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Abstract

Speech is a fundamental communication tool for human beings forming a society.
Automatic speech recognition (ASR) is the most representative and practical ap-
plication for speech, but at present, it is mainly used in situations where there is
a single speaker or where each speaker has a separate channel like video meeting
applications. However, considering that speech is a communication tool, there is a
high demand for ASR in situations where speech from multiple speakers is mixed
and observed. In the presence of multiple speakers, it is important to determine
not only what was spoken, but also who spoke it and when. The task of estimat-
ing who spoke and when from speech, which is the focus of this thesis, is called
speaker diarization.

In multi-speaker conversations, several speakers inevitably speak at the same
time. It is known that the ratio of speaker overlaps of speech in most meetings
is 10–20 %, and at dinner parties, it can be as high as 50 %. Nevertheless, speaker
diarization studies have long adopted cascaded approaches which assign each time
frame for one of the speakers and thus ignore speaker overlaps. On the other hand,
end-to-end approaches that can capture speaker overlaps have emerged in recent
years, but many challenges remain from the aspect of practicality. This thesis aims
to develop overlap-aware speaker diarization methods that can be applied in such
realistic multi-speaker conditions and their applications for multi-speaker ASR.

The first part of this thesis addresses the practicality of overlap-aware speaker
diarization based on end-to-end approaches. In Chapter 3, we propose overlap-
aware speaker diarization for unknown numbers of speakers, whereas conven-
tional methods require that the number of speakers is given in advance. First, we
propose a method to estimate the number of speakers present in input and their
corresponding representations; then, we achieve speaker diarization of unknown
numbers of speakers based on the representations. We also propose a buffering
method that enables online speaker diarization for unknown numbers of speak-
ers. In Chapter 4, we propose more accurate overlap-aware speaker diarization by
utilizing spatial information obtained from multi-channel signals, whereas the con-
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ventional method is based on single-channel signals. We also propose a method to
improve the performance of both single- and multi-channel models by mutually
training them. In Chapter 5, we propose to use an end-to-end speaker diariza-
tion model to detect speaker overlaps and assign appropriate speakers by post-
processing the result of diarization ignoring speaker overlaps. The effectiveness
of these methods was verified using both large-scale simulated mixtures and real
multi-speaker conversational datasets in various domains.

In the second part, we propose applications that use overlap-aware speaker di-
arization and demonstrate that it is also an important step for later procedures.
In Chapter 6, we propose a system for transcribing meetings from audio recorded
by distributed microphones, using a chain of speaker diarization, speech separa-
tion, and ASR. We validate the usefulness of the system by using a newly recorded
meeting dataset and demonstrate the importance of highly accurate overlap-aware
speaker diarization. In Chapter 7, we extend the speech separation algorithm based
on the results of speaker diarization, which is also used in the system above, to en-
able online processing. We experimentally show that the proposed method signifi-
cantly speeds up the conventional method sufficiently to enable online operation.
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Chapter 1

Introduction

1.1 Background

Speech communication is an essential tool for social activities such as information
exchange, decision-making, and consensus building. Therefore, automatic speech
recognition (ASR) is an important technology for assisting such social activities. For
example, when combined with speech translation, it can realize communication
that surpasses language barriers. When combined with dialogue systems or text
mining, it can replace human operators, thereby solving social problems such as
labor shortages. ASR can also support decision-making and consensus-building
processes through automatic minuting and documentation and can improve well-
being by freeing people from such simple labor.

In recent years, ASR under somewhat controlled conditions has improved dra-
matically and reached a practical level. Single-speaker ASR, such as voice input in
smartphone/tablet devices and smart speakers, has already been used by a wide
range of customers. Even when multiple speakers exist, video meeting applications
(such as Zoom and Microsoft Teams) can perform highly accurate ASR because
each speaker has a separate channel.

The remaining challenge is the cocktail party problem, ASR in situations where
multiple speakers may be speaking simultaneously. The aforementioned use cases
of ASR in social activities fall into these situations, which means the importance of
multi-speaker ASR. For multi-speaker ASR, it is necessary to determine not only
what was spoken but also when and by whom it was spoken. The latter task, de-
termining who spoke when is called speaker diarization. With speaker diarization,
ASR results can be treated as a transcription of a conversation, rather than a mere
transcribed speech.

1
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Table 1.1: Overlap ratios of real multi-speaker datasets.

Dataset # of speakers Overlap ratio

CALLHOME [6] 2–7 16.9 %
AMI [7] 3–5 19.4 %
ICSI [8] 6 (ave.) 18.6 %
CHiME-6 [9] 4 33.9 %
Internal meeting [10] N/A 14.7 %
Internal meeting [11] 4/6 16.3 %/16.0 %
Internal meeting [12] 5–8 13.2 %

Since distinguishing the mixed speech of multiple speakers is essential for solv-
ing the cocktail party problem, it is important to identify speaker overlap in speech.
Table 1.1 summarizes the overlap ratio of various real multi-speaker datasets. Var-
ious multi-talker meeting corpora show over 10 % of overlap ratio [13], and it is
raised to over 40 % in the dinner party scenarios in CHiME-5/6 [14, 15]. Assum-
ing the ASR system that transcribes each speech segment extracted in the speaker
diarization step. If a speaker diarization method has no way to deal with speaker
overlap, at least one of the overlapped segments will not appear in the transcrip-
tion; therefore, the overlap ratio directly becomes an error in ASR. If speaker over-
laps can be correctly captured, it is possible to accurately remove the interference
speaker’s speech from each utterance in the subsequence speech separation step
[16, 17], thereby reducing the effect of speaker overlaps in the last ASR step.

Since speech separation makes the speech of each speaker not include the
speech of other speakers, the separated speech itself is also useful for solving
speaker diarization. There are also approaches such as speech-separation-guided
speaker diarization [18] and joint modeling of speaker diarization and speech sep-
aration [19]. However, machine-learning-based speech separation, which has been
studied widely in recent years, mostly uses the oracle-separated results or a time-
frequency mask calculated from them as the target of training, making it difficult to
use real multi-speaker recordings for training. In addition, despite the difficulty of
using real data for training, it has also been reported that speech separation mod-
els are more sensitive to domain mismatch than diarization models [18]. For these
reasons, the diarization approach alone is important.

2
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1.2 Research History

The conventional approach for speaker diarization is based on a stack of multiple
modules:

1. Speech activity detection: detect the interval in which at least one speaker is
speaking,

2. Segmentation: divide each detected interval into short segments by sliding
window or speaker change detection,

3. Speaker embedding extraction: extract a feature vector that represents
speaker characteristics from each segment,

4. Clustering: group the extracted embeddings based on their similarity, and
determine that the same speaker is speaking if the embeddings belong to the
same cluster, and different speakers are speaking if they belong to different
clusters,

5. (Optional) overlap handling: detect the interval in which two or more speak-
ers are speaking and assign the appropriate second speaker for each interval.

Again, to solve the cocktail party problem, it is important to identify the speaker
overlap in speech (i.e., the last step above). Despite this, notably, it has been often
neglected in studies of speaker diarization for a long time from their methodolo-
gies and even evaluations [20, 3, 4, 21, 22] (The most popular diarization evaluation
script mdeval.pl can easily realize such forgiveness by using the option “-1”). This
is because it treats speaker diarization as a set-partitioning problem with the adop-
tion of the clustering step, and treats overlap detection and speaker assignment as
optional.

In contrast, the end-to-end approach for speaker diarization that emerged in
2019 treats speaker diarization as a multi-label classification problem [23]. It classi-
fies each time frame into speech or silence for each speaker; thus, it naturally han-
dles speaker overlap. It brought a paradigm shift to the evaluation of speaker di-
arization; now it becomes popular to include speaker overlaps in evaluation to see
the real performance of diarization systems. In addition, the end-to-end approach
has several advantages such as 1) easy implementation and 2) easy optimization as
an entire diarization system (including domain adaptation).

3
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1.3 Approaches

1.3.1 Speaker Diarization Methods

As explained in the previous section, the conventional cascaded approach has diffi-
culty with overlap handling and the end-to-end method is a promising solution for
the problem. However, the early type of end-to-end [23, 24] or hybrid methods [25]
have some practical issues and room for improvement. We first focus on improving
the practicality of end-to-end speaker diarization in the following perspectives.

Numbers of speakers

In most cases where we need speaker diarization, the number of speakers is not
known a priori, e.g., discussions in meetings or congress, doctor-patient conver-
sations at a hospital, trials at a court, and talk on TV. However, the early types
fixed the number of speakers by their network architectures, which clearly lim-
its the range of applications of the diarization methods. To solve this limitation,
we tackle end-to-end speaker diarization for unknown numbers of speakers. We
first propose encoder-decoder-based attractor calculation (EDA), with which flex-
ible numbers of speaker-wise representative vectors, or attractors, are calculated
from frame-wise embeddings. Then, we use it with end-to-end speaker diarization
to deal with flexible numbers of speakers, namely, EEND-EDA.

While EEND-EDA can handle flexible numbers of speakers, the maximum
number is still capped by the dataset used for the model training. To remedy this
problem, we further extend the method for unlimited numbers of speakers by intro-
ducing an unsupervised clustering step. In addition to attractors calculated from
an entire embedding sequence (i.e., glocal attractors), those calculated from each
chunked short sequence (i.e., local attractors) were utilized; then, the local attrac-
tors were clustered to find the optimal inter-chunk correspondence. This EEND
with global and local attractors, or EEND-GLA, does not have limitations in the
output number of speakers because of the unsupervised clustering step.

Online processing

One of the advantages of speech communication over text communication is the
speed of information transfer. Therefore, some speech applications require real-
time transcription, e.g., spoken dialogue systems and simultaneous translation, and
thus speaker diarization also has to be operated in an online manner. We propose

4



1.3. APPROACHES

a method to enable online inference of EEND-GLA based on the buffer that is up-
dated by block-wise sampling and first-in-first-out manners.

Multi-channel processing

While end-to-end speaker diarization is mainly tackled as a single-channel problem
in the literature, utilizing spatial information from multi-channel inputs in addition
to spectral information is a promising way of solving the cocktail party problem.
Actually, the diarization-guided speech separation [16] takes multi-channel signals
as input, and the grand challenges of multi-speaker ASR are mostly based on multi-
channel [15, 26]. Since multi-channel processing based on distributed microphones
is attracting attention in recent years [27, 28, 15, 29], we follow this direction; we
propose a multi-channel end-to-end speaker diarization method that is based on
distributed microphones. We also propose a method to further improve the multi-
channel model along with a single-channel model by mutually training them using
knowledge distillation and finetuning.

End-to-end speaker diarization for overlap detection and speaker assignment

Indeed end-to-end speaker diarization is a promising approach for overlap-aware
speaker diarization, cascaded approaches are still competitive. Practically, multiple
diarization systems may be ensembled to improve accuracy, and since it is impor-
tant to gather diverse varieties of systems in an ensemble, a combination of end-to-
end and cascaded approaches is effective [90, 67]. However, cascaded approaches
require an extra module for overlap detection and speaker assignment. We, there-
fore, propose a method to utilize an end-to-end speaker diarization model for this
purpose, namely, EEND as post-processing.

1.3.2 Applications of Speaker Diarization

Since speaker diarization is often placed as a preprocess of multi-speaker ASR, it is
important to demonstrate how an accurate speaker diarization method can bene-
fit it. In this thesis, we propose two diarization-related applications. The first one
is a speaker-diarization-driven meeting transcription system based on distributed
microphones, in which speech separation is conducted using speaker diarization
results [16]. However, the speech separation algorithm requires a large amount of
execution time, which inhibits the system from online processing. As the second
one, we propose a block-online algorithm of the speech separation method to im-
prove its inference speed.
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Figure 1.1: Thesis overview

1.4 Thesis Overview

The organization of this thesis is as follows, which is also illustrated in Figure 1.1.
Chapter 2 gives a review of speaker diarization, including conventional cascaded
approaches and emerging end-to-end approaches. Chapter 3 addresses end-to-end
speaker diarization for unknown numbers of speakers and its extension for on-
line processing. Chapter 4 addresses multi-channel end-to-end speaker diarization.
Chapter 5 addresses a method to utilize an end-to-end speaker diarization model
for overlap detection and speaker assignment to update a result from a cascaded
speaker diarization method. Chapter 6 addresses a meeting transcription based on
diarization-separation-recognition chain. Chapter 7 addresses block-online speech
separation conditioned on speaker diarization results. Chapter 8 concludes this
thesis with some future directions of end-to-end speaker diarization.
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Chapter 2

Review of Speaker Diarization

This chapter reviews speaker diarization research in the literature. Section 2.1 pro-
vides a strict formulation of speaker diarization. Section 2.2 summarizes cascaded
approaches for speaker diarization Section 2.3 summarizes end-to-end approaches
for speaker diarization. Section 2.4 introduces a speech separation method that uti-
lizes speaker diarization results. Section 2.5 defines the metrics to evaluate speaker
diarization systems and their applications.

2.1 Problem Formulation

Speaker diarization is a task to estimate speech activities for each speaker appear-
ing in an input recording. Different from speaker recognition or speaker identifi-
cation, it does not require estimating the identity of the speakers, but only requires
distinguishing all the speakers in the input. Given F-dimensional T-length acous-
tic features X = (xt)

T
t=1 ∈ RF×T, where t ∈ {1, . . . , T} is a frame index, speaker

diarization is formulated as the process of determining the most plausible speaker
activities as

Ŷ = arg max
Y

P (Y | X) , (2.1)

where Y = (yt)
T
t=1 ∈ {0, 1}S×T is S speakers’ speech activities defined as follows:

ys,t =

{
0 (Speaker s is inactive at t)

1 (Speaker s is active at t)
. (2.2)

Note that the number of speakers S can be an estimated value or known in advance.
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2.2 Cascaded Approach

This section provides an overview of conventional cascaded approaches (or
modular-based approaches / pipeline approaches / clustering-based approaches).
Section 2.2.1 introduces a typical formulation of speaker diarization used in most
cascaded approaches. Section 2.2.2 describes the typical implementation of cas-
caded approaches for speaker diarization. Section 2.2.3 describes some variants of
cascaded approaches.

2.2.1 Problem Formulation

Most cascaded approaches assume that only one speaker is active in each frame.
The simplified formulation below is used instead of (2.1):

[ŷ1, . . . , ŷT] = arg max
y1,...,yT

P (y1, . . . , yT | X) , (2.3)

where yt ∈ {0, . . . , S} denotes silence (yt = 0) or the index of the active speaker
(1 ≤ yt ≤ S) at t.

2.2.2 Implementation

A cascaded approach typically consists of a stack of the following four modules: 1)
speech activity detection, 2) segmentation, 3) speaker embedding extraction, and 4)
embedding clustering. To estimate the most possible label sequence y1 . . . , yT with
the stacked modules, the probability P (y1, . . . , yt | X) is rewritten as the product of
conditional probabilities by using chain rule as

P (y1, . . . , yT | X) = PSAD (z1, . . . , zT | X) Pclst (y1, . . . , yT | X, z1, . . . , zT) , (2.4)

where zt ∈ {0, 1} is one if at least one speaker is active at t and zero otherwise.

Speech activity detection

In speech activity detection (SAD), or voice activity detection (VAD), intervals in
which at least one speaker is speaking are estimated by finding a sequence z1, . . . , zT

that maximizes the probability PSAD (z1, . . . , zT | X) in (2.4). Only the acoustic fea-
tures of the frames in which speech activity is detected are passed to the following
steps.

8
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Segmentation

In this step, each interval obtained with SAD is divided into short segments. A
commonly used method is to divide every interval into fixed-length segments us-
ing a sliding window (e.g., window width of 1.5 seconds, shift length of 0.75 sec-
onds, etc.). There is a trade-off in the window length; if we increase the window
length, we can obtain high-fidelity speaker embeddings in the next speaker embed-
ding extraction step, but it results in low temporal resolution. To ease this problem,
some methods investigate extracting speaker embeddings from multi-scale win-
dows [30, 31] or improving the quality of speaker embeddings extracted from short
segments [32]. Another method is to detect speaker changes and divide each inter-
val at the point of detection [33]. This makes it possible to extract speaker features
from as long a segment of speech as possible, depending on the situation, but it is
cumbersome in that it requires one more module.

Speaker embedding extraction

In this step, an embedding that represents speaker characteristics is extracted from
each segment obtained in the previous segmentation step. The earliest successful
speaker embedding is i-vector [34], which is obtained as a Gaussian mixture model
supervector, and showed a remarkable performance on speaker diarization [35, 36,
37, 38]. Recent methods are mostly based on speaker embeddings extracted from
deep neural networks such as x-vectors [39, 40, 41] and d-vectors [20, 21]. The
extractors of these embeddings differ slightly in the treatment of input features
(variable-length vs. fixed-length) and the use of statistics pooling, but are basically
the same in that they are both trained as multi-speaker classifiers and use features
near the last layer as speaker embeddings.

Embedding clustering

In this step, the extracted speaker embeddings are grouped by using a clustering al-
gorithm to get y1 . . . yT that maximize the probability Pclst (y1, . . . , yT | X, z1, . . . , zT)

in (2.4). It is assumed that the same speaker is speaking if a pair of embeddings
belong to the same cluster, and different speakers are speaking if they belong to
different clusters. Earlier studies used traditional clustering algorithms, e.g., K-
means clustering [42, 43], agglomerative hierarchical clustering (AHC) [36, 44, 45],
mean-shift clustering [37], and spectral clustering [20, 46]. Recently, better cluster-
ing methods have been proposed, such as variational Bayes hidden Markov model
clustering (VBx) [3, 4], auto-tuning spectral clustering [47], or fully supervised clus-
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tering [21, 22]. Note that they are usually used for hard clustering, so most cascaded
methods (with some exceptions [48]) cannot deal with speaker overlap.

Researchers mainly focus on better speaker embedding extractors and bet-
ter clustering methods; thus, speech activity detection has often been ignored
in evaluations of cascaded approaches by using oracle speech activities instead
[38, 20, 21, 22, 47]. Moreover, obvious from the problem formulation in (2.4), this
approach generally does not consider speaker overlaps. A further problem is that,
although overlap ratios of conversations tend to exceed 10 % [13], speaker overlaps
tend to be excluded from the evaluation of these approaches. This prevents mea-
suring the actual performance of the methods and gives them an unfair advantage
over other approaches.

2.2.3 Variants

There are also various investigations on cascaded approaches to improve their per-
formance or bring additional functions. We list three major variants below.

Overlap handling

Since the commonly used problem formulation is as in Section 2.2.1, it ignores
speaker overlaps. To handle speaker overlap in this framework, there are two ap-
proaches. One is to treat overlap handling as a post-process. In this approach,
overlapped frames are firstly detected, and then assign the second speaker for the
detected frames based on heuristics [49, 50] or the results of VB resegmentation [40].
The other is based on the clustering of overlapped segments [48]. It first extracts
overlapped segments using a region proposal network and then applies clustering
for embeddings extracted from each of them.

Online processing

To enable online inference of cascaded approaches, all modules have to work in
an online manner. The most crucial part is the clustering of speaker embeddings,
and many methods have been proposed for that in the literature, e.g., UIS-RNN
[21], UIS-RNN-SML [51], constraint incremental clustering in overlap-aware online
speaker diarization [52], and turn-to-diarize [53]. Generally, online clustering is
not as good as offline clustering. In particular, VBx [4], the current state-of-the-art
offline clustering method for diarization, relies on two-stage clustering to refine the
results and thus is difficult to be used for online inference. In fact, even if the rest
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of the modules are similar between offline and online methods, replacing VBx with
online clustering reportedly causes a significant drop in performance [52].

Multi-channel processing

In cascaded approaches that utilize multi-channel inputs, spatial features are used
instead of, or altogether with, speaker embeddings. For example, time difference of
arrival (TDOA) [54], direction of arrival (DOA) [55], or generalized cross correlation
with phase transform (GCC-PHAT) [56] were used in the conventional studies.

2.3 End-to-End Approach

End-to-end approaches are emerging that directly produce diarization results from
input audio or acoustic features using neural networks. The major advantages of
end-to-end approaches over cascaded approaches are that 1) they naturally handle
speaker overlap and 2) are simpler from an engineering perspective because there
is only one module that makes up a diarization system. This section first reviews
representative methods based on end-to-end neural networks in Section 2.3.1, and
then details the methods we focus on in this thesis in Section 2.3.2 and Section 2.3.3.

2.3.1 Overview

Some methods such as personal VAD [57], VoiceFilter-Lite [58] take a target
speaker’s embedding and extract speech activities of the corresponding speakers. If
we do inference for each speaker in the speech using these methods, we can obtain
diarization results. Target-speaker voice activity detection (TS-VAD) further im-
proved the methods by accepting multiple speakers’ embeddings to predict their
speech activities simultaneously [25, 59]. Here, it is a restrictive assumption that
the speakers’ embeddings are obtained in advance; in fact, TS-VAD obtains the em-
beddings for each speaker from the diarization results from a separately prepared
speaker diarization system based on a cascaded approach.

For some methods, models have been trained for speech separation, and di-
arization results have been obtained as byproducts. For example, recurrent selec-
tive attention network (RSAN) estimates each speaker’s time-frequency mask one
by one in an autoregressive manner [60, 19]. To train such models, clean signals or
ideal time-frequency masks computed from them are required as the target values.
Therefore, it is difficult to make use of real multi-speaker recordings for the train-
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ing, and we are unavoidably compelled to rely only on simulated multi-speaker
mixtures, which can cause a performance drop due to their domain mismatch.

One promising approach is end-to-end neural diarization (EEND) [23, 24],
which does not require target speakers’ embeddings for inference or clean sig-
nals for training. EEND is firstly implemented on the basis of bi-directional long
short-term memories [23], and replacing them with Transformer encoders [61] has
brought a significant performance improvement. For better modeling of both
global and local contexts, methods based on Conformers [62], time-dilated con-
volutional neural networks [63], residually-connected Transformers [64] were later
proposed. This thesis focuses on EEND based on Transformer encoders, detailed
in the following subsection.

2.3.2 End-to-End Neural Diarization

EEND [23, 24] is a method for estimating multiple speakers’ speech activities si-
multaneously from an input recording. Given frame-wise F-dimensional acoustic
features X = (xt)

T
t=1 ∈ RF×T, where t ∈ {1, . . . , T} is a frame index, EEND esti-

mates speech activities Y = (yt)
T
t=1 ∈ {0, 1}S×T. Here, yt := [y1,t, . . . , ys,t, . . . , yS,t]

T

denotes speech activities of S speakers at t defined as

ys,t =

{
0 (Speaker s is inactive at t)

1 (Speaker s is active at t)
. (2.5)

EEND assumes that ys,t is conditionally independent given the acoustic features,
namely,

P (Y | X) =
T

∏
t=1

S

∏
s=1

P (ys,t | X) . (2.6)

With this assumption, speaker diarization can be regarded as a multi-label classifi-
cation problem and can thus be easily modeled using a neural network fEEND as

(p1, . . . , pT) = fEEND (X) , (2.7)

where pt := [p1,t, . . . , pS,t]
T ∈ (0, 1)S is the posterior probabilities of S speakers’

speech activities at frame index t. The estimation of speech activities (ŷt)
T
t=1 is

ŷ1, . . . , ŷT = arg max
y1,...,yT

P (y1, . . . , yT | X) , (2.8)

= (1 (ps,t > 0.5)) 1≤s≤S
1≤t≤T

, (2.9)

where 1 (cond) is an indicator function that returns 1 if cond is satisfied and 0
otherwise. Note that the threshold value in (2.9) is always set to 0.5 in this thesis
for simplicity.
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The conventional EEND is implemented as a composition of an embedding part
g : RF×T → RD×T and a classification part h : RD×T → (0, 1)S×T, i.e.,

fEEND = h ◦ g. (2.10)

The first embedding part g converts input acoustic features into D-dimensional
frame-wise embeddings. The acoustic features are first converted using a position-
wise fully connected layer parameterized by W0 ∈ RD×F and bD

0 and layer normal-
ization LN as

e(0)1 , . . . , e(0)T = LN
(

W0X + b01TD
)

, (2.11)

where 1D is D-dimensional all-one vector. The resulting frame-wise embeddings
are further converted using N-stacked encoders, each of which converts a flexible
length of embedding sequence (e(n−1)

t )T
t=1 into the same length of embedding se-

quence (e(n)t )T
t=1 as

e(n)1 , . . . , e(n)T = g(n)
(

e(n−1)
1 , . . . , e(n−1)

T

)
, (2.12)

where g(n) is the n-th encoder layer, which is implemented as a Transformer en-
coder but without positional encodings to prevent the outputs from being affected
by the absolute position of the frames. Hereafter, for simplicity, we use et to denote
the embeddings from the last encoder, i.e., et := e(N)

t for t ∈ {1, . . . , T}.

Then, the classification part h in (2.10) converts the embeddings (et)
T
t=1 to pos-

teriors of speech activities (pt)
T
t=1 in (2.7). It is implemented by using a fully con-

nected layer and an element-wise sigmoid function σ(·) that takes a tensor as an
argument:

[p1, . . . , pT] = h(e1, . . . , eT; Wcls, bcls) (2.13)

= σ
(

WT
cls [e1, . . . , eT] + bcls1TD

)
∈ (0, 1)S×T , (2.14)

where (·)T denotes the matrix transpose and Wcls ∈ RD×S and bcls ∈ RS are the
weight and bias of the fully connected layer, respectively.

EEND outputs posteriors of multiple speakers simultaneously but without any
conditions to decide the order of the speakers. Such a network is optimized by us-
ing a permutation-free objective [65, 66], which was originally proposed for multi-
talker speech separation. It computes the loss for all possible speaker assignments
between predictions (pt)

T
t=1, as introduced in (2.7), and groundtruth labels (yt)

T
t=1,

and it picks the minimum one for backpropagation as follows.

Ldiar =
1

TS
min

ϕ∈Φ(S)

T

∑
t=1

H
(

yϕ
t , pt

)
, (2.15)

13



CHAPTER 2. REVIEW OF SPEAKER DIARIZATION

Self-attention Query
Key
Value
Attention weights

FFN

(2.20)

(2.19)

(2.17) (2.18)

(2.21)

(2.22)

(2.23)

Figure 2.1: Transformer encoder. Each yellow area is skipped via a residual connec-
tion. ⊗ denotes matrix multiplication.

where Φ (S) is a set of all possible permutations of the sequence (1, . . . , S), ϕ :=
(ϕ1, . . . , ϕS) is the permuted sequence, yϕ

t :=
[
yϕ1,t, . . . , yϕS,t

]T ∈ {0, 1}S is the per-
muted groundtruth labels using ϕ, and H (·, ·) is the binary cross entropy defined
as

H (yt, pt) :=
S

∑
s=1
{−ys,t log ps,t − (1− ys,t) log (1− ps,t)} . (2.16)

Compared with cascaded approaches, EEND has two significant strengths.
One is that the cascaded approaches conduct diarization by dividing frame-wise
speaker embeddings, so they require SAD as pre-processing and overlap detection
and assignment as post-processing. In contrast, EEND estimates each speaker’s
speech activities independently, so no extra modules for speech activity detection
and overlap detection are needed. The other strength is that the EEND model can
be adapted to the desired domain’s dataset, while cascaded approaches typically
tune only probabilistic linear discriminant analysis (PLDA) parameters to optimize
intra- and inter-speaker similarity between speaker embeddings [36, 49, 67].

Transformer encoder

EEND-EDA uses a Transformer encoder [61] without positional encodings (Fig-
ure 2.1) for g(n) in (2.12). Given Ein ∈ RD×T, the encoder converts it into Eout ∈
RD×T as follows:

E′ = LN (Ein +MA (Ein, Ein, Ein) ; Θ, Φ) , (2.17)

Eout = LN
(
E′ + FFN

(
E′;Ψ

))
, (2.18)
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where Θ, Φ, and Ψ are sets of parameters, and MA and FFN denote multi-head
scaled dot-product attention and a feed-forward network, respectively.

Given dk-dimensional query Q ∈ Rdk×T, key K ∈ Rdk×T, and dv-dimensional
value V ∈ Rdv×T inputs, multi-head scaled dot-product attention MA is calculated
as

MA (Q, K, V; Θ, Φ) = WO

V(1)A(1)T
...

V(h)A(h)T

+ bO1T ∈ Rdv×T, (2.19)

A(i) = softmax

(
Q(i)TK(i)
√

dk/h

)
∈ (0, 1)T×T , (2.20)

Q(i) = W(i)
Q Q + b(i)

Q 1T ∈ R
dk
h ×T, (2.21)

K(i) = W(i)
K K + b(i)

K 1T ∈ R
dk
h ×T, (2.22)

V(i) = W(i)
V V + b(i)

V 1T ∈ R
dv
h ×T, (2.23)

where h is the number of heads, i ∈ {1, . . . , h} is the head index, and softmax (·) is
the column-wise softmax function. The set of parameters Θ and Φ are defined as

Θ :=
⋃

1≤i≤h

{
W(i)

Q , b(i)
Q , W(i)

K , b(i)
K

}
, (2.24)

Φ := {WO, bO} ∪
⋃

1≤i≤h

{
W(i)

V , b(i)
V

}
. (2.25)

The feed-forward network FFN consists of two fully connected layers:

FFN
(
E′; Ψ

)
=

(
W2

[
W1E′ + b11T

]
+
+ b21T

)
, (2.26)

Ψ := {W1, b1, W2, b2} , (2.27)

where W1 ∈ Rd f×D and W2 ∈ RD×d f are projection matrices, b1 ∈ Rd f and b2 ∈ RD

are biases, and [·]+ is the ramp function.

2.3.3 Online Speaker Diarization

End-to-end approaches have also been explored in online diarization. Online di-
arization with end-to-end models has two directions. One is to train a model with
frame-wise or block-wise inputs separately from the offline model. For example,
Online RSAN [19, 68] is trained with block-wise inputs to extend the original RSAN
[60] for an online manner. This method uses speaker embeddings to convey infor-
mation between blocks to make the order of output speakers consistent. BW-EDA-
EEND [69] replaced the Transformer encoders in EEND with Transformer-XL [70]
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Figure 2.2: Online diarization using speaker-tracing buffer proposed in [1, 2].

to extend EEND-EDA [71, 72] to deal with block-wise inputs. In this method, the
hidden state embeddings obtained during the processing of the previous blocks
are used to process the current block, thereby solving the speaker permutation am-
biguity between blocks. This direction is beneficial to optimize online diarization
itself, but the training cost is doubled if we need to prepare diarization systems for
both offline and online inference independently. The other possibility is to divert
an offline diarization model for online inference. For this purpose, speaker-tracing
buffer [1, 2] has been proposed to implement online inference of EEND with no
modification of the network architecture. It stores acoustic features and their cor-
responding diarization results of the selected past frames to solve the speaker per-
mutation ambiguity. Because it was reported that EEND-EDA with speaker-tracing
buffer outperformed BW-EDA-EEND [2], we focused on this direction in this study.

Online Speaker Diarization with Speaker-Tracing Buffer

A speaker-tracing buffer has been proposed to enable online inference of EEND
without additional training [1, 2]. The speaker-tracing buffer stores the past acous-
tic features and the corresponding estimation to solve the speaker permutation am-
biguity. The schematic diagram of online diarization using a speaker-tracing buffer
is shown in Figure 2.2.

In the situation of online diarization, chunked acoustic features sequentially ar-
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rive, and the length of each chunk is ν. Suppose X(buf)
n−1 ∈ RF×T(buf)

n−1 and Y(buf)
n−1 ∈

RŜn−1×T(buf)
n−1 are features and the corresponding estimations stored in the buffer just

before the n-th input, respectively, where T(buf)
n−1 is their length and Ŝn−1 is the pre-

viously estimated number of speakers. Given n-th input Xn ∈ RF×ν, it is concate-
nated with the features in the buffer and processed by EEND fEEND as[

Ŷ(buf)
n−1 Ŷn

]
= fEEND

([
X(buf)

n−1 Xn

])
∈ (0, 1)Ŝ′n×

(
T(buf)

n−1 +ν
)

, (2.28)

where Ŝ′n is the newly estimated number of speakers. Here, Ŷ(buf)
n−1 ∈ (0, 1)Ŝ′n×T(buf)

n−1

and Ŷn ∈ (0, 1)Ŝ′n×ν are the estimated results that correspond to X(buf)
n−1 and Xn,

respectively. Then, the number of speakers of Y(buf)
n−1 , Ŷ(buf)

n−1 , and Ŷn is aligned to
Ŝn = max

(
Ŝn−1, Ŝ′n

)
by

Y(buf)
n−1 ←

[
Y(buf)

n−1
OŜn−Ŝn−1,T(buf)

n−1

]
, (2.29)

[
Ŷ(buf)

n−1 Ŷn

]
←
[

Ŷ(buf)
n−1 Ŷn

OŜn−Ŝ′n,T(buf)
n−1

OŜn−Ŝ′n,ν

]
, (2.30)

where Oa,b is the a × b zero matrix and a can be zero. Ideally, Ŝ′n is not less than
Ŝn−1. The order of speakers is then permuted to be aligned to that of Ŷ(buf)

n−1 as[
Ŷ(buf)

n−1 Ŷn

]
← Pψ

[
Ŷ(buf)

n−1 Ŷn

]
, (2.31)

ψ = arg max
ϕ∈Φ(Ŝn)

〈
Y(buf)

n−1 , PϕŶ(buf)
n−1

〉
F

, (2.32)

where ⟨A, B⟩F denotes the Frobenius inner product between real-valued two matri-
ces A =

[
aij
]

and B =
[
bij
]

defined as1

⟨A, B⟩F := ∑
i,j

aijbij. (2.33)

Note that (2.32) is executable in polynomial time by using the well-known Hungar-
ian algorithm. Finally, the permuted Ŷn is output as the estimated result for Xn.

For the next (i.e., (n + 1)-th) input, the buffer is updated with the current input
features and the corresponding results. If the buffer length M is large enough to
store all the features and results, i.e., T(buf)

n−1 + ν ≤ M, we update the buffer using

X(buf)
n ←

[
X(buf)

n−1 Xn

]
, (2.34)

Y(buf)
n ←

[
Ŷ(buf)

n−1 Ŷn

]
. (2.35)

1In the original STB paper, mean normalization is applied for each of A and B before the calcula-
tion of the Frobenius inner product, but it does not affect the result so we omit it here.
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If T(buf)
n−1 + ν > M, only M frames among them are selected to be stored. The original

speaker-tracing buffer mainly utilized the following two update strategies.

1. First-in-first-out (FIFO): acoustic features and results of the latest M frames
are always stored in the buffer. Speakers who do not appear in the last M
frames are not tracked with this strategy; thus, this strategy alone is not
preferable.

2. Sampling: the features and results of informative M frames to solve speaker
permutation ambiguity are selected among T(buf)

n−1 + ν and stored. In the pre-
vious studies [1, 2], sampling probabilities based on Kullback-Leibler (KL)
divergence were used. The KL divergence at the t-th frame ωt is calculated
from the speaker-normalized posteriors ȳs,t and the discrete uniform distri-
bution with the posterior probability of 1

Sn
as

ωt =
Sn

∑
s=1

ȳs,t log (ȳs,tSn) , (2.36)

ȳs,t =
ys,t

∑Sn
s′=1 ys′,t

. (2.37)

The sampling probabilities ω̃t are defined as the normalized KL divergence
so that the sum is one:

ω̃t =
ωt

∑t′ ωt′
. (2.38)

With the aforementioned speaker-tracing buffer, a trained EEND model can
be used for online inference as it is. However, EEND is generally trained with a
fixed length of chunks, e.g., 500 frames, so the diarization performance decreases
at the very beginning of the inference where the number of frames is low. To cope
with this problem, variable chunk-size training (VCT) was proposed [1]. For VCT,
the length of each chunk is varied by masking the input minibatch. It has been
evaluated in two-speaker conditions [1] but has not been evaluated in the flexible-
number-of-speaker conditions [2]. Even the two-speaker experiments have a lim-
ited analysis of how VCT improved the diarization error rates (DERs).

2.4 Speech Separation Based on Speaker Diarization Re-
sults

As described in Section 1.1, the most possible use of diarization is a prior step to
speech separation. In this section, we detail a speech separation algorithm in which
diarization results are utilized, namely, guided source separation (GSS) [16]. As in
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previous studies [16, 73, 74, 15], we assume that the following procedure is per-
formed for each utterance.

Before getting to the explanation of GSS, we first introduce a basic speech sep-
aration that uses a complex angular Gaussian mixture model (cACGMM) [75] as
a generative model. A probability density function of a cACGMM at a frequency
index f is determined as

p
(

x̂t, f ;
{

α
(k)
f , B(k)

f

}
k

)
= ∑

k
α
(k)
f A

(
x̂t, f ; B(k)

f

)
, (2.39)

x̂t, f =
xt, f∥∥xt, f
∥∥ , (2.40)

where xt, f ∈ CM is the M-channel observed signal in a short-time Fourier transform
(STFT) domain, t is the time index, and k is the source index. The observation can
be dereverberated beforehand by using, e.g., the weighted prediction error (WPE)
[76]. The α

(k)
f is the mixture weight of the k-th source at f , andA (x; B) is a complex

angular central Gaussian distribution [77] parameterized by B ∈ CM×M as

A (x; B) :=
(M− 1)!

2πM det(B)
1

(xHB−1x)M , (2.41)

where (·)H denotes the Hermitian transpose. The optimization of the cACGMM
is done using the EM algorithm. At the E-step, the posterior for each source at a
time-frequency bin is calculated as

γ
(k)
t, f ←

α
(k)
f

1
det
(

B(k)
f

) 1[
x̂H

t, f

(
B(k)

f

)−1
x̂t, f

]M

∑k′ α
(k′)
f

1
det
(

B(k′)
f

) 1[
x̂H

t, f

(
B(k′)

f

)−1
x̂t, f

]M

. (2.42)

At the M-step the parameters α
(k)
f and B(k)

f are updated as follows:

α
(k)
f ←

1
T ∑

t
γ
(k)
t, f , (2.43)

B(k)
f ← M

∑t γ
(k)
t, f

x̂t, f x̂H
t, f

x̂H
t, f

(
B(k)

f

)−1
x̂t, f

∑t γ
(k)
t, f

. (2.44)

With GSS, the activities of each speaker are assumed known a priori and used
for parameter updates. Given d(k)t ∈ {0, 1}, that is, an activity of source k that takes
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1 if the source k is active at t and 0 otherwise, the E-step is replaced with

γ
(k)
t, f ←

α
(k)
f d(k)t

1
det
(

B(k)
f

) 1[
x̂H

t, f

(
B(k)

f

)−1
x̂t, f

]M

∑k′ α
(k′)
f d(k

′)
t

1
det
(

B(k′)
f

) 1[
x̂H

t, f

(
B(k′)

f

)−1
x̂t, f

]M

(2.45)

to force the posteriors of inactive sources to be zero. The diarization information
helps to make the model free from the frequency permutation problem because it
is frequency-independent. However, it is still affected by the permutation between
the target utterance and noise because their activities are always one during the
utterance. To solve this, GSS also uses preceding and subsequent signals of the
utterance, which are called “context,” for parameter update. In this thesis, we refer
to the preceding context as pre-context and the subsequent context as post-context.

In the first iteration of the EM updates, α
(k)
f and B(k)

f are unknown, so the fol-

lowing (2.46) and (2.47) are used for the E-step and the update of B(k)
f in the M-step

instead, respectively:

γ
(k)
t, f ←

d(k)t

∑k′ d
(k′)
t

, (2.46)

B(k)
f ← M

∑t γ
(k)
t, f x̂t, f x̂Ht, f

∑t γ
(k)
t, f

. (2.47)

After convergence, spatial covariance matrices for speech and noise are calcu-
lated using the posteriors γ

(k)
t, f as follows:

Rspeech
f =

1
T ∑

t
γ
(ktarget)

t, f xt, f xHt, f ∈ CM×M, (2.48)

Rnoise
f =

1
T ∑

t

(
1− γ

(ktarget)

t, f

)
xt, f xHt, f ∈ CM×M. (2.49)

Here we assume that the target source is ktarget ∈ {1, . . . , K}. The minimum vari-
ance distortionless response (MVDR) beamformer w f ∈ CM is calculated using the
spatial covariance matrices as

w f =
Rnoise

f
−1Rspeech

f r

tr
(

Rnoise
f

−1Rspeech
f

) , (2.50)

where r ∈ {0, 1}M is a one-hot vector that corresponds to the reference microphone,
which is selected to maximize the signal-to-noise ratio. Finally, blind analytic nor-
malization [78] is applied for w f to obtain the final beamformer, which is used for
speech separation. The enhanced signal in the STFT domain is calculated as

zt, f = wH
f xt, f . (2.51)
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2.5 Evaluation Protocols

To evaluate diarization performance directly, two common metrics are used in this
thesis: diarization error rates (DERs) and Jaccard error rates (JERs) [95]. Most eval-
uations report DERs, but JERs are sometimes DER is defined as

DER =
TMI + TFA + TCF

TSpeech
, (2.52)

where TSpeech, TMI, TFA, and TCF denote the duration of total speech, missed speech,
false-alarmed speech, and speaker confusion, respectively. Following the literature,
we used collar tolerance at each speech boundary in some evaluations, i.e., a certain
duration at the start and end points are omitted from evaluation. We emphasize
that speaker overlaps were NOT excluded from the evaluations.

To calculate JER, first, the optimal assignment between reference and system
speakers is calculated. JER is the average score of each reference speaker defined as

JER =
1

Sref

Sref

∑
s=1

T(s)
FA + T(s)

MI

T(s)
Union

, (2.53)

where Sref is the number of reference speakers, and T(s)
MI and T(s)

FA are the duration
of the missed and false-alarmed speech calculated between speech activities of the
s-th reference speaker and the paired system speaker, respectively. T(s)

Union is the
time duration in which at least one of the s-th reference speakers of a paired system
speaker is active.

The core difference betweeen DER and JER is their weighting of each speaker.
In the calculation of DER, speakers are weighted according to the length of their
utterances, whereas in the calculation of JER, each speaker is treated equally. This
means that JER treats speakers who speak only a little equally with other speakers,
and such speakers’ speech segments tend to hard to be estimated, so in most cases
JER is higher than DER.

Speaker diarization is used as post-process of ASR in Chapters 6 and 7 of this
thesis. Of course the accuracy of speaker diarization affect the performance of ASR,
it is not always true that speaker diarization systems better in DER or JER are also
better from ASR perspectives. For example, missed segments in diarization cannot
be transcribed by ASR, it is more beneficial to reduce missed speech than to reduce
false alarms. Therefore, evaluation of speaker diarization applications should be
done solely from the perspective of ASR. For English corpora (i.e., CHiME-6 corpus
in this thesis), we used word error rates (WERs) defined as

WER =
N(w)

sub + N(w)
del + N(w)

ins

N(w)
ref

, (2.54)
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where N(w)
sub, N(w)

del , N(w)
ins , N(w)

ref denote the number of substituted words, deleted
words, inserted words, and words in the reference.

For some languages that are not space-separated, e.g., Japanese and Mandarin,
it is hard to calculate WERs because the boundaries of words are not obvious. We
use instead character error rates (CERs) for the corpora in such languages (i.e., the
meeting corpus in this thesis) defined as

CER =
N(c)

sub + N(c)
del + N(c)

ins

N(c)
ref

, (2.55)

where N(c)
sub, N(c)

del, N(c)
ins, N(c)

ref denote the number of substituted characters, deleted
characters, inserted characters, and characters in the reference.

Note that all the metrics are “the lower, the better” indicators with the lowest
value of zero. However, they are not upper-bounded by one because false alarm or
insertion can increase these error rates by any amount.
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Chapter 3

End-to-End Speaker Diarization
for Unknown Numbers of
Speakers

3.1 Introduction

While EEND has the advantage in the way of handling speaker overlaps, it has the
limitation in the number of output speakers; the number of output speakers S is
fixed by the fully connected layer in the classification part h as in (2.14). In some
applications, the number of speakers is obvious (e.g., most conversations in a call
center consist of two speakers: a customer and an operator), but in meetings, for
example, the number of participants may vary from case to case. The practicality of
EEND would be significantly improved by making it handle situations where the
number of speakers is unknown. One possible way to treat a unknown number of
speakers with this fixed-output architecture is to set the number of outputs to be
large enough. However, it requires knowing the maximum number of speakers in
advance, and it has been already verified that such a strategy results in poor per-
formance. It is also a problem that the calculation cost of the permutation-free loss
increases if we set a large number of speakers to be output. Therefore, a signifi-
cant research question is how to output diarization results for a unknown number
of speakers. This chapter addresses the diarization methods that handle unknown
numbers of speakers on the basis of EEND.

Section 3.2 proposes attractor-based EEND (EEND-EDA) that provides end-to-
end speaker diarization of flexible numbers of speakers. We introduce encoder-
decoder-based attractor calculation module (EDA) to EEND. Once frame-wise em-
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beddings are obtained, EDA sequentially generates speaker-wise attractors on the
basis of a sequence-to-sequence method using an LSTM encoder-decoder. The at-
tractor generation continues until a stopping condition is satisfied; thus, the num-
ber of attractors can be flexible. Diarization results are then estimated as dot prod-
ucts of the attractors and embeddings. The embeddings from speaker overlaps
result in larger dot product values with multiple attractors; thus, this method can
deal with speaker overlaps. Because the maximum number of output speakers is
still limited by the training set, we also propose an iterative inference method to
remove this restriction. Further, we propose a method that aligns the estimated
diarization results with the results of an external speech activity detector, which
enables fair comparison against cascaded approaches.

Section 3.3 further extends EEND-EDA to make the method deal with unlim-
ited numbers of speakers, namely, EEND-GLA. While EEND-EDA can deal with
flexible numbers of speakers, the maximum number of speakers is still empirically
known to be bounded by their training datasets. In the proposed method, in ad-
dition to the attractors calculated from the entire recording (i.e., global attractors) in
the same manner as in EEND-EDA, we also utilize attractors calculated from each
short block (i.e., local attractors) to obtain block-wise diarization results. Because the
set of speakers and their output order may be different among the blocks, we use
clustering to find the appropriate speaker correspondence between the blocks on
the basis of the similarities between the local attractors. Here, we assume that the
number of speakers appearing in a short period is low, and so the number of speak-
ers within each block can be limited and fixed with a maximum number. However,
the total number of speakers is estimated as the result of clustering; it is no longer
limited by the network architecture or training datasets.

Section 3.4 proposes a method to use EEND-GLA in an online manner on the
basis of STB described in Section 2.3.3. Because EEND-GLA adopt block-wise pro-
cessing to utilize the nature that the number of speakers speaks within a short inter-
val is small, it is not compatible with the original STB that includes the frame-wise
selection step. To enable online inference of EEND-GLA, we propose a block-wise
speaker-tracing buffer, which extends the original speaker-tracing buffer [1, 2] to
update the buffer elements in a block-wise manner. With this modification, we can
assume that the number of speakers within each block is limited in the buffer as
well because each block stores time-consecutive elements.
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3.2 End-to-End Speaker Diarization for Flexible Numbers
of Speakers

In this section, we extend the conventional EEND to handle a flexible number
of speakers in Section 3.2.2. We also provide novel inference techniques in Sec-
tion 3.2.3.

3.2.1 Related Work

Speech processing based on neural networks for unknown numbers of speakers

While some methods have achieved promising results with a fixed number of out-
put speakers in diarization [23, 24, 25] and speech separation [66, 79, 80, 81] con-
texts, it is challenging to make them able to deal with unknown numbers of speak-
ers. The difficulty of neural-network-based speech processing for unknown num-
bers of speakers is that we cannot fix the output dimension.

One possible approach is to determine the maximum number of speakers to de-
code. In this case, the number of outputs is set to a sufficiently large value. Some
methods treat a flexible number of speakers by outputting null speech activities if
the number of outputs is smaller than the network capacity [82]. However, this
approach did not work well with EEND (see [83]). In other methods, the number-
of-speaker-wise output branches are trained independently, and the most probable
is used during inference [84]. In this case, we have to know the maximum number
of speakers. One of the strengths of EEND is that it can be finetuned using a target
domain dataset from a pretrained model, but we usually cannot access the maxi-
mum number of speakers of the target domain beforehand. Therefore, a method
that does not require that the maximum number of speakers be defined would be
preferable.

Another approach is to decode speakers one by one until a stopping condition
is satisfied, like SC-EEND [83]. For speech separation, RSAN [60, 19] and one-and-
rest permutation invariant training (OR-PIT) [85] can be used. The key difference
between speech separation and diarization is whether or not the residual output
can be defined. RSAN uses a mask-based approach, in which each time-frequency
bin is softly assigned to each speaker so that the process finishes when all the ele-
ments of the residual mask become zero. OR-PIT is time-domain speech separation
by which residual output is determined as a mixture that contains other speakers
rather than the target speaker. Both require clean recordings to determine oracle
masks or signals. However, they are not always accessible in the diarization con-
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text, in which only multi-talker recordings and speech segments are provided.

For EEND-EDA, we adopted an attractor-based approach like deep attractor
networks (DANet) [86, 82]. While the number of speakers [86] or maximum num-
ber of speakers [82] is fixed for the original DANet, we calculated a flexible number
of attractors without defining them.

Neural-network-based representative vector calculation

There have been several efforts to calculate representative vectors from a sequence
of embeddings in an end-to-end trainable fashion. For example, Set Transformer
[87] enables set-to-set transformation, which can be used to calculate cluster cen-
troids from a set of embeddings. However, the number of outputs has to be known
in advance, so it cannot be used for our purpose. Meier et al. proposed an end-
to-end clustering framework [88], in which clustering for all possible number of
clusters K ∈ {1, . . . , Kmax} is performed and the result of the most probable num-
ber of clusters is used. The framework performs the clustering of a flexible number
of clusters in an end-to-end manner, but the maximum number of clusters is lim-
ited by Kmax. EDA, in comparison, determines a flexible number of attractors from
an input embedding without prior knowledge of the number of speakers. Thus, we
can use datasets of the different maximum number of speakers during pretraining
and finetuning.

3.2.2 Attractor-Based End-to-End Neural Diarization

We assume that the embedding part g in (2.10) is implemented in the same man-
ner as the conventional EEND described in Section 2.3.2. Given frame-wise D-
dimensional embeddings {et}T

t=1, our goal is to produce posteriors for a flexible
number of speakers in the classification part h. To achieve this goal, we propose a
method to calculate a flexible number of speaker-wise attractors from embeddings
and then calculate diarization results on the basis of attractors and embeddings.
The proposed method is depicted in Figure 3.1.

EDA: Encoder-decoder-based attractor calculation

EDA converts frame-wise embeddings into speaker-wise attractors using a
sequence-to-sequence method with an LSTM encoder-decoder. The LSTM encoder
henc takes the frame-wise embeddings as input and updates its hidden state henc

t
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Figure 3.1: EEND with encoder-decoder-based attractor calculation (EEND-EDA).

and cell state cenct as

henc
t , cenct = henc (et, henc

t−1, cenct−1) (t = 1, . . . , T) . (3.1)

The hidden and cell states of the encoder are initialized with zero vectors, i.e.,
henc

0 = cenc0 = 0. The LSTM decoder hdec estimates speaker-wise attractors as

hdec
s , cdecs = hdec

(
0, hdec

s−1, cdecs−1

)
(s = 1, 2, . . . ) . (3.2)

We treat the hidden state at each step hdec
s =: as ∈ (−1, 1)D as speaker s’s attractor,

whose dimensionality D is the same as that of the frame-wise embeddings et. The
hidden and cell states of the decoder are initialized by the final hidden and cell
states of the encoder as

hdec
0 = henc

T , (3.3)

cdec0 = cencT , (3.4)

which is shown as a right arrow from the LSTM encoder to the LSTM decoder in
Figure 3.1. In general applications of a sequence-to-sequence method, e.g., speech
recognition or machine translation, the output is sentences, i.e., a sequence of
words, so the order of output is fixed. However, EDA cannot determine the or-
der of output speakers in advance because this order is determined by minimizing
cross entropy as in (2.15). Even if the order could be predetermined, it would not be
possible to determine the optimal attractor outputs. Thus, the well-known strategy
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of teacher forcing, for which the optimal outputs with their order have to be known
in advance, cannot be used. Furthermore, the s-th attractor can correspond to any
speaker that is not contained in the first (s − 1) attractors. To make this attractor
calculation procedure fully order-free, we input a zero vector as input at each step
as in (3.2). Using zero vectors as inputs provides flexibility to change the number
of output speakers across pretraining and finetuning rather than using, for exam-
ple, trainable parameters. This is why we chose an LSTM-based encoder-decoder
rather than Transformer encoder-decoder, which requires input queries rather than
zero vectors.

Here, the input order to the EDA encoder affects the output attractors because
EDA is based on a sequence-to-sequence method. To investigate the effect of the
input order, we tried two types of input orders: chronological and shuffled orders.
In the chronological order setting, embeddings are input in the order of frame in-
dexes as in (3.1). In the shuffled order setting, we use the following instead of (3.1)
:

henc
t , cenct = henc

(
eψt , henc

t−1, cenct−1
)

(t = 1, . . . , T) , (3.5)

where (ψ1, . . . , ψT) is a randomly chosen permutation of (1, . . . , T).

The diarization results pt in (2.7) are calculated on the basis of the dot product
of the frame-wise embeddings and speaker-wise attractors (⊗ in Figure 3.1):

pt = σ
(

ATet

)
∈ (0, 1)S , (3.6)

where A := [a1, . . . , aS] are the speaker-wise attractors. The posteriors are opti-
mized by using (2.15) in the same manner as the conventional EEND. This posterior
calculation no longer depends on the fully connected layer, which determines the
output number of speakers as in (2.14); therefore, EDA-based diarization can vary
the output number of speakers.

Comparing (2.14) and (3.6), the conventional EEND can also be regarded as
using fixed attractors Wcls (with bias bcls). In comparison, EDA calculates attractors
from an input sequence of embeddings, which makes attractors adaptive to the
embeddings. This makes EEND-EDA more accurate even under the fixed-number-
of-speakers condition (see Table 3.1).

Attractor existence probability

As in (3.2), we can obtain an infinite number of attractors. To decide when to stop
the attractor calculation, we calculate the attractor existence probabilities from the
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calculated attractors by using a fully connected layer followed by sigmoid activa-
tion:

qs = σ
(

wT
existas + bexist

)
, (3.7)

where wexist ∈ RD and bexist ∈ R are trainable weights and bias parameters of the
fully connected layer, respectively.

During training, we know the oracle number of speakers S, so the training ob-
jective of the attractor existence probabilities is based on the first (S + 1)-th attrac-
tors using the binary cross entropy defined in (2.16):

Lexist =
1

S + 1
H (l, q) , (3.8)

where

l := [1, . . . , 1︸ ︷︷ ︸
S

, 0]T, (3.9)

q := [q1, . . . , qS+1]
T . (3.10)

The total loss is defined as the weighted sum of Ldiar in (2.15) and Lexist in (3.8)
with the weighting parameter α ∈ R+ as

L = Ldiar + αLexist. (3.11)

In this thesis, we use α = 1. This multi-task loss aims to optimize frame- and
speaker-wise posteriors with Ldiar and attractor existence probabilities with Lexist.

While (3.11) was used for the network optimization in our previous study [71],
we found that the optimization of Lexist inhibits the minimization of Ldiar during
the training of a model with a flexible number of speakers, which is more important
for improving diarization accuracy. Therefore, when a flexible number of speakers’
dataset is used for training, we use Lexist to update only the fully connected layer
parameterized by wexist and bexist in (3.7). This can be implemented by cutting the
graph before the fully connected layer to disable backpropagation to the preceding
layers.

During inference, we cannot access the oracle number of speakers; thus, it is
estimated using qs in (3.7) as follows.

Ŝ = min {s | s ∈ Z+ ∧ qs+1 < τ} , (3.12)

where τ ∈ (0, 1) is a thresholding parameter, which is set to 0.5 in this thesis. We
then use the first Ŝ attractors to calculate posteriors as in (3.6).
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3.2.3 Inference Methodology

SAD post-processing

Diarization methods, especially cascaded ones, are sometimes evaluated with ora-
cle speech segments. When evaluated in such a way, the comparison between cas-
caded methods and EEND-methods becomes hard, mainly because EEND-based
methods perform SAD and diarization simultaneously. One reason evaluations of
cascaded approaches are mainly based on oracle speech segments is to consider
speaker errors and SAD errors separately. It is reasonable to use oracle speech
segments to focus on reducing speaker errors. However, such segments are not
accessible in real scenarios, and the existence of SAD errors may worsen the clus-
tering performance, which directly affects the diarization accuracy. Thus, we be-
lieve that SAD errors should also be considered in the context of cascaded methods.
However, it is hard to say how accurate the SAD should be for a fair comparison
between cascaded and EEND-based methods. Therefore, to align with the the cas-
caded methods, we introduce SAD post-processing for evaluating EEND. With this
method, we can conduct a fair comparison between cascaded and EEND-based
methods with the same SAD. Note that it can be used to improve the diarization
performance by eliminating false alarm speech and recovering missed speech when
an accurate external SAD system is given.

The SAD post-processing algorithm is described in Algorithm 3.1. Here, we
assume that we have SAD results z1, . . . , zT in addition to frame- and speaker-wise
posteriors p1, . . . , pT. We first estimate speech activities as usual by using (2.9)
(line 1). However, this estimation is not always consistent with SAD results. Thus,
we first filter false alarms (FA) by using SAD results. For each frame (line 2), if it
is estimated that some speakers are active while the speech activity should be zero
(line 3), we update the estimations with a zero vector (line 4). This procedure will
always improve DER if z1, . . . , zT are the oracle speech activities. We also recover
missed frames (MI) if no speaker is estimated as active while the speech activity is
one (line 5). For each of such frames, we treat the speaker with the highest posterior
as an active speaker (line 6–line 7). Including the oracle SAD as input will also
improve the DER because missed-frame errors are replaced by correct estimation
or at least speaker errors.

Iterative inference

Even if the model is trained to output a flexible number of speakers, the output
number of speakers is empirically limited by the maximum number of speakers in
a recording observed during pre-training (see Table 3.5). How to output the results
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Algorithm 3.1: SAD post-processing.

Input : (p1, . . . , pT) ∈ (0, 1)S×T // Frame-wise posteriors

(z1, . . . , zT) ∈ {0, 1}T // SAD results

Output: (ŷ1, . . . , ŷT) ∈ {0, 1}S×T // Speech activities

1 Compute ŷ1, . . . , ŷT using (2.9) // Initial results

2 foreach t ∈ {1, . . . , T} do
3 if ∥ŷt∥1 > 0∧ zt = 0 then // Filter FA

4 ŷt ← [0, . . . , 0]T

5 else if ∥ŷt∥1 = 0∧ zt = 1 then // Recover MI

6 s∗ ← arg maxs∈1,...,S pt

7 ŷt ← [0, . . . , 0, 1
∧
s∗

, 0, . . . , 0]T ∈ {0, 1}S

of more than N speakers even if the model is trained on at most N-speaker mixtures
is still an open question. While the method we propose in Section 3.3 tries to solve
this problem by enhancing the model itself, here we propose an iterative inference
method to produce results for more than N speakers by applying EEND decoding
with iterative frame selection.

Preliminarily, we first reveal the characteristics of the EEND models that consist
of stacked Transformer encoders and EDA. A Transformer encoder involves neither
recurrence nor convolutional calculation, and we do not use positional encoding in
this thesis; thus, the embedding part g in (2.10) is an order-free transformation.
EDA contains an LSTM encoder-decoder, but if the order of the input sequence to
EDA is shuffled, we can say that EDA does not depend on the input order, so the
EDA’s classification part h in (2.10) is also an order-free function. Therefore, EEND-
EDA does not depend on the order of the input features, which makes it possible
to process features that are not extracted at equal intervals along the time axis, as
in EEND as post-processing [89]. The proposed iterative inference also utilizes this
characteristic.

Algorithm 3.2 shows the algorithm of iterative inference. In the algorithm, two
processes are iteratively conducted: decoding and silence frame selection. Each
process at the n-th iteration is described as follows.

1. Decoding (line 3): Acoustic features xt of the selected frames T are fed into

EEND, and the corresponding posteriors p(n)
t ∈ (0, 1)S(n)

are obtained as(
p(n)

t

)
t∈T
← fEEND

(
(xt)t∈T

)
, (3.13)

where S(n) ∈ {0, . . . , Smax} is the number of decoded speakers. The posteriors
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Algorithm 3.2: Iterative inference.
Input : x1, . . . , xT // Acoustic features

fEEND // EEND model

Smax ∈N // Max # of speakers that EEND can output

Output: Ŷ ∈ {0, 1}S×T

1 T ← {1, . . . , T} // Frame set

2 for n← 1 to ∞ do
3 Compute Ŷ(n) by (3.13), (3.14), and (2.9) // Decoding

4 Update T by (3.15) // Silence frame selection

5 if S(n) < Smax ∨ |T | = 0 then
6 break

7 Ŷ ←

Ŷ(1)

...
Ŷ(n)



of the frames that are not in T are set to zero as

p(n)
t ← [0, . . . , 0︸ ︷︷ ︸

S(n)

]T (t ∈ {1, . . . , T} \ T ) . (3.14)

With the posteriors p(n)
t for t ∈ {1, . . . , T}, diarization results Ŷ(n) =(

ŷ(n)
1 , . . . , ŷ(n)

T

)
are computed using (2.9). Note that Ŷ(n) corresponds to the

speech activities of the ((n− 1)Smax + 1)-th through ((n− 1)Smax + S(n))-th
speakers.

2. Silence frame selection (line 4): Given the diarization results decoded at the
n-th iteration, we select the frames in which no speaker is active to update T
as

T ←
{

t
∣∣∣ t ∈ T ,

∥∥∥ŷ(n)
t

∥∥∥
1
= 0

}
. (3.15)

The above processes start with the initial value of T as the set of all frames
{1, . . . , T} (line 1), and last until T becomes the empty set or when it is assumed
that all the speakers are decoded (line 5–line 6). Here, we assume that all the speak-
ers are decoded if the number of output speakers S(n) is smaller than the maximum
output of EEND Smax.

After the iterative process is finished, the final results Ŷ are obtained by con-
catenating the results calculated at each iteration (line 7). With iterative inference,
the number of speakers to be decoded is no longer limited by the training dataset.
The iterative inference workflow when Smax = 3 is also illustrated in Figure 3.2.
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Speaker 1
Speaker 2
Speaker 3

Decoding Silence frame selection
1st iteration

Speaker 4
Speaker 5
Speaker 6

Decoding Silence frame selection
2nd iteration

...

Figure 3.2: Iterative inference in the case of Smax = 3.

Iterative inference with DOVER-Lap (or iterative inference+)

Despite iterative inference being able to produce more than Smax speakers’ speech
activities, it has a potential problem in that the speech activities of two speak-
ers decoded at different iterations never overlap. For example, the (Smax + 1)-
th speaker’s speech activities never overlap with those of the first Smax speakers.
This is because the frames in which the first Smax speakers are active will not be
processed in the second iteration. To ease this problem, we introduce DOVER-
Lap [90], which is the extension of DOVER [91]. Both of them are methods for
combining multiple diarization results on the basis of majority voting, but unlike
DOVER, DOVER-Lap take speaker overlap into account. We used a modified ver-
sion of DOVER-Lap presented in [67], in which the speaker assignment strategy
when multiple speakers were ranked equally was slightly different from the orig-
inal DOVER-Lap [90]. Note that we did not use a hypothesis-wise weighting of
DOVER-Lap, which is also introduced in [67].

The algorithm of iterative inference incorporated with DOVER-Lap is shown in
Algorithm 3.3. In this thesis, we refer to this inference as iterative inference+. The
difference from the iterative inference in Algorithm 3.2 is that we limit the number
of speakers to decode at the first iteration with Slimit(≤ Smax) (line 5–line 6). After
the decoding step at the first iteration using (3.13), (3.14), and (2.9), we choose at
most the first Slimit speakers’ speech activities from Ŷ(1) := (ŷs,t)s,t as

Ŷ(1) ← (ŷs,t) 1≤s≤min(S(1) ,Slimit)
1≤t≤T

. (3.16)

The other procedures are the same as those in Algorithm 3.2, and finally, we obtain
Slimit-wise diarization results YSlimit (line 10).
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Algorithm 3.3: Iterative inference with DOVER-Lap (or iterative infer-
ence+).

Input : x1, . . . , xT // Acoustic features

fEEND // EEND model

Smax ∈N // Max # of speakers that EEND can output

Output: Ŷ ∈ {0, 1}S×T

1 for Slimit = 1 to Smax do
2 T ← {1, . . . , T} // Frame set

3 for n← 1 to ∞ do
4 Compute Ŷ(n) by (3.13), (3.14), (2.9) // Decoding

5 if n = 1 then
6 Limit the number of speakers in Ŷ(n) by (3.16)

7 Update T by (3.15) // Silence frame selection

8 if S(n) < Smax ∨ |T | = 0 then
9 break

10 ŶSlimit ←

Ŷ(1)

...
Ŷ(n)


11 Ŷ ← DOVER-Lap

(
Ŷ1, . . . , ŶSmax

)

In iterative inference+, Slimit is varied from 1 to Smax (line 1), which re-
sults in Smax diarization results for each recording. We then combine them
by using DOVER-Lap to obtain the final result Ŷ (line 11). With this proce-
dure, the k-th speaker’s speech activities can be overlapped with those of the
max (1, (k− Smax + 1))-th to (k + Smax − 1)-th speakers.

3.2.4 Experimental Settings

For the embedding part g in (2.10) of the proposed EEND-EDA, we used four-
stacked Transformer encoders with four attention heads without positional encod-
ings, each of which outputs 256-dimensional frame-wise embeddings. The inputs
for the model were log-scaled Mel-filterbank-based features. We first extracted 23-
dimensional log-scaled Mel-filterbanks with a frame length of 25 ms and frame shift
of 10 ms. Each of them was then concatenated with those of the preceding and fol-
lowing seven frames, followed by subsampling with a factor of 10. As a result, a
345 (= 23× 15) dimensional acoustic feature was extracted for each 100 ms.

In this thesis, we evaluated EEND-EDA for both fixed-numbers-of-speakers

34



3.2. END-TO-END SPEAKER DIARIZATION FOR FLEXIBLE NUMBERS OF SPEAKERS

and unknown-numbers-of-speakers conditions; thus, a model was trained for each
purpose. For the fixed-number-of-speakers evaluation, the model was first trained
on the Simkspk training set for 100 epochs and evaluated on the Simkspk test set.
We also adapted the model to CALLHOME-kspk for another 100 epochs to evaluate
the model on real recordings. We used k ∈ {2, 3} in this thesis. For the unknown-
number-of-speakers evaluation, the model that was trained on Sim2spk was fine-
tuned by using the concatenation of Sim{1,2,3,4}spk or Sim{1,2,3,4,5}spk for 50
epochs. The model was also adapted to each target dataset for another 500 epochs.

For network training using simulated mixtures, we used the Adam optimizer
[92] with the Noam scheduler [61] with 100,000 warm-up steps. For adaptation,
we also used the Adam optimizer but with a fixed learning rate of 1× 10−5. For
efficient batch processing during training, we split each recording into 500 frames
when using Simkspk and 2000 frames when using the adaptation sets. The batch
size for training was set to 64. Note that an entire recording is fed into the network
without splitting during inference.

3.2.5 Results of Fixed-Numbers-of-Speakers Experiments

Two-speaker experiment

First, we evaluated our method under the two-speaker condition. In this case, the
model was first trained on Sim2spk and then adapted to CALLHOME-2spk Part 1.
For the EEND-based methods, we used the model trained on Sim2spk to evaluate
the simulated datasets and the one adapted to CALLHOME-2spk Part 1 to evaluate
CALLHOME-2spk Part 2 and CSJ. For EEND-EDA, we used the first two output
attractors for speech activity calculation.

Table 3.1 shows the results of the two-speaker evaluation. We observed that
the proposed method with the shuffled order setting achieved the best DERs. De-
spite EEND-EDA being designed to deal with flexible numbers of speakers, it out-
performed the conventional EENDs, i.e., BLSTM-EEND and SA-EEND, which out-
put diarization results for fixed numbers of speakers. This is because the conven-
tional EEND can be regarded as a fixed-attractor-based method, while EEND-EDA
is an adaptive-attractor-based method as described in the last paragraph of Sec-
tion 3.2.2. This flexibility of attractors makes the proposed method more accurate
even in fixed-number-of-speakers evaluations. In terms of the order of the input
to EDA, shuffled sequences always performed better than chronologically ordered
sequences. It indicates that the global context is more important than the temporal
context to calculate attractors.
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Table 3.1: DERs (%) for two-speaker evaluations. 0.25 s of collar tolerance was al-
lowed.

Simulated Real

Method β = 2 β = 3 β = 5 CALLHOME-2spk CSJ

i-vector + AHC 33.74 30.93 25.96 12.10 27.99
x-vector (TDNN) + AHC 28.77 24.46 19.78 11.53 22.96
BLSTM-EEND [23] 12.28 14.36 19.69 26.03 39.33
SA-EEND [24] 4.56 4.50 3.85 9.54 20.48
EEND-EDA (Chronol.) 3.07 2.74 3.04 8.24 18.89
EEND-EDA (Shuffled) 2.69 2.44 2.60 8.07 16.27

Table 3.2: DERs (%) for three-speaker evaluations. 0.25 s of collar tolerance was
allowed.

Simulated Real

Method β = 2 β = 3 β = 5 CALLHOME-3spk

x-vector (TDNN) + AHC 31.78 26.06 19.55 19.01
SA-EEND [24] 8.69 7.64 6.92 14.00
EEND-EDA (Chronol.) 13.02 11.65 10.41 15.86
EEND-EDA (Shuffled) 8.38 7.06 6.21 13.92

Three-speaker experiment

We also evaluated the method under the three-speaker condition. We first trained
the model on Sim3spk and then adapted it to CALLHOME-3spk Part 1. We vali-
dated the performance on Sim3spk using the model trained on Sim3spk and that
on CALLHOME-3spk Part 2 using the model adapted to CALLHOME-3spk Part 1.
We used the first three attractors to evaluate EEND-EDA’s performance. As shown
in Table 3.2, EEND-EDA with sequence shuffling performed best on both simulated
and real datasets.

Effect of input order

For a better understanding of EDA, we tried various types of sequences as inputs to
the models, each of which was trained on chronologically ordered sequences and
shuffled sequences. We evaluated matched and unmatched conditions of orders,
and we also evaluated the effect of reducing the sequence length by subsampling
or using the last 1/N part of the sequences. Table 3.3 shows the results on Sim2spk
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Table 3.3: DERs on Sim2spk (overlap ratio: 34.4 %) using various types of se-
quences.

(a) Using whole sequence

Method Test: Chronol. Test: Shuffled

EEND-EDA (Train: Chronol.) 3.07 30.04
EEND-EDA (Train: Shuffled) 2.69 2.69

(b) Subsample 1/N

Method N = 2 N = 4 N = 8 N = 16 N = 32

EEND-EDA (Train: Chronol.) 3.54 7.32 14.48 21.13 27.18
EEND-EDA (Train: Shuffled) 2.70 2.68 2.79 3.09 5.08

(c) Use the last 1/N

Method N = 2 N = 4 N = 8 N = 16 N = 32

EEND-EDA (Train: Chronol.) 3.67 4.97 5.40 6.11 7.68
EEND-EDA (Train: Shuffled) 3.36 5.92 7.46 8.59 10.65

(β = 2). The EEND-EDA that was trained on chronologically ordered sequences
performed well on chronologically ordered sequences but did poorly on shuffled
sequences. It was also affected by subsampling, while it was slightly influenced
by using the last 1/N part. These results indicate that the length of each utter-
ance is an important factor to decide the output attractors for the model trained
on chronologically ordered sequences. On the other hand, when the model was
trained on shuffled sequences, it was not that affected by the order of sequences
nor subsampling. However, when the last 1/N of the sequences were used, its
performance degradation was worse than the model trained on chronologically or-
dered sequences. These results indicate that EDA trained on shuffled sequences
captured the distribution of embeddings; thus, subsampling did not affect the per-
formance that much, while using the last 1/N, i.e., biased sampling, degraded the
DERs.

Embedding visualization

For intuitive understanding of the behavior of EDA, we visualized the embeddings
et and attractors as within a two-speaker mixture from Sim2spk (β = 2) in Fig-
ure 3.3(b). They were projected to two-dimensional space by using principal com-
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Figure 3.3: Visualization of embedding and attractors within each recording. For
conventional EEND, weights of last fully connected layer Wcls were visualized in-
stead of attractors.

ponent analysis (PCA). We observed that the embeddings of two speakers were
well distinguished from those of silence frames, and those of overlapped frames
were distributed between the areas of the two speakers. For EEND-EDA, two at-
tractors were calculated for each of the two speakers successfully as in Figure 3.3(b);
each hyperplane orthogonal to the attractor divides the embeddings into two parts,
depending on whether the corresponding speaker is active or not. In Figure 3.3(a),
in comparison, the fixed attractors Wcls of the conventional EEND were not well
separated compared with the attractors calculated using EDA.

To understand the characteristics of attractors from EDA, we also visualized the
inter-mixture relationship of attractors. For visualization, we first chose an anchor
speaker and then selected mixtures that contained the anchor speaker. We calcu-
lated two attractors from each mixture by using EEND-EDA and mapped them
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Figure 3.4: Visualization of attractors across recordings. Selected speakers’ attrac-
tors are marked by dots, and their interference speakers’ attractors are marked by
crosses. Colors of crosses correspond to speaker identities within each figure. Each
pair of attractors from same mixture are connected with gray line.

onto a two-dimensional space using PCA. The speaker assignment from the cal-
culated attractors to speaker identifiers was based on the groundtruth labels. Fig-
ure 3.4 shows the attractors of two-speaker mixtures that contain the same anchor
speaker. It clearly shows that the each anchor speaker’s attractors were not dis-
tributed near each other.

From these results, the embeddings and attractors were calculated only to sepa-
rate speakers in each mixture. We can also say that the attractors were not suited for
speaker identification. This also supports the idea that attractors are adaptively cal-
culated from input embeddings. A similar observation on attractors from DANet
[86] in speech separation was provided in Section 5 of [93] that attractors cannot be
used for speaker identification or tracing.

Evaluation on the mismatched number of speakers

We also evaluated two-speaker EEND-EDA on three-speaker datasets, and three-
speaker EEND-EDA on two-speaker datasets. We used the model trained on
Sim2spk or Sim3spk for the evaluation on the simulated datasets, and used the
model adapted to CALLHOME-2spk or CALLHOME-3spk for the evaluation on
the real datasets. The order of the embeddings is shuffled before being fed into
EDA. The results are shown in Table 3.4. It is clearly observed that the DERs de-
graded when the number of speakers during training and inference was different. It
is worth mentioning that three-speaker EEND-EDA did not work well on the two-
speaker datasets; this indicates that the larger number of speakers during training
does not serve the smaller number of speakers during inference.
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Table 3.4: DERs (%) of cross evaluations of two- and three-speaker EEND-EDA.
0.25 s of collar tolerance was allowed.

Two-speaker datasets Three-speaker datasets

Sim2spk CALLHOME Sim3spk CALLHOME
Model (β = 2) -2spk (β = 5) -3spk

Two-speaker EEND-EDA 2.69 8.07 28.79 20.80
Three-speaker EEND-EDA 15.12 9.95 8.38 13.92

Table 3.5: Step-by-step improvement on simulated datasets. For Sim2spk and
Sim3spk, we used β = 2 and β = 5, respectively. In Lexist column, we show which
parameters were updated using Lexist during training.

Simkspk

Model Training data #Epochs Lexist k = 1 k = 2 k = 3 k = 4 k = 5

EEND-EDA

k ∈ {1, . . . , 4} 25 Update all the parameters in fEEND 0.39 4.33 8.94 13.76 N/A
k ∈ {1, . . . , 4} 25 Update only wexist and bexist 0.25 4.06 7.68 10.12 23.08
k ∈ {1, . . . , 5} 25 Update only wexist and bexist 0.21 4.22 8.25 10.75 13.70
k ∈ {1, . . . , 5} 50 Update only wexist and bexist 0.36 3.65 7.70 9.97 11.95

SA-EEND
k ∈ {1, . . . , 4} 50 N/A 0.60 4.39 9.40 13.56 25.22
k ∈ {1, . . . , 5} 50 N/A 0.50 3.95 9.18 12.24 17.42

3.2.6 Results of Unknown-Numbers-of-Speakers Experiments

Simulated mixtures

To train EEND-EDA to output flexible numbers of speakers’ results, we finetuned
the model from the two-speaker model for at most 50 epochs using Sim1spk to
Sim4spk or Sim1spk to Sim5spk. Table 3.5 shows the step-by-step improvement
of the model. Note that the results on the top row correspond to our previous pa-
per [71]. First, disabling backpropagation from the attractor existence loss Lexist to
update only wexist and bexist improved the DERs for Sim1spk to Sim4spk. How-
ever, we observed that the model still did not perform well on Sim5spk, which
was not included in the training set. Adding Sim5spk to the training set solved the
problem as shown in the third row, which shows DERs that improved for Sim5spk
from 23.08 % to 13.70 %. This indicates that EEND-EDA’s number of output speak-
ers was empirically limited by its training datasets, even though it does not limit
the number of output speakers with its network architecture. Increasing the num-
ber of training epochs further improved the DERs as shown in the last row. We
also showed the DERs computed by SA-EEND [24] trained on a flexible number of
speakers’ dataset in the last two rows. In each case, the model’s output number of
speakers was set to the maximum number of speakers in the dataset, i.e., four or
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five, and the model was trained to output null speech activities if a recording of a
fewer number of speakers was input. EEND-EDA outperformed SA-EEND in all
datasets. Hereafter, we use the EEND-EDA model of the fourth row (k ∈ {1, . . . , 5},
50 epochs, using Lexist to update only wexist and bexist during training) and the SA-
EEND model of the sixth row (k ∈ {1, . . . , 5}, 50 epochs).

CALLHOME

Since the CALLHOME dataset does not include an official dev/eval split, we used
the split provided in the Kaldi recipe and performed cross-validation. For com-
parison with the prior work on EEND, we also report the results obtained for Part
2 of the dataset using the model adapted to Part 1. For SAD post-processing de-
scribed in Section 3.2.3, we used the TDNN-based SAD provided in the Kaldi AS-
pIRE recipe1 and oracle speech segments.

We show the number-of-speakers-wise results of cross-validation in Table 3.6(a).
We also show the results for only evaluated single speaker regions in brackets. For
this purpose, we chose up the most probable speakers from each time frame of
the EEND-EDA results for fair comparison with x-vector-based methods. EEND-
EDA outperformed the state-of-the-art x-vector-based methods in total DERs. One
reason is that EEND-EDA can handle speaker overlap, but it showed a competi-
tive DER (5.29 %) even when speaker overlaps were excluded from the evaluation.
Considering the number of speakers in a mixture, EEND-EDA did especially better
than the x-vector-based methods with VBx clustering when the number of speak-
ers was small (# of speakers=2,3,4), while it was worse or on par when the number
of speakers was large (# of speakers=5,6,7). One reason is that the pretraining was
based on mixtures with at most five speakers, and another reason is that mixtures
of a larger number of speakers are rare in the CALLHOME dataset. Compared to
SA-EEND, EEND-EDA achieved better DERs on all the cases. Table 3.6(b) shows
the results on CALLHOME Part2. It clearly shows that EEND-EDA outperformed
the other EEND-based methods [83, 94] by over two percent of absolute DER.

Table 3.7 shows confusion matrices for the speaker counting of x-vector (TDNN)
+ AHC, x-vector (ResNet101) + AHC + VBx [4], SC-EEND [83], and EEND-EDA on
CALLHOME Part 2. Our method achieved a higher speaker counting accuracy
than the other methods by a large margin.

1https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire/s5
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Table 3.6: DERs (%) of CALLHOME. 0.25 s of collar tolerance was allowed. TDNN-
based x-vector results were obtained with Kaldi recipe. DERs of single-speaker
regions are reported in brackets. AHC: agglomerative hierarchical clustering, VB:
Variational Bayes resegmentation [3], VBx: Variational Bayes HMM clustering [4].

(a) Results of cross-validation.

# of speakers

Method SAD 2 3 4 5 6 7 Total

SA-EEND - 8.51 19.84 26.16 36.82 48.52 38.24 19.82 (13.38)
EEND-EDA - 8.18 15.05 16.54 27.29 31.40 37.23 14.81 (8.68)

X-vector (TDNN) + AHC TDNN 14.66 18.42 20.46 31.40 32.62 46.43 19.48 (10.25)
X-vector (TDNN) + AHC + VB TDNN 11.68 17.22 19.71 30.24 32.07 46.49 17.80 (8.29)
SA-EEND TDNN 7.42 18.10 21.80 31.69 44.61 35.09 17.41 (10.66)
EEND-EDA TDNN 6.79 13.74 15.53 25.25 27.65 34.49 13.36 (7.12)

X-vector (TDNN) + AHC Oracle 13.68 17.04 17.89 29.96 32.55 45.20 18.04 (8.54)
X-vector (TDNN) + AHC + VB Oracle 10.94 15.85 17.40 29.23 33.97 42.69 16.57 (6.63)
X-vector (ResNet101) + AHC + VBx [4] Oracle 9.83 15.23 14.29 19.24 25.76 36.25 14.21 (4.42)
SA-EEND Oracle 6.02 16.28 20.26 30.42 43.51 35.09 15.90 (8.99)
EEND-EDA Oracle 5.50 12.17 12.86 23.17 27.96 34.08 11.72 (5.29)

(b) Results on CALLHOME Part 2.

Method SAD DER

SA-EEND - 21.19
SC-EEND [83] - 15.75
SAD-OD-fiert SC-EEND [94] - 15.32
EEND-EDA (From [71]) - 15.29
EEND-EDA - 12.88

X-vector (TDNN) + AHC TDNN 19.43
X-vector (TDNN) + AHC + VB TDNN 17.61
SA-EEND TDNN 19.85
EEND-EDA TDNN 13.84

X-vector (TDNN) + AHC Oracle 17.02
X-vector (TDNN) + AHC + VB Oracle 15.57
X-vector (ResNet101) + AHC + VBx [4] Oracle 13.33
SA-EEND Oracle 16.79
EEND-EDA Oracle 10.46
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Table 3.7: Confusion matrices for speaker counting on CALLHOME Part 2. X-
vector-based results were obtained with oracle SAD, while EEND-based results
were obtained without external SAD.

(a) X-vector (TDNN) + AHC
(Accuracy=56.4 %)

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 0 2 1 0 0 0

2 0 87 19 3 0 0
3 0 59 51 14 3 2
4 0 2 4 3 2 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0

(b) X-vector (ResNet101) + AHC +
VBx [4] (Accuracy=72.0 %)

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 0 21 3 0 0 0

2 0 122 22 2 0 0
3 0 3 44 7 0 0
4 0 2 5 10 2 1
5 0 0 0 1 3 0
6 0 0 0 0 0 1
7 0 0 0 0 0 1

(c) SC-EEND [83] (Accuracy=76.4 %)

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 0 1 0 0 0 0

2 0 134 20 4 0 0
3 0 13 51 10 4 2
4 0 0 3 6 1 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0

(d) EEND-EDA (Accuracy=84.4 %)

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 0 1 0 0 0 0

2 0 142 7 1 0 0
3 0 5 54 4 0 0
4 0 0 13 14 4 1
5 0 0 0 1 1 2
6 0 0 0 0 0 0
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Table 3.8: DERs and JERs (%) for AMI headset mix. No collar tolerance was al-
lowed.

Dev Eval

Method SAD DER JER DER JER

SA-EEND - 31.66 39.20 27.70 37.50
EEND-EDA - 21.93 25.86 21.56 29.99

X-vector (ResNet101) + AHC Oracle 19.61 23.90 21.43 25.50
X-vector (ResNet101) + AHC + VBx [4] Oracle 16.33 20.57 18.99 24.57
SA-EEND Oracle 23.95 35.64 20.88 34.38
EEND-EDA Oracle 15.69 22.19 15.80 26.68

AMI headset mix

We next evaluated our method on the AMI headset mix, which has a different do-
main from the pretraining data (telephone conversation vs. meeting). We trained
the model on the training set for 500 epochs and evaluated it on the dev and eval
sets. The oracle speech segments were also used for SAD post-processing.

The results are shown in Table 3.8. EEND-EDA outperformed the x-vector-
based methods on both the dev and eval sets with the oracle SAD. Note that the
x-vector-based methods tuned the PLDA parameters on the dev set, so the superi-
ority of EEND-EDA was smaller on the dev set than the eval set. EEND-EDA also
outperformed SA-EEND with and without the oracle SAD. We also note that the
average duration of the recordings in the AMI headset mix test set is over 30 min.
The performance of EEND-EDA showed that EEND-EDA generalized well to such
long recordings while using 200 s segments during adaptation.

DIHARD II & III

Finally, we evaluated our method on the DIHARD II and III datasets, which contain
recordings from multiple domains. In this evaluation, we used iterative inference
with and without DOVER-Lap, each of which are described in Section 3.2.3, to deal
with large numbers of speakers. For SAD post-processing, we used oracle segments
and the system used in the Hitachi-JHU submission to the DIHARD III challenge
[67].

The results are shown in Tables 3.9 and 3.10. We can see that iterative inference
with DOVER-Lap (iterative inference+) consistently improved DERs. Compared
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Table 3.9: DERs and JERs (%) for DIHARD II eval. No collar tolerance was allowed.

Method SAD DER JER

SA-EEND - 32.14 54.32
EEND-EDA - 29.57 51.50
EEND-EDA (Iterative inference) - 29.41 49.61
EEND-EDA (Iterative inference+) - 28.52 49.77

X-vector (TDNN) + AHC + VBx [49] BUT [49] 27.11 49.07
SA-EEND BUT [49] 32.01 54.66
EEND-EDA BUT [49] 30.48 51.78
EEND-EDA (Iterative inference) BUT [49] 29.80 49.99
EEND-EDA (Iterative inference+) BUT [49] 29.09 50.45

DIHARD II baseline [95] Oracle 28.81 50.12
X-vector (TDNN) + AHC + VBx [49] Oracle 18.21 N/A
X-vector (ResNet101) + AHC [4] Oracle 23.59 43.93
X-vector (ResNet101) + AHC + VBx [4] Oracle 18.55 43.91
SA-EEND Oracle 23.25 50.30
EEND-EDA Oracle 20.54 46.92
EEND-EDA (Iterative inference) Oracle 21.00 45.30
EEND-EDA (Iterative inference+) Oracle 20.24 45.62

with the x-vector-based methods, EEND-EDA performed best on DIHARD III full,
while the x-vector-based methods were better on DIHARD II and DIHARD III core.

We show the number-of-speakers-wise DERs and JERs on DIHARD III in Ta-
ble 3.11. Our method performed better when the number of speakers was small
and worse when the number of speakers was large. This is why EEND-EDA per-
formed well on DIHARD III full and worse on DIHARD II and DIHARD III eval.
We also observed that the proposed iterative inference+ improved the performance,
especially in terms of JERs on a large number of speaker cases, but it was still worse
than the x-vector method. From these results, handling a large number of speakers
with EEND is the remaining challenge.

3.2.7 Analysis

As shown in Table 3.5, the maximum number of speakers to be output was empir-
ically revealed to be limited by the dataset used during training. For example, if
EEND-EDA is trained using mixtures, each of which contains at most four speak-
ers, it cannot produce a valid result for the fifth or later speaker even if a mixture
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Table 3.10: DERs and JERs (%) for DIHARD III eval. No collar tolerance was al-
lowed.

Core Full

Method SAD DER JER DER JER

SA-EEND - 27.49 49.64 22.64 43.14
EEND-EDA - 25.94 47.76 21.55 41.15
EEND-EDA (Iterative inference) - 25.76 45.35 21.40 39.09
EEND-EDA (Iterative inference+) - 24.77 45.18 20.69 39.07

X-vector (TDNN) + AHC + VBx [67] Hitachi-JHU [67] 22.99 42.44 21.48 38.73
X-vector (TDNN) + AHC + VBx + OVL [67] Hitachi-JHU [67] 24.58 42.02 21.47 37.83
SA-EEND Hitachi-JHU [67] 25.79 49.20 21.29 42.68
EEND-EDA Hitachi-JHU [67] 23.96 46.82 20.03 40.31
EEND-EDA (Iterative inference) Hitachi-JHU [67] 24.41 44.70 20.30 38.47
EEND-EDA (Iterative inference+) Hitachi-JHU [67] 23.43 44.93 19.53 38.78

DIHARD III baseline [96] Oracle 20.65 47.74 19.25 42.45
X-vector (TDNN) + AHC + VBx [67] Oracle 16.89 38.49 15.83 34.27
X-vector (TDNN) + AHC + VBx + OVL [67] Oracle 18.20 38.42 15.65 33.71
X-vector (ResNet152) + AHC + VBx [97] Oracle 16.56 38.72 15.79 34.46
SA-EEND Oracle 20.21 46.17 16.19 39.44
EEND-EDA Oracle 18.38 43.69 14.91 36.93
EEND-EDA (Iterative inference) Oracle 18.87 41.58 15.21 35.08
EEND-EDA (Iterative inference+) Oracle 17.86 41.69 14.42 35.30

Table 3.11: Breakdown results of DIHARD III eval for each number of speakers
with oracle speech segments.

(a) DER (%)

# of speakers

Method 1 2 3 4 5 6 7 8 9

X-vector (TDNN) + AHC + VBx 1.30 11.43 16.76 23.09 44.99 26.43 25.61 35.57 2.03
EEND-EDA 2.80 7.52 15.79 25.63 47.66 31.73 35.47 38.19 18.73
EEND-EDA (Iterative inference+) 1.47 6.98 15.55 26.32 47.48 31.44 34.79 38.26 14.99

(b) JER (%)

# of speakers

Method 1 2 3 4 5 6 7 8 9

X-vector (TDNN) + AHC + VBx 2.40 16.99 44.68 44.70 66.17 53.32 56.05 56.71 8.01
EEND-EDA 3.37 11.77 38.70 48.37 67.40 64.85 67.77 69.00 57.60
EEND-EDA (Iterative inference+) 3.31 11.34 39.60 48.76 68.46 62.41 62.65 65.36 41.23
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Figure 3.5: t-SNE visualization of frame-wise embeddings extracted from simu-
lated 5-speaker mixtures (top) and 6-speaker mixtures (bottom). The EEND-EDA
used for extraction was trained using {1,2,3,4}-speaker mixtures. Single-speaker
frames are denoted by the dots with colors corresponding to the speaker identities
and overlapped frames are denoted by the crosses in light gray. Frames of silence
were excluded from the visualization.

contains more than four speakers.

To reveal which part causes this limitation, we visualized the frame-wise em-
beddings that were output from the last Transformer encoder using t-SNE [98] in
Figure 3.5. Even though EEND-EDA was trained on mixtures, each of which con-
sists of at most four speakers, five or six speakers’ speeches were clearly separated
in the embedding space. The visualization revealed that the EDA restricted the
output number of speakers.

3.3 End-to-End Speaker Diarization for Unlimited Num-
bers of Speakers

This section proposes a method to overcome the limitation of the EDA to enable
overlap-aware speaker diarization of unlimited numbers of speakers.
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3.3.1 Related Work

One promising approach for removing the restriction on maximum number of
speakers described in Section 3.2.7 is to incorporate clustering into the inference.
For example, time-frequency-bin-wise embeddings extracted from a deep cluster-
ing model trained on two-speaker mixtures are still discriminative on three-speaker
mixtures [65]. In the diarization context, for example, EEND-vector clustering
[99, 100], in which a combination of EEND and speaker embedding clustering was
investigated, can deal with the mismatched condition. Here, we briefly introduce
EEND-vector clustering and how our method proposed in this section is differenti-
ated from it.

EEND-vector clustering uses EEND for shortly divided blocks and then finds
the speaker corresponding between them using speaker embeddings. It is relevant
to our method in this thesis, but some differences exist between them. One is that
EEND-vector clustering requires unique speaker identity labels over the recordings
in the training set. This means that we must know whether or not a pair of speakers
that appeared in different recordings has the same identity. Such information can be
easily obtained from simulation data but is not always suitable for real recordings.
EEND-GLA only requires the speaker labels within for each recording; thus, we can
use such real recordings for training. This property is also powerful when con-
ducting, for example, unsupervised or semi-supervised domain adaptation [101].
Another difference is that EEND-vector clustering requires a somewhat high length
of blocks (e.g., 30 s) to obtain reliable speaker embeddings to achieve the best perfor-
mance. However, because the number of output speakers within a block is limited
by the network architecture, the length would result in a limited output number
of speakers in the final results. Another problem is that the length causes a severe
latency if we want to use it for online inference. However, EEND-GLA splits a
sequence into short blocks after generating frame-wise embeddings from acoustic
features using stacked Transformer encoders. As a result, the frame-wise embed-
dings can capture the global context, so we can use a lower block length (5 s in this
thesis) than EEND-vector clustering.

3.3.2 End-to-End Neural Diarization with Global and Local Attractors

To overcome the limitation of the EDA, we use the nature that the number of speak-
ers speaking in a short period is low. The core idea of the method is that we first
conduct attractor-based diarization for each short block and then find inter-block
speaker correspondence on the basis of the similarity of the attractors. We call the
attractors calculated within each block local attractors. Even if the number of speak-
ers within each block is limited owing to EDA, the total number of speakers within
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a recording can be higher than the upper bound. Our method also utilizes global-
attractor-based diarization just as EEND-EDA does.

Training

Figure 3.6 illustrates the proposed diarization based on global and local attractors,
which we call EEND-GLA. The global-attractor-based diarization is identical to
EEND-EDA described in Section 3.2; in this section, we introduce local-attractor-
based diarization. Given frame-wise embeddings E, we first split them into short
blocks, each of which has a length of λ. Here, we assume that the embeddings is
split into L blocks, i.e., E :=

[
E(1) · · · E(L)

]
, where E(l) ∈ RD×λ for l ∈ {1, . . . , L}

and L := T
λ

2. From the l-th block, local attractors a(l)
1 , . . . , a(l)

Sl
=: A(l) are calculated

using (3.5) and (3.2), and the speech activities for the l-th block Ŷ(l) ∈ (0, 1)Sl×λ are
calculated using (3.6). Here, Sl is the number of speakers that appeared in the l-th
block, which satisfies 0 ≤ Sl ≤ S. The diarization loss L(l)

diar and attractor existence

loss L(l)
exist for the l-th block are calculated using (2.15) and (3.8), respectively.

The local attractors are also used for finding inter-block speaker correspondence
with clustering. The local attractors themselves are optimized to minimize the di-
arization error; thus, we convert them by using the following Transformer decoder:

B(l) = TransformerDecoder
(

A(l), E, E
)
∈ RD×Sl , (3.17)

where the first, second, and third arguments for the Transformer decoder are query,
key, and value inputs, respectively. Here, the converted attractors B are expected
to be speaker discriminative within each input audio, so we refer to them as rel-
ative speaker embeddings. The relative speaker embeddings from all the blocks
are gathered B = [bi]i :=

[
B(1), . . . , B(L)

]
∈ RD×S∗ and optimized to minimize the

pairwise loss defined as follows:

Lpair = ∑
i,j∈{1,...,S∗}

1
S2cicj

(
χij
(
1− sim

(
bi, bj

))
+

(
1− χij

) [
sim

(
bi, bj

)
− δ
]
+

)
, (3.18)

χij =

{
1
(
bi and bj are from the same block

)
0 (otherwise)

, (3.19)

where S∗ := ∑L
l=1 Sl is the total number of local attractors, sim

(
bi, bj

)
:= bT

i bj

∥bi∥∥bj∥
is the cosine similarity between bi and bj, and [·]+ is the hinge function. ci (cj) is

2For simplicity, we assume that the length of sequence T is divisible by λ, but in practice, the
length of the last block can be shorter than λ.
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Figure 3.6: End-to-end neural diarization with global and local attractors (EEND-
GLA). The attractor existence losses are omitted from the illustration.
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the number of local attractors that correspond to the i-th (j-th) attractor’s speaker,
and this correspondence is obtained by finding the optimal speaker permutation
when calculating the diarization loss using (2.15). This pairwise loss aims to make
the angle between relative speaker embeddings of the same speaker as small as
possible and those of different speakers at least arccos δ. Note that this loss defi-
nition is based on the contrastive loss used for instance segmentation in computer
vision [102, 103]. The process of grouping pixel-wise embeddings into instances is
very similar to our problem setting of grouping local attractors into speaker identi-
ties. While x-vectors or frame-wise embeddings cannot be hardly assigned to one
of the speaker identities because of overlaps, the local attractors can be divided by
speaker identities because each of them corresponds to one speaker.

As a result, the loss based on local attractors is defined as

Llocal =
1
L

L

∑
l=1

(
L(l)

diar + αL(l)
exist

)
+ γLpair, (3.20)

where γ is the weighting parameter for which we set γ = 1 in this study. The total
loss of EEND-GLA is defined as a sum of global- and local-attractor-based losses:

Lboth = Llocal + Lglobal. (3.21)

Inference

During inference, the number of speakers within each block Ŝl ∈ Z≥0 is estimated
using (3.12), and speech activities of Ŝl speakers are estimated using (3.6). Speaker
correspondence between blocks can be found by clustering the relative speaker em-
beddings B, and the problem here is how to determine the number of clusters.

Some conventional studies [20, 47] were based on the following processes: 1)
construct an affinity matrix from frame-wise embeddings, 2) calculate its graph
Laplacian, 3) use eigenvalue decomposition, and 4) determine the number of speak-
ers as the value that maximizes the eigengap. Some tricks were used in these stud-
ies to reduce the effect of noise in the affinity matrix. In one study, an affinity matrix
calculated from frame-wise d-vectors was smoothed by using Gaussian blur [20].
Another study utilized p nearest binarization to the affinity matrix to remove unre-
liable values [47]. In our case, local attractors are extracted not only for each block
but also for each speaker within a block; thus, smoothing cannot be used. In our
method, a few local attractors are calculated every five seconds, and hence p near-
est neighbor binarization is also not suited because it generally requires dozens of
embeddings per cluster.

Therefore, in EEND-GLA, we use the unprocessed affinity matrix to estimate
the number of clusters. However, if we estimate it based on the eigengaps of graph
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Laplacian, noises cause a lot of tiny clusters because the size of clusters is not con-
sidered in this approach. Thus, we use the affinity matrix directly instead of its
graph Laplacian to penalize small clusters more. Given the positive-semidefinite
affinity matrix R =

(
rij
)
∈ [−1, 1]S

∗×S∗ , where rij = sim
(
bi, bj

)
, the number of

clusters Ŝ can be estimated using its eigenratios instead of eigengaps as

Ŝ = min
1≤s≤S∗−1

λs+1

λs
, (3.22)

where λ1 ≥ · · · ≥ λS∗ are the non-negative eigenvalues of R, which are obtained
with matrix decomposition:

R = V diag (λ1, . . . , λS∗)V−1, (3.23)

where each row of V ∈ RS∗×S∗ is the eigenvector that corresponds to the eigen-
values. Note that the eigenvalues indicate the number of elements of each cluster
where local attractors are softly assigned.

We used the hinge function to calculate the pairwise loss in (3.18), and we also
know that attractors from the same block correspond to different speakers. Thus,
instead of R, we use the affinity matrix R′ =

(
r′ij
)

defined as

r′ij =


1 (i = j)

(
bi and bj are from

the same block)
1

1−δ

[
sim

(
bi, bj

)
− δ
]
+

(otherwise)

, (3.24)

where 1 (cond) is the indicator function that returns 1 if cond is true and 0 other-
wise. Matrix decomposition is then applied to R′ to obtain eigenvalues λ′1 ≥ · · · ≥
λ′S∗ as the same manner as in (3.23). Although R′ is no longer positive-semidefinite,
its eigenvalues are still good indicators of the cluster size. We only use the eigen-
values of not less than one to estimate the number of speakers Ŝ as follows:

Ŝ = min
1≤s≤S∗−1

λ′s≥1

λ′s+1

λ′s
. (3.25)

Although we set the affinity value between a pair of local attractors from the
same block to be zero in (3.24), naive clustering methods cannot force them to be
assigned to different clusters. Thus, we utilize a clustering method that can use
cannot-link constraints. COP-Kmeans clustering [104], which is used in EEND-
vector clustering [100, 99] is one possible choice, but it sometimes cannot find the
solution. Thus, we use the CLC-Kmeans algorithm [105], which is the modified
version of the COP-Kmeans clustering, for inference of EEND-GLA. To avoid hav-
ing no solution due to cannot-link constraints, we update the estimated number of
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speakers before applying clustering as

Ŝ← max
(

Ŝ, max
1≤l≤L

Ŝl

)
. (3.26)

EEND-GLA is optimized using both global- and local-attractor-based losses as
in (3.21), and we can use not only local attractors but also global attractors for infer-
ence. Although local-attractor-based inference can deal with an arbitrary number
of speakers, we found that global-attractor-based inference performs better when
the number of speakers is low because it is trained in a fully supervised manner.
Therefore, we use the results from global and local attractors depending on the es-
timated number of speakers. Assume that EEND-GLA is trained on mixtures each
of which contains at most N speakers. If the estimated number of speakers using
global attractors is less than N, we use the inference results based on global attrac-
tors. However, if it is equal to or larger than N, we use the inference results based
on local attractors.

3.3.3 Experimental Settings

The initial training of each EEND-based model was based on the simulated mix-
tures shown in Table A.1. We first trained each EEND-based model using Sim2spk
from scratch for 100 epochs and then finetuned it using the concatenation of
Sim{1,2,3,4}spk for another 50 epochs. The Adam optimizer [92] with Noam sched-
uler [61] was used during the training using the simulated datasets. For online pur-
poses, the model was adapted using the adaptation set of Sim{1,2,3,4} for an ad-
ditional 100 epochs using variable chunk-size training (VCT). This time, the Adam
optimizer with a fixed learning rate of 1× 10−5 was used.

We also used the three real datasets shown in Table A.2 for evaluation: CALL-
HOME, DIHARD II, and DIHARD III. The model pretrained using Sim{1,2,3,4}spk
was further adapted to the CALLHOME, DIHARD II, and DIHARD III datasets, re-
spectively. The adaptation was conducted for another 100 epochs using the Adam
optimizer with a learning rate of 1× 10−5.

For EEND-GLA, we used four- or six-stacked Transformer encoders, each out-
putting 256-dimensional embeddings. We call each EEND-GLA-Small and EEND-
GLA-Large, respectively. For the inputs to the models, 345-dimensional acoustic
features extracted for each 100 ms were used, and they were obtained in the follow-
ing steps: 1) extract 23-dimensional log-mel filterbanks for every 10 ms, 2) apply
frame splicing (±7 frames), and 3) subsample by a factor of 10.

For evaluating offline diarization, we utilized several cascaded methods [4, 106,

53



CHAPTER 3. END-TO-END SPEAKER DIARIZATION FOR UNKNOWN NUMBERS OF
SPEAKERS

49, 107, 67] and end-to-end methods [71, 72, 83, 99] for comparison. For the eval-
uation protocol, we used DERs. Following the previous studies [72], we forgave
0.25 s of its collar tolerance in the evaluations of the simulated datasets and CALL-
HOME, while we did not allow such a collar in the evaluations of the DIHARD II
and DIHARD III datasets.

3.3.4 Results

Simulated dataset

We first evaluated EEND-GLA on the simulated datasets. The results are shown in
Table 3.12.

In the evaluation of offline processing, EEND-based methods outperformed the
x-vector clustering baseline in the Kaldi recipe3. EEND-EDA and EEND-GLA-
Small performed evenly on the datasets of the seen number of speakers, while
EEND-GLA-Small significantly outperformed EEND-EDA on the datasets of the
unseen number of speakers. It clearly showed that EEND-GLA-Small could deal
with a higher number of speakers than that observed during training by introduc-
ing clustering. It is worth mentioning that EEND-EDA sometimes outputs more
than four attractors, but the results in Table 3.12 in which ignoring the fifth and
subsequent attractors improved the DERs indicate that these attractors were not
correctly calculated to represent the fifth and subsequent speakers. Using EEND-
GLA-Large improved the DERs for the seen number of speakers, but those for the
unseen number of speakers were degraded. We considered this to be because the
network was overtrained on the seen number of speakers with the larger model.
For comparison, we also showed the DERs of EEND-EDA trained using mixtures,
each of which contained at most five speakers. It showed a better DER on five-
speaker mixtures, but the DER on six-speaker mixtures degraded rapidly. EEND-
GLA achieved DERs comparable to EEND-EDA for five-speaker mixtures and sig-
nificantly outperformed it for six-speaker mixtures.

Table 3.13 shows the DERs of EEND-GLA-Small obtained with various training
and inference strategies. Even when only local attractors were used during both
training and inference, it achieved better DERs than EEND-EDA for the unseen
numbers of speakers but worse ones for the seen numbers of speakers (first row).
Using the global attractors jointly for training improved the performance for the
seen numbers of speakers, but it was still not as good as EEND-EDA when only the
local attractors were used for inference (second row), especially when the number
of speakers was low (i.e., one- or two-speaker cases). This is because a small error

3https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome˙diarization/v2
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Table 3.12: DERs (%) on the simulated datasets with 0.25 s collar tolerance.

# of speakers

seen unseen

1 2 3 4 5 6

X-vector clustering 37.42 7.74 11.46 22.45 31.00 38.62
EEND-EDA [71, 72] 0.15 3.19 6.60 9.26 23.11 34.97
EEND-EDA [71, 72] † 0.15 3.19 6.60 8.68 22.43 33.28
EEND-GLA-Small 0.25 3.53 6.79 8.98 12.44 17.98
EEND-GLA-Large 0.09 3.54 5.74 6.79 12.51 20.42

EEND-EDA [71, 72] ‡ 0.36 3.65 7.70 9.97 11.95 22.59

† Four attractors were used at most.
‡ Trained on Sim{1,2,3,4,5}spk. Five attractors were

used at most.

Table 3.13: Offline DERs (%) of EEND-GLA-Small with various training and infer-
ence strategies. Loss: the training objective used for training. Inference: attractors
used during inference.

# of speakers

seen unseen

Loss Inference 1 2 3 4 5 6

Llocal (3.20) Local 8.85 12.71 10.31 11.14 14.11 19.36
Llocal + Lglobal (3.21) Local 2.84 10.21 7.54 9.08 12.40 18.03
Llocal + Lglobal (3.21) Local & Global 0.25 3.53 6.79 8.98 12.44 17.98

in the number of speakers (e.g., ±1) led to a high degradation of DER. Using the
results based on global attractors when the number of speakers was low resulted
in good DERs for both seen and unseen numbers of speakers (third row).

We also show the confusion matrices for speaker counting on the simulated
datasets in Table 3.14. The speaker counting accuracy of EEND-GLA-Small with
BW-STB outperformed that of EEND-EDA with FW-STB, and the gaps between
them were larger especially when the number of speakers was higher than four.
Note that EEND-EDA with FW-STB sometimes produced the results of more than
four speakers, but they did not help estimate the speech activities of more than four
speakers correctly as we stated in this section.
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Table 3.14: Confusion matrices for speaker counting on the simulated datasets.

(a) EEND-EDA

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 500 0 0 0 0 0

2 0 482 0 0 0 0
3 0 17 435 5 1 0
4 0 1 65 447 224 139
5 0 0 0 48 268 337
6 0 0 0 0 7 24

7+ 0 0 0 0 0 0

(b) EEND-GLA-Small

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 498 0 0 0 0 0

2 2 474 0 0 0 0
3 0 25 451 17 2 1
4 0 1 33 412 78 30
5 0 0 10 62 361 183
6 0 0 6 7 47 229

7+ 0 0 0 2 12 57

Table 3.15: DERs (%) of various offline diarization methods on CALLHOME with
0.25 s collar tolerance.

# of speakers

Method 2 3 4 5 6 All

VBx [4] † 9.44 13.89 16.05 13.87 24.73 13.28
MTFAD [106] N/A N/A N/A N/A N/A 14.31
SC-EEND [83] 9.57 14.00 21.14 31.07 37.06 15.75
EEND-EDA (Section 3.2) 7.83 12.29 17.59 27.66 37.17 13.65
EEND-vector clust. [99] 7.94 11.93 16.38 21.21 23.10 12.49
EEND-GLA-Small 6.94 11.42 14.49 29.76 24.09 11.92
EEND-GLA-Large 7.11 11.88 14.37 25.95 21.95 11.84

† The oracle SAD was used.

CALLHOME

Table 3.15 shows the DERs on the CALLHOME dataset. In the evaluation of offline
processing, EEND-GLA-Small and EEND-GLA-Large outperformed the conven-
tional methods with 11.92 % and 11.84 % DERs, respectively.

DIHARD II and III

Table 3.16 shows the results on the DIHARD II dataset. In offline diarization,
EEND-GLA-Small and EEND-GLA-Large improved the DERs from EEND-EDA,
especially when the number of speakers was higher than four. Compared with the
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Table 3.16: DERs (%) on DIHARD II with no collar tolerance.

# of speakers

Method ≤ 4 ≥ 5 All

BUT system [49] 21.34 39.85 27.11
VBx + overlap-aware resegmentation [107] 21.41 36.93 26.25
EEND-EDA [71] 22.09 47.66 30.07
EEND-GLA-Small 22.24 44.92 29.31
EEND-GLA-Large 21.40 43.62 28.33

Table 3.17: DERs (%) on DIHARD III with no collar tolerance.

# of speakers

Method ≤ 4 ≥ 5 All

VBx + overlap handling [67] 16.38 42.51 21.47
VBx + overlap-aware resegmentation [107] 15.32 35.87 19.33
EEND-EDA [71, 72] 15.55 48.30 21.94
EEND-GLA-Small 14.39 44.32 20.23
EEND-GLA-Large 13.64 43.67 19.49

cascaded method [97] or the cascaded method incorporated with EEND for post-
processing [107], EEND-GLA-Large performed on par with them when the number
of speakers was low, but not when the number of speakers was high.

We also show the DERs on the DIHARD III dataset in Table 3.17. The re-
sults were almost the same as those of the DIHARD II dataset. EEND-GLA-Large
achieved 19.49 % DER in offline diarization, which was as accurate as the best per-
forming conventional method [107].

3.4 Block-Online Speaker Diarization for Unlimited Num-
bers of Speakers

As introduced in Section 2.3.3, the original speaker-tracing buffer includes a frame-
wise selection step to meet the requirement of the buffer length. Hereafter, for sake
of distinction, we refer to it as FW-STB. When trying to use FW-STB with EEND-
GLA to perform online diarization of an unlimited number of speakers, the frame-
wise selection can become a problem if the selected frames are not consecutive in
the whole buffer. The FIFO strategy ensures that the frames in the buffer are consec-
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Figure 3.7: Online diarization using speaker-tracing buffer with block-wise update.

utive, but as mentioned in Section 2.3.3, it has difficulty in capturing long context.
On the other hand, while the sampling strategy can maintain long-range speaker
consistency, the buffer can potentially contain non-consecutive frames of many dif-
ferent speakers; thus, the assumption of a limited number of speakers in a limited
sequence of frames in the buffer does not hold. To overcome this dilemma, we
propose a block-wise speaker-tracing buffer (BW-STB).

3.4.1 Block-Wise Speaker-Tracing Buffer

The core idea of BW-STB is that it guarantees that the buffer consists of blocks,
and each block contains the features and the corresponding results of consecutive
frames. If each block in the buffer is short enough that we can assume a limited
amount of speakers, EEND-GLA can be used in the same way as the offline infer-
ence in which local attractors are obtained from the blocks formed by consecutive
frames. However, a naive implementation that waits for block-length features to ac-
cumulate and then processes them would result in block-length latency. Thus, we
use a frame-wise FIFO buffer and block-wise sampling buffer together to enable a
low-latency online inference of EEND-GLA.

Figure 3.7 shows the proposed BW-STB. For simplicity, we assume that the
buffer length M is divisible by and longer than the block length λ, and λ is di-
visible by the online processing unit ν. M-length BW-STB is divided into blocks of
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length λ each. The first M
λ − 1 is updated via block-wise sampling, and the last one

is updated in a frame-wise FIFO manner. We call them the sampling buffer and the
FIFO buffer, respectively. The features in BW-STB before the n-th input Xn ∈ RF×ν

can be written as

X(buf)
n−1 =

[
X(samp)

n−1 X(FIFO)
n−1

]
∈ RF×M, (3.27)

X(samp)
n−1 =

[
X(samp)

n−1 [1] . . . X(samp)
n−1

[M
λ − 1

]]
∈ RF×(M−λ). (3.28)

Here, X(samp)
n−1 are the features in the sampling buffer, where each X(samp)

n−1 [k] ∈
RF×λ

(
k ∈

{
1, . . . , M

λ − 1
})

are the features of consecutive λ frames. X(FIFO)
n−1 ∈

RF×λ is the features in the FIFO buffer, which contains those of the latest consec-
utive λ frames. In addition, each buffer contains the corresponding diarization
results Y(samp)

n−1 ∈ (0, 1)Ŝn−1×(M−λ) and Y(FIFO)
n−1 ∈ (0, 1)Ŝn−1×λ.

Given the input Xn, the features in the FIFO buffer are first updated as

X(FIFO)
n = X(FIFO)

n−1

[
Oν,λ−ν Oν,ν

Iλ−ν Oλ−ν,ν

]
+ Xn

[
Oν,λ−ν Iν

]
, (3.29)

where Ia is an a× a identity matrix. Note that the first λ− ν columns of X(FIFO)
n are

identical to the last λ− ν columns of X(FIFO)
n−1 , and the last ν columns of X(FIFO)

n are
identical to Xn. Then, the diarization results are calculated from the concatenation
of the features in the sampling and FIFO buffers as[

Ŷ(samp)
n−1 Ŷ(FIFO)

n

]
= fEEND

([
X(samp)

n−1 X(FIFO)
n

])
. (3.30)

With this estimation, the number of speakers is aligned via zero padding as de-
scribed in Section 2.3.3, and then the speaker order of Ŷ(samp)

n−1 and Ŷ(FIFO)
n is aligned

to that of Y(samp)
n−1 using (2.31)–(2.33). Next, we output the last ν columns of the

updated Y(FIFO)
n , which correspond to the input Xn.

The sampling buffer is updated every time the FIFO buffer is fully replaced, i.e.,
after processing the n-th input where n ≡ 0 mod λ

ν . During updates, M
λ − 1 blocks

are selected from X(samp)
n−1 [1] . . . X(samp)

n−1

[M
λ − 1

]
and X(FIFO)

n , and they are stored as

X(samp)
n in the sampling buffer. The sampling probability of each block is calculated

as a sum of ω̃t of the frames in the block calculated using (2.38).

With the aforementioned BW-STB, the online inference having the algorithmic
latency of ν (≪ λ) is enabled. Note that online diarization is performed using the
FIFO buffer in the same way as FW-STB from the first to λ

ν -th iterations because the
sampling buffer is empty.
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Table 3.18: Example of sampling weights determined by (2.36) and (3.31).

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

y1,t 0.999 0.999 0.999 0.999 0.999 0.001 0.001 0.001
y2,t 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.999

ω̃t by (2.38)(2.36) 0.167 0.167 0.167 0.167 0.167 0.000 0.000 0.167
ω̃t by (2.38)(3.31) 0.101 0.101 0.101 0.101 0.101 0.000 0.000 0.497

3.4.2 Speaker-Balanced Sampling Probabilities

The score in (2.36) is designed to weigh more on frames where a single speaker
dominates the conversation; as a result, the speaker-tracing buffer becomes in-
formative enough to solve the speaker permutation ambiguity in (2.31)–(2.32).
However, in the case where some speakers dominate the conversation, the buffer
contents might be biased toward those speakers, and hence the permutation am-
biguity cannot be solved correctly. For example, in the two-speaker example
shown in Table 3.18, ω̃t is maximized at t ∈ {1, 2, 3, 4, 5, 8}, where (y1,t, y2,t) ∈
{(0.001, 0.999) , (0.999, 0.001)}. If t = 8 is not selected to be stored in the buffer
and the third speaker emerges in the next input, we cannot distinguish between
the second and third speakers.

To make the buffer unbiased, we introduce the weighting factor rt into the sam-
pling probability ωt to balance the number of frames to be stored for each speaker.
We propose the following alternative:

ωt = rt

Sn

∑
s=1

ȳs,t log (ȳs,tSn)︸ ︷︷ ︸
(2.36)

, (3.31)

where rt is defined as

rt =
S

∑
s=1

ys,t

∑T
t′=1 ys,t′

. (3.32)

By this modification, in Table 3.18, the sampling probability of t = 8 becomes about
a five times larger value (0.497) than that of t ∈ {1, 2, 3, 4} (0.101); thus, it is more
likely to prevent the buffer from storing information that is biased toward the dom-
inant speaker, i.e., the first speaker.
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Sample 1-1
Sample 2-1
Sample 3-1
Sample 4-1
Sample 1-2
Sample 2-2
Sample 3-2
Sample 4-2
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Figure 3.8: Batch creation in the VCT.

3.4.3 Variable Chunk-Size Training via Minibatch Reshaping

The VCT described in the last paragraph of Section 2.3.3 varied the length of se-
quence by masking a part of each sequence (Figure 3.8(b)). However, its calcula-
tion efficiency is low because the masked part does not contribute to the network
optimization while still consuming GPU memory during training.

Therefore, we consider a method to use inputs of various lengths in the train-
ing process by reshaping the minibatch instead of masking. If the minibatch at an
iteration has minibatch size B and input length T, we first reshape it to be a new
minibatch with the size B′ = BT

T′ and length T′, and then use it for training. For Fig-
ure 3.8, the original minibatch has the size of four (Figure 3.8(a)), and the reshaped
minibatch has the size of eight by setting T′ = T

2 (Figure 3.8(c)). In this thesis, we
set B = 64 and T = 2000, and in each iteration, with a probability of 50 %, we set T′

to one of {50, 100, 200, 500, 1000} to conduct VCT.

3.4.4 Experimental Settings

For online purpose, the models used in Section 3.3 were adapted using variable
chunk-size training (VCT). To evaluate the performance on the simulated datasets,
the models trained using Sim{1,2,3,4}spk were adapted using the adaptation set of
Sim{1,2,3,4}spk for an additional 100 epochs. To evaluate the performance on the
real datasets, the models trained on the simulated mixtures were adapted to the
CALLHOME, DIHARD II, and DIHARD III datasets, respectively. This time, the
Adam optimizer with a fixed learning rate of 1× 10−5 was used.

Unless otherwise specified, the length of an online processing unit ν was set to
1 s, and the buffer length was set to 100 s. The block length λ of the BW-STB was
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Table 3.19: Step-by-step improvement in the online inference of EEND-EDA on the
CALLHOME dataset. VCT: Variable chunk-size training.

Buffer length (s)

VCT ωt 1 2 5 10 20 50 100 ∞

FW-STB [2] † None (2.36) N/A N/A N/A 26.6 N/A 20.0 19.5 N/A
FW-STB [2] None (2.36) 89.79 76.98 43.87 28.13 21.82 19.69 18.54 18.34
FW-STB Mask (2.36) 50.56 44.95 27.48 21.53 18.12 16.82 16.78 15.69
FW-STB Reshape (2.36) 44.11 36.61 25.41 20.54 18.11 16.20 15.74 15.00
FW-STB Reshape (3.31) 45.60 37.36 24.19 20.10 16.79 15.50 14.93 15.00
BW-STB Reshape (3.31) N/A N/A N/A 24.27 16.84 15.03 15.06 15.42

† The values are from the original FW-STB paper [2].

set to 5 s following EEND-GLA [108]; as a result, the length of sampling and FIFO
buffers are 95 s and 5 s, respectively.

For evaluating online diarization, we used FW-STB with EEND-EDA based on
four-stacked Transformers [2]. In addition, we referred to the results of various
conventional online diarization methods [21, 51, 109, 110, 2, 69, 52] on various
datasets. Some cascaded comparison methods [21, 51, 110] used the oracle SAD;
for a fair comparison, we used SAD post-processing [72] for the results of EEND-
based methods to recover missed speech and filter false-alarmed speech.

3.4.5 Evaluation of the Variations of Speaker-Tracing Buffer

Before we dive into the evaluation of EEND-GLA, we evaluated the effects of
each modification on the speaker-tracing buffer using EEND-EDA. Step-by-step
improvement on the CALLHOME dataset is shown in Table 3.19. The DERs were
significantly reduced by using VCT. In a comparison of the results in the third and
fourth lines, VCT by reshaping outperformed that by masking in all the conditions.
Introducing the speaker-balancing term in the sampling probability as in (3.31) im-
proved the DERs except when the buffer length was too short to store enough infor-
mation to solve the speaker permutation ambiguity, as in the fifth line. Finally, re-
placing FW-STB with BW-STB did not affect the diarization performance as shown
in the last line, except when the buffer length was 10 s, where the sampling buffer
consisted of only one block.

For the detailed error analyses, we show the frame-level breakdown of the di-
arization error of FW-STB with and without VCT in Figure 3.9. Each graph was
smoothed along the time axis using the Savizky-Golay filter [111] for visualization
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Figure 3.9: Frame-wise breakdown of diarization error on CALLHOME.

purposes. We clearly observed that VCT drastically decreased the error caused by
missed speech at the very beginning of recordings with a slight increase in false
alarms. Note that the DERs shown in Figure 3.9 are different from those in Ta-
ble 3.19 because the results are without a collar. The training process took about
two weeks with a single NVIDIA® Tesla® V100 GPU.

In the following experiments, we used FW-STB and BW-STB in the last two lines
in Table 3.19, i.e., VCT by reshaping and speaker-balanced sampling probabilities
were utilized.

3.4.6 Main Results

Table 3.20 shows the DERs of various online diarization method on the simulated
mixtures. STB-based methods outperformed BW-EDA-EEND [69] in all but single-
speaker data even though the online processing unit was 1 s, which was ten times
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Table 3.20: DERs (%) on the simulated datasets with 0.25 s collar tolerance. Unless
otherwise specified, each online system had an algorithmic latency of 1 s.

# of speakers

seen unseen

Method 1 2 3 4 5 6

BW-EDA-EEND [69]§ 1.03 6.10 12.58 19.17 N/A N/A
EEND-EDA [71, 72] + FW-STB 1.50 5.91 9.79 11.92 26.57 37.31
EEND-EDA [71, 72] + FW-STB † 1.50 5.91 9.79 11.85 26.63 37.25
EEND-GLA-Small + BW-STB 1.19 5.18 9.41 13.19 16.95 22.55
EEND-GLA-Large + BW-STB 1.12 4.61 8.14 11.38 17.27 25.77

EEND-EDA [71, 72] + FW-STB ‡ 1.33 6.01 10.49 12.64 15.28 26.09

† Four attractors were used at most.
‡ Trained on Sim{1,2,3,4,5}spk. Five attractors were used at most.
§ Algorithmic latency 10 s.

shorter than that of BW-EEND-EDA. Online inference of EEND-GLA-Small using
BW-STB significantly improved DERs on five- and six-speaker mixtures, which
were not observed during training. EEND-GLA-Large improved the DERs for the
seen number of speaker conditions of EEND-GLA-Small but degraded the DERs
for the unseen number of speaker conditions, the same as in offline inference.

Simulated datasets

We also show the confusion matrices for speaker counting on the simulated
datasets in Table 3.14. The speaker counting accuracy of EEND-GLA-Small with
BW-STB outperformed that of EEND-EDA with FW-STB, and the gaps between
them were larger especially when the number of speakers was higher than four.
Note that EEND-EDA with FW-STB sometimes produced the results of more than
four speakers, but they did not help estimate the speech activities of more than four
speakers correctly as we stated in this section.

Real datasets

Table 3.22 shows the results on the CALLHOME dataset. Compared with the orig-
inal FW-STB [2], our updates on VCT and the sampling probabilities improved the
DERs from 19.51 % to 14.93 %. EEND-GLA-Small and EEND-GLA-Large with BW-
STB further improved DERs to 14.80 % and 14.29 %, respectively. Our method also
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Table 3.21: Confusion matrices for speaker counting on the simulated datasets.

(a) EEND-EDA + FW-STB

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 376 0 0 0 0 0

2 120 244 0 0 0 0
3 4 249 252 1 0 0
4 0 7 245 449 271 172
5 0 0 3 50 222 314
6 0 0 0 0 7 14

7+ 0 0 0 0 0 0

(b) EEND-GLA-Small + BW-STB

Ref. # of speakers
1 2 3 4 5 6

Pr
ed

.#
of

sp
ea

ke
rs 1 411 0 0 0 0 0

2 84 343 0 0 0 0
3 5 156 370 3 0 0
4 0 1 109 302 16 0
5 0 0 20 181 364 38
6 0 0 1 13 114 385

7+ 0 0 0 1 6 77

Table 3.22: DERs (%) of various online diarization methods on CALLHOME with
0.25 s collar tolerance. Unless otherwise specified, each online system had an algo-
rithmic latency of 1 s.

# of speakers

Method 2 3 4 5 6 All

BW-EDA-EEND [69] † 11.82 18.30 25.93 N/A N/A N/A
EEND-EDA [71, 72] + FW-STB ‡ 12.70 18.40 24.30 35.83 42.21 19.51
EEND-EDA [71, 72] + FW-STB 9.08 13.33 19.36 30.09 37.21 14.93
EEND-GLA-Small + BW-STB 9.01 12.73 19.45 32.26 36.78 14.80
EEND-GLA-Large + BW-STB 9.20 12.42 18.21 29.54 35.03 14.29

† Algorithmic latency of 10 s.
‡ The values are from the original FW-STB paper [2].

outperformed BW-EDA-EEND [69] by a large margin.

We also show the results on the DIHARD II dataset in Table 3.23. The DER of
EEND-EDA was improved by using the proposed FW-STB from 36.09 % to 33.37 %,
and BW-STB further improved the DERs to 31.47 % and 30.24 % with EEND-GLA-
Small and EEND-GLA-Large, respectively. If we focus on the comparison methods,
overlap-aware speaker embedding [107, 52] had a large gap in the DERs between
offline and online inference (26.25 % in Table 3.16 vs. 34.99 % in Table 3.23). This
is because its offline performance was highly boosted by using VBx [4], which is
not suited for online inference. However, the gap between the DERs of offline and
online inference of EEND-GLA was only about two points (29.31 % in Table 3.16 vs.
31.47 % in Table 3.23 with EEND-GLA-Small and 28.33 % in Table 3.16 vs. 30.24 %
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Table 3.23: DERs (%) of vairous online diarization methods on DIHARD II with no
collar tolerance. Each online system had an algorithmic latency of 1 s.

# of speakers

Method ≤ 4 ≥ 5 All

Without oracle voice activity detection
Overlap-aware speaker embeddings [52] 27.00 52.62 34.99
EEND-EDA [71, 72] + FW-STB † 28.14 53.64 36.09
EEND-EDA [71, 72] + FW-STB 25.63 50.45 33.37
EEND-GLA-Small + BW-STB 23.96 48.06 31.47
EEND-GLA-Large + BW-STB 22.62 47.06 30.24

With oracle voice activity detection
UIS-RNN [21] N/A N/A 30.9
UIS-RNN-SML [51] N/A N/A 27.3
Core samples selection [109] N/A N/A 23.1
EEND-EDA [71, 72] + FW-STB † 17.21 43.58 25.44
EEND-EDA [71, 72] + FW-STB 16.56 42.58 24.67
EEND-GLA-Small + BW-STB 15.29 40.85 23.26
EEND-GLA-Large + BW-STB 13.55 40.39 21.92

† The values are from the original FW-STB paper [2].

in Table 3.23 with EEND-GLA-Large) and outperformed the comparable method
in both the cases where the number of speakers was low or high. We also show the
DERs with UIS-RNN [21] and UIS-RNN-SML [51], which are based on fully super-
vised clustering of d-vectors extracted using a sliding window, under the condition
that the oracle SAD was used. In this case, too, the EEND-GLA-based methods
outperformed these comparable methods.

The results on the DIHARD III dataset show the same trend as in Table 3.24.
EEND-GLA-Large achieved 20.73 % DER in online diarization, which was about
seven points better than that of the conventional method [52].

3.4.7 Real-Time Factor

To show that our method is applicable for real-time inference, we calculated the
real-time factor of EEND-GLA-Small with BW-STB. For the calculation, we used
Sim5spk, in which clustering of relative speaker embeddings is always necessary
(c.f . Table 3.21(b)). The calculation was on an Intel Xeon Gold 6132 CPU @ 2.60
GHz using seven threads without any GPUs. Again, we used the buffer length of
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Table 3.24: DERs (%) of various online diarization methods on DIHARD III with no
collar tolerance. Unless otherwise specified, each online system had an algorithmic
latency of 1 s.

# of speakers

Method ≤ 4 ≥ 5 All

Without oracle voice activity detection
Overlap-aware speaker embeddings [52] 21.07 54.28 27.55
EEND-EDA [71, 72] + FW-STB 19.00 50.21 25.09
EEND-GLA-Small + BW-STB 15.87 47.27 22.00
EEND-GLA-Large + BW-STB 14.81 45.17 20.73

With oracle voice activity detection
System by Zhang et al. [110] † N/A N/A 19.57
Core samples selection [109] N/A N/A 19.3
EEND-EDA [71, 72] + FW-STB 12.80 42.46 18.58
EEND-GLA-Small + BW-STB 9.91 40.21 15.82
EEND-GLA-Large + BW-STB 8.85 38.86 14.70

† Algorithmic latency of 0.5 s.

100 s buffer and the online process unit length of 1 s. Figure 3.10 shows the real-
time factor calculated as the processing time for each online process unit. The real-
time factor increased approximately linearly until the buffer was filled, and then it
became constant. It indicates that, at least for buffer length of 100 s, the inference
speed of EEND-GLA is not constrained by clustering of local attractors described
in Section 3.3, which has O(n3) time complexity. The convergence value of the real-
time factor was about 0.16 with 10 frames per second and 0.38 with 20 frames per
second. These results demonstrate that our method is fast enough for real-time
inference.

3.5 Conclusion

In this chapter, we presented i) EEND-EDA to make the output number of speakers
flexible, ii) EEND-GLA to remove the upper limit of the output number of speakers
of EEND-EDA, and iii) BW-STB to enable online inference of EEND-GLA.
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Figure 3.10: Real time factor of EEND-GLA-Small with BW-STB calculated using
Sim5spk. The filled areas represent the standard deviations. The DERs are 16.95 %
and 18.18 % with 10 frames/s and 20 frames/s conditions, respectively.
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Chapter 4

Multi-Channel End-to-End
Speaker Diarization

4.1 Introduction

One application of speaker diarization is meeting transcription, which is also tack-
led in this thesis in Chapter 6. Some meeting transcription systems are based on
distributed microphones [27, 112, 28], which enables the flexibility of recording de-
vices and a wide range of sound collection. However, many end-to-end diarization
methods have been proposed as single-channel models, where no spatial informa-
tion is utilized. If we can improve diarization accuracy by extending the diarization
methods to distributed microphone settings, it will be compatible with those meet-
ing transcription systems.

Even if multi-channel inputs are given, diarization methods that heavily rely on
spatial information are sometimes inoperative. The best examples are direction-of-
arrival (DOA) based diarization [56, 55]. Due to COVID-19, meetings are now often
held remotely or in a hybrid version of in-person and virtual gatherings. In hybrid
meetings, remote attendees’ utterances are played via one loudspeaker, and DOA
is no longer a clue to distinguish these speakers. To cope with this situation, spatial
information needs to be properly incorporated into speaker-characteristic-based
speaker diarization. This chapter addresses multi-channel end-to-end speaker di-
arization (EEND) that is invariant to the number and order of channels for dis-
tributed microphone settings.

Section 4.2 proposes multi-channel end-to-end speaker diarization by replac-
ing Transformer encoders in the single-channel models with two types of multi-
channel encoders: a spatio-temporal encoder [29, 113] and co-attention encoder.
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We further propose to adapt multi-channel EEND only with single-channel real
recordings without losing the ability to benefit from spatial information given a
multi-channel input during inference.

Section 4.3 proposes a training strategy of single- and multi-channel models
to improve the performance of both. We first introduce an end-to-end neural di-
arization model that can handle both single- and multi-channel inputs. Using
this model, we alternately conduct i) knowledge distillation from a multi-channel
model to a single-channel model and ii) finetuning from the distilled single-channel
model to a multi-channel model.

4.2 Multi-Channel End-to-End Speaker Diarization

In this section, we investigate the effective multi-channel encoders that replace the
Transformer encoders in EEND-EDA.

4.2.1 Related Work

Some multi-channel diarization methods are fully based on DOA estimation
[56, 55], but assume that different speakers are not in the same direction, thus
are not appropriate for hybrid meetings. Therefore, spatial information needs to
be incorporated with single-channel-based methods as in e.g. [54]. Another pos-
sible approach is to combine channel-wise diarization results by using an ensem-
ble method [91, 90], but it does not fully utilize spatial information. Some recent
neural-network-based diarization methods utilize spatial information by aggregat-
ing multi-channel features. For example, online RSAN [68] uses inter-microphone
phase difference features in addition to a single-channel magnitude spectrogram.
However, the number of channels is fixed due to the network architecture, making
the method less flexible. Moreover, phase-based features are not suited for dis-
tributed microphone settings, in which clock drift between channels exists. Multi-
channel target-speaker voice activity detection (TS-VAD) [25] combines embed-
dings extracted from the second from the last layer of single-channel TS-VAD. Al-
though it is flexible in terms of the number of channels because an attention-based
combination is used, it requires an external diarization system that gives an initial
i-vector estimation for each speaker.

If we broaden our view to speech processing other than diarization, there
are several methods for neural-network-based end-to-end multi-channel speech
processing that are invariant to the number of channels, e.g. speech recognition
[114, 115, 116], separation [117, 118, 29, 119, 113], and dereverberation [120]. Many
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use attention mechanisms to work with an arbitrary number of channels. Our pro-
posed method also uses attention-based multi-channel processing.

4.2.2 Conventional Single-Channel EEND

While we have already formulated EEND (or EEND-EDA) in the previous chapters,
we provide a more simplified formulation here for a better understanding of the
following multi-channel EEND.

In the EEND framework, S speakers’ speech activities are jointly estimated.
Given F-dimensional acoustic features for each T frames X ∈ RF×T, we first ap-
ply a linear projection parameterized by W0 ∈ RD×F and b0 ∈ RD followed by
layer normalization [121] LN to obtain D-dimensional frame-wise embeddings

E(0) = LN
(

W0X + b01T
)
∈ RD×T, (4.1)

where 1 is the T-dimensional all-one vector. It is further converted by N-stacked
encoders, where the n-th encoder converts frame-wise embeddings E(n−1) into the
same dimensional embeddings E(n):

E(n) = Encoder
(

E(n−1)
)
∈ RD×T. (4.2)

Finally, the frame-wise posteriors of speech activities for S speakers are estimated.
In this thesis, we used EEND-EDA [71, 72], with which the speaker-wise attractor
B is first calculated using an encoder-decoder based attractor calculation module
(EDA) and then the posteriors Y are estimated as

B = EDA
(

E(N)
)
∈ RD×S, (4.3)

Y = σ
(

BTE(N)
)
∈ (0, 1)S×T , (4.4)

where σ (·) is the element-wise sigmoid function. A permutation-free objective is
used for optimization as in previous studies [23, 71, 72].

4.2.3 Multi-Channel EEND

To accept multi-channel inputs, we replaced Transformer encoders in EEND-EDA
with multi-channel encoders. In this section, we investigated two types of en-
coders: spatio-temporal encoder and co-attention encoder.
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Cross-channel self-attention Cross-frame self-attention

(a) Spatio-temporal encoder

FFN

FFN

Cross-frame co-attention Cross-frame
self-attention

(b) Co-attention encoder

Figure 4.1: Multi-channel encoders. Each yellow area is skipped via residual con-
nection.

Spatio-temporal encoder

The spatio-temporal encoder was originally proposed for speech separation on the
basis of distributed microphones [29, 113]. It uses stacked cross-channel and cross-
frame self-attentions in one encoder block, as illustrated in Figure 4.1(a). In the
encoder, frame-wise C-channel embeddings Ein = (ein,t,c)t,c ∈ RD×T×C, where
ein,t,c ∈ RD, are first converted to the same shape of tensor E′ =

(
e′t,c
)

t,c ∈ RD×T×C

using cross-channel self-attention as[
e′t,1, . . . , e′t,C

]
= LN (Ein,t +MA (Ein,t, Ein,t, Ein,t; Θ, Φ)) , (4.5)

Ein,t := [ein,t,1, . . . , ein,t,C] . (4.6)

The tensor E′ is then converted to Eout = (eout,t,c)t,c ∈ RD×T×C by cross-frame self-
attention as

[eout,1,c, . . . , eout,T,c] = LN
(
E′c +MA

(
E′c, E′c, E′c; Θ′, Φ′

))
, (4.7)

E′c :=
[
e′1,c, . . . , e′T,c

]
. (4.8)

In the final encoder block, cross-frame self-attention is calculated over the embed-
dings that are averaged across channels to form E(N) in (4.3), i.e., the following are
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used instead of (4.7) and (4.8) as

E(N) = LN
(
E′ +MA

(
E′, E′, E′; Θ′, Φ′

))
, (4.9)

E′ :=
1
C

C

∑
c=1

E′c (4.10)

to calculate speech activities using (4.3) and (4.4). All calculations using (4.5)–
(4.10) do not involve a specific number of channels or microphone geometry, which
makes this encoder independent of the number and geometry of microphones.
Note that we did not include feed-forward networks FFN in this encoder following
previous studies [29, 113] because we observed performance degradation.

Co-attention encoder

The spatio-temporal encoder includes cross-channel self-attention, the perfor-
mance of which highly depends on the number of channels. Therefore, we also
propose an encoder based only on cross-frame attention, which is characterized
by the use of co-attention. The encoder accepts two inputs: frame-wise embed-
dings Ein ∈ RD×T and frame-channel-wise embeddings Pin = [Pin,1, . . . , Pin,C |
Pin,c ∈ RD′×T]. The proposed encoder converts these inputs to Eout ∈ RD×T and
Pout = [Pout,1, . . . , Pout,C | Pout,c ∈ RD′×T] as follows:

E′ = LN (Ein +MCA (Pin, Pin, Ein; ΘP, ΦE)) , (4.11)

E′′ = LN
(
E′ +MA

(
E′, E′, E′; Θ′E, Φ′E

))
(4.12)

Eout = LN
(
E′′ + FFN

(
E′′; ΨE

))
, (4.13)

P′c = LN (Pin,c +MCA (Pin, Pin, Pin,c; ΘP, ΦP)) , (4.14)

Pout,c = LN
(

P′c + FFN
(

P′c; ΨP
))

, (4.15)

where ΘP, ΦE, Θ′E, Φ′E, ΨE, ΨP, ΦP, and ΨP are the sets of parameters. The single-
channel input Ein is converted by multi-head co-attention MCA in (4.11), multi-head
attention MA in (4.12), and feed-forward network FFN in (4.13). Each channel in the
multi-channel input Pin is first converted by MCA in (4.14), the attention weights of
which are shared with those in (4.11), then processed using FFN in (4.15).

Multi-head co-attention MCA is similar to MA in (2.19), but the attention weights
are calculated using multi-channel inputs as

MCA (Q, K, V; Θ, Φ) = WO

V(1)A(1)T
...

V(h)A(h)T

+ bO1T ∈ Rdv×T, (4.16)

A(i) = softmax


[

Q(i)T
1 , . . . , Q(i)T

C

] [
K(i)T

1 , . . . , K(i)T
C

]T
√

CD/h

 . (4.17)
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Here, Q(i)
c and K(i)

c for c ∈ {1, . . . , C} are calculated using (2.21) and (2.22) for each
channel, and V(i) are calculated using (2.23). Note that the parameter sets Θ and Φ

are shared among channels.

After the final encoder block, two outputs are concatenated as

E(N) =

[
Eout

1
C ∑C

c=1 Pout,c

]
∈ R(D+D′)×T (4.18)

to calculate speech activities using (4.3) and (4.4).

Domain adaptation

EEND performance can be improved by domain adaptation using real record-
ings. However, the number of real recordings is usually limited, and even more
the case when distributed microphones are used. Therefore, it would be useful if
multi-channel EEND can be adapted to the target domain only with single-channel
recordings. To ensure that adaptation using only single-channel recordings does
not lose the ability to benefit from multi-channel recordings, we propose to update
only the channel-invariant part of the model. For the spatio-temporal encoder, we
freeze the parameters of cross-channel self-attention Θ and Φ in (4.5). For the co-
attention encoder, we freeze the parameters related to multi-channel processing:
ΘP in (4.11) and (4.14), ΦP in (4.14), and ΨP in (4.15).

4.2.4 Experimental Settings

For the evaluation, we used Sim2spk-multi-train, Sim2spk-multi-eval, and Sim2-
spk-multi-dialog as simulated datasets, and CSJ-multi-train, CSJ-multi-eval, CSJ-
multi-dialog as real-recorded datasets. Refer to Section A.1.2 for further details
of the datasets. Note that we did not consider situations where the speakers are
moving around.

As inputs to a single-channel baseline model [71, 72], 23-dimensional log-mel
filterbanks were extracted for each 10 ms followed by splicing (±7 frames) and sub-
sampling by factor of 10, resulting in 345-dimensional features for each 100 ms. For
the spatio-temporal model, we extracted features from each channel in the same
manner. For the co-attention model, the 345-dimensional features were averaged
across channels to be used as the single-channel input. As the multi-channel in-
put, the log-mel filterbanks of ±7 frames were averaged followed by subsampling;
thus, a 23-dimensional feature was obtained for each 100 ms. We set the embedding
dimensionalities as D = 256 and D′ = 64, i.e., 345-dimensional features were first
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Table 4.1: DERs on Sim2spk-multi-eval and Sim2spk-multi-hybrid.

Sim2spk-multi-eval Sim2spk-multi-eval-hybrid

Method 1ch 2ch 4ch 6ch 10ch 1ch 2ch 4ch 6ch 10ch

1ch + posterior avg. 5.13 4.60 4.31 4.19 4.10 6.07 5.68 5.42 5.38 5.33

Spatio-temporal 32.86 2.97 1.49 1.19 1.03 34.73 10.60 8.65 8.36 8.21
Spatio-temporal† 6.34 3.02 1.56 1.28 1.07 8.11 8.23 6.98 6.72 6.40

Co-attention 7.23 2.83 1.85 1.59 1.50 9.03 7.53 6.82 6.51 6.65
Co-attention† 4.68 2.52 1.71 1.40 1.23 5.73 5.34 5.05 5.18 5.35

† Channel dropout was used during training.

converted to 256 dimensional via (4.1) and 23-dimensional features were converted
to 64 dimensional in the same manner. For each model, the four encoder blocks
illustrated in Figure 4.1 were stacked.

Each model was first trained on Sim2spk-multi-train for 500 epochs with the
Adam optimizer [92] using Noam scheduler [61] with 100,000 warm-up steps. At
each iteration, four of ten channels were randomly selected and used for train-
ing. The models were then evaluated on Sim2spk-multi-eval and Sim2spk-multi-
eval-hybrid using {1, 2, 4, 6, 10}-channel inputs. Each model was further adapted to
CSJ-multi-train for 100 epochs with the Adam optimizer with a fixed learning rate
of 1× 10−5. The adapted models were evaluated on CSJ-multi-eval and CSJ-multi-
dialog using {1, 2, 4, 6, 9}-channel inputs. To evaluate the conventional EEND-EDA
[71, 72] with multi-channel inputs, we first found the optimal speaker permutation
between results from each channel by using correlation coefficients of posteriors
and then averaged the posteriors among channels. To prevent the models from be-
ing overly dependent on spatial information, we also introduce channel dropout, in
which multi-channel inputs are randomly dropped to be a single channel. The ra-
tio of channel dropout was set to 0.1. Each method was evaluated using diarization
error rates (DERs) with 0.25 s of collar tolerance.

All the experiments were based on two-speaker mixtures because our scope was
investigating multi-channel diarization. Note that EEND-EDA can also be used
when the number of speakers is unknown [71, 72].

4.2.5 Results

Table 4.1 shows the DERs on Sim2spk-multi-eval and Sim2spk-multi-eval-hybrid.
From the results on Sim2spk-multi-eval, both spatio-temporal and co-attention
models outperformed the single-channel model with posterior averaging. Com-
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Table 4.2: DERs on CSJ-multi-eval and CSJ-multi-dialog.

CSJ-multi-eval CSJ-multi-dialog

Method Adapt 1ch 2ch 4ch 6ch 9ch 1ch 2ch 4ch 6ch 9ch

1ch + posterior avg. None 11.17 9.44 8.94 8.89 8.44 28.15 26.01 25.56 24.74 24.87
1ch + posterior avg. 1ch 3.27 2.31 2.25 2.05 1.75 22.56 20.82 20.34 19.68 20.25

Spatio-temporal None 10.98 10.20 4.29 3.27 2.63 36.13 45.19 36.48 37.14 37.63
Spatio-temporal 1ch 3.44 1.60 1.34 1.07 1.13 20.06 20.02 17.83 16.19 19.74
Spatio-temporal 1ch‡ 3.64 1.78 1.64 1.27 1.32 20.57 19.02 17.37 15.49 18.70
Spatio-temporal 4ch 3.82 1.06 0.61 0.43 0.39 21.01 15.87 14.21 15.71 14.20

Co-attention None 9.49 3.36 1.42 1.40 0.94 27.96 22.52 19.37 18.23 17.99
Co-attention 1ch 2.75 1.41 0.75 0.63 0.52 23.49 22.83 20.70 17.59 15.77
Co-attention 1ch‡ 3.26 1.46 0.68 0.48 0.42 22.45 17.90 15.53 14.34 14.05
Co-attention 4ch 3.31 1.19 0.57 0.40 0.39 21.42 17.51 14.95 14.21 13.87

‡ Adapted only the channel-invariant part of each model.

paring the two multi-channel models, the spatio-temporal model significantly de-
graded DER with single-channel inputs. Channel dropout eased the situation,
but the co-attention model still outperformed the spatio-temporal model when the
number of channels was small. In the evaluation of Sim2spk-multi-eval-hybrid,
the co-attention model always achieved the same or better DERs than the single-
channel model. This means that the lack of spatial information does not lead to
degradation in diarization performance in the co-attention model because it does
not rely on cross-channel self-attention.

Table 4.2 shows the DERs on CSJ-multi-eval and CSJ-multi-dialog. The evalu-
ation was based on the models trained using channel dropout. Without adapta-
tion, we can see that the co-attention model generalized well. The performance
of all models improved through adaptation, regardless of whether the data used
for adaptation were 1ch or 4ch. Of course, both spatio-temporal and co-attention
models can benefit more from 4ch adaptation; however, it is worth mentioning that
they can still utilize spatial information provided by multi-channel inputs even if
only 1ch recordings are used for adaptation. By freezing the parameters related to
the calculation across channels during 1ch adaptation, the DERs of the co-attention
model were reduced especially when four or more microphones were used, while
those of the spatio-temporal model were not so improved.

Finally, we show the peak VRAM usage with T = 500 and batch size of 64 in
Figure 4.2. VRAM usage of the co-attention model increased more slowly than the
spatio-temporal model as the number of microphones increased because the multi-
channel processing part is based on layers with a lower number of units. Thus, the
co-attention model can be trained using a larger number of channels.
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Figure 4.2: VRAM usage during training with T = 500 and batch size of 64.

4.3 Mutual Learning of Single-Channel and Multi-Channel
End-to-End Speaker Diarization

4.3.1 Introduction

Speech processing under noisy and reverberant environments or the existence
of multiple speakers expands the practicality of speech applications. While
single-channel solutions for such conditions are widely studied, multi-channel ap-
proaches have shown promising performance in various speech applications such
as speech recognition [122, 114], speech separation [123, 118], speaker recognition
[124], and speaker diarization [68, 125, 126]. Especially, multi-channel processing
based on distributed microphones rather than microphone-array devices is attract-
ing much attention for its high versatility [126, 27, 117, 127].

Since multi-channel speech processing is powerful, its outputs are sometimes
used as teacher labels when training a single-channel model, which is known as
knowledge distillation or teacher-student learning [128, 129]. On the other hand, it
has been reported that single-channel data is still useful in training multi-channel
models, e.g., single-channel pretraining [130, 131, 132] and simultaneous use of
single- and multi-channel data [133, 126, 132]. This can be because the information
captured by single- and multi-channel models are different. For example, when
considering speech separation or speaker diarization, single-channel methods must
rely on speaker characteristics, while multi-channel methods can use spatial infor-
mation additionally (or even only). Another study demonstrated that incorporat-
ing spectral and spatial information boosts speech separation performance [134].
Let us consider a multi-channel model that can also handle single-channel inputs.
Using single-channel data to train such a multi-channel model avoids falling into
local minima that rely too heavily on spatial information and allow the model to
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Figure 4.3: Mutual learning of single- and multi-channel EEND.

benefit more from speaker characteristics [126]. Here a research question arises—
does iterative knowledge distillation from multi-channel to single-channel model
and finetuning from single-channel to multi-channel model improve the perfor-
mance of both single and multi-channel speech processing?

Given that question as motivation, this section proposes a mutual learning
method of single- and multi-channel end-to-end neural diarization (EEND), illus-
trated in Figure 4.3. We focus specifically on speaker diarization here, but the
method can be applied to other speech processing tasks such as speech recogni-
tion and separation. We first introduce a co-attention-based multi-channel EEND
model invariant to the number and geometry of microphones. The multi-channel
model is designed to be identical to the conventional Transformer-based single-
channel EEND given single-channel inputs. We conduct the following processes
iteratively: i) distilling the knowledge from multi-channel EEND to single-channel
EEND (Figure 4.3 left) and ii) finetuning from the distilled single-channel EEND
to multi-channel EEND (Figure 4.3 right)1. We demonstrate that the proposed
method mutually improves both single- and multi-channel speaker diarization per-
formance.

1The proposed method can also be applied to two multi-channel models, u-channel and v-channel
models with u < v.
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4.3.2 Related Work

Knowledge distillation or teacher-student learning is a scheme to train a student
model to mimic a well-trained teacher model [128, 129]. It is widely used in speech
applications such as speech recognition [135] and separation [136]. One typical
use case is knowledge distillation between different network architectures: a large
model to a small model [135, 137], a normal model to a binarized model [136], an
ensemble of models to a single model [138], and a high-latency model to a stream-
ing model [139].

The other type of knowledge distillation, which we focus on in this chapter, is
based on different inputs, while the network architectures are not necessarily dif-
ferent. In some studies on unsupervised domain adaptation of speech recognition
[140] and speaker verification [21], a far-field model is trained with knowledge dis-
tillation by using a close-talk model as a teacher, both of which take single-channel
signals as inputs. Another series of studies leverage multi-channel signals; a stu-
dent model is trained so that the output when the noisy features are input is close
to the output of the teacher model when the enhanced features are input [141, 142].
Here, the enhanced features are calculated from a multi-channel signal using beam-
forming and the input to the model is still single-channel; thus, it is not applicable
to speaker diarization where there is more than one speaker to be enhanced. In the
context of continuous speech separation [143], a student VarArray model [127] is
trained to produce similar outputs to a teacher model with a fewer number of chan-
nels [144]. This chapter, in contrast, tackles multi- to single-channel knowledge dis-
tillation with an end-to-end model rather than multi- to multi-channel knowledge
distillation as in [144].

4.3.3 Proposed Method

This study aims to improve both single- and multi-channel diarization by alternat-
ing between knowledge distillation from a multi-channel model to a single-channel
model and finetuning from a single-channel model to a multi-channel model (Fig-
ure 4.3). To achieve this, we first introduce the EEND model that can handle both
multi-channel and single-channel inputs with exactly the same sets of parameters
Θ, Φ, and Ψ in Section 4.3.3. Then, we describe a mutual learning method of single-
and multi-channel models in Section 4.3.3.
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Multi-Channel EEND with the Simplified Co-Attention Encoders

For multi-channel diarization, we used a co-attention-based extension of EEND,
which was originally proposed in [126]. In this section, we used the simplified
version of the encoder proposed in [126], which has the same number of parameters
as the Transformer encoder introduced in Section 2.3.2.

Given frame-wise acoustic features for each of C channels X := [X1, . . . , XC] ∈
RF×T×C, each is first converted using (2.11) to obtain frame-wise embeddings for
each channel independently

[
E(0)

1 , . . . , E(0)
c

]
=: E(0). Then, the resulting tensor is

processed using N-stacked co-attention encoder. The n-th encoder layer converts
E(n−1) ∈ RD×T×C into a tensor of the same shape E(n) ∈ RD×T×C as follows:

E(n) = CoAttentionEncoder
(

E(n−1)
)

. (4.19)

The output from the last encoder E(N) :=
[

E(N)
1 . . . , E(N)

C

]
is averaged across chan-

nels as

E(N) =
1
C

C

∑
c=1

E(N)
c , (4.20)

and it is used for calculation of speech activities with (3.6).

Then, S speakers’ speech activities Y are estimated based on inner products
between the frame-wise embeddings from the last encoder E(N) and speaker-wise
attractors B as

B = EDA
(

E(N)
)
∈ (−1, 1)D×S , (4.21)

Z =
(

BTE(N)
)
∈ RS×T, (4.22)

Y = σ (Z) ∈ (0, 1)S×T (4.23)

where EDA is an encoder-decoder-based attractor calculation module, (·)T denotes
matrix transpose, and σ (·) is an element-wise sigmoid operation. Note that the in-
ner products Z between the embeddings and attractors become logits of the speech
activities Y.

The speech activities are optimized to minimize the permutation-free loss,
which is defined as

LBCE
(
Θ
∣∣ X, Ỹ

)
=

1
TS

min
P

BCE
(
Ỹ, PY

)
(4.24)

where P ∈ {0, 1}S×S denotes a S × S permutation matrix , Ỹ ∈ {0, 1}S×T is the
groundtruth speech activities, and BCE (·, ·) is the summation of the element-wise
binary cross entropy. Ξ is a set of parameters of the network.
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Figure 4.4: The architectures of encoders used in this chapter. D: the dimensionality
of embeddings, T: sequence length, C: the number of channels.
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The simplified co-attention encoder layer in (4.19) was illustrated in Fig-
ure 4.4(b). It has the same set of parameters to a Transformer encoder and converts
input Ein = [Ein,c]

C
c=1 ∈ RD×T×C into Eout = [Ein,c]

C
c=1 ∈ RD×T×C as

E′c = LN (Ein,c +MCA (Ein, Ein, Ein,c; Θ, Φ)) , (4.25)

Eout,c = LN
(
E′c + FFN

(
E′c; Ψ

))
. (4.26)

Here, MCA is the multi-head scaled dot-product co-attention defined in (4.16) and
(4.17).

In multi-channel EEND, only the attention calculation in (4.17) is the inter-
channel process, while the other processes are channel-independent. Also, there are
no trainable channel-dependent parameters for the attention calculation in (4.17),
and the parameters for the channel-independent processes are shared among chan-
nels. Therefore, multi-channel EEND is independent of the number and geometry
of microphones. Note that when the number of channels is one, the multi-head
scaled dot-product co-attention in (4.16) is identical to the multi-head scaled dot-
product attention in (2.19), i.e., the co-attention encoder is identical to Transformer
encoder. Moreover, both encoders have the same set of parameters, Θ, Φ and Ψ;
thus, even if the model is trained as a single-channel model using Transformer en-
coders, it can handle multi-channel inputs by considering the attention mechanism
as a co-attention in (4.16)–(4.17).

Mutual Learning of Single- and Multi-Channel EEND

In the proposed mutual learning method, given an initial multi-channel model pa-
rameterized by Ξ

(0)
multi, knowledge transfer from multi- to single-channel model and

from single- to multi-channel model are iteratively conducted. More specifically, in
the r-th round of mutual learning, the following two steps are carried out:

1. Train Ξ
(r)
single from scratch on LKD(Ξ | X, Ξ

(r−1)
multi ),

2. Train Ξ
(r)
multi initialized with Ξ

(r)
single on LBCE(Ξ | X, Ỹ).

We detail two steps above in Section 4.3.3 and 4.3.3, respectively.

Knowledge transfer from multi- to single-channel EEND

To transfer the knowledge from multi-channel EEND to single-channel EEND, we
use a knowledge distillation between network outputs (Figure 4.3 left). According
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to the observation in [145], the mean squared error between logits is used as a loss to
be minimized instead of Kullback-Leibler divergence. Given C-channel frame-wise
acoustic features X = [Xc]

C
c=1, we calculate the logits of frame- and speaker-wise

speech activities Zmulti ∈ RS×T by using the teacher multi-channel model param-
eterized by Ξ

(r−1)
multi with (2.11), (4.19), (4.20), (4.21), and (4.22). We also calculate

single-channel results Zsingle ∈ RS×T from randomly selected one of the C channels
by using the student single-channel model with (2.11), (2.12), (4.21), and (4.22). To
optimize the student model’s parameters Ξ, here also as in (4.24), we introduce the
following permutation-free knowledge distillation loss to be minimized:

LKD

(
Ξ
∣∣∣ X, Ξ

(r−1)
multi

)
=

1
TS

min
P

∥∥Zmulti − PZsingle
∥∥2

F , (4.27)

where ∥·∥F denotes the Frobenius norm of a matrix and P ∈ {0, 1}S×S denotes
a permutation matrix. We denote the obtained set of parameters of the student
model by Ξ

(r)
single.

While some studies have investigated the weighted sum of hard-label-based
loss LBCE in (4.24) and knowledge-distillation-based loss LKD in (4.27), we simply
used LKD instead of LBCE.

Knowledge transfer from single- to multi-channel EEND

As described in Section 4.3.3, single- and multi-channel models have the same
network parameters. Therefore, even when a model is trained only on single-
channel data, it can handle multi-channel inputs by using co-attention instead of
self-attention. Thus, to transfer the knowledge from a single- to multi-channel
model, we simply finetune the single-channel model to a multi-channel model. We
initialize the network parameters with Ξ

(r)
single obtained in Section 4.3.3 and finetune

the model using the loss LBCE in (4.24) with multi-channel data. The resulted set of
parameters of the model is denoted as Ξ

(r)
multi.

4.3.4 Experimental Settings

Datasets

To prove the efficiency of the proposed method, we used the simulated two-speaker
conversational datasets in Table A.4: Sim2spk-multi-train for training and Sim2spk-
multi-eval for evaluation. While both datasets originally contain 10-channel record-
ings, we only used one- or four-channel subsets of Sim2spk-multi-eval for the eval-
uation in this section.
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With domain adaptation on real datasets, we show that models trained on the
simulated dataset using the proposed method are also good pretrained models.
As the single-channel datasets, we used CALLHOME-2spk and CSJ [146], each of
which is shown in Table A.2. CALLHOME-2spk Part 1 was used as the adapta-
tion set and CALLHOME-2spk Part 2 and CSJ were used as the evaluation sets.
We regard CALLHOME-2spk Part 2 as an in-domain dataset and CSJ as an out-of-
domain dataset.

As the multi-channel datasets, we used CSJ-multi-train, CSJ-multi-eval, and
CSJ-multi-dialog. CSJ-multi-train was used as the adaptation set and CSJ-multi-
eval and CSJ-multi-dialog were used as the evaluation sets. Since CSJ-multi-
train and CSJ-multi-eval are simulated conversations created using single-speaker
recordings while CSJ-multi-dialog is actual conversations, we regard CSJ-multi-
eval as an in-domain dataset and CSJ-multi-dialog as an out-of-domain dataset.
Note that the original CSJ-multi-eval and CSJ-multi-dialog have nine channels, but
we only used four-channel subsets for our experiments.

We conducted our experiments using two-speaker datasets because this chapter
is aiming at proving the effectiveness of the proposed mutual learning method,
but we note that EEND-EDA can handle the case where the number of speakers is
unknown.

Implementation details

The inputs to single- and multi-channel models are 345-dimensional features ex-
tracted every 100 ms for each channel, which are prepared with the following pro-
cedure:

1. Extract 23-dimensional log-mel filterbanks for each 10 ms,

2. Apply frame splicing (±7 frames) for them, resulting in 345 dimensions,

3. Subsample them by a factor of 10.

We used a four-layer encoder for each EEND model with the dimensionality
of intermediate embeddings D = 256, and the number of heads in each encoder
h = 4. The baseline single- and multi-channel EENDs were trained from scratch
using Sim2spk-multi-train. During training, one or four of ten channels were ran-
domly selected and fed to the models, respectively. Each model was optimized for
500 epochs with Adam [92] with the Noam scheduler [61] with warm-up steps of
100,000. For the training of the baseline multi-channel EEND, we used the channel
dropout technique [126].
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For the knowledge distillation from multi-channel to single-channel models,
four channels of Sim2spk-multi-train out of ten were selected and fed to the multi-
channel model to obtain Zmulti in (4.27), and one of the four channels was input
to the single-channel model to obtain Zsingle in (4.27). The same training strategy
used to train the baseline models was used for knowledge distillation. Note that
the single-channel model here was trained from scratch.

For the finetuning of the single-channel model using multi-channel data, four of
ten channels of Sim2spk-multi-train were randomly selected at each iteration and
fed to the model. The model was finetuned for another 100 epochs with Adam
using the Noam scheduler with 20,000 warm-up steps.

For the adaptation on the real-recorded datasets, we used CALLHOME-2spk
Part 1 for single-channel evaluation or CSJ-multi-train for multi-channel evalua-
tion, respectively. Adam optimizer with a fixed learning rate of 1× 10−5 was used
for 100 epochs of adaptation.

We report diarization error rates (DERs) with 0.25 s collar tolerance. Note that
speaker overlaps are included in the evaluation. While conventional studies gener-
ally apply a median filter as post-processing, in order to clarify the extent to which
frame-level accuracy has been improved, this chapter discusses the results without
median filtering. For reference, the results with 11-frame median filtering are also
shown in parentheses in each table.

4.3.5 Results

Results on the simulated dataset

Table 4.3 shows the DER improvement using the proposed mutual learning on
Sim2spk-multi-eval data. The DERs under mismatched conditions, i.e., single-
channel (four-channel) results using the model trained on the four-channel (single-
channel) data, are written in gray. For clarification, we denote the DERs evalu-
ated using single-channel Sim2spk-multi-eval as DER1ch and those evaluated using
four-channel data as DER4ch.

The first and the second rows show the DERs of the baseline single-channel and
four-channel models, respectively. It is clearly observed that the models can still
decode data of mismatched conditions, but the resulting DERs are worse than those
of matched conditions. Finetuning of the baseline single-channel model on four-
channel data improved the DER4ch from 4.11 % to 2.67 % as in the third row, but it
did not reach the DER4ch of the baseline four-channel model (2.32 %). These results
indicate that single-channel pretraining does not always improve the performance
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Table 4.3: DERs (%) improvement on Sim2spk-multi-eval with the proposed
method. The values in gray indicate the mismatched condition in the number of
channels. The values in the parentheses are with median filtering.

Method DER1ch DER4ch

1⃝ Baseline 4-ch model 5.79 (4.96) 2.32 (1.98)
2⃝ Baseline 1-ch model 4.11 (3.91) 4.90 (4.44)
3⃝ Finetune 2⃝ using 4-ch data 12.76 (11.16) 2.67 (2.49)

4⃝ Knowledge distillation from 1⃝ 3.34 (3.17) 4.04 (4.40)
5⃝ Finetune 4⃝ using 4-ch data 12.11 (9.83) 2.17 (2.02)

6⃝ Knowledge distillation from 5⃝ 3.08 (2.94) 3.57 (3.25)
7⃝ Finetune 6⃝ using 4-ch data 10.83 (8.73) 2.08 (1.94)

Table 4.4: DERs (%) on single-channel real conversational datasets.

Evaluation dataset

Pretrained model CALLHOME-2spk Part 2 CSJ

2⃝ 14.11 (12.56) 24.71 (24.15)
4⃝ 10.06 (8.95) 22.52 (22.09)
6⃝ 9.85 (8.45) 21.33 (20.66)

of the multi-channel model. We decided to use the baseline four-channel model 1⃝
as the initial model of mutual learning.

When we trained a single-channel model with the baseline four-channel model
as a teacher using knowledge distillation, the DER1ch was improved from 4.11 %
to 3.34 % as in the fourth row. Finetuning the model 4⃝ with four-channel data
resulted in the DER4ch of 2.17 %, outperforming the baseline four-channel model
1⃝. This bi-directional improvement between single- and multi-channel models

has proven the effectiveness of the proposed mutual learning.

We then ran another round of mutual learning starting from the model 5⃝. Since
the improvement of DER4ch from 1⃝ to 5⃝ was 0.15 (= 2.32 − 2.17) percentage
points, the improvement of DER1ch between their distilled models was larger: 0.26
(= 3.34− 3.08). Finetuning the distilled model 6⃝ with four-channel data led to a
further improvement in DER4ch, which was 2.08 % as in the seventh row.
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Table 4.5: DERs (%) on multi-channel real conversational datasets.

Evaluation dataset

Pretrained model CSJ-multi-eval CSJ-multi-dialog

1⃝ 1.19 (0.66) 16.14 (15.78)
3⃝ 1.51 (0.93) 18.77 (18.07)
5⃝ 1.17 (0.67) 17.30 (16.60)
7⃝ 1.08 (0.66) 16.98 (16.42)

Results on the real datasets

We then evaluated each single-channel model, i.e., 2⃝, 4⃝, and 6⃝ in Table 4.3, with
the adaptation on CALLHOME-2spk Part 1. The DERs on the CALLHOME-2spk
Part 2 and CSJ datasets are shown in Table 4.4. It is clearly observed that pretraining
using the proposed mutual learning method also improved the performance on the
real datasets, regardless of in-domain or out-of-domain.

Each multi-channel model, i.e., 1⃝, 3⃝, 5⃝, and 7⃝ in Table 4.3, was also adapted
using CSJ-multi-train. The results on CSJ-multi-eval and CSJ-multi-dialog using
those adapted models are shown in Table 4.5. For CSJ-multi-eval, the pretrained
models trained using the proposed method, i.e., 3⃝, 5⃝, and 7⃝, helped to improve
the DERs gradually with the best DER of 1.08 %, which also outperformed the
model based on 1⃝. In the case of CSJ-multi-dialog, the DERs were also reduced
with respect to the pretrained model finetuned from the single-channel model, i.e.,
3⃝, 5⃝, and 7⃝. However, the most accurate model was based on 1⃝ in terms of

CSJ-multi-dialog. Since CSJ-multi-dialog is the out-of-domain dataset, it is more
advantageous to rely on spatial information. That is why the model based on 1⃝
performed best on CSJ-multi-dialog because 1⃝ was trained using multi-channel
data from the beginning and is considered to be highly dependent on spatial infor-
mation.

4.4 Conclusion

This chapter investigated the use of multi-channel inputs for EEND.

First, we proposed a multi-channel end-to-end neural diarization method based
on distributed microphones. We replaced Transformer encoders in the conven-
tional EEND with two types of multi-channel encoders. Each showed better DERs
with multi-channel inputs than the conventional EEND on both simulated and real-
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recorded datasets. We also proposed a model adaptation method using only single-
channel recordings and achieved comparable DERs as when using multi-channel
recordings.

Second, we proposed a mutual learning method of single- and multi-channel
models. With the model that can treat both single- and multi-channel inputs, we al-
ternately execute 1) knowledge distillation from a multi-channel model to a single-
channel model and 2) finetuning from the distilled single-channel model to a multi-
channel model. Experimental results showed that the proposed method gradually
improved DERs on the single- and multi-channel conditions. Future work will ap-
ply this method to other speech processing tasks such as speech separation and
recognition.
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Chapter 5

End-to-End Speaker Diarization as
Post-Processing

5.1 Introduction

Cascaded approaches for speaker diarization ignore speaker overlaps, but they are
still strong baselines over end-to-end methods on datasets of a large number of
speakers, e.g., DIHARD II dataset [95]. This is because they handle multiple speaker
problems based on unsupervised clustering without using any speech mixtures as
training data. Thus, the methods do not suffer from overtraining due to the lack of
the overlap speech especially for a large number of speakers. On the other hand,
while EEND-GLA in Section 3.3 can somewhat deal with a large number of speak-
ers, its performance on that case is still poorer than the state-of-the-art cascaded ap-
proach. One reason is the training datasets. Mixtures of a large number of speakers
are often rare in various datasets; thus, end-to-end models cannot produce diariza-
tion results for large number of speakers because they are overtrained on mixtures
of a few number of speakers. Even if the issue on the number of mixtures is solved,
the EEND depends on the permutation invariant training [66] so that it is still hard
to train the model on a large number of mixtures in terms of the calculation cost.
For these reasons, how to handle mixtures that contain overlapping speech of a
large number of speakers is still an open problem for both cascaded and end-to-
end diarization methods.

In this chapter, we propose to combine both cascaded and end-to-end methods
effectively to deal with overlapping speech regardless of the number of speakers,
namely, EEND as post-processing (EENDasP). We first obtain the initial diariza-
tion result using x-vector clustering, which does not produce overlapping results
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in most cases. We then apply the following steps iteratively: i) frame selection
to contain only two speakers and silence and ii) overlap estimation using a two-
speaker EEND model. The frame selection is also used to adapt the EEND model
to a dataset which contains mixtures of more than two speakers. We evaluate
our method using various datasets including CALLHOME, AMI, and DIHARD
II datasets.

5.2 EEND as Post-Processing

5.2.1 Overview

Given acoustic features {xt}T
t=1, where t ∈ {1, . . . , T} =: [T] denotes a frame index,

diarization is a problem to predict a set of active frames Tk ⊆ [T] for each speaker
k ∈ {1, . . . , K} =: [K]. K is the estimated number of speakers. For simplicity, we
use XT := {xt | t ∈ T } to denote the features of selected frames T ⊆ [T].

Cascaded methods assume that input recordings do not contain speaker over-
lap. It formulates diarization as a set partitioning problem, i.e., Tk for k ∈ [K] are
predicted to be disjoint, i.e., ∀ {i, j} ∈ (K

2), Ti ∩ Tj = ∅. In EEND, on the other
hand, diarization is formulated as a multi-label classification to handle overlap-
ping speech; thus, they do not have to be disjoint. The formulation of EEND is
appropriate for real conversations in which speakers sometimes utter simultane-
ously. However, it makes the problem too difficult to be solved; when K is large (e.g.
10), it rarely happens that K speakers speak together. Therefore, we assume that at
most K′(< K) speakers speak simultaneously, and refine the results of a cascaded
method using an end-to-end model that is trained to process at most K′ speakers.
In this study, we set K′ = 2. The detailed algorithm is explained in Section 5.2.2.

Table 5.1 summarizes the overlap ratio of various real multi-speaker datasets. If
overlap regions are not taken into account at all, diarization error rates will exceed
10 % because they are bounded by the overlap ratio. On the other hand, Table 5.1
also suggests that overlap regions of more than two speakers are minor in natural
conversations. From these observations, cascaded methods with two-speaker over-
lap detection could be a good choice for the diarization of natural conversations;
thus, we set K′ = 2.
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Figure 5.1: Diagram of EEND as post-processing when the number of speakers is
three. It refines the diarization results of each pair of speakers iteratively. Given
initial diarization results (top left), the proposed method (i) first determines the
processing order on the basis of the number of frames and (ii) then refines the cor-
responding results of each pair using two-speaker EEND.
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Table 5.1: Ratio (%) of region where at least n speakers are active over all speech
region of various real multi-speaker datasets.

Dataset # of speakers n = 2 n = 3

CALLHOME [6] 2–7 16.9 0.2
AMI [7] 3–5 19.4 3.5
ICSI [8] 6 (ave.) 18.6 3.9
CHiME-6 [9] 4 33.9 8.6
Internal meeting [10] N/A 14.7 N/A
Internal meeting [11] 4/6 16.3/16.0 N/A
Internal meeting [12] 5–8 13.2 1.4

5.2.2 Algorithm

Given initial diarization results {Tk | ∅ ̸= Tk ⊆ [T]}K
k=1, we iteratively select two

speakers among K and update the diarization results of the two speakers using
an EEND model. The EEND model fEEND : RD×L → (0, 1)2×L was trained to
estimate posteriors probabilities of two speakers from an L-length sequence of D-
dimensional acoustic features. Figure 5.1 show the flow of EENDasP when K = 3.

Processing order determination

To apply the iterative refinement to each pair of speakers, the processing order in-
fluences the accuracy of final diarization results. This is because we cannot select
frames to include only two speakers based on estimated diarization results because
they include diarization errors. For example, if we select frames not containing
Speaker 1 in Figure 5.1, the fourth frame contains Speaker 1 according to the final
results. If the ratio of such impurities among the selected frames is high, the re-
finement using EEND may not perform well. We found that this problem is simply
solved by processing the pairs of speakers in decreasing order of the number of
selected frames (Figure 5.1(i)). For each speaker pair {i, j} ∈ (K

2), we first select a
set of frames Pi,j not containing speakers other than i and j as follows:

Pi,j = [T] \
⋃

k∈[K]\{i,j}
Tk︸ ︷︷ ︸

frames in which speakers other than i and j are active

. (5.1)

We then apply the refinement described below for each speaker pair in descending
order of

∣∣Pi,j
∣∣ as in Figure 5.1 (ii-a)–(ii-c).
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Iterative update of diarization results

To update the diarization results of speakers i and j, we first reselect a set of frames
Pi,j using (5.1). This is because the diarization results {Tk}K

k=1 are updated at each
refinement step so that we cannot reuse the one that is calculated to decide the pro-
cessing order. Then the corresponding features XPi,j are input to the EEND model
to obtain posteriors of two speakers (a) and (b) by([

q(a)
t , q(b)t

]T ∣∣∣∣ t ∈ Pi,j

)
= fEEND

(
XPi,j

)
∈ (0, 1)2×|Pi,j| , (5.2)

where q(a)
t and q(b)t denote posteriors of the first and second speakers at frame in-

dex t, respectively, and (·)T denotes the matrix transpose. We simply apply the
threshold value of 0.5 to obtain the indexes of active frames of the two speakers as

Q(a) =
{

t ∈ Pi,j

∣∣∣ q(a)
t > 0.5

}
, (5.3)

Q(b) =
{

t ∈ Pi,j

∣∣∣ q(b)t > 0.5
}

. (5.4)

Note that we have speaker permutation ambiguity between (a)–(b) and i–j, and
we solve permutation to find the optimal correspondence between (Ti, Tj) and
(Q(a),Q(b)) as follows:(

T̂i, T̂j
)
= arg max

(u,v)∈{(a,b),(b,a))}
s
(
Q(u), Ti

)
+ s

(
Q(v), Tj

)
, (5.5)

where s(U ,V) is a function to calculate similarity between speech and non-speech
activities described by two sets U and V defined as

s(U ,V) := |U ∩ V|︸ ︷︷ ︸
speech similarity

+ |([T] \ U ) ∩ ([T] \ V)|︸ ︷︷ ︸
non-speech similarity

. (5.6)

Finally, we update the diarization results of speakers i and j. To confirm that the
new results T̂i and T̂j are calculated for speaker i and j, we check whether they
satisfy the following conditions:∣∣T̂i ∩

(
Ti ∩ Pi,j

)∣∣∣∣Ti ∩ Pi,j
∣∣ > α, (5.7)∣∣T̂j ∩

(
Tj ∩ Pi,j

)∣∣∣∣Tj ∩ Pi,j
∣∣ > α, (5.8)

where α is a lower limit of the ratio of the intersection between the new results T̂i (or
T̂j) and the previous results Ti ∩Pi,j (or Tj ∩Pi,j). In this study, we set α = 0.5. Only
if the conditions in (5.7) and (5.8) are satisfied, we update the results of speakers i
and j. When K = 2, we simply update the results with the new ones as

Ti ← T̂i ∪
(
[T] \ Pi,j

)
, (5.9)

Tj ← T̂j ∪
(
[T] \ Pi,j

)
. (5.10)
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On the other hand, when K ≥ 3, such fully-update strategy causes a performance
drop due to impurities in the selected frames. Thus, we use the following instead
of (5.9) and (5.10) to update only overlapped frames:

Ti ← Ti ∪
(
T̂i ∩ T̂j

)
, (5.11)

Ti ← Tj ∪
(
T̂j ∩ T̂j

)
. (5.12)

For the end-to-end model fEEND, we use the self-attentive EEND model with
an encoder-decoder attractor calculation module (EEND-EDA) [71]. It consists of a
four-layer-stacked Transformer encoder to extract embeddings for each frame and
the EDA module to calculate attractors from the extracted embeddings. The EDA
includes long short-term memories but we shuffled the order of embeddings just
before they are fed into the EDA, which improves the diarization performance.
Thus, we can consider that all the components of fEEND are independent of the
order of embeddings and therefore the model can treat input features of selected
frames even if they are not continuous in time.

5.2.3 Training Strategy of the EEND-EDA Model

In the original EEND and its derived methods [24, 71, 83] used matched dataset for
model adaptation, i.e., only two-speaker subset of the original dataset (e.g. CALL-
HOME [6]) was used to finetune the models in two-speaker evaluations. This strat-
egy cannot be used to finetune two-speaker models when the dataset does not con-
tain two-speaker mixtures (e.g. AMI [7]). Even if two-speaker mixtures are included
in the dataset, it does not make full use of the datasets, which may cause perfor-
mance degradation.

To cope with this situation, we adopt the frame-selection technique used in (5.1)
for model adaptation. If the input chunk contains more than two speakers, we
first choose two dominant speakers and then eliminate frames in which the other
speakers are active as in (5.1). The model is trained only using the selected frames
to output speech activities of the two speakers. This makes it possible to finetune
two-speaker models from any kind of multi-speaker datasets without mixture-wise
selection.

5.3 Experimental Settings

We use EEND-EDA trained on Sim2spk, which was evaluated in Section 3.2.5, as a
pretrained model. The model was adapted on CALLHOME [6], AMI headset mix
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Table 5.2: DERs (%) on CALLHOME-2spk. Collar tolerance of 0.25 s is allowed.

Model Adaptation DER

SA-EEND [147] CALLHOME-2spk 9.54
SA-EEND CALLHOME + frame selection 9.00

EEND-EDA (Section 3.2) CALLHOME-2spk 8.07
EEND-EDA CALLHOME + frame selection 7.84

(pyannote.audio split) [7] and DIHARD II [95] datasets for another 100 epochs,
respectively. Refer to Section A.1.1 for the details of each dataset. Adam optimizer
[92] was used in the adaptations step with the fixed learning rate of 1× 10−5.

We used diarization error rate (DER) and Jaccard error rate (JER) for evalua-
tion. While some studies excluded overlapped regions from evaluation [36, 21],
this study scored overlapped region. We also note that our evaluations are based
on estimated speech activity detection (SAD), while some studies used oracle seg-
ments [40] or only reported confusion errors [21].

5.4 Results

5.4.1 Preliminary Evaluation of the Training Using Frame Selection

Before the evaluation of EENDasP, we first evaluated the training strategy ex-
plained in Section 5.2.3 using two transformer-based two-speaker EEND models:
SA-EEND [24] and EEND-EDA [71]. They were trained on CALLHOME-2spk in
the original papers, but we utilized mixtures that contain more than two speakers
in the CALLHOME dataset. Table 5.2 shows DERs on the CALLHOME-2spk test
set. Using the full CALLHOME improved DER of SA-EEND from 9.54 % to 9.00 %
and that of EEND-EDA from 8.07 % to 7.84 %. According to these results, we show
the effectiveness of our training strategy described in Section 5.2.3 based on the
frame selection with (5.1).

95



CHAPTER 5. END-TO-END SPEAKER DIARIZATION AS POST-PROCESSING

Table 5.3: DERs (%) on CALLHOME. All the results include overlapped regions
and are NOT based on oracle SAD. Collar tolerance of 0.25 s is allowed.

#Speakers

Method 2 3 4 5 6 All

EEND-EDA [71] 8.50 13.24 21.46 33.16 40.29 15.29

X-vector AHC 15.45 18.01 22.68 31.40 34.27 19.43
X-vector AHC + EENDasP 13.85 14.72 18.61 28.63 29.02 16.79

X-vector AHC + VB 12.62 16.82 21.27 31.14 31.80 17.61
X-vector AHC + VB + EENDasP 9.87 13.11 16.52 28.65 27.83 14.06

5.4.2 Evaluation of EENDasP

CALLHOME

We first evaluated EENDasP on CALLHOME dataset, which is composed of tele-
phone conversations. As a cascaded baseline, x-vectors with AHC and PLDA1 was
used with TDNN-based speech activity detection2. We also prepared the results
for which VB-HMM resegmentation [148] was applied. All the components were
implemented in Kaldi recipe.

Table 5.3 shows the evaluation results. X-vector clustering without and with VB
achieved 19.43 % and 17.61 % DERs, respectively, but they didn’t outperform the
15.29 % DER scored by EEND-EDA trained to output diarization results on flexible
number of speakers. However, we can also observe that the cascaded methods are
better when the number of speakers is larger than four. Applying EENDasP for x-
vector clustering baselines achieved 16.79 % and 14.06 % without and with VB, and
the latter is 1.23 % better than the EEND-EDA model. In terms of the number of
speakers, EENDasP performed well on both large and small number of speakers.

AMI

Second, we evaluated our method on AMI dataset, consisting of meeting record-
ings. We chose the system developed during JSALT 2019 [149] as a baseline. It is
based on x-vector clustering followed by VB resegmentation and overlap detection
and assignment for the second speaker candidate [5].

1https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome˙diarization/v2
2https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire/s5
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Table 5.4: DERs and JERs (%) on AMI eval. VB: Variational Bayes resegmentation,
OVL: Overlap detection and speaker assignment [5]. All the results include over-
lapped regions and are NOT based on oracle SAD. No collar tolerance is allowed.

Method DER JER

X-vector AHC [149] 33.75 45.68
X-vector AHC + EENDasP 30.64 43.78

X-vector AHC + VB [149] 32.80 43.72
X-vector AHC + VB + EENDasP 29.66 42.63

X-vector AHC + VB + OVL [149] 28.15 41.00
X-vector AHC + VB + OVL + EENDasP 27.97 40.57

Table 5.4 shows DERs and JERs on AMI eval set. EENDasP reduced DERs of
3.07 %, 3.14 %, and 0.18 % of absolute improvement from the three baselines. Sur-
prisingly, our method improved DER and JER of the results in which the overlap
detection [5] was already applied.

DIHARD II

Finally, we evaluated EENDasP on DIHARD II dataset, which includes recordings
from 10 different domains. We used the official baseline system [95] and the BUT
system [49, 50], which is the winning system of the second DIHARD Challenge, to
obtain initial diarization results. Both are based on the x-vector clustering, but the
BUT system is more polished in that it extracts x-vectors in shorter intervals and
uses VB resegmentation and overlap detection and assignment based on heuristics.

The results are shown in Table 5.5. EENDasP reduced DER and JER of the base-
line system by 2.96 % and 2.91 %, respectively. Our method also improved DER
and JER of 0.35 % and 0.66 % from the BUT system without overlap assignment
and 0.38 % and 0.64 % from that with overlap assignment, respectively. These im-
provements are small, but it is significantly better than the heuristic-based overlap
assignment in [49], which improved DER by 0.15 % (= 27.26− 27.11) and JER by
0.08 % (= 49.15− 49.07).

5.5 Conclusion

In this chapter, we proposed EEND as post-processing for cascaded diarization us-
ing an end-to-end diarization model. We iteratively selected two speakers, picked
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Table 5.5: DERs and JERs (%) on DIHARD II eval. All the results include over-
lapped regions and are NOT based on oracle SAD. No collar torelance is allowed.

Method DER JER

DIHARD II baseline [38] 40.86 66.60
DIHARD II baseline + EENDasP 37.90 63.79

BUT system (w/o OVL) [49, 50] 27.26 49.15
BUT system (w/o OVL) + EENDasP 26.91 48.49

BUT system (w/ OVL) [49, 50] 27.11 49.07
BUT system (w/ OVL) + EENDasP 26.88 48.43

up frames that contain the two speakers, and process the frames by the end-to-
end model to update diarization results. Evaluations on CALLHOME, AMI, and
DIHARD II datasets showed that our proposed method improves the results of
various types of cascaded methods.

5.6 Acknowledgment
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Chapter 6

Meeting Transcription with
Distributed Microphones

6.1 Introduction

Meeting transcription is one practical use case of multi-speaker ASR in which
speaker diarization can play an essential role. To transcribe utterances from multi-
ple speakers which may overlapped together, not only speaker diarization to detect
speaker overlaps but also powerful speech separation to distinguish them is re-
quired. Therefore, most meeting transcription systems are based on a microphone
array [150, 151, 152, 10], sometimes one with an omnidirectional camera [153, 154]
for face tracking. This means that the system requires special equipment to be intro-
duced. If the microphone arrays can be replaced by more general devices, such as
participants’ smartphones or tablets, ease of use, installation cost, and portability of
the system will be greatly improved. The main challenge of the meeting transcrip-
tion with such distributed devices is that they are asynchronous and thus general
speech separation methods for synchronized signals cannot be simply applied.

Recently, some methods of meeting transcription using asynchronous dis-
tributed microphones have been proposed. One is the session-wise approach
[27, 112], in which first synchronizes multi-channel observation by correcting sam-
pling frequency mismatch, then performs session-wise speech separation using the
minimum variance distortionless response (MVDR) beamformer, and finally feeds
the enhanced signals into an ASR module to transcribe them. Here, the MVDR
beamformer is applied for each frequency bin, so the well-known frequency-wise
permutation problem has to be solved. The common approach for multi-speaker
cases is to prepare initial spatial correlation matrices using training data with a
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fixed number of speakers and their positions [155]. Therefore, it cannot deal with
the case when the number of speakers during inference is different from, especially
larger than, that in the training data. If we cannot obtain such spatial correlation
matrices in advance, e.g., we have no training data, we have to solve the permu-
tation problem as a post-processing [156, 157], but there are few reports that they
performed well on real noisy and reverberant data.

Another is the block-wise approach [28], in which first synchronizes input au-
dio streams in a block-online manner, then applies block-wise speech enhancement
followed by ASR and speaker diarization. The benefit of this approach is that the
effect of sampling frequency mismatch can be ignored within each short-enough
block; the scale of sampling frequency mismatch is about 100 ppm (parts per mil-
lion) at most [158, 159]. However, the speech enhancement here does not consider
speaker overlaps; each speech is separated only from background noise and thus
cannot deal with multiple speakers speaking simultaneously.

This chapter investigates the utterance-wise approach, which is different from
the session-wise or block-wise approaches described above. We first roughly syn-
chronized audio signals recorded by distributed microphones and then applied
speaker diarization. Speaker diarization is based on the clustering of features ex-
tracted from short segments, but we use features extracted from all the signals
recorded by each microphone so that it can deal with overlapped speech. Then
we applied guided source separation [16], which performed well for ASR in a din-
ner party scenario [73, 74]. This separation is conducted for each extracted utter-
ance, which is short enough not to be suffered from sampling frequency mismatch
between microphones. We applied ASR for each enhanced utterance, and finally,
we conducted duplication reduction for ASR results to reduce the effect of errors
on diarization or separation. Our approach can deal with speaker overlap without
any methods to correct sampling frequency mismatch in the synchronization phase
and solve the permutation problem in the speech separation phase. To evaluate
our framework, we recorded eight sessions of real meetings using 11 distributed
smartphones, each of which was equipped with a monaural microphone. The ex-
perimental results showed that our framework improved performance by using
multiple microphones. We also showed that our framework could achieve perfor-
mance comparable to that of headset microphone-based transcription if the oracle
diarization results were known.

6.2 Method

We assume that a meeting is recorded using M asynchronous distributed micro-
phones and the number of speakers K is known in advance. Figure 6.1 shows the
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Figure 6.1: Overview of our meeting transcription system using asynchronous dis-
tributed microphones.
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overview of our meeting transcription system. Given M-channel signals, we first
synchronize them by maximizing their correlation coefficient. The correction of
sampling frequency mismatch between signals is not conducted in the synchro-
nization part. With the synchronized signals, clustering-based diarization is per-
formed to obtain a set of utterances for each speaker. After that, we perform speech
separation for each utterance by using the diarization results as guides to avoid the
permutation problem [16]. The enhanced utterances are fed into the ASR module
to obtain ASR results, followed by duplication reduction to reduce errors caused
by diarization or separation. The following subsections detail the implementation
of each module.

6.2.1 Blind Synchronization

In this part, we conduct a correlation-based synchronization to correct the start or
end point differences of input signals. This rough synchronization can be operated
under the existence of the sampling frequency mismatch. Assume that the time-
domain observation of the m-th microphone (m ∈ {1, . . . , M}) is defined as x̂m :=
[x̂m,n]

Nm
n=1, where Nm is the number of samples in the m-th signal. We select an

anchor ma from the M microphones and calculate the shift δm between signals of
the anchor ma and each microphone m ∈ {1, . . . , M} as follows:

δm =

{
arg maxδ∈Z ∑ν xma,νxm,ν+δ (m ̸= ma)

0 (m = ma)
, (6.1)

xm,ν =

{
x̂m,ν (ν ∈ {1, . . . , Nm})
0 (otherwise)

. (6.2)

Synchronized signals xm (m ∈ {1, . . . , M}) are defined in the time interval recorded
by all the microphones as follows:

xm = [x̂m,n]
nend+δm
n=nbegin+δm

, (6.3)

nbegin = max
m′∈{1,...,M}

(1− δm′) , (6.4)

nend = min
m′∈{1,...,M}

(Nm′ − δm′) . (6.5)

In this study we assume that all the utterances to be transcribed are within the time
interval of xm.

6.2.2 Speaker Diarization

In this subsection, we conduct speaker diarization by clustering vectors. One draw-
back of the conventional clustering-based diarization using a monaural recording
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is that it cannot deal with speaker overlap because each frame is assigned to one
speaker. On the other hand, in our scenario, each meeting has been recorded by dis-
tributed microphones. Therefore, even when two speakers spoke simultaneously,
it is expected that one microphone could have captured the one speaker’s utter-
ance at a sufficient signal-to-noise ratio (SNR) and another microphone could have
captured the other speaker’s utterance at a sufficient SNR. In this study, we extract
features from all the signals from all the microphones and perform clustering for
the extracted features altogether to deal with speaker overlap.

We first split each synchronized observation xm into short overlapping seg-
ments [xm,1, . . . , xm,T] with 1.5 s of window size and 0.75 s of window shift. We
apply power-based speech activity detection for each segment; as a result, each seg-
ment is classified as either speech or non-speech. From each speech segment, we
extract features to be used for clustering. In this study, we concatenate two kinds
of features: speaker-characteristics-based features and power-ratio-based features.

For features to represent speaker characteristics, we use x-vectors [39], which
are commonly used in cascaded diarization systems [38, 40, 4]. We extract x-vectors
from each microphone’s audio; so we can obtain different speaker characteristics
from one frame. Before we use the vectors for clustering, we subtract a mean vector
within a session and normalized them to have a unit norm. As a result, we obtain
microphone and frame-wise D-dimensional features cm,t ∈ RD (1 ≤ t ≤ T).

Although the x-vectors from distributed microphones are potentially beneficial
to diarize overlapped speech, it becomes a problem that an utterance from the same
speaker could be judged as one from multiple speakers because x-vectors suffer
from speaker-microphone distance and noisy environments. Thus, we introduce
power-based frame-wise features pt := [p1,t, . . . , pM,t]

T, where pm,t is the average
power of xm,t. This speaker diarization part is a session-level one, so we avoid using
phase-based features like GCC-PHAT [160] because they suffer from the sampling
frequency mismatch.

Final (D + M)-dimensional features to be clustered are

vm,t =

[
cm,t

λpt/ ∥pt∥

]
, (6.6)

where λ is the scaling factor to balance the effect of cm,t and pt. We apply agglom-
erative hierarchical clustering for the features to divide the speech segments into
K clusters. As a result, each feature from a speech segment belongs to one of the
clusters C2, . . . , CK+1, where Ck+1 corresponds to the speech cluster of k-th speaker.
We also define the additional noise cluster C1 := {vm,t | 1 ≤ m,≤ M, 1 ≤ t ≤ T}.
The diarization results including noise D =

{
d(k)t

}
∈ {0, 1}(K+1)×T are calculated
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as

d(k)t =

{
1 (∃m ∈ {1, . . . , M}, vm,t ∈ Ck)

0 (otherwise) .
(6.7)

In the diarization results, utterances are sometimes divided into some short
fragments due to the existence of backchannels, noises, etc. In this study, we treat
silence of 1.5 s or less between speech fragments from the same speaker as a speech
by applying two iterations of binary closing along the time axis.

Here each timeslot in the diarization results corresponds to 0.75 s, which is in-
consistent with the signals used in speech separation in the next section. Thus, we
upsample the diarization results so that each timeslot corresponds to 16 ms. Here-
after, D =

{
d(k)t

}
denotes the upsampled diarization results.

6.2.3 Speech Separation

In this study, we conducted speech separation for each utterance by using guided
source separation (GSS) [16], which is explained in Section 2.4. While the original
GSS utilized oracle speech activities, we instead use estimated diarization results
described in the previous section.

We first apply weighted prediction error [76] to the input multichannel signals
in a short-time Fourier transform (STFT) domain for dereverberation. The window
length and the window shift for the STFT were set to 64 ms and 16 ms, respectively.
With the dereverberated STFT signal and the diarization results D, we obtained
utterance-wise enhanced signals using GSS. The length of pre- and post-context
was set to 15 s, respectively. The number of iterations for the EM update was set to
10.

6.2.4 Speech Recognition

For each enhanced utterance, we apply ASR consisting of a CNN-TDNN-LSTM
acoustic model (AM) [161] followed by 4-gram-based and recurrent neural
network-based language models (LMs) [162]. The AM takes a 40-dimensional log-
scaled Mel-filterbank and 40-dimensional Mel-frequency cepstral coefficients as in-
put audio features. 100-dimensional i-vectors are also fed into the AM for online
adaptation for speaker and environment [163]. It was trained by 1,700 hours of
Japanese speech corpus using the lattice-free maximum mutual information cri-
terion [164]. The LMs were trained by transcriptions of the corpus used for AM
training and the Wikipedia corpus.
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6.2.5 Duplication Reduction

The diarization and speech separation is not perfect, so the same transcription is
sometimes included in multiple estimated utterances. Therefore, we apply dupli-
cation reduction for the ASR results. Widely used ensemble techniques such as
ROVER [165] and confusion network combination [166] are for the different ASR
results obtained from the same utterance; thus, they cannot be used in this situation
where the utterances to be merged have different start and end points. To overcome
this issue, we propose a combination technique for such utterances which have dif-
ferent time intervals. We first find which pairs of utterances should be merged.
Given the set of U ASR results W = {(wu, ku, ts

u, te
u)}U

u=1, where wu, ku, ts
u, and

te
u denote the sequence of words, speaker, start time, and end time of u-th result,

respectively, we calculate an adjacency matrix A = {ai,j}i,j ∈ {0, 1}U×U as follows:

ai,j =

{
1 (max (ts

i , ts
j ) < min (te

i , te
j ) ∧ s

(
wi, wj

)
> τ ∧ ki ̸= k j)

0 (otherwise)
, (6.8)

where τ ∈ [0, 1] is the threshold value. Here s
(
wi, wj

)
is the similarity between wi

and wj defined as follows:

s
(
wi, wj

)
:=

max
(
|wi| ,

∣∣wj
∣∣)− d

(
wi, wj

)
min

(
|wi| ,

∣∣wj
∣∣) , (6.9)

where d(wi, wj) is the Levenshtein distance between wi and wj, and |w| denotes
the number of words in w. With this adjacency matrix, all the elements in W can
be clustered into C clusters. We denote the clustering result as C = {cu}U

u=1 ∈
{1, . . . , C}U , which fulfill ci = cj if a path between i-th and j-th elements exists in
A and ci ̸= cj otherwise. Assuming that Wk,c ⊆ W is the set of ASR results that
belong to the cluster c and are uttered by speaker k, we obtain the representative
speaker kc of the cluster c by

kc = arg max
k∈{1,...,K}

f (Wk,c), (6.10)

where f (·) is the selection function. In this study, we select the speaker with the
longest utterance(s), i.e., f (Wk,c) = ∑(w,k,ts,te)∈Wk,c

|w|. The set of de-duplicated
ASR resultsW ′ can be obtained as follows:

W ′ =
⋃

c∈{1,...,C}
Wkc,c. (6.11)

6.3 Results

We investigated various combinations of asynchronous distributed microphones: 2
microphones ( 8⃝ & 10⃝ in Figure A.1), 3 microphones ( 7⃝ & 9⃝ & 11⃝), 6 microphones
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Table 6.1: CERs (%) obtained using various microphone combinations.

Session

#Mic I II III IV V VI VII VIII All

1 31.2 30.1 37.1 37.6 28.2 48.4 50.4 52.5 38.2
2 22.9 25.3 30.5 37.0 21.8 41.7 36.8 45.7 31.4
3 26.8 24.4 35.9 37.2 23.2 43.1 41.9 46.6 33.7
6 22.3 22.2 36.0 32.1 21.0 38.1 35.1 44.3 30.2

11 21.2 21.1 32.5 30.9 19.6 37.6 34.0 41.0 28.7
11† 17.0 16.3 21.7 21.2 17.7 27.0 27.0 32.8 21.8

Headset 18.3 15.8 21.0 20.1 13.6 21.3 24.9 25.8 19.7

† The oracle diarization was used for speech separation.

( 1⃝– 6⃝), and 11 microphones ( 1⃝– 11⃝). For comparison, we also evaluated the per-
formance of one monaural microphone ( 9⃝) and of headset microphones that the
participants wore during each session.

The character error rates (CERs) obtained using various microphone combina-
tions in each session are shown in Table 6.1. In these experiments, the weighting
parameter λ in (6.6) was set to 1.0. By using multiple microphones, we could have
reduced CERs, especially by using a large number of microphones. Note that in
two-, three-, and six-microphone settings, using more microphones not always re-
sulted in better CERs. This is because the sets of microphones in these settings
are disjoint and the CERs highly depended on the positions of microphones and
speakers. On the other hand, we observed the best CERs in almost every session
by using all the 11 microphones. This result indicated that adding microphones
has almost no negative effect on CERs. In Table 6.1, we also showed CERs with
11 microphones in the case when oracle diarization was used for GSS. It achieved
the CER of 21.8 %, which is only 2.1 percentage points worse than the CER of 19.7 %
obtained using headset microphones. It can be said that our method can potentially
achieve nearly headset-level CERs when it is used with a more powerful diarization
method [24, 167, 71].

In Table 6.2 we show the average CERs over sessions with various weighting
parameters λ in (6.6). Combinations of speaker-characteristics-based features and
power-ratio-based features improved transcription performance, especially when
the number of microphones is smaller and the power ratio thus has less information
about the directions of speakers.

Finally, we conducted ablation studies by removing binary closing in diariza-
tion, speech separation by using recordings of the reference microphone instead,
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Table 6.2: CERs (%) obtained with various scaling factors λ.

Scaling factor λ in (6.6)

#Mic 2−3 2−2 2−1 20 21 22 23

2 33.7 31.7 32.2 31.4 31.8 33.3 35.5
3 34.2 34.3 34.0 33.7 33.0 34.8 35.2
6 33.5 34.1 33.4 30.2 31.4 31.9 32.4

11 33.5 32.5 31.1 28.7 28.9 28.4 28.9

Table 6.3: Ablation study using 11 microphones.

Method CER (%)

Baseline (11 mics) 28.7
w/o binary closing 30.6
w/o speech separation 37.8
w/o duplication reduction 31.9

and duplication reduction, respectively. Here we used 11 microphones with λ =

1.0. The results are shown in Table 6.3. We found 1.9, 9.1, and 3.2 percentage points
degradation from the baseline by removing binary closing, speech separation, and
duplication reduction, respectively. From these results, we concluded that these
three components contributed to the improvement of the CER.

6.4 Conclusions

In this chapter, we proposed a meeting transcription system based on utterance-
wise processing using asynchronous distributed microphones. It consists of the
following modules: blind synchronization, speaker diarization, speech separation,
speech recognition, and duplication reduction. Evaluation on the real meeting data
showed the effectiveness of our framework and its components, and also showed
that it could perform comparably to the headset microphone-based transcription if
the oracle diarization was given.
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Chapter 7

Block-Online Guided Source
Separation

7.1 Introduction

Speech separation is essential to improve the performance of automatic speech
recognition (ASR) under a noisy and speaker-overlapped condition. Although
there have been recent successes in neural-network-based mask estimation [168,
169, 123, 10, 134] or end-to-end speech separation [19, 170, 171] for multi-channel
signals, beamforming with unsupervised mask estimation is still a powerful speech
separation method. Especially, guided source separation (GSS) [16], which involves
constructing a beamformer by using diarization information, has performed well
on the CHiME-5 corpus [73, 74] that consists of recordings at dinner parties. GSS
was also adopted as a baseline method for the CHiME-6 Challenge [15] and is still a
de facto standard for the CHiME-6 corpus [172, 167, 173]. The investigation in Chap-
ter 6 has proven that diarization-first speech separation using GSS is also useful for
an ASR system using asynchronous distributed monaural microphones.

There are mainly three advantages of GSS. The first is that the diarization in-
formation can give good initial parameters of a generative model of observations,
which makes it possible to work well without pretrained parameters even when
there are multiple speakers. The second advantage is that, although mask estima-
tion is a frequency-wise algorithm, this initialization makes it free from the permu-
tation problem of the frequency domain. The third advantage is that GSS calculates
utterance-wise beamformers so that it works well when a session-level beamformer
does not work well, e.g., there is a sampling frequency mismatch between audio
channels or speakers are moving around during a session.
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The utterance-wise algorithm, however, incurs significant computational cost
because several iterations of optimization are required for each utterance. It also
produces latency according to the utterance length and its pre-context length. Thus,
this algorithm limits the development of ASR systems based on GSS, especially
those of real-time applications. If GSS is extended to an online algorithm, it is bene-
ficial to implement a highly accurate speech recognition system for an overlapping
and conversational speech by combining GSS with online diarization methods for
an unrestricted number of speakers [43, 21, 174] and online ASR [175, 176, 177, 178].

This chapter proposes a block-online GSS algorithm to avoid the utterance-wise
processing. A block-wise input is processed together with its pre-context to update
time-frequency masks and estimate a minimum variance distortionless response
(MVDR) beamformers. There are two benefits of using a pre-context. One is that
the context is helpful to estimate the mask of the current block from only one
expectation-maximization (EM) iteration because the context has been processed
once in the previous step. The other is that the context is helpful to solve the fre-
quency permutation problem, the same as with the conventional offline GSS al-
gorithm [16]. To reduce the computational cost, the block-wise update only takes
into account the parameters of active speakers during the block and its context. We
evaluated the proposed algorithm in both synchronous and asynchronous settings
using the CHiME-6 corpus and a meeting corpus recorded using distributed asyn-
chronous microphones. The experimental results indicate that the proposed algo-
rithm exhibits comparable performance to the conventional offline GSS algorithm
with real-time processing.

7.2 Related Work

Conventional online mask-based beamforming methods are based on block-wise
[155, 179, 180, 181] or frame-wise [182] estimation of time-frequency masks and up-
dating of the beamformer. There are mainly two approaches for mask estimation:
spatial-clustering- and neural-network-based estimation. Mask estimation based
on spatial clustering empirically requires pretrained parameters for initialization
[155, 179], especially when there are multiple speakers, to avoid iterative calcula-
tion and the frequency permutation problem. This is not suitable when the micro-
phone and speaker arrangement is not known in advance. Mask estimation based
on neural networks requires clean training data [180, 181, 182], which are inaccessi-
ble in real conversations. It is also a problem that such networks typically predeter-
mine the number of input and output channels. Recently proposed methods accept
variable channels of inputs [117, 118, 29], but the number of outputs still has to be
known in advance. The original GSS does not have such limitations; an online ex-
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tension of the GSS proposed in this chapter also does not have such restrictions on
the requirement of clean data or the number of channels in input/output. Recently,
Du et al. investigated an online update of the beamformer on the CHiME-6 corpus
[172], but the preceding mask estimation based on GSS is an offline algorithm so it
cannot work in an online manner.

7.3 Block-Online Guided Source Separation

7.3.1 Overview

In the CHiME-6 baseline system, speech separation based on GSS is applied for
each utterance. It takes about 85.44 hours using a single CPU without utterance-
wise parallel processing to enhance all the utterances in the development set, which
includes about 4.46 hours of recordings. This processing speed is not sufficient for
online processing or for offline ASR systems because it takes over 19x the recording
duration for speech separation.

The reason the conventional offline GSS algorithm requires such a long calcu-
lation time is the redundancy of the utterance-wise operation. For example, if two
speech signals are highly overlapped, as in Figure 7.1, the optimized cACGMMs
should be almost the same. However, they are optimized independently in the con-
ventional offline GSS algorithm. It should be also considered in online processing
that this algorithm uses a few seconds of signals after each utterance as context. If
we use such a post-context even in an online algorithm, it produces latency accord-
ing to the length of the context. Moreover, we have to beware that the calculation
cost is proportional to the number of speakers.

The proposed algorithm i) updates the parameters of a cACGMM in a block-
online manner to avoid redundant calculation as in Figure 7.1, ii) only uses a pre-
context of each block to reduce latency, and iii) only uses active sources to update
parameters to reduce calculation. Note that the number of speakers in a session
does not have to be known a priori because this algorithm determines this adap-
tively from block-wise input diarization information.

7.3.2 Proposed Algorithm

The proposed algorithm is shown in Algorithm 7.1. Let L be the length of a block
along the time axis, C be the length of a pre-context of a block, N be the length
of a sequence of blocks, and Kn(K1 ≤ K2 ≤ · · · ≤ KN) be the number of sources
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Algorithm 7.1: Block-online guided source separation.

Input:
{

Xn ∈ CL×F×M}N
n=1 // STFT features{(

d(k)t

)
t∈Tn

1≤k≤Kn

}N

n=1
// Diarization

C ∈ Z≥0 // #Pre-context frames

1 K0 = 0 // Initial #Sources

2 for n = 1 to N do
3 Xn ← BlockOnlineWPE (Xn)

4 if ∑t∈Tn ∑Kn
k=2 d(k)t = 0 then // Silent block

5 continue

6 K ←
{

k
∣∣∣ 1 ≤ k ≤ Kn, ∑t∈T +

n
d(k)t > 0

}
// Set of active sources

7 foreach f ∈ {1, . . . , F} do
8 for k = Kn−1 + 1 to Kn do // New sources

9 γ
(k)
t, f ← 0 for t ∈ T c

n

10 Γ(k)
f ← 0

11 B(k)
f ← OM

12 Initialize γ
(k)
t, f for (t, k) ∈ Tn ×K by (2.46)

13 Update α
(k)
f for k ∈ K using X̂+

n by (2.43)

14 Calculate B+(k)
n, f for k ∈ K using X̂+

n by (7.1)

15 Update B(k)
f for k ∈ K using X̂+

n by (7.2)–(7.3) or (7.4)

16 Update γ
(k)
t, f for (t, k) ∈ T +

n ×K by (2.45)

17 foreach utterance spoken during Tn do
/* assume that the utterance started at ts and ended at te */

18 Calculate Rspeech
f and Rnoise

f for f ∈ {1, . . . , F} from X+
n by

(2.48)–(2.49)
19 Calculate w f for f ∈ {1, . . . , F} by (2.50)

20 Output an enhanced audio
(

wH
f xt, f

)
max(ts ,(n−1)L+1)≤t≤min(te ,nL)

f∈{1,...,F}
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Target

Pre-context Post-context

Processing interval

(a) Target: Speaker 1

Target

Pre-context Post-context

Processing interval

(b) Target: Speaker 2

Figure 7.1: Case when almost same cACGMMs are obtained by conventional
utterance-wise offline GSS algorithm.

appearing no later than the n-th block. For sake of simplicity, we define the set
of time indexes in the n-th block as Tn := {(n − 1)L + 1, . . . , nL}, that in the pre-
context of the n-th block as T c

n := {(n − 1)L − C + 1, . . . , (n − 1)L} ∩N, and the
union of them as T +

n := Tn ∪ T c
n . To process the n-th block, we use samples in the

previous blocks as the pre-context. Thus, we prepared a C-length queue and store
the most recent C frames to use them in the block-online processing.

We assume that inputs are blocked STFT features {Xn}N
n=1, where

Xn =
(

xt, f
)

t∈Tn
f∈{1,...,F}

∈ CL×F×M, and their corresponding diarization results{
(d(k)t ) t∈Tn

1≤k≤Kn

}N

n=1
. Note that k = 1 corresponds to noise, whose activities d(1)t are

always one, and k ≥ 2 corresponds to speakers. First, the initial number of sources
K0 is set to zero (Line 1 in Algorithm 7.1; L1). For each block (L2), the block-online
WPE [183] is applied for dereverberation of the input features (L3). If there is no
active speaker in the block, we finish processing for the input block (L4–5). If active
speakers exist in the block, we extract the set of active sources K in the block and
its context (L6).

The parameters of cACGMM are then updated for each frequency index f us-
ing the block and its pre-context (L7). To calculate the posteriors using (2.45), the
mixture weight α

(k)
f and the matrix parameter B(k)

f for each active speaker are re-

quired. However, we do not have such α
(k)
f because the active source set K differs

among blocks, and we also do not have reliable B(k)
f for new speakers. Therefore,

in this online strategy, we first update α
(k)
f and B(k)

f using initial estimations of γ
(k)
t, f

calculated from the input diarization information, and then estimate γ
(k)
t, f using the

estimated α
(k)
f and B(k)

f .

For each new speaker (L8), we set the posteriors γ
(k)
t, f during the context by zero

(L9) because the new speakers are not active during the context interval. The value
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for the accumulation of posteriors Γ(k)
f is also initialized with zero (L10) and the

matrix parameter B(k)
f is initialized with M × M zero matrix OM (L11). We also

initialize the posteriors of all the active speakers during the input block by (2.46)
(L12). The mixture weight α

(k)
f for each source is then updated (L13) using (2.43). As

described above, the sets of speakers differ from block to block; thus α
(k)
f is updated

by (2.43) without any smoothing over blocks. On the other hand, in this study, we
used two update strategies to update the matrix parameter B(k)

f (L14–15). One is

the accumulation strategy, which updates B(k)
f to be closer to the offline estimation.

We first calculate the matrix parameters using X̂+
n :=

(
x̂t, f
)

t∈T +n
f∈{1,...,F}

by

B+(k)
n, f =


M

∑t∈T +n
γ
(k)
t, f

x̂t, f x̂H
t, f

x̂H
t, f

(
B(k)f

)−1 x̂t, f

∑t∈T +n
γ
(k)
t, f

(k ≤ Kn−1)

M
∑t∈T +n

γ
(k)
t, f x̂t, f x̂H

t, f

∑t∈T +n
γ
(k)
t, f

(k > Kn−1)

. (7.1)

By using this, B(k)
f is updated by

B(k)
f ←

Γ(k)
f

Γ(k)
f + ∑t∈Tn

γ
(k)
t, f

B(k)
f +

∑t∈Tn
γ
(k)
t, f

Γ(k)
f + ∑t∈Tn

γ
(k)
t, f

B+(k)
n, f , (7.2)

where Γ(k)
f is an accumulation of the posteriors, which is updated after updating

B(k)
f as follows:

Γ(k)
f ← Γ(k)

f + ∑
t∈Tn

γ
(k)
t, f . (7.3)

The accumulation strategy is known to be effective when there is a beamformer that
works well through a session [155, 180]. However, if there is a sampling frequency
mismatch between audio channels or speakers are moving around during a session,
such a session-wise beamformer is not sufficient and its block-level refinement is
required for performance improvement [27, 112]. In such situations, the parameters
of cACGMM should be updated to have temporal locality. Therefore, we also used
the decay strategy, in which we update B(k)

f as follows:

B(k)
f ← ηB(k)

f + B+(k)
n, f , (7.4)

where η ∈ [0, 1) is a factor of decay. The posteriors γt, f during T +
n are then updated

using (2.45) (L16).

The updates of α
(k)
f , B(k)

f , and γ
(k)
t, f above are conducted using the samples of the

block and its pre-context. By using the pre-context, the permutation problem can be
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solved, as in the conventional offline GSS algorithm. Furthermore, the posteriors
γ
(k)
t, f for the context are computed once in the previous iteration; they are helpful

for accurate estimation of the mixture weights α
(k)
f and matrix parameter B(k)

f , and
eventually calculation of posteriors for the current block only from one EM itera-
tion. Note that the case of η = 0 corresponds to a block-wise calculation of the
parameter B(k)

f . In this study, we set η = 0.9.

After the update of the cACGMM, an MVDR beamformer is calculated using
the optimized cACGMM. For each utterance spoken during the block, regardless
of whether the utterance is finished, we calculate spatial covariance matrices from
X+

n , calculate a beamformer, and output enhanced audio during the utterance (L17–
20).

7.4 Experimental Settings

To evaluate the proposed algorithm, we used two corpora: the CHiME-6 dataset
and the meeting dataset, listed in Table A.5. For speech recognition of the CHiME-6
dataset, we used an acoustic model based on a factorized time delay neural network
and 3-gram language model with two-stage decoding as in the baseline system. For
the meeting dataset, we evaluated the character error rates (CERs) using various
combinations of microphones: 2 microphones ( 8⃝& 10⃝), 3 microphones ( 7⃝& 9⃝& 11⃝),
6 microphones ( 1⃝- 6⃝), and 11 microphones ( 1⃝– 11⃝). We used our meeting tran-
scription system described in Chapter 6 for evaluation by replacing its speech en-
hancement module with the proposed online GSS.

A parameter set for the proposed algorithm is shown in Table 7.1. To enable
real-time processing, the tap size of the WPE was set to two, which was set to 10
in the offline baselines. The block size L and the pre-context size C were varied
among the experiments. From the view point of utterance, the number of pre-
context frames for each utterance cpre fulfills C ≤ cpre ≤ C + L − 1 and that of
post-context frames for each utterance cpost fulfills 0 ≤ cpost ≤ L − 1. The offline
baseline uses 10 s of pre- and post-contexts for the CHiME-6 corpus and 15 s of
them for the meeting corpus, as in previous studies. For diarization information
d(k)t , we used oracle speech segments. In the CHiME-6 evaluation, we also used
estimated diarization results obtained by a single iteration of target-speaker voice
activity detection (TS-VAD) [25]1.

Note that a block-wise input sometimes contains a new speaker k with a very
limited number of active frames. In such a case, the estimated matrix parameter

1https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5b˙track2
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Table 7.1: Parameters used in online experiments.

Audio sampling rate 16 kHz
STFT window length 64 ms
STFT window shift 16 ms
STFT window function Hanning
WPE taps 2 frames
WPE delay 2 frames
WPE decay factor 0.9

B(k)
f is not reliable. To avoid using such an unreliable parameter to process the next

block, we treated the speaker k as a new speaker in the next block processing, i.e.,
we conducted L9–11 in Algorithm 7.1 once again for the speaker k, if the duration
of the active frames was less than 0.2 s.

7.5 Results

We first evaluated the performance of the proposed online GSS algorithm on the
CHiME-6 development set using the oracle segments. The results are shown in
Table 7.2(a). The decay strategy always performed better than the accumulation
strategy when the same parameters (L, C) were used. This indicates that the decay
strategy is suitable for home environments in which speakers are moving during a
session. With the decay strategy, the WERs improved by using the pre-context from
57.3 % to 51.6 % when L = 150 (2.4 s) and from 56.0 % to 52.3 % when L = 300 (4.8 s).
By comparing the results of (L, C) = (300, 0) and (150, 150), we can also observe
that the pre-context improved WERs from 56.0 % to 51.6 % even if the lengths of the
processing unit L + C are the same. These results indicate that using pre-context
for parameter update is important for accurate mask estimation only from one EM
iteration.

We also evaluated the performance of the proposed online GSS algorithm using
estimated diarization results. They were obtained by a single iteration of TS-VAD,
which showed a diarization error rates of 46.5 % and 53.62 % on S02 and S09, re-
spectively. The results shown in Table 7.2(b) indicate that the proposed method
works as well as the offline GSS, even if it is based on the estimated diarization
results.

Figure 7.2 shows WERs with various block sizes L and pre-context sizes C using
the oracle segments. The decay strategy with η = 0.9 was used for the proposed
online GSS algorithm. We found that the WERs slightly degraded as L became
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Table 7.2: WERs (%) on CHiME-6 development set.

(a) With oracle segments.

Session

Algorithm Block L Context C S02 S09 All

Offline [16, 15] — — 52.2 51.1 51.8
Online (Accumulation) 150 0 59.4 64.7 61.5
Online (Accumulation) 300 0 59.1 64.3 61.1
Online (Accumulation) 150 150 62.9 63.6 63.1
Online (Accumulation) 300 300 62.8 63.8 63.2
Online (Decay, η = 0.9) 150 0 55.7 59.9 57.3
Online (Decay, η = 0.9) 300 0 54.1 59.0 56.0
Online (Decay, η = 0.9) 150 150 50.6 53.3 51.6
Online (Decay, η = 0.9) 300 300 51.4 53.7 52.3

(b) With estimated diarization results obtained by TS-VAD.

Session

Algorithm Block L Context C S02 S09 All

Offline [16, 15] — — 70.2 70.0 70.1
Online (Decay, η = 0.9) 150 150 70.1 71.3 70.6

50 100 150 200 250 300 350 400
Block size L (frame)

52

54

56

W
ER

 (%
)

Offline
Online (C=L/2)
Online (C=L)
Online (C=2L)

Figure 7.2: WERs (%) on CHiME-6 development set with various block size L and
pre-context size C. Decay strategy with η = 0.9 was used for proposed algorithm.
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Table 7.3: CERs (%) on the meeting corpus recorded using asynchronous dis-
tributed microphones. The block size L and context size C were set to 150 for pro-
posed algorithm.

Session

#Mic Method I II III IV V VI VII VIII All

Offline 19.4 21.5 26.8 31.0 19.3 34.9 32.2 40.7 27.1
2 Online (Accumulation) 19.9 25.7 27.9 32.1 20.0 36.7 32.2 40.2 28.2

Online (Decay, η = 0.9) 20.3 20.8 27.3 31.5 19.7 36.2 32.3 39.9 27.4

Offline 21.7 22.0 31.4 29.3 20.0 38.2 36.0 41.0 28.9
3 Online (Accumulation) 21.9 23.4 34.2 31.3 20.5 39.6 38.9 43.4 30.4

Online (Decay, η = 0.9) 21.1 22.9 32.9 30.6 19.6 37.6 36.3 42.0 29.2

Offline 19.3 18.2 24.7 23.5 17.7 28.4 28.3 34.1 23.5
6 Online (Accumulation) 18.6 20.1 24.1 24.2 17.7 31.8 31.0 37.0 24.6

Online (Decay, η = 0.9) 18.7 17.9 25.6 23.8 17.9 32.2 31.9 37.2 24.6

Offline 17.0 16.3 21.7 21.2 17.7 27.0 27.0 32.8 21.8
11 Online (Accumulation) 17.2 16.9 20.3 22.9 17.6 26.2 27.8 33.2 21.9

Online (Decay, η = 0.9) 17.1 15.4 21.7 21.8 17.5 27.0 26.7 33.4 21.7

larger. This means that the MVDR beamformer should be calculated at short in-
tervals under speaker-moving conditions, such as in CHiME-6. We also observed
that the WERs are highly dependent on C when L is small, i.e., L = 50. This indi-
cates that the size of a unit to update parameters and calculate MVDR beamformers
should be large to some extent. In this case, L + C ≥ 200 was sufficient to avoid
performance degradation due to the smallness of the unit.

We also evaluated the proposed algorithm on the meeting corpus using vari-
ous combinations of asynchronous distributed microphones. In this experiment,
the block size L and the pre-context size C were set to 150 frames and the oracle
segments were used. The results are shown in Table 7.3. The proposed algorithm
performed comparatively with the conventional offline GSS, e.g., 21.8 % CER with
the offline GSS and 21.7 % CER with the online GSS with the decay strategy, re-
spectively, by using 11 microphones. In terms of the update strategy of the matrix
parameter B(k)

f , the decay strategy showed equivalent or better CERs than the ac-
cumulation strategy in overall performance, which is the same trend as the results
from the CHiME-6 corpus.

Finally, we show the execution times on the CHiME-6 development set in Ta-
ble 7.4. We showed the average and standard deviation of ten trials using Intel®

Xeon® Gold 6132 CPU@2.60 GHz with a single thread. The proposed algorithm en-
hanced all utterances in the CHiME-6 development set within 2.65 hours, while
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Table 7.4: Execution times on CHiME-6 development set. Mean and standard devi-
ation among 10 trials are shown. The block size L and the pre-context size C were
set to 150, which corresponds to 2.4 s.

Duration (s) Execution time (s)

Session #Mic Total Speech Offline Online

S02 12 8902 8492 183529± 9567 6135± 93
S09 10 7160 5552 124054± 7114 3418± 66

the conventional offline GSS algorithm required 85.44 hours by using the Kaldi
CHiME-6 recipe. This means that the proposed algorithm is about 32x faster than
the conventional offline GSS algorithm on the CHiME-6 corpus. In terms of real-
time processing, the proposed algorithm skips most of the processing (L6–20 in
Algorithm 7.1) if there is no speech activity in the input block; thus, the execution
time should be compared with speech duration. As shown in Table 7.4, the execu-
tion time for each session is less than the speech duration; so we can fairly conclude
that the proposed algorithm can be used in real-time applications.

7.6 Conclusion

In this chapter, we proposed a block-online algorithm of GSS. A block-wise input
and its pre-context are used together to update the cACGMM parameters and pos-
teriors of active speakers, which are then used to calculate MVDR beamformers.
The proposed algorithm achieved almost the same performance as the conventional
offline GSS algorithm on both the CHiME-6 and the meeting corpora, but with 32x
faster calculation, which is sufficient for real-time processing.
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Chapter 8

Conclusions

8.1 Contributions

This thesis has investigated ways of improving the practicality of speaker diariza-
tion from two aspects: various extensions for end-to-end speaker diarization and
applications to utilize speaker diarization results. We summarize the contributions
of each chapter below.

In Chapter 3, we proposed methods to handle flexible numbers of speakers with
an end-to-end framework for speaker diarization. We first presented EEND-EDA,
in which diarization results are estimated with flexible numbers of speaker-wise
attractors calculated using the proposed EDA module. We further extended the
method to EEND-GLA to deal with not only flexible but unlimited numbers of
speakers by applying EDA-based diarization for each short-divided segment fol-
lowed by unsupervised clustering. The experimental results showed that EEND-
EDA and EEND-GLA successfully achieved overlap-aware speaker diarization
with a single model even when the number of speakers is unknown. We also
proposed BW-STB, which enabled block-online inference of EEND-GLA. It signif-
icantly outperformed the conventional cascaded and end-to-end approaches on a
wide range of corpora.

In Chapter 4, we proposed methods to exploit spatial information from multi-
channel inputs, especially from distributed microphones, in the end-to-end speaker
diarization framework. First, we presented two types of multi-channel EEND
based on spatio-temporal and co-attention encoders, respectively. The model based
on co-attention encoders performed evenly to the conventional single-channel
EEND given a single-channel input, and performed better as the number of in-
put channels increased. It was also a remarkable result that the co-attention-based

121



CHAPTER 8. CONCLUSIONS

EEND was adapted to a target domain only with single-channel data. Second, we
presented a mutual learning method, in which knowledge distillation from multi-
channel EEND to single-channel EEND and finetuning from single-channel EEND
to multi-channel EEND were iteratively conducted. The experimental results on
co-attention-based EEND showed mutual learning to improve the diarization per-
formance of both single and multi-channel EEND.

In Chapter 5, we proposed a method to use a two-speaker EEND model as a
post-processing step, i.e., overlap detection and speaker assignment, of cascaded
approaches for speaker diarization. For each speaker pair given initial diarization
results, the frames that contain only the two speakers and silence are selected and
processed with EEND to update the corresponding results. The proposed method
successfully reduced DERs of various cascaded methods, even when another over-
lap handling method had already been applied.

In Chapter 6, we proposed a meeting transcription system based on asyn-
chronous distributed microphones. In the system, the following modules were
cascaded: correlation-coefficient-based blind synchronization, clustering-based
speaker diarization, speech separation with GSS, ASR, and duplication reduction.
It reduced CERs as the number of microphones increased, and also showed the
CERs comparable to those of headset-based close-talk transcriptions if the oracle di-
arization was given. The results indicated the necessity of highly accurate speaker
diarization.

In Chapter 7, we proposed a block-online algorithm of GSS. In the algorithm,
each block-wise input is processed only with its pre-context to reduce the latency.
The parameters of the generative model based on cACGMM are updated in an on-
line manner with a decay factor, which enables the method to deal with moving
speakers or sampling frequency mismatches between microphones. The transcrip-
tions using the proposed method showed the almost same WERs / CERs as those
using the conventional offline GSS even with sufficient processing speed for real-
time purposes.

8.2 Future Directions

8.2.1 Simulated Datasets for the Training of Diarization Models

One drawback of end-to-end speaker diarization is that it relies on a large num-
ber of simulated mixtures; for example, the disk usage of the training set of the
simulation data is shown below.
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• Sim1spk: 115 GBi

• Sim2spk: 133 GBi

• Sim3spk: 226 GBi

• Sim4spk: 356 GBi

• Sim5spk: 492 GBi

On the other hand, speaker embedding extractors that are used in cascaded ap-
proaches only require one-speaker recordings in their training step, which is stor-
age friendly. One possible solution is to create simulation data on the fly. How-
ever, some studies have revealed that the quality (or naturalness) of the simulated
conversations has a large impact on the diarization performance on real datasets
and thus proposed better simulation protocols based on autoregressive processes
[184, 185]. Using these protocols for on-the-fly simulation will significantly increase
the model training time. Methods that simultaneously achieve highly-accurate
models, less training time, and better storage efficiency are important.

8.2.2 Speaker Diarization in Wilder Conditions

In this thesis, we have tested the effectiveness of the proposed methods on a variety
of datasets, and it can be said that the methods work in a wide range of situations.
However, there may be wilder situations, which have not yet been examined. For
example, each recording in the DIHARD datasets has at most 10 speakers, but this
number is by no means sufficient. For example, the recently released AVA-AVD
data set [186] contains speech with more than 20 speakers, and even with EEND-
EDA, the DER is reported to be about 50 % [187]. Whether EEND-GLA can work
effectively in situations with a very large number of speakers remains to be ex-
plored. In addition, since the multi-channel diarization study was conducted us-
ing only two-speaker recordings in this thesis, there is room for further study on
whether the combination with EEND-GLA can work in situations where the num-
ber of speakers is unknown. Another possible future work is to investigate whether
the system can handle speaker movement. In the case where the speaker is mov-
ing around, how to generate large-scale simulation data and how to systematically
collect a large amount of real data will be practical issues to be considered.

8.2.3 Tight Integration of Diarization and Subsequent Processes

Since speaker diarization is a preceding step of speech separation and ASR, only fo-
cusing on speaker diarization may not be a best Indeed, some studies have already
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investigated a joint optimization of speaker diarization and speech separation [188]
or speaker diarization and ASR [189]. There are also investigations on improving
speaker diarization by using speech separation [190, 18, 191] and ASR [192, 53, 193].
However, these methods simply parallelized or cascaded multiple modules. More-
over, indeed speech separation and ASR can benefit speaker diarization as in the
studies above, this thesis has revealed that the opposite is also true—speaker di-
arization can benefit speech separation and ASR. A promising future work will be
a tight integration of speaker diarization and other speech processing, in which all
the modules affect each other.
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Appendix A

Datasets

This chapter lists the datasets used for the experiments in this thesis.

A.1 Speaker Diarization Datasets

A.1.1 Single-Channel Datasets

Simulated Datasets

The simulated speech mixtures were created from single-speaker recordings of the
following corpora.

• Switchboard-2 (Phase I & II & III)

• Switchboard Cellular (Part 1 & 2)

• NIST Speaker Recognition Evaluation (2004 & 2005 & 2006 & 2008)

We also used MUSAN [194] as a noise corpus and simulated room impulse re-
sponses [195] to emulate reverberated conditions. Note that these corpora are com-
patible with the Kaldi CALLHOME x-vector recipe1.

We used the following simulation protocol to create multi-talker mixtures from
single-speaker recordings:

1. Select N speakers,
1https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome˙diarization/v2
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2. For each speaker, randomly sample speech segments and concatenate them
with silences that are interlaid between speech segments,

3. For each of the N long recordings created, randomly select a room impulse
response and convolve it with the recording,

4. Mix the N long recordings and a noise signal with a randomly determined
signal-to-noise ratio.

The detailed algorithm for creating simulated mixtures can be found in [23], and
the script for simulating mixtures is available online2. In the second process, we as-
sume that the occurrence of an utterance is a Poisson process, so the duration of the
silence between speech segments follows the exponential distribution 1

β exp
(
− x

β

)
,

where β is the mean value. β can be used to control the overlap ratio of the mix-
tures. To obtain a similar overlap ratio among various numbers of speakers, we
varied β according to the number of speakers as summarized in Table A.1. Note
that the adaptation set of each simulated dataset was the subset of the correspond-
ing training set.

Real Datasets

For real datasets, we employed five multi-talker datasets below.

• CALLHOME [6]: A dataset that consists of telephone conversations whose
average duration is two minutes. We used the splits provided in the Kaldi x-
vector recipe1, which are denoted as Part 1 and Part 2, respectively. Two- and
three-speaker subsets were used in the fixed-number-of-speakers evaluations,
which are denoted as CALLHOME-2spk and CALLHOME-3spk.

• CSJ [146]: A dataset that consists of monologues and dialogues of Japanese
speech. In this thesis, we used the dialogue part of the dataset. The average
duration of the recordings is about 13 minutes. Following [73], we used 54
dialogue recordings out of 58.

• AMI headset mix [7]: A meeting dataset that consists of 100 hours of multi-
modal meeting recordings. Each meeting session is about 30 minutes. We
used headset mix recordings, which were obtained by mixing the headset
recordings of all the participants. We used the split and reference RTTMs
provided in the VBx paper [4] in Section 3.2 and those provided in the
pyannote.audio library [196] in Chapter 5.

2https://github.com/hitachi-speech/EEND.git

144

https://github.com/hitachi-speech/EEND.git


A.1. SPEAKER DIARIZATION DATASETS

Table A.1: Statistics of single-channel simulated speaker diarization corpora.

Dataset Split #Spk #Mixtures β Overlap ratio (%)

Sim1spk Train 1 100,000 2 0.0
Adaptation 1 1000 2 0.0

Test 1 100,000 2 0.0

Sim2spk Train 2 100,000 2 34.1
Adaptation 2 1000 2 34.5

Test 2 500 2 34.4
Test 2 500 3 27.3
Test 2 500 5 19.1

Sim3spk Train 3 100,000 5 34.2
Adaptation 3 1000 5 34.9

Test 3 500 5 34.7
Test 3 500 7 27.4
Test 3 500 11 19.2

Sim4spk Train 4 100,000 9 31.5
Adaptation 4 1000 9 31.4

Test 4 500 9 32.0

Sim5spk Train 5 100,000 13 30.3
Test 5 500 13 30.7

Sim6spk Test 6 500 17 29.9

• DIHARD II [95]: A dataset used in the second DIHARD challenge. We used
single-channel audio, which is used for tracks 1 and 2. The dataset consists
of recordings from 11 domains (including telephone data) with an average
duration of about 7 minutes.

• DIHARD III [96]: A dataset used in the third DIHARD challenge. It also
consists of recordings from 11 domains (including telephone data) with an
average duration of about 8 minutes. The test set has two evaluation condi-
tions called core and full. The core set is a subset of the full set, in which the
recordings are selected to balance the duration of each domain. In terms of
the number of speakers, the full set contains more recordings of two speakers
than the core set.

Their statistics are summarized in Table A.2. Note that the recordings in CSJ, AMI,
DIHARD II, and DIHARD III were sampled at 16 kHz, so we downsampled them
to 8 kHz to be aligned with those of the simulated datasets. We also note that the
recordings of the CSJ corpus are in stereo, so we mixed them to create monaural
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Table A.2: Statistics of single-channel real-recorded speaker diarization datasets.

Dataset Split #Spk #Mixtures Overlap ratio

CALLHOME-2spk [6] Part 1 2 155 14.0 %
Part 2 2 148 13.1 %

CSJ [146] — 2 54 20.1 %

CALLHOME-3spk [6] Part 1 3 61 19.6 %
Part 2 3 74 17.0 %

CALLHOME [6] Part 1 2–7 249 17.0 %
Part 2 2–6 250 16.7 %

AMI headset mix [7]
VBx split [4] Train 3–5 136 13.4 %

Dev 4 18 14.1 %
Test 3–4 16 14.6 %

pyannote.audio split [196] Train 3–5 118 19.4 %
Test 3–4 24 18.6 %

DIHARD II [95] Dev 1–10 192 9.8 %
Test 1–9 194 8.9 %

DIHARD III [96] Dev 1–10 254 10.7 %
Test (Core) 1–9 184 8.8 %
Test (Full) 1–9 259 9.2 %

recordings.

A.1.2 Multi-Channel Datasets

We created three multi-channel two-speaker conversational datasets based on the
corpora that were used to create the single-channel simulated datasets listed in Sec-
tion A.1.1. To emulate a reverberant environment, we generated room impulse re-
sponses (RIRs) using gpuRIR [197]. Following the procedure in [195], we sampled
200 rooms for each of the three room sizes: small, medium, and large. In each room,
a table was randomly placed, 10 speakers were randomly placed around the table,
and 10 microphones were randomly placed on the table. To create Sim2spk-multi-
train and Sim2spk-multi-eval, two-speaker conversations were simulated follow-
ing [23] then RIRs of the randomly selected room and two speaker positions were
convolved to obtain a 10-channel mixture. MUSAN corpus [194] was also used to
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Table A.3: Recording environment of CSJ-multi-train, CSJ-multi-eval, and CSJ-
multi-dialog.

add noise to each mixture. Sim2spk-multi-eval-hybrid was created using the same
utterances in Sim2spk-multi-eval, but two speakers were placed at the same posi-
tion. This dataset was designed to mimic the part of hybrid meetings, in which
multiple speakers’ utterances are played from a single loudspeaker.

We also prepared three real-recorded datasets on the basis of the corpus of
spontaneous Japanese (CSJ) [146]: CSJ-multi-train, CSJ-multi-eval, and CSJ-multi-
dialog3, each of which is shown in Table A.4. For CSJ-multi-train and CSJ-multi-
eval, 100 two-speaker conversations were simulated using single-speaker record-
ings in the CSJ training and evaluation sets, respectively. For CSJ-multi-dialog,
we directly used the dialog portion of CSJ. To record each session, we distributed
nine smartphone devices on a tabletop in a meeting room and four loudspeakers
around the table, as shown in Table A.3. We played back two speakers’ utterances
from two of the four loudspeakers that were randomly selected and recorded them
on the smartphone devices. Recorded signals were roughly synchronized to max-
imize the correlation coefficient and neither clock drift nor frame dropping was
compensated.

Their statistics are listed in Table A.4.

3CSJ in Table A.2 and CSJ-multi-dialog in Table A.4 share the data source but the numbers of
sessions are slightly different. This is because four of 58 sessions were eliminated in the single-channel
CSJ following the conventional study [198].

147



APPENDIX A. DATASETS

Table A.4: Statistics of multi-channel speaker diarization corpora.

Conver- Average Overlap
Dataset sation Record #Mic #Session duration ratio

Sim2spk-multi-train Simulated Simulated 10 20,000 88.7 s 34.1 %
Sim2spk-multi-eval Simulated Simulated 10 500 88.1 s 34.6 %
Sim2spk-multi-eval-hybrid Simulated Simulated 10 500 88.1 s 34.6 %
CSJ-multi-train Simulated Recorded 9 100 113.5 s 11.0 %
CSJ-multi-eval Simulated Recorded 9 100 102.2 s 9.6 %
CSJ-multi-dialog Real Recorded 9 58 755.2 s 17.3 %

Table A.5: Statistics of speech recognition datasets.

Dataset Session #Mic Duration #Spk #Utt Overlap

CHiME-6 dev [15]
S02 12 2:28:22 4 3,822 52.9 %
S09 10 1:59:20 4 3,615 45.8 %

Meeting [12]

I 2/3/6/11 19:49 7 160 6.9 %
II 2/3/6/11 14:27 8 150 14.0 %
III 2/3/6/11 13:13 5 198 16.6 %
IV 2/3/6/11 12:08 7 184 19.9 %
V 2/3/6/11 12:37 6 80 5.5 %
VI 2/3/6/11 16:50 6 256 14.7 %
VII 2/3/6/11 16:25 7 223 11.3 %
VIII 2/3/6/11 11:25 7 185 19.9 %

A.2 Speech Recognition Datasets

A.2.1 CHiME-6 Corpus

The CHiME-6 corpus [15] contains sessions each of which consists of a dinner party
scenario with four participants. It was recorded using six distributed Kinect® v2 de-
vices, each equipped with four microphones. The sampling frequency mismatch
between devices was manually corrected. However, participants were moving
around the kitchen, dining room, and living room; thus, a fixed beamformer for
each participant does not exist. Following the CHiME-6 baseline system provided
as a Kaldi recipe4, we used 12-channel signals, i.e., the outer two microphones of
each device, for S02 and 10-channel signals for S09 because the recording of the fifth
device was unavailable. The statistics are shown in Table A.5.

4https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5˙track1
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Figure A.1: Recording environment of the meeting corpus. 11 smartphones, each
equipped with a monaural microphone, were distributed on the table.

A.2.2 Meeting Corpus

The meeting corpus is our internal dataset that consists of eight sessions of Japanese
meeting data with 5–8 participants. The recording environment is shown in Fig-
ure A.1. Each session was recorded by 11 smartphones distributed on the table,
each of which was equipped with a monaural microphone to record meetings at
16 kHz / 16 bit. Each participant wore a headset microphone and the groundtruth
transcriptions were based on the headset recordings. Note that the sampling fre-
quency mismatch between microphones is not corrected. The statistics of the
dataset are also shown in Table A.5.
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