e %9 e S Ry

a,b=0

—1
1 L _a(rk—l2 4|k —|?) ki) o em(-l)
= p E e 2pST e D e P 6];:1)7];;7

2 r_h2 11

w(|tk—=1l|“+|T7k" =1 kl+k'l
T e e N .
kp ki, Ylp b,

The Toeplitz operators of the eigenvectors of A¥* for ¢ # 0 is the following.

Theorem 5.6.

/ pq(p+q
Tp(f ap+z17 p + q m+1 M,pe—qb+Pqtpg(prq) <O)5&p+q,b+c+qtp+q : (5 14)

Proof. We first show

p+q m ’ ’
(@) ! P L(pta) (pa(p+q))
fm,cq fbp tzl: ZO m m 'm" (p + q)m+1f m'btetaty g ( )fm m/ ,pe=qb+patyg (piq) (0>
(5.15)
To show this, let us consider the theta function with characteristics,
9y b(V7 7_) _ Z ei7r(n+a)2’rei27r(n+a)(u+b)‘
neZ
Then, we can write (5.7) as
o (2) = (2p37) 1S D o (p2, 7).
There is a following identity [26],
p+q
e 0(q2,a7) Do o(pw,p7) =Y Diserae o((p + @)Z, (p+ )7 )V pegvipar o (pg(p + ¢)0, pa(p + 4)7),
P ptq pa(p+q)

- qz + pw N Z—w
2= Ww: .
p+q p+q
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This implies
p+q

SR W) =) Y R (LR (@),

Pe—qb+pat,g(ptq)

t=1
From (5.9), we have a relation
qa « /= | P ~
p+ qap+q(z) + D+ anQ(ZH'Q)(w)
Then, (5.10) implies
S ¢P ) (pap+9))
! ptq pa(p+q ~
fm Cq p tz; Zo m m 'm,' (p + Q)m+1f /’b+c+qtp+q< )fm m’,pe— qb+pqtpt1(p+q)(w)‘
By putting z = w, we obtain (5.15).
Using (5.15) and (5.11), we have
()
Tp( m Cq)ap+q bp
v P pao+a)) )
i ‘ pq(p+q p+q p+q
; Z m m 'm/' (p + Q>m+1 fm m’pe— qb+pqtpq(p+q)< )(fo p+q’ f ! b+c+qtp+q)
m/

p+q
pq (p+9)) O
p + q m+1 m,pe—qb+patpg(ptq) Ap+qbtetatyig”

]
5.5 The isometric embedding of T? and the Matrix Laplacian
Let us consider an element
A= (O‘ ﬁ) € SL(2, 7).
v 0
Then, we define a set of functions
_1 0 _1 pl l
xt=£" x2= £ X3 =2 xt=£2 1
§Rfa,37 - Sfas 27T§Rf’y,6a 27T\$f’y57 (5.16)

where f, 5(z,y) = e?"(@*+5Y) and p € (0, 00). Using the direct calculation, one can easily find that
X = (X, X% X3 X*) gives the isometric embedding T? — R* with moduli parameter

praf + pyd +i

A) —
T(ﬂ? ) p,1a2+p,}/2

(5.17)

For A € SL(2,7Z), we define I'y : H — H such that ['yz = i’z—ig. Using this action, we have
7(p, A) = =T'4-1(ip). Thus, this isometric embedding is applicable only for subset of the moduli

parameters, which are essentially purely imaginary parameters up to the SL(2,7Z).
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Below, we set the moduli parameter as (5.17) and the isometric embedding as (5.16). Using
(5.12), their Toeplitz operators are given by

aﬁ Ca,ﬂpf%
T,(X" = FP 4 (FP T,(X?) = L—— {F*F — (F>F)*
o) =20 DR EYY, D00 = Bl (o oy, -
3 075 Sy (s 4 C;’ép% 5 5 |
T,(X") = {F7 (F°)} L(X%) = "y —(E°)},
where
aﬁ 7#\7&:,@\2 af3
cyli=e WS e
Then, the matrix Laplacian (3.21) is given as
4
AFUT (9 = (2rp)? S [T,(XD). [1(X“1). Ty(/9)].
a=1

By a simple calculation, we find

AT (1) = 2 ([ + ()P + (G2 + ()] ()
— e [T, () (F?) + (R T E?] (5.19)

— Lo [ BT PO B + (B T (f ) Ey e ).

For the case of ¢ = 0, we can obtain the eigenvectors and the eigenvalues of AC as follows.
Using (5.13), we have

T30i) = 4 (e st (T2 oot (O |

= (2m)? (p~ al = Bk)? + p(yl — 0k)?) Tp( fra) + O(hy)

= W%(ﬁu) + O(hy).

ST

This shows that T},(fi;) are eigenvectors of A and their eigenvalues approach (5.8) as p increases.
For ¢ # 0, (5.19) is related to the Harper’s equation as discussed in [13]|. To see this, let us use

the different orthonormal bases for ker D¢ and ker D? such that

(F;’ﬁ)ap,l?p = 5ap,ﬁpa (F;’(s)ap,ép = _liaéap by

and express the matrix Laplacian (5.19) in terms of this basis:

<AL®qu(f(Q)>> . = pQOTp(f(q))ap+q7BP

2ra  2mb
=D (T, e, + 2hcos (5 = ZRV T, 4 T e, )



where

7’5 ’Y,(S
’ - 75 ) - . ¢ + ¢
O 1= (ke + (G107 + (G20 + (§°V)p, D o= laey®n™, A= 5 250"
p+q-P

Now, let us express the Toeplitz operator T,(f?)) in terms of a p(p + ¢)-dimensional vector

ged(p,q)

v=P v, v = (Tp(f(q))iw,mp,Tp(f(”)zw,mp,"' an(f(q))ap+q,r+u,,> ,
r=1

. . N . . .
where v := gpc (c’l’;; qq)). The corresponding representation of A" acting on v is given as
ged(p.q) N4
2 [,®a 2 L®a 2 [®a ) p(p+q)
AL _ @ Af 7 Aff _ pQO . pQDHg p(p+q)’
P
r=1

where H)* is the almost Mathieu operator defined by
(H)™w)a, = Ugpy, + ug=1, + 2A cos(2m(aa + w))ug, .

Thus, the eigenvalue problem of AL®" is the eigenvalue problem of the almost Mathieu operator.
This kind of problem naturally arises in the study of the quantum hall effects. Since f,(,f’)aq given
in (5.10) is the exact eigenvector of ALX®", the corresponding Toeplitz operator T)( f,(,f,)aq) given in

(5.14) should be the approximate eigenvector of AL®" From this statement, we can construct the

i . Av#
approximate eigenvector of H, "™
P
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6 Application to tensor fields

In this section, we construct the matrix regularization of tensor fields [14| as an application of the

theory given in section 3.

6.1 Toeplitz operators for tensor fields

Let M be a compact Kéhler manifold and let dime M = n. For k,l € N, we define a tensor bundle
of type (k,1) over M by TIM := T*M®* @ TM®'. Then, a smooth tensor field of type (k,1) is

defined as an element of C*°(M,T}), which can be locally expressed as

o . 0 0
L (fhy, viidet @ .. "R @R @ ——
fk - (fk)’bl""ik dz ® ® dz ® Ot ® ® 8[L‘jl’
using the real coordinates {z'}. Throughout this section, we use the Einstein summation convection
for repeated indices of the local coordinates. Then, we can define a linear map C>®(M, T} M) x

C(M, TOM) — (M, TOM) by
fli g = (fli)ilmikjlmjl (gl)jl"'jldxil ® - @da', (61)

Thus, the tensor bundle T{M can be considered as a homomorphism bundle Hom(7P M, T M).
Note that there are infinitely many other choices of defining such homomorphism structures. Let
[17* be the orthogonal projection from C*(M, A% @ L®P @ TP M) to the kernel of the spin® Dirac
operator DP* := DPTM Then, we define the Toeplitz operator of f. € C(M, T} M) as

ngk,l)(fb — Hp’kf,iﬂp’l. (6.2)

For fl € C*®(M,TiM) and g € C>(M, T/ M), we can consider the product of the Toeplitz

operators. The relation (3.8) implies
T (T ™ (g) = TR (fugi™) + O(hy).

Here, the corresponding product of tensor fields induced from the homomorphism structure (6.1)

18

Jegi" = (i M (G e e @ @ dat @ 5 @@ o
Now, consider the identity element 1, € C>(M, TFM) such that
1, =d2" ®@--- @dz* ® R ® 9 ]
Oz Ox'w

Then, (3.14) implies that

lim | (i7,) " (TR (L) TED (fL) = TED (T (F1) = TV, fih)] = 0.

p—00
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Let us define a Hermitian fiber inner product on TP M by
hTIgM(Slﬁ tk) = giljl T glk]k(sk)“% : (tk)jl”‘jk7 (63)

where (¢g*) is the inverse of the metric (g;;). Then, (3.16) implies

im (21, T L) = [ ™ (6.4)
M

p—00

In addition, (6.3) implies that the adjoint of the tensor field f! € C*°(M,T}) is

0
- e —. 6.5
Ozt ® @ Ox'k (6.5)

(fR)" =g g™g e gy (fDiy a1 det @ - @ dadt @

Then, (3.6) implies
T ((f)7) = T (o) (6.6)
Before closing this subsection, we give another formulation of tensor fields as follows. Let

{€a}=1.. 2, be an orthonormal frame of 7'M and {e®},—1 ... 2, be the dual frame. From these fields,

we define

Ea1a2--~ak = €qy ® €as K- Cay, € COO<M7 T§M>7
Ebbrt— e @ e @@ e € C°(M, T M).

Then, one can define a set of (2n)**! functions { fu, 4y, 1?2} from f} such that
faraz-a. " = (Bayagea, ) (B et (F )i 70
The Toeplitz operator of fa1a2...akb1b2”'bl then satisfies
TO9 foray ) = TOO (B gy TS (FYTED (Bo000) 1 Oy,

From this viewpoint, one can represent a rectangular matrix corresponding to a tensor field by a

set of square matrices corresponding to functions with orthonormal indices.

6.2 Symplectomorphism on tensor fields

A diffeomorphism ¢ : M — M is called the symplectomorphism if it preserves the symplectic form:
P'w=w.
Here, ¢* X is the pullback of a tensor field X defined by
(0" X)(z) = X(¢(x)).
In this subsection, we prove the following theorem.
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Theorem 6.1. Let ¢ be a symplectomorphism generated by Hamiltonian vector fields (2.2). Then,
we have

T (0" fo) = GV (F) G+ O(hy), (6.7)

for any fi € C>°(M,T}M). Here, Gy € GL(dimker DP* C) for k > 0 and G, € U(dimker DP"?).
This is consistent with a well-known U(N) symmetry of the matrix theories, which corresponds
to the area preserving diffeomorphism symmetry of the scalar field theory on commutative manifold

[1,2]. Before showing (6.7), let us discuss some of the properties of the symplectomorphism. First

property is that the pullback satisfies

P(X®Y) = (¢"X)® (¢7Y), (6.8)

/.7 /M

for any tensor fields X, Y of arbitrary types and for any two-form fields Z. Then, the pullback of
(k, k)-type tensor field fF using a symplectomorphism ¢ satisfies

/M o tr(fF) = /M o (6" ).

Here, we used the Liouville theorem ¢* 1, = p,, and the fact that the pullback operation commutes
with the contraction operation tr of tensor indices. Let C™*™2 be a set of all m; X my matrices
with complex entries. Then, let us consider a map ¢y, xm, : C™ "2 — C™>*™2 which corresponds
to the pullback operation ¢* in large-p limit. From the linearity of pullback operation and (6.8),

®Omy xm, sShould be a linear map satisfying
Gy xms (AB) = Gy xemy (A) Pmg s (B) + O (1),
for any A € C"™>™2 and B € C™2*™3. In addition, the trace correspondence (6.4) implies
Tr A = Tr[¢m, xm, (A)] + O(My),
for any A € C™>*™2_ Then, we can expect that ¢,,, xm, is of the following form
Gy sma (A) = My, AM + O (1),

for M,,, € GL(my,C) and M,,, € GL(msg,C), which satisfy all the desired properties. By this
naive argument, we expect that the matrix transformation corresponding to the pullback of the
symplectomorphism (including the one which is not generated by the Hamiltonian vector fields)
takes the form (6.7).

Now, let us derive (6.7) from the following argument.
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Proof. First, we consider the infinitesimal form of the symplectomorphism ¢(z) = x+€V, where € is
the infinitesimal real parameter. Then, the infinitesimal form of the pullback of fi € C*°(M, T} M)

can be written a
¢ fi = fi + eLv fi + O(e),
where Ly is a Lie derivative along V' defined by
(EVfllc)il-"ikjlmjl = (VVfllc)il"-ikjlmjl
_ (Vjvjl)(f}i)i1~~~ikjj2mjl A (vjvjl)(f]lg)iynikjljzmjl_lj
+ (vu VZ)(fli)Mnghjl +oot (vikvi)(fllc)ili?"ik—lijlmjl'
Here, V; := Vy/g.i. Let us consider the Hamiltonian vector field V' = X;. Using VX, €
C°(M,TIM), we define a section of T} by
k—1
tk = Z 1i ® VXf & 1k717i7
i=0
for k£ > 0 and for £ = 0, we set ty = 0. Then, we can show
Ly, fr = {f, i} + i — fite
Using (3.8) and (3.14), we find

T (L, i) = ((Ry) TR (L) + T30 (4) TV ()
= TV (f) (1) T T (1) + T (1)) + O(fy).
Therefore, we obtain
(0" fr) = GV (f) Gt + O(y),
where
Gy, = exp((ihy) 'eTFM (f1y) + €IFP (1)), (6.9)

Note that Tp(k’k)(flk) is self-adjoint but 7" (ty) for k > 0 is not for general f € C*(M,R). In
addition, we have T5°” (t9) = 0. This implies that G}, € GL(dimker DP* C) for k > 0 and G, €
U(dim ker DP?). Therefore, for any finite transformations which are generated by Hamiltonian
vector fields, we obtain (6.7). O

In particular subset of the symplectomorphism, let us consider a symplectomorphism ¢, which
also preserves the metric ¢*g = g. Such diffeomorphisms is called the isometries. Then, we have

the following theorem.

Theorem 6.2. Let ¢ be a symplectomorphism generated by Hamiltonian vector fields, which also

preserves the metric Lx,g = 0. Then, we have
T3¢ fi) = UK (FOUF + O(Ry),
for any fi € C>*(M,T}M). Here, Uy € U(dimker DP*) for any k € N.
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Proof. The vector fields preserving the metric are called Killing vector fields. If u = u’ 8‘91 €
C>®(M,TM) is a Killing vector field, it satisfies the Killing equation V,u? + V/u; = 0, where the
tensor indices are raised by the inverse of the metric g and lowered by the metric g;;. Now, let

us assume that the Hamiltonian vector field X is a Killing vector. Then, we
) 1 ) )
Vi(Xy)! = 5(VilXy)! = VI(Xp)a),

which means that VX is skew-adjoint in the sense of (6.5). Thus, from (6.6), T+ (t) is also

skew-adjoint, which implies that the transformation matrix Gy obtained in (6.9) is unitary. ]

The arguments given above are consistent with the following. Let ff € C(M,TFM) be self-
adjoint in the sense of (6.5). Then, (6.6) implies that Tp(k’k)( [¥) is also self-adjoint. Let us consider
the symplectomorphism ¢. Since the adjoint of tensor fields (6.5) depends on the metric except
for the (0, 0)-tensor fields (i.e. functions), ¢fF is not self-adjoint in general. This is consistent with
Theorem 6.1, that is, GkTISk’k)(f,f)G;l for Gj, € GL(dim ker DP* C) is not self-adjoint in general,
except for the case k = 0 where Gy € U(dimker D). In the case where ¢ also preserves the
metric g, ¢fF is self-adjoint. This is consistent with Theorem 6.2, that is, Uk (k:k) ( Bu for
Uy € U(dimker DP*) is also self-adjoint.

6.3 Application to one-form field theory

In this subsection, we consider the matrix regularization of one-form field A = A;dz* € C*°(M,T*M)
over a two-dimensional manifold M by using the Berezin-Toeplitz quantization of the vector bun-
dle T*M. As an example, we explicitly write the matrix action for fuzzy T? and we showed that
the matrix action for massless one-form field has a matrix gauge symmetry which corresponds to
the U(1) gauge symmetry in the large-p limit.

First, let us consider the action

1
S:§/wF”F —|—m/wAZ i

04;
ox’ 8 7
gauge symmetry A — A’ = A+ d\ for A € C>*°(M,R). Since M is two-dimensional, we have

FiF; =2 (Z(dX“)*{X“,A}) .

where m is a mass parameter and Fj; := For the massless case m = 0, there is a U(1)

a

Here, {X®},—1... 4 is the isometric embedding. Thus, the action can be written as

S = / < an y{X A}>2 2/MwA*A. (6.10)
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Now, let us apply the matrix regularization to this action. Using the notation of (6.2), we

define the Toeplitz operators
A=T19(4), dxe=T80dxe).
Then, we define the matrix action which approximates (6.10) in large-p limit,
St = pTr F2 + pm? Tr(g*zzl\) (6.11)

Here,
F

(ify) 1Y dXe [Xe, A],
where [X@, A] := T\ (X91,)A — ATV (X9).

6.4 Matrix action on T? and its U(1) gauge symmetry

In the case of the one-dimensional complex torus T?, we can explicitly calculate the Toeplitz
operators of X and dX“, which appear in the matrix action (6.11). As already discussed in
section 5.5, the isometric embedding of T? is given by (5.16). For simplicity, we assume 7 = i,
which is the case for p =1 and A = I € SL(2,Z). In this case, the isometric embedding functions
are given by

X' = (27) tcos(2mr), X'= (27) 'sin(272),

X3 = (27) ' cos(2my), X* = (27) 'sin(2my).

Their Toeplitz operators TISO’O)(X ) are given by

e % . o % .
L) = W+ V) T =S (G- 1),

e % . e % .
TP(X3> = E(Up + Up)? TP(X4) = Ari (Up - Up)a

where V, := F}* and U, := F>" are clock-shift matrices. Thus, we need to compute T (dx)
and Tlgl’l)(Xall) as follows.

Since T? is flat, we have a decomposition ker DP' = ker DP? @ ker DP? such that
U = dz + ¢dy,

for U € ker DP! and v, ¢ € ker DP?. Here, (x,y) is the real coordinates. Hence, we have a

corresponding block matrix decomposition,

- (A, T"9(A,)
A = N = (0,0 ,
Ay Ty (Ay)
(0,0) a
— (T8, x .
dXxe = p(o,o)( a) , LPP(XL)
T, (9,X)

I

VR
<31
o
=)

o =
S
SN—

<31

o

=

ol

Q

SN—

\—/
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Here, A = A,dx + A,dy and we introduced 0, := 0/dz and 0, := 9/0y. From (5.16), we have

0. X' = —2rX?%  0,X?=2rX', 9,X'=0,X>=0,
9,X° = —2n X", 9, X' =2mX? 9,X°=0,X"'=0.

Thus, we obtain

Using (5.18), we have

where

™ ™

pe » * * A pe »r
(V;?[V;)>M]_V;)[V;77M]), ayM = —

éwM =
2 2

(U[Uy, M) = U [U,, M])

for any M € CP*P. These operators correspond to d, and J, in the large-p limit. As we can
directly check, we have
[0, 0,)M = 0, (6.12)

for any M € CP*P. Thus, the matrix F' corresponds to F,, = 0, A, — 0,A, in the large-p limit.

Therefore, the matrix action can be written as
Shiv = pTr(éxAy - éyfll,)Q + pm? Tr(fli + fl;)
For the massless case m = 0, there exists a symmetry
A, A, D
N S G I N I
A, A, Oy

for any A € CPP. This follows from the fact that 8, and 8, are linear and (6.12). This transfor-
mation corresponds to the U(1) gauge symmetry A — A + dA\ in large-p limit.
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7 Conclusion and future problems

In this dissertation, we studied the Berezin-Toeplitz quantization of a vector bundle over a general
Kéhler manifold M, which is developed in [9,10,14|. In this formalism, we treated the vector
bundle as a homomorphism bundle Hom(F,, ). Then, its section s € C*°(M, Hom(FE,, E;)) can
be considered as linear operators between vector spaces of suitable spinor fields, s : C>(M, A%* @
L®P @ Ey) — C°(M, A% @ L®P ® E,). By restricting the vector spaces C*°(M,A%* @ L*P @ E,)
to the finite-dimensional kernels of spin® Dirac operators ker DP¥«  we defined a quantization
map T3 C>°(M,Hom(FEs,, 1)) — Hom(ker DPF2 ker DPF1) | where T,SELEQ)(S) can be repre-
sented as a matrix with finite size. We obtained a large-p asymptotic expansion of the product
Tp(El’EQ)(s)Tp(EQ’ES)(t) for any s € Hom(Es, Ey) and ¢ € Hom(Es, Es), up to the first order in A,.
In the zeroth order of this asymptotic expansion, we derived the correspondence of the product of
Toeplitz operators and the product of sections in large-p limit. In the first order of this asymptotic
expansion, we derived the correspondence of the generalized commutator of Toeplitz operators
and the generalized Poisson bracket of sections in large-p limit. These correspondences are natural
generalizations of the well-known relation of matrix regularization of functions. A particular use-
fulness of the correspondence of the generalized commutator and the generalized Poisson bracket
concerns with the matrix Laplacian. For a Kéhler manifold, the Bochner Laplacian on sections can
be written in terms of the generalized Poisson bracket and the isometric embedding. Thus, we can
define the corresponding matrix Laplacian acting on Toeplitz operators by the generalized commu-
tator and the Toeplitz operators of the isometric embedding. As an application of this formalism,
we considered the matrix regularization of monopole bundles over CP" and TZ. In particular, our
formulation correctly reproduces the results of the monopole bundles over the fuzzy CP™ given
in [23,24]. Another application of this formalism is the matrix regularization of tensor fields over
a Kéhler manifold. We treated the tensor field of type (k,[) as a section of the homomorphism
bundle Hom(7T*M®!, T*M®*) and we explicitly analyzed the properties of the Toeplitz operators
of sections of this bundle, such as the matrix counterpart of the transformation induced from
the pullback of the symplectomorphism. We also explicitly consider the matrix regularization of
one-form field on T? and construct the matrix action. We showed that the matrix action has a
matrix gauge symmetry which corresponds to the U(1) gauge symmetry in the large-p limit, if the
one-form field is massless.

The Berezin-Toeplitz quantization of vector bundle is applicable to the matrix regularization
of a wide class of fields. The possible applications of this work are as follows. First, using the
technique of matrix regularization of tensor fields, one may construct a fuzzy version of the higher
spin theories [27,28]. Second, since the spin® bundle A%* itself is a vector bundle, it is possible
to consider a matrix regularization of spinor fields. The theories of spinor fields on lattice have

the issues of doublers and chiral anomaly. Then, it is possible consider similar problems on fuzzy
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spaces [29-34|. Using our method, it is interesting to consider the similar problems on a general
Kahler manifold. It is also possible to construct a fuzzy field theory on manifolds with various
background fields such as instanton configurations. It is important to uncover how the various
background field configurations are incorporated in the framework of matrix configurations.
Finally, let us discuss some possible generalizations of this study. In section 3, we defined the
Berezin-Toeplitz quantization for vector bundles over a general symplectic manifold and most of
the properties of the Toeplitz operators are considered for a general symplectic manifold. However,
we failed to show the general asymptotic expansion of the Toeplitz operators for general symplectic
case, except for the leading term Cy(s,t). In our technique, we had to assume that M is Kéhler
in order to obtain the subleading coefficient C'(s,t), which is important to derive the correspon-
dence of the generalized commutator and the generalized Poisson bracket. However, in [7], it is
possible to obtain the asymptotic properties of the Toeplitz operators of functions on a general
symplectic manifold using the asymptotic expansion of the Bergman kernel. Thus, we expect that
the correspondence of the generalized commutator and the generalized Poisson bracket can be
shown for a general symplectic manifold. In [7], the Berezin-Toeplitz quantization of functions
over non-compact manifolds or orbifolds are also considered and therefore it may be possible to

consider the Berezin-Toeplitz quantization of vector bundles over such general spaces.
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A Notation and conventions

e The sets of all natural numbers, integers, real numbers and complex numbers are respectively
denoted as N, Z, R and C. Here, the natural number is defined as a nonnegative integers, i.e.
N =1{0,1,2,---}. We also denote by Z, the ring of integers modulo p, where the congruence
class is denoted as a, := {n € Z|n — a € pZ}.

e For a ring R, the set of all n X m matrices with entries in R is denoted by R™™. For
particular subsets with group structures, GL(n, R) C R™" is the set of all invertible square
matrices, SL(n, R) C R™™ is the set of all square matrices with unit determinant. We also
denote by U(n) C C™*" the set of all unitary matrices and by O(n) C R™" the set of all

orthogonal matrices.

e The imaginary unit is denoted as i. The complex conjugation of ¢ € C is denoted as ¢. The

real part and imaginary part of ¢ € C are respectively denoted as Re and .
e A manifold M refers to a manifold without boundary.

e For a manifold M, we denote by T'M the tangent vector bundle, and denote by T*M the

cotangent vector bundle.

e For vector bundles E, F' over a manifold M, E* denotes a dual bundle of I/, £ ® F' denotes
the tensor product bundle, E®" denotes the n-fold tensor product of E, E & F denotes
the Whitney sum bundle, Hom(E, F') denotes a homomorphism bundle and End(E) :=
Hom(E, E).

e The exterior algebra bundle of a vector bundle E over M is denoted as A(E) = @™ A/(E).
e For a vector bundle E over M, we denote by E, the fiber (a vector space) at = € M.

e For a field K, we denote by C*(M, K) the set of all smooth K-valued functions over a manifold
M. For a vector bundle E over a manifold M, we denote by C>(M, E) the set of all smooth

sections of F.

e A Hermitian vector bundle (E,h¥) over a manifold M is a vector bundle equipped with a

Hermitian inner product A* on each fiber E,, which is smoothly varying in # € M.

e A Hermitian connection V¥ of a Hermitian vector bundle (E,hF) is a connection of E
satisfying the compatibility condition dhf(s,t) = hf(VFs,t) + hf (s, VFt)

73



B M-theory and BFSS matrix model

In this appendix, we review the conjectures of the M-theory [15]. Then, we review the BFSS
matrix model, which is postulated as as a consistent formulation of the M-theory in the infinite
momentum [1] or DLCQ limit [16].

B.1 Conjectures of the M-Theory

M-theory is a hypothetical theory which unites the 5 different types of the superstring theories,
type I, ITA| IIB, heterotic SO(32) and heterotic Eg x Eg [15]. There are numerous evidences that
there might be such a theory, but the formulation of M-theory is yet unknown. In this subsection,

we summarize some of the conjectures or postulates which M-theory should respect.

1. M-theory is a supersymmetric 11-dimensional theory
The M-theory is postulated to be a theory with 11-dimensional target spaces with super-
symmetry. It does not contradict with the fact that the superstring theory is defined on
a 10-dimensional target space since the analysis of the superstring theory is given in per-
turbative method. It is postulated that the extra 11th dimension opens up in the limit of

nonperturbative superstring theory.

2. The low energy effective theory of the M-theory is the 11-dimensional supergravity theory
As the low energy effective actions of the superstring theories are the 10-dimensional super-
gravity theories (plus some Yang-Mills theories in the case of type I and heterotic theories),
the low energy effective theory of the M-theory is postulated as a maximally supersymmetric

11-dimensional supergravity theory.

3. M-theory contains M2-branes and M5 branes
From the fact that the 11-dimensional supergravity theory contains 3-form gauge field, the
fundamental objects of the M-theory are expected to couple to the 3-form gauge fields.
Thus, the electrically coupled objects are extended in 2+1-dimension and the magnetically
coupled objects are extended in 5+1-dimension. They are called M2-branes and M5-branes,

respectively.

4. Codimension 1 compactification of the M-theory gives superstring theories
It is known that the type IIA supergravity theory (the low energy effective theory of type
ITA superstring theory) can be obtained as a S! compactification of the 11-dimensional
supergravity theory. This suggests that the S* compactification of the M-theory would give
the type ITA superstring theory, not only in the low energy level. Similarly, it is conjectured
that the compactification of the M-theory onto the orbifold S'/Z, would give the heterotic
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Eg x Eg superstring theory. Moreover, one finds that the resulting string coupling is related

to the size of the compactified space.

B.2 Type IIA superstring theory and M-Theory

In this subsection, we discuss the connections of the type IIA superstring theory and the M-theory.
In the previous subsection, we mentioned the relation of the type IIA superstring theory and the
M-theory only in the low energy and classical level. However, there are some evidences that this
connection holds in the quantum stringy level.

Let us suppose that the type IIA is indeed a 11-dimensional theory compactified on a circle
with radius R. Then, the type ITA theory is a Kaluza-Klein theory. Let be {x“}zzo the coordinates
of uncompactified 10-dimensional space R>? and 3 be the compactified coordinate of S* such that
y ~ y + 27 R. Then, any complex function ¢ € C*(R" x S C) can be expended as >

¢($7 y) = Z (bn(x)emy/R'

nez
The kinetic term of ¢ is proportional to the Laplacian A’ on C*(R" x S' C) is then given as

2
Note.9) = 3 (86,(0) = Jnla) ) o
nez
where A is the Laplacian on C*°(RY C). Thus, as a 10-dimensional theory, we have infinite
number of fields {¢,},ez called Kaluza-Klein modes (KK modes) which have infinite tower of
masses %. In the limit of R — 0 (which corresponds to the perturbative limit in the superstring
theory), the higher modes (|n| > 0) become infinitely heavy and therefore decouple. However, for
R > 0 (which corresponds to the nonperturbative superstring theory), such modes should exist in
the 10-dimensional theory. The type ITA theory contains nonperturbative object called D-branes.
In particular, the DO-brane has a definite mass and the DO-brane is a BPS state, which do not
interact with each other. Thus, the total mass of the |n| DO-branes is simply |n| times the mass of a
single D0O-brane. We see that ¢,, state corresponds to a system of |n| DO-branes or anti-DO-branes.
Let us examine the relation of string coupling and the compactification radius. Let (M9, g)
be a pseudo-Riemannian manifold with signature (1,9). Then, the bosonic part of the type ITA
supergravity action Sya on M is given by

1 1
Stialg, ¢, B2, Ay, A =57 frge 2 (K —49Ap — §|H3|2)
10

1

—4—2/(ug(|F2|2+|F4|2)+BQAF4/\F4>
k1o

2For more general fields (sections of a vector bundle), we can do the similar expansion with some modifications.
For example, if the vector bundle has a nontrivial holonomy on S!, we have to impose the twisted boundary

condition on S' and it gives the different Fourier expansion.
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where g4 is the Riemannian volume form, K is the scalar curvature, ¢ is the scalar dilaton field,
A is the Hodge Laplacian. For the field content of this action, Bs is a 2-form field, A; is a R-R
1-form field, and As is a R-R 3-form field and we introduced Hs, Fy, Fy and Fj as

H3 = dBQ, F2 = dAl, F4 = dAg, F4 = F4 - A1 VAN Ag,

respectively. The first term of the action comes from the NS-NS sector and the second term comes
from the R-R sector. The proportionality factor iy is a 10-dimensional gravitational constant,

which is related to the string constant o’ by

1
Klp = 5(2#)70/4. (B.1)

/:“9|Fp|2 3:/Fp/\*Fpa

where x denotes the Hodge star. On the other hand, the bosonic part of the 11-dimensional

We also use the notation

supergravity action Sj; on a pseudo-Riemannian manifold (M™% G) with signature (1,10) is

given by

1 1 1
Sn[G, 03] = W MG (K — §|F4‘2) /Cg N F4 A\ F4

11 N 12k1;
where C5 is a 3-form field and Fy := dCs. Let us assume M0 = M x S, Then, the type IIA

supergravity action Sya can be obtained from the 11-dimensional supergravity action Si; by the

following rules:
G(u,v) = e 5%g(u,v) + €3 A(u)A(v), G(u,d/dy) = e3?A(u), G(/y,d/dy) = e3¢

C(u,v,w) = Alu,v,w), C(u,v,0/0y) = %B(u, v)

for any tangent vector fields u,v,w on MY, Here, y is the coordinate of S'. Let us identify

y ~ y—+ 2mvV/a/. Then, the radius of compactification Ry, is

in = <\/G(3/ay,3/3y)a’> — SOV = gi v

where (-) is the the expectation value with respect to the partition function of the superstring
theory and g, := e!? is the string coupling. This shows that the size of extra dimension is related
to string coupling (i.e. dilaton) and the extra dimension opens up in the nonperturbative case.
Let us revisit the discussion of Kaluza-Klein modes. We discussed that the n-th mode of
Kaluza-Klein mode has a mass |n|/R. This should be slightly modified in our case. With our

identification of y, a 11-dimensional scalar field ®(z,y) can be expanded as

Olr,y) =Y @, (x)e/V

ne’l
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Then, the Hodge Laplacian A’ on (M'!° G) acting on ® becomes

2
AN®(x,y) = Z (e3¢A(I>n(x) o @n(x)) eV

®
nez 1

where A is the Hodge Laplacian on (M g). Thus, the mass of the Kaluza-Klein mode ®,(z)

will be
ol e

My = .
Ry gs\/a

Note that the tension of the Dp-brane is given by

(B.2)

T, = (2m) "(a/) "2,

Therefore, we conclude that the n-th Kaluza-Klein mode indeed corresponds to |n| DO-branes of
type ITA superstring theory.
Finally, let us define the Planck mass in 11-dimension. (B.2) shows that the compactification

radius measured by the 10-dimensional metric g is
RH = gs\/a. (BS)

By comparing the coefficients of the Einstein-Hilbert actions of type ITA supergravity theory and

11-dimensional supergravity theory, we have

27TR11 1
2~ 2
K11 K1o

Since kqg is given by (B.1), we obtain
203, = (2m)gl(c)""

Thus, it is natural to define the 11-dimensional Planck mass M;j; by
My = g7 (a/) 72,

which satisfies
2k, = (2m)3 M. (B.4)

Similarly, the 11-dimensional Planck length is given by

111 = 1/M11.

Combining (B.3) and (B.4), we can express gs and o by the 11-dimensional parameter Ry; and
MHI
gJs = (R11M11)3/2, O/ = R1_11M1_13.
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B.3 M-Theory and the BFSS conjecture

Let us consider the following action:

S[XY X% XY ) = 5 1\/_//dtTrL(t),
gsva Jr
. _ . . (B.5)
L(t) =) X(0)X(t) + B D), X0 + 0" (1) <1w<t) — ) Tu[X"(1), wn) :
a a,fB a

Here, {X“}_, is a set of N x N Hermitian matrix valued function on R and ¢ is a N x N
matrix valued function on R whose matrix entries are SO(9) spinors and {I';}?_, are SO(9) gamma
matrices. The dot operation is defined as a derivative f(t) := %(t). This matrix model is called
the BFSS matrix model and it is postulated to be equivalent to M-theory in light cone infinite
momentum frame in the limit N — oo [1] and to M-theory in discrete light cone frame in finite
N [16]. We will discuss this topic in the following subsection. The basic argument is given as
follows. In the light cone infinite momentum frame and the discrete light cone frame, M-theory is
basically defined on a certain limit of light like circle. As we saw in the previous subsection, such
a theory contains D0-branes as a Kaluza-Klein modes. In the light cone infinite momentum frame
and the discrete light cone frame, all the degrees of freedom except for the DO-branes and the
massless open strings attached to them would not give a finite contribution to the Hamiltonian of
the whole system. The system of DO-branes and massless open strings attached to them is described
by 0-+1-dimensional supersymmetric Yang-Mills theory. After doing some rescaling and redefining
variable, the Lagrangian of the supersymmetric Yang-Mills theory turns into the BFSS matrix
model. We can also derive this matrix model from a system of M2-brane, which is summarized in
Appendix C.

This matrix model is tested in numerous studies and this model gives correct descriptions of

M-theory so far (the classic reference containing such topics is [35]).

B.4 DLCQ M-Theory and the matrix model

In this subsection, we review that the M-theory in discrete light cone quantization (DLCQ) limit
is given by a system of multi DO-branes [16]. First, we will denote the 11-th spatial direction X'°

by y and the timelike coordinate X° as t. We will introduce a light cone coordinate as

X* .= %(tiy).

In this frame, let us compactify the X~ to a circle with radius R, i.e.

_ _ t t R 1
e ()05 (1) -
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Since the canonical momentum of X~ is P, this compactification quantizes the P* as P* = N/R
where N is a integer which corresponds to the Kaluza-Klein modes.

Now, let us assume this compactification is a limit of the following compactification

t t R/\V?2
()= 0) L)

where Rs — 0 will make this compactification identical to the (B.6). Let us Lorentz boost this

N (v By ([t
Y By v ) \y)’
ot =1- o

system with the parameter 3:

where

and v := 1/4/1 — 2. Then, the identification (B.7) can be written in this boosted frame as

()~ (7) ()

Thus, the compactification becomes a spatial compactification with the radius R, — 0 in this
frame. Therefore, the M-theory in this frame is equivalent to the type ITA superstring theory with
parameters

gs = (RSM11)3/2, o = R;TM P

Now, let us consider the change of the momentum P~ under a Lorentz boost. P~ transforms
as
P~ =P~ =~1-p)P" (B.8)

and the light cone compactification with radius R in (B.6) will be boosted to yet another light
cone compactification with radius R' = v(1 — ) R. Therefore, we conclude that P~ is proportional
to the compactification radius R in the light cone compactified frame. For the small Ry, (B.8) will
be

P =P~ =~1-B8)P =|—=—+0((Rs/R)?®)| P".

Thus, P'~, which corresponds to the energy scale in the boosted frame, does not depend on R but
proportional to Rg in the limit Ry — 0.

The vanishing of the energy scale will be problematic. Therefore, let us fix the energy scale
of the M-theory on the light cone compactified space with radius R and M-theory on the boosted

spatially compactified space with radius Ry as
RMy, = RM,
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where M;; and M, are the 11-dimensional Planck masses of each theory. This means that My,
goes to infinity in order to make the energy scale fixed. Thus, the M-theory on the boosted spatially
compactified space with radius R and the 11-dimensional Planck mass MH will be described by

the type ITA superstring theory with parameters
gs = (RMu)*"? = RYY(RMT)™
- 1 .
o = Ry M = RE (RM},) ™

In the limit Ry — 0 with a finite R and M, the string coupling is zero and the string energy
scale goes to infinity. The system of N Dp-branes will be described by the p + 1-dimensional

supersymmetric Yang-Mills theory with coupling

G = mayry = (207 = (o R RME O

Therefore, only the system of N DO-branes with massless strings will not be decoupled. This
limiting process is consistent with the approximation of DBI action to the supersymmetric Yang-
Mills theory because the higher dimensional operators are of order R;/R. Therefore, this DLCQ
limit of M-theory is equivalent to the system of N DO-branes which is described by 0+41-dimensional
Super Yang-Mills theory. After doing some rescaling and redefining variable, the Lagrangian

becomes the BFSS matrix model.
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C Matrix model from matrix regularization of the M2-brane

In this appendix, we show that the BFSS matrix model can be derived from the matrix regularized

theory of a single M2-brane [4].

C.1 Bosonic M2-brane action

Let us consider the theory of a bosonic M2-brane embedded in a pseudo-Riemannian manifold
(M G) with signature (1,d). We denote by (X%, X! ... X9) the coordinates of M such that
9/0X" is a time-like vector and 9/0X* for a > 0 are are space-like vectors. Let (M'?, g) be an
embedded pseudo-Riemannian manifold of (M4, G) with signature (1,2), which corresponds to a
M2-brane world-volume. We denote by (z°, 2!, 2?) the coordinates of M2 such that 9/9z" is a
time-like vector and 9/0x° for i = 1,2 are space-like vectors. In this subsection, we use Einstein
sum convection for the indices of the coordinates of M4, denoted by a,b,---, and the indices of
the coordinates of M1t denoted by 7,4, ---.

The theory of a single M2-brane is naturally described by the world-volume action with the
isometric embedding function X = (X X1 ... X9): M2 — R, Since a M2-brane electrically
couples to 3-form gauge field C3 on M, the action is given by

Swﬂxﬂ:—j/ %+/ Cl.
M1,2 M1,2

Here, the tension is related to the Planck length as 7' = 1/3, and g is the metric on M*'? induced
from G and Cj is the 3-form field on M'2 induced from Cs. The first term of action is the Nambu-
Goto action and the second term of action represents the electrical coupling to C5. This is the
most general form of the bosonic M2-brane action.
From now on, we assume the flatness (M4, G) = (RY° p) for n = diag(—1,1,--- ,1) and the
absence of 3-form gauge field C's = 0. Then, the action can be locally written as
SxalX] = T / dry/ g,
M1
where d*z := dz® A dz! A dz? and g = g;;d2’ @ da? is given by
0X*0X?
gij ‘= Uab%%-
As we will see in the next subsection, the bosonic part of the BFSS matrix model can be obtained
from the matrix regularization of this action. Similar to the case of string theory, we will use
the classically equivalent Polyakov action since the actions containing the square root are hard to
quantize. Using an auxiliary metric h = h;;dz* ® da? on M2, the Polyakov action of a bosonic

M2-brane is given by
T g
$wﬂz—5/ Bav/—deth(higy — 1)
M1.2
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where (h'7) is the inverse of (h;;). This action is equivalent to Sxg if we impose the Euler-Lagrange
equation for h as follows. Using §(det h) = (det h)h”dh;; = —(det h)h;;0hY, we obtain

5 X h a
4% — 7/ —deth <(h” Girjr — )hij — 29ij) =0

Multiplying h% on both sides of (C.1) and use h;;h" = §! = 3 leads to
gi;h" = 3. (C.2)
By plugging (C.2) into (C.1), we conclude that h satisfying the Euler-Lagrange equation is
h=g. (C.3)

Thus, we obtain

Sp[X,h = g] = SNg[X]

Let us briefly discuss the property of the Polyakov action Sp. First, the variation of action

with respect to X is

a b
3Sp[X,h] = T / B/ = det i 20X 0X 0

— ——TNab =
M1.2 0;1:1 81'] ¢

= i \/—dethhijal. = 0.
oxt oxJ

The bosonic M2-brane Polyakov action has a diffeomorphism symmetry of M2 so does the string
Polyakov action. However, unlike the case of string theory, the action of the bosonic M2-brane
has no Weyl symmetry i.e. Sp[X,h] # Sp[X,e/h] for f € C>°(M'? R). In the case of the string
theory, we can completely fix the gauge of h. There are 3 independent degrees of freedom since h
can be represented as a 2 x 2 symmetric matrix. These degrees of freedom can be completely fixed
by 2 diffeomorphism symmetry and 1 Weyl symmetry. In the case of the bosonic M2-brane, there
are 6 independent degrees of freedom (3 x 3 symmetric matrix) and there are 3 diffeomorphism

symmetry. It is known that there is a good way to fix the 3 of the 6 degrees of freedom of h:

4 3
hoo = —— deth,  ho1 = ho2 = 0,
v

2
1,7=1

where v is a positive real parameter and h = > hi;da' @ da?. Then, h in this gauge can be

written as

h = hoodz® @ daz® + h,
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and such a gauge can be globally taken if we have the decomposition M1? = R x ¥ where (I, iz)
is a compact 2-dimensional Riemannian manifold 3. Then, using det h = hoo det h = — %5 (det h)?,

the Polyakov action in this gauge can be written as

_TV

.. 4 ~
Sp[X,h=g] = 1 /]R Ed?’x <77abXaXb — ﬁdet h) (C4)

where we used the constraint & = ¢ in the derivation and the dot represents f (20, 2t 2?) =
00 :
Since any two-dimensional manifold has a Kahler structure, it is equipped with the symplectic

form w on X by
w = pda' Ada?,

where p is a positive constant such that [, w = 1. Then, the Poisson bracket given in (2.3) induced

L (0h0f O0fi0f
otk == (555 ~ i)

Then, under the constraint h = g, the direct calculation shows

from w is

Naa Moy { X%, XPHXY, XY} = 2p~2 det h. (C.5)
Using (C.5), we can rewrite the action (C.4) as
Tv . . 2 2 / /
SP[Xu h = g] = T/]R . d337 (nabXaXb - V_p277aa’nbb’{Xa7Xb}{Xa 7Xb }) : (06)
X

L'and o2 in the action can be written in terms of the Poisson

All the derivatives with respect to o
bracket. The Euler-Lagrange equation for X can be expressed in terms of the Poisson bracket in
this gauge by

. 202

Xo = V—anbc{{X“, X"}, X}

The constraint (C.3) in this gauge is

. 0X?
fori=1,2 and
o 202 / /
nabXaXb = _V_[)Qnaa’nbb’{Xa>Xb}{Xa aXb } (08)

Note that the constraint (C.7) will also implies

na{X? X’} = 0. (C.9)

3Tt is evident that there are other choices of M2 allowing such a gauge. If M2 is a noncompact manifold, it

is possible to have decompositions M2 =R x ¥ or S' x ¥ for a noncompact Riemannian manifold . If M2 is a
compact manifold, it is also possible to have a decomposition M2 = S x 3 for a compact Riemannian manifold ¥.
Similar discussion can be done if M2 has boundaries. For the application to the BFSS matrix model, we restrict

our discussion to M2 =R x 3 for a compact manifold X.
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C.2 Bosonic M2-brane in light cone gauge and its matrix regularization

As shown in the previous subsections, the bosonic M2-brane with geometry R x ¥ embedded in
the flat background R is described by the action (C.6) with constraints (C.7) and (C.8). Even
though the collection of constraints seem to be difficult to solve, it is known that we can solve
them in so-called light cone gauge.
First, we introduce the light cone coordinate of RV by
X+ .= M.
V2

In this frame, the target space metric is expressed as
Ni—=n-—1==1 Nap=90%wb, Nta=Nat ="N-a="Na =0,
for a,b=1,2,---,9. In this subsection Then, the light cone gauge is a gauge which imposes
X2, 2t 2?) = a°.
In this subsection, we use indices a,b,--- = 1,2,---,9 and 4,7,--- = 1,2 and we use Einstein

summation convention for these indices. In this gauge, the constraints (C.7) and (C.8) can be

solved explicitly. The constraint (C.7) and can be written as

oX~ .. 0X°
b 1
Ox’ Oxt’ (C.10)
X = Loy 'O—Q{X“ Xb)2 (C.11)
2 ]j2 ) ) *

and the residual constraint (C.9) becomes
{X, X =0. (C.12)

Using the constraints (C.10) and (C.11), one can determines X~ explicitly in terms of X* up to
a constant. On the other hand, the residual constraint (C.12) imposes further constraint on X°.

The action (C.6) in the light cone gauge is
Sie[X] = Q/ d>x (—QX— + (X% — 2—p2{X“,Xb}2> .
4 Jrxs v?
The conjugate momentum of X~ is
dSLc[X]  Tv
k2

which means that the parameter v parametrizes the momentum P*. The other conjugate momenta

pt =

are given by

C 0Suelx]
SX+ ’
pa _ 95uclX] _ 0Suc[X] _ Tv oo
0X; 0Xe 2
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Therefore, the Hamiltonian of the bosonic M2-brane in light cone gauge is given as

2
H = Z—:/Ew ((Xa)2 + %{X“,Xb}Q) : (C.13)
Note that the Hamiltonian does not depend on X~ and the system is only described by the
transverse coordinate X and the only remaining constraint is therefore (C.12).

Since the Hamiltonian of the bosonic M2-brane in the light cone gauge is written completely
in terms of the symplectic structure, we can apply the matrix regularization to this system. Using
(1.1) (1.2) and (1.3), the Hamiltonian (C.13) can be regularized as

Hy[X] = Tr Tr ((Xa)2 — %[X“,XbP) .

where X® is a function of ¢ = 2° € R with value in N x N Hermitian matrices. Here, we set

v = 4mpN. The constraint (C.12) is regularized as
(X7 X% =0.

This Hamiltonian is a obvious time independent U(N) gauge symmetry X' — UX'UT which
corresponds to the symplectomorphism symmetry of (C.13). The Hamilton’s equation is now

given as
X+ [[ X XY, X =o0.

C.3 Matrix regularization for supersymmetric M2-brane

So far, we restricted our discussion to the case of bosonic M2-brane. In this subsection, we
generalize the discussion given in the previous subsections to the supersymmetric M2-brane. In
the case of the string theory, there are mainly two approaches to introduce supersymmetry. One
approach is the Neveu-Schwarz-Ramond (NSR) approach and the other is the Green-Schwarz
(GS) approach. In the NSR approach, we introduce world-sheet fermions which make the action
manifestly supersymmetric in the sense of the world-sheet but not manifestly in the target space.
In order to extend the supersymmetry in the target space, it is known that one needs extra
procedure called GSO projection. On the other hand, in the GS approach, we introduce target
space fermions which make the action manifestly supersymmetric in the sense of the target space.
In order to make the supersymmetry in the world-sheet, we need to introduce a local fermionic
symmetry called xk-symmetry. Even though the both approaches are equivalent in the analysis of
the superstring theory, it is known that the GS approach is applicable to the higher dimensional
membranes.

In the GS approach of the string theory, the dimension of the target space is restricted to
D=3.,4,6,10 by the r-symmetry in the classical level. In the case of the M2-brane, the dimension of
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the target space is also restricted to D=4,5,7,11 by the xk-symmetry in the classical level. The basic
procedure of GS approach for the M2-brane is the following. In the bosonic case, the action is a

functional of the embedding function X and the Lagrangian density is written by the combination

. In the GS approach, we replace :L in the bosonic action with

0xX* pa o
+¢ ai7

1% :=
! oxt

where 1) is a 16-component Majorana spinor of SO(9) and I'* are SO(9) gamma matrices. Using

this technique, the Polyakov action of the supersymmetric M2-brane is

T y
Sp[X 1, h] = —5/ 2d3:m/— det h(naph VIS — 1).
M1

This action has a global supersymmetry on the target space:
0 =¢€ 00X =—€l0,

where € is a constant spinor. However, it still does not have a local fermionic k-symmetry. In order

to introduce a local fermionic k-symmetry, one needs the additional terms

T g
SIX, ¢, h] = — 5/ d*zv/— det h(ngh TIHTT — 1)
M1.2
C.14)
T . o0 [LOX" oY o (
- d3 ijk F P ) e b
+2/Ml,2 x el Y ok k{Q (337’ (¢ )(1/1 %)
Here, €% is the completely skew-symmetric tensor with €' = 1 and T, := 14" and T'yp, := T, [y

This action is a local fermionic supersymmetry
p=(1-"T)k, O6X*=r(1—-T)T",

where & is a local fermionic generator and I' is given by
ciik

6\/ —deth

As we did in the bosonic M2-brane, we can properly fix the gauge of h if M'? = R x 2

H“HkaF[anFC]

and take light cone gauge. Then, the action (C.14) can also be written completely in terms of the
symplectic structure of . After a proper matrix regularization and the recaling of the parameters,
one obtains the BFSS matrix model (B.5).
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