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1 Fourier analysis

1.1 Fourier transform on Euclidean space

Fourier analysis is the most fundamental theory in time-frequency analysis. The Fourier transform of
f ∈ L1(Rnx) and the inverse Fourier transform of g ∈ L1(Rnξ ) are defined by

F [f ](ξ) =

∫
Rn

f(x)e−ix·ξdx, ξ ∈ Rnξ ,

F−1[g](x) =
1

(2π)n

∫
Rn

g(ξ)eix·ξdξ, x ∈ Rnx.

The Fourier transform F maps f on Rnx to F [f ] (or simply f̂) on Rnξ . Furthermore, when n = 1, the
variables x and ξ are usually interpreted as time and frequency, respectively. Let BUC(Rn) denote the
Banach space consisting of bounded uniformly continuous functions on Rn. Since the Fourier transform
of f ∈ L1(Rn) is bounded as ∥f̂∥L∞ ≤ ∥f∥L1 and uniformly continuous, we have f̂ ∈ BUC(Rn). In
addition, the following formulas hold:

(F1) F [αf + βg] = αF [f ] + βF [g], α, β ∈ C.

(F2) F [f ∗ g] = F [f ]F [g].

(F3) lim
|ξ|→∞

F [f ](ξ) = 0.

(F4) Fx→ξ [f(x− h)] (ξ) = e−ih·ξFx→ξ[f ](ξ).

(F5) Fx→ξ[e
ih·xf(x)](ξ) = Fx→ξ[f ](ξ − h).

(F6) Fx→ξ[f(ax)](ξ) = |a|−nFx→ξ[f ](a
−1ξ), a ̸= 0.

Formula (F2) shows that the Fourier transform intertwines the convolution and the product. Let
C0(Rn) denote the Banach space consisting of continuous functions vanishing at infinity on Rn. Then,
formula (F3) implies f̂ ∈ C0(Rn), which is referred to as the Riemann-Lebesgue lemma. Furthermore,
formulas (F4), (F5) and (F6) show the relations between translation, modulation and dilation and the
Fourier transform, respectively, which are frequently used in Fourier analysis.

Since f̂ ∈ BUC(Rn), f̂ does not belong to L1(Rn) generally. Therefore, we require some additional
conditions and techniques to reconstruct f from f̂ using the inverse Fourier transform F−1.

Proposition 1.1. Suppose that f, f̂ ∈ L1(Rn). Then, the inversion formula holds:

f(x) = F−1 [F [f ]] (x) a.e. x ∈ Rn.

Now, L1(R) is a commutative Banach algebra under the convolution satisfying

∥f ∗ g∥L1 ≤ ∥f∥L1∥g∥L1 .

By Proposition 1.1 and formulas (F1), (F2) and (F3), the Fourier transform is an algebra isomor-
phism of L1(R) to C0(R). It is interesting to note that every complex (non-trivial) homomorphism
φ : L1(R) → C can be written as

φ(f) =

∫ ∞

−∞
f(x)e−ixtdx

for a unique t ∈ R (see [33]).
The Fourier transform of f is also defined if f belongs to the Schwartz class S(Rn) ⊂ L1(Rn), and

the domain D(F) and the range R(F) can be characterized.

1



Proposition 1.2. The Fourier transform F is a continuous bijection operator from S(Rn) to S(Rn).
Moreover, the inversion formula and Parseval’s identity hold:

f(x) = F−1 [F [f ]] (x), x ∈ Rn, f ∈ S(Rn),∫
Rn

f(x)g(x)dx =
1

(2π)n

∫
Rn

F [f ](ξ)F [g](ξ)dξ, f, g ∈ S(Rn). (1)

Next, we will generalize the Fourier transform to other function spaces. It is also useful to consider
the Fourier transform of a distribution such as the “Dirac delta” δ. By the duality S-S ′, the Fourier
transform of a tempered distribution T can be defined by

(F [T ], φ)S′×S = (T,F [φ])S′×S , φ ∈ S(Rn).

Proposition 1.2 and the duality enable us to characterize the domain and the range.

Proposition 1.3. The Fourier transform F is a continuous bijection operator from S ′(Rn) to S ′(Rn).
Moreover, the inversion formula holds:

T = F−1 [F [T ]] , T ∈ S ′(Rn).

By identifying f ∈ Lp(Rn) with a tempered distribution for 1 ≤ p ≤ ∞, we can obtain the Fourier
transform of an Lp-function. In particular, Hilbert space L2(Rn) plays an important role in Fourier
analysis.

Now, suppose that f, g ∈ S(Rn). Since S(Rn) ⊂ L2(Rn), Parseval’s identity (1) can be written as
an inner product on L2(Rn):

⟨f, g⟩ = 1

(2π)n
⟨f̂ , ĝ⟩ f=g=⇒ ∥f∥L2 =

1

(2π)
n
2

∥f̂∥L2 .

Then, by the density argument, the Fourier transform F can be uniquely extended to the bounded
linear operator FL2 , which is called L2-Fourier transform, in L2(Rn). The following proposition is
obtained immediately.

Theorem 1.4 (Plancherel theorem). The L2-Fourier transform FL2 is a unitary operator on L2(Rn),
up to (2π)−n/2.

Unfortunately, we still only know the existence of the L2-Fourier transform, so the explicit form
of FL2 remains non-trivial. We want it to have the same form as the Fourier transform on L1(Rn),
and in fact the following holds: For f ∈ L1(Rn) ∩ L2(Rn),

FL2 [f ](ξ) =

∫
Rn

f(x)e−ix·ξdx a.e. ξ ∈ Rn.

Using this result, we can determine the explicit L2-Fourier transform.

Proposition 1.5. For f ∈ L2(Rn), we have the following:

FL2 [f ](ξ) = l.i.m
R→∞

∫
|x|≤R

f(x)e−ix·ξdx (2)

⇐⇒
∫
Rn

∣∣∣∣∣FL2 [f ](ξ)−
∫
|x|≤R

f(x)e−ix·ξdx

∣∣∣∣∣
2

dξ → 0 as R→ ∞.

Thus, we can calculate the L2-Fourier transform from the right-hand side of expression (2):

FL2 [f ](ξ) = lim
R→∞

∫
|x|≤R

f(x)e−ix·ξdx in L2(Rn).

Hereafter, we will rewrite FL2 simply as F to avoid confusion. For more details, see e.g. [5, 26, 29, 34].
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1.2 Uncertainty principle

By the Plancherel theorem, properties of a function f ∈ L2(R) can be translated into properties of its
Fourier transform f̂ ∈ L2(R). Although we can obtain information of all frequencies by integration
over R, we can obtain little frequency information of a neighborhood of a point x = b. The simplest
way to deal with this problem is to multiply eixξ by a window function g ∈ L2(R) localized in a
neighborhood of a point x = b.

Definition 1.6 (Windowed Fourier transform). A function g ∈ L2(R) is called a window function if
it satisfies ∫

R
|xg(x)|2dx <∞.

Then, we define the windowed Fourier transform (WFT) of f ∈ L2(R) by the window function g as
follows:

Vg[f ](b, ξ) =

∫
R
f(x)ub,ξ(x)dx,

where ub,ξ(x) = g(x− b)eixξ. If g and ĝ are window functions, the operator Vg is called the short-time
Fourier transform (STFT).

We note that the definition of the window function yields | · |1/2g ∈ L2(R) and g ∈ L1(R), that is,
ĝ ∈ BUC(R) ∩ C0(R). Using (F4) and (F5), we have

ûq,p(ξ) = e−iq(ξ−p)ĝ(ξ − p).

Hence, by the Plancherel theorem, we obtain

⟨f, uq,p⟩ =
1

2π
⟨f̂ , ûq,p⟩. (3)

Equality (3) says that the value ⟨f, uq,p⟩ in a neighborhood of a point x = q is equal to the value

(2π)−1⟨f̂ , ûq,p⟩ in a neighborhood of a point ξ = p by the Fourier transform, which means that

information of the pair (f, f̂) in a neighborhood of the point (x, ξ) = (q, p) on the time-frequency plane
(phase plane in physics) Rx × Rξ is extracted by the window function g. Therefore, characterizing
the localization of the window function g in the time space and the localization of ĝ in the frequency
space is an important problem.

Definition 1.7. The center x∗ and radius △g of a window function g ∈ L2(R) are defined by

x∗ =
1

∥f∥2
L2

∫
R
x|f(x)|2dx, △g =

1

∥f∥L2

{∫
R
(x− x∗)2|f(x)|2dx

} 1
2

.

The value 2△g is called the width of g.

Therefore, the interval which is essentially localized by a window function g is [x∗ −△g, x
∗ +△g].

Since g and ĝ are window functions for the STFT, we consider the region called the time-frequency
window:

[q + x∗ −△g, q + x∗ +△g]× [p+ ξ∗ −△ĝ, p+ ξ∗ +△ĝ], (4)

which is extracted by equality (3). Most importantly, the shape of the time-frequency window (4)
depends only on the choice of a window function g, and its measure is 4△g△ĝ (Figure 1).
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Figure 1: Time-frequency windows of g.

Hence, in order to localize time and frequency information simultaneously, the value △g△ĝ should
be as small as possible, but we know that there is a lower bound for this value.

Theorem 1.8 (Heisenberg uncertainty principle). If g ∈ S(R), then △g△ĝ ≥ 1/2. Equality holds if
and only if

g(x) = ceiaxgα(x− b), a, b ∈ R, c ̸= 0,

where gα is the Gaussian function

gα(x) =
1

2
√
πα

e−
x2

4α , α > 0.

Proof. Using change of variables, we can assume that x∗ = ξ∗ = 0. Then,

(△g△ĝ)
2 =

{
1

∥g∥2
L2

∫
R
x2|g(x)|2dx

}{
1

∥ĝ∥2
L2

∫
R
ξ2|ĝ(ξ)|2dξ

}
=

1

∥g∥2
L2∥ĝ∥2L2

{∫
R
x2|g(x)|2dx

}{∫
R
|iξĝ(ξ)|2dξ

}
=

1

∥g∥2
L2∥ĝ∥2L2

{∫
R
x2|g(x)|2dx

}{∫
R

∣∣∣ĝ′(ξ)∣∣∣2 dξ} .
By the Plancherel theorem, we have

(△g△ĝ)
2 =

1

∥g∥4
L2

{∫
R
x2|g(x)|2dx

}{∫
R
|g′(x)|2dx

}
. (5)

Applying the inequality{∫
R
|xg(x)|2dx

}{∫
R
|g′(x)|2dx

}
≥
∣∣∣∣Re ∫

R
xg(x)g′(x)dx

∣∣∣∣2 ,
4



to (5), we obtain

(△g△ĝ)
2 ≥ 1

∥g∥4
L2

∣∣∣∣Re ∫
R
xg(x)g′(x)dx

∣∣∣∣2 = 1

∥g∥4
L2

∣∣∣∣12
∫
R
x
d

dx
|g(x)|2dx

∣∣∣∣2 .
Hence, using integration by parts, we obtain

(△g△ĝ)
2 ≥ 1

4∥g∥4
L2

∣∣∣∣[x|g(x)|2]∞−∞ −
∫
R
|g(x)|2dx

∣∣∣∣2
=

1

4∥g∥4
L2

∣∣∣∣∫
R
|g(x)|2dx

∣∣∣∣2
=

1

4
.

For equality in △g△ĝ ≥ 1/2, we solve the following equation:{∫
R
|xg(x)|2dx

}{∫
R
|g′(x)|2dx

}
=

∣∣∣∣Re ∫
R
xg(x)g′(x)dx

∣∣∣∣2 .
The solution is known to be a Gaussian function (see e.g. [5, 13]).

Therefore, the measure of the time-frequency window is never less than 2, and the time window
and the frequency window cannot be narrowed simultaneously. The STFT with gα, which has minimal
uncertainty, as the window function is given the special name the Gabor transform. In contrast to
STFT, the time-frequency window defined for the continuous wavelet transform, which will appear in
the next section, changes its shape. Because of this property, a wavelet is often called a “mathematical
microscope.” For more details about the uncertainty principle, see e.g. [5, 13, 19].

2 Wavelet analysis

Wavelet theory is a field of harmonic analysis and time-frequency analysis, but research on concept of
wavelets is not restricted to mathematics; wavelet theory is also important in physics, signal processing
and other engineering fields. The idea of the wavelet was first proposed by J. Morlet, who was a
French geophysicist and engineer at Elf Aquitaine, for the analysis of seismic data in the early 1980s.
After that, Morlet decided to provide the mathematical foundations of the wavelet with theoretical
physicist A. Grossmann in Marseille. Then, the group in Marseille (including I. Daubechies) introduced
the continuous wavelet transform using the theory of coherent states in quantum mechanics. They
initially used the name “wavelets of constant shape” for the wavelet (see [20]). In 1985, Y. Meyer,
a mathematician at the Ecole Polytechnique, came to understand a deep relationship between the
wavelet’s reconstruction formula and Calderón’s formula in the Calderón-Zygmund operators and
the atomic decompositions, which were central to his research in harmonic analysis. After this, the
mathematical aspects of wavelet theory developed rapidly, continuing to the present day. For more of
its history, see e.g. [14, 27, 30, 31].

2.1 Continuous wavelet transform

A wavelet is defined by

ψab =
1√
|a|
ψ

(
· − b

a

)
, a ∈ R\{0}, b ∈ R (6)

for ψ ∈ L2(R), which is called a mother wavelet. The definition (6) can be rewritten as

ψab = TbDaψ, a ∈ R\{0}, b ∈ R, (7)
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where Tb and Da are the translation operator and the dilation operator:

Tbψ = ψ(· − b) and Daψ =
1√
|a|
ψ
( ·
a

)
.

Using the composition
(Tb′Da′)(TbDa)ψ = Tb′+a′bDa′aψ,

we consider the ax+ b group R\{0}⋉R equipped with the following multiplication:

(a′, b′) ◦ (a, b) = (a′a, b′ + a′b).

In fact, operation (7) is a unitary representation of the ax + b group on L2(R). Consequently, the
role of the wavelet can also be understood from the above geometric observations, in addition to the
definition (6).

Now, we define the continuous wavelet transform (CWT) of f ∈ L2(R) by a mother wavelet ψ as
follows:

Wψ[f ](a, b) = ⟨f, ψab⟩ =
∫
R
f(x)ψab(x)dx, a ∈ R\{0}, b ∈ R.

If a mother wavelet ψ satisfies the admissibility condition

Cψ :=

∫
R

|ψ̂(ξ)|2

|ξ|
dξ <∞, (8)

we get the resolution of the identity:∫
R2

Wψ[f ](a, b)Wψ[g](a, b)
da

a2
db = Cψ⟨f, g⟩. (9)

By a calculation, we get the reconstruction formula of the CWT for any f ∈ L2(R):

f =
1

Cψ

∫
R2

Wψ[f ](a, b)ψab
da

a2
db in L2(R). (10)

Example 2.1 (Mexican hat wavelet). We define the mother wavelet ψ by

ψ(x) = − d2

dx2
e−

x2

2 = (1− x2)e−
x2

2 ,

which is called the Mexican hat wavelet. Figure 2 shows a graph of the Mexican hat wavelet and
Figure 3 shows a graph of its Fourier transform.

Figure 2: Mexican hat wavelet. Figure 3: Fourier transform of the Mexican hat
wavelet.
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We note that the weighted Lebesgue measure a−2dadb on R2 can be regarded as the left Haar
measure on the ax + b group derived by the representation theory of abstract harmonic analysis.
Moreover, identity (9) can also be derived by the Duflo-Moore theorem of the square integrable
representation (see [6]).

For applications, it is sufficient to restrict the scale parameter a to positive values, that is,

ψab =
1√
a
ψ

(
· − b

a

)
, a ∈ R>0, b ∈ R. (11)

Then, if a mother wavelet ψ satisfies the admissibility condition

C̃ψ :=

∫ 0

−∞

|ψ̂(ξ)|2

|ξ|
dξ =

∫ ∞

0

|ψ̂(ξ)|2

|ξ|
dξ <∞,

which is more stringent than (8), we get the corresponding reconstruction formula:

f =
1

C̃ψ

∫
R

∫ ∞

0
Wψ[f ](a, b)ψab

da

a2
db in L2(R).

Next, to observe the time-frequency window in the CWT, let ψ and ψ̂ satisfy the assumption of a
window function and let a > 0. From expression (11), the time window is given by

[b+ ax∗ − a△ψ, b+ ax∗ + a△ψ].

Using the Plancherel theorem, we obtain

⟨f, ψab⟩ =
1

2π
⟨f̂ , ψ̂ab⟩,

where ψ̂ab(ξ) = a1/2e−ibξψ̂(aξ). Hence, the frequency window is as follows:

[a−1ξ∗ − a−1△ψ̂, a
−1ξ∗ + a−1△ψ̂].

Thus, we obtain the time-frequency window as

[b+ ax∗ − a△ψ, b+ ax∗ + a△ψ]× [a−1ξ∗ − a−1△ψ̂, a
−1ξ∗ + a−1△ψ̂].

In contrast to the STFT, the time-frequency window of the CWT is flexible thanks to the parameter
a (Figure 4). However, the measure of the time-frequency window always remains 4△g△ĝ, the same
as for the STFT. To be more precise, a short-time observation in the time space can capture high
frequencies, while a long-time observation can capture low frequencies. This is why the CWT is said
to be a mathematical microscope.
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Figure 4: Time-frequency windows of the CWT.

For more details about the continuous wavelet transform, see e.g. [2, 5, 13, 14, 19, 27, 30, 31].

2.2 Discrete wavelet transform

By using continuous parameters (a, b), expansion (10) is redundant. Therefore, we discretize the
parameters a = 2−j , b = k2−j , (j, k ∈ Z) and consider the discrete wavelet transform (DWT):

Wψ[f ](j, k) = ⟨f, ψj,k⟩ =
∫
R
f(x)ψj,k(x)dx,

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

In this case, {ψj,k}j,k∈Z is not necessarily an orthonormal basis (or complete orthonormal system) but
is generally a frame for L2(R).

Definition 2.2 (Frame). Let N be a countable set. A system {xn}n∈N in a separable Hilbert space
H is a frame if there exist constants A,B > 0 called frame bounds such that

A∥x∥2H ≤
∑
n∈N

|⟨x, xn⟩H|
2 ≤ B∥x∥2H

for all x ∈ H. A frame {xn}n∈N is a tight frame if A = B. In particular, it be said a Parseval frame
if A = B = 1.

By definition, an orthonormal basis is a Parseval frame. Therefore, a Parseval frame is a redundant
generalization of an orthonormal basis.

Example 2.3. Let {xn}n∈N and {ym}m∈M be orthonormal bases for H. Then, the union {xn}n∈N ∪
{ym}m∈M is a tight frame with A = B = 2.
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Example 2.4 (Weyl-Heisenberg frame). Given g ∈ L2(R) and α, β > 0, we define

G(g, α, β) = {e2πinβg(· −mα)}m,n∈Z.

If the system G(g, α, β) is a frame for L2(R), then it is called the Weyl-Heisenberg frame or the Gabor
frame.

Even though a frame is more redundant than an orthonormal basis, any x ∈ H can be reconstructed
with it. In order to obtain the reconstruction formula with a frame {xn}n∈N , we define the frame
operator S by

Sx =
∑
n∈N

⟨x, xn⟩H xn.

Then, the following holds.

Theorem 2.5. Let {xn}n∈N be a frame for H with frame bounds A,B. Then, the frame operator
S : H → H is surjective and is a positive bounded linear operator which has an inverse satisfying

AIH ≤ S ≤ BIH
def⇐⇒ A⟨x, x⟩H ≤ ⟨Sx, x⟩H ≤ B⟨x, x⟩H,

1

B
IH ≤ S−1 ≤ 1

A
IH.

Furthermore, the system {S−1xn}n∈N is also a frame with frame bounds B−1, A−1 and any x ∈ H is
reconstructed by

x =
∑
n∈N

⟨
x, S−1xn

⟩
H xn =

∑
n∈N

⟨x, xn⟩H S
−1xn.

The above frame {S−1xn}n∈N is called the dual frame.

For the proof of Theorem 2.5, see e.g. [14, 19, 25]. Now, there exists a sufficient condition such
that the wavelet system {ψj,k}j,k∈Z obtained by discretizing the mother wavelet ψ in the CWT is a
frame for L2(R).

Theorem 2.6. For ψ ∈ L2(R), we define

S(ξ) =
∑
j∈Z

|ψ̂(2jξ)|, tm(ξ) =
∞∑
j=0

ψ̂(2jξ)ψ̂(2j(ξ + 2πm)), m ∈ Z,

and
Sψ = ess inf

ξ∈R
S(ξ), Sψ = ess sup

ξ∈R
S(ξ),

βψ[m] = ess sup
ξ∈R

∑
k∈Z

|tm(2kξ)|.

Then, {ψj,k}j,k∈Z is a frame which has frame bounds Aψ, Bψ if it satisfies the following:

Aψ = Sψ −
∑

q∈2Z+1

{βψ[q]βψ[−q]}
1
2 > 0,

Bψ = Sψ +
∑

q∈2Z+1

{βψ[q]βψ[−q]}
1
2 <∞.

For the proof of Theorem 2.6, see e.g. [14, 25]. If {ψj,k}j,k∈Z forms an orthonormal basis for
L2(R), ψ is called an orthonormal wavelet. As suggested by Theorem 2.6, it is nontrivial to obtain
an orthonormal wavelet from a mother wavelet in the CWT. Therefore, we regard the CWT and the
DWT as separate frameworks and focus on constructing an orthonormal wavelet in the DWT using
the method of multiresolution analysis (MRA).
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Definition 2.7 (MRA). A closed subspace sequence {Vj}j∈Z of L2(R) together with a scaling function
φ ∈ V0 is called an MRA if it satisfies the following conditions:

(MRA1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · .

(MRA2)
∪
j∈Z

Vj = L2(R).

(MRA3)
∩
j∈Z

Vj = {0}.

(MRA4) f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1.

(MRA5) {φ(· − k)}k∈Z is an orthonormal basis for V0.

The condition (MRA5) can be weakened to a Riesz basis, which is a frame consisting of the image
of an invertible bounded operator of some orthonormal basis. We also note that (MRA1), (MRA4)
and (MRA5) imply (MRA3).

From (MRA1), V1 can be decomposed into a direct sum V1 = V0 ⊕ W0 with W0 := V ⊥
0 ∩ V1.

Repeating the orthogonal decomposition for {Vj}j≥2 yields

L2(R) = V0 ⊕

( ∞⊕
n=0

Wn

)
, Wn := V ⊥

n ∩ Vn+1.

We also repeat this decomposition for {Vj}j≤0:

V0 = V−1 ⊕W−1 = V−n ⊕W−n ⊕W−n+1 ⊕ · · · ⊕W−1.

Then, we obtain the orthogonal direct sum of L2(R) as

L2(R) =
⊕
n∈Z

Wn, Wn := V ⊥
n ∩ Vn+1.

Given an MRA ({Vj}j∈Z, φ), a function ψ ∈ W0 is called an MRA wavelet if {ψ(· − k)}k∈Z is an
orthonormal basis for W0. It is easy to see that {2j/2ψ(2j · −k)}k∈Z is an orthonormal basis for Wj as
well. Therefore, {2j/2ψ(2j · −k)}j,k∈Z is an orthonormal basis for L2(R) .

Definition 2.8 (Low-pass filter). Let ({Vj}j∈Z, φ) be an MRA. The scaling function φ can be ex-
pressed as

φ(x) =
∑
k∈Z

ck
√
2φ(2x− k), {ck}k∈Z ∈ ℓ2(Z).

Then, we define a 2π-periodic function m0 called the low-pass filter associated with φ as follows:

m0(ξ) =
∑
k∈Z

ck√
2
e−ikξ ∈ L2(T).

By using the Fourier transform, we get the formula φ̂(2ξ) = m0(ξ)φ̂(ξ), which is the reason why
it is called low-pass filter. As a sequence, an MRA wavelet ψ is obtained explicitly from an MRA
({Vj}j∈Z, φ).

Theorem 2.9. Let ({Vj}j∈Z, φ) be an MRA. Then, the function ψ defined by

ψ̂(ξ) = −e−iξ/2m0

(
ξ

2
+ π

)
φ̂

(
ξ

2

)
is an orthonormal wavelet for L2(R). Furthermore, we have

ψ(x) =
∑
k∈Z

c1−k(−1)k
√
2φ(2x− k),

where {ck}k∈Z is the sequence of the low-pass filter.
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Example 2.10 (Haar wavelet). The Haar MRA ({Vj}j∈Z, φ) is given by

Vj =

{
f ∈ L2(R) : A function f is a piecewise constant on

[
k

2j
,
k + 1

2j

)
, ∀k ∈ Z

}
, j ∈ Z,

φ = 1[0,1).

Then, the Haar wavelet is given by

ψ(x) =
∑
k∈Z

c1−k(−1)k
√
2φ(2x− k) = φ(2x)− φ(2x− 1).

Figure 5 shows a graph of the Haar wavelet and Figure 6 shows a graph of its scaling function.

Figure 5: Haar wavelet. Figure 6: Haar scaling function.

Example 2.11 (Shanon wavelet). The Shannon MRA ({Vj}j∈Z, φ) is given by

Vj =
{
f ∈ L2(R) : f̂(ξ) = 0, |ξ| > 2jπ

}
,

φ̂(ξ) = 1[−π,π) ⇐⇒ φ(x) =
sin(πx)

πx
.

Then, the Shannon wavelet is given by

ψ(x) =
sinπ(x− 1/2)− sin 2π(x− 1/2)

π(x− 1/2)
.

Figure 7 shows a graph of the Shannon wavelet and Figure 8 shows a graph of its scaling function.

Figure 7: Shannon wavelet. Figure 8: Shannon scaling function.

For more details about the DWT and the MRA, see e.g. [5, 13, 14, 25, 27, 31, 35].
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2.3 Construction of the orthonormal wavelet in the Hardy space H2(R)

It is possible to define MRAs for L2
E(R) by

L2
E(R) = {f ∈ L2(R) : f̂(ξ) = 0 a.e. ξ ∈ R\E},

where E ⊂ R is a measurable set such that

|E| > 0, E = 2E, |R\E| > 0.

In [21], we studied the classical Hardy space

H2(R) =
{
f ∈ L2(R) : f̂(ξ) = 0 a.e. ξ ≤ 0

}
,

which is the special case when E = R>0. As the name suggests, H2(R) is realized as the boundary
space of the Hardy space on the upper half-plane of C by the Paley-Wiener theorem (see e.g. [25, 31]).

Example 2.12. For ℓ ∈ Z≥0, define the set

Kℓ =

[
2ℓ+1

2ℓ+1 − 1
π, 2π

]
∪
[
2ℓ+1π,

22ℓ+2

2ℓ+1 − 1
π

]
⊂ R>0.

Then, {ψℓ}ℓ≥0 defined by ψ̂ℓ = 1Kℓ
are H2-wavelets. When ℓ = 0, we obtain the Shannon-type wavelet

ψ0, where K0 = [2π, 4π]. When ℓ = 2, we also obtain the Journé-type wavelet ψ2, where

K2 =

[
8

7
π, 2π

]
∪
[
8π,

64

7
π

]
.

It is known that ψ0 is associated with an H2-MRA, but ψℓ is not associated with any H2-MRA when
ℓ ≥ 1 (see [25]).

The following decay rate at infinity in the frequency space characterizes the H2-wavelet.

Definition 2.13 (Regularity condition R0). We say that a function ψ satisfies the regularity condition
R0 if |ψ̂| is continuous on R and satisfies

|ψ̂(ξ)| = O
(
⟨ξ⟩−α−1/2

)
for some α > 0. (12)

In [31], Meyer posed the question of whether there exists an H2-wavelet belonging to S(R). In
response, Auscher proved that there is no H2-wavelet satisfying R0, which implies that there is no
H2-wavelet ψ with ψ ∈ S(R) (see [3, 4]).

Now, from Definition 2.13, we see that square integrability follows from (12), but the inverse is
not always true. Then, a natural question arises.

Question 2.14. Does there exist an H2-wavelet ψ such that |ψ̂| is continuous on R but does not
satisfy the decay rate (12)?

Paying careful attention to the construction of the scaling function, we find a critical decay rate
of the Fourier transform of the H2-wavelet generated by some MRA.

Theorem 2.15. There exists an H2-wavelet ψ such that |ψ̂| is continuous on R and satisfies

|ψ̂(ξ)| = O
(
(log⟨ξ⟩)−1

)
.

12



For the existence of such a wavelet, we construct a scaling function from a concrete low-pass filter.
Figure 9 and Figure 10 show graphs of the Fourier transforms of our scaling function φ and our
H2-wavelet ψ, respectively.
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Figure 9: Graph of φ̂ in frequency space.
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Figure 10: Graph of |ψ̂| in frequency space.

2.3.1 Proof of Theorem 2.15

In this section, we provide an outline of the proof of Theorem 2.15 according to [21]. We first define
the function on the frequency space to construct a low-pass filter by setting

M (ξ; ε) :=



0− ξ ∈ [−π,−2−1π],

1− ξ ∈ (−2−1π,−ε],
Nε(ξ) ξ ∈ (−ε, 0),
1+ ξ ∈ [0, 2−1π),

0+ ξ ∈ [2−1π, π − ε],

Pε(ξ) ξ ∈ (π − ε, π)

for any small ε > 0, where Nε and Pε are given by

Nε(ξ)
2 := 1− 1

log2

(
1− 1

ξ(ξ+ε)

) ,
Pε(ξ)

2 :=
1

log2

(
1− 1

(ξ−π)(ξ−π+ε)

)
and the superscripts ± of the constant functions 0 and 1 indicate the positive or negative domain,
respectively. There are many choices of ε; however, we shall fix ε = π/4 for simplicity. Figure 11 and
Figure 12 show graphs of M(ξ;π/4) and its square.
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Figure 11: M(ξ;π/4).
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Figure 12: M2(ξ;π/4).

Next, let m0 be the 2π-periodic extension of M(ξ) ≡M (ξ;π/4) defined by

m0 (ξ) :=

∞∑
k=−∞

M (k) (ξ) ,

where M (k)(ξ) :=M(ξ − 2πk), that is,

M (k) (ξ) :=



0− ξ ∈ [−π + 2πk,−2−1π + 2πk],

1− ξ ∈ (−2−1π + 2πk,−2−2π + 2πk],

N (k)(ξ) ≡ Nπ/4(ξ − 2πk) ξ ∈ (−2−2π + 2πk, 2πk),

1+ ξ ∈ [2πk, 2−1π + 2πk),

0+ ξ ∈ [2−1π + 2πk, 3 · 2−2π + 2πk],

P (k)(ξ) ≡ Pπ/4(ξ − 2πk) ξ ∈ (3 · 2−2π + 2πk, π + 2πk).

Furthermore, let us set the following function:

φ̂ (ξ) :=
∞∏
j=1

m0

(
ξ

2j

)
=

∞∏
j=1

∞∑
k=−∞

M (k)

(
ξ

2j

)
,

with

m0

(
ξ

2j

)
=



0− ξ ∈ [−2jπ + 2j+1πk,−2j−1π + 2j+1πk],

1− ξ ∈ (−2j−1π + 2j+1πk,−2j−2π + 2j+1πk],

N (k)(2−jξ) ξ ∈ (−2j−2π + 2j+1πk, 2j+1πk),

1+ ξ ∈ [2j+1πk, 2j−1π + 2j+1πk),

0+ ξ ∈ [2j−1π + 2j+1πk, 3 · 2j−2π + 2j+1πk],

P (k)(2−jξ) ξ ∈ (3 · 2j−2π + 2j+1πk, 2jπ + 2j+1πk).

(13)

We prove that this m0 is a low-pass filter associated with an MRA. Therefore, φ becomes a scaling
function of the MRA.

Step 1

In order to determine the support of φ̂, we investigate intervals where φ̂(ξ) = 0 on the positive
domain. We rewrite the set of 0− in (13)

2j+1π

(
−1

2
+ k

)
≤ ξ ≤ 2j+1π

(
−1

4
+ k

)
j = 1, 2, . . . , k = 1, 2, . . .

as

2j+1π

(
1

2
+ k

)
≤ ξ ≤ 2j+1π

(
3

4
+ k

)
j = 1, 2, . . . , k = 0, 1, . . . .
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On the other hand, we do not change the parametrization of the set of 0+. Hence, we denote the
intervals of 0− and 0+ on the positive domain by

Nj,k :=

{
ξ : 2jπ + 2j+1πk ≤ ξ ≤ 3

2
· 2jπ + 2j+1πk

}
,

Pj,k :=
{
ξ : 2j−1π + 2j+1πk ≤ ξ ≤ 3

2
· 2j−1π + 2j+1πk

}
,

for j ∈ N, k ∈ N≥0, and put

Nall :=
∪
j∈N

∪
k∈N≥0

Nj,k,

Pall :=
∪
j∈N

∪
k∈N≥0

Pj,k.

Lemma 2.16. The union Nall ∪ Pall is equal to Nall ∪
[
π, 32π

]
.

We note the particular subset of Nall

N ⋆
i :=


i−1∪
ℓ=1

Ni−ℓ,2ℓ−1∪ Ni,0 (i ≥ 2),

Ni,0 (i = 1)

and put

N ⋆ :=
∞∪
i=1

N ⋆
i .

Lemma 2.17. The set N ⋆
i is equal to [2iπ, (2i+1 − 1)π].

Obviously, N ⋆ ⊂ Nall holds. To show that N ⋆ = Nall, we define

Ri :=
(
(2i+1 − 1)π, 2i+1π

)
and Rall :=

∞⊔
i=1

Ri.

Thanks to Lemma 2.17, we know that Rall satisfies

[0, π) ∪
(
3

2
π, 2π

)
∪Rall = R≥0

\(
N ⋆ ∪

[
π,

3

2
π

])
.

Lemma 2.18. The function φ̂ is non-zero on Rall. Hence, N ⋆ ⊃ Nall.

Lemmas 2.16, 2.17 and 2.18 prove the following proposition.

Proposition 2.19. All the intervals where φ̂ ̸= 0 are determined by

coz φ̂ = [0, π) ∪
(
3

2
π, 2π

)
∪Rall.

Furthermore, N ⋆ = Nall holds, where coz φ̂ := {ξ ∈ R : φ̂(ξ) ̸= 0}.
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Step 2

In order to know the behavior of φ̂(ξ) on Ri, we shall change the parametrization of the sets of
1− and N (k)

(
2−jξ

)
in (13):

1−, ξ ∈ (−2j−1π + 2j+1πk,−2j−2π + 2j+1πk] j = 1, 2, . . . , k = 1, 2, . . .

as
1−, ξ ∈ (3 · 2j−1π + 2j+1πk, 7 · 2j−2π + 2j+1πk] j = 1, 2, . . . , k = 0, 1, . . . ,

N (k)

(
ξ

2j

)
, ξ ∈ (−2j−2π + 2j+1πk, 2j+1πk) j = 1, 2, . . . , k = 1, 2, . . .

as

N (k+1)

(
ξ

2j

)
, ξ ∈ (7 · 2j−2π + 2j+1πk, 2j+1π + 2j+1πk) j = 1, 2, . . . , k = 0, 1, . . . .

For convenience, we define

νj,k(ξ) := N (k+1)

(
ξ

2j

)
, ξ ∈ (7 · 2j−2π + 2j+1πk, 2j+1π + 2j+1πk),

ρj,k(ξ) := P (k)

(
ξ

2j

)
, ξ ∈ (3 · 2j−2π + 2j+1πk, 2jπ + 2j+1πk).

When we need to pay attention to the parameters j, k, we also write 1− as 1−j,k. Then, we obtain two
lemmas.

Lemma 2.20. For i, j ∈ N and k ∈ N≥0,

coz ρj,k ∩Ri ̸= ∅

if and only if j = i+ 1, k = 0.

Lemma 2.21. For i, j ∈ N and k ∈ N≥0,

coz νj,k ∩Ri ̸= ∅

if and only if 1 ≤ j ≤ i and k = 2i−j − 1.

We write 1+ as

1+j,k, ξ ∈ [2j+1πk, 2j−1π + 2j+1πk) j = 1, 2, . . . , k = 1, 2, . . . .

From coz 1+j,0 = [0, 2j−1π), the next lemma is clear.

Lemma 2.22. For i, j ∈ N, we obtain Ri ⊂ coz 1+j,0 if j ≥ i+ 2.

Lemmas 2.20, 2.21 and 2.22 prove the following theorem.

Theorem 2.23. Let i ∈ N,

R◁
i :=

(
(2i+1 − 1)π, (2i+1 − 2−1)π

]
and R▷

i :=
(
(2i+1 − 2−1)π, 2i+1π

)
.

Define Λi(ξ) :=
∏∞
j=1m0

(
2−jξ

)
for ξ ∈ Ri. Then, Λi on Ri = R◁

i ⊔ R▷
i is composed of the following

two parts:

Λ◁i (ξ) := ρi+1,0(ξ)
i∏

j=2

νj,2i−j−1(ξ), ξ ∈ R◁
i ,

Λ▷i (ξ) := ρi+1,0(ξ)
i∏

j=1

νj,2i−j−1(ξ), ξ ∈ R▷
i ,

where we remark that if i = 1, the product
∏i
j=2 νj,2i−j−1(ξ) in Λ◁i (ξ) is an empty product, whose value

is 1.
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Step 3

We are allowed to derive a decay estimate only on Ri for the case of ξ > 0. We know that νj,k(ξ) is
2i+1π-periodic (more precisely 2j+1π-periodic) and that Nπ/4(2

−jξ) is defined on (−2j−2π, 0). Then,

with ξ̃ := ξ − 2i+1π, the function Λ▷i in Theorem 2.23 is calculated as the product of the following
functions on R▷

i :
ρi+1,0(ξ) =

√√√√ 1

log2

(
1− 1

(2−i−1ξ−π)(2−i−1ξ−3π/4)

) ,
i∏

j=1

νj,2i−j−1(ξ) =

i∏
j=1

νj,2i−j−1(ξ̃) =

i∏
j=1

√√√√1− 1

log2

(
1− 1

2−j ξ̃(2−j ξ̃+π/4)

) ,
where we remark that ξ̃ ∈ (−2−1π, 0) for ξ ∈ R▷

i . On the other hand, the function Λ◁i is calculated as
the product of the following functions on R◁

i :
ρi+1,0(ξ) =

√√√√ 1

log2

(
1− 1

(2−i−1ξ−π)(2−i−1ξ−3π/4)

) ,
i∏

j=2

νj,2i−j−1(ξ) =
i∏

j=2

νj,2i−j−1(ξ̃) =
i∏

j=2

√√√√1− 1

log2

(
1− 1

2−j ξ̃(2−j ξ̃+π/4)

) ,
where we remark that ξ̃ ∈ (−π,−2−1π] for ξ ∈ R◁

i . Since ν1,0(ξ) = N (1)(2−1ξ) ≤ 1, we can combine
Λ▷i and Λ◁i and see that Λi (i ≥ 2) satisfy

Λi(ξ)
2 ≤ Pi(ξ) · Ni(ξ), ξ ∈ Ri,

where 
Pi(ξ) :=

1

log2

(
1− 1

(2−i−1ξ−π)(2−i−1ξ−3π/4)

) ξ ∈ Ri,

Ni(ξ) :=

i∏
j=2

1− 1

log2

(
1− 1

2−j ξ̃(2−j ξ̃+π/4)

)
 ξ̃ ∈ (−π, 0).

(i) Estimate of Ni(ξ):
We may suppose that i ≥ 3. As a result, starting from j = 3, we obtain

Ni(ξ) ≤ exp

−
i∑

j=3

1

j + cξ̃ + γξ̃

 , (14)

where cξ̃ := − log2(−ξ̃) and γξ̃ := 1− log2

(
2−j ξ̃ + π/4

)
satisfy

cξ̃ ≥ − log2(π) (> −2),

(1 <) 1− log2 (π/4) < γξ̃ < 1− log2 (π/8) (< 3).

Furthermore, since

i∑
j=3

1

j + cξ̃ + γξ̃
≥
∫ i+1

3

1

t+ cξ̃ + γξ̃
dt = ln

(
i+ 1 + cξ̃ + γξ̃
3 + cξ̃ + γξ̃

)
,

it follows that

Ni(ξ) ≤ exp

{
− ln

(
i+ 1 + cξ̃ + γξ̃
3 + cξ̃ + γξ̃

)}
=

3 + cξ̃ + γξ̃
i+ 1 + cξ̃ + γξ̃

. (15)
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(ii) Estimate of Pi(ξ):
As a result, for ξ ∈ Ri (i ≥ 2), we obtain

Pi(ξ) ≤
1

− log2{−2−i−1ξ + π}
.

It follows that

Pi(ξ) ≤
1

− log2{−2−i−1ξ̃}
=

1

i+ 1 + cξ̃
. (16)

Taking the product of (15) and (16), we arrive at the following estimate:

Λi(ξ) ≤

√
3 + cξ̃ + γξ̃

(i+ 1 + cξ̃)(i+ 1 + cξ̃ + γξ̃)
≤ Ci−1, ξ ∈ Ri. (17)

The interval Ri enables us to regard ξ as 2i+1π, that is, i ∼ log2 ξ. Hence, the estimate (17) implies
that φ̂(ξ) = O

(
(log2 ξ)

−1
)
as ξ → ∞. This can also be rewritten as

φ̂(ξ) = O
(
(log⟨ξ⟩)−1

)
. (18)

We will prove that φ̂(ξ) = 0 for ξ < 0 and that ∥φ̂∥L2 <∞ in the next step.

Step 4

Theorem 2.24. Let m0 be the low-pass filter given in (13). Then, φ defined by

φ̂(ξ) =

∞∏
j=1

m0

(
ξ

2j

)
is a scaling function of the MRA for H2(R), that is, ⟨φ,φ(· − ℓ)⟩ = δ0,ℓ for ℓ ∈ Z and φ̂(ξ) = 0 for
ξ < 0.

Proof sketch of Theorem 2.24. For the case of ξ > 0, we give a proof according to Theorem 4.8 in
Chap. 7 of [25]. Let the function fn be defined by

f̂n(ξ) = 12nK(ξ)
n∏
j=1

m0

(
ξ

2j

)
, K = [−π, π].

Then, we observe that f̂n → φ̂ for all ξ ∈ R.
We show that ⟨fn, fn(· − ℓ)⟩ = δ0,ℓ for any n ∈ N and ℓ ∈ Z. As a result, we get the following

reduction formula:

⟨fn, fn(· − ℓ)⟩ = ⟨fn−1, fn−1(· − ℓ)⟩ = · · · = ⟨f1, f1(· − ℓ)⟩ = 2

2π

∫ π
2

−π
2

eiℓ2µdµ = δ0,ℓ.

In particular, we get ∥fn∥2L2 = (2π)−1∥f̂n∥2L2 = 1 when ℓ = 0. Hence, Fatou’s lemma yields

1

2π

∫ ∞

−∞
|φ̂(ξ)|2dξ = 1

2π

∫ ∞

−∞
lim inf
n→∞

|f̂n(ξ)|2dξ ≤
1

2π
lim inf
n→∞

∫ ∞

−∞
|f̂n(ξ)|2dξ = 1,

which means that φ ∈ L2(R).
In order to conclude the orthogonality of {φ(· − ℓ)}ℓ∈Z from ⟨fn, fn(· − ℓ)⟩ = δ0,ℓ, it is sufficient

to show that limn→∞ fn = φ in the norm of L2(R). We shall skip showing that limn→∞ ∥f̂n −
φ̂∥L2(0,∞) = 0, whose proof is quite similar to that in [25]. Therefore, it remains to show that

limn→∞ ∥f̂n∥L2(−∞,0) = 0, which also implies that φ̂(ξ) = 0 for ξ < 0. We next obtain∥∥∥f̂n∥∥∥2
L2(−∞,0)

≤
∫ 0

−π
Nn(ξ)dξ.
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Now, inequality (14) with ξ instead of ξ̃ also gives

∫ 0

−π
Nn(ξ)dξ ≤

∫ 0

−π
exp

−
n∑
j=3

1

j + cξ + γξ

 dξ.

Since j − log2 (−ξ) + γξ > 0 and

exp

−
n∑
j=3

1

j − log2 (−ξ) + γξ

→ 0 as n→ ∞ for ξ ∈ (−π, 0),

we arrive at ∥f̂n∥L2(−∞,0) → 0, using the monotone convergence theorem.

Step 5

Finally, we replace the function M by a continuous function:

Mδ (ξ) :=



0 ξ ∈ [−π,−2−1π],

αδ(ξ) ξ ∈ (−2−1π,−2−1π + δ],

1− ξ ∈ (−2−1π + δ,−2−2π],

Nπ/4(ξ) ξ ∈ (−2−2π, 0),

1+ ξ ∈ [0, 2−1π),

βδ(ξ) ξ ∈ [2−1π, 2−1π + δ],

0 ξ ∈ [2−1π + δ, 3 · 2−2π],

Pπ/4(ξ) ξ ∈ (3 · 2−2π, π),

where δ > 0 is sufficiently small and αδ, βδ are continuous functions such that

α2
δ(ξ) + β2δ (ξ + π) = 1, ξ ∈ (−2−1π,−2−1π + δ].

Since Theorem 2.24 still holds for Mδ, we denote its scaling function by φδ. Furthermore, this modi-
fication does not influence the choice of Nj,k. Hence, it does not change Nall; however, P1,0 must be
changed. Then, Nall ∪

[
π, 32π

]
in Lemma 2.16 becomes

Nall ∪
[
π + 2δ,

3

2
π

]
.

Thus, we get

coz φ̂δ = [0, π + 2δ) ∪
(
3

2
π, 2π

)
∪Rall.

From the continuity at both endpoints of Ri, we see that φ̂δ is smooth except at the origin.

In conclusion, we can construct the wavelet ψ̂δ consisting of the continuous low-pass filter m
(δ)
0

with Mδ and the scaling function φδ ∈ H2(R):

ψ̂δ(ξ) = e−iξ/2m
(δ)
0

(
ξ

2
+ π

)
φ̂δ

(
ξ

2

)
.

At the same time, we redefine

coz φ̂δ

( ·
2

)
= [0, 2π + 4δ) ∪ (3π, 4π) ∪R′

all,

R′
all :=

∞⊔
i=1

R′
i and R′

i :=
(
(2i+2 − 2)π, 2i+2π

)
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and

M
(k)
δ

(
ξ

2
+ π

)
:=



0− ξ ∈ [−4π + 4πk,−3π + 4πk],

αδ(ξ) ξ ∈ (−3π + 4πk,−3π + 4πk + 2δ],

1− ξ ∈ (−3π + 4πk + 2δ,−5 · 2−1π + 4πk],

N (k)(ξ) ξ ∈ (−5 · 2−1π + 4πk,−2π + 4πk),

1+ ξ ∈ [−2π + 4πk,−π + 4πk),

βδ(ξ) ξ ∈ [−π + 4πk,−π + 4πk + 2δ],

0+ ξ ∈ [−π + 4πk + 2δ,−2−1π + 4πk],

P (k)(ξ) ξ ∈ (−2−1π + 4πk, 4πk).

(19)

We see that the discontinuity of φ̂δ(ξ/2) at ξ = 0 is flattened due to 0− in (19) for k = 1. Therefore,
from (18), the wavelet ψδ has a continuous Fourier transform such that |ψ̂δ(ξ)| = O

(
(log⟨ξ⟩)−1

)
.

2.4 Directional frames having Lipschitz continuous Fourier transforms

To apply the method of wavelet analysis to image processing, we must consider a two-dimensional
wavelet. The standard way of constructing a two-dimensional wavelet is to take the tensor product of
two one-dimensional wavelets. Specifically, if ψ is an orthonormal wavelet for L2(R),

ψj1,k1 ⊗ ψj2,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2)

are orthonormal wavelets for L2(R2). In the case of an MRA wavelet ψ associated with ({Vj}j∈Z, φ),
we can define a multiresolution ladder in L2(R2) by

• · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ,

•
∪
j∈Z

Vj = L2(R2),

•
∩
j∈Z

Vj = {0},

• F (·, ·) ∈ Vj ⇐⇒ F (2·, 2·) ∈ Vj+1,

where
V0 = V0 ⊗ V0 = span{F (x1, x2) = f(x1)g(x2) : f, g ∈ V0}

and
{Φ0;k1,k2 := φ(· − k1)φ(· − k2)}k1,k2∈Z

is an orthonormal basis for V0. By the decomposition Vj+1 = Vj ⊕Wj , we have

Vj+1 = Vj+1 ⊗ Vj+1

= (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ [(Wj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗Wj)]

=: Vj ⊕Wj .

Then, Wj has three orthonormal bases as

Ψv
j,k1,k2

:= ψj,k1 ⊗ φj,k2 , Ψh
j,k1,k2

:= φj,k1 ⊗ ψj,k2 , Ψd
j,k1,k2

:= ψj,k1 ⊗ ψj,k2 ,

where v, h, d stand for “vertical,” “horizontal,” “diagonal,” respectively. Their superscripts are derived
from the edges in the image which correspond to the wavelet coefficients. Thus, an orthonormal basis
for L2(R2) =

∪
j∈ZWj is given by

{Ψλ
j;k1,k2 : j ∈ Z, k1, k2 ∈ Z, λ = v, h, d}.
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For a more detailed description including more general two-dimensional wavelets, see e.g. [2, 14, 28].
However, a tensor product wavelet is not effective for detecting singularities along curved in an

image. In order to overcome these obstacles, the curvelet was introduced by Candès and Donoho (see
[10, 11, 12], etc.). Their contribution marked the start of a multiscale method, the so-called geometric
multiscale analysis. Over the last 20 years or so, various approaches of geometric multiscale analysis
have been proposed, including ridgelet and shearlet. In [18], we presented multidirectional methods
based on concentric regular 2N -sided polygons in the frequency domain.

First, we consider the sets of trapezoids (Figure 13):

S
(N)
j =

[
−ξ2 tan

π

2N
, ξ2 tan

π

2N

]
× [2j−1π, 2jπ],

S̃
(N)
j =

[
−ξ2 tan

π

2N
, ξ2 tan

π

2N

]
× [0, 2jπ].

(a) N = 2 (b) N = 3 (c) N = 4 (d) N = 5

Figure 13: Polygonal tilings based on trapezoids S
(N)
j in the frequency domain.

Then, we define the functions in the frequency domain:

ψ̂
(N)
j,0 (ξ) = 2−j

√
cot

π

2N
1
S
(N)
j

(ξ),

ϕ̂
(N)
j,0 (ξ) = 2−j

√
cot

π

2N
1
S̃
(N)
j

(ξ).

Using the inverse Fourier transform, we obtain the following:

ψ
(N)
j,0 (x) =

√
cot π

2N

2j+2π2x1

∑
±

{
±e

i2jπ(x2∓x1 tan π

2N
) − e

i2j−1π(x2∓x1 tan π

2N
)

x2 ∓ x1 tan
π
2N

}
,

ϕ
(N)
j,0 (x) =

√
cot π

2N

2j+2π2x1

∑
±

{
±e

i2jπ(x2∓x1 tan π

2N
) − 1

x2 ∓ x1 tan
π
2N

}
.

Second, let Rℓ be the operator of anticlockwise rotation by angle 21−Nℓπ and define

ψ
(N)
j,ℓ (x) = ψ

(N)
j,0 (Rℓx) and ϕ

(N)
j,ℓ (x) = ϕ

(N)
j,0 (Rℓx).

In order to get a real-valued function in the spatial domain, ψ
(N)
j,0 should be coupled with ψ

(N)

j,2N−1 .
Hence, we have the following:

Ψ
(N)
j,0 (x) := ψ

(N)
j,0 + ψ

(N)

j,2N−1 =

√
cot π

2N

2j+1π2x1

∑
±

{
±cos 2j−1πd±x − cos 2jπd±x

d±x

}
, (20)

Φ
(N)
j,0 (x) := ϕ

(N)
j,0 + ϕ

(N)

j,2N−1 =

√
cot π

2N

2j+1π2x1

∑
±

{
±1− cos 2jπd±x

d±x

}
,
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where d±x := x2 ± x1 tan
π
2N

. Let N ≥ 2 and

p2 =
1√
2
, p3 =

1√
2 +

√
2
, · · · , pN =

1√
2 +

√
2 +

√
2 + · · ·

.

Then, we see that

cos
π

2N
=

1

2pN
,

cot
π

2N
=
(
tan2

π

2N

)−1/2
=

(
1

cos2 π
2N

− 1

)−1/2

= (4p2N − 1)−1/2.

With

X±
0 (x) := x2 cos

π

2N
± x1 sin

π

2N

(
=

d±x
2pN

)
,

formula (20) can be written as

Ψ
(N)
j,0 (x) =

cos π
2N

√
cot π

2N

2j+1π2

∑
±

{
±cos(2jπpNX

±
0 (x))− cos(2j+1πpNX

±
0 (x))

x1X
±
0 (x)

}
.

Third, setting

X±
ℓ (x) := X±

0 (Rℓx) = x1 sin
(2ℓ± 1)π

2N
+ x2 cos

(2ℓ± 1)π

2N
,

and noting that x1 = x · (1, 0) can be replaced by Rℓx · (1, 0), we obtain the following (Figure 14):

Ψ
(N)
j,ℓ (x) =

cos π
2N

√
cot π

2N

2j+1π2

∑
±

{
±
cos(2jπpNX

±
ℓ (x))− cos(2j+1πpNX

±
ℓ (x))

X±
ℓ (x)Rℓx · (1, 0)

}
,

Φ
(N)
j,ℓ (x) =

cos π
2N

√
cot π

2N

2j+1π2

∑
±

±
2 sin2

2j−1πX±
ℓ (x)

cos π

2N

X±
ℓ (x)Rℓx · (1, 0)

 .

(a) N = 2 (b) N = 3 (c) N = 4 (d) N = 5

Figure 14: Ψ
(N)
0,0 (x) on the spatial domain, where x ∈ [−30, 30]× [−30, 30].

Note that Ψ̂
(N)
j,ℓ satisfies the partition of unity in the following sense:

tan
π

2N

∑
j∈Z

∑
1≤ℓ≤2N−1

22j |Ψ̂(N)
j,ℓ (ξ)|2 = 1.

Thus, using
∑

1≤ℓ≤2N−1 instead of
∑

0≤ℓ≤2N−1−1, we get the following.
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Theorem 2.25. Let N ≥ 2, J ∈ Z, k′ =
(
k1 cot

π
2N
, k2
)
and the real-valued functions Ψ

(N)
j,ℓ and Φ

(N)
j,ℓ

be defined as

Ψ
(N)
j,ℓ (x) =

∑
±

{
±
cos(2jπpNX

±
ℓ (x))− cos(2j+1πpNX

±
ℓ (x))

2j+2π2pN (4p2N − 1)1/4X±
ℓ (x)Rℓx · (1, 0)

}
,

Φ
(N)
j,ℓ (x) =

∑
±

{
±

sin2(2jπpNX
±
ℓ (x))

2j+1π2pN (4p2N − 1)1/4X±
ℓ (x)Rℓx · (1, 0)

}
,

where X±
ℓ (x) = x1 sin

(2ℓ±1)π
2N

+ x2 cos
(2ℓ±1)π

2N
. Then, f ∈ L2(R2

x) can be expanded as

f(x) =
∑
j≥J+1

∑
1≤ℓ≤2N−1

∑
k∈Z2

αj,ℓ,kΨ
(N)
j,ℓ

(
x− 2−jR−ℓk

′)
+

∑
1≤ℓ≤2N−1

∑
k∈Z2

βJ,ℓ,kΦ
(N)
J,ℓ

(
x− 2−JR−ℓk

′) ,
where

αj,ℓ,k =

∫
R2
x

f(x)Ψ
(N)
j,ℓ

(
x− 2−jR−ℓk

′) dx, βj,ℓ,k =

∫
R2
x

f(x)Φ
(N)
j,ℓ

(
x− 2−jR−ℓk

′) dx,
and Rℓ is the operator of anticlockwise rotation by angle 21−Nℓπ.

2.4.1 Lipschitz continuous type

In order to construct Lipschitz continuous type in the frequency domain, we enlarge the supports
which overlap each other.

Step 1

We consider

ψ̂
♮(N)
j,0 (ξ) = 2−j

√
cot

π

2N−1
Λj(ξ)Γ(N)(ξ),

with non-negative functions Λj and Γ(N) defined by

Λj(ξ) =

∫ 22−jπ−1ξ2−1

0
{2∆(2τ)−∆(τ − 1)} dτ for ξ ∈ R2,

=


∫ 23−jπ−1ξ2−2
0 ∆(τ)dτ ξ ∈ R× [2j−2π, 2j−1π],

1−
∫ 22−jπ−1ξ2−1
1 ∆(τ − 1)dτ = 1−

∫ 22−jπ−1ξ2−2
0 ∆(τ)dτ ξ ∈ R× [2j−1π, 2jπ],

0 otherwise,

(21)

Γ(N)(ξ) =

{
cos2

(
2N−2Arctan ξ1

ξ2

)
ξ ∈

[
−|ξ2| tan π

2N−1 , |ξ2| tan π
2N−1

]
× R\{0},

0 otherwise,

where ∆ is the hat function ∆(τ) = max{1− |τ − 1|, 0} for τ ∈ R. Then, we find that

supp ψ̂
♮(N)
j,0 =

[
−ξ2 tan

π

2N−1
, ξ2 tan

π

2N−1

]
× [2j−2π, 2jπ]

=: S
♮(N)
j = S

(N−1)
j−1 ∪ S(N−1)

j .

By construction, Λj is piecewise quadratic and degenerate of order 2. Hence,
√
Λj is Lipschitz con-

tinuous. From [18], we see that
√
Γ(N) is a piecewise rational function. Thus, ψ̂

♮(N)
j,0 is Lipschitz

continuous, and so is the rotated ψ̂
♮(N)
j,ℓ . Now, we consider the case of (N − 1) ≥ 2, which can be

reduced to the case of N ≥ 2 in the previous section.
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Step 2

From (21), we get ∑
j∈Z

Λj(ξ) =

{
1 ξ ∈ R× (0,∞),

0 otherwise.

Since

Rℓ =

(
cos(21−Nℓπ) − sin(21−Nℓπ)
sin(21−Nℓπ) cos(21−Nℓπ)

)
and Rℓ+2N−1ξ = −Rℓξ,

it holds that ∑
j∈Z

{
Λj(Rℓξ) + Λj(Rℓ+2N−1ξ)

}
= 1 a.e. ξ ∈ R2. (22)

Furthermore, we proved the following in [18]:

Γ(N)(Rℓ+2N−1ξ) = Γ(N)(−Rℓξ) = Γ(N)(Rℓξ), (23)∑
1≤ℓ≤2N−1

Γ(N)(Rℓξ) = 1 for ξ ∈ R2\{0}. (24)

Now, we also define

ψ
♮(N)
j,ℓ (x) = ψ

♮(N)
j,0 (Rℓx)

and the real-valued function

Ψ
♮(N)
j,ℓ (x) = ψ

♮(N)
j,ℓ (x) + ψ

♮(N)

j,ℓ+2N−1(x).

Thus, (22), (23) and (24) and supp ψ̂
♮(N)
j,ℓ ∩ supp ψ̂

♮(N)

j,ℓ+2N−1 = ∅ give

tan
π

2N−1

∑
j∈Z

∑
1≤ℓ≤2N−1

22j |Ψ̂♮(N)
j,ℓ (ξ)|2 = tan

π

2N−1

∑
j∈Z

∑
1≤ℓ≤2N−1

22j
{
|ψ̂♮(N)
j,ℓ (ξ)|2 + |ψ̂♮(N)

j,ℓ+2N−1(ξ)|2
}

=
∑
j∈Z

∑
1≤ℓ≤2N−1

{
Λj(Rℓξ)Γ

(N)(Rℓξ) + Λj(Rℓ+2N−1ξ)Γ(N)(Rℓ+2N−1ξ)
}

=
∑

1≤ℓ≤2N−1

∑
j∈Z

{
Λj(Rℓξ) + Λj(Rℓ+2N−1ξ)

}
Γ(N)(Rℓξ)

= 1 a.e. ξ ∈ R2.

Consequently, the Lipschitz continuous Ψ̂
♮(N)
j,ℓ satisfies the partition of unity in the following sense:

tan
π

2N−1

∑
j∈Z

∑
1≤ℓ≤2N−1

22j |Ψ̂♮(N)
j,ℓ (ξ)|2 = 1 a.e. ξ ∈ R2. (25)

In addition, we define two functions:

Ψ
♯(N)
j,ℓ (x) = ψ

♯(N)
j,ℓ (x) + ψ

♯(N)

j,ℓ+2N−1(x), ψ̂
♯(N)
j,0 (ξ) := 2−j

√
cot

π

2N−1
Λj(ξ)Γ

(N)(ξ),

Ψ
♭(N)
j,ℓ (x) = ψ

♭(N)
j,ℓ (x) + ψ

♭(N)

j,ℓ+2N−1(x), ψ̂
♭(N)
j,0 (ξ) := 2−j

√
cot

π

2N−1
1
S
♮(N)
j

(ξ),

where S
♮(N)
j = S

(N−1)
j−1 ∪S(N−1)

j . Figure 15 shows Ψ
♮(N)
j,ℓ ,Ψ

♯(N)
j,ℓ and Ψ

♭(N)
j,ℓ with their Fourier transforms.
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(a) Ψ
♮(3)
0,0 (b) Ψ

♯(3)
0,0 (c) Ψ

♭(3)
0,0

(d) Ψ̂
♮(3)
0,0 (e) Ψ̂

♯(3)
0,0 (f) Ψ̂

♭(3)
0,0

Figure 15: The shapes of Ψ
♮(N)
j,ℓ ,Ψ

♯(N)
j,ℓ and Ψ

♭(N)
j,ℓ at j = 0, ℓ = 0 and N = 3.

Obviously, ψ̂
♯(N)
j,0 is an almost C2 regular piecewise rational function. Then, ψ

♯(N)
j,0 has a faster

decay on the spatial domain. Since |Ψ̂♮(N)
j,ℓ |2 = Ψ̂

♭(N)
j,ℓ Ψ̂

♯(N)
j,ℓ , (25) can be replaced by

tan
π

2N−1

∑
j∈Z

∑
1≤ℓ≤2N−1

22jΨ̂
♭(N)
j,ℓ (ξ)Ψ̂

♯(N)
j,ℓ (ξ) = 1 a.e. ξ ∈ R2.

Step 3

We define the following three scaling functions:

Φ
♮(N)
j,ℓ = ϕ

♮(N)
j,ℓ + ϕ

♮(N)

j,ℓ+2N−1 ,

Φ
♯(N)
j,ℓ = ϕ

♯(N)
j,ℓ + ϕ

♯(N)

j,ℓ+2N−1 ,

Φ
♭(N)
j,ℓ = ϕ

♭(N)
j,ℓ + ϕ

♭(N)

j,ℓ+2N−1 ,

where

ϕ̂
♮(N)
j,0 (ξ) = 2−j

√
cot

π

2N−1
Λ̃j(ξ)Γ(N)(ξ),

ϕ̂
♯(N)
j,0 (ξ) = 2−j

√
cot

π

2N−1
Λ̃j(ξ)Γ

(N)(ξ),

ϕ̂
♭(N)
j,0 (ξ) = 2−j

√
cot

π

2N−1
1
S̃
♮(N)
j

(ξ)
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with non-negative functions Λ̃j defined by

Λ̃j(ξ) =

{
1−

∫ 22−jπ−1ξ2−2
0 ∆(τ)dτ ξ ∈ R× (0,∞),

0 otherwise,

and
supp ϕ̂

♮(N)
j,0 =

[
−ξ2 tan

π

2N−1
, ξ2 tan

π

2N−1

]
× [0, 2jπ] =: S̃

♮(N)
j = S̃

(N−1)
j .

Thus, we get the following.

Theorem 2.26 (Parseval frame). Let N ≥ 3, J ∈ Z and k′′ =
(
k1 cot

π
2N−1 , k2

)
. Then, f ∈ L2(R2

x)
can be expanded as

f(x) =
∑
j≥J+1

∑
1≤ℓ≤2N−1

∑
k∈Z2

α♮j,ℓ,kΨ
♮(N)
j,ℓ

(
x− 2−jR−ℓk

′′)
+

∑
1≤ℓ≤2N−1

∑
k∈Z2

β♮J,ℓ,kΦ
♮(N)
J,ℓ

(
x− 2−JR−ℓk

′′) ,
where

α♮j,ℓ,k =

∫
R2
x

f(x)Ψ
♮(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx, β♮j,ℓ,k =

∫
R2
x

f(x)Φ
♮(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx.
We also get the following result about the couple of {Ψ♯(N)

j,ℓ } and {Ψ♭(N)
j,ℓ }.

Theorem 2.27 (Non-Parseval frame). Let N ≥ 3, J ∈ Z and k′′ =
(
k1 cot

π
2N−1 , k2

)
. Then, f ∈

L2(R2
x) can be expanded as

f(x) =



∑
j≥J+1

∑
1≤ℓ≤2N−1

∑
k∈Z2

α♭j,ℓ,kΨ
♯(N)
j,ℓ

(
x− 2−jR−ℓk

′′)
+

∑
1≤ℓ≤2N−1

∑
k∈Z2

β♭J,ℓ,kΦ
♯(N)
J,ℓ

(
x− 2−JR−ℓk

′′) (Type I ),∑
j≥J+1

∑
1≤ℓ≤2N−1

∑
k∈Z2

α♯j,ℓ,kΨ
♭(N)
j,ℓ

(
x− 2−jR−ℓk

′′)
+

∑
1≤ℓ≤2N−1

∑
k∈Z2

β♯J,ℓ,kΦ
♭(N)
J,ℓ

(
x− 2−JR−ℓk

′′) (Type II ),

where

α♭j,ℓ,k =

∫
R2
x

f(x)Ψ
♭(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx, β♭j,ℓ,k =

∫
R2
x

f(x)Φ
♭(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx,
α♯j,ℓ,k =

∫
R2
x

f(x)Ψ
♯(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx, β♯j,ℓ,k =

∫
R2
x

f(x)Φ
♯(N)
j,ℓ

(
x− 2−jR−ℓk

′′) dx.
For the proof of Theorem 2.27, see [18].

2.4.2 Numerical simulations

In this section, we compare the quality of four types of expansions in Theorems 2.25, 2.26 and 2.27,
which we denote by Normal, Natural, Type I and II, respectively . We set J = 0 for all of the numerical
experiments, and the highest resolution level is denoted by jmax with respect to the sum for j ≥ J+1.

Now, we consider the function of pyramid form defined by

f(x1, x2) = max{1− |x1| − |x2|, 0}.
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Figure 16 shows expanded f with our four types of reconstruction formulas when jmax = 3 and N = 3,
N = 4 and N = 5.
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Figure 16: Frame expansions of f with |k| ≤ 2j+1.

As can be seen from Figure 16, the reconstruction quality improves as the number of orientations
N increases. Furthermore, in the graphs of Normal, some major oscillations occur outside the support
of f , which should be equal to 0. The same oscillations can also be seen for the case of the other
reconstructions, but their appearance is very low. This result is considered to be due to the smoothness
of the frames.

In [18], we also considered frames interpolating between Lipschitz continuity and C∞ and presented
more detailed numerical simulations.

3 Radon transform

The Radon transform was introduced by J. Radon in order to reconstruct a differentiable function on
R3 by means of its surface integrals over planes. Surprisingly, A. M. Cormack and G. N. Hounsfield
were awarded the Nobel Prize in Physiology or Medicine in 1979 for the development of computed
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tomography (CT) by applying the Radon transform. This news has taught us the importance of the
mutual development of mathematics and engineering.

3.1 Radon transform on Euclidean space

Following [22], we denote the space of all hyperplanes in Rn by Pn (i.e. dim ξ = n− 1, ξ ∈ Pn).

Definition 3.1 (Radon transform). Let f be a function on Rn belonging to a suitable function space.
We define the Radon transform R on a hyperplane ξ by

R[f ](ξ) =

∫
ξ
f(x)dm(x), ξ ∈ Pn,

where m is the Euclidean measure on ξ.

Now, we define a formal inverse of R in advance.

Definition 3.2 (Dual Radon transform). Let φ be a function on Pn belonging to a suitable function
space. We define the dual Radon transform R∗ by

R∗[φ](x) =

∫
x∈ξ

φ(ξ)dµ(ξ), x ∈ Rn,

where µ is the normalized measure on the compact set {ξ ∈ Pn : x ∈ ξ}.

Since each hyperplane ξ ∈ Pn can be written as

ξ := (ω, p) = {x ∈ R : x · ω = p, ω ∈ Sn−1, p ∈ R},

a function φ on Pn can be regarded as a function on Sn−1 ×R satisfying φ(ω, p) = φ(−ω,−p). Then,
the Radon transform and the dual Radon transform can be written explicitly as

R[f ](ω, p) =

∫
x·ω=p

f(x)dm(x),

R∗[φ](x) =
1

Ωn

∫
Sn−1

φ(ω, x · ω)dω,

where Ωn is the surface area of the unit sphere in Rn given by 2πn/2/Γ(n/2) for the normalization.
The following well-known formula holds between the Fourier transform and the Radon transform.

Theorem 3.3 (Fourier slice theorem). If f ∈ S(Rn), then

F [f ](sω) = Fp→s[R[f ](ω, p)](s).

Proof. By the Fourier transform, we obtain

Fp→s[R[f ](ω, p)](s) =

∫ ∞

−∞
R[f ](ω, p)e−ipsdp.

Thus,

Fp→s[R[f ](ω, p)](s) =

∫ ∞

−∞

{∫
x·ω=p

f(x)dm(x)

}
e−ipsdp

=

∫ ∞

−∞

∫
x·ω=p

f(x)e−ipsdm(x)dp

=

∫
Rn

f(x)e−is⟨x,ω⟩dx

= F [f ](sω).
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For the Radon transform of f , we can recover f in a sense by using the Fourier slice theorem, but
the standard reconstruction formula is the next theorem.

Theorem 3.4 (Inversion formula). If f ∈ S(Rn), then

f =
1

Cn
(−∆)

n−1
2 R∗[R[f ]],

where Cn is the constant defined by

Cn = (4π)
n−1
2

Γ
(
n
2

)
Γ
(
1
2

) .
Remark 3.5. For the Laplacian on Euclidean space

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
,

we define the fractional Laplacian by

(−∆)
s
2 f = F−1[| · |sF [f ]].

We also define a (singular) integral operator

Is[f ](x) =
1

Hn(s)

∫
Rn

f(y)

|x− y|n−s
dy, Hn(s) =

2sπ
n
2 Γ
(
s
2

)
Γ
(
n−s
2

) ,

which is called the Riesz potential. Then, we have formally (−∆)
s
2 = I−s. Thus, Is can be regarded as

an inverse operator of (−∆)
s
2 under suitable conditions. The proof of Theorem 3.4 uses the following

result:
For f ∈ S(Rn), I−k[Ik[f ]] = f, (0 < k < n).

For more detailed descriptions of the Riesz potential, see e.g. [22, 23, 24].

Proof sketch of Theorem 3.4 Let O(n) be the orthogonal group in Rn and let dk be its normalized
Haar measure, then the dual Radon transform can also be written as

R∗[φ](x) =

∫
O(n)

φ(x+ k · ξ0)dk,

where ξ0 is a fixed hyperplane through the origin and dot · denotes the group action of O(n) on Pn.
Using this notation, we have

R∗[R[f ]](x) =

∫
O(n)

{∫
ξ0

f(x+ k · y)dm(y)

}
dk =

∫
ξ0

{∫
O(n)

f(x+ k · y)dk

}
dm(y).

Using polar coordinates, we observe the relation∫
O(n)

f(kx)dk =
1

Ωn

∫
Sn−1

f(rω)dω.

Then,

R∗[R[f ]](x) = Ωn

∫ ∞

0

{
1

Ωn

∫
Sn−1

f(x+ rω)dω

}
rn−2dr =

Ωn−1

Ωn

∫
R

f(y)

|x− y|
dy. (26)

Next, the integral on the far right-hand side of (26) can be represented as the Riesz potential

Ωn−1

Ωn

∫
R

f(y)

|x− y|
dy =

Hn(n− 1)Ωn−1

Ωn
In−1f(x) = 2n−1π

n−2
2 Γ

(n
2

)
In−1f(x).

Taking the fractional Laplacian (−∆)
n−1
2 ,

(−∆)
n−1
2 R∗[R[f ]](x) = 2n−1π

n−2
2 Γ

(n
2

)
(−∆)

n−1
2 (−∆)−

n−1
2 f(x) = 2n−1π

n−2
2 Γ

(n
2

)
f(x)

holds for f ∈ S(Rn).

For more details about the Radon transform, see e.g. [22, 23, 24, 32].
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3.2 Wavelet-like orthonormal basis and its application to two-dimensional Radon
transforms

There are several known ways to define the CWT on Rn (n ≥ 2). The standard method is to replace
the ax+ b group by the similitude group SIM(n) defined by

SIM(n) = Rn ⋊ (R>0 × SO(n)).

Then, the unitary irreducible representation in L2(Rn)

[U(b, a, ρ)ψ](x) = a−
n
2 ψ(a−1ρ−1(x− b))

is square integrable and ∫
Rn

|ψ̂(ξ)|2

|ξ|n
dξ <∞

is the admissibility condition, up to some constant (see [1, 2]). In dimension n = 2, the CWT is
a mathematical tool for image processing. However, the CWT is not a perfect tool for capturing
all features of an image. To detect line singularities which the CWT failed to capture, the ridgelet
mentioned in Sec. 2.4 was proposed by Candès [7]. Let ψ be a function on R2 belonging to a suitable
function space (e.g. ψ ∈ S(R)). Then, ridgelets are defined by

ψaθb(x) =
1√
a
ψ

(
uθ · x− b

a

)
, a ∈ R>0, uθ = (cos θ, sin θ)t ∈ S1, b ∈ R,

and we define the continuous ridgelet transform (CRT) of f as follows:

Rψ[f ](a, θ, b) = ⟨f, ψaθb⟩ =
∫
R
f(x)ψaθb(x)dx.

For more detailed descriptions of the CRT, see e.g. [2, 7, 8, 9].
The CRT is the combination of the Radon transform on R2 and the CWT on R. In fact, since the

Radon transform can be written as

R[f ](ω, p) =

∫
R2

f(x)δ(x · ω − p)dx

in the distribution sense, we see that

Wψ [R[f ](uθ, ·)] (a, b) =
∫
R

{∫
R2

f(x)δ(x · uθ − p)dx

}
1√
a
ψ

(
p− b

a

)
dp

=

∫
R2

f(x)

{∫
R

1√
a
ψ

(
p− b

a

)
δ(x · uθ − p)dp

}
dx

=

∫
R2

f(x)
1√
a
ψ

(
uθ · x− b

a

)
dx

= Rψ[f ](a, θ, b)

by formal manipulation. Therefore, the CRT inherits the properties of the Radon transform and the
CWT. In [17], we presented a wavelet-like orthonormal basis of L2(R2) with an H2-wavelet and the
Radon transform.

Remark 3.6. In [17], we denoted the Radon transform of g by

R[g](θ, t) =

∫
θ⊥
g(tθ + u)dθu,
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where θ⊥ = {x : x · θ = 0} is the hyperplane orthogonal to θ = θτ = (cos τ, sin τ)t ∈ S1 and passing
through the origin, and dθ is the Euclidean measure on θ⊥. Then, the dual Radon transform R∗ is
defined only for f on S1 × R satisfying

f(θ, t) = f(−θ,−t) for θ ∈ S1, t ∈ R.

However, for F on Rτ × Rt which is 2π-periodic in τ , we distinguish it from R∗ by using R∗. In this
section, we unify these two definitions of the dual Radon transform into R∗ without distinguishing
between them.

We denote the Sobolev space of order σ ∈ R by L2
σ(R2). The following is the main theorem.

Theorem 3.7. Let ψ be a continuous H2-wavelet such that

ψ̂ ∈ L1(R) and s−1|ψ̂(s)|2 ∈ L1(Rs).

Define
Bℓ,j,k(x1, x2) = (−∆x)

1/4R∗[eiℓτψj,k(t)](x1, x2).

Then, Bℓ,j,k ∈ L2(R2) and {Bℓ,j,k}(ℓ,j,k)∈Z3 is an orthonormal basis of L2(R2), that is, for any g ∈
L2(R2),

g =
∑

(ℓ,j,k)∈Z3

⟨g,Bℓ,j,k⟩L2(R2)Bℓ,j,k

with convergence in the L2(R2)-norm.

3.2.1 Proof of Theorem 3.7

In this section, we provide an outline of the proof of Theorem 3.7 according to [17]. We first prove
the following.

Lemma 3.8. Let ψ be a continuous H2-wavelet such that

ψ̂ ∈ L1(R) and s−1|ψ̂(s)|2 ∈ L1(Rs).

Define F (τ, t) = eiℓτψj,k(t). Then, R∗[F ] ∈ L2
1/2(R

2) can be represented as

R∗[F ](x) = F−1
ξ→x

[
|ξ|−1

(
ξ1 + iξ2

|ξ|

)ℓ {
F [ψj,k](|ξ|) + (−1)ℓF [ψj,k](−|ξ|)

}]
(x).

Since R∗[F ] ∈ L2
1/2(R

2) from Lemma 3.8, we obtain

(−∆x)
1/4R∗[F ] = F−1

ξ→x

[
|ξ|−1/2

(
ξ1 + iξ2

|ξ|

)ℓ {
F [ψj,k](|ξ|) + (−1)ℓF [ψj,k](−|ξ|)

}]
∈ L2(R2).

Next, we prove the following.

Proposition 3.9. Let ψ be a continuous H2-wavelet such that

ψ̂ ∈ L1(R) and s−1|ψ̂(s)|2 ∈ L1(Rs).

Define F (τ, t) = eiℓτψj,k(t), F̃ (τ, t) = eiℓ̃τψj̃,k̃(t). Then, R∗[F ],R∗[F̃ ] ∈ L2
1/2(R

2) satisfies

⟨
(−∆x)

1/4R∗[F ], (−∆x)
1/4R∗[F̃ ]

⟩
L2(R2

x)
=

⟨
F (τ, t) + F (τ + π,−t)

2π
, F̃

⟩
L2((−π,π)×Rt)

.
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From Proposition 3.9, we can see that {Bℓ,j,k}(ℓ,j,k)∈Z3 is an orthonormal system. In fact, putting

F (τ, t) = eiℓτψj,k(t), F̃ (τ, t) = eiℓ̃τψj̃,k̃(t),

we get ⟨
Bℓ,j,k, Bℓ̃,j̃,k̃

⟩
L2(R2)

=
⟨
(−∆x)

1/4R∗[F ], (−∆x)
1/4R∗[F̃ ]

⟩
L2(R2

x)

=
1

2π

⟨
F (τ, t) + F (τ + π,−t), F̃

⟩
L2((−π,π)×Rt)

=
1

2π

⟨
eiℓτψj,k(t) + eiℓ(τ+π)ψj,k(−t), eiℓ̃τψj̃,k̃(t)

⟩
L2((−π,π)×Rt)

=
1

2π

⟨
eiℓτ , eiℓ̃τ

⟩
L2(−π,π)

⟨
ψj,k(t) + (−1)ℓψj,k(−t), ψj̃,k̃(t)

⟩
L2(Rt)

= δℓ,ℓ̃

{
δj,j̃δk,k̃ + (−1)ℓ

⟨
ψj,k(−t), ψj̃,k̃(t)

⟩
L2(Rt)

}
.

Since ψ ∈ H2(R), it holds that⟨
ψj,k(−t), ψj̃,k̃(t)

⟩
L2(Rt)

=
1

2π

⟨
2−j/2ei2

−jksψ̂(−2−js), 2−j̃/2e−i2
−j̃ k̃sψ̂(2−j̃s)

⟩
L2(Rs)

= 0.

This fact enables us to prove ⟨
Bℓ,j,k, Bℓ̃,j̃,k̃

⟩
L2(R2)

= δℓ,ℓ̃δj,j̃δk,k̃.

We have already shown that {Bℓ,j,k}(ℓ,j,k)∈Z3 is an orthonormal system. Therefore, it is sufficient
to show that {Bℓ,j,k}(ℓ,j,k)∈Z3 is a Parseval frame. For this purpose, we need the following:

∑
(ℓ,j,k)∈Z3

∣∣∣⟨g,Bℓ,j,k⟩L2(R2)

∣∣∣2 = ∥g∥2L2(R2
x)
. (27)

For the proof of formula (27), see [17]. This completes the proof of Theorem 3.7.
In preprint [17], we considered Theorem 3.7 further and presented results for reconstructing the

original function from the Radon transform and the CRT. Furthermore, we also confirmed that our
results correctly reconstructed the original function by numerical simulations. In [15, 16], Donoho
introduced the orthonormal ridgelet which provides an orthonormal basis of L2(R2). Our result seems
similar to this; however, we use the H2-wavelet for the radial direction and the Fourier basis for the
angular direction on the frequency domain.
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